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ABSTRACT
The sauropod of El Oterillo II is a specimen that was excavated from the Castrillo

de la Reina Formation (Burgos, Spain), late Barremian–early Aptian, in the 2000s

but initially remained undescribed. A tooth and elements of the axial skeleton, and

the scapular and pelvic girdle, represent it. It is one of the most complete

titanosauriform sauropods from the Early Cretaceous of Europe and presents an

opportunity to deepen our understanding of the radiation of this clade in the Early

Cretaceous and study the paleobiogeographical relationships of Iberia with

Gondwana and with other parts of Laurasia. The late Barremian–early Aptian is the

time interval in the Cretaceous with the greatest diversity of sauropod taxa described

in Iberia: two titanosauriforms, Tastavinsaurus and Europatitan; and a

rebbachisaurid, Demandasaurus. The new sauropod Europatitan eastwoodi n. gen.

n. sp. presents a series of autapomorphic characters in the presacral vertebrae and

scapula that distinguish it from the other sauropods of the Early Cretaceous of

Iberia. Our phylogenetic study locates Europatitan as the basalmost member of the

Somphospondyli, clearly differentiated from other clades such as Brachiosauridae

and Titanosauria, and distantly related to the contemporaneous Tastavinsaurus.

Europatitan could be a representative of a Eurogondwanan fauna like

Demandasaurus, the other sauropod described from the Castrillo de la Reina

Formation. The presence of a sauropod fauna with marked Gondwananan affinities

in the Aptian of Iberia reinforces the idea of faunal exchanges between this

continental masses during the Early Cretaceous. Further specimens and more

detailed analysis are needed to elucidate if this Aptian fauna is caused by the

presence of previously unnoticed Aptian land bridges, or it represents a relict

fauna from an earlier dispersal event.

How to cite this article Torcida Fernández-Baldor et al. (2017), Europatitan eastwoodi, a new sauropod from the lower Cretaceous of

Iberia in the initial radiation of somphospondylans in Laurasia. PeerJ 5:e3409; DOI 10.7717/peerj.3409

Submitted 3 February 2017
Accepted 12 May 2017
Published 27 June 2017

Corresponding authors
Fidel Torcida Fernández-Baldor,

fideltorcida@hotmail.com
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INTRODUCTION
The vertebrate faunas of the Early Cretaceous of the Iberian Peninsula are of particular

interest on account of the special paleobiogeographical location of the Iberian microplate.

The Iberian Peninsula is the Laurasian landmass situated closest to Gondwana, and there

are obvious relations between certain Iberian and Gondwanan dinosaurs and other clades

in the Early Cretaceous, especially in the Barremian (Pereda-Suberbiola et al., 2003;

Gheerbrant & Rage, 2006; Canudo, Royo-Torres & Cuenca-Bescós, 2008; Canudo et al., 2009;

Torcida Fernández-Baldor et al., 2011; Carballido et al., 2012; Gasca, Canudo & Moreno-

Azanza, 2014). One hypothesis that explains how the faunal exchange between Africa and

Europe could be developed is the so-called “trans-Tethys” route or Apulian route

(Gheerbrant & Rage, 2006). According to this hypothesis, the existence of archipelagos

separated by shallow seas of changing eustatic levels, would make possible the migratory

movement of the dinosaurs between the two continental masses quoted in a bidirectional

sense. The Apulian route could have facilitated these migratory movements intermittently

until the Eocene (Gheerbrant & Rage, 2006; Canudo et al., 2009). Bearing this fact in

mind, modern paleobiogeographical models point out that Europe and “Gondwanan”

territories possessed a common Eurogondwanan fauna during the earliest Cretaceous, but

that from the Barremian onwards dispersal took place independently in Gondwana and

Laurasia, with the isolation of the European faunas (Ezcurra & Agnolı́n, 2012). To resolve

this paleobiogeographical problem, new dinosaur material needs to be put in its correct

phylogenetic position and its age established. This may be the only way of ascertaining

whether the paleobiogeographical complexity of the Iberian Peninsula in the Early

Cretaceous was the result of processes of dinosaur dispersal only at certain points in time

or came about as a continuous process. A particularly interesting group for studying

this question is the sauropod dinosaurs due to their broad distribution on a worldwide

scale in the Cretaceous.

Sauropods are one of the groups of dinosaurs of the Spanish Cretaceous of which our

knowledge has increased most substantially as a result of recent discoveries such as those

of the macronarians of the end of the Jurassic and the Early Cretaceous. Accordingly,

Galvesaurus has been described in the Tithonian (Barco et al., 2005; Aurell et al., 2016),

Aragosaurus at the base of the Cretaceous (Sanz et al., 1987; Canudo et al., 2012;

Royo-Torres et al., 2014), Tastavinsaurus and Demandasaurus in the Barremian–lower

Aptian (Canudo, Royo-Torres & Cuenca-Bescós, 2008; Royo-Torres, Alcalá & Cobos, 2012;

Torcida Fernández-Baldor et al., 2011), and Lirainosaurus and Lohuecotitan in the upper

Campanian (Sanz et al., 1999; Vila et al., 2012; Dı́ez Dı́az et al., 2016). In the Cretaceous,

Titanosauriformes were the dominant—indeed almost the only—sauropods in the

Iberian Peninsula, as shown by the fact that the vast majority of remains found have been

assigned to this clade, with the exception of the rebbachisaurid Demandasaurus of the

upper Barremian–lower Aptian (Torcida Fernández-Baldor et al., 2011). The systematic
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position of the macronarian Aragosaurus, found at the base of the Cretaceous of Teruel,

Spain (Aurell et al., 2016), is a matter of controversy: some authors recover it as a

non-titanosauriform macronarian (Mannion et al., 2013; Royo-Torres et al., 2014),

whereas for others it possesses characters that suggest its inclusion in Titanosauriformes

(Canudo et al., 2012).

Titanosauriformes is the most diverse sauropod clade in the Cretaceous, and is

represented on all the continents (D’Emic, 2012;Mannion et al., 2013). More derived

titanosauriforms, i.e., lithostrotian titanosaurs, are characterized by apomorphies that have

made it possible to identify them relatively easily (Salgado, Coria & Calvo, 1997;Wilson,

2002; González Riga, 2003). However, non-titanosaurian titanosauriforms have been the

subject of different interpretations in different cases (Wilson & Upchurch, 2009). This

disagreement is due to the scarcity of complete specimens, which has made it difficult to

establish synapomorphies thatmight allowus to distinguish different groups other than the

titanosaurs; another difficulty in this sense is the existence of clade definitions that offer

different diagnostic characteristics (Salgado, Coria & Calvo, 1997; Wilson, 2002; González

Riga, 2003). Titanosauriforms are important to Cretaceous paleobiogeography because of

their diversity and ubiquity, but their impact on paleobiogeography has not been fully

realized owing to confusion over their phylogenetic relationships (D’Emic, 2012;Mannion

et al., 2013;Gorscak&O’Connor, 2016; Poropat et al., 2016). Resolving the role of endemism

and the details of the faunal turnover of these sauropods depends on ascertaining their

lower-level phylogenetic relationships. D’Emic (2012) has undertaken a revision of the

Titanosauriformes, proposing a new phylogenetic framework that differentiates two

further clades in addition to the titanosaurians: on the one hand the brachiosaurids, with

their origin in the Late Jurassic of Pangaea, and on the other hand a second clade of

Asian somphospondylans, Euhelopodidae, distributed across the Early-mid Cretaceous

of Asia. Ksepka & Norell (2010) also identify several taxa of Asian titanosauriforms as

somphospondylans and they point out that there is not evidence of Asian brachiosaurids.

The proposal of D’Emic (2012) includes a number of non-titanosaurian Laurasian

and Gondwanan genera (Tastavinsaurus, Sauroposeidon, Ligabuesaurus) that are not

accommodated within these two clades (see alsoMannion et al., 2013). This hypothesis is

not the only one that has been proposed, since Royo-Torres, Alcalá & Cobos (2012) have

identified a clade they designate Laurasiformes containing Iberian and North American

taxa from the Early Cretaceous, bringing together various earlier proposals (Canudo &

Cuenca-Bescós, 2004). In spite of these significant contributions to what is known

of the phylogenetic relations among the basal titanosauriforms, as well as their

paleobiogeographical relationships (especially those relations between Gondwana and

Laurasia), further specimens are required to shed new light on the problem.

A particularly prolific area when it comes to continental vertebrate fossil remains from

the Early Cretaceous of Spain is the region of Salas de los Infantes (Burgos) in the north of

the Iberian Peninsula (Sanz, 1983; Pereda-Suberbiola et al., 2003, 2011; Torcida Fernández-

Baldor, 2006; Torcida Fernández-Baldor et al., 2005, 2011;Huerta et al., 2012). On the basis

of the discoveries of the last 20 years, a project has been undertaken to bring paleontology

to the public attention, its cornerstone being the Dinosaur Museum of Salas de los

Torcida Fernández-Baldor et al. (2017), PeerJ, DOI 10.7717/peerj.3409 3/50

http://dx.doi.org/10.7717/peerj.3409
https://peerj.com/


Infantes, where various dinosaur tracksites have also been prepared as exhibits. In this

context, the site of El Oterillo II was found in 2003 and excavated in the following years

2004–2006. The specimen in question is the semi-articulated specimen of a sauropod,

from which various remains from the cranial and postcranial skeleton have been

recovered. These materials were attributed to Titanosauriformes in a preliminary research

on the basis of the morphology of the caudal vertebrae (Torcida Fernández-Baldor et al.,

2009). The fossils that constitute the holotype are housed in the Dinosaur Museum of

Salas de los Infantes (Burgos). The aim of the present paper is to provide a complete

description of the sauropod of El Oterillo II, to ascertain its phylogenetic position in

relation to the most recent proposals for Titanosauriformes, and to draw relevant

paleobiogeographical conclusions.

LOCATION AND GEOLOGICAL SETTING
The site of El Oterillo II is located in the province of Burgos in northern Spain, 2.5 km to

the west of the village of Barbadillo del Mercado in Salas de los Infantes (Fig. 1; Fig. S1).

Geologically, El Oterillo II is located in the Cameros Basin, which was filled during the

upper Jurassic–lower Cretaceous by a non-marine succession (Fig. 1). This basin is a

half-graben related to the second phase of the Iberian Rift System, which accumulated

around 9,000 m of sediment in its depocenter (Salas & Casas, 1993; Salas et al., 2001).

The basin has classically been divided into two sectors. The eastern part is where the

depocenter is located and where low-grade metamorphism occurred. It is probably for

this reason that fossil bone sites are extremely rare in this area (Canudo et al., 2010),

although there are many footprint sites (Castanera et al., 2014). In the western part of

the basin (the “Subcuenca Occidental de Cameros”), vertebrate bone and track sites are

abundant (Torcida Fernández-Baldor, 2006). It is in this part of the basin that the site of

El Oterillo II is located. The sediments of the Cameros Basin have traditionally been

divided into five groups: Tera, Oncala, Urbión, Enciso, and Olivan. The stratigraphy

of the western part of the basin is quite complex due to the different stratigraphic

proposals (Platt, 1989; Martı́n-Closas & Alonso Millán, 1998; Arribas et al., 2003;

Clemente Vidal, 2010). The site of El Oterillo II is located in the Urbión Group

(Fig. 1).

The bed-to-bed correlation based on aerial photos with stratigraphic logs previously

published for the Salas de los Infantes area allows the site of El Oterillo II to be placed in

the Castrillo de la Reina Fm., one of the formations included in the Urbión Group (Fig. 1).

This lithostratigraphic unit is constituted by alternating sandstone layers ranging from

50 cm to 2 m in thickness with red lutite layers among which there are occasional levels

with carbonate encrustations (nodular caliches). These facies are interpreted as distal

alluvial plains that record prolonged periods of low clastic sedimentation. As a whole, the

sequence represents a distal fluvial–alluvial system originating from the southwest. In

the last 10 years, an abundant fossil fauna of dinosaurs and other vertebrates has been

described in this formation (Pereda-Suberbiola et al., 2003; Torcida Fernández-Baldor,

2006; Torcida Fernández-Baldor et al., 2005, 2008, 2011, 2015; Pérez-Garcı́a et al., 2011).

The age of the Castrillo de la Reina Fm. is upper Barremian–Aptian, as determined mainly
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Figure 1 Geological map of the western Cameros Basin. Based on Beuther et al. (1966) indicating the

location of El Oterillo site and stratigraphy of the basin modified from Martı́n-Closas & Alonso Millán

(1998).
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on the basis of charophyte and ostracod biostratigraphy (Martı́n-Closas & Alonso Millán,

1998; Schudack & Schudack, 2009).

The site of El Oterillo II is located at the top of a sandstone bed with channel geometry,

50 cm thick and 8 mwide, and interbedded with red mudstones. The sandstone bed shows

cross-stratification and scattered quartzite clasts. The color of the sandstone is reddish-

brown and becomes grey-blue toward the top, where the dinosaur bones appear. In some

parts of the site, just below or very close to the bones, a lag of quartzite clasts (1–2.5 cm

diameter) with theropod and crocodyliform teeth appears. The paleocurrent measured in

the channel indicates an ENE direction. Sandstone channel fills are scarce in the area;

other sandstone beds have tabular geometries that are large in extension and centimeters

to meters in thickness. The beds dip 15� southwards.
El Oterillo II has yielded the remains of only one sauropod individual (Fig. 2), as well as

isolated theropod teeth, which tends to be the case with herbivore carcasses (Alonso,

Canudo & Torcida Fernández-Baldor, 2016). An iguanodontian ilium was found at the site

although separated from the main bone set (Contreras et al., 2007). A total of 350 fossils

belonging to the sauropod specimen have been recovered. A major percentage of these

materials are fragments of dorsal and cervical ribs, as well as fragments of vertebral

laminae. The most complete material has been studied for the present paper.

N

1 m.1 m.

Cervical ribs and 
vertebrae

Ischia

Pubis

Caudal vertebrae

Dorsal vertebra

Cervical vertebra

Scapulae

Cervical ribs

Dorsal ribs

Haemal arches

Figure 2 Quarry map of the partial skeleton of Europatitan eastwoodi n. gen. n. sp. from the late

Barremian–early Aptian, Early Cretaceous, of El Oterillo II site, Spain. The arrow indicates an

iguanodontoid ilium (Contreras et al., 2007). Circular symbols correspond to splinters, and triangles to

isolated teeth of theropods.
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From the site, a series of caudal vertebrae from the sauropod appears articulated, whereas

others such as the hipbones, or the scapula and several ribs, are close to their anatomical

position although slightly displaced (Fig. 2). Several bones show tooth marks (Alonso,

Canudo & Torcida Fernández-Baldor, 2016), and some are in a poor state of preservation at

their distal or proximal ends. Long bones have not been found.

The sandstone bed underlying the dinosaur remains is interpreted as a fluvial channel

isolated in floodplain deposits, as is inferred from the geometry, the sedimentary

structures, the paleocurrents and the fluvial origin of the Castrillo de la Reina Fm.

(Clemente & Perez-Arlucea, 1993; Martı́n-Closas & Alonso Millán, 1998). The articulation

of the sauropod caudal vertebrae and the anatomical position of other bones reveal

that transport did not take place. The size of the quartzite clasts and their position below

the dinosaur remains suggest that the channel flow was not strong enough to move a

sauropod body and that flow occurred before the arrival of the dinosaur. The tooth marks

found in some bones, and the presence of several theropod teeth, reveal the presence of

carrion feeders. Some parts of the body that are well preserved and do not show tooth

marks, such as the caudal vertebrae, were probably covered by water and/or sediment.

SYSTEMATIC PALEONTOLOGY
Materials and methods
El Oterillo II (OT-II) was found in 2003 during the prospection campaign carried out

as part of the Paleontological Inventory of the Sierra de la Demanda (file 243/03-BU

JDVR/MCP). The material described in this publication was excavated in 2004, 2005,

and 2006 with the corresponding permits from the Heritage Office (Dirección General

de Patrimonio) of the regional government of Castilla y León (dossiers 307/04-BU;

257/05-BU; 262/06-BU), which is the department responsible for the administration of

the paleontological heritage of this region of Spain. Accordingly, the material complies

with all the regulations of the Spanish state. All the material described in the present

publication is housed in the Dinosaur Museum of Salas de los Infantes (MDS; previously

MPS) (Salas de los Infantes, Burgos, Spain), where it is available for comparative study by

qualified researchers. The material studied comprises one tooth, five cervical vertebrae,

one dorsal vertebra, nine caudal vertebrae, 11 cervical ribs, five dorsal ribs, seven hemal

arches, the two scapulae, the left coracoid, the left metacarpals I and III, the two pubes,

and the two ischia. The museum numbers are MDS-OTII,1 to MDS-OTII,32.

The electronic version of this article in portable document format will represent a

published work according to the International Commission on Zoological Nomenclature

(ICZN), and hence the new names contained in the electronic version are effectively

published under that Code from the electronic edition alone. This published work and the

nomenclatural acts it contains have been registered in ZooBank, the online registration

system for the ICZN. The ZooBank LSIDs (life science identifiers) can be resolved and the

associated information viewed through any standard web browser by appending the LSID

to the prefix http://zoobank.org/. The LSID for this publication is:urn:lsid:zoobank.org:

pub:E76E9C58-CB53-4CBE-8CF5-87561A5365A1. The online version of this work is
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archived and available from the following digital repositories: PeerJ, PubMed Central

and CLOCKSS.

Nomenclature
In general, we use the standardized anatomical nomenclature based on the Nomina

Anatomica Avium and Nomina Anatomica Veterinaria (see Harris, 2004). The

nomenclature for the vertebral laminae followsWilson (1999), with modifications (apcdl)

from Salgado, Apesteguı́a & Heredia (2005) andWilson et al. (2011). The nomenclature for

the vertebral pneumatic structures follows Wedel (2003) and Wilson et al. (2011).

Order SAURISCHIA Seeley, 1887

Infraorder SAUROPODA Marsh, 1878

NEOSAUROPODA Bonaparte, 1986

Titanosauriformes Salgado, Coria & Calvo, 1997

Somphospondyli Wilson & Sereno, 1998

Genus Europatitan gen. nov.

urn:lsid:zoobank.org:act:29532C3F-4E3F-4702-845A-2D75EF3C63B

(Figs. 3–17)

Etymology: In reference to Europe, the continent where it was found, and the titans,

ancient Greek deities known for their gigantic size, endowed with great power.

Type Species: Europatitan eastwoodi sp. nov., see below.

Diagnosis: As for the type and only known species.

E. eastwoodi sp. nov.

urn:lsid:zoobank.org:act:B436CCB2-6E5C-498E-80A5-4BF271AC3175.

Etymology: Dedicated to US actor Clint Eastwood, the protagonist of the film “The

Good, the Bad and the Ugly,” which was partially filmed near Salas de los Infantes.

Type Locality and Horizon: The site of El Oterillo II is located in the province of Burgos

in northern Spain, 2.5 km to the west of the village of Barbadillo del Mercado in Salas de

los Infantes (Fig. 1), Burgos Province, Spain; Urbión Group, Castrillo de la Reina Fm.,

lower Cretaceous, regarded as late Barremian–early Aptian in age (Martı́n-Closas & Alonso

Millán, 1998).

Holotype:MDS-OTII,1 to MDS-OTII-32. The disarticulated carcass of a single specimen

consisting of the following material: one tooth, five cervical vertebrae, one dorsal vertebra,

nine caudal vertebrae, 11 cervical ribs, five dorsal ribs, seven hemal arches, the two

scapulae, the left coracoid, the left metacarpals I and III, the two pubes, and the two ischia.

Diagnosis: A large titanosauriform sauropod diagnosed by a combination of

autapomorphic and synapomorphic characters. The autapomorphies are as follows:

(1) posterior cervical vertebrae with a parapophysis that presents a triradiate laminar

structure in its dorsal part dividing the lateral pneumatic fossa; (2) middle and posterior

dorsal vertebrae with a horizontal tpol lamina positioned dorsal to the hyposphene;
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(3) middle and posterior dorsal vertebrae with centroprezygapophyseal lamina joined

laterally to two accessory laminae delimiting pneumatic cavities and that partially

subdivides the centroprezygapophyseal parapophyseal fossa; (4) in the middle and

posterior dorsal vertebrae dorsally the centropostzygapophyseal laminae reach the

lateroventral margin of the hyposphene and are forked at their ventral end, (5) middle

and posterior dorsal vertebrae with posterior part of the centrodiapophyseal

postzygapophyseal fossa broad and divided by various small accessory laminae situated

between the posterior centrodiapophyseal and the postzygodiapophyseal laminae, giving

rise to small, highly conspicuous pneumatic subfossae; (6) in the middle and posterior

dorsal vertebrae there is an accessory lamina present between the anterior and posterior

spinodiapophyseal laminae; this lamina divides the fossa situated between the two

laminae; (7) on the anterior surface of the capitulum the posterior dorsal ribs present a

crest that is sinusoidal in outline running in a proximodistal direction; (8) the dorsal area

of the deltoid crest of the scapula presents a sub-elliptical process with a rugose surface,

accompanied in its ventral part by a rugose flat area and a pronounced groove; (9) on the

dorsal margin of the scapular blade, approximately in its middle part, there is a rugose

tubercle with two projections separated by a semicircular depressed area.

The combination of synapomorphic characters is as follows: flat or slightly convex

ventral surface of the cervical centra (Ch. 112:0); very reduced pleurocoels in cervical

centra (Ch. 114:3) with a well-defined anterior excavation and smooth posterior fossa

(Ch. 115:3); dorsal vertebrae with a strongly compressed centrum (Ch. 162:2); procoelous

anterior caudal vertebrae (Ch. 193:3); lack of prespinal lamina in the neural arches of the

anterior caudal vertebrae (Ch. 207:0); long chevron, hemal canal (Ch. 126:1); rounded

expansion on acromial side (Ch. 232:1); well-developed acromion process (Ch. 235:1);

ventromedial process of the ventral margin of the scapula well developed (Ch. 237:1);

glenoid scapular orientation strongly beveled medially (Ch. 240:1); muscle scar on the

proximal end of the ischium (Ch. 291:1); and lack of a ventral bulge on the transverse

process of the first caudal (Ch. 358:0).

Description
Teeth: One tooth labeled as MDS-OTII,18. This tooth has a complete dental crown, which

preserves the base of the pulp cavity and does not have a root (Fig. 3). The overall shape of

the tooth is triangular, more spoon-shaped than pencil-shaped, with the crown slightly

displaced posteriorly. It is interpreted as being a right maxillary or left mandibular tooth.

It is 20 mm in height, 9 mm in mesiodistal width, and its labiolingual width is 4 mm. The

approximate value of the slenderness index (SI; Upchurch, 1998) is 2.2. Diplodocoids and

titanosaurians have very slender, peg-like teeth with SI values >4.0 and reduced lingual

concavities (Upchurch, 1998), indicating that MDS-OTII,18 cannot be referred to either of

these clades. However, the SI values are consistent with referral to a basal titanosauriform

(Barrett et al., 2002; Chure et al., 2010). Its section is somewhat flattened lateromedially

and oval, slightly asymmetrical and more triangular in the apical zone. The mesial and

distal edges present fine carinae without denticles. It has subtle ornamentation with

crenulations only visible by light microscopy; it possesses gentle crests running in a
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longitudinal direction, three on the lingual face and four on the labial face. It is a

functional tooth, with an apical wear facet. This feature distinguishes it from basal

macronarians such as Camarasaurus with a V-shaped facet. In basal titanosauriforms such

as Giraffatitan, teeth with high-angled mesial and distal wear facets but no apical wear

have been described, while others display a combination of apical wear and mesial and

distal wear (Barrett et al., 2002). Other non-titanosaurian titanosauriforms show sharply

inclined wear facets, as occurs in Ligabuesaurus (Bonaparte, González Riga & Apesteguı́a,

2006). The crown base lacks the cingular structure described in the putative euhelopodid

of the Early Cretaceous of Spain (Canudo et al., 2002).

Cervical vertebrae: Five incomplete cervical vertebrae have been recovered. In the cervical

series, these could be the 7th (MDS-OTII,32) and the 8th, 9th, 10th, and 11th, which are

articulated (MDS-OTII,31A, B, C, D). MDS-OTII,32 preserves the posterior half of the

vertebral body, as well as the left postzygapophysis, part of the right parapophysis, and an

anterior fragment of the neural arch; its right side is in a very poor condition (Fig. 4).

CBA D E

Figure 3 Tooth (MDS-OTII,18) from Europatitan eastwoodi n. gen. n. sp. (A) Anterior view.

(B) Distal view. (C) Lingual view. (D) Mesial view. (E) Adapical view. Scale: 1 cm.

PRDL

SPRL FOR PCDL

PPF
PL

SPOL

POSZG

Figure 4 Cervical vertebra (MDS-OTII,32) from Europatitan eastwoodi n. gen. n. sp., left lateral
view. FOR, foramen; PCDL, posterior centrodiapophyseal lamina; PL, pleurocel; POSZG, post-

zygapophyses; PPF, parapophyses; PRDL, prezygodiapophyseal lamina; SPOL, spinopostzygapophyseal

lamina; SPRL, spinoprezygapophyseal lamina. Scale: 10 cm.
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Of the ?A3B2 tlsb?> articulated series, MDS-OTII,31A preserves a small posterior part of

the vertebral body; MDS-OTII,31D preserves the most anterior part of the vertebral body,

of the neural arch and the neural spine; MDS-OTII,31B and C are almost complete although

LATF

SDF

SPRL

CPRL

PODL

PCDL

SPOL

NS

DIAPF

POSZG PRZG

PRDL
POCDF

PNEUMT

PPF

A

B

C

LVAL

TLS

LATF

FRM HAL

Figure 5 Cervical vertebrae (MDS-OTII,31 A–D) from Europatitan eastwoodi n. gen. n. sp. (A) Block
from the excavation containing the vertebrae; draw the contour of MDS-OTII,31B and 31C. (B) Detail of

triradiated structure in the parapophysis of MS-OTII,31B. (C) Reconstruction of MS-OTII,31B. CPRL,

centroprezygapophyseal lamina; DIAPF, diapophysis; FRM, foramina; HAL, horizontal accessory

lamina; LATF, lateral fossa; LVAL, lateroventral accessory lamina; NS, neural spine; PCDL, posterior

centrodiapophyseal lamina; PNEUMAT, pneumatic subfossae; POCDF, centrodiapophyseal post-

zygapophyseal fossa; PODL, postzygodiapophyseal lamina; POSZG, postzygapophyses; PPF, para-

pophyses; PRDL, prezygodiapophyseal lamina; PRZG, prezygapophyses; SDF, spinodiapophyseal fossa;

SPOL, spinopostzygapophyseal lamina; SPRL, spinoprezygapophyseal lamina; TLS, trirradiated laminar

structure. Scale: 50 cm (A), 10 cm (B).

Torcida Fernández-Baldor et al. (2017), PeerJ, DOI 10.7717/peerj.3409 11/50

http://dx.doi.org/10.7717/peerj.3409
https://peerj.com/


they have lost some laminae, the diapophysis and part of the parapophysis (Fig. 5). These

articulated vertebrae form part of a rocky block in a delicate state of preservation, from

which preparation work has made it possible to expose the left side of the vertebrae.

The cervical vertebrae of Europatitan are remarkable for their extreme pneumatization

and the great anteroposterior lengthening of the vertebral centrum (Table 1), which

implies an extremely long neck as displayed by some titanosauriforms, such as

Giraffatitan, Sauroposeidon, and Erketu (Janensch, 1950; Wedel, Cifelli & Sanders, 2000a;

Ksepka & Norell, 2006).

MDS-OTII,31B and 31C have a vertebral centrum that is anteroposteriorly lengthened

and relatively low, slightly higher than wide (Fig. 4). The vertebral centrum is

opisthocoelous with a very marked concavity in its posterior articular face, which is

oval. The ventral surface of the centra is transversely concave in its anterior part; in

MDS-OTII,32 is, flat with two short and shallow crests in the middle. The lateral surfaces

are excavated almost entirely by large pneumatic fossae separated medially by a very fine

bony partition. The lateral fossa is perforated by a small pleurocoel that is clearly delimited

posteriorly by a sharp edge in MDS-OTII,32 and MDS-OTII,31C. The interior of the

pleurocoel is complex, being divided into two parts by laminae that are in turn subdivided

by other internal laminae, resulting in a total of six subcavities. Furthermore, there are

foramina in each of these subcavities. The pneumatic fossa takes up approximately 80% of

the vertebral body, as in Sauroposeidon (Wedel, Cifelli & Sanders, 2000a). A horizontal

lamina is located dorsal to the pneumatic fossa of the vertebral centrum, delimiting it

from the neural arch, like the crest presented by a middle cervical vertebra from the

titanosauriform Astrophocaudia (D’Emic, 2013), Fig. 5B: HAL.

The parapophysis is located in the anterior half of the vertebral body, which

anteriorly and posteriorly has accessory laminae developed on its lateroventral margin

Table 1 Measurements of vertebrae of Europatitan eastwoodi.

Vertebra TW

(cm)

TH

(cm)

CL

(cm)

ACW

(cm)

ACH

(cm)

PCW

(cm)

PCH

(cm)

NAH

(cm)

NSH

(cm)

NSW

(cm)

UI WI

MDS-OTII,31B – 76 114 – – – – 56 44 – – –

MDS-OTII,31C – 74 112 – – – – 53 33 – – –

MDS-OTII,32 – – – – – 13.51 171 – – – – –

MDS-OTII,1 95 771 24 38 23 43 25 – – – 0.56 0.96

MDS-OTII,2 45.5 61 14.5 26 31 29 32 32 21 11 0.5 0.45

MDS-OTII,3 39.5 57 13.5 2.5 32 26 27 30 8 11 0.52 0.5

MDS-OTII,4 35 54 15 26 29 25 27.5 27 7.5 10 0.6 0.54

MDS-OTII,6 30.5 44 15.5 25 23 23.5 23 20.5 8 7 0.66 0.67

MDS-OTII,7 26 41.5 14.5 24 23 23 22 20 9 6 0.63 0.66

MDS-OTII,8 23 37.5 15 22.5 20.5 22 20.5 19 7.5 5.5 0.68 0.73

MDS-OTII,9 17 28.5 15.5 17.5 14.5 17 15.5 13.5 8 2.5 0.91 1

Notes:
TW, total width; TH, total height; CL, centrum length; ACW, anterior centrum width; ACH, anterior centrum height; PCW, posterior centrum width; PCH, posterior
centrum height; NAH, neural arch height; NSH, neural spine height; NSW, neural spine mediolateral width; UI, elongation index sensu Upchurch (1998); WI, elongation
index sensu Wilson (2002). Measurements are in cm.
1 Incomplete or estimate.
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(Fig. 5B: LVAL). Europatitan shares this characteristic with Sauroposeidon and Giraffatitan

(Janensch, 1929, 1950; Wedel, Cifelli & Sanders, 2000a, 2000b; Rose, 2007). One of these

laminae has been described as a posterior centroparapophyseal lamina (pcpl) (Wedel,

Cifelli & Sanders, 2000b), but this may not be the homologous lamina described in the

dorsal vertebrae, since in the latter the acpl and the pcpl have the neurocentral junction as

a landmark, whereas in the cervical vertebrae of Europatitan the reference point is the

lateroventral margin (Wilson, 1999). In MDS-OTII,31B the parapophysis supports two

well-developed accessory laminae in its dorsal part, one of them oriented posteriorly

and the other anteriorly. This appears forked at its origin in the wall of the lateral fossa

of the vertebral body. Together they form a highly conspicuous triradiate laminar

structure whose branches delimit various parts of the lateral pneumatic fossa and contain

up to six foramina (Fig. 5B: TLS, FRM). Such a triradiate laminar structure has not been

described in other sauropod taxa and is considered an autapomorphy of E. eastwoodi.

The neural arch is expanded dorsoventrally and flattened lateromedially. The neural

spine is simple, greatly developed dorsoventrally and anteroposteriorly, as a result of

which it occupies 80% of the length of the vertebral body. The neural arch presents a

subtriangular outline in lateral view. The dorsal margin of the spine has some lateral

bumps that are irregular in shape. The lateral surfaces of the neural spine are occupied by a

large spinodiapophyseal fossa (sdf), which reaches its greatest depth in its ventral half. In

MDS-OTII,31B this fossa presents various minor fossae that are relatively small (8� 3 cm,

3 � 3.5 cm, 7.5 � 4.5 cm) and have well-delimited margins (Fig. 5C). These fossae are

similar to those presented by Sauroposeidon, but without the associated development of

accessory laminae shown by this taxon (Wedel, Cifelli & Sanders, 2000b). The neural spine

also presents various foramina in its anterodorsal and lateral part. You & Li (2009) suggest

that the neural spine with deep spinodiapophyseal fossae (sdf) could be a synapomorphy

of brachiosaurids, being a character shared by Giraffatitan, Sauroposeidon and

Qiaowanlong. However, for other authors Qiaowanlong is a more derived taxon, included

among the somphospondylans (Ksepka & Norell, 2010; Mannion et al., 2013).

The simple neural spine is a character shared with brachiosaurids, which

differentiates it from the Euhelopodidae, which have a bifid neural spine (D’Emic, 2012).

It presents a certain simplification regarding the development of bony laminae

associated with it. On the anterior surface of the spine there are two well-developed

spinoprezygapophyseal laminae (sprl), which delimit the spinoprezygapophyseal fossa

(sprf). There is no prespinal lamina (prsl). On the posterior surface, there are two deep

spinopostzygapophyseal laminae (spol), which delimit the spinopostzygapophyseal fossa

(spof). Spinodiapophyseal laminae (spdl) are absent, as in Sauroposeidon (Wedel, Cifelli &

Sanders, 2000a, 2000b).

The zygapophyses are not preserved in the vertebral series MDS-OTII,31A, B, C, D,

but some observations can be made thanks to the development of the sprl. The

prezygapophyses extend beyond the anterior end of the vertebral body, while the

postzygapophyses do not reach the posterior limit. The prezygapophyses present deep

centroprezygapophyseal laminae (cprl) and laterally they have a prezygodiapophyseal

lamina (prdl) in a ventral position. Lateral to the sprl there is a foramen delimited dorsally
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by a small crest. The left postzygapophysis of MDS-OTII,32 has a subtriangular articular

surface and is oriented lateroventrally. Ventral to the postzygapophyses there are

centropostzygapophyseal laminae (cpol) and laterally it presents a thick

postzygodiapophyseal lamina (podl).

The diapophyses are not preserved, but they can be interpreted as being located in the

anterior part of the neural arch, dorsal to the parapophysis. The diapophysis presents prdl

and podl, as well as a well-marked posterior centrodiapophyseal lamina (pcdl) with a

foramen in its posterior part. The cervical vertebrae of Europatitan lack the anterior

centrodiapophyseal lamina (acdl), like Qiaowanlong (You & Li, 2009). The absence of

this lamina is a variable character, for it may be missing in several of the vertebrae

of the cervical series (Ksepka & Norell, 2010). This lamina is present in other basal

titanosauriforms such as Giraffatitan and Sauroposeidon (Janensch, 1950; Rose, 2007);

in Giraffatitan it is a short lamina, and in Sauroposeidon it is only found in immature

specimens, if Paluxysaurus is considered a senior synonym of Sauroposeidon (D’Emic,

2013). Finally, between the diapophysis and the podl and pcdl laminae there is a deep

postzygapophyseal centrodiapophyseal fossa (pocdf).

Dorsal vertebra: One middle-posterior dorsal vertebra labeled as MDS-OTII,1. Its total

height is 77 cm, and its maximum width is 95 cm. It is almost complete and is well

preserved; it is only missing the dorsal end of the neural spine and some fragments of the

bony laminae (Table 1; Fig. 6; Fig. S2). The vertebral centrum is flattened dorsoventrally,

expanded lateromedially, opisthocoelous, wider than long, and approximately as long as it

is high, as occurs in macronarians (Wilson & Sereno, 1998; Salgado, Coria & Calvo, 1997).

Its articular faces are dorsoventrally compressed, oval in outline, with a greater width in

the ventral half; the anterior face is convex, and the posterior concave. The lateral surfaces

are anteroposteriorly concave, with a large pleurocoel in the dorsal half, oval in outline

and connected to a pneumatic chamber that is deep and well developed both ventrally

and anteriorly toward the anterior articular face, and less developed dorsally. Inside the

pneumatic chamber there are various scarcely developed laminae. The anterior articular

face has lost part of the cortex, making it possible to see its pneumatized internal structure

(Fig. 6A), which is of the camellate sort characteristic of Titanosauriformes (Wilson,

2002). The ventral surface is anteroposteriorly concave and smooth, without the medial

crest possessed by brachiosaurid titanosauriforms such as Brachiosaurus and Giraffatitan

(Upchurch, Barrett & Dodson, 2004).

The neural arch is dorsoventrally elongated, and greatly expanded lateromedially; it is

situated in an anterior position on the vertebral centrum. The prezygapophyses are large

and thick, reach the anterior margin of the anterior articular face, and are connected to

one another by a weak, horizontally developed intraprezygapophyseal lamina (tprl), as

occurs in anterior dorsal vertebrae (Figs. 6A and 7A). The presence of this lamina in

Europatitan is significant in that it tends to disappear with the development of the

hyposphene (Wilson, 2002). The articular surface of the prezygapophyses is subrectangular

and is slightly inclined ventromedially. Ventrally, the prezygapophyses form a large

hypantrum delimited by thick centroprezygapophyseal laminae (cprl). These laminae fork

ventrally (Fig. 8A). The right cprl in turn laterally receives two accessory laminae with
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pneumatic cavities between them, which partially subdivide the centroprezygapophyseal

parapophyseal fossa (pacprf). The prezygoparapophyseal laminae (prpl) are horizontal

and short. The prezygodiapophyseal lamina (prdl) is a thick, poorly developed ridge that

does not reach the diapophysis.

The postzygapophyses are situated at the base of the neural spine and are

ventromedially oriented. They are subrectangular and are joined to one another by a

short, inconspicuous, horizontal intrapostzygapophyseal lamina (tpol), which is situated

dorsal to the hyposphene (Figs. 6B and 7B). The presence of a horizontal tpol lamina in

posterior dorsal vertebrae with a hyposphene has been cited in Sauroposeidon, if
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Figure 6 Dorsal vertebra (MDS-OTII,1) from Europatitan eastwoodi n. gen. n. sp. (A) Anterior

view. (B) Posterior view. (C) Left lateral view. (D) Right lateral view. The arrows in (A) show the

pneumatized camellate structure. ACC LAM, accesory lamina; ACPL, anterior centroparapophyseal

lamina; ASPDL, anterior spinodiapophyseal lamina; CPOL, centropostzygapophyseal lamina; CPRL,

centroprezygapophyseal lamina; DIAPF, diapophysis; HYPF, hyposphenum; LSPOL, lateral spino-

postzygapophyseal lamina; MSPOL?, medial spinopostzygapophyseal lamina?; NS, neural spine;

PCDL, posterior centrodiapophyseal lamina; PCPL, posterior centroparapophyseal lamina; POSL,

postespinal lamina; PODL, postzygodiapophyseal lamina; POSZG, postzygapophyses; PPDL, pre-

zygaparadiapophyseal lamina; PPF, parapophyses; PRDL, prezygodiapophyseal lamina; PRPL, pre-

zygaparapophyseal lamina; PRSL, prespinal lamina; PRZG, prezygapophyses; PSPDL, posterior

spinodiapophyseal lamina; SPRL, spinoprezygapophyseal lamina; TPOL, intrapostzigapophyseal lamina;

TPRL, intraprezygapophyseal lamina; UPL, unnamed parapophyseal lamina. Scale: 10 cm.
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Paluxysaurus is considered a senior synonym of Sauroposeidon (Rose, 2007; D’Emic, 2013),

although other authors do not identify it with this taxon (D’Emic & Foreman, 2012).

The development of the hyposphene in middle and posterior dorsal vertebrae tends to

be associated with the development of the tpol ventrally to a hyposphene connecting with

the neural canal, or with the absence of the tpol (Apesteguı́a, 2005a; Wilson, 1999).

The hyposphene has a triangular outline in posterior view and a vertical fossa in its

central part. Dorsally, the centropostzygapophyseal laminae (cpol) reach the lateroventral
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Figure 7 Pneumaticity and lamination of dorsal vertebra MDS-OTII,1 from Europatitan eastwoodi n. gen. n. sp. (A–C) Scheme of the laminae.

(A) Anterior view. (B) Posterior view. (C) Left lateral view. (D–F) Pneumaticity. (D) Anterior view. (E) Posterior view. (F) Right lateral view. The

yellow lines mark the laminae that subdivide the main fossae. ACC LAM, accessory lamina; ACPL, anterior centroparapophyseal lamina; ASPDL,

anterior spinodiapophyseal lamina; CAPF, centroparapophyseal fossa; CPOL, centropostzygapophyseal lamina; CPOLF, centropostzygapophyseal

fossa; CPRL, centroprezygapophyseal lamina; DIAPF, diapophysis; HYPA, hypantrum; HYPF, hyposphenum; LSPOL, lateral spinopostzygapo-

physeal lamina; MSPOL?, medial spinopostzygapophyseal lamina?; NS, neural spine; PACDF, centrodiapophyseal parapophyseal fossa; PACPRF,

centroprezygapophyseal parapophyseal fossa; PCDL, posterior centrodiapophyseal lamina; PCPL, posterior centroparapophyseal lamina; PL,

pleurocelo; POCDF, centrodiapophyseal postzygapophyseal fossa; PODL, postzygodiapophyseal lamina; POSDF, postzygapophyseal spinodiapo-

physeal fossa; POSL, postespinal lamina; POSZG, postzygapophyses; PPDL, prezygaparadiapophyseal lamina; PPF, parapophyses; PRDL, pre-

zygodiapophyseal lamina; PRPL, prezygaparapophyseal lamina; PRDF, prezygapophyseal spinodiapophyseal fossa; PRSL, prespinal lamina; PRZG,

prezygapophyses; PSPDL, posterior spinodiapophyseal lamina; SPDL-F, spinodiapophyseal laminae fossa; SPOF, spinopostzygapophyseal fossa;

SPRL, spinoprezygapophyseal lamina; TPOL, intrapostzigapophyseal lamina; TPRL, intraprezygapophyseal lamina; UPL, unnamed parapophyseal

lamina. Scale: 10 cm.
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margin of the hyposphene and are forked at their ventral end (Fig. 8C). The

postzygodiapophyseal lamina (podl) joins the pspdl before it reaches the diapophysis.

Ventral to the hyposphene there is a deep centropostzygapophyseal fossa (cpolf). In

posterior view the centrodiapophyseal postzygapophyseal fossa (pocdf) is large and is

subdivided by various accessory laminae, as many as six on the right side, which are

arranged between the pcdl and the podl, giving rise to small but conspicuous pneumatic

subfossae. This character is not described in other sauropods (Fig. 8D). In Sauroposeidon

anterior dorsal vertebrae have been documented with laminae in a similar position to

what is described in Europatitan, but in the posterior dorsal vertebrae of Sauroposeidon

there is only one lamina that joins the pcdl and podl laminae, dividing the pocdf fossa into

two clearly differentiated subfossae (D’Emic & Foreman, 2012, Figs. 3.2, 4, 6.2).

PSPDL

ASPDL

ACC. LAM.
CPRL

TPOL

CPOL

A B

C D

POCDF

Figure 8 Autapomorphies of Europatitan eastwoodi n. gen. n. sp. in the dorsal vertebra MDS-OTII,1.

(A) Anterior view, accessory laminae to cprl (arrow). (B) Anterolateral view, accessory lamina between

aspdl and pspdl laminae. (C) Posterior view, branched cpol lamina, horizontal tpol lamina. (D)

Posterior view (photography and interpretive image), laminae and pneumatic subfossae (yellow colored

areas) in the pocdf (red colored area). ASPDL, anterior spinodiapophyseal lamina; CPOL, cen-

tropostzygapophyseal lamina; CPRL, centroprezygapophyseal lamina; POCDF, centrodiapophyseal post-

zygapophyseal fossa; PSPDL, posterior spinodiapophyseal lamina; TPOL, intrapostzigapophyseal lamina.
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The neural spine seems to be short. There is a prominent, thick and rugose prespinal

lamina (prsl) on its anterior surface, with striations and grooves running dorsoventrally

(Fig. 7); the spinoprezygapophyseal laminae (sprl) follow a trajectory parallel to the

prsl on the neural spine, until they disappear dorsally, as occurs in Trigonosaurus and

Rapetosaurus and other titanosauriforms (Powell, 1987; Martı́nez et al., 2004; Campos

et al., 2005; Curry Rogers, 2009). There are anterior and posterior spinodiapophyseal

laminae (aspdl and pspdl) crossing the lateral surface of the neural spine (Figs. 6 and 7)

and delimit an interlaminar fossa that we propose to be named spdl-f, Fig. 7D. These two

laminae are present in the dicraeosaurid Brachytrachelopan and in titanosaurians

(González Riga, 2003; Martı́nez et al., 2004; Rauhut et al., 2005; Salgado & Coria, 2009;

Salgado & Powell, 2010). The right aspdl and pspdl laminae are in contact with one

another by means of an accessory lamina that divides the fossa situated between the

two spinodiapophyseal laminae (spdl), (Figs. 6C, 7A, 7C and 8B). The posterior surface of

the neural spine preserves in its most ventral part a thick, rugose structure that would

correspond to a postspinal structure, situated inside a deep spinopostzygapophyseal

fossa (spof). The lateral spinopostzygapophyseal lamina (lspol) starts from the

postzygapophysis and joins the pspdl to form a compound lateral lamina of the neural

spine, as occurs in Argentinosaurus and Epachthosaurus (Salgado & Powell, 2010). At the

base of the neural spine, in an intermediate position between the lspol and the postspinal

structure, there are some scarcely developed crests that run toward the lateral lamina or

toward the postspinal structure. It is difficult to identify them: they may correspond to

medial spinopostzygapophyseal laminae (mspol). There have been citations of lspol

laminae in some diplodocimorphs and in Brachiosauridae. Salgado et al. (2004) point out

that the lspol join at the neural spine to form a posterior medial lamina (posl).

The diapophyses are oriented almost horizontally. The parapophyses are situated at the

height of the prezygapophyses, and join the diapophyses via the paradiapophyseal lamina

(ppdl). In lateral view, the posterior centrodiapophyseal lamina (pcdl) is very prominent,

and it is wide in posterior view; it runs parallel to the anterior centroparapophyseal lamina

(acpl), and between them there is an extensive centrodiapophyseal parapophyseal fossa

(pacdf). Two accessory laminae divide the pacdf. One of the laminae is parallel and

situated dorsal to the centroparapophyseal lamina (pcpl), between the parapophysis

and the pcdl. A similar lamina has been described in Neuquensaurus as upl (D’Emic &

Foreman, 2012), and it is present in other titanosaurians such as Rocasaurus, Saltasaurus,

Rapetosaurus, and Opisthocoelicaudia (Salgado, Apesteguı́a & Heredia, 2005). The other

accessory lamina, ventral to the upl and located within the pacdf fossa, runs between

the acpl lamina and the pcdl lamina, and is the same lamina as that possessed by the

ninth dorsal vertebra of Neuquensaurus (Salgado, Apesteguı́a & Heredia, 2005, Fig. 4C).

Ventral to the pacdf fossa is the centroparapophyseal fossa (cpaf), delimited dorsally by

the pcpl lamina (posterior centroparapophyseal), which is scarcely developed and joins

the acpl in its middle part (Fig. 7F).

Cervical and dorsal ribs: Forty-six ribs (several fragments included) as MDS-OTII,19-24

and MDS-OTII,33-72. Their posterior process represents most of the cervical ribs.

MDS-OTII,24 is from a left cervical rib. Between capitulum and tuberculum there is a
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deep pneumatic fossa that extends through the dorsal part of the posterior process

(Figs. 9A and 9B). The posterior process of MDS-OTII,24 is incomplete, reaching a length

of 120 cm. Numerous fragments of the posterior process have also been found; these

fossils are biconvex or circular in section and elongated, which seems to suggest that the

cervical ribs were very long. MDS-OTII,33 is a rib that articulated with the cervical

vertebra MDS-OTII,32, and does not preserve its proximal part. It would be greater than

185 cm in length. The articulated series of cervical vertebrae MDS-OTII,31A, B, C, D is

associated with various cervical ribs that at a minimum exceed the length of the vertebral

centrum to which they are joined, at least partially reaching the following vertebral

centrum.

The dorsal ribs MDS-OTII,19 and MDS-OTII,21 are elongated; they are greater than

200 cm in proximodistal length (Fig. 9E). The shaft is subtriangular. Distally it becomes

progressively more flattened anteroposteriorly and greatly expanded in a lateromedial

direction, such that its overall shape in anterior view is rectangular. MDS-OTII,19 and

MDS-OTII, 21 are two anterior ribs, with the capitulum and tuberculum apparently well

developed, and the flattened shaft typical of Titanosauriformes (Wilson, 2002). On the

articular head the anterior surface is convex and the posterior concave, a character that is

found in Haplocanthosaurus, Camarasaurus, and rebbachisaurids and is considered a

synapomorphy of Neosauropoda (Wilson & Sereno, 1998).
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D

C
Figure 9 Cervical and dorsal ribs of Europatitan eastwoodi n. gen. n. sp. Cervical rib MDS-OTII,24 in

(A) medial view and (B) dorsal view; arrow in (B) indicates the pneumatic fossa in the shaft. (C) Dorsal

posterior rib MDS-OTII, 20 in (D) posterior view and detail of crested capitulum (cc) and pneuma-

topores (arrows). (E) Anterior rib (MDS-OTII,21), anterior view. Scale: 10 cm.
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MDS-OTII, 22 has its capitulum and tuberculum clearly separated from one another,

and the tuberculum is scarcely developed. These characteristics place it in the middle-

posterior part of the dorsal series (Upchurch, Barrett & Dodson, 2004). The ribs MDS-

OTII,20 and MDS-OTII,23 would be located in the posterior part of the dorsal series.

They present intense pneumatization in their proximal part, with a pneumatic depression

in the anterior face at the beginning of the shaft, between capitulum and tuberculum.

Further, they possess pneumatopores that give access to pneumatic cavities both in the

capitulum and the tuberculum (Figs. 9C and 9D). On MDS-OTII,20 there is a crest that is

sinusoidal in outline running proximodistally on the anterior surface of the capitulum,

delimiting the pneumatic cavity of the capitulum, a character that is considered

autapomorphic for Europatitan. The pneumaticity of dorsal ribs is a character described

for Titanosauriformes that is also shared by diplodocids and rebbachisaurids, although in

titanosauriforms the cavities open by means of pleurocoels on the articular head (Gilmore,

1936; Wilson & Sereno, 1998; Lovelace, Hartman & Wahl, 2007; Mannion et al., 2012;

Torcida Fernández-Baldor, 2012).

Caudal vertebrae: Eight anterior caudal vertebrae labeled as MDS-OTII,2, 3, 4, 5, 6, 7, 8,

one middle caudal vertebra (MDS-OTII,9); see Fig. S2. The most anterior vertebra of

the caudal series is MDS-OTII,2 (Fig. 10). The vertebral centrum is amphicoelous. The

lateral faces are slightly plano-convex dorsoventrally, and concave anteroposteriorly.

The ventral surface is concave anteroposteriorly. The neural arch is located in the anterior

part of the centrum, as occurs in Titanosauriformes (Salgado, Coria & Calvo, 1997;

Wilson, 2002). The transverse processes are laterally projected; they are horizontal and

triangular in anterior view (Fig. 10). Between the diapophysis and the vertebral

centrum runs the acdl, clearly marked in lateral view. The surfaces of the transverse

process present shallow, extensive fossae: in the anterior surface, two centrodiapophyseal

prezygapophyseal fossae (prcdf); in the posterior surface, two centrodiapophyseal

postzygapophyseal fossae (pocdf). Ventral to the transverse process there is a shallow

subcircular fossa. The prezygapophyses are laminar in shape; ventrally they receive the

cprl, and dorsally the sprl. The postzygapophyses are reduced; in their dorsal part, they

present spol laminae that are very close to one another, delimiting a small but deep

spinopostzygapophyseal fossa (spof). There is no hyposphene as presented by derived

somphospondylans (Upchurch, 1998;Mannion et al., 2013). The neural spine is posteriorly

inclined; its distal end is globular, wide and rugose, with abundant crests and grooves.

The section of the spine is subrectangular, and on its lateral faces there are weakly marked

spdl laminae, which do not reach the end of the spine.

The rest of the anterior caudal vertebrae of Europatitan have an anterior articular

face that is concave, in some cases deeply so (Fig. 11). The posterior articular face varies

frombeing slightly convex to presenting a concave central part and a convex periphery. This

character has been described in Titanosauriformes not included in Titanosauria such as

Venenosaurus and Tastavinsaurus (Tidwell, Carpenter & Meyer, 2001; Canudo, Royo-Torres

& Cuenca-Bescós, 2008). Such morphology could represent an incipient procoely in the

anterior caudal vertebrae, a primitive state in relation to the procoely of Titanosauria, which

show a deep proximal concavity and a highly pronounced distal convexity in the shape of a
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ball (Salgado, Coria & Calvo, 1997; Canudo, Royo-Torres & Cuenca-Bescós, 2008). Starting

from the third caudal vertebra, there appear articular facets for the hemal arches. The neural

arch is situated in an anterior position on the vertebral centrum (Figs. 11H–11N). The

prcdf, pocdf, and spof fossae decrease in extent and depth until they disappear in the fourth

vertebra. The fossae ventral to the transverse processes are very shallow and disappear

toward the more posterior vertebrae in the series. The postzygapophyses become

increasingly prominent in the course of the series, and in all these vertebrae they receive the

cpol laminae. The sprl and spol disappear from the seventh caudal vertebra on. These

vertebrae lack a hyposphene, as occurs in Titanosauria (Upchurch, Barrett &Dodson, 2004);

this contrasts with the reduced, crest-shaped hyposphene present in some

somphospondylans (Mannion et al., 2012; D’Emic, 2012). The neural spines are simple,

straight, and posteriorly inclined; they have a club-like dorsal extremity that exhibits

conspicuous rugosities on its anterior and posterior faces, like the neural spines described in

other macronarians of the Early Cretaceous of Iberia such as Aragosaurus and

Tastavinsaurus (Canudo, Royo-Torres & Cuenca-Bescós, 2008; Royo-Torres et al., 2014).

The middle caudal vertebra of Europatitan (MDS-OTII,9) has a spool-shaped centrum

that is relatively short and amphicoelous, as in Tastavinsaurus and unlike the vertebral

CA B
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SPRL SPOL
POSZG

PRZG

Figure 10 First caudal vertebra (MDS-OTII,2) of Europatitan eastwoodi n. gen. n. sp. (A) Anterior
view. (B) Right lateral view. (C) Posterior view. (D) Dorsal view. (E) Ventral view. ACDL, anterior

centrodiapophyseal lamina; POSZG, postzygapophyses; PRDL, prezygodiapophyseal lamina; PRZG,

prezygapophyses; SPOL, spinopostzygapophyseal lamina; SPRL, spinoprezygapophyseal lamina. Scale:

10 cm.
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centra present in titanosaurians such as Alamosaurus and Saltasaurus (Powell, Sanz &

Buscalioni, 1992; Lehman & Coulson, 2002). The lateral faces of the centrum are concave

and smooth; the ventral surface is also concave anteroposteriorly. The neural arch is in

an anterior position. It presents reduced sprl laminae, between which a sprf fossa is

present. The postzygapophyses are very reduced, presenting spol laminae that delimit a

spof fossa. The neural spine is straight, lateromedially compressed, and rugose on its

anterior and posterior faces and its dorsal margin (Figs. 11G, 11N and 11U).

Hemal arches: Seven hemal arches labeled as 04.17 OT-II,25, 26, 27, 28, 29, and 30;

one hemal is fused to MDS-OTII,5 (Fig. 12). The hemal arches are open at the proximal

end, a synapomorphy of Neosauropoda (Wilson, 2002). The proximal “crus” bridging

the superior margin of the hemal canal is present in some basal sauropods, many

flagelicaudatans, and some macronarians, but this character can vary through the caudal

series, as in the rebbachisaurid diplodocimorphs (Pereda-Suberbiola et al., 2011;

Salgado et al., 2012; Otero et al., 2012). The first hemal arch of the series, MDS-OTII,27

A B C FED G

H I L M NKJ

Q R S T UPO

Figure 11 Caudal vertebrae of Europatitan eastwoodi n. gen. n. sp. Anterior caudal vertebrae: MDS-OTII,3 (A, H, O), MDS-OTII,4 (B, I, P),

MDS-OTII,5 (C, J, Q), MDS-OTII,6 (D, K, R), MDS-OTII,7 (E, L, S), MDS-OTII,8 (F, M, T). Middle caudal vertebra: MDS-OTII,9 (G, N, U),

anterior view (A–G), left lateral view (H–N), and posterior view (O–U). The arrow indicates an irregular surface of pathological origin. Scale: 10 cm.
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(Figs. 12A and 12B) is articulated with the third and fourth caudal vertebrae, as in

Tastavinsaurus (Canudo, Royo-Torres & Cuenca-Bescós, 2008). In lateral view the hemal

arches are straight, and their proximal end has a double articulation, with a convex

anterior surface and a flat posterior surface (Fig. 12J). The surface is smooth and without

ornamentation. The first hemal arch is Y-shaped, with dorsal and ventral branches that are

similar in length and the ventral branch compressed anteroposteriorly. The separation

between the branches is greater than in the rest of the hemal arches (Fig. 12). In all the

other hemal arches the ventral branch is lateromedially compressed and is longer than

the dorsal branch. The hemal canal (except the first) is roughly 40% of the total length

of the hemal arch, similar to Aragosaurus and Tastavinsaurus (Canudo, Royo-Torres &

Cuenca-Bescós, 2008; Royo-Torres et al., 2014); this differentiates them from titanosaurs,

which reach values of 50% (Wilson, 2002).

Scapulae: The two scapulae labeled as MDS-OTII,14, left scapula in connection with

part of the left coracoid, MDS-OTII,15; MDS-OTII,16, right scapula. The two scapulae are

almost complete The left scapula is larger in size than the right one. A description has been

made of MDS-OTII,14 (Fig. S3), which has the axis of the scapular blade arranged

horizontally. MDS-OTII,14 lacks part of the proximal, proximodorsal and dorsodistal

margins of the proximal lamina, as well as part of the distal margin of the scapular blade

(Fig. 13). Its general shape is similar to that of Brachiosauridae such as Giraffatitan
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Figure 12 Hemal arches of Europatitan eastwoodi n. gen. n. sp. (A) MDS-OTII,27, first hemal arch in

anterior view and (B) posterior view. (C) MDS-OTII,25, hemal arch in anterior view, (D) left lateral

view, (E) posterior view. (F) MDS-OTII,26, hemal arch in anterior view, (G) left lateral view,

(H) posterior view, (I) right lateral view, (J) proximal view. Scale: 10 cm.
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Figure 13 Left scapula (MDS-OTII,14) of Europatitan eastwoodi n. gen. n. sp. (A) Medial view.

(B) Lateral view with details of two autapomorphic characters detailed in the text. AC, acromial/deltoid

crest; CBDP, coracobrachialis brevis dorsalis process; GF, glenoid fossa; PP, postacromial process; SB,

scapular blade; TLST, trapezius and levator scapulae tubercle; TLT, triceps longus process. Scale: 10 cm.
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(Janensch, 1950; Curtice, Stadtman & Curtice, 1996) and basal somphospondylans such as

Ligabuesaurus (Bonaparte, González Riga & Apesteguı́a, 2006) and Phuwiangosaurus

(Martin, Suteethorn & Buffetaut, 1999). It differs clearly from the racquet-shaped scapula

of Rebbachisauridae (Carballido et al., 2010). The maximum length is 165 cm and as such

more than six times the minimum dorsoventral width of the scapular blade, as occurs in

many eusauropods and in contrast with basal forms of sauropod such as Cetiosaurus

(Upchurch & Martin, 2003) and with derived titanosaurians such as Saltasaurus (Powell,

Sanz & Buscalioni, 1992). The proximal lamina is wide, and the scapular lamina is

elongated, with a more pronounced distal expansion on the acromial margin, as shown by

certain basal forms of camarasauromorph, where the acromial margin of the scapular

blade presents a marked expansion and rounding, as in Camarasaurus (Ostrom &

McIntosh, 1966) and Giraffatitan brancai (Janensch, 1961).

The proximal lamina is up to 150% wider dorsoventrally than the minimum

width of the scapular lamina (Harris, 2006) and this ratio reaches a value of 3.5. Values

for this character of less than 5.5 are broadly distributed among non-macronarian

sauropodomorphs such as Barapasaurus (Jain et al., 1979), whereas values greater than

5.5 are seen mainly in the non-titanosaurian macronarians (Borsuk-Bialynicka, 1977;

Tidwell, Carpenter & Meyer, 2001; Bonaparte, González Riga & Apesteguı́a, 2006; Li et al.,

2014). Among titanosaurians values below 5.5 are generally observed (Powell, Sanz &

Buscalioni, 1992).

In the distal margin of the proximal lamina, part of the postacromial process is

preserved (Fig. 13A), which is possessed by various taxa within Titanosauriformes

(Bonaparte, González Riga & Apesteguı́a, 2006; You et al., 2008; Li et al., 2014). The

scapulocoracoid articulation ends before the dorsal margin of the acromion, such that

the dorsal margin of the coracoid does not reach the dorsal margin of the scapula;

D’Emic (2012) includes as a synapomorphy of Saltasauridae a scapulocoracoid suture

extends to dorsal margin of acromion and coracoid. The articular face of the glenoid is

oriented medially, as in Apatosaurus and in somphospondylans (Wilson & Sereno, 1998;

Upchurch, Barrett & Dodson, 2004). The acromial or deltoid crest is robust and wide; it

forms an angle of 75� with the longitudinal axis of the scapular blade and divides the

acromion into two fossae, the anterior of which is wider than the posterior, which has a

low lateromedial width. In comparison with other taxa within Macronaria (Harris, 2006,

character 207), the dorsalmost point of the acromion is closer to the midpoint of the

scapula than to the glenoid.

The dorsal area of the deltoid crest exhibits a sub-elliptical process with a rugose

surface, which in its ventral part is accompanied by a rugose flat area and a pronounced

groove (Fig. 13B). This process could correspond to the insertion for the coracobrachialis

brevis dorsalis muscle (Meers, 2003). Two other, very gentle crests with smooth surfaces

delimited by grooves lateral to them are present on the deltoid crest in its middle part and

would correspond to the insertion for the scapulohumeralis anterior muscle (Borsuk-

Bialynicka, 1977). Other muscular insertion marks are preserved on the medial surface of

the scapular lamina, such as crests and grooves perpendicular to the proximal margin.
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The scapular blade expands anterodistally in a uniform manner from its narrowest part

toward the distalmost area of the blade. The lateral surface of the scapular blade is convex

dorsoventrally, and the medial surface is slightly concave, endowing the scapular blade

with a D-shaped cross-section, which becomes weaker distally due to lateromedial

flattening. The D-shaped profile is a synapomorphy for the group of Jobaria and more

derived sauropods, which is present in basal somphospondylans such as Chubutisaurus

(Carballido et al., 2011). The medial surface of the scapular blade presents a somewhat

rugose circular depression in its ventral part where the expansion of the proximal lamina

begins, which corresponds to the insertion mark for the subcoraculoscapularis muscle in

Opisthocoelicaudia (Borsuk-Bialynicka, 1977), described as an “eminence” in Suuwassea

(Harris, 2006).

In the junction between the acromion and the scapular blade there is a triangular

process with a rugose surface accompanied by long shallow grooves both on its lateral

and medial surfaces (Fig. 13A); these marks would correspond to the insertion for the

triceps longusmuscle (Meers, 2003; Li et al., 2014). It is very prominent, as is the case in the

basal somphospondylans Ligabuesaurus and Daxiatitan (Bonaparte, González Riga &

Apesteguı́a, 2006; You et al., 2008). This process has been described in basal and derived

titanosauriforms (Janensch, 1961; Martin, Suteethorn & Buffetaut, 1999; Bonaparte,

González Riga & Apesteguı́a, 2006; Harris, 2007; Carballido et al., 2011; D’Emic, 2012).

On the dorsal margin of the scapular blade, approximately in its middle part, there is a

rugose tubercle with two projections separated by a semicircular depression (Fig. 13),

which could correspond to the insertion for the trapezius and levator scapulae muscles

(Meers, 2003). A similar tubercle has been figured in diplodocoids, where it is a gentle

enlargement of the margin of the scapular blade; in basal macronarians such as

Camarasaurus, where it is very prominent; and in titanosauriforms such as Giraffatitan

(Janensch, 1950; Curtice, Stadtman & Curtice, 1996; Hocknull et al., 2009). In Europatitan

the tubercle is divided, which distinguishes it from the rest of the sauropods in which

this structure has been cited or figured. Furthermore, its position is more distal in

Europatitan, except in relation to Euhelopus (Young, 1935), where it occupies an

intermediate position, similar to Europatitan. The insertion marks for the levator scapulae

muscle extend along the dorsal margin of the medial surface. On the ventral margin of

the scapular blade there are insertion marks for the serratus muscle, and there are other

marks on the distal margin that could correspond to insertions for the suprascapular

ligament (Borsuk-Bialynicka, 1977; Meers, 2003).

Coracoid: A left coracoid (MDS-OTII,15), articulated with the left scapula.

MDS-OTII,14 is in a poor state of preservation; it is deformed and fractured (Fig. 14).

The articulations with the scapula and the dorsoproximal margin are incomplete. It is

a quadrangular, equidimensional bone, with a proximodistal length of 52 cm and a

dorsoventral length of 59 cm. Its maximum length corresponds to one-third the length of

the scapula, and is greater than the scapulocoracoid articulation, a character described in

derived titanosaurians (Wilson, 2002; Upchurch, Barrett & Dodson, 2004). The proximal

margin is convex and rounded in outline, as occurs in other titanosauriforms such as

Euhelopus, Brachiosaurus, Paluxysaurus, Daxiatitan, and Yongjinglong (Young, 1935;
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Curtice, Stadtman & Curtice, 1996; Rose, 2007; You et al., 2008; Li et al., 2014). The distal

and ventrodistal margins are enlarged, especially the latter, where the enlargement is

projected laterally. The coracoid foramen is located close to the distal margin and is

closed. The scapulocoracoid articulation forms an angle of roughly 90� with the

longitudinal axis of the scapular blade, similar to Brachiosaurus (Curtice, Stadtman &

Curtice, 1996). An angle of 45� would be a synapomorphy of Nemegtosauridae and more

derived titanosaurians (Wilson, 2002), although in a phylogenetic study of Chubutisaurus

it has also been proposed that it is a synapomorphic character of somphospondylans

(Carballido et al., 2011). The medial surface preserves parts with striated areas that

correspond to the origin of various muscles: the triceps longus caudalis in the glenoid

area, and the supracoracoideus longus in the dorsodistal area. Likewise, there are marks

for the insertion of the costocoracoideus profundus muscle near the proximal margin

(Meers, 2003).

Metacarpals: Two proximal fragments of left metacarpals I and III have been recovered

(MDS-OTII,118 and MDS-OTII,17, respectively), and part of the diaphysis of metacarpal

III (Fig. 15). For the anatomical description it has been taken into account that in

proximal view the metacarpals of most sauropods form a semicircle, in such a way that Mc

I and Vare very close together in the posterior part of the manus (Wilson & Sereno, 1998).

Mc I is robust (Figs. 15A–15E). Its maximum proximodistal length is 20 cm. The

proximal articular surface is flat and rugose (Fig. 15E). In proximal view it is oval and

D-shaped, being anteroposteriorly expanded (with a width of 19.5 cm); the area of

articulation with Mc II is slightly concave. The D-shaped proximal outline of Mc I

can be cited in various clades of neosauropods, both primitive and derived, including

Camarasaurus, Giraffatitan, Aragosaurus, Opisthocoelicaudia, and Wintonotitan

(Gilmore, 1936; Janensch, 1961; Ostrom & McIntosh, 1966; Borsuk-Bialynicka, 1977;

Royo-Torres et al., 2014; Poropat et al., 2015a). The D-shaped proximal outline of

MDS-OTII,118 is fairly similar to that of Opisthocoelicaudia (Borsuk-Bialynicka, 1977).

BA
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GLF

Figure 14 Left coracoid (MDS-OTII,15) of Europatitan eastwoodi n. gen. n. sp. (A) Medial view.

(B) Lateral view. CF, coracoid foramen; GLF, glenoid fossa. Scale: 10 cm.
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This characteristic clearly distinguishes it from the compressed morphology presented

by other titanosaurians such as Andesaurus and Argyrosaurus (Apesteguı́a, 2005b;

Mannion & Otero, 2012).

The proximal anterior surface of MDS-OTII,118 is concave, forming a shallow fossa,

delimited by two more protruding areas from the medial and lateral surfaces (Fig. 15A).

This anterior surface presents grooves and crests that correspond to articulation marks

with Mc II and that are prolonged ventrally. More distally, the anterior surface is flat,

and it also possesses crests and grooves in its most medial part. The proximal posterior

surface is flattened and is slightly convex.

MDS-OTII,17 is the proximal half of the left Mc III (Figs. 15F–15K). Its maximum

proximodistal length is 35 cm. In proximal view, it is subtriangular, with its anterior

margin wider and its posterior margin narrower. The proximal surface is flat and rugose.

It has an anteroposterior width of 12 cm and a lateromedial width of 13 cm. The shaft is

twisted in a proximodistal direction and presents one surface oriented anteriorly, another

laterally, and another posteromedially, giving rise to a subtriangular cross-section in its

proximal part and becoming more oval distally. In anterior view, MDS-OTII,17 is

lateromedially wide in the proximal area, becoming thinner distally. Close to the proximal

margin there are various short grooves perpendicular to this margin. In lateral view MDS-

OTII,17 curves proximally and shows a crest that crosses the surface in a proximodistal

direction; it forms a thick, prominent tubercle proximally (Fig. 15I: TB), becoming weaker
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Figure 15 Left metacarpals of Europatitan eastwoodi n. gen. n. sp. (1) (A–E) Metacarpal I (MDS-

OTII,118). (A) Anterior view. (B) Medial view. (C) Posterior view. (D) Lateral view. (E) Proximal

view. (F–K) Metacarpal III (MDS-OTII,17). (F) Anterior view. (G) Medial view. (H) Posterior view. (I)

Lateral view. (J) Proximal view. (K) Distal view cross-section of the shaft. (L) Proposed hypothetical

reconstruction in proximal view of the set of left metacarpals of Europatitan, based on drawing of

Opisthocoelicaudia (Borsuk-Bialynicka, 1977). AAMc, articular area with metacarpal; CR, crest; TB,

tubercle. Scale: 10 cm.
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and sharper distally, as occurs in other titanosauriforms (Apesteguı́a, 2005b; Hocknull

et al., 2009; Poropat et al., 2015a; 2015b). Posterior to the tubercle there is a subtriangular

area that corresponds to the articulation with Mc IV (Fig. 15I: AAMc); its surface displays

many grooves and crests that give it a rugose appearance. These irregularities develop

proximodistally over the whole surface, the development being greater in the proximal

half. The medial surface of MDS-OTII,17 also possesses irregularities in its proximal half,

which correspond to its articulation with Mc II (Fig. 15G: AAMc). In posterior view,

MDS-OTII,17 presents a thick crest in its proximal half (Fig. 15H: CR). The long

intermetacarpal articular surfaces shown by Europatitan are characteristic of

Neosauropoda and are present in diplodocoids, Camarasaurus and Titanosauriformes

(Wilson & Sereno, 1998) although Apesteguı́a (2005b) points out that basal

titanosauriforms display a reduced dorsal articular contact.

Mc I and Mc III of Europatitan differ significantly in their dimensions: the former has

an anteroposterior width of 19.5 cm; the latter of 12 cm, 39% less. This ratio is similar to

that shown by the metacarpals of Giraffatitan and Wintonotitan (Janensch, 1961; Poropat

et al., 2015a) and almost identical to that of Opisthocoelicaudia (Borsuk-Bialynicka, 1977),

(Fig. 15L). The relative dimensions of the proximal extremity in other titanosauriforms

are variable, and either of the first two metacarpals may be the larger (Bonnan, 2003;

Apesteguı́a, 2005b; (Poropat et al., 2015a; 2015b).

Pubis: Two pubes labeled as MDS-OTII,10 (rigth) and MDS-OTII,11 (left). The left

pubis is more complete, although in both cases the anteroproximal corner of the iliac

peduncle and a large part of the ischial peduncle are missing, as is the whole of the

obturator foramen (Fig. 16). The pubes have a dorsoventral length of 104 cm. They

are longer than the ischia (83 cm, 1.3 times longer, Table 2), as in Titanosauriformes

(Upchurch, 1998; Calvo & Salgado, 1995); this ratio reaches its highest level in

titanosaurids such as Opisthocoelicaudia and Rapetosaurus (Curry Rogers & Forster, 2001).

The relative proportions of ischium and pubis in Europatitan are very similar to those

obtained for the euhelopodid Tangvayosaurus (Allain et al., 1999). The pubes have a

robust overall appearance, like the pubis of Camarasaurus (Ostrom & McIntosh, 1966),

Giraffatitan (Janensch, 1961), and somphospondylans (Martin, Suteethorn & Buffetaut,

1999; Salgado & Azpilicueta, 2000; Canudo, Royo-Torres & Cuenca-Bescós, 2008;

D’Emic et al., 2013). In posterior view, they are sinuous. The area of the acetabulum is

large, and it is slightly concave anteroposteriorly. The lateral surface of this extremity

has an area that is slightly concave in its middle part, unlike the medial surface, which

is very convex. The obturator foramen is situated ventral to the acetabulum, in the

proximal part of the ischial peduncle.

The ischial peduncle is well expanded posteriorly and proximodistally. Its lateral

surface is convex, and its medial surface concave. Its estimated expansion for Europatitan

is 0.4, similar to that of basal titanosauriforms and titanosaurians, where the greatest

expansion is attained (Royo-Torres, 2009, character C136). Europatitan presents a greater

expansion of the ischial peduncle than basal eusauropods and diplodocoids. The length of

the ischial ramus of the pubis of Europatitan is relatively long and similar to that of other

primitive titanosauriforms (Royo-Torres, 2009), by contrast with titanosaurids, which
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Figure 16 Pubes of Europatitan eastwoodi n. gen. n. sp. (A) Right pubis, MDS-OTII,10, in medial

view (A), lateral view (B), distal view (C), and posterior view (D). Left pubis, MDS-OTII,11, in lateral

view (E), medial view (F), and posterior view (G). AC, acetabulum; OF, obtutator foramen; PR, pubic

ramus. Scale: 10 cm.

Table 2 Measurements of pubes of Europatitan eastwoodi.

Pubis MDS-OTII,10 (Left) MDS-OTII,11 (Right)

PL (cm) 104.5 104

DEIP (cm) 70 621

APW (cm) 42 401

IPL (cm) 45–501 45–501

APWIP (cm) – 38

MWPS (cm) 27 28

MWDE (cm) 42 401

Notes:
PL, proximodistal length; DEIP, distance from distal end to base of ischial peduncle; APW, anteroposterior width
(measured at the base of ischial peduncle); IPL, ischial peduncle length; APWIP, anteroposterior width of ischial
peduncle; MWPS, anteroposterior minimumwidth of pubic shaft; MWDE, anteroposterior maximumwidth distal end.
Measurements are in cm.
1 Incomplete or estimate.
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present a short ischial ramus (Salgado, Coria & Calvo, 1997). The ratio between the length

of the ischial articular surface and the total length of the pubes of Europatitan shows

values between 0.43 and 0.48, values similar to the ratios displayed by Giraffatitan and

Andesaurus (Ostrom & McIntosh, 1966; Calvo & Bonaparte, 1991). Derived titanosaurids

have lower values, i.e., they have a short ischial symphysis (Mannion et al., 2013).

Tastavinsaurus also displays lower values of around 0.37, the same as Aragosaurus

(Canudo, Royo-Torres & Cuenca-Bescós, 2008; Royo-Torres, Alcalá & Cobos, 2012;

Royo-Torres et al., 2014). The symphysis extends proximally to leave a series of grooves

close to the anterior margin of the ischial ramus, occupying almost the whole of it.

This character is considered derived and appears in other titanosauriforms (Upchurch,

1998; Wilson, 2002).

The pubic ramus is robust, well-expanded lateromedially and compressed

anteroposteriorly, except at its distal end, where it becomes thicker (Fig. 16). The

lateral side of the ramus is convex and the medial side straight. The ratio between

the anteroposterior width of the ramus in its narrowest part and its distal extremity

is 0.48, which indicates a scarcely expanded distal end. This value varies among

Titanosauriformes, with values similar to Europatitan in Brachiosaurus; in the

titanosaurians reaches higher values (i.e., relatively low distal expansion) and a weak

distal expansion of the pubic ramus. Tastavinsaurus is an exception, with a value of 0.36,

which corresponds to a distal extremity that is well expanded anteroposteriorly

(Canudo, Royo-Torres & Cuenca-Bescós, 2008).

The outline of the distal end in lateral view is slightly convex, with the anterior and

posterior margins rounded, the anterior margin somewhat more protruding. This feature

distinguishes it from the pubis of Camarasaurus, Aragosaurus, and Tastavinsaurus,

which have a very marked projection (Ostrom & McIntosh, 1966; Canudo, Royo-Torres &

Cuenca-Bescós, 2008; Royo-Torres, Alcalá & Cobos, 2012; Royo-Torres et al., 2014). In

the posteromedial part of the distal end there is a somewhat irregular expansion. The

distal articular surface has an ellipsoidal outline, with its major axis running in an

anteroposterior direction; it is convex, and in the course of it there emerges a crest.

Ischium: Two ischia labeled MDS-OTII,12 (right) and MDS-OTII,13 (left). The ischia

are reasonably complete, lacking part of the pubic peduncle (Fig. 17). The ischium of

Europatitan is smaller in size than the pubis: its dorsoventral length is 83 cm (Table 3).

The iliac ramus is clearly differentiated, projecting posteriorly. It has a conic outline in

posterior view, with the proximal part the widest. In posterior view, it is rugose, with

crests and grooves and many nutrition foramina throughout the proximal part. The lateral

surface of the iliac ramus has a crest close to the posterior margin (Fig. 17G: CR), which

is associated with a gentle depression in its posterior part corresponding to the insertion

for the flexor tibialis internus muscle (Borsuk-Bialynicka, 1977). A similar crest has

been documented in Haplocanthosaurus (Hatcher, 1903) and in rebbachisaurids such

as Demandasaurus and Zapalasaurus (Salgado, Garcı́a & Daza, 2006; Torcida Fernández-

Baldor, 2012). It has also been described in Aragosaurus (Sanz et al., 1987), in the

somphospondylans Huabeisaurus and Wintonotitan (D’Emic et al., 2013; Poropat

et al., 2015a) and in titanosaurians (Curry Rogers, 2009; Otero, 2010; D’Emic et al., 2013;
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Gallina & Apesteguı́a, 2015). The acetabulum has a slightly concave outline, with a very

narrow margin in proximal view; it continuously links the iliac and pubic peduncles.

Its lateral surface is concave. The contribution of the ischium to the acetabulum is notably,
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Figure 17 Ischia of Europatitan eastwoodi n. gen. n. sp. (A–E) Right ischium, MDS-OTII,12. (F–J)

Left ischium, MDS-OTII,13. (A, G) Lateral view. (B, F) Medial view. (C, I) Posterior view. (D, H)

Anterior view. (E, J) Posteroventral view. (K) Distal profile of ischia in posterior view. AC, acetabulum;

CR, crest; IP, iliac peduncle; IR, ischial ramus; PP, pubis peduncle. Scale: 10 cm.

Table 3 Measurements of ischia of Europatitan eastwoodi.

Ischium MDS-OTII,12 (Right) MDS-OTII,13 (Left)

PL (cm) 83 83

PPL (cm) 411 371

APWIP (cm) 15 –

MWIS (cm) 15 14

MWDE (cm) 20 21

Notes:
PL, proximodistal length; PPL, pubic peduncle length; APWIP, anteroposterior width of iliac peduncle; MWIS,
anteroposterior minimum width of ischial shaft; MWDE, anteroposterior maximum width distal end. Measurements
are in cm.
1 Incomplete or estimate.
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as occurs in most sauropods except Giraffatitan and Tastavinsaurus (Wilson, 2002;

Canudo, Royo-Torres & Cuenca-Bescós, 2008). The pubic ramus in its anatomical position

is arranged vertically; it is lateromedially compressed, developed in an anterior direction,

and expanded dorsoventrally. Its medial surface is concave, and its lateral surface is

convex. Close to the anterior margin, the lateral surface is rugose, with abundant crests

and grooves. In anterior view, the pubic symphysis is rugose, thicker in its proximal

part and becoming thinner distally.

The ischial ramus of Europatitan is long. It is lateromedially compressed and

progressively expands anteroposteriorly as it develops proximodistally, which gives

rise to a rectangular shape in medial view; the ramus expands anteroposteriorly

(or dorsoventrally in anatomical position) at the distal end, with a greater expansion in its

posterior part, creating a convex margin and as a whole resulting in a distal end with a

semicircular outline. The ischial ramus is directed posteroventrally and forms an angle of

48�–50� with the horizontal, a value that falls within the range of variability observed for

most sauropods (Royo-Torres, 2009) except Camarasaurus and Lourinhasaurus, which

have a rather horizontal ramus (Ostrom & McIntosh, 1966; Dantas et al., 1998). The distal

end has the same lateromedial width as the rest of the ischial ramus. The anterior

margin is sharp, and the posterior margin rounded and wider. The ischial symphysis lies

in the distal part of the medial surface of the ischial ramus, at its anteroventral end; it is

small, rugose, and level in the left ischium, projecting in the right one. The symphysis

extends proximally to leave a series of grooves close to the anterior margin of the

ischial ramus, occupying almost all of it, as is seen in MDS-OTII,12. An ischial symphyseal

joint that extends beyond the distal extremity of the ischial ramus is a derived character

present convergently in Apatosaurus and in Titanosauria such as Alamosaurus and

Opisthocoelicaudia (Gilmore, 1936; Borsuk-Bialynicka, 1977), where the ischia join

together proximally. Europatitan possesses ischia that are only fused at their distal end,

a primitive character shared with basal macronarians such as Camarasaurus (McIntosh

et al., 1996) and somphospondylans such as Tangvayosaurus and Tastavinsaurus

(Royo-Torres, 2009; Royo-Torres, Alcalá & Cobos, 2012; D’Emic, 2012). On the posterior

margin of the distal part of the ischial ramus there are various grooves and crests that extend

very close to the distal end in a very irregular surface; these marks could correspond to the

cartilaginous covering of this part of the bone (Borsuk-Bialynicka, 1977).

PHYLOGENETIC ANALYSIS
To assess the phylogenetic position of Europatitanwithin Eusauropoda, we coded this new

taxon in the matrix published by Carballido et al. (2015), a dataset focused on studying the

relations among titanosauriforms. The resulting dataset included 75 terminal taxa coded

for 370 characters, 20 of which were treated as ordered (12, 21, 58, 95, 96, 106, 108, 115,

116, 120, 145, 152, 163, 213, 216, 232, 233, 234, 252, 256, 299, and 301), and all of them

were equally weighted. The resulting matrix (see Data S1 for Europatitan codings) was

analyzed with TNT 1.1 (Goloboff, Farris & Nixon, 2008). The most-parsimonious trees

were sought using a heuristic search, with Wagner starting trees and 1,000 random

addition sequences, saving up to 10 trees per replication. Bremer support and bootstrap
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values after 1,000 replicates were calculated for each branch to assess its robustness. To test

the hypothesis of the monophyly of the Spanish stem Somphospondyli, constrained

analyses were carried out using TNT (see Data S2 for the exact constrains applied).

The resulting trees were subjected to Templeton’s test (Templeton, 1983) using the TNT

script by Schmidt-Lebuhn (original script can be downloaded at http://www.anbg.gov.au/

cpbr/tools/templetontest.tnt).

Five most-parsimonious trees of 1,101 steps (consistency index = 0.40, retention

index = 0.72, rescaled consistency index = 0.29) were recovered (Fig. 18) in 114 of the

1,000 replicates. Further searches using tree bisection reconnection on the existing trees

failed to find new most-parsimonious trees. The overall topology of the consensus tree is

similar to the tree published by Carballido et al. (2015). Europatitan is recovered as a basal

member of Somphospondyli (Fig. 18), as it fulfils the definition provided by Wilson &

Sereno (1998): “Neosauropods more closely related to Saltasaurus loricatus than to

Brachiosaurus altithorax.” Europatitan is recovered in a trichotomy with Tendaguria and

the clade formed by Sauroposeidon and all its descendants. Nevertheless, it is worth noting

that, although better resolved, the support for these topologies is as low as in previous

analyses. The monophyly of Somphospondyli is supported by a single synapomorphy:

the lack of a middle single fossa projected through the midline of the neural spine of the

dorsal vertebrae (ch. 144, 0 / 1).

The high diversity of sauropod dinosaurs during the Late Jurassic and Early Cretaceous

in Iberia peninsula raises the non-trivial question of the existence of an endemic Iberian

clade of Titanosauriformes sauropods. The existence of this clade, either restricted to

Iberia or with a slightly wider distribution has been postulated in the past. Royo-Torres

(2009) and Royo-Torres, Alcalá & Cobos (2012) recovered a clade of mainly European

forms, which they named Laurasiformes. This clade originally included Aragosaurus,

Galvesaurus, Phuwiangosaurus, Venenosaurus, Cedarosaurus, Tehuelchesaurus,

Sonorasaurus, and Tastavinsaurus, although its composition and position within

Macronaria has varied (Barco, 2010; Carballido et al., 2011) and most recent analysis

failed to recover this clade as such (D’Emic, 2012; Upchurch, Mannion & Taylor, 2015;

Mocho, Royo-Torres & Ortega, 2016).

To test the existence of this clade, a second version of the dataset was built, this time

including the late Berriasian Spanish sauropod Aragosaurus. This taxon was coded based

in a combination of direct observations of the holotype by one of us (JIC), with the

addition of new data based in the new material reported by Royo-Torres et al. (2014). At

the time of this study we were not able to perform direct observations on the newly

reported material, with this the reason for which we did not include this taxon in our first

analysis.

The inclusion of Aragosaurus resulted in a total of 76 MPTs of 1,112 steps. The strict

consensus is poorly resolved, with the collapse of Brachiosauridae at the base of

Macronaria. Europatitan is recovered in this polytomy. A posteriori deletion of Lusotitan,

Tendaguria, and Padillasaurus, identified as wildcard taxa with the pruned trees option of

TNT, resulted in a better-resolved reduced strict consensus. Here, Europatitan is recovered

in a polytomy with Brachiosauridae and Somphospondyli (Fig. 19A). Its position in the
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Figure 18 Strict consensus tree showing the phylogenetic relations of Europatitan eastwoodi gen. et. sp. nov. within Sauropoda using the

matrix of Carballido et al. (2015) (See Appendix 4 for Europatitan scores). Strict consensus of five most-parsimonious trees of 1,101 steps.

Europatitan is recovered as a basal somphospondylan, and more derived than the contemporaneous Tastavinsaurus, which is recovered as a non-

titanosauriform camarasauromorph. Numbers over nodes represent Bremer support values over 2. Numbers below nodes represent bootstrap

values over 50. The topology is better resolved than in previous analyses, but the general support is still low.
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different MPTs varies between a basal Somphospondyli and a sister taxon of

Titanosauriformes, with its position highly influenced by the location of Lusotitan in each

tree. Interestingly, Europatitan is always recovered closer to the Jurassic Lusotitan than to

the contemporaneous Tastavinsaurus. To further explore the relation between the Iberian

taxa, two additional constrained analyzes were performed: one enforcing the monophyly

of Tastavinsaurus + Europatitan, and another enforcing the monophyly of a wider Iberian

clade, formed by Tastavinsaurus, Europatitan, Aragosaurus, Galvesaurus, and Lusotitan.

The first constrained analysis (Fig. 19B) resulted in 20 trees of 1,113 steps. The

strict consensus places the Tastavinsaurus + Europatitan clade as the sister taxa of

Titanosauriformes (Brachiosauridae + Somphospondyli). Templeton’s test does not allow

rejecting this topology, as it is only one step longer than the most parsimonious trees.

Nevertheless, the Tastavinsaurus + Europatitan is supported by only two synapomorphies,

(ch. 199, 0 / 1; ch. 213, 2 / 1). Both characters, especially ch. 199, 0 / 1 are widely

distributed through Neosauropoda, with multiple reversions and convergences occurring.

The second constrained search resulted in ten trees of 1,115 steps, three steps longer

than the most parsimonious trees (Fig. 19C). The resulting consensus is poorly resolved,

with the Iberian clade recovered in a polytomy with Tendaguria, Brachiosauridae and

Somphospondyli. Again, Templeton’s test failed to reject this topology at any confident

level, but in this occasion the Iberian clade is not supported by any synapomorphies.

The topology of this clade is also odd, with the Berriasian Aragosaurus as the basalmost

member of the clade, and with Europatitan closer to Lusotitan and Tastavinsaurus closer

to Galvesaurus.

To summarize, the current dataset fails to find evidence supporting or against the

existence of an Iberian clade of basal Titanosauriformes. The general lack of support for

the clades recovered in our analysis, mainly caused by the fragmentary condition of most

of the specimens included, results in that many different topologies can be obtained when

trees with few steps more than the MPTs are considered. This is a common problem in

dinosaur phylogenetic analysis (Butler, Upchurch & Norman, 2008; McDonald, 2012) and

is even more severe in sauropod datasets (Mannion et al., 2013; Upchurch, Mannion &

Taylor, 2015) where the rule is that the strict consensus is very poorly resolved, recovering

only a few clades with relatively good support, with Macronaria a particularly low

supported clade in all the analysis. Adding new, relatively complete specimens, such as the

holotype of Europatitan to future datasets, together with the revision of scorings of

previously known specimens will help to improve our knowledge of this hotspot of

sauropod evolution.

DISCUSSION AND CONCLUSION
For the first time, all known material of the sauropod from the site of El Oterillo II in the

Castrillo de la Reina Formation (upper Barremian–lower Aptian) of Burgos (Spain) is

described with the name E. eastwoodi. The holotype of this new sauropod presents a series

of autapomorphic characters in the posterior cervical vertebrae, the middle-posterior

dorsal vertebra, the posterior dorsal ribs, and the scapula, indicating that E. eastwoodi is

a previously undescribed taxon clearly distinct from other sauropods of the Early
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Figure 19 (A) Reduced strict consensus (RSC) tree showing the phylogenetic relations of Europatitan
eastwoodi within Sauropoda using the matrix of Carballido et al. (2014), with a deletion of Lusotitan,
Tendaguria, and Padillasaurus. Here, Europatitan is recovered in a polytomy with Brachiosauridae and

Somphospondyli. (B) First additional constrained analysis enforcing the monophyly of Tastavinsaurus +

Europatitan. The strict consensus places the Tastavinsaurus + Europatitan clade as the sister taxa of

Titanosauriformes (Brachiosauridae + Somphospondyli). (C) Second additional constrained search

enforcing the monophyly of Lusotitan + Europatitan. The strict consensus is poorly resolved, with the

Iberian clade recovered in a polytomy with Tendaguria, Brachiosauridae and Somphospondyli.

Torcida Fernández-Baldor et al. (2017), PeerJ, DOI 10.7717/peerj.3409 37/50

http://dx.doi.org/10.7717/peerj.3409
https://peerj.com/


Cretaceous of Spain. The phylogenetic study based on the proposal by Carballido et al.

(2015) allows it to be located among the somphospondylan titanosauriforms, clearly

differentiated from sauropods of the other clades of Titanosauriformes such as

Brachiosauridae, Euhelopodidae and Titanosauria. According to our phylogenetic

hypothesis, Europatitan would be one of the basalmost somphospondylans, in a position

close to other basal somphospondylans such as Tendaguria and Sauroposeidon.

Our analysis shows an unexpectedly distant relation between Europatitan and

Tastavinsaurus sanzi, a sauropod described in a geological level of similar age in Spain,

initially considered a basal somphospondylan (Canudo, Royo-Torres & Cuenca-Bescós,

2008), although its position varies with the author (D’Emic, 2012; Royo-Torres, Alcalá &

Cobos, 2012; Carballido et al., 2015) between a sister group to Titanosauriformes and a

basal form of somphospondylan. This discussion lies beyond the scope of the present

paper, but bearing in mind the phylogenetic, geographical, and chronological proximity of

Tastavinsaurus and Europatitan, it seems relevant to demonstrate clearly that they are

indeed distinct taxa. In the phylogenetic proposal used in this paper, Tastavinsaurus is

recovered as the sister taxon of Titanosauriformes. To further test the hypothesis of the

sister–taxon relationship between the two Spanish taxa, a constrained search was carried

out, enforcing the monophyly of the Tastavinsaurus + Europatitan clade, otherwise

maintaining all the settings used in the first analysis. Only two steps more were required to

satisfy this constraint, resulting in 40 trees of 1,103 steps (see topology of the area of

interest in Fig. 20). The resulting consensus is similar to the consensus of the MPTs.

Templeton’s test indicates that there is no significant difference between the constrained

MPTs and the unconstrained topology, thus making it impossible to reject the hypothesis

of a sister–taxon relationship between Tastavinsaurus and Europatitan solely based on

the cladistic analysis. Nevertheless, Europatitan can be clearly differentiated from

Tastavinsaurus by the bones that they share. Some of these differences are found in the

dorsal vertebra and the hip bones (Fig. 21). The laminae present in Europatitan and their

arrangement in the dorsal vertebrae are different from in Tastavinsaurus. Europatitan

Figure 20 Topology of the subtree including all macronarians after enforcing the monophyly of

Tastavinsaurus + Europatitan. Consensus of the 40 trees of 1,103 steps obtained after a constrained

search enforcing the monophyly of the clade Tastavinsaurus + Europatitan, and results of Templeton’s

test comparing the first most-parsimonious trees with the first constrained tree.
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possesses anterior and posterior spdl laminae and a prsl lamina; the cprl lamina is

forked at its base; and the tprl lamina links the prezygapophyses. These characters of the

laminae are not present in Tastavinsaurus. Moreover, the spdl joins the spol, and the pcpl

joins the acpl, junctions that are not present in the dorsal vertebrae of Tastavinsaurus

(Figs. 21D and 21E). The cranioventral corner of the distal extremity of the pubis is acute

in Tastavinsaurus (autapomorphy) and rounded in Europatitan (Figs. 21F and 21G).

The distal extremity of the pubis of Europatitan is much wider than in Tastavinsaurus.

The pubic ramus of the ischium is at an angle of 45�–50� in relation to the horizontal in

Europatitan and 30� in Tastavinsaurus (Canudo, Royo-Torres & Cuenca-Bescós, 2008),

Figs. 21H and 21I.

ASPDL , PSPDL
PRSL

TPRL

CPRL BIF
UPL

PCPL

30º

50º

A B C D E

HGF I

Figure 21 Comparison of selected anatomical characters of Tastavinsaurus (A, B, C, F, H) with Europatitan (D, E, G, I). Dorsal posterior

vertebra Ars1-98 of Tastavinsaurus in anterior (A), posterior (B), and right lateral (C) views. Europatitan shows several laminae in its mid-posterior

dorsal vertebra MDS-OTII,1 in anterior (D) and right lateral (I) views that do not have Tastavinsaurus. The pubis Ars1-16 of Tastavinsaurus

(F, lateral view) has an anteroventral corner of the distal extremity acute (black arrow), directed anteroposteriorly. The pubis MDS-OTII,11 of

Europatitan has this distal corner rounded (G, lateral view). In the Ischia Ars1-24 of Tastavinsaurus (H, medial view) the ischial ramus forms an

angle of 30� respects the horizontal. In the ischium MDS-OTII,13 of Europatitan (I, medial view) this angle has a value of 50� (less posteroventral
orientation). ASPDL, anterior spinodiapophyseal lamina; CPRL BF, bifurcated centroprezygapophyseal lamina; PCPL, posterior centropar-

apophyseal lamina; PRSL, prespinal lamina; PSPDL, posterior spinodiapophyseal lamina; TPRL, intraprezygapophyseal lamina; UPL, unnamed

parapophyseal lamina. Scale: 10 cm.
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Europatitan provides us with new information on the initial radiation of the

somphospondylans in the lower Cretaceous of Laurasia, which could have taken place in

Europe. The phylogenetic proposal used in this paper separates Europatitan from the

brachiosaurids that represent an early radiation of Titanosauriformes at the end of the

Jurassic. Europatitan would be a representative of the Eurogondwanan fauna (Ezcurra &

Agnolı́n, 2012), like Demandasaurus, the other sauropod described from the Castrillo de la

Reina Formation. These authors suggest that an exchange of vertebrate faunas between

Gondwana and Laurasia took place at the beginning of the Early Cretaceous, whereas in

the post-Barremian period the processes of dispersal occurred independently in Laurasia

and Gondwana. However, other authors have argued based on the theropod record that

there was a process of dispersal between Gondwana and Laurasia at the end of the

Barremian (Gasca, Canudo & Moreno-Azanza, 2014). The sauropods of the Castrillo de la

Reina Formation (Europatitan and Demandasaurus), as well as the new interpretations of

the sauropod Rebbachisaurus (Wilson & Allain, 2015), also seem to indicate that the

dispersal did not break off in the Barremian.
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implications. Paläontologische Zeitschrift 84:427–435 DOI 10.1007/s12542-010-0057-x.

Canudo JI, Barco JL, Pereda-Suberbiola X, Ruiz-Omeñaca JI, Salgado L, Torcida
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