000061813 001__ 61813
000061813 005__ 20170713115235.0
000061813 0247_ $$2doi$$a10.1186/1471-2164-14-772
000061813 0248_ $$2sideral$$a84336
000061813 037__ $$aART-2013-84336
000061813 041__ $$aeng
000061813 100__ $$0(orcid)0000-0003-3608-4720$$aYruela, I.$$uUniversidad de Zaragoza
000061813 245__ $$aGenetic recombination is associated with intrinsic disorder in plant proteomes
000061813 260__ $$c2013
000061813 5060_ $$aAccess copy available to the general public$$fUnrestricted
000061813 5203_ $$aBackground: 
Intrinsically disordered proteins, found in all living organisms, are essential for basic cellular functions and complement the function of ordered proteins. It has been shown that protein disorder is linked to the G + C content of the genome. Furthermore, recent investigations have suggested that the evolutionary dynamics of the plant nucleus adds disordered segments to open reading frames alike, and these segments are not necessarily conserved among orthologous genes.
Results: 
In the present work the distribution of intrinsically disordered proteins along the chromosomes of several representative plants was analyzed. The reported results support a non-random distribution of disordered proteins along the chromosomes of Arabidopsis thaliana and Oryza sativa, two model eudicot and monocot plant species, respectively. In fact, for most chromosomes positive correlations between the frequency of disordered segments of 30+ amino acids and both recombination rates and G + C content were observed.
Conclusions: 
These analyses demonstrate that the presence of disordered segments among plant proteins is associated with the rates of genetic recombination of their encoding genes. Altogether, these findings suggest that high recombination rates, as well as chromosomal rearrangements, could induce disordered segments in proteins during evolution.
000061813 536__ $$9info:eu-repo/grantAgreement/ES/DGA/A06$$9info:eu-repo/grantAgreement/ES/DGA/B18$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2011-23861
000061813 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000061813 590__ $$a4.041$$b2013
000061813 591__ $$aGENETICS & HEREDITY$$b40 / 164 = 0.244$$c2013$$dQ1$$eT1
000061813 591__ $$aBIOTECHNOLOGY & APPLIED MICROBIOLOGY$$b29 / 161 = 0.18$$c2013$$dQ1$$eT1
000061813 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000061813 700__ $$0(orcid)0000-0002-5462-907X$$aContreras-Moreira, B.
000061813 7102_ $$11002$$2060$$aUniversidad de Zaragoza$$bDepartamento de Bioquímica y Biología Molecular y Celular$$cBioquímica y Biología Molecular
000061813 773__ $$g14, 1 (2013),  772 [10 pp]$$pBMC genomics$$tBMC Genomics$$x1471-2164
000061813 8564_ $$s585075$$uhttps://zaguan.unizar.es/record/61813/files/texto_completo.pdf$$yVersión publicada
000061813 8564_ $$s108193$$uhttps://zaguan.unizar.es/record/61813/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000061813 909CO $$ooai:zaguan.unizar.es:61813$$particulos$$pdriver
000061813 951__ $$a2017-07-13-11:11:18
000061813 980__ $$aARTICLE