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Abstract

The infrared behaviour of quantum field theories confined in bounded domains is strongly dependent on
the shape and structure of space boundaries. The most significant physical effect arises in the behaviour
of the vacuum energy. The Casimir energy can be attractive or repulsive depending on the nature of the
boundary. We calculate the vacuum energy for a massless scalar field confined between two homogeneous
parallel plates with the most general type of boundary conditions depending on four parameters. The anal-
ysis provides a powerful method to identify which boundary conditions generate attractive or repulsive
Casimir forces between the plates. In the interface between both regimes we find a very interesting family
of boundary conditions which do not induce any type of Casimir force. We also show that the attractive
regime holds far beyond identical boundary conditions for the two plates required by the Kenneth–Klich
theorem and that the strongest attractive Casimir force appears for periodic boundary conditions whereas the
strongest repulsive Casimir force corresponds to anti-periodic boundary conditions. Most of the analysed
boundary conditions are new and some of them can be physically implemented with metamaterials.
© 2013 Elsevier B.V. All rights reserved.
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1. Introduction

The role of boundaries in quantum field theory has been a focus of increasing activity in
different areas of physics. In general, the presence of boundaries enhances quantum aspects of
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the system. Boundary properties have been known to play an important role in Casimir effect [1]
since the early days of quantum field theory. More recently it has become a basic ingredient in the
analysis of the very first principles of fundamental physics: black hole quantum physics quantum
holography, string theories and D-branes and AdS/CFT dualities.

Boundary phenomena determine the structure of the quantum vacuum and the low energy be-
haviour of the quantum field theories. In massless theories these effects are amplified because the
existence of long distance correlations allow boundary effects to percolate throughout the whole
bulk region. In that case the vacuum energy is highly dependent on the geometry of the physical
space and the physical properties of the boundaries encoded by boundary conditions [2–13].

In this paper we focus on the dependence of vacuum energy on boundary conditions in a
massless field theory confined to a domain bounded by two homogeneous parallel plates. The
dependence of this energy with the distance between the plates is the basis of Casimir effect.
Indeed, the variation of vacuum energy due to vacuum fluctuations induces a force between the
plates. If the plates are identical this force is attractive as demonstrates the Kenneth–Klich theo-
rem [14]. In general, this theorem shows that due to the general principles of quantum field theory
the force induced by quantum vacuum fluctuations between two identical but not necessary pla-
nar bodies is always attractive. However, it is of enormous interest to get physical configurations
where the Casimir force is repulsive instead of attractive, not only by its relevance for technical
applications to micro-mechanical devices (MEMS), but also because the existence of repulsive
or null Casimir forces allows a more accurate analysis of micro-gravity effects. There are re-
cent conjectures about the violation of Newton gravitational law at sub-millimeter scales (see
Refs. [15–17]) and to clarify the possible physical deviations at this short distances regime it
is essential to disentangle gravitational effects from Casimir force (see Refs. [18–20]). In this
study the control of Casimir forces is essential and in repulsive Casimir regimes is easier to
discriminate from gravitational effects.

All methods used to achieve a repulsive Casimir effect are based on plates with different prop-
erties. In fact, new repulsive regimes of the Casimir effect have been found between different
dielectric plates [21], and between a metallic plate with a hole and a needle pointing to the hole
center [22]. In this paper we consider the most general boundary conditions for two plates which
turn out to depend on four parameters to analyse in great detail the transition from attractive to
repulsive Casimir regimes [23–27], with particular emphasis on the characterisation of Casimir-
less boundary conditions in the interface of both regimes [26]. Although in practice, only some
of these boundary conditions can be physically implemented, the advances in nano-science allow
to the construction of new materials (metamaterials) with very special characteristics, which may
allow, in the near future, the implementation of new types of boundary conditions.

2. Vacuum energy of bosonic massless fields in bounded domains

The infrared properties of quantum field theory are very sensitive to boundary conditions [28].
In particular the physical properties of the quantum vacuum state and the vacuum energy exhibit
a very strong dependence on the type of boundary conditions.

One of the most important effects of boundaries in field theories is the appearance of Casimir
effect. Within the global framework of boundary conditions formulated above we can analyse
with complete generality which boundary conditions generate attractive or repulsive Casimir
forces, i.e. the scope of attractive and repulsive regimes in the Casimir effect.

Let us consider, for simplicity, a free massless complex scalar field ψ confined in a domain
Ω ⊂R

D bounded by two parallel homogeneous plates. Let us assume that the parallel plates are
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orthogonal to the OXD direction and are placed at xD = 0 and xD = L, respectively. Although
physically interesting systems are three-dimensional (D = 3), for some interesting applications
we also consider two-dimensional systems (D = 2). The results can be easily generalised for
massless fermions and gauge theories.

The Hamiltonian is given by

Ĥ = 1

2

∫
Ω

dDx
(∣∣π̂(x)

∣∣2 − ψ̂∗(x)�ψ̂(x)
)
, (2.1)

with standard canonical quantization commutation rules[
π̂(x), ψ̂

(
x′)] = −ih̄δ

(
x − x′), (2.2)

which describes an infinite number of decoupled harmonic oscillators given by the Fourier modes
of the operator −�. Unitarity requires that the Hamiltonian (2.1) has to be selfadjoint which is
the case if all oscillating frequencies of these harmonic oscillators are real and non-negative. This
requirement can be fulfilled if and only if all eigenvalues of the Laplacian operator −� are real
and non-negative, i.e. −� is a non-negative selfadjoint operator.

Because of the homogeneity of the plates the boundary conditions must be invariant under
translation along the plates. Local boundary conditions of physical states ψ in the domains of
the selfadjoint extensions of −� have been characterised in Ref. [29] in terms of 2 × 2 unitary
matrices U ⊂ U(2). They are given by

ϕ − iδϕ̇ = U(ϕ + iδϕ̇), (2.3)

where

ϕ =
(

ϕ(L)

ϕ(0)

)
, ϕ̇ =

(
ϕ̇(L)

ϕ̇(0)

)
, (2.4)

are the boundary values ϕ = ψ |∂Ω of the states ψ and their outward normal derivatives ϕ̇ =
∂nψ |∂Ω on the plates, and δ is an arbitrary characteristic length parameter.

However, non-negativity imposes a further constraint [24–26] on boundary conditions (2.3).
Indeed, any state ψ whose boundary values ϕ are eigenvalues of the unitary operator Uϕ = eiαϕ

verifies the identity [29]

〈ψ,−�Uψ〉 = ‖dψ‖2 + δ−1 tan
α

2
‖ϕ‖2,

which implies that the selfadjoint extension −�U can be non-negative for large enough volumes
only if π < α < 2π . For simplicity, from now we shall assume δ = 1.

In the standard parametrisation of U(2) matrices

U(α,β,n) = eiα(I cosβ + in · σ sinβ), α ∈ [0,2π ], β ∈ [−π/2,π/2] (2.5)

in terms of an unitary vector n ∈ S2 and Pauli matrices σ , the space of boundary conditions MF

which give rise to positive selfadjoint extensions of −� is reduced to

MF ≡ {
U(α,β,n) ∈ U(2) | 0 � α ± β � π

}
, (2.6)

since the eigenvalues of U are ei(α±β).
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The boundaries of the space MF are the Cayley submanifolds C± [29] given by unitary
operators U having at least one real eigenvalue1 λ = ±1 (α = 0,π). The rich structure of this
space includes very sophisticated boundary conditions which have never been considered in field
theory in bounded domains. Most of the boundary conditions are non-local and some of them
can be experimentally implemented coating the boundary with suitable metamaterials. Some of
them involve topology changes [30,29] which motivated recent interesting proposals related to
quantum gravity [31,32].

The vacuum state of the scalar free field theory with boundary condition U ∈ MF is unique
and given by

Ψ0(ψ) =N e− 1
2 (ψ,

√−�U ψ) (2.7)

in the functional Schrödinger representation, N being a normalisation constant. The energy
corresponding to the Gaussian vacuum state Ψ0(ψ) is given by the sum of the eigenvalues of√−�U , i.e.

EU = tr
√−�U. (2.8)

Notice the absence of the 1
2 factor because of the complex nature of the fields. For scalar real

fields the Casimir energy is 1
2 of the result for complex scalars with the restriction that only

boundary conditions with U = U� (i.e. n2 = 0 for parallel plates) should be considered [33].
In present case of conformal massless theories the infrared properties of the theory are enhanced
and the genuine Casimir effect is stronger. In this regime the dependence on the boundary condi-
tions of the fields also becomes more significant. In fact in the case of boundary conditions with
zero-modes the vacuum state becomes unbounded and ill-defined. The problem disappears if the
scalar field is compactified (see Refs. [34,35]). Although the contribution of the zero-modes to
the boundary entropy at finite temperature is crucial [35] they do not contribute to the vacuum
Casimir energy.

The sum tr
√−�U is ultraviolet divergent but there are finite volume corrections to the vac-

uum energy density which give rise to a finite neat Casimir effect. The divergences can be
regularised using the heat equation kernel method [36–38]. Indeed, we replace the divergent
expression (2.8) by

Eε
U = tr

√−�U e−ε�U , (2.9)

where ε is the ultraviolet regularisation parameter with units of inverse energy. The field theory is
defined in the physical limit ε → 0. Before taking the physical limit we can make an asymptotic
expansion in the distance L between plates to obtain the regularised expression of the vacuum
energy between the plates, which behaves as

E
(L,ε)
U

S
= c0ε

−D/2−1/2L + c1ε
−D/2 + c(D)

LD
+O

(
ε

1
2

LD+1

)
, (2.10)

where S is the (infinite) volume of the plates. In the regularised L expansion (2.10) each term
has a different physical meaning:

1 Cayley submanifolds C± have a stratified structure characterised by the multiplicities of the eigenvalues ±1.
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1. The first term c0ε
−D/2−1/2 is the energy density of the field theory in the bulk

c0 = εD/2+1/2

(2π)D

∫
dDk |k|e−εk2 = �(D+1

2 )

(4π)
D
2 �(D

2 )
(2.11)

and does not depend on the boundary conditions but is ultraviolet divergent.
2. The second term c1ε

−D/2 is the surface energy density associated to the plates. It presents a
lower degree of ultraviolet divergence and depends on boundary conditions.

3. The third term constitutes the first finite contribution to the vacuum energy

E
(L)
U = c(D)

LD
S, (2.12)

and defines the Casimir energy. The corresponding Casimir force

F
(L)
U = D

c(D)

LD+1
S (2.13)

is suppressed by the L−D−1 power law and its character can be attractive or repulsive,
depending on the sign of the coefficient c(D).

To determine the attractive or repulsive nature of the Casimir force we calculate the coefficient
c(D) as a function of the consistent boundary conditions given by unitary operators U ∈ MF .

The spectrum of �U has a continuous component indexed by D − 1 coordinates, whereas
the compact and bounded direction orthogonal to the plates generate a discrete component in the
spectrum, which will depend on the boundary condition defined by U , i.e.

λi,k = κ2
i +

D−1∑
j=1

k2
j ,

where k = (k1, . . . , kD−1) is any vector of RD−1 and κ2
i , i = 0,1, . . . ,∞, are the eigenvalues of

the operator

−�
(D)
U = − d2

dx2
D

acting on functions defined in [0,L] with boundary conditions (2.3).
Therefore the functional trace can be written in the form

tr(−�U)1/2e−ε�U = S

(2π)D−1

∞∑
i=0

∫
dD−1k e−ε(k2+κ2

i )
√

k2 + κ2
i ,

where S is the infinite (D − 1)-volume of the plates. Performing the change of variables qj =
kj /κ we obtain

tr(−�U)1/2e−ε�U = S

(2π)D−1

∞∑
i=0

κD
i

∫
dD−1q e−εκ2

i (q2+1)
√

q2 + 1,

and using generalised spherical coordinates, once the angular variables are integrated out, we ob-
tain

E
(D)
U (ε) = SΩD−2

(2π)D−1

∞∑
i=0

κD
i

∞∫
dq e−εκ2

i (q2+1)qD−2
√

q2 + 1,
0
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where

ΩD−2 = 2
π

D−1
2

�(D−1
2 )

is the area of the (D − 2)-sphere. The q-integral can be expressed in terms of the confluent
hypergeometric function U(a,b, z) as

∞∫
0

dq e−εκ2(q2+1)qD−2
√

q2 + 1 = 1

2
�

(
D − 1

2

)
U

(
D − 1

2
,

D

2
+ 1, εκ2

)
e−εκ2

,

(2.14)

for any values of D > 0 and ε > 0. Therefore the regularised vacuum energy per unit volume of
the plates can be written as

E
(D)
U (ε)

S
= 1

2D−1π
D−1

2

∞∑
i=0

κD
i e−εκ2

i U

(
D − 1

2
,

D

2
+ 1, εκ2

i

)
. (2.15)

To perform the sum we have to calculate the eigenvalues κ2
i . They can be found by imposing

the boundary conditions (2.3) on the wave functions of the domain of the selfadjoint extension
−�

(D)
U

ψk(x) = C1e−ikx + C2eikx, (2.16)

which give rise to a linear homogeneous equation for the coefficients C1 and C2,

(M − UN)

(
C1 + C2
C1 − C2

)
= 0 (2.17)

where M and N are the 2 × 2 complex matrices

M =
(

1 −k

coskL + ik sin kL k coskL + i sin kL

)
, (2.18)

N =
(

1 k

coskL − ik sin kL −k coskL + i sinkL

)
. (2.19)

Matrices M and N are the linear maps from the scattering data into the boundary values.
These maps will become infinite-dimensional in higher-dimensional spacetimes. The linear sys-
tem (2.17) has non-trivial solutions if and only if det(M −UN) = 0. Thus, the eigenvalues κ2

i of

−�
(D)
U are given by the zeros of the spectral function (see Ref. [23])

hU(k) = det(M − UN)

= 4k detU coskL − 2i
(
1 + k2)detU sin kL + 4k(U21 + U12)

− 2i
(
1 + k2) sinkL − 4k coskL + 2i

(
1 − k2) trU sin kL.

These zeros provide the eigenvalues of −�
(D)
U with one exception: the zero modes k = 0. In this

case the maps M and N have to be modified because the plane wave parametrisation of scattering
becomes degenerate and does not account for all possible zero-mode eigenfunctions. However
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the information about the zero-modes of −�
(D)
U for any U ∈ MF is encoded in hU(k) [39].

Using parametrisation (2.5) we can write the spectral function hU(k) as

hU(k) = 2ieiα
[
sin(kL)

((
k2 − 1

)
cos(β) + (

k2 + 1
)

cos(α)
)

− 2k sin(α) cos(kL) − 2kn1 sin(β)
]
. (2.20)

The apparent lack of dimensional homogeneity of the k powers is due to the fact that we have
chosen δ = 1 in the boundary conditions (2.3). In general they should be considered as powers
of the dimensionless variable kδ.

The spectral function is not only dependent on the algebraic invariants of the boundary unitary
matrix detU and trU but also on the entries U21 and U12, which implies that the spectrum of the
quantum theory will be different for U matrices with the same eigenvalues even when they are
equivalent as matrices. Of note is that all the zeros of the spectral function hU lay on the positive
real line of the complex k-plane because the consistency conditions ensure the non-negativity of
the selfadjoint extension −�

(D)
U when U ∈ MF .

The sum over the eigenvalues of the operator (−�
(D)
U )

1
2 is equivalent to the sum over the

zeros of the spectral function hU(k). Null eigenvalues which are incorrectly described by hU do
not contribute in both cases. Since hU(k) is holomorphic in k, using the argument principle, the
summation over zeros can be rewritten in terms of an contour integral enclosing all the zeros of
hU (see Refs. [42–44,36,37] for more details). Indeed because of the consistency conditions all
zeros of hU are contained in R

+ and by using Cauchy’s residues theorem

E
(D)
U (ε)

S
=

∞∑
n=0

kne−εκ2
n U

(
D − 1

2
,

D

2
+ 1, εκ2

i

)

= 1

2πi

∮
dk ke−εk2

U

(
D − 1

2
,

D

2
+ 1, εk2

)
d

dk
log

(
hU(k)

)
, (2.21)

where the integration contour encloses a thin strip around all the positive real axis which includes
all the zeros of hU . The zeros of the spectral function generate simple or double poles (depending
on eigenvalue degeneracies) of the logarithmic derivative d

dk
loghU(k). There are many similar

integral formulas in the Casimir literature [45–48] (see [8] for more complete list of references,
and [36] for a review of spectral techniques in quantum field theory), but most of them do not
apply to the very general type of boundary conditions that we are considering.

In the limit ε → 0 the expression (2.21) diverges as indicated by the asymptotic expan-
sion (2.10). To extract the finite part of this expression, that contains the Casimir energy, we have
to subtract not only the leading divergence of the vacuum energy induced from fluctuations of
the fields in the bulk but also remove the subleading divergent contribution associated with the
self-energy of the boundaries. The later can be achieved by subtracting the vacuum energy of an
identical system with the same boundary condition defined over a fixed reference size L0 < L.
After both subtractions a finite value for the Casimir energy is obtained

c
(D)
U

LD
= LD

0

LD − LD
0

lim
ε→0

(
c
(D)
0 (ε)(L − L0) − 1

S

(
E

(L)
U (ε) − E

(L0)
U (ε)

))
. (2.22)

Thus, the Casimir energy is given by the finite part of (2.21) which can be obtained by first

removing the ε− D+1
2 and ε− D

2 divergent terms of E
(D)
U (ε) and then taking the physical limit

ε → 0. The behaviour of the finite contribution of (2.21) is strongly dependent on the parity,
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even or odd, of the spacial dimension D because of the different asymptotic behaviours of the
confluent hypergeometric function U(a,b, z).

In the odd case D = 2n + 1 the leading behaviour of the non-divergent part U+(D−1
2 ,

D
2 + 1, εκ2) of the εκ-expansion of U(D−1

2 , D
2 + 1, εκ2) is a constant term [49,50]

U+
(

n, n + 3

2
, εκ2

)
= −�(−n − 1

2 )

2
√

π
+O

(
εκ2), (2.23)

whereas in the even case D = 2n there is a leading logarithmically divergent term [49,50]

U+
(

n − 1

2
, n + 1, εκ2

)
= (−1)n

2
√

π �(n + 1)

(
ψ(n − 1/2) − ψ(n + 1) + γ + log

(
εκ2)) +O

(
εκ2), (2.24)

ψ(s) = �′(s)
�(s)

being the digamma function and γ the Euler constant.
One important fact is that there are no cancellations in the expression (2.15) between sublead-

ing asymptotic terms O(εκ2
i ) of the confluent hypergeometric function U(n− 1

2 , n+ 1, εκ2
i ) and

divergent contributions coming from the remaining sum over the eigenvalues κi ; nor between
divergent terms of U(n − 1

2 , n + 1, εκ2
i ) and subleading O(ε) terms of the sums over κi .

In summary, the Casimir energy arises only from the product of the finite O(1) terms of (2.23)
and (2.24) which correspond to two different types of behaviours.

2.1. Odd-dimensional D = 2n + 1 spaces

In this case the Casimir energy (2.22) can be obtained from formula (2.21) keeping
only the leading asymptotic contributions (2.23) of the confluent hypergeometric function
U(D−1

2 , D
2 + 1, εk2). The result is given by the following contour integral of the spectral func-

tion

c
(2n+1)
U

L2n+1
= (−1)�(− 2n+1

2 )L2n+1
0

(4π)
2n+1

2 (L2n+1 − L2n+1
0 )

lim
ε→0

1

2πi

∮
dk k2n+1e−εk2

×
[
(L0 − L)

k − k∗

|k − k∗| − d

dk
log

(
h

(L)
U (k)

h
(L0)
U (k)

)]
. (2.25)

Since this expression is finite and convergent in the ε → 0 limit, we can drop the regulating
exponential heat kernel factor e−εk2

. In this case, because of the holomorphic properties of the
integrand, the integration can also be extended to the contour given by an infinite semi-circle
limited in its left-hand side by the imaginary axis. As long as the integration over the semicircle
is zero, the integration is reduced to the imaginary axis of the complex k-plane, and taking into
account the parity invariance of the integrand the integration range can be reduced to the positive
imaginary axis. The final integral expression for the Casimir energy is

c
(2n+1)
U

L2n+1
= 4(−1)n�(− 2n+1

2 )L2n+1
0

(4π)
2n+3

2 (L2n+1 − L2n+1
0 )

∞∫
0

dk k2n+1
[
L − L0 − d

dk
log

(
h

(L)
U (ik)

h
(L0)
U (ik)

)]
.

(2.26)
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2.2. Even-dimensional D = 2n spaces

The even case presents some further interesting peculiarities. Following the analysis of the odd
case, but taking into account the different asymptotic behaviour (2.24) of the confluent hyperge-
ometric function U+(n − 1

2 , n + 1, εκ2), we obtain the Casimir energy in terms of the contour
integral

c
(2n)
U

L2n
= (−1)n(4π)−nL2n

0

�(n + 1)(L2n − L2n
0 )

lim
ε→0

1

2πi

∮
dk k2n

[
(L0 − L)

k

|k| − d

dk
log

h
(L)
U (k)

h
(L0)
U (k)

]

×
(

ψ

(
n − 1

2

)
− ψ(n + 1) + γ + log

(
εk2))e−εk2

.

The exponential factor of the heat kernel can again be dropped and the integration reduced to
an integral over the imaginary axis. But in this case the terms proportional to ψ(n − 1

2 ) −
ψ(n+1)+γ are parity odd and the integral over the positive and negative imaginary axes cancel
each other. Only the terms proportional to the logarithm term log(εκ2

i ) provide a non-vanishing
contribution. Due to the existence of a branch cut that we fix along the real positive axis the
contribution of positive imaginary axis picks up a factor iπ/2 whereas in the negative imaginary
axis this factor is −iπ/2. The total contribution of the integral reduces to a very compact finite
formula

c
(2n)
U

L2n
= − (4π)−nL2n

0

�(n + 1)(L2n − L2n
0 )

∞∫
0

dk k2n

[
L − L0 − d

dk
log

(
h

(L)
U (ik)

h
(L0)
U (ik)

)]
(2.27)

for the calculation of the Casimir energy.
Expressions (2.26) and (2.27) allow the calculation of Casimir energy for arbitrary consistent

boundary conditions in the parallel plates configuration in any spatial dimension. We restrict our
analysis to the two most interesting cases from physical point of view: massless scalar theories
in (2 + 1)- and (3 + 1)-dimensional spacetimes (the case 1 + 1 has been already analysed from
this viewpoint in Refs. [23,24]). What is interesting about these two cases is that many of the
new boundary conditions of the parallel plates can be implemented in the laboratory and the
theoretical results falsified.

3. Casimir energy in three dimensions

In the most realistic three-dimensional (D = 3) case the Casimir energy is given by the integral

E
(3)
U

S
= c

(3)
U

L3
= −L3

0

6π2(L3 − L3
0)

∞∫
0

dk k3
[
L − L0 − d

dk
log

(
h

(L)
U (ik)

h
(L0)
U (ik)

)]
, (3.1)

for any type of consistent boundary conditions (i.e. U ∈MF ).
In many cases the calculation of the Casimir energy using the spectral formula (3.1) can be

achieved analytically but in general it requires the use of numerical simulations. Let us first
compare the analytic results obtained by the spectral function method and the results obtained by
other methods (e.g. zeta function regularisation [36,38,40,41]).
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3.1. Periodic boundary conditions

They correspond to a folding of the space into a cylinder, ψ(0) = ψ(L), ψ ′(0) = ψ ′(L), and
are described by the unitary operator

Up = σ1 =
(

0 1
1 0

)
. (3.2)

The associated spectral function,

h(L)
p (k) = 4k(coskL − 1), (3.3)

reduces the integrand in expression (3.1) to

L − L0 − d

dk

(
log

h
(L)
p (ik)

h
(L0)
p (ik)

)
= L − L0 + L0 coth

kL0

2
− L coth

kL

2
,

and the Casimir energy is, thus, given by

E
(3)
p

S
= c

(3)
p

L3
= −L3

0

6π2(L3 − L3
0)

∞∫
0

dk k3
[
L − L0 + L0 coth

(
kL0

2

)
− L coth

(
kL

2

)]
which, can be analytically integrated out, giving rise to a negative Casimir energy, that agrees
with results obtained by other standard methods (e.g. zeta function regularisation [40]).

E
(3)
p

S
= − π2

45L3
. (3.4)

As it is well known the Casimir effect in the periodic case introduces an attractive force which
tends to shrink the cylinder.

3.2. Dirichlet boundary condition

In this case ψ(0) = ψ(L) = 0, the unitary operator is Ud = −I, and the associated spectral
function is

h
(L)
d (k) = 4i sin kL. (3.5)

The Casimir energy is given by the well-known Casimir result

E
(3)
d

S
= −L3

0

6π2(L3 − L3
0)

∞∫
0

dk k3[L − L0 + L0 coth(kL0) − L coth(kL)
] = − π2

720L3
,

which again is negative and 1
16 times smaller than the periodic case.

3.3. Neumann boundary condition

In this case, ψ ′(0) = ψ ′(L) = 0, the associated unitary operator is Un = I, and its spectral
function

h(L)(k) = 4ik2 sin kL. (3.6)
n
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Although the spectral function hn(k) is different from h
(L)
d (k), the result is the same as for Dirich-

let boundary conditions

E
(3)
n

S
= − π2

720L3
. (3.7)

In both cases, Dirichlet and Neumann, the character of the Casimir force between plates is at-
tractive, and 1

16 times smaller than in the periodic case.

3.4. Anti-periodic boundary conditions

They correspond to ψ(0) = −ψ(L), ψ ′(0) = −ψ ′(L), and are described by the unitary oper-
ator

Uap = −σ1 =
(

0 −1
−1 0

)
. (3.8)

The associated spectral function,

h(L)
ap (k) = 4k(coskL + 1), (3.9)

reduces the integrand in expression (3.1) to

L − L0 + L0 tanh

(
kL0

2

)
− L tanh

(
kL

2

)
.

In the case of anti-periodic boundary conditions the Casimir energy

E
(3)
ap

S
= −L3

0

6π2(L3 − L3
0)

∞∫
0

dk k3
[
L − L0 + L0 tanh

(
kL0

2

)
− L tanh

(
kL

2

)]
= 7π2

360L3

is positive, which corresponds to a repulsive Casimir force between plates.

3.5. Zaremba boundary condition

There are two special boundary conditions which are Neumann at one boundary and Dirichlet
at the other, or vice versa. The unitary matrices are

UZ = ±σ3 = ±
(

1 0
0 −1

)
,

their spectral function

hZ(k) = −8k coskL (3.10)

and the corresponding Casimir energy

E
(3)
Z

S
= −L3

0

6π2(L3 − L3
0)

∞∫
0

dk k3[L − L0 + L0 tanh(kL) − L tanh(kL)
] = 7π2

5760L3
,

is positive which corresponds to a repulsive Casimir force between the parallel plates.
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3.6. Quasi-periodic boundary conditions

This is a one-parameter family of boundary conditions defined by

ψ(L) = tan
α

2
ψ(0), ψ ′(L) = cot

α

2
ψ ′(0),

with unitary operator

Uqp = cosασ3 + sinασ1, α ∈ [−π/2,π/2]. (3.11)

The associated spectral function is

h(L)
qp (k) = 4k(coskL − sinα), (3.12)

and the Casimir energy is given by the following integral expression

E
(3)
qp

S
= −L3

0

6π2(L3 − L3
0)

∞∫
0

dk k3
[
L − L0 + L0 sinh(kL0)

sin(α) − cosh(kL0)
− L sinh(kL)

sin(α) − cosh(kL)

]
,

(3.13)

which gives

c(3)
qp = − 1

π2

(
li4

(−ieiα
) + li4

(
ie−iα

))
, (3.14)

where

lin(z) ≡ (−1)n−1

(n − 2)!
1∫

0

dt

t
log(1 − zt) logn−2(t) =

∞∑
j=1

zj

jn

denotes the integral logarithm function. The combination of integral logarithms li4(−ieiα) +
li4(ie−iα) can be reduced to a fourth order polynomial in α for α ∈ [−π/2,π/2]), thus the
Casimir energy coefficient c

(3)
qp is given by

c(3)
qp = 7π2

5760
− πα

16
− α2

48
+ α3

12π
+ α4

24π2
, α ∈ [−π/2, π/2]. (3.15)

The behaviour of the coefficient c
(3)
qp of the Casimir energy as a function of α in the interval

[−π/2,π/2] shows that there is a value α
(qp)

0 of α where the Casimir energy and the Casimir
force between plates vanish. This special value

α
(qp)

0 = π

(
−1

2
+

√
1 − 2

√
2

15

)
(3.16)

corresponds to the splitting point between attractive and repulsive regimes. For −π/2 � α <

α
(qp)

0 the Casimir energy is positive and hence the Casimir force between plates has a repul-

sive character, and when π/2 � α > α
(qp)

0 , the Casimir force between plates becomes attractive,
corresponding to a negative Casimir energy.
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3.7. Pseudo-periodic boundary conditions

Pseudo-periodic boundary conditions are a family of one-parameter family of boundary con-
ditions that generalise periodic and anti-periodic conditions, i.e.

ψ(L) = e−iαψ(0), ψ ′(L) = e−iαψ ′(0).

The unitary matrices defining the boundary conditions of this family are

Upp = cosα σ1 − sinα σ2 =
(

0 eiα

e−iα 0

)
, α ∈ [−π,π], (3.17)

and their spectral functions read

hpp = 4k(coskL − cosα). (3.18)

The calculation of Casimir energy

E
(3)
pp

S
= −L3

0

6π2(L3 − L3
0)

∞∫
0

[
L − L0 − L sinh(kL)

cosh(kL) − cos(α)
− L0 sinh(kL0)

cosh(kL0) − cos(α)

]
k dk

can be reduced to that of the quasi-periodic boundary conditions case by replacing αqp with
αpp + π/2, i.e.

c(3)
pp (α) = −π2

45
+ α2

6
− |α|3

6π
+ α4

24π2
, α ∈ [−π,π]. (3.19)

There are two values of α where the Casimir energy and Casimir force between plates vanish

α
(pp)

0± = ∓π

(
1 −

√
1 − 2

√
2

15

)
. (3.20)

For α
(pp)

0− < α < α
(pp)

0+ the Casimir energy is negative, which leads to an attractive Casimir force

between plates. However, for −π < α < α
(pp)

0− or α
(pp)

0+ < α < π , the Casimir energy is positive,
and the force between plates is repulsive.

3.8. Robin boundary conditions

The one-parameter family of Robin boundary conditions

ψ ′(0) = tan
α

2
ψ(0), ψ ′(L) = tan

α

2
ψ(L),

is characterised by the family of unitary matrices Ur = eiα
I, with α ∈ [0,π] and spectral function

h
(0)
Ur

(k) = 2ieiα
(−2k sinα coskL + (

k2 − 1 + (
k2 + 1

)
cosα

)
sin kL

)
.

In this case it is not possible to find an analytical expression for the Casimir energy c
(3)
r , thus

one has to proceed numerically from expression (3.1). The Casimir energy for Robin boundary
conditions is displayed in Fig. 2 which is in agreement with previous analyses [51,52]. Of note
is that c

(3)
r is negative for all values of α ∈ [0,π/2]. In other words, the Casimir force between

plates in this case is always attractive, which is in agreement with the Kenneth–Klich theorem
(see below).
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Fig. 1. Rhombic slice of the space of consistent boundary conditions MF for a scalar field theory confined between two
homogeneous parallel plates in the α–β planes for fixed value of n and 0 < α ± β < π . The conical structure of the full
space MF of boundary conditions is clearly inferred from the displayed rhombus.

3.9. Pauli matrices boundary conditions

Another case of special interest are the boundary conditions that are located at left and right
corners of the rhombus of Fig. 1, i.e. boundary conditions corresponding to points on the unit
sphere S2 for values α = ±β = π

2 , i.e. Un = n ·σ . These two-parameter family of boundary con-
ditions includes periodic, anti-periodic, quasi-periodic and pseudo-periodic boundary conditions.
The Casimir energy given by

E(n1)

S
= 1

L3

(
−π2

45
+ (arccosn1)

2

6
− (arccosn1)

3

6π
+ (arccosn1)

4

24π2

)
, (3.21)

with arccosn1 ∈ [0,2π ], has two regimes, attractive and repulsive, separated by a one-
dimensional circle of Casimirless boundary conditions (see Fig. 3) given by α = β = π

2 and

n1 = cosπ
[
1 ± (1 − 2

√
2/15 )

1
2
]
. (3.22)

It is remarkable that all analytical results obtained by the spectral function method agree
with those obtained by other methods like zeta function regularisation method. However the
expression for the Casimir energy in terms of a contour integral of the spectral function provides
a very efficient method for numerical calculations of the Casimir energy in the cases where it
cannot be achieved by analytic methods.

In this way we can calculate the Casimir energy for a wider class of boundary conditions
using the spectral function method (3.1). In many cases these results were previously known,
and the results obtained by the spectral function method are in perfect agreement with those
found in the literature. Apart from the well-known analytic results described above there is also
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Fig. 2. α-dependence of the c
(3)
r coefficient of Casimir energy for Robin boundary conditions for α ∈ [0,π ].

Fig. 3. (Colour online.) Variation of the c
(3)
U

coefficient of the Casimir energy in the consistency region β = π
2 , α = −π

2
for any value of the normal vector n. The black curve correspond to boundary conditions with vanishing Casimir energy
and blue (red) regions to boundary conditions with attractive (repulsive) Casimir forces.

agreement with the numerical simulations of cases like Robin boundary conditions where there
are not analytic expressions for the Casimir energy [51,52].

4. Casimirless boundary conditions

For generic boundary conditions there are not analytic results but the efficiency of the numer-
ical analysis using formula (3.1) allows the calculation of the Casimir energy for any boundary
condition in one simple step. The space of boundary conditions MF is four-dimensional, how-
ever, the Casimir energy only depends on three parameters α, β , n1, i.e. it is independent of the
value of n2, n3 components of the unitary vector n = (n1, n1, n3). Hence a global calculation
of Casimir energy reduces to the calculation of a family of planar functions on slices of MF

parametrised by the different values of n1 ∈ [−1,1]. In each slice the Casimir energy can be
represented by its contour lines and this makes the identification of the attractive and repulsive
regimes easier by highlighting the curves where the Casimir energy vanishes.

In this representation there are redundancies because some points in the slices n1 and −n1
correspond to the same boundary conditions. For this a reason we only consider positive values
of n1.
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Fig. 4. (Colour online.) Variation of the c(3) coefficient of the Casimir energy in the consistency domain of boundary
conditions |β| < α < π − |β|, for n1 = 0 and n1 = 0.1. Black curves correspond to boundary conditions with vanishing
Casimir energy and blue (red) regions correspond to boundary conditions with negative (positive) values of Casimir
energy.

Fig. 5. (Colour online.) Variation of the c(3) coefficient of the Casimir energy in the consistency domain of boundary
conditions |β| < α < π −|β|, for n1 = 0.3 and n1 = 0.5. Black curves correspond to boundary conditions with vanishing
Casimir energy and blue (red) regions correspond to boundary conditions with negative (positive) values of Casimir
energy.

The results show that Casimir energy, as a function c
(3)
U /L3 : MF → R, has negative, positive

and null values (see Figs. 4–6). These correspond to attractive, repulsive, and zero Casimir effect,
i.e., there are operators U ∈ MF which give rise to field theories without Casimir effect (zero
Casimir energy). Such boundary conditions are characterised by the solutions of the equation

∞∫
dkk3

[
L − L0 − d

dk
log

(
h

(L)
U (ik)

h
(L0)
U (ik)

)]
= 0 (4.1)
0
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Fig. 6. (Colour online.) Variation of the c(3) coefficient of the Casimir energy in the consistency domain of boundary
conditions |β| < α < π − |β|, for n1 = 0.9 and n1 = 1. Black curves correspond to boundary conditions with vanishing
Casimir energy and blue (red) regions correspond to boundary conditions with negative (positive) values of Casimir
energy.

in MF . Eq. (4.1) has infinite solutions in MF as can be seen from Figs. 4–6. Null Casimir
energy subspaces are 3-dimensional and their co-dimension is 1 because they only satisfy one
equation constraint (4.1).

The most relevant property of the 3-dimensional subspace of Casimirless boundary condi-
tions is that it splits the space of physical boundary conditions MF into two disjoint subsets:
one containing all boundary conditions that generate repulsive Casimir force and the other con-
taining those with attractive Casimir force. In other words the existence of Casimirless boundary
conditions highlights the transition between both types of regimes. Although the subspace of
boundary conditions with vanishing Casimir energy is connected, in some slices the intersection
of the subspace defined by (4.1) has two connected components curves while for others it has
only one connected component.

The numerical results show that the minimum of Casimir energy is obtained with periodic
boundary conditions, which means that these boundary conditions generate the strongest at-
tractive Casimir force between the plates. In the same way we find that the maximum value
of Casimir energy is obtained with anti-periodic boundary conditions, which means that these
boundary conditions generate the strongest repulsive Casimir force.

Using the numeric calculations above we can verify that the Kenneth–Klich theorem [14] also
holds in 3+1 dimensions. The theorem states that the Casimir force between two identical bodies
is always attractive. It is implicit in the assumptions of the theorem that the boundary conditions
introduced by the two bodies are each other independent. The only conditions that satisfy this
property are those with n1 = n2 = 0, n3 = 1, i.e.

U
(
α,β, (0,0,1)

) = eiα(cosβ I+ iσ3 sinβ) =
(

ei(α+β) 0
0 ei(α−β)

)
. (4.2)

Boundary conditions which modelling identical bodies require β = 0 and in this case we have
identical Robin boundary conditions with n1 = 0 which corresponds to boundary conditions
sitting on the vertical line connecting the Dirichlet and Neumann corners of the rhombus in
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Fig. 1. In fact the above results show that the same behaviour hold for bodies with slightly
different boundary conditions. This follows from the continuity of the Casimir energy in the
space of boundary conditions MF . The repulsive behaviour requires in general a rather different
boundary conditions for the two plates, e.g. Zaremba boundary conditions (α = ±β = π

2 , i.e.
U = ±σ3) located on the left (right) corners of the rhombus which correspond to two plates, one
with Neumann boundary conditions whereas the other has Dirichlet boundary conditions.

The same behaviour appears for higher-dimensional D + 1 field theories. In these cases the
Casimir energy for identical plates is given by

c
(2n+1)
r

L2n+1
= (−1)n(4π)− 2n+1

2 �(− 2n+1
2 )L2n+1

0

π(L2n+1 − L2n+1
0 )

×
∞∫

0

dk k2n+1
[
L − L0 − d

dk
log

(
h

(L)
r (ik)

h
(L0)
r (ik)

)]
(4.3)

for D = 2n + 1 odd dimensions, or

c
(2n)
r

L2n
= − (4π)−nL2n

0

�(n + 1)(L2n − L2n
0 )

∞∫
0

dk k2n

[
L − L0 − d

dk
log

(
h

(L)
r (ik)

h
(L0)
r (ik)

)]
(4.4)

for D = 2n even dimensions. Since (−1)n�(− 2n+1
2 ) is always negative it is sufficient to prove

that the integrand is in both cases is a positive function of k. Boundary conditions introduced by
two independent identical bodies are given by (4.2) with β = 0. The associated spectral function
is

h(L)
r (ik) = 2eiα

((
k cos

α

2
+ sin

α

2

)2

ekL −
(

k cos
α

2
− sin

α

2

)2

e−kL

)
, (4.5)

and

h
(L)′
r (ik)

h
(L)
r (ik)

= 4k cos2 α
2 sinh kL + 2 sinα cosh kL + L(k cos α

2 + sin α
2 )2ekL + L(k cos α

2 − sin α
2 )2e−kL

(k cos α
2 + sin α

2 )2ekL − (k cos α
2 − sin α

2 )2e−kL
.

(4.6)

When L > L0 the inequality

h(L)′
r (ik)/h(L)

r (ik) − h(L0)′
r (ik)/h(L0)

r (ik) < L − L0 (4.7)

provides the necessary bound which ensures that the integral is always positive. Thus in any
dimension the Casimir energy is always negative

cD
r < 0

as required by Kenneth–Klich theorem.
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5. Casimir energy in 2 dimensions

Two-dimensional systems have acquired recent interest since the appearance of new materials
like graphene and new physical effects which are specific of two-dimensional systems like the
quantum Hall effects. On the other hand, as we have shown the calculation of Casimir effect
presents some subtleties in even-dimensional spaces. In the D = 2 case the integral for transverse
modes apparently presents logarithmic divergences for all the orders in the power expansion
of parameter ε. Some of them have been analysed in the literature, see Refs. [7,53,40,54,8].
However, it is remarkable that these divergences disappear, as we have shown in the preceding
section, giving rise to a finite univocally defined Casimir energy and a finite Casimir pressure on
the plates proportional to the cubic power of the inverse distance between plates. The Casimir
energy in this case is given by

c
(2)
U

L2
= − 1

4π

L2
0

L2 − L2
0

∞∫
0

dk k2
[
L − L0 − d

dk
log

(
h

(L)
U (ik)

h
(L0)
U (ik)

)]
. (5.1)

In some cases the integral (5.1) can be analytically evaluated, e.g. for Dirichlet/Neumann bound-
ary conditions we get

c
(2)
d = c(2)

n = −ζ(3)

8π
,

whereas we have

c(2)
p = −ζ(3)

π
, c(2)

ap = 3ζ(3)

4π
, c(2)

z = 3ζ(3)

32π
,

for periodic, anti-periodic and Zaremba boundary conditions. The results are finite and in agree-
ment with those obtained using other methods such as zeta function regularisation method [7,53,
40,54,8].

We also obtain analytic expressions for the Casimir energy for quasi-periodic (3.11) and
pseudo-periodic (3.17) boundary conditions

c(2)
qp = − 1

2π

(
li3

(−ieiα
) + li3

(
ie−iα

))
, α ∈ [−π/2,π/2], (5.2)

c(2)
pp = − 1

2π

(
li3

(
eiα

) + li3
(
e−iα

))
, α ∈ [−π,π], (5.3)

although in these cases the α-dependence of the Casimir energy is not polynomial unlike in 3+1
dimensions (see Section 3).

The results explicitly show the universal character of the Casimir energy, even for (2 + 1)-
dimensional spacetimes where some authors suggested the presence of logarithmic divergences
which would make the Casimir phenomenon dependent on the regularisation method and the
renormalisation scheme. We have demonstrated by using a heat kernel regularisation the absence
of these divergences and proved the universal character of the Casimir energy between plates for
any even-dimensional space.

In 2 + 1 dimensions there are also boundary conditions that generate attractive and repulsive
Casimir effects as in 3 + 1 dimensions. In the interface between both regimes there are bound-
ary conditions that do not generate any Casimir force. Those boundary conditions of MF with
vanishing Casimir energy are characterised as the solutions of equation
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Fig. 7. Variation of the c
(2)
U

coefficient of the Casimir energy as a function of α ∈ [−π,π] for Robin boundary conditions.

∞∫
0

k2
[
L − L0 − d

dk
log

(
h

(L)
U (ik)

h
(L0)
U (ik)

)]
dk = 0, (5.4)

in MF .
In particular, Casimirless boundary conditions arise in the one-parameter families of quasi-

periodic and pseudo-periodic boundary conditions where the Casimir energies given by (5.2)
and (5.3) point out the existence of three values of the α parameter for which the coefficient c

(2)
U

vanishes (see Fig. 11). They correspond to Casimirless boundary conditions.
In contrast, for Robin boundary conditions the numerical result is displayed in Fig. 7 show

that the Casimir energy is always negative for any value of α ∈ [0,π/2]. In other words, in this
case the Casimir force between plates is always attractive.

Finally, using Eq. (5.1) the behaviour of c
(2)
U can be numerically evaluated in the whole domain

MF of consistent boundary conditions. Figs. 10, 9 and 8 show contour plots of c
(2)
U for different

values of parameter n1.
Again it is explicitly shown that for any value of n1 there are curves of boundary conditions

with vanishing Casimir energy (thick lines). For the rest of boundary conditions in MF the
Casimir energy can take positive and negative values, which correspond to repulsive or attractive
Casimir forces between the plates.

The results also confirm the behaviour inferred from the Kenneth–Klich theorem in 2 + 1
dimensions. Indeed the Casimir force between two identical wires in 2 + 1 dimensions is always
attractive as corresponds to the case of two identical Robin boundary conditions. This behaviour
of the Casimir force is not exclusive of bodies with identical Robin boundary conditions, i.e.
β = n1 = 0 but also for bodies with slightly different Robin boundary conditions. This follows
from the continuity of the Casimir energy in the space of boundary conditions MF and demon-
strates that the repulsive character of Casimir force can only appear for bodies with very different
boundary conditions e.g. mixed Dirichlet–Neumann conditions as in Zaremba boundary condi-
tions.

6. Discussion and conclusions

From the global analysis of the dependence of Casimir energy on the type of boundary con-
ditions performed throughout this paper we can extract some consequences of physical interest.
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Fig. 8. (Colour online.) Variation of the c(2) coefficient of the Casimir energy in the consistency domain of boundary
conditions |β| < α < π − |β| for n1 = 0 and n1 = 0.1. Black curves correspond to boundary conditions with vanishing
Casimir energy and blue (red) regions correspond to boundary conditions with attractive (repulsive) Casimir forces.

Fig. 9. (Colour online.) Variation of the c(2) coefficient of the Casimir energy in the consistency domain of boundary con-
ditions |β| < α < π − |β| for n1 = 0.3 and n1 = ±0.5. Black curves correspond to boundary conditions with vanishing
Casimir energy and blue (red) regions correspond to boundary conditions with attractive (repulsive) Casimir forces.

First, we have shown the existence of new boundary conditions which are fully consistent with
fundamental requirements of quantum field theory. Some of these conditions can be experimen-
tally implemented. Second, the spectral approach to the calculation of Casimir energy has been
revealed as a very useful tool, not only in cases where it can be analytically implemented but
also for achieving a very efficient numerical calculation in any case. In this way we analysed the
global properties of Casimir energy Ec(U) as a function in the space of all consistent boundary
conditions MF .

We have univocally characterised which boundary conditions induce an attractive Casimir
force and which ones a repulsive Casimir force. However, we have been unable to find the
underlying physical arguments that characterise the boundary conditions that induce attrac-



M. Asorey, J.M. Muñoz-Castañeda / Nuclear Physics B 874 [FS] (2013) 852–876 873
Fig. 10. (Colour online.) Variation of the c(2) coefficient of the Casimir energy in the consistency domain of boundary
conditions |β| < α < π − |β| for n1 = 0.9 and n1 = 1. Black curves correspond to boundary conditions with vanishing
Casimir energy and blue (red) regions to boundary conditions with attractive (repulsive) Casimir forces.

Fig. 11. (Colour online.) Variation of the c
(D)
pp coefficient of the Casimir energy as a function of α ∈ [−π,π] for pseudo-

periodic boundary conditions in D = 1 (blue), D = 2 (gray), D = 3 (red). The (weak) first order transition associated to
the cusp singularity only appears in one-dimensional systems.

tive or repulsive the Casimir forces, although the algorithm used in the paper provides the
simplest mechanism to determine its character. In particular, we have fully characterised the
3-dimensional family of boundary conditions that are in the interface between the attractive and
repulsive regimes. This family of Casimirless boundary conditions has a very special property:
that their Casimir force vanishes, which may have some interest for physical applications.

We have confirmed that all boundary conditions corresponding to identical bodies are always
attractive in agreement with the Kenneth–Klich theorem. In fact, we have shown that the same
behaviour holds for bodies with slightly different boundary conditions. A result that follows from
the continuity of the Casimir Energy in the space of boundary conditions. In general the repulsive
behaviour requires rather different boundary conditions for the two plates.

It is of note that the cusp singularity of pseudo-periodic boundary conditions in 1 + 1 dimen-
sions at α = 0 has disappeared in 2 + 1 dimensions (Fig. 11). This means that the (weak) first
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order phase transition that occurs in 1+1 dimensions becomes a weaker higher order phase tran-
sition in 2 + 1 dimensions, and we do not observe any kind of phase transition in 3-dimensional
systems at α = 0.

The strong convergence properties of the spectral integral that defines the Casimir energy also
implies that the Casimir energy function in MF ⊂ U(2) is an holomorphic function when re-
stricted to the interior of the domain. However some singular points can appear at the border of
such a space (see Fig. 11), because beyond that border consistency of field theory fails. This prop-
erty has some physical consequences because if Ec(α,β,n) is holomorphic inside MF ∩ U(2)

its extremal values have to be attained at the boundary according to the minimum–maximum
principle. This explains why we found the extremal points on the corner of the rhombus.

The extremal points correspond in 1 + 1, 2 + 1 and 3 + 1 dimensions to periodic (mini-
mum) and anti-periodic (maximum) boundary conditions. This property appears to hold in higher
dimensions which motivates an interesting conjecture. Periodic boundary conditions always gen-
erate the strongest attractive Casimir force between the plates whilst anti-periodic conditions
generate the strongest repulsive force. In fact, the conjecture can be proven using inequalities
similar to Eq. (4.7).

On the other hand, there is an interesting mismatch between the gradient flow generated by
the Casimir energy function and the renormalisation group flow given by [55]

ΛU
†
Λ∂ΛUΛ = 1

2

(
U

†
Λ − UΛ

)
(6.1)

the fixed points of the RG flow correspond to conformally invariant boundary conditions. How-
ever due to the Casimir effect these points are not completely stable. The existence of this
property for periodic and anti-periodic boundary conditions is well known from the analysis
of the conformal anomaly in 1 + 1 dimensions boosted by string theory. Only a small family
of boundary conditions (3.21) are conformally invariant and without Casimir force [27]. They
can be identified as the boundary conditions sitting at the left and right corners of the rhombus
satisfying Eq. (3.22). The field theories with these boundary conditions are conformally invariant
and anomaly free, i.e. the vacuum energy vanishes. This opens a new approach to the study of
string theory in non-critical dimensions which deserves further study. The stability under these
boundary conditions of interacting field theories is also an interesting open question.

Finally, it will be very interesting to generalise the previous analysis to gauge field theories
and obtain the dependence of the vacuum energy of gauge field theories on the most general type
of boundary conditions from a global perspective.
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