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Abstract

The main topic of this dissertation is the analysis of open quantum systems. These systems are charac-
terised by being subjeted to the influence of the environment, which causes thier evolution to be no longer
unitary. It is thus necessary to consider models different to the Schrédinger equation. Open quantum
systems appear in a great variety of fields, such as Solid State Physics and Molecular Dynamics. For
this reason a careful analysis of their properties and dynamics is a relevant topic, with a broad range of
applications.

The approach followed along this dissertation is the development of a geometric formalism that prop-
erly describes the characteristics of open quantum systems. Differential geometry has proved to be a
powerful tool in the analysis of physical systems. Since the mid years of the 20th century, a geometric
description of Classical Mechanics, mainly concerning Lagrangian and Hamiltonian mechanics, has been
developed with huge success. For this reason, it seems natural to also describe quantum systems in geo-
metric terms. The adventages of such a geometric formalism are clear. When both classical and quantum
systems are described in the same terms, it is simple to describe situations in which classical-quantum
interactions exist. Such is the case, for example, of many models in Molecular Dynamics, when nuclei and
electrons are considered respectively classical and quantum. Also, a geometrical formalism of Quantum
Mechanics makes possible to understand the intrinsic differences between classical and quantum theories.

Due to its relevance in this dissertation, Chapter 1 is devoted to the review and analysis of the geomet-
ric description of the Schrodinger picture of Quantum Mechanics. In its standard (algebraic) formulation,
this picture is based in the representation of states of quantum systems by means of vectors in a com-
plex Hilbert space. The transition to a formulation based on differential geometry is straightforward for
finite-dimensional systems, as finite-dimensional linear spaces are trivial cases of differentiable manifolds.
The additional structures, namely the Hermitian product in Hilbert spaces and the presence of imaginary
scalars, are described by tensor fields on such differentiable manifolds, forming what is called a Kahler
structure. All the necessary ingredients for the analysis of quantum systems can be described on Kahler
manifolds. Observables are represented by smooth functions, while dynamics is described by means of
integral curves of Hamiltonian vector fields with respect to the symplectic form in the Kéhler structure.
This characterisation can be carried out on the Hilbert space associated to any finite-dimensional quan-
tum system. It is also possible to analyse the geometric properties of the projective Hilbert space, which
is the set of pure states of the system. Its K&hler structure can be deduced via a reduction procedure
from the existing structure on the Hilbert space. As a novelty, the dissertation presents in detail this
reduction procedure, with an appropriate mathematical description.

All the aspects of the Schrédinger picture can be presented in geometric terms, which allows for the
use of new tools in the analysis of quantum systems. This is the topic of Chapter 2, in which Lie-
Kahler systems are employed in order to solve the time-dependent Schrodinger equation. In differential
geometry, a Lie system is a non-homogeneous system of differential equation that admits a superposition
rule. The determination of this superposition rule is in general a difficult task, which can be lightened
by the presence of additional structures preserved by the action of the Lie system. Thus, depending on
the preserved structure, it is possible to consider Lie-Hamilton systems, Lie-Dirac systems, etc. In the
case of Quantum Mechanics, a time-dependent Schrodinger equation is a Lie system that preserves the
existing Kahler structure. It is therefore a new type of Lie system, which is natural to call a Lie-Kahler
system. Chapter 2 presents the properties of these new systems and describes a rigurous method in order



to obtain their superposition rules.

It is possible to extend the geometric formalism beyond the Schrodinger picture. This is necessary in
the context of open quantum systems, as both pure and mixed states are needed for their description. For
this reason, Chapter 3 presents the Heisenberg picture and its representation of pure and mixed states as
linear functionals on the real Lie-Jordan algebra of observables. It is also presented how the the algebraic
structures of observables can be represented geometrically on the dual space of linear functionals on the
algebra. This is the starting point of one of the main contributions of the dissertation. A reduction
procedure, similar to the one perfomed in the analysis of the Schrédinger picture, allows to describe the
geometric properties of the manifold of pure and mixed states of quantum systems. Thus, two tensor
fields are obtained on the manifold of states, which correctly reproduces the algebraic structures of the
observables. It can thus be concluded that the geometrical formalism presented in the dissertation is
completely equivalent to the usual algebraic description, as it is possible to properly describe all the
properties of quantum systems. Furthermore, the geometric formalism offer a clearer description of the
intrinsic properties of Quantum Mechanics, which allows for a better understanding of the theory. On
the other side, a geometric characterisation of the manifold of states allows to study its stratification and
its properties. The dissertation shows how this is a manifold with boundary, whose extremal points are
precisely the pure states of the system. The stratification of this manifold is important when considering
the dynamics induced by gradient and Hamiltonian vector fields. With the aim of illustrating all these
properties, some simple but physically relevant examples are analysed.

Different applications of the geometric formalism to the analysis of open quantum systems are offered
along the dissertation. Chapter 4 presents the description of the Markovian evolution of open quantum
systems. An evolution is said to be Markovian if it depends only on the present state of the system and not
on the states at previous instante, i.e. if the system ‘has no memory’. In Quantum Mechanics, Markovian
evolution is governed by the Kossakowski-Lindblad equation, a first order differential equation on the
manifold of pure and mixed states of an open quantum system. The geometric formalism describes this
equation as a vector field on the manifold, and the properties of its integral curves are analysed. Thus,
it is possible to consider different aspects of Markovian evolution from a geometric perspective. Any
non-unitary evolution determines a change in the algebraic properties of quantum observables, which
can lead to a contraction of the algebra. In geometric terms, this contraction can be understood as
the limit of a family of tensor fields determined by the flow of the Kossakowski-Lindblad vector field.
Another important feature of this evolution is the existence of limit manifolds. Their properties can be
determined thanks to the existing affine structure, and its connection with the contraction of algebras
is investigated. Lastly, control problems of open quantum systems are described in geometric terms. A
geometric description of Quantum Mechanicas allows to applut to these problems the results of the theory
of control of Lie groups. As a consequence, it is posible to obtain a classification of quantum systems
according to their controlability properties.

Another example of open quantum systems appears in the context of Molecular Dynamics. In the
study of molecular systems, the large number of particles implies that the Schrédinger equation cannot
be solved even by numerical methods. It is thus useful to consider approximations to the Schrodinger
equation. In particular, many models are developed considering a classical behaviour for some of the
particles, usually the nuclei. In these hybrid classical-quantum system, the quantum particles conform an
open quantum system that interacts with the classical nuclei. Chapter 5 reviews these molecular models,
particularising to the Ehrenfest model. A geometric description of the model is possible, based on the
separate descriptions of the classical and quantum subsystems. As a result, the equations of the model
are characterised as Hamiltonian equations on a Poisson manifold. Starting from these properties, the
dissertation presents a generalisation of the Ehrenfest model to statistical ensembles. This is an important
step, as the dissertation proves that decoherence-like effect, which are not present in its initial form,
appear in this statistical setting. Also, the thermodynamic limit of the model is characterised. Numerical
simulations have been performed, and the computed results support the description of molecular systems
by means of the Ehrenfest statistical model. Lastly, in this context it is possible to consider statistical
ensembles with temperature. The dissertation analyses these ensembles and their thermodynamic limit.

The following publications are result of the investigations presented in this dissertation:



e J. L. Alonso, P. Bruscolini, A. Castro, J. Clemente-Gallardo, J. C. Cuchi, and J. A. Jover-Galtier.
Ehrenfest statistical dynamics in chemistry without potential energy surfaces: Decoherence-like
effects. Submitted for publication.

e J. L. Alonso, J. Clemente-Gallardo, J. C. Cuchi, D. Garcia—Alvarez, and J. A. Jover-Galtier. Ex-
tensivity of the Hybrid Canonical Ensemble (HCE) in the thermodynamic limit. Submitted for
publication.

e J. L. Alonso, J. Clemente-Gallardo, P. Echenique-Robba, and J. A. Jover-Galtier. Comment on
“Correlated electron-nuclear dynamics: Exact factorization of the molecular wavefunction” [J.
Chem. Phys. 137, 22A530 (2012)]. J. Chem. Phys., 139(8):087101, 2013.

e J. F. Carinena, J. Clemente-Gallardo, J. A. Jover-Galtier, and J. de Lucas. Lie systems and
Schrodinger equations. Pre-print, arXiv:1611.05630, 2016

e J. F. Carinena, J. Clemente-Gallardo, J. A. Jover-Galtier, and G. Marmo. Tangent bundle geometry
from dynamics: application to the Kepler problem. Int. J. Geom. Methods Mod. Phys., 14:1750047,
2017.

e J. F. Carinena, J. Clemente-Gallardo, J. A. Jover-Galtier, and G. Marmo. Tensorial dynamics on
the space of quantum states. Submitted for publication.

e J. A. Jover-Galtier, M. Ku$, and J. de Lucas. Characterisation of limit manifolds for Markovian
evolution of open quantum system. In preparation.

e J. A. Jover-Galtier, M. Ku$, and J. de Lucas. Inner derivations of Jordan algebras and their
connection with Lie structures. In preparation.
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Resumen

El tema central de la tesis doctoral es el andlisis de los sistemas cuanticos abiertos. Estos sistemas se
caracterizan por estar sometidos a la interacciéon con el entorno, lo que provoca que su evolucion deje
de ser unitaria. Es por tanto necesario considerar modelos mas alld de la ecuacién de Schrodinger.
Los sistemas cuanticos abiertos aparecen en numerosos campos, como la Fisica del Estado Sélido y la
Dindmica Molecular. Por este motivo, un anéalisis detallado de sus propiedades y su dindmica es un tema
digno de estudio con un gran abanico de aplicaciones.

El enfoque elegido en esta tesis es el desarollo de un formalismo geométrico que describa de forma
adecuada las caracteristicas de los sistemas cuanticos abiertos. La geometria diferencial ha demostrado
ser una herramienta muy util en el andlisis de sistemas fisicos. Desde mediados del siglo XX, se ha
desarrollado con gran éxito una descripcién geométrica de la Mecanica Clasica, principalemnte en torno a
las mecanicas lagrangiana y hamiltoniana. Por este motivo, resulta natural describir también los sistemas
cuanticos en términos geométricos. Las ventajas de un formalismo geométrico resultan claras. Cuando
tanto los sistemas clasicos como los cuanticos se describen en los mismos términos, es sencillo describir
situaciones en las que existan interacciones cldsico-cudnticas. Este es el caso, por ejemplo, de muchos
modelos de Dindmica Molecular, en los que los nicleos y los electrones son considerados respectivamente
como particulas clasicas y cuanticas. Por otra parte, un formalismo geométrico de la Mecanica Cuantica
posibilita un mejor entendimiento de las diferencias intrinsecas entre las teorias clasicas y las cuédnticas.

Dada su relevancia a lo largo de la tesis, el Capitulo 1 estd enfocado al resumen y el anilisis de la
descripcién geométrica de la imagen de Schrodinger de la Mecanica Cudntica. En formulacién usual
(algebraica), esta imagen se basa en la representacién de los estados de los sistemas cudnticos medi-
ante vectores en un espacio de Hilbert complejo. La transicion a una formulacién basada en geometria
diferencial es inmediata para sistemas finito-dimensionales, dado que los espacios lineales de dimension
finita son casos triviales de variedades diferenciables. Las estructuras adicionales, en concreto el producto
hermitico propio de los espacios de Hilbert y los escalares complejos, se describen mediante campos tenso-
riales en dichas variedades diferenciables, formando lo que se conoce como una estructura Kahler. Todos
los ingredientes necesarios para el andlisis de sistemas cuanticos pueden describirse en estas variedades
de Kéhler. Los observables se representan mediante funciones diferenciables, mientras que la dindmica se
describe mediante curvas integrales de campos vectoriales hamiltonianos respecto a la forma simpléctica
de la estructura Kéhler. Esta caracterizacién puede llevarse a cabo en el espacio de Hilbert asociado a
cualquier sistema cudntico finito-dimensional. Ademads, es posible analizar las propiedades geométricas
del espacio proyectivo de Hilbert, el cual constituye el conjunto de estados puros del sistema. Su estruc-
tura Kahler puede ser deducida mediante un proceso de reduccién de la estructura previamente obtenida
en el espacio de Hilbert. Como aspecto novedoso, la tesis presenta en detalle este proceso de reduccion,
dotandolo de una descripcién matematica adecuada.

Todas las caracteristicas de la imagen de Schrodinger pueden describirse de forma geométrica, lo que
permite utilizar nuevas herramientas en el analisis de los sistemas cuanticos. Este es precisamente el
tema principal del Capitulo 2, en el cual se utilizan los sistemas de Lie-Kéhler para resolver la ecuacion
de Schrodinger dependiente del tiempo. En geometria diferencial, un sistema de Lie es un sistema no
homogéneo de ecuaciones diferenciales que admite una regla de superposicion. En general, la obtencién
de esta regla de superposicién es una ardua tarea, la cual puede aligerarse en presencia de estructuras
adicionales que sean preservadas por la accién del sistema de Lie. De esta forma, segtin la estructura



preservada, es posible hablar de sistemas de Lie-Hamilton, Lie-Dirac, etc. En el caso de la Mecanica
Cudntica, una ecuacién de Schrodinger dependiente del tiempo es un sistema de Lie que preserva la
estructura de Kahler previamente descrita. Es por tanto un nuevo tipo de sistema de Lie, al que resulta
natural denominar de Lie-Kéahler. El Capitulo 2 presenta las propiedades de estos nuevos sistemas y
describe un método riguroso para la obtencién de sus reglas de superposicion.

El formalismo geométrico puede extenderse mas alla de la imagen de Schrodinger, lo que resulta nece-
sario en el contexto de los sistemas cudnticos abiertos, dado que tanto estados puros como estados mezcla
son necesarios para su descripcion. Por este motivo, el Capitulo 3 resume la imagen de Heisenberg de
la Mecanica Cuéntica y su representacién de los estados puros y mezcla como funcionales lineales en el
algebra de Lie-Jordan de observables. Se explica también como las estructuras algebraicas de los observ-
ables pueden representarse geométricamente en el espacio dual de funcionales lineales en el algebra. Este
es el punto de partida de una de las principales contribuciones de la tesis. Un proceso de reduccién, sim-
ilar al realizado en el andlisis de la imagen de Schrodinger, permite describir las propiedades geométricas
de la variedad de estados puros y mezcla del sistema. De esta forma, se obtienen dos campos tensoriales
en la variedad de estados, los cuales representan correctamente las estructuras algebraicas de los observ-
ables. Puede por tanto concluirse que el formalismo geométrico presentado en la tesis es completamente
equivalente a la descripcién algebraica tradicional, ya que se logra describir adecuadamente todas las
propiedades de los sistemas cudnticos. Ademas, el formalismo geométrico ofrece una visién mas clara de
las propiedades intrinsecas de la Mecanica Cuantica, lo que facilita una mejor comprensién de la teoria.
Por otra parte, un analisis geométrico de la variedad de estados permite estudiar su estratificacion y
sus propiedades. La tesis demuestra que se trata de una variedad con borde, cuyos puntos extremales
son precisamente los estados puros del sistema. La estratificacién de esta variedad resulta importante a
la hora de considerar la dindmica inducida por campos gradiente y hamiltonianos. Con el objetivo de
ilustrar todas estas propiedades, se analizan unos casos sencillos pero con relevancia fisica.

A lo largo de la tesis, se muestran diversas aplicaciones del formalismo geométrico al andlisis de
sistemas cuanticos abiertos. El Capitulo 4 presenta la descripcién de la evolucién markoviana de sistemas
cuanticos abiertos. Se dice que una evolucién es markoviana si depende unicamente en el estado actual
del sistema y no de los estados en instantes anteriores, es decir, si el sistema “no tiene memoria”. En
Mecénica Cuantica, la evoluciéon markoviana se obtiene a partir de la ecuaciéon de Kossakowski-Lindblad,
una ecuacioén diferencial de primer orden en la variedad de estados puros y mezcla de un sistema cudntico
abierto. El formalismo geométrico describe esta ecuacién como un campo tensorial en esta variedad,
lo que permite analizar las propiedades de sus curvas integrales. De esta manera, es posible considerar
diversos aspectos de la evolucién markoviana desde un punto de vista geométrico. Cualquier evolucion
no-unitaria determina un cambio en las propiedades algebaicas de los observables cuanticos, lo que puede
resultar en una contracciéon del algebra. En términos geométricos, esta contraccién puede entenderse
mediante el limite de una familia de campos tensoriales definida por el flujo del campo tensorial de
Kossakowski-Lindblad. Otra caracteristica importante de esta evolucién es la existencia de variedades
limite. Sus propiedades pueden determinarse gracias a la estructura afin existente, lo que a su vez
permite investigar su relacién con las contracciones de dlgebras de observables. Por tltimo, se ofrece una
descripciéon geométrica de los problemas de control de sistemas cuanticos abiertos. Un analisis geométrico
de la Mecanica Cuantica permite aplicar a estos problemas los resultados de la teoria de control de grupos
de Lie. Como consecuencia, es posible realizar una clasificacién de los sistemas cuanticos abiertos segun
sus propiedades de controlabilidad.

Otro ejemplo de sistemas cudnticos abiertos aparece en el contexto de la Dindmica Molecular. En el
estudio de sistemas moleculares, debido al gran niimero de particulas presentes, la ecuacién de Schrodinger
no puede ser resuelta ni siquiera por métodos numéricos. Por tanto, resulta 1til considerar aproximaciones
a la ecuacién de Schrodinger. En particular, existen muchos modelos que consideran un comportamiento
clasico de algunas de las particulas, normalmente los niicleos. El Capitulo 5 resume las propiedades estos
modelos moleculares, y en particular del conocido como modelo de Ehrenfest. Es posible llevar a cabo
una descripcién geométrica de este modelo, basandose en las descripciones de los subsistemas clasico y
cuantico. Como resultado, las ecuaciones del modelo pueden escribirse como ecuaciones hamiltonianas
en una variedad de Poisson. A partir de estas propiedades, la tesis presenta una generalizacién del



modelo de Ehrenfest a distribuciones estadisticas. Este es un paso importante, ya que se demuestra que
esta descripcién estadistica predice la aparicién de efectos relacionados con el fenémeno de decoherencia,
algo que no ocurre en el modelo de Ehrenfest estandar. Se han realizado simulaciones numéricas, cuyos
resultados respaldan la descripcién de sistemas moleculares mediante el modelo estadistico de Ehrenfest.
Por 1ultimo, en este contexto resulta posible considerar distribuciones estadisticas con temperatura. La
tesis presenta estas distribuciones y analiza su limite termodindmico.

Las siguientes publicaciones son el resultado de investigaciones presentadas en esta tesis:

e J. L. Alonso, P. Bruscolini, A. Castro, J. Clemente-Gallardo, J. C. Cuchi, and J. A. Jover-Galtier.
Ehrenfest statistical dynamics in chemistry without potential energy surfaces: Decoherence-like
effects. Pendiente de publicacién.

e J. L. Alonso, J. Clemente-Gallardo, J. C. Cuchi, D. Greurciab—Alvaulrez7 and J. A. Jover-Galtier. Ex-
tensivity of the Hybrid Canonical Ensemble (HCE) in the thermodynamic limit. Pendiente de
publicacion.

e J. L. Alonso, J. Clemente-Gallardo, P. Echenique-Robba, and J. A. Jover-Galtier. Comment on
“Correlated electron-nuclear dynamics: Exact factorization of the molecular wavefunction” [J.
Chem. Phys. 137, 22A530 (2012)]. J. Chem. Phys., 139(8):087101, 2013.

e J. F. Carinena, J. Clemente-Gallardo, J. A. Jover-Galtier, and J. de Lucas. Lie systems and
Schrodinger equations. Preimpresion, arXiv:1611.05630, 2016

e J. F. Carinena, J. Clemente-Gallardo, J. A. Jover-Galtier, and G. Marmo. Tangent bundle geometry
from dynamics: application to the Kepler problem. Int. J. Geom. Methods Mod. Phys., 14:1750047,
2017.

e J. F. Carinena, J. Clemente-Gallardo, J. A. Jover-Galtier, and G. Marmo. Tensorial dynamics on
the space of quantum states. Pendiente de publicacion.

e J. A. Jover-Galtier, M. Ku$, and J. de Lucas. Characterisation of limit manifolds for Markovian
evolution of open quantum system. En preparacién.

e J. A. Jover-Galtier, M. Ku$, and J. de Lucas. Inner derivations of Jordan algebras and their
connection with Lie structures. En preparacién.
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la beca FPU13/01587 del Ministerio de Educacién, Ciencia y Deporte.
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Preface

Quantum Mechanics has been one of the most relevant physical theories for more than a century. It is
a theory that describes the behaviour of the constituent particles of matter: atoms, electrons, photons,
etc. It has applications in a huge variety of fields: Solid State Physics, Electronics, Optics... Because of
this, Quantum Mechanics plays a centre role in modern Physics.

Development of Quantum Mechanics started in the year 1900 by Max Planck. In his seminal works
[220,221], Planck offered an original solution to the problem of the black body radiation. He suggested
that energy was not emitted in a continuous way, but in small discrete quantities. In the following years,
many physicists extended this new theory to a large number of situations. Among them was Albert
Einstein, who gave a satisfactory explanation for the photoelectric effect [119] by proposing that energy
was also absorbed and transmitted in discrete quantities. Quantum theory allowed for the development
of atomic models, such as Niels Bohr’s model. Many other physicists contributed to the establishment of
the new theory as a fundamental description of the behaviour of matter.

A rigorous description of the theory as a whole, however, was yet to be achieved. In the 1920’s,
Werner Heisenberg [152], in close work with Max Born and Pascual Jordan [51,53], derived a formulation
of the quantum theory known as ‘matrix mechanics’. This description dealt directly with observables
as the fundamental elements of the theory. A similar formulation was independently achieved by Paul
Dirac [109]. At the same time, Erwin Schrodinger proposed a description of quantum systems in terms
of wave functions [102,237], mathematical objects reproducing the probabilistic nature of Quantum
Mechanics that had been observed in experiments. It was proved a few years later that both approaches
are equivalent [267].

Schrédinger and Heisenberg’s ideas were further developed by them and other physicists, such as
Paul Dirac [111], John von Neumann [267], Paul Ehrenfest [1 18], Louis de Broglie, Wolfgang Pauli and
many others. Quantum Mechanics has since evolved and expanded. Nowadays, Quantum Mechanics is
probably the most relevant and prolific theory in the development of Physics.

A full characterisation of a mechanical system requires the description of its dynamics. In the realm
of Classical Mechanics, Newton’s laws marked a milestone in the development of Physics, as they offered
the first rigorous description of the nature of dynamics of classical systems. In the early years of the 20th
century, a similar description of quantum systems was pursued. In terms of wave functions, the evolution
of isolated systems is governed by the Schrodinger equation:

o d
ih = H.

This differential equation determines the dynamics of an isolated quantum system, where H, the Hamil-
tonian operator, represents the energy observable of the system. A system is called isolated, or closed,
if it does not interchange information or energy with its environment. This definition is obviously an
idealisation. No physical system is truly isolated, except for the whole Universe (or so we assume). In
practice, many systems are ‘isolated enough’ so that the Schrodinger equation describes accurately their
evolution. When the action of the environment on the system cannot be neglected, however, new models
are needed.

A system is called open if it is not closed, i.e. if it interacts with its environment. This environment
may take any form, from a single electron to a set of molecular nuclei or a large measurement equipment.

xvii
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The interaction may also appear in different ways. For example, the decay of quantum systems can
be modelled by considering the interchange of energy between the system and its surroundings. Open
quantum systems also appear in the study of composite systems. The subsystems of a composite, ideally
isolated quantum system are not in general themselves isolated, as they typically interact with each
other. A particular example of this case occurs in relation with the measurement process in Quantum
Mechanics. The coupling of a quantum system with a much larger system, the measurement equipment,
is expected to have a huge influence in its evolution. The Schrédiner picture reflects this interaction
as an instantaneous, non-deterministic change in the state of the quantum system. The implications of
this probabilistic behaviour of the Quantum Mechanics and the difficulties for its correct description are
commonly known as the ‘measurement problem’. An analysis of this situation in terms of open quantum
systems is possible, and it sheds some light on the behaviour and properties of Quantum Mechanics, as
proposed by authors such as Zeh [278] and Zurek [280,281].

The approaches taken to study the dynamics of open quantum systems vary widely. Chemical physics
[199,215], quantum optics [37,88,103,223] or condensed matter physics [47, 188,272] are some of the
many relevant fields on which open quantum systems have a great relevance. It is also possible to
consider a more mathematical framework [214,226], usually from the point of view of statistical physics.
In this setting, it deserves specific mention the works by Lindblad [191] and Gorini, Kossakowski and
Sudarshan [139], concerning the characterisation of Markovian evolution of open quantum systems. In
a broad sense, a system is said to follow a Markovian evolution if ‘it has no memory’. In other words,
the dynamics at any time is determined only by the state of the system (and maybe of the environment)
at such time, and it does not depend in any way on previous states. In the aforementioned works, the
particular first order differential equation governing such an equation was found. For a finite-dimensional
quantum system of dimension n, the generic expression of the Kossakowski-Lindblad equation is

2
d o "= S
o=t X (viav - 50via e aviv). 1)
j=1
where p is the density matrix of the system, and with H, Vi, ..., V,2_; traceless complex n x n matrices.

The determination of these matrices for particular problems is thus enough in order to determine the
dynamics of the system.

As in the case of the Kossakowski-Lindblad equation, open quantum systems are generally described
in terms of density matrices. Such an approach follows from the usual algebraic description of Quantum
Mechanics, in particular of the Schrédinger picture [102]. Thus, pure states of a quantum system are
represented by elements in a complex Hilbert space, and observables and density matrices are self-adjoint
operators acting on it. This algebraic setting fits in well with the properties of Quantum Mechanics;
for example, the superposition principle of quantum systems can be easily understood by the properties
Hilbert spaces. However, a geometric approach to Quantum Mechanics is more useful in many situations,
such as the cases in which an open quantum system interacts with a classical environment.

In order to understand the limitations of the algebraic approach, consider a situation in which an
open quantum system is interacting with a much larger environment. This situation is very common.
For example, molecular dynamics typically studies the evolution of electrons as an open quantum system
interacting with the nuclei. A similar approach is also taken in the analysis of the measurement problem
presented above. In all these cases, tue description of the dynamics of the open quantum system strongly
depends on the characterisation of this environment. It is common in these situation to describe the
evolution of the environment by Classical Mechanics. Formal and practical problems arise here, as two
entities, with dynamics expressed in different languages, have to be merged. This is one of the main
motivations for the development of a different formalism for Quantum Mechanics, a new one that can
easily be combined with the description of classical dynamics.

As taught in Physics courses, many different descriptions of Classical Mechanics exist. Among them,
the geometric formalism enjoys many features that can be adapted to the quantum realm, and even shed
new light on the properties of quantum systems. The second half of the 20th century was the starting
point in the development of physical models based on the notions of differentiable geometry. The works
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and textbooks by Abraham and Marsden [3], Arnold [28], Smale [244,2415], Souriau [246] and many others
authors contributed to its development. The main features of this formalism are the following. The phase
space of a classical system is identified with a differentiable manifold, whose symplectic structure has a
direct relation with dynamics. Typically, this manifold is either the tangent bundle (in the Lagrangian
formalism) or the cotangent bundle (in the Hamiltonian one) of the configuration space. Both approaches
are related by a fibre-wise Legendre transform. The cotangent bundle is naturally equipped with a
symplectic form; integral curves of Hamiltonian vector fields with respect to this form are precisely
the trajectories that classical systems obey. Thus, the geometric formalism offers a rich setting with
many objects and features that can be easily extended and adapted to different situations. See any of

the aforementioned references, especially the textbook by Abraham and Marsden [3], and the one by
Carinena, Ibort, Marmo and Morandi [31].

A geometric description of Quantum Mechanics was first proposed by Strocchi [251] and Kibble [176],
aiming to obtain a similar description of quantum systems to that obtained for Classical Mechanics. It was
developed by authors such as Cantoni [65-69], Cirelli and co-workers [94,95], and others [22,23,30,42,45,

,154,247]. Recent works on the topic can be found in the works by Aniello, Asorey, Carinena, Clemente-
Gallardo, Marmo and co-workers, the author among them [8,26,27,31,57,70,72-74,81,97-101,122]. Most

of these works focused on a geometric description of the Schrodinger picture. Any linear space can be
replaced by an appropriate differentiable manifold. In the case of complex Hilbert spaces, the additional
structures are represented in terms of tensor fields on the manifold with precise characteristics. As a
result, it is possible to describe a quantum system by means of a Kahler manifold, whose structure
encodes all the required features. Observables on the Hilbert space are represented by real functions on
this manifold. The corresponding algebraic structures, such as the commutator or the anticommutator
can be implemented on the set of these functions by means of the symplectic and symmetric structures
of the Kéhler structure.

Similarities between geometric formalisms of Classical and Quantum Mechanics are already visible.
Kahler manifolds are just symplectic manifolds with additional structures. Thus, from the perspective of
open quantum systems, composition of a classical system and a quantum one is not harder to describe
that that of two classical systems. Many other features of both theories can be related in the same
way. Unitary evolution of quantum systems, which was described by the Schrédinger equation in the
algebraic setting, is now governed by a Hamiltonian vector fields with respect to the natural symplectic
form on the Kéhler manifold, as in the classical case. Differences can also appreciated at this level. The
additional structures present in the case of quantum systems are in direct relation with features such as
the non-commutativity of quantum observables. Summing up, geometric tools prove to be very useful in
the characterisation of quantum dynamics and its comparison with classical systems.

This geometric description of Quantum Mechanics can be extended to the analysis of open quantum
systems. This is the main topic of this dissertation. Open quantum systems require a more general
setting than the one offered by the Schrodinger picture. In fact, the approach of the Heisenberg picture
offers a better description in this case. According to this picture, pure and mixed states of quantum
systems are represented by real positive normalised linear functionals on the C*-algebra of quantum
observables of the system. The linear space of functionals on a C*-algebra also enjoys some nice geometric
characteristics [141,142]. With an appropriate description, it is possible to reduce the geometric structures
to the set of quantum states of the system [72]. As a result, a new description of pure and mixed
states is obtained. Geometric tools can thus be applied to the description of open quantum systems.
Among the many applications of this formalisms is the analysis of Markovian evolution of open quantum
systems. The 'no memory’ property of this evolution makes possible to describe it in terms of a first-
order differential equation, namely the Kossakowski-Lindblad equation. As a consequence, Markovian
evolution can easily be implemented in the geometric formalism. Many examples can be analysed, such
as decaying of quantum systems and decoherence models in molecular dynamics.

This dissertation is organised as follows. Chapter 1 is intended to be a review of the the geometric
description of the Schrodinger picture of Quantum Mechanics. Most of the results presented here are
derived from the aforementioned works. Some new approches are also presented, in particular in rela-
tion with the precise description of the projection onto the manifold of pure states of the system and
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the reduction of the algebraic structures. Along the dissertation, knowledge of differential geometry is
assumed. Unless otherwise stated, the terminology and conventions here used are those in the book by
Crampin and Pirani [104]. Other interesting works on the topic are the books by Boothby [50], Kobayashi
and Nozumi [177], and Nakahara [212]. Regarding the geometric approach, the main reference for this
chapter is the book by Carifiena, Ibort, Marmo and Morandi [31], which presents the fundamentals of the
geometric description of physical systems. Such a description makes possible to characterise quantum
dynamics by means of geometric tools. This is the case of Lie systems, a powerful technique for the
resolution of differential equations. Thus, Chapter 2 presents the analysis of the Schrédinger equation in
terms of Lie systems, as developed in a recent paper by Carinena, Clemente-Gallardo, de Lucas and the
author [70].

Following chapters extend the geometric formalism to the description of open quantum systems. In
Chapter 3 starts with a review of the algebraic properties of the Heisenberg picture and its geometric rep-
resentation on the linear space of functionals on a C*-algebra [141,142]. This motivates the presentation
of two of the main contributions of the dissertation. Firstly, a characterisation of Lie-Jordan algebras is
offered, based in the research carried out in joint work with Ku$ and de Lucas [169]. And secondly, a
detailed geometric formulation of the properties of the set of pure and mixed states of a quantum system
is offered, extending the work presented in a paper by Carinena, Clemente-Gallardo, Marmo and the
author [72]. The characteristics of open quantum systems are thus described in geometrical terms, and
the implications of the results thus obtained are discussed. The remaining chapters of the dissertation
present the application of the developed formaism to different situations. Chapter 4 offers a geometric
characterisation of Markovian evolution and the Kossakowski-Lindblad dynamics [72,169]. Its application
to several physical situations is presented. Also in this context, the relevance of geometric control theory
is discussed. Finally, Chapter 5 deals with the description of hybrid classical-quantum models in the
context of molecular dynamics [3]. In particular, the Ehrenfest model is studied in detail, and numerical
results are offered in order to illustrate the formalism.
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Chapter 1

Geometric formulation of the
Schrodinger picture

Quantum Mechanics has been one of the most relevant physical theories for more than a century. It is
a theory concerned with the behaviour of the constituent particles of matter: atoms, electrons, photons,
etc. Nowadays, Quantum Mechanics is probably the most relevant and prolific theory in the development
of Physics.

Standard descriptions of Quantum Mechanics are based on an algebraic characterisation of the prop-
erties of systems. The Schrodinger picture, for example, represents pure states of the system by element
in a complex and separable Hilbert space. By contrast, the Heisenberg picture focuses on the charac-
terisation of observables as elements in a C*-algebra. Other descriptions of Quantum Mechanics exists,
which different properties and applications. And in particular, a geometric characterisation of the theory
is possible. The present chapter stablish the ground for the rest of the dissertation by presenting the
geometric description of the Schrédinger picture of Quantum Mechanics.

The geometric description of physical theories has been studied for the last 50 years. It has his roots
in the works by Arnold [28], Smale [2141,245] and Souriau [216]. As a result, a geometric description
of Classical Mechanics was developed with very satisfactory results. See the textbook by Abraham and
Marsden [3] to grasp the importance of geometric calculus in mechanical problems, and also more recent
works [71,81].

Following this spirit, a description of Quantum Mechanics based on differential geometry was proposed
by Strocchi [251] and Kibble [176]. The properties of the Schrodinger picture were described in terms of
geometric objects on a differentiable manifold. This first geometric approach to pure quantum systems is
the topic of this first chapter, which will be addressed after a brief summary of the standard Schrodinger
picture of Quantum Mechanics and its relation to the probabilistic nature of the theory.

The chapter is organised as follows. Section 1.1 offers a short summary of the Schrédinger picture of
Quantum Mechanics and its properties. All its elements can be reproduced in geometric terms, as done in
Section 1.2. A geometric approach allows to describe in similar terms the set of pure states of a quantum
system, which has the structure of a projective Hilbert space. Section 1.3 describes a characterisation of
this set. Finally, in Section 1.4, all the concepts are exemplified by their application to the study of a
simple system.

1.1 The Schrodinger picture of Quantum Mechanics

This section presents a short summary of the main properties of Schrodinger picture. In its standard
formulation, Schrédinger picture associates a Hilbert space H to each physical system. Each vector on H,
excluding the zero vector, represents a state of the system. The relation between vectors and states is not
however unique (see Section 1.1.6). Observables of the quantum system are identified with essentially self-



2 CHAPTER 1. GEOMETRIC FORMULATION OF THE SCHRODINGER PICTURE

adjoint operators acting on H. The possible results of the measurement of an observable are the values of
the spectrum of its associated operator. This leads, in the case of operators with only discrete spectrum,
to the expected quantisation of the measurements. The probability of obtaining each possible value is
determined by the decomposition of vectors in the basis of eigenvalues of the operator. For a complete
description of Quantum Mechanics, see any of many remarkable works on the topic [$1,102,143,230,243].

1.1.1 Hilbert spaces and the Dirac notation

As a starting point, some mathematical structures are defined. These are the main tools describing the
Schrédinger picture. Regarding dimensionality, Schrédinger picture is valid for systems of finite and
infinite dimension. In the later case, however, many properties have to be more carefully proved. The
definitions and properties are presented in a language valid for both cases. More information on the
properties and theorems of Linear Algebra can be found in specialised works [148, ,174,186].

Definition 1.1. An inner product on a vector space V over a field K (either R or C) is a function
(-|): V xV = K satisfying the following three azioms:

1. It is symmetric (for K =R) or conjugate symmetric (for K = C),
(zly) = (ylz) f C=R or (z|ly)=(ylz)" f K=C, Vz,yeW (1.1)

2. It is linear on its second argument,

(xlay + bz) = alz|y) + b{z|z), Vz,y,z€V, Va,bek. (1.2)

3. It is non-degenerate and positive-definite
(x|lz) >0,Vx eV and (z|lz)=0=2=0. (1.3)
Inner products on complex vector spaces are known as Hermitian products. The pair (V, (-|-)) is called an
inner product space over K.

Observe that, due to the definition, the inner product over a real vector space is linear also on its first
argument, i.e. it is bilinear. This is not true, however, for Hermitian products, as scalar factors have to
be conjugated: (ax|y) = a*(z|y). Such products are sometimes called sesquilinear.

Proposition 1.2. Any inner product space is a normed space with respect to the norm defined as
lz]| :== /{z|z), zeV. (1.4)
The norm in V naturally defines a distance function d(z,y) = ||z — y||, with z,y € V.
Proposition 1.3 (Schwarz inequality). Consider an inner product space (V, (:|-)) over the field K. Then,
ely)] < llzlllyll, Va,y € V. (1.5)
The equality holds if and only if x = Ay for some X € K — {0}, or if either x =0 or y = 0.

Proof. For x = 0 and y = 0, Schwarz inequality is trivially satisfied. Consider the case x # 0,y # 0.
Then, for any A € K,
lz = Ayll? = (& = Ayle — Ay) = [l2]* = Mzly) — A(ylz) + AP ]ly]>.

Because of axiom (1.3), this norm is non-negative for any A\ € K. In particular, taking A = (y|z)||y| =2,
Schwarz inequality is obtained:

[(z]y)[*
lyl]?

Equality holds only if ||z — Ay||? = 0, which by (1.3) implies that z — Ay = 0, thus completing the

proof. O

lz = Ayl = 0= [lz]* — > 0= [lll*lly* = [{zly)]*. (1.6)
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Definition 1.4. A Hilbert space (H, (:|-)) over a field K (either R or C) is an inner product space over
IC which is complete with respect to the topology defined by the norm on H induced by the inner product.

In the following, if the inner product of a Hilbert space is understood, the Hilbert space is simply
denoted H.

Definition 1.5. Consider a linear space V' over a field K. The algebraic dual space of V' is defined as the
linear space V* of K-linear functions o : V. — K. If V is a topological linear space, then the topological
dual space of V is the linear space V' of continuous K-linear functions o : V — K.

The difference between algebraic and topological dual spaces is relevant for infinite-dimensional linear
spaces. Continuous functionals on a topological linear space V are necessarily bounded [148]. Thus, the
topological dual space V' is the subspace of bounded elements in V*. If V is finite-dimensional, any
K-linear function on V is bounded, thus V* = V. For this reason, in the following no difference is made
between topological and algebraic dual spaces of finite-dimensional linear spaces; they will be denoted by
V* and simply called dual spaces.

Theorem 1.6 (Riesz representation theorem [148]). Let H be a Hilbert space over K. For any x € H, let
oy € H* be the linear functional defined as o, (y) = (x|y), with y € H. Then, a, is bounded with norm
|zl = ||z||, and therefore continuous. The application « : x € H — a, € H* is a bijection between H
and the topological dual space H'.

Observe that, as a result of the last assertion, if H is finite dimensional, the dual space is unique and
« is a bijection between ‘H and H*. The Riesz representation theorem fully characterises all the bounded
linear functionals on Hilbert spaces.

The case of infinite-dimensional Hilbert spaces requires a careful description of operators. Several
mathematical difficulties have to be faced, as many physically relevant operators are not bounded, which
leads to continuity and domain problems. However, the geometric approach that is considered along the
dissertation is only useful in its present form in the case of finite dimensional systems. For this reason,
the description of operators on infinite-dimensional Hilbert spaces is skipped. The mathematical tools
needed for the description of infinite-dimensional quantum systems can be found, for example, in the
course by Moretti [207] or in the book by Hunter and Nachtergeale [157].

Definition 1.7. Consider a K-linear operator A : H — H, with H a finite-dimensional Hilbert space
over the field KC. The adjoint operator of A is the linear operator AT : H — H satisfying

(x|Ay) = (ATzly), Va,yeH. (1.7)
A linear operator A : H — H is said to be self-adjoint if A = Af.

The infinite-dimensional case requires a formally identical definition, with the necessary consideration
of the definition domain of operators. In the case of bounded operators, the domain can be considered
as the whole Hilbert space, and the definition of adjoint operators is identical to the finite-dimensional
case.

Regarding spectra of operators, the infinite-dimensional case also presents the need for a careful
description. It is necessary to distinguish between discrete, continuous and residual spectra [157]. Thus,
once again only the finite dimensional case is presented. The following theorem gives information on the
properties of the eigenvalues and eigenvectors of operators.

Theorem 1.8 (Finite-dimensional spectral theorem [150]). Let H be a finite-dimensional complex Hilbert
space. Any self-adjoint operator A : H — H is diagonalizable, with every eigenvalue being a real number.
Any two eigenvectors of A with different eigenvalue are orthogonal. Thus, it is possible to obtain an
orthogonal basis of H composed by eigenvectors of A.

The formulation of the Schrodinger picture of Quantum Mechanics is based on the concepts presented
here. Pure states of quantum system are represented by vectors in complex Hilbert spaces. Thus, this
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will be the focus of the present section. In the following, if not otherwise specified, H denotes a complex
Hilbert space and (:|-) : H x H — C the inner product in H. The algebraic dual space of H is denoted
as ‘H*; following the above comments, if H is finite-dimensional, then H* is simply called the dual space
of H.

It is common in Quantum Mechanics to use the so-called ‘Dirac notation’ or ‘bra-ket notation’ for
elements in H and in the topological dual space H’. This notation is based on the Riesz representation
theorem 1.6, as it relates both spaces in terms of the Hermitian product. It can be, however, formally
misleading, hence the next paragraphs present the necessary definitions.

Elements in the Hilbert space are denoted by ‘kets’ as |[¢)) € H. The notation of the inner product of
any two elements [1), |¢) € H is simplified as

(@) = (I)|10)). (18)

This notation allows to simplify the concept presented by Riesz representation theorem. Given a vector
|¢) € H, it is possible to write the linear functional « 4 associated to it as a ‘bra’ (¢| € H'. By making
use of the notation for the Hermitian product, the action of (¢| on H is denoted by juxtaposition:

(0= gy = 0I(10)) = ap) (1)) = (0l),  [4),]6) € H. (1.9)
The action of a linear operator A : H — H is usually written as

Alp) = A(ly)),  |¥) € H. (1.10)

This notation resembles multiplication of matrices and vectors. If H is finite-dimensional, with complex
dimension n, then by choosing a basis it is possible to associate to |¢) a column vector in C™. In a similar
way, the linear operator A is represented by an n x n matrix with complex entries, and Aly) can be
computed by usual matrix multiplication. Following with this analogy, the ‘bra’ (¢| is represented by a
row vector, and (¢|¢) is obtained as the matrix product of a row vector and a column vector.

Other simplifications are introduced in the notation. For example, sums of vectors and multiplications
by scalars on H can sometimes be written as follows:

[ +@)=1[)+1¢), )= Ay, ), ]d) eH, reC. (1.11)

The norm in  is simply written as [[¢|| := ||[)||, for any [1)) € H. Observe that the norm of elements
in H’ is the same as their corresponding element in A by Theorem 1.6, thus it is consistent to write
Jll = ([0 | for any “bra (] € "

The mathematical tools sketched here are the basic ingredients for a formal description of Quantum
Mechanics. They are the necessary ingredient for an appropriate identification of the properties of
quantum systems, presented in the following sections.

1.1.2 The postulates of Quantum Mechanics

The Schrodinger picture of Quantum Mechanics describes the properties of quantum systems in terms of
complex Hilbert spaces and their characteristics. The prominent textbook by Cohen-Tannoudji et al. [102]
presents in a clear and systematic way the postulates of Quantum Mechanic that formally describe this
relation between Hilbert spaces and quantum systems. Such postulates are reproduced here; refer to
pages 215 and following of Cohen-Tannoudji’s first volume for a more detailed presentation.

POSTULATE 1. The state of a quantum system at a fixed time is defined by specifying a vector in a
complex separable Hilbert space H.

A quantum system is said to be finite-dimensional if its associated Hilbert space is of finite dimension.
Evidently, a quantum system is said to be infinite-dimensional if its associated Hilbert space is separable
and infinite-dimensional.
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POSTULATE 2. An observable, i.e. a measurable quantity on the system, is represented by an essen-
tially self-adjoint operator on H.

This postulate is also valid for infinite-dimensional systems [207]. Operators associated to physical
quantities in infinite-dimensional systems are not, however, necessarily bounded. Such is the case, for
example, of the energy of a quantum oscillator or of the hydrogen atom. Non-boundedness of physical
observables leads to many mathematical difficulties.

In the following, the name ‘observable’ denotes both measurable quantities and self-adjoint operators
associated to them. Recall that, due to the spectral theorem 1.8, the spectrum spec(A) of an essentially
self-adjoint operator A is always a set of real numbers. This feature is fundamental in the following
statement.

POSTULATE 3. The possible results of the measurement of an observable of a quantum system are
the elements in its spectrum.

POSTULATE 4 (Finite-dimensional systems). Consider a finite-dimensional quantum system. If an
observable A with spectrum, spec(A) = {a1,aq, ...} is measured when the system is in a state represented
by |v) € H, the result of the measurement is a € spec(A) with probability.

dg

( ekW}
: 1.12
D=2 o) (12
where d, is the degeneracy of the eigenvalue a and {|ef),|e3),...,|e§ )} is an orthonormal basis of the

corresponding eigenspace.

The postulate for infinite-dimensional systems is formally similar. It is necessary to distinguish
between discrete and continuum spectra of self-adjoint operators. See references [102,207] for a description
of the measurement process in the infinite-dimensional case.

It is an empirical fact that, when a measure is carried on a quantum system, its state changes. This
is a non-deterministic change that depends on the outcome of the measurement process. This behaviour
of quantum states is described by the following postulate.

POSTULATE 5. Let a € spec(A) be the result of the measurement of an observable A when the system
is in a state represented by |) € H. Immediately after the measurement process, the state of the system
collapses onto the state represented by the vector

|1/}a> :Pa|w>7 (113)

where P, is the orthogonal projector onto the eigenspace of a. If the system is finite-dimensional, then

= ey et (1.14)

k=1

POSTULATE 6. The evolution of a quantum system between two measurements is governed by the
Schrddinger equation:

d
ih—[0(2)) = H|y(t), (1.15)

where H (t) is called the Hamiltonian operator and is the observable representing the energy of the quantum
system.

These postulates are the canonical starting point of the description of Quantum Mechanics. It should
be noticed that they provide a suitable mathematical description for the main elements of a theory.
Namely, postulates determine which objects represent the state of the system and the quantities that
can be measured, how the measurement process is implemented and how the system evolves. The
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interpretation of the physical meaning of the postulates has been object of deep studies and debates
among physicists since the conception of Quantum Mechanics.

Observe that, as a consequence of Postulate 1, there exists a superposition principle on H and it is
possible to consider linear superpositions of states. This is a purely quantum phenomenon that reflects the
wave-particle duality found in experiments [102]. Its interpretation is in deep connection with statement
of Postulate 4. This postulate determines in a mathematical way the probabilistic nature that is intrinsic
to quantum systems. According to it, it is impossible to know in advance the result of any measurement
in any state, even if the state is completely determined. The probabilistic nature of Quantum Mechanics
is one of the most important aspects of the theory, and represents a qualitative difference with Classical
Mechanics, a fully deterministic theory.

Postulate 5 describes the change in the state of a quantum system after the measure of an observable.
This change is immediate and is also an important element in the description of quantum probability.
The correct interpretation of this behaviour, usually known as the ‘measurement problem’, is an open
debate in Quantum Mechanics [163,234,274,278]. Several interpretations to this phenomenon have been
proposed, from the existence of hidden variables [48,49,116] to the many-world interpretation [125,126].
One of the most successful proposals is based in the concept of quantum decoherence [164, , ,

, 278,280, 281]. The measurement problem will be discussed again when dealing with the geometric
description of decoherence of quantum systems.

1.1.3 The observables of quantum systems

As stated by Postulate 2, observable quantities are represented by essentially self-adjoint operators on
Hilbert spaces. It is important to properly describe the properties of the set O of observables. In finite-
dimensional systems, the concepts of self-adjoint and Hermitian operators are equivalent. Thus, for these
systems, the set of observables is O = Herm(H).

Observables of quantum systems are the main object of the Heisenberg picture of Quantum Mechan-
ics. Thus, it is natural that the algebraic properties of observables were first studied by their main
contributors. Pascal Jordan indeed proposed a new type of algebraic structure [165, 166] in order to
understand the properties of observables in a formal and abstract way. In the following deacdes, many
works have dealt with the study of Jordan algebras [160-162,192,200-202,248]. Jordan algebras will be
presented in detail in Chapter 3 when discussing Heisenberg picture. For now, let us simply present the
needed definitions to understand the algebraic structure of the set of quantum observables.

Definition 1.9. An algebra (A, *) over a field K is a pair where V' is a linear space over K equipped with
a bilinear product *, i.e. with an inner composition rule satisfying the following relations:

Az+py)*z = Naxz)+uly*xz), zxAy+pz)=Naxy)+p(zxz), Vr,y,z€ A, VA peKk. (1.16)

The algebra is called associative or commutative if the product % is associative or commutative, respec-
tively.

Several examples of associative algebras appear along this dissertation. Smooth functions on a man-
ifold M form an associative and commutative algebra C*° (M) with respect to the point-wise product
fg of functions, defined as (fg)(z) = f(x)g(z). C*-algebras, and in particular linear operators on finite-
dimensional linear spaces, are also associative algebra. Other types of algebras can be obtained by
assuming different axioms on the bilinear product. Lie and Jordan algebras, which play a key role in the
description of Quantum Mechanics, are defined next.

Definition 1.10. A Lie algebra (A, [-,-,]) over the field K (either R or C) is an algebra over K whose
bilinear product [[-,-,], called the Lie bracket of the algebra, is skew-symmetric and satisfies Jacobi identity:

[z,y] = ~[y, =], [z, [y, 21] + [, [2,2]] + [2, [z, 9]] = 0, Vz,y,z € A. (1.17)
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Definition 1.11. A linear Jordan algebra (A, odot) over the field K (either R or C) is an algebra over
IKC whose associative product, called the Jordan product of the algebra, is symmetric and satisfies Jordan
identity:

rQy=yoz, @0y o(@xozr)=26Hyo(zex)), VabeA (1.18)

A linear Jordan algebra is called unital if there exists an element 1 € A, called the unit element, such
that t © 1 =z for any z € A.

Different algebraic structures can be defined on a same linear space. If they satisfy some compatibility
conditions, then a new structure is obtained. This is the case of Lie-Jordan algebras, in which compatible
Lie bracket and Jordan product exist on the same linear space.

Definition 1.12. A triple (A, [-,-],®) is called a Lie-Jordan algebra over the field IC (either R or C) if
(A, -, ]) is a Lie algebra over IC, (A, ®) is a linear Jordan algebra over IC and the following compatibility
relations between the Lie bracket and the Jordan product are satisfied:

[t,y©z] =[x,y ©0z+y O [z,z], (@OY)Cz—z0 (y©z)=A[=zz2],y], VYz,yzeA (1.19)

with A a positive real number. A Lie-Jordan algebra is called unital if there exists a unit element for the
Jordan product

If (A, [, -], ®) is a unital Lie-Jordan algebra, then the unit element commutes with any other element,
i.e. [x,1] =0 for any « € A. This can be proved by taking y = z = 1 in the first compatibility relation
in (1.19).

Proposition 1.13. The triple (O, [-,-],®), with O = Herm(H) being the set of Hermitian operators on
a finite-dimensional complex Hilbert space H, is a unital Lie-Jordan algebra over R with respect to the
products

[A,B] = —i(AB— BA) = —i[A,B], A®@B=AB+ BA, A,Be€O, (1.20)
with [-,-] the usual commutator, [A, Bl = AB — BA, and with 31 as the unit element.

Proof. Products [A, B] and A ® B are by definition inner composition laws of Herm(#). Notice the
factor needed for the first product to be an inner operation. They are respectively skew-symmetric and
symmetric. The required identities are proved to be satisfied by direct computation. For example,

(A®B)® (A® A) = (AB + BA) ® (24%) = 2ABA? + 2A3B + 2BA? + 24’ BA,
A®(BO(A®A) = AG (2BA% 4 24%B) = 2ABA? + 2BA3 + 2A3B + 2A?BA,

which proves that Jordan identity is satisfied. Notice that the second identity in (1.19) is satisfied for
A=1. O

Consider the complexification O¢ of the linear space O, obtained by extending the field of scalars
from R to C. By extending also the Lie bracket and the Jordan product, it is possible to recover the
associative product of operators as

AB:%AG)BJr%[[A,B]], A, B € Oc. (1.21)

The connection between Lie-Jordan algebras and associative algebras will be described in detail in Chapter
3.
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1.1.4 The probabilistic nature of Quantum Mechanics

The probabilistic nature of the measurement can be described mathematically in the concept of expec-
tation values of observables. Even if it is not possible to predict the exact result of a measurement, the
probability of each possible result is known. It is thus possible to define the expectation value of the mea-
surement, which represents the average value that would be obtained on a large ensemble of identically
prepared systems.

Definition 1.14. The expectation value of an observable A on a state of a quantum system described by
|2) € H is the sum of the possible results of its measurement, weighted by their corresponding probabilities:

(¥]Al)
(Y1)

(Ayp= Y pyla)a=

a€spec(A)

(1.22)

Consider an ensemble consisting of a large number of identical quantum systems, all of them in the
same state |¢). The expectation value (A), represents the average value of the measurements of A on
this ensemble [102]. Within a statistical perspective, it is natural to consider also the standard derivation
of A, defined as

AwA = <A2>¢ - <A>3) (123)

Theorem 1.15 (Schrodinger uncertainty relation). The standard derivations of two observables A, B € O
satisfy the following relation:

2

@B 2 (U0 Bl = uB)) + (3AABD) . When (20

Proof. Given a vector |¢)) € H — {0}, consider the observables C = A — (A),I, D = B — (B)yI. It is
immediate to compute that the expectation values of these observables are

(C%)y = (ApA)?, (D?)y = (AyB)*.

Define two new vectors in H as |¢c) = C|¢), |¢p) = D). Schwarz inequality (1.5) can be applied to
these vectors:

loclllénll = éclon)] = ICDIon)] = [3141C © DIv) + 5IIC.DlIw)|.

where relation (1.21) has been used. Taking the square of this equation and dividing by [|¢||* yields the

following relation:
2

2
(0%, = (5eoD)) +(506.0D0) (1.25)
The Lie bracket and Jordan product of C and D are obtained by direct computation:
[C,D] =[A, B], COB=A0B—-2(A)yB—2(B)yA+2(A)y(B)yl.
By substituting these relations on (1.25), Schrodinger inequality is obtained. O

Corollary 1.16 (Robertson uncertainty relation). Any two observables A, B € O of a quantum system
satisfy the following relation:

(AyA)(AyB) = S([A, Bl)y, V) €. (1.26)

N | =
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The implications of these results are some of the main characteristics of quantum systems. There
exists an inherent limitation to the amount of information that can be extracted from quantum systems.
Even if the state of a system is fully determined, arbitrary pairs of observables cannot have both zero
standard deviation at the same state of the system. From an empirical perspective, this property means
that these observables cannot be measured simultaneously with perfect accuracy.

A well-known case corresponds to position and momentum observables of a free quantum particle.
Notice that this is an infinite-dimensional system, with the already mentioned limitation to the algebraic
treatment of observables. Consider a particle moving in a one-dimensional space, and let X and P
be respectively the position and momentum P observables of the particles. The commutator of these
operators is known to be [X, P] = ikl [102]. Thus, the application of the Robertson inequality yields the
following result:

(8 X)(ApP) > 1. (1.27)

This famous inequality is known as the Heisenberg uncertainty principle [153]. The fact that positions
and momenta of quantum particles cannot be determined simultaneously is one of the most important
differences with classical systems.

Expectation values are in fact very important tools in Quantum Mechanics. They are, after all, the
only possible way in which information can be obtained about the state of a quantum system. It is indeed
possible to reformulate Quantum Mechanics in terms of these expectation values, instead of operators.
This formulation is known as the Ehrenfest picture, in honour to Paul Ehrenfest, who first introduced
the idea in his seminal work [118]. The geometric characterisation of Quantum Mechanics, which is the
topic of this dissertation, expands the idea of the Ehrenfest picture [101]. Expectation values are seen as
functions on a differentiable manifold whose points correspond to the vectors of the Hilbert space. The
second part of this chapter deals deeply with this geometric description.

Observe that Quantum Mechanics is an intrinsically probabilistic theory, unlike Classical Mechanics.
Expectation values of observables are required for a correct description of quantum phenomenons even
if the state of the system is completely determined, in other words, if the state is pure. This ‘quantum
probability’ is fundamental in the understanding of this theory. Nevertheless, it is also possible to
introduce statistical ensembles as in Classical Mechanics. In other words, it is possible to consider
probability distributions on the space of pure states. In this case, it is said that the state of the system is
mixed, as it is not completely determined. The study of Statistical Quantum Mechanics is a fascinating
issue, as it mixes classical statistical properties with the intrinsic quantum probability of the theory.
Many relevant works have been devoted to the topic, such as the seminal work by Gleason [136], the
more recent contributions by Moretti and Pastorello [206,208,209], and others [15,61,62,64, 117]. Tt is
not possible, however, to dwell on the details of the topic. A brief review of the topic will be presented
in Section 3.1.5, and its connections with the geometric formalism and hybrid quantum-classical models
wil be discussed in Section 5.3.

1.1.5 The Schrodinger equation

Postulate 6 determines the differential equation that governs the free evolution of autonomous quantum
systems between two measurements. It is however possible to describe quantum evolution in a more
fundamental way, by means of families unitary transformations acting on the Hilbert space [31,230], as
presented in this section.

Consider a quantum system whose state at an initial time ¢, is described by a vector |g) € H. The
states of the system at every time t > tg define a trajectory |¢(¢)) on H, with [1)(tg)) = |1o). It is thus
possible to define the map U (¢, %) : H — H, by

U(t,to)ll/}0> = |’(/J(t)>, t Z to. (128)
Physically, evolution of closed quantum systems preserves both linear superpositions and quantum
probabilities [102]. Therefore, if no measurement has been taken on the system in the interval [tg,t], the

maps U (t,to) are necessarily symmetries of the system, i.e they preserve the linearity and the Hermitian
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product in H. They are unitary operators on H, and thus the evolution (1.28) is called unitary evolution
of quantum systems.
Continuity of the evolution requires two further conditions for these operators:

U(ti,t1) =1, Ul(ta,t1)U(t1,t0) = Ul(ta, to), ta>1t1 > to. (1.29)

Theorem 1.17. Consider a family of unitary operators {U(t,to),t > to} on H such that conditions in
(1.29) hold. They satisfy the following differential equation:

iﬁ%U(t, to) = Ht)U(t, to), (1.30)

with H(t) € O and t > ty.

Proof. For a fixed value of tg, the set {U(¢,tg),t > to} is a one-parameter family on the Lie group U(H)
of unitary operators on H. The differential equation generating the family can be obtained from (1.29)
by taking t5 = t:

d

d
—Ul(t,tg) = | =U(t,t Ulty,t t>1t >ty
dt (7 0) (dt (7 1)) (17 O)a = R 0]

As U(ty,tg) = U(t,t1)"1U(t, to), the following relation holds for all possible values of t; and tg:

(iU(t,to)) Ult,to)! = <§tU(t,t1)> Uit 4]

Thus, both sides of the equation depend only on t. As U(#H) is a Lie group, this is precisely the expression
of an element in the tangent space to U(to,to) = I, therefore in the Lie algebra of the unitary group.
This is the algebra of skew-Hermitian operators on . Hence, it is possible to rewrite this expression as

d
((uU(t,to)) Ult,to) ' = =ik YH(t), t>to, (1.31)
with H(t) an Hermitian operator on H. O

Proposition 1.18. Take a trajectory |1 (t)) on H starting at a vector |1g) = |1(t)). If the trajectory is
determined by a family of time-evolution operators as in (1.28) such that conditions (1.29) hold, then the
differential equation of the trajectory is the time-dependent Schrodinger equation

. d
ih () = HOWD). (1.52)
Proof. Derivation of (1.28), together with (1.30), yields as a result the proposed equation. O

Observe that the resulting equation is more general than the time-independent Schrodinger equation
proposed in Postulate 6. By considering the unitary operators defining the evolution, it is possible
to describe also non-autonomous quantum systems. Therefore, the approach presented here is more
general and with a broader range of applications. Chapter 2, in particular, deals with the analysis of
time-dependent Schrodinger equations from the point of view of Lie systems.

1.1.6 The projective Hilbert spaces

Up to this point, Quantum Mechanics has been described in terms of linear algebra, yielding important
results. However, from an empirical point of view, there exists some ambiguity in the description of
states in terms of vectors in H. The measurable aspects of Quantum Mechanics, namely the probabilities
of measurements presented in (1.12) and the expectation values of observables (1.22), suffer from this
ambiguity. Therefore, if the theory is assumed to characterise mathematically the empirical properties
of quantum systems, this aspect has to been taken into account.
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Proposition 1.19. Consider two non-zero vectors ), |¢') € H. Expectation values at both states are
equal for any observable if and only if the vectors are proportional:

<A>¢ = <A>¢/, VAe O < W)) = C|’(/J/>, ceC— {O} (133)

Proof. If the vectors are proportional, then (1.22) shows that expectation values of observables are always
equal. Assume now that (A), = (A), is satisfied for any A € O. In particular, consider the equality for
the projector onto the subspace generated by [¢):

) (] (W) @l 201112 "2
A= =1= = = . 1.34
= 1= A R = W1 = [l (134
By Schwarz inequality (1.5), both vectors are proportional. O

A proper description of this feature requires the definition of an equivalence relation between vectors
in H — {0}. From a purely empirical perspective, states are described not by vectors in H, but rather
by equivalence classes in H — {0}. In other words, the set of states is the quotient space defined by
this equivalence relation. In the case of Hilbert spaces, this particular equivalence relation define the
corresponding projective spaces. Refer to the books by Halmos [150], Nakahara [212] and other similar
works for descriptions of equivalence classes, quotient spaces and projective spaces.

Definition 1.20. Two vectors ), |¢)') € H — {0} are said to be related, |¢) ~ |¢'), if there exists a
non-zero complex number ¢ such that |¢) = c|y’).

Proposition 1.21. The relation ~ is an equivalence relation in H — {0}.
Proof. This assertion is immediately proved, as the relation is reflexive, symmetric and transitive. O

Definition 1.22. The projective Hilbert space P is the quotient space defined by the equivalence relation
in Definition 1.20, P = Hq/ ~.

Hence the states of a quantum system are in a one-to-one correspondence with points in P. It is
important to notice that P is not a linear space. The usual way to deal with the projective Hilbert
space in Quantum Mechanics is to embed in a natural way P into the whole Hilbert space by choosing a
representative of each equivalence class, i.e. by ’fixing the norm and the global phase’ of the vectors. In
this setting, it is always compulsory to prove that dynamics does not modify the constraints imposed on
the norm and the phase of vectors.

A geometric approach to Quantum Mechanics presents advantages in this respect. The projective
Hilbert space P can be described as a differentiable manifold. Hence a geometric formalism can describe
Quantum Mechanics directly on P without constraints.

1.1.7 A first approach to the 2-level system

As an application of the concepts presented in the dissertation, it is useful to consider particular cases
of practical examples. The 2-level system results appealing due to its simplicity, while at the same time
illustrates correctly almost all of the characteristics of generic systems. For these reasons, the 2-level
system is analysed in detail along the dissertation.

In Quantum Mechanics, an n-level system is any quantum system with n different states and their
combinations. When a basis is chosen, the Hilbert space of the system is isomorphic to C™. Some
examples of n-level systems are spin particles, transitions of atoms between its ground and excited states,
etc. In particular, the 2-level system is the simplest relevant case that can be studied (as the dynamics of
a one-level system is trivial). Physically, 2-level systems appear mainly in the study of %—spin particles.
They play a key role in quantum computing, where 2-level systems, also known as qubits, are the basic
unit of information.



12 CHAPTER 1. GEOMETRIC FORMULATION OF THE SCHRODINGER PICTURE

Pure states of the 2-level system are represented by elements in a complex 2-dimensional Hilbert
space. By choosing an orthonormal basis in 7, states are represented by vectors in C2:

) = (j) €C? 2z,2»eC. (1.35)
2
The Hermitian product takes the following coordinate expression in the chosen orthonormal basis of H:
¥4 2] * *
) = (z;> , Wy= <Zé) = (Y|) = 2721 + 2525,  21,20,21,2 € C. (1.36)

Thus, in matrix notation, the covector (| associated to a vector |1) is represented by the following row
matrix:

) = () €C’= (¥l = (1,7), 21,2 ¢€C. (1.37)

Observables of the system are Hermitian operators on the Hilbert space of the system. Once that
the basis is fixed, observables are represented by 2 x 2 complex self-adjoint matrices. The set of such
matrices is denoted as Herm(2). A basis of such matrices is given by

1 0 0 1 0 —i 1 0
O'OZIZ(O 1), 0’1:(1 0), (72:<i O>7 O’3=<O 1) (138)

Matrices o1, 02,03 are known as Pauli matrices. This particular basis of Herm(2) is appropriate for the
description of its Lie-Jordan algebraic structure, with Lie bracket and Jordan product defined by (1.20).
The products of the elements in the basis are

[[0’1,0‘2]] = 203, [[0’2,0'3]] = 2071, [[0’3,0‘1]] = 209, [[0’0,14]] =0, VAGHerm(?),

1.39
01001 =092 O 09 =033 03 =20, 09OA=24, VA& Herm(2). ( )

Consider now a simple case. Let H be a diagonal matrix in the given representation, with the following
expression:

(Ey 0
H= (0 E1> . Eo,E, €R. (1.40)

If Ey < E, then Ej is the energy of the ground state of the system |0), while the excited state |1) of the
system has energy E7. In the given basis,

0=(5) w=(7). (1.41)

The Schrodinger equation for this system takes the following form

g (260) =7 (50 = (2200) 00

Let us denote the initial conditions by z1(0) = 219, 22(0) = 290. The evolution in H is obtained by
integrating the above differential equation:

—ih~ Y Eot
[¥(©)) = (:—ihlEltZ1O> : (1.43)

220
The norm of the states is constant along the evolution:

—ih " Egt

ih—1 b VEyt _x e z _ _
IO = (ehe() = (& 5z, e P11z (e_m1E1tZ;§)—|zm|2+|220|2—||w<o>|2, teR

(1.44)

If a similar treatment is tried to be carried on P, mathematical problems arise. The set of equivalence

classes on H is not a linear space, and thus a matrix treatment cannot fully describe its properties. As

seen at the end of the present chapter, differential geometry is much more useful in this task, as P is a
differentiable manifold.
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1.2 The geometric formulation of Quantum Mechanics

The standard formulation of Schrédinger picture in terms of vector spaces presents problems when the
probabilistic nature of Quantum Mechanics is taken into account. As it has been seen, an accurate
description of the states of a quantum system is done in terms of a projective Hilbert space. This is not
a linear space, but a manifold that cannot be described with a global chart. Therefore, any algebraic
approach to Quantum Mechanics is unable to adequately describe this space. That is the reason why most
physicists ignore, at least partially, the consequences of the probabilistic interpretation. It is common to
simply describe quantum systems in terms of vectors of a subset of the Hilbert space, usually normalised
vectors with a common global phase. Although useful for computational purposes, this description fails
to properly represent the quantum properties of systems.

It is however possible to describe Quantum Mechanics with a formalism that intrinsically incorporates
the probabilistic interpretation. Differential geometry, developed along the 20th century, comprehends the
needed tools to appropriately describe the properties of manifolds. A geometric description of Quantum
Mechanics was first proposed by Strocchi [251] and Kibble [176], and developed by authors such as
Cantoni [65-69], Cirelli and co-workers [94,95], and others [22,23,30,42,45,63, 154,247]. Recent works
on the topic can be found in the works by Aniello, Asorey, Carifiena, Clemente-Gallardo, Marmo and
co-workers, the author among them [8,26,27,31,57,70,72-74,81,97-101, 122].

The geometric description of Quantum Mechanics presents advantages from multiple perspectives.
Many analogies exist between the Hamiltonian description of Classical Mechanics and the geometric
formulation of Quantum Mechanics. For example, the Schrédinger equation is geometrically described
by a Hamilton-like equation on a differentiable manifold [251]. The geometric tools developed for the
study of classical systems can be easily adapted for the description of quantum systems. The theory
of Lie systems, for example, has been found to be useful in order to solve the Schrédinger equation,
as it will be seen in Chapter 2. Geometric control theory, which was first developed in the context of
classical mechanical systems, has also interesting applications in the study of quantum systems; this topic
is analysed in Chapter 4. Finally, mixed quantum-classical systems, appearing commonly in models of
molecular dynamics, have been recently studied from a geometric perspective [3,10, 14]. As shown in
Chapter 5, a geometric characterisation of both the classical and quantum parts of these systems allows
for a consistent description of the composite system. Many other interesting topics, such as the analysis
of the classical limit of quantum systems, can be easily approached within this formalism.

This section presents the geometric description of the Schrédinger picture. In this way, the properties
of the Hilbert spaces associated to any physical system are described in terms of geometric objects on a
differentiable manifold.

Notice that only finite-dimensional quantum systems, i.e. systems whose associated Hilbert space
is finite-dimensional, are considered here. Differential geometry presents problems when dealing with
infinite-dimensional manifolds. Some advance on the topic is being carried out by Michor and co-workers
in terms of Convenient Calculus [38, 204]. However, a geometric description for infinite-dimensional
system is an open problem that lays beyond the scope of this dissertation. Nevertheless, the study of
finite-dimensional problems is enough to deal with most physical problems.

1.2.1 Notation in differential geometry

Before describing the geometric formalism of Quantum Mechanics, some comments on the notation are
useful. The following conventions are considered along this dissertation. The notation is similar to that
used by Crampin and Pirani [104]; refer to this work for more details.

Consider a differentiable manifold M. The set of smooth functions on the manifold is denoted as
C*°(M). The tangent and cotangent spaces at a point p € M are denoted respectively as T, M and ;M.
The corresponding tangent and cotangent bundles of the manifold are 7 : TM — M and 7* : T*"M — M,
with T'M := U,T, M and T*M := U,T; M. In the same way, there exist bundles 7 times contravariant



14 CHAPTER 1. GEOMETRIC FORMULATION OF THE SCHRODINGER PICTURE

and s times covariant 77° : T"*M — M, or simply (r, s)-bundles, on the manifold M, where

M = | Tp°M, Tp"M =T,M @ @T,MeTyM® - @T;M, rs>0 (1.45)
pEM

s S

As a consequence of this definition, TV°M = TM, TO'M = T*M and T®°M = M.

The set of vector fields on M is denoted as X(M). As sections of the tangent bundle, a vector field
X € X(M) defines at each point p € M a tangent vector to the manifold, denoted as X, € T,M.
Identical notation is used for 1-forms, i.e. sections of the cotangent bundle. The set of 1-forms is denoted
as A\'(M). In general, a section x of the (r, s)-bundle is an (r, s)-tensor ficld. At each point p € M, it
defines a tensor x;, € T>* M. The set of (r, s)-tensor fields on the manifold is denoted as 7"*(M)

Recall that an (7, s)-tensor on a linear space V' is a multilinear map on r copies of V* and s copies
of V. New tensors can be obtained simply by fixing its arguments. This can be extrapolated to tensor
fields. An (r, s)-tensor field x € T™*(M) is a map

X AN (M) x - x NN (M) x X(M) x - x X(M) — C>(M). (1.46)

T S

If s > 0, the contraction of x by a vector field X € X(M), written as tx, is the (r, s — 1)-tensor field
obtained by fixing as X the first argument on vector fields. The contraction by 1-forms, say tox with
ae N'(M) and r > 0, is similarly defined.

Another important operation on tensor fields is the exterior product. This product is usually defined
on forms, i.e. skew-symmetric covariant tensor fields, although it can be easily extended to any type of
tensor fields. Thus, the exterior product of two tensor fields &, ¢ is defined as E AP =ER P — P R E.

1.2.2 Geometric description of Hilbert spaces

General knowledge of differential geometry is assumed along the dissertation. For further analysis on
the properties of differentiable manifolds, see for example the textbooks by Boothby [50], Crampin and
Pirani [104], Kobayashi and Nomizu [177], or Nakahara [212].

Proposition 1.23. Any n-dimensional linear space V over a field K (either R or C) is a real differentiable
manifold of dimension m = ndim K, with dimR =1 and dim C = 2.

Proof. Let E = {ej,ea,...,e,} be a basis on the linear space V. For every v € V, there exists a unique
n-tuple (v1,...,v,) € K™ such that
v=wv1€1 + ...+ Upnen. (1.47)

If the field is £ = R, then m = n and there exists a global chart (V| ¢g), with ¢g : V' — R™ being the
map defined by the coordinates of the vectors. In the case K = C, then (1.47) can be rewritten as

v=(Revi +ilmwvi)e; + ...+ (Rev, +ilmuwy,)e,
= (Revi)er + (Imwvy)ie; + ... 4+ (Revy)e, + (Imwy,)ie,.

Thus, any vector v can be written as a linear combination with real coefficients of elements in the set
Er = {ej,iej,ea,ieq, ... e, ie,}. It is possible to define a map ¢p : V. — R™, with m = 2n, by
op(v) = (Revy,Imuy,...,Rev,, Imuy,).

Let E’ be a different basis on V. The change of coordinates is obtained as the composed function
¢ o d)gl, which is linear by the properties of linear spaces, and therefore differentiable. The set of all
such global charts on V' define an atlas, hence a differentiable structure on V. O

In the particular case of Quantum Mechanics, let H be an n-dimensional complex Hilbert space with
n > 2 (hence isomorphic to C™). As a result of Proposition 1.23, the Hilbert space H is a 2n-dimensional
real differentiable manifold. In the following, the notation Mg is used when the differentiable structure is
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considered on H. As graphically represented by Figure 1.1, there exists a bijection v : Mg — H between
the differentiable manifold and the Hilbert space. In a sense, the differentiable manifold carries also, by
definition, a linear structure, that is naturally described in terms of the Hilbert space. For this reason,
the following convention is used in order to simplify the notation. For any 9 € Mg, its image by v is
written in Dirac notation as

l) =v(Y), € Mg. (1.48)
Global coordinates on Mg are related with bases on H. Let E = {|e1), |e2), ..., |en)} be an orthonor-
mal basis of H. Any vector |¢) € H can be uniquely written as

) =Y zle;), 2z =(el) €C, j=1,2,...,n.
j=1

The associated global chart (Mg, ¢g) is defined by taking the real and imaginary parts of the complex
coordinates. They are denoted respectively as ¢; and p;, following the notation of positions and momenta
of the Hamiltonian formalism of Classical Mechanics; thus,

1 . .
¢E(¢):(Q17p17,QmPn)a ijﬁ(q]_'—lpj))j:la27an (149)

It should be noticed that, although this notation allows to relate the properties of Classical and Quantum
Mechanics, the coordinates g; and p; have no physical meaning in the sense of positions and momenta.
The analysis

Proposition 1.24. The tangent bundle to Mg can be trivialised as a product bundle:

Proof. This results is a simple application of the fact that, indeed, any linear space is a particular case
of an affine space. The differential of the bijection v : Mg — H at each point 1 € Mg is vy : Ty Mg —
TiyyH = H, which is also a bijection. Thus, the fibre T}y M at each point of the base manifold is identified
with Mg. O

The isomorphism v,y : TyMg — H identifies tangent vectors to Mg at each point ¢ € Mg with
vectors in H. Following with the above convention, the image by Ty v of any tangent vector v € Ty Mg
is simply denoted as follows (see also Figure 1.2):

[v) 1= vy (v) € H. (1.51)
H
v:Mg—"H M
) ) ¢
|12)
"t/)3> >
v H — My

Figure 1.1: Formal relation between the Hilbert space H and the differentiable manifold Mg. Vectors
|11), |¥2), |1p3) € H are uniquely identified with points 1,192,193 € Mg. Observe the use of Dirac notation
for vectors in H. This makes easier the relation between the geometric formalism and the properties of Hilbert
spaces.
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Vi TyMo —H |v1)

V*_al :H — TyMg

[v2)

Figure 1.2: At each point ¢y € Mg, there exists a tangent space T, Mg, which is naturally isomorphic to H.
Thus, it is possible to identify tangent vectors to Mg with vectors in H. Observe, that, as a consequence, there
exists a natural connection in Mgq.

Consider the global coordinate chart on Mg described by (1.49). Coordinates are given in terms of
the real and imaginary parts of the coordinates of vectors in #H for the given basis E = {|e1),...,|en)}
Thus, applying the reasoning of Proposition 1.23, and with the notation in (1.51), the relations between
the vector fields associated to the coordinate functions qi, p1, ..., ¢n, pn and the elements in the basis are

9
dq;

9
Op;

1 i )
P P

The trivialization of the tangent bundle alone does not describe the complex structure of H. For
any 1 € Mg, let us consider a tangent vector ¢ € T, Mg and the corresponding vector |¢) € H. As
TyMg is a real linear space, then for any a € R the relation |a¢) = a|¢) holds. However, a different
structure is needed to describe the multiplication by complex numbers. This structure is represented by
a (1,1)-tensor field called a complex structure [31,212].

Definition 1.25. An almost complex structure on a differentiable manifold M is a (1,1)-tensor field J
satisfying that, for any x € M,
(Ja)? = =1, (1.53)

with I, : T,M — T, M the identity (1,1)-tensor at x. If it is also integrable', then J is called a complex
structure.

A complex structure on Mg can be obtained by transporting the multiplication by the imaginary
unit on H to the tangent bundle. At each point ¢ € Mg, it is possible to define a (1,1)-tensor Jy :
TyMg — Ty Mg acting on tangent vectors such that the diagram presented in Figure 1.3 commutes. In
other words, the (1, 1)-tensor Jy, is defined by its action on tangent vectors as

To(w) = vt (ivp(w) & [Jp(w) =ijw), we TyMo. (1.54)

Proposition 1.26. The section J : ¢ — (¢, Jy) of the (1,1)-tensor bundle of Mg is a differentiable
tensor field. Furthermore, it is a complex structure on M.

LA tensor field on a differentiable manifold is called integrable if it is can be expressed with constant coefficients for some
global chart on the manifold.
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Proof. The differentiability of section J can be deduced by computing its coordinate expression. From
(1.52), the action of J on the coordinate vector fields of the chosen coordinate system is the following:

0 0 0 0
J - = —, J _— = ——=, ‘:1’2,...,7’7/. 1'55
<3qj> Ip; <3Pj) dg; 7 )

The coordinate expression of J is therefore

- 0 0
J = d'®d'®), 1.56
;( q;j apj Pj 8%‘ ( )

so J is differentiable and integrable. Furthermore, it satisfies condition (1.53), hence it is a complex
structure on M. O

The definition of the complex structure in terms of its action on H is only the first of many examples
in which the structures on ‘H determine geometric objects on Mg. This is possible because of the natural
identification of the tangent space T\,Mq with H at any point ¢ € Mg, as seen in Proposition 1.24.
Particular attention is paid to the case of C-linear maps on H.

Proposition 1.27. Any C-linear map A : H — H defines a vector field Z4 € X(Mg). It is defined as

Za() = (¥, A(v)), Wi € My, (1.57)
with A = I/;j ocAov.

Two of such vector fields have a particular interest in the geometric description of Quantum Mechanics.
These are the dilation vector field and the phase-change vector field. As shown below, these vector fields
define a regular foliation on Mg — {0} (i.e. with leaves of constant dimension), whose leaves are the
image by v~ : H — Mg of the equivalence classes defined on H. Thus, the projective Hilbert space P
is recovered as the set of leaves on Mg — {0} of this foliation.

Definition 1.28. The vector field A associated to the identity map I : H — H is called the dilation
vector field:

-~

A() :=Z1(¥) = (¥, ), ¢ € Mg, (1.58)

with zz = (z/*_wl o 1/) (). The vector field T' associated with the multiplication by the imaginary unit, i.e.
with the map il : H — H, is called the phase-change vector field:

-~

L) = Zu () = (¥, Jp(¥)), ¢ € Mg. (1.59)

Proposition 1.29. Both the dilation and phase-change vector fields are differentiable. They are related
by the complex structure as follows:
r=J(A) (1.60)

Vi)

TyMq

4

TyMg——

Figure 1.3: Commutative diagram defining for each ¥ € Mg the (1,1)-tensor Jy acting on Ty Mg as the
transport by v, of the multiplication by the imaginary unit on H.
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Proof. The coordinate expressions of both vector fields are

- 0 0 = 0 0
A= (q-+p'), I'= <p'+q'>~ 1.61
; 7oq; 7 Op; ot 70q; ' Op, (1.61)
Hence they are differentiable vector fields The relation between A and I' is obtained directly from defi-
nitions (1.58) and (1.59). In the given coordinate chart, it can be checked using also (1.56). O

In general, applications on H, satisfying linearity properties on all of its arguments, can be interpreted
as a geometric object acting on tangent vectors to the manifold Mg. This is the case of complex functions

on H.
Proposition 1.30. Given a complex function f : H" — C which is R-linear on each argument, there
exist two differentiable (0,r)-tensor fields TF, TJ{ on Mg defined at each point 1 € Mg by
(T;%)d,('l)l, coovr) =Re f(lv1), ..oy |vn)),
(T]{)w(vlv s 7U7‘) = Imf(|v1>, cee Ivn>)7

The inner product (|-} : H x H — C satisfies the axioms of Proposition 1.30. The tensor fields
defined in this way are hence the geometric objects representing the Hermitian structure of Quantum
Mechanics [26,27,72-74,81,97-101,122].

Yui,...,0. € TwMQ. (1.62)

Theorem 1.31. Given a point ¢ € Mg, let the maps gy, wy : TyMg x TyMg — R be defined as

9u(6,X) = (61X} + (X|#) = 2Re (9lx),  wald,x) == =i ({01) — (xI6)) = 2Tm (8x), Vo, x € TyMo.
(1.63)

The sections g : ¥ — (¥,gy) and w : Y — (P,wy) of the twice-covariant tensor bundle of Mg are

differentiable tensor fields. Furthermore, g is a metric tensor field and w is a symplectic form.

Proof. Differentiability of the tensor fields g and w is proved by computing their coordinate expressions.
By hypothesis, the chosen basis E = {|e1),...,|en)} for H is orthonormal, with elements satisfying
(ejlex) = bk, for j,k =1,2,...,n. By taking into account (1.52), the coordinate expressions g and w are
determined by the real and imaginary part of the inner products of vectors |e;) and ile;):

Re (ejlex) = Re(iejlier) = 0jk, Im(ejlier) = —Im(iejlex) =0k, J k=1,2,...,m, (1.64)

Thus the coordinate expressions for g and w are

n n
g=> (dg; ®@dg; +dp; @dp;), w=Y dg; Adp;. (1.65)

j=1 j=1
Both tensor fields are therefore differentiable and of constant rank. Non-degeneracy of the tensor fields
follows directly from the non-degeneracy of the Hermitian product in H, stated in (1.3). The tensor g is
clearly symmetric, so it is a metric tensor on Mg. Similarly, w is skew-symmetric, and also closed, as it
has constant coefficients, hence symplectic. O

The tensor fields g and w are related by means of the complex structure J. They reflect on the (real)
differentiable manifold Mg the complex linear structure inherited from the complex Hilbert space H. A
differentiable manifold that has such an structure is called a Kahler manifold. Further information on
Kéhler manifold can be found in works dealing with the topic of complex manifold [30,37,212].

Definition 1.32. An almost Kdhler manifold (Mg, g,w,J) is a 4-tuple where M is o differentiable
manifold and g, w and J are tensor fields on M such that g is a metric, w is a symplectic form, J is an
almost complex structure, and the following compatibility relation is satisfied:

W(X» Y) = g(J(X)aY)a VX,Y € }:(M)v (166)

In addition, if J is integrable, hence a complex structure, then (Mg, g,w,J) is called a Kdihler manifold.
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Proposition 1.33. The 4-tuple (Mg, g,w, J), with Mq the differentiable manifold associated to a Hilbert
space and tensor fields g,w and J defined in Proposition 1.26 and Theorem 1.31, is a Kdhler manifold.

Proof. To prove that w is indeed the Kéhler form of the manifold, relation (1.66) has to be satisfied. By
Proposition 1.26 and Theorem 1.31:

9u(Jy (), X) = (Ju (@) IX) + (x| Ty (8)) = —i{]x) +i(x]®) = wy (¢, X),
for any ¢, x € Ty Mg and any ¢ € Mg. O

In the following, the Kéhler manifold (Mg, g,w,J) will be referred to simply as Mg. The Kéhler
structure reproduces the properties of 7. The next proposition relates orthogonality of vectors in H,
defined with respect to the Hermitian product, and the action of tensor fields g and w.

Proposition 1.34. Two tangent vectors v,w € TyMqg at ¢ € Mg satisfy gy(v,w) = wy(v,w) = 0 if
and only if their corresponding vectors |v),|w) € H are orthogonal with respect to the Hermitian product,
i.e. (v|w)=0.

Proof. By definition,
gy (v,w) = Re (v|w), wy(v,w) =Imww) < (Vw) = gyp(v,w) +1iwy(v,w) (1.67)

Hence (v|w) = 0 if and only if gy (v, w) = wy (v, w) = 0. O

1.2.3 Hamiltonian and gradient vector fields

Once that the K&hler structure of Mg is defined, let us consider the maps &,g : X(Mg) — /\1(MQ)7
defined as
O(X) =1x(Ww), §(X):=1x(g), VX eX(Mg). (1.68)

Relation (1.66) can be given a simple form in terms of these maps.

goJ=0W & g=—-wolJ (1.69)
Due to the non-degeneracy of both tensor fields w and g, the new maps @, g are invertible. The inverse
maps @1, 57 : A'(Mg) — X(Mg) are relevant in the description of vector fields.

Definition 1.35. The Hamiltonian vector field and the gradient vector field of a function f € C*°(Mg)
are respectively the vector fields Xy, Yy € X(Mg) defined as

Xp=07'(df), Yr=g '(df) (1.70)

Proposition 1.36. The gradient and vector fields of a given function f € C*(Mg) are related by the
complez structure J in the following way:

J(X;) =Y;. (1.71)

1

Proof. By relation (1.69), the inverse maps @1, g1 satisfy the relation

/g\fl — _Jfl O(,T)il — Joail,

as J~! = —J by (1.53). This relation can be evaluated on an exact 1-form df in order to obtain the
result. O

Proposition 1.37. The coordinate expressions of the Hamiltonian and gradient vector fields associated
to the coordinate functions previously defined are, respectively,
0 0 0 0

X, =——, X, =—, Y, =—, Y, =—, j=12....n (1.72
apj pj aqj qj 8(]] pj ap] )
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Proof. These expressions are obtained by solving the equations:
a(‘quj‘) = dea ('AU(XP;) = dpjv g(Y;IJ) = dQJ7 g(ng) = dpj' (173)

Solutions are found by assuming generic expressions for the vector fields. For example, consider the
following expression for the vector field X, :

= 0 0
qu_;(akaqk+bk6pk), al,...,an,bl,...,bHGR.

Due to the coordinate expression of w give in (1.65), the action of the map @ on this vector field yields
n
B(Xy,) =Y (arxdpr — brday) .
k=1

These expressions can be substituted in (1.73) in order to obtain the coordinate form of X,,. The
remaining coordinate expressions are computed in a similar way. O

The correspondence between functions and Hamiltonian vector fields is unique up to constant func-
tions. Following the same procedure as in symplectic geometry, it is thus possible to use these relations
to define two products on the algebra of functions on the manifold, determined respectively by w and g.

Proposition 1.38. There exist two inner composition laws on the algebra of functions C*°(Mg) defined
by the tensor fields g and w:

(LY =w( Xy, Xp), () =9(Ys,Yy), Vi feC®(Mg). (1.74)

Both are R-linear in their two arguments. The product (-,-) is symmetric, while {-,-} is skew-symmetric.
They satisfy the relations

{1y =Xp () ==Xs(f), (L) =Yp () =Ys(f), [.f € CT(M). (1.75)

Proof. The properties of the composition laws are directly derived from (1.70). The definitions of the
composition laws can be rewritten as

w(Xy, Xpr) = df (Xp) = Xp: (), 9V, V) = df (V) = Yy (f) (1.76)
The proof is completed by considering the symmetry of g and the skew-symmetry of w. O

Recall that w is a symplectic form. This implies that {, -} is in fact a Poisson bracket, a very important
tool in the field of symplectic geometry and Hamiltonian mechanics [3].

Definition 1.39. A Poisson bracket {-,-} on a differentiable manifold M is a composition law of differen-
tiable functions such that (C*(M),{-,-}) is a Lie algebra and, for any f € C°(M), the map g — {f, g}
s a derivation of the associative algebra of functions.

Proposition 1.40. The composition law {-,-} defined in (1.75) is a Poisson bracket on C*°(Mgq).

Proof. This is a direct consequence of w being a symplectic form, hence closed, which implies that the
composition law {-,-} satisfies Jacobi identity [3]. O

Observe that coordinate functions for the global chart defined in (1.49) satisfy the following relations:

{gj. et ={pj,pe} =0, {g. o} =6k, (@5, a) = ), Pk) = 0ji, (¢5.06) =0, j, k= 12(n :

1.77

These expressions are computed directly from the definitions of the products (1.74) and from the coor-

dinate expressions of g, w and the Hamiltonian and gradient vector fields of the coordinate functions. It

can be concluded that these are precisely the Darboux coordinates for the symplectic form defining the

Kahler structure on Mg.

The symmetric product and Poisson bracket presented here act in a differential way on functions, as

seen in (1.75). They can be thus written in a tensorial way.
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Proposition 1.41. There exist two contravariant tensor fields G and §2 satisfying the relations
Qdf.df) =AY G@Af.df)=(f.f). [ [ €C*(Mg). (1.78)

These tensor fields are well-defined and differentiable. Let Q,G : N (Mg) — X(Mg) be the maps defined
by Q) (f) = Qa,df) and G(a)(f) = Gla,df), with a € N'(Mg) and f € C>®(Mg). These maps
satisfy the relations

~

Q=-o"' G=g! (1.79)
In particular, ﬁ(df) =—Xy and @(df) =Y} for any differentiable function f € C*°(Mg).

Proof. Due to C*°(Mgq)-linearity, tensor fields 2 and G are completely determined by its action on exact
1-forms. Furthermore, the products {-, -} and (-,) act on a differential way on function. Thus, equation
(1.78) is a good definition for the tensor fields. Regarding relation (1.79), let us compute the expression
of ﬁ(d f) for a differentiable function f:

QAN ) =L, F'Y = =X4 (), f.f € C=(Mg),

Thus, ﬁ(df) = —Xy. A similar computation shows that @(df) =Y}. As both Q and G are by definition
C*°(Mg)-linear maps, again it is enough to consider their action on exact 1-forms, which proves the
result. O

Observe that, due to the non-degeneracy of g and w, invertible maps @,5 : X¥(Mg) — /\1(MQ)
transport not only elements, but also structures from the algebra of vector fields to the algebra of 1-
forms. In particular,  and G are the result of transporting by & and g the tensor fields w and g,
respectively:

Qu(X), oY) =w(X,Y), GEX),9(Y)) =9(X,Y), VXY €eX. (1.80)

By use of the compatibility condition (1.69) of the Kahler structure, it is immediate to compute that
Qg(X),9(Y)) =w(X,Y), G(X),0(Y)) =g(X,Y), VXY X (1.81)

The coordinate expressions of contravariant tensor fields Q2 and G in the global chart defined in (1.49)
are derived from the products computed in (1.77):

Q:iaaqj/\ —Z(@ 8®8) (1.82)

Odq; ~ Ogq; Op;  Opj

It is now a simple task to compute the commutators of gradient and Hamiltonian vector fields. Their
values can be written in terms of the Poisson and symmetric products of functions.

Proposition 1.42. Hamiltonian and gradient vector fields satisfy the following commutation relations:
(X7, Xn] = =Xgpny, XpYal =Yy, Y7 Ya]=Xgpny fih € CF(Mg). (1.83)

The commutator of vector fields provides the set Xg(Mg) of Hamiltonian vector fields with a Lie algebra
structure, isomorphic to (C*°(Mg),{-,-}). The set spanned by Hamiltonian and gradient vector fields is
also a real Lie algebra, isomorphic to the complezification of (X (Mg), [, ])-

Proof. The first relation is a standard result in symplectic geometry [3, Corollary 3.3.18]. For the second
one, recall that Hamiltonian vector fields are Killing with respect to the metric g. Therefore, by using
the properties of the Lie derivative, the following relation holds:

(Lx,9)(2.2') = X;(9(2.2") = 9([Xy, 2], Z") — 9(Z,[X, Z']) =0 =
= X1(9(2,2) = 9((X, 2), 2") + 9(2, (X, Z')),  VZ,Z' € X(Mg), VfeC™(Mg).
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To find the value of the commutator [X, Y], compute its image by g:

9((Xp, Ya))(2) = 9([X 7, Ya], Z2) = X (9(Yn, Z)) — 9(Yi, [ Xy, Z]) = X (Z(h)) — [Xy, Z](h) =
=Z(Xg,h) = Z({h, [}), VZeX(Mg), VfhecC*(Mg),

where (1.74) and (1.75) have been taken into account. Therefore, the relation

/g\qu?Yh]) = _d({f= h})> Vf7h€OOO(MQ)7
holds, which proves the result. The last relation is proved in a similar way. O

Up to this point, multiple geometric objects have been defined on the quantum manifold Mg. There
exists a symplectic structure that resembles the geometric description of Classical Mechanics [3]. The
existence of a Poisson bracket and Hamiltonian vector fields have clear analogies with classical systems.
The quantum case, however, is much richer. There exist additional structures, namely the metric g and
the almost complex structure J, that introduce differences between classical and quantum manifolds.
The deep implications of these new structures are some of the topics of study of this dissertation. After
the introduction of observables and dynamics on the manifold, more analogies and differences between
classical and quantum systems can be observed. It is possible to compare both theories and to analyse
in detail the implications of the different geometric structures appearing in the quantum manifold.

1.2.4 Geometric representation of observables

The next step in the development of the formulation is to find a suitable characterization of the observ-
ables of the quantum system in terms of tensor fields on the manifold. The Ehrenfest picture describe the
proper way to represent observables in terms of expectation values [101]. This approach was first proposed
by Ehrenfest [118] and later developed by Koopman [180] and von Neumann [266], who proved that both
Classical and Quantum Mechanics can be described only in terms of expectation values. The Ehren-
fest picture of Quantum Mechanics offers an alternative approach to both Schrédinger and Heisenberg
pictures, and it is particularly well suited for a geometric treatment.

Following the spirit of the Ehrenfest picture, observables are represented by the following functions
defined on the manifold Mg, related to their expectation values (1.22). Recall from Section 1.1.3 that
the set O of observables on a finite-dimensional quantum system is the Lie-Jordan algebra of Hermitian
operators on its associated Hilbert space H, i.e. O = Herm(H).

Definition 1.43. Given a Hermitian operator A € O, let us denote by fa the real function on the
manifold Mg defined as

fa(@) = (Y|Alp), € Mg. (1.84)

Theorem 1.44. The map po : A€ O fg € C®(Mg) that associates to each Hermitian operator on
H a function on Mg is injective. It is therefore invertible on the image set Fo(Mqg) = o (O).

Proof. In order to prove that the map is injective, consider two observables A, A" € O such that fa = far.
By linearity of the Hermitian product in H:

fa() = far(¥) = (GlAl) = (|A'|[)) = (Y](A - A)[Y) =0. (1.85)
This implies that A — A’ = 0, hence A = A" and the applications is injective. O

This theorem proves that the relation between Hermitian operators and functions of the type of (1.84)
is in fact one-to-one. Therefore, the description of an observable A in terms of a smooth function f4 is
completely analogous to its realisation in terms of operators on a Hilbert space.

In order to simplify the notation, given an observable A € O, let us write X4 and Yy instead of Xy,
and Yy, for the Hamiltonian and gradient vector fields, respectively, of the function f4.
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Lemma 1.45. For any A € O, the associated Hamiltonian and gradient vector fields at a given point
P € Mg take the values

[(Xa)y) = —iA[p),  |(Ya)y) = Al¢). (1.86)

Proof. Let Z € X(Mg) be a vector field and denote by vz (1, t) its integral curve starting at ¢y € M.
When translated to the Hilbert space H, for small values of ¢ the integral curve takes the form

vz (v0, 1)) = [tho) + | Zyg) +0(2%). (1.87)
The action of Z on the function f4 associated to an observable A € O can be computed directly:
d
ZUW) = Saliz0)|  =2Re(Zy|Al), v e Mo. (1.59)
t=0

On the other hand, by definition of the gradient vector field Y4, the following relation holds:

Z(fa) (@) = 9(Z,Ya) () = 2Re (Zy|(Ya)y), ¢ € Mq. (1.89)

These relations hold for any vector field Z. In particular, by taking different vector fields such that they
span the tangent space to the point ¢, the relation |(Y4)y) = Alt) is obtained. Finally, by (1.53) and
(1.71), the relation X4 = —J(Y4) gives the value of the Hamiltonian vector field X 4 at each point. O

The algebraic structure of the set of Hermitian operators is recovered in terms of the Poisson bracket
and symmetric product of functions on the manifold already presented.

Proposition 1.46. The Poisson bracket and symmetric product of functions associated to observables
are

{fa, fB} = fra.zy, (fa,f) = facn, A,B€O. (1.90)

Proof. By direct computation, and with expressions (1.20), (1.63) and (1.86), the following expression is
obtained:

[, F}W) = w(Xa, Xp)(9) = —i((WIABI) — (61BA) ) = (][4, BIY) = fram(®), Yo € Mo.

An analogous computation gives the value of the symmetric product of functions. O

Corollary 1.47. Hamiltonian vector fields of functions associated to Hermitian operators close a algebra
isomorphic to uw(H), the Lie algebra of skew-symmetric C-linear operators on H. Similarly, the Lie algebra
of Hamiltonian and gradient vector fields of functions associated to Hermitian operators is isomorphic to
gl(H), the Lie algebra of C-linear operators on H

Proof. By Proposition 1.42, the following commutation relations hold
[(Xa, Xl =—Xpa,8], [Xa,Ye]=-Yan), [Ya,Ysl=Xpan), VA BeO. (1.91)
Together with Lemma 1.45, this allows to identify the obtained Lie algebras. O

Some interesting results can be derived also from (1.91). Due to their definitions, the dilation vector
field A and the phase-change vector field I' are easily related with the gradient and Hamiltonian vector
fields of the identity observable I € O, respectively:

A=Y;, T=-X. (1.92)

Also, it is immediate in this description to determine the vector field that describes the evolution
of isolated quantum systems, governed by the Schrodinger equation. This result gives a particularly
interesting relation between Quantum Mechanics and Classical Hamiltonian Mechanics.
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Theorem 1.48. Consider the Schrodinger equation, given in natural units (with A= 1) by
.d
iz [b(t) = Hp()), HeO. (1.93)

The solutions to the Schrodinger equation are the image by v : Mg — H of the integral curves of the
Hamiltonian vector field Xy associated to the Hamiltonian operator H of the quantum system.

Proof. Consider the Hamiltonian vector field Xy associated to H € O, the Hamiltonian observable of
the system. A curve ¢ : I C R — Mg is an integral curve of X if its tangent point at each point ¥ (¢o) is
(XH)yp(ty)- Curves and tangent vectors can be mapped onto H. The result is a curve [¢(t)) on H whose
derivative at each point is

PO =100 ) = HI o), (194

0

where (1.86) has been used. Thus, [1(t)) is a solution of the Schrodinger equation (1.93). O

Therefore, unitary evolution of quantum systems is, from a geometric point of view, a Hamiltonian
evolution with respect to a Hamiltonian dynamical system. All the results developed in the study of
symplectic geometry can thus be applied here. For example, the evolution of coordinates in Mg is
governed by Hamilton equations:

dgj _Ofu dp; _ Ofu

= = ) 1.95
dt  op;’ dt dq; (1.95)

The additional structures in Mg, namely the complex structure J and the metric g, are useful in order
to obtain additional interesting results. This is important in the study of quantum Lie systems, as seen
in Chapter 2.

1.2.5 Natural units in Quantum Mechanics

As mentioned above, the geometric formalism presented here reproduces the equations of Quantum
Mechanics when expressed in natural units. This system of units is based on the values of physical
constants, such as the reduced Planck constant 7, the electron charge e and mass m., or the vacuum
permittivity €g. For simplicity, they are given the following values:

1

h=1, e=1, me=1, ¢ (1.96)
Mathematical expressions of the theory are thus given in a simple way. However, in the spirit of
comparison with a classical theory, it is relevant to understand the role of this constants, in particular
the reduced Planck constant %, in the geometric description of Quantum Mechanics.
Recall that the Schrédinger equation has the expression

ih () = Hlp(), H e O. (1L.97)

The factor i has to be included in the definitions of the structures in such a way that the solution to
this equation are the integral curves of the Hamiltonian vector field associated to H. Hence, instead of
(1.86) the desired expressions for Hamiltonian and gradient vector fields are

(XX = —ih7 A[),  [(YA)y) = ™1 AlY). (1.98)

Due to the definition of Hamiltonian and gradient vector fields, (1.70), these expresions imply that the
reduced Planck constant appears in the definition of contravariant tensor fields, presented in (1.63). Thus,
consider the following expressions:
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All the results computed above would be modified accordingly to these new definitions. In particular,
Hamiltonian and gradient vector fields with respect to g" and w” are given by (1.98). The Poisson bracket
and symmetric product of two functions associated to operators are

{anfB}h = wh(XZ7Xg) = h_lf[[A,B]]7 (fA7fB)h = QE(XZ7XE) = h_lfA®B7 A7B €0. (1100)

As expected, the reduced Planck constant appears indeed in this geometric formalism. Therefore,
the quantum properties represented by this constant are always present in the geometric formulation of
Quantum Mechanics. For the purpose of this dissertation, however, it is safe to simplify the computation
by making use of natural units.

1.3 The manifold of pure states

The probabilistic interpretation of Quantum Mechanics requires to deal with an equivalence relation
between elements in the Hilbert space of the system, as explained in Section 1.1.6. It can also be
described in a geometric setting, in terms of a Lie group action on the quantum manifold. This action
is free and transitive on Mg — {0}, with 0 the point in M¢ representing the zero vector in #H. It is thus
possible to define a projection to a quotient manifold, whose points are in a one-to-one correspondence
with the pure states of the quantum system.

The behaviour of geometric structures under this projection has to be carefully analysed. Particular
attention will be paid to the Kahler structure on Mg. By Proposition 1.38, tensor fields g and w define
algebraic structures on smooth functions. Thus, the projection of the K&hler structure is in direct
connection with the reduction of algebras of functions. The reduction procedure has been studied by
many authors, among them Marsden and Ratiu [196], Dubrovin, Giordano, Marmo and Simoni [115],
and Falceto, Ferro, Ibort and Marmo [127-129].

The present section presents a first approach to the reduction of algebras by summarising some of the
results in [127]. After a description of the foliation in terms of the action of the group Cq = R, x U(1),
a reduction of the Kéahler structure is proposed.

1.3.1 Reductions of function algebras

In his work [127], Falceto, Ferro, Ibort and Marmo presented the reduction procedure of Lie-Jordan-
Banach algebras in some particular cases. The reduction procedure can be formulated in a generic
language that emphasises its main features.

Let M be a differentiable manifold and (C°°(M), ) an algebra of smooth functions on the manifold.
Consider a Lie group action ¢ : G x M — M, and let X5 C X(M) be the set of fundamental vector
fields of this action. If the action is smooth, free and proper, then the orbit set M/G is a differentiable
manifold [187, p. 544]. Let 7g : M — M /G denote the projection. Then, the image of the set C*>°(M/G)
of smooth functions on the orbit set by the pull-back of 7 is precisely the set & of invariant functions
under the Lie group action:

(7)) (CF(M/G)) = & :={f € CF(M) | X(f) =0, VX € X¢}. (1.101)

As a consequence, an algebraic structure on & immediately determines an algebra of smooth functions
on the orbit set.

Theorem 1.49. [127] Consider an algebra (C°(M),*) of smooth functions on the manifold M. If the
set & of invariant functions with respect to the Lie group action ¢ : G x M — M is a subalgebra, then
the restriction of the composition law % to & defines an algebraic structure on the set of smooth functions
on the orbit set M/G.

The Lie group action induces transformations of smooth functions on the manifold. For any a € G,
let ¢q : M — M be the smooth map defined by ¢,(z) = ¢(a,x). Then, the set of invariant functions is a
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subalgebra of (C*°(M), *) if and only if ¢} : C>°(M) — C*°(M) is an algebra homomorphism for every
a€cG.:

G (f = f1) = o (f) = ou(f), V. f € C™(M). (1.102)

The property presented in Theorem 1.49 can be considered in a tensorial way. Assume that the
composition law x acts on a differentiable way on functions, and thus there exists a contravariant (2, 0)-
tensor field Z on the manifold such that

E(df,df)y = f*f', Vf,f € C®(M). (1.103)

Consider the action of the group G on M and the projection 7¢ : M — M/G. The condition given in
Theorem 1.49 is equivalent to the assumption that = is m-projectable. Thus, the new composition law of
smooth functions on Mg is determined by a tensor field Z¢ on M /G which is mg-related with =.

In a dynamical system, the reduction procedure typically is considered when symmetries and con-
straints are considered. In this way, the new tensor field =4 describes dynamics on the reduced systems.
In some cases, however, technical difficulties may arise with this description. The orbit set M/G may
lack many properties that were present in the ambient manifold M, such as linearity or global coordinate
charts. For this reason, it may be useful to embed in an appropriate way the reduced system into the
ambient manifold M. Take the tensor field Z¢ describing the reduced dynamics on M/G, and the set of
its mg-related tensor fields on M, among them being the initial tensor field =. It is possible however to
find another element EG in this set with better properties. Namely, EG should be a tensor field generating
a distribution on M which, at each point, is orthogonal to the fibres of the foliation by Xg. Let us state
this with detail.

Consider a metric manifold (M, g), a free and proper action of a Lie group G and the projection
7w : M — M/G onto the orbits set. Any contravariant (2,0)-tensor field Z on the manifold M defines a

map = : A'(M) — X(M) by
8 (2(@) = Z(a.B), Va8 N\'(M). (1.104)

In particular, consider the action of Z on the differentials of invariant functions f € &. At each point
1 € M, the map = generates a subspace of T\, M by

D¢ = span{(é(df))w, fe @} C Ty M. (1.105)

~
—_

In general, the image by = of arbitrary 1-forms is not in this subset of the tangent space at . It is
however possible to decompose in a unique way any tangent vector v € Ty M as

v=0®+vt, v®eDY, vte (DY) (1.106)

The reduction procedure is done in terms of invariant functions with respect to the group action. Thus,
if E is mg-related with a reduced tensor field Z¢ on M/G, it is natural to choose instead a tensor field EG
on M whose associated generalised distribution of tangent vectors is given by (1.105). As decomposition
(1.106) is unique, it is immediate to obtain Za by subtracting the orthogonal components of the vector
fields obtained by Z A practical example will be offered later in the context of the analysis of quantum
systems.

1.3.2 Foliation of the quantum manifold

Recall the equivalence relation presented in Definition 1.20. It can be described as an action of the
multiplicative group Cy := C — {0} on H by |[¢) — c|9)), with ¢ € Cy. This is a transitive and free action.
The equivalence relation is defined by the group action, the orbits of the action being the equivalence
classes.
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Due to the bijection v : H — Mg, it is possible to consider the group action of Cy on Mg. If the
group is written as a direct product Co = Ry x U(1), then it is immediate to describe this action as

Theorem 1.50. The fundamental vector fields of the action r : (Ry x U(1)) x Mg — Mg are the
dilation A and phase-change I' vector fields. They define a regular foliation Fa r on the open manifold
Mg,o = Mg — {0}, with 0 € Mg the image by v of the zero-vector in H.

Proof. By (1.92), the dilation and phase-change vector fields are respectively related with observables T
and il. It is thus immediate to deduce that they are the generators of the multiplication by real numbers
and the change in phase on H. In fact, if &2, @I : Mg — Mg, with ¢t € R, are their associated flows,
then

@7 (V) =€), |97 () =€"[Y), Y eEMg, teER (1.108)
Thus, these vector fields generate the group action of Co = Ry x U(1) on Mg. As Cp is Abelian, see
(1.91) and (1.92), the fundamental vector fields A and T" of the group action commute. As they are
non-zero everywhere except on 0 € Mg, by Frobenius theorem they generate a regular foliation Fa r on
Mg . O

Observe that, as Mg ¢ is an open submanifold of Mg, it is immediate to restrict any geometric object
on Mg to Mg,o. From now onwards, this restriction is implicitly assumed, thus simplifying the notation.

Pure states of the quantum system are identified with points in the set P of leaves of the foliation
Fa,r. This set P can be endowed with a differentiable structure, as it is the projective Hilbert space of
H. See the textbook by Nakahara for a complete treatment of projective spaces [212].

The foliation defines a projection 7 : Mg o — P onto the set of leaves. The notation from equivalence
relations can be kept, thus denoting by [¢] := m(¢)) the elements in P. Due to the commutativity of A
and I, their respective flows commute. Thus, it is possible to carry out the projection 7 : Mg o — P in
two steps and in any order. This motivates the following definitions.

Definition 1.51. Let Fr and Fa denote respectively the regular foliations of Mg by I and A. The set
of leaves of Fr will be denoted by R, being myr @ Mg,o — R the corresponding projection. Similarly, the
set of leaves of Fa will be denoted by Q, being mpro : Mg,o — Q the corresponding projection.

Foliations of a manifold define equivalence relations. Two elements in Mg ¢ are said to be I'-equivalent
if the belong to the same leaf of Fr, and A-equivalent if the belong to the same leaf of FA. Thus, both
R and Q are sets of equivalent classes. For these reason, the usual notation for equivalence classes will
be use. For every ¢ € Mg o, the corresponding images by mr and mg will be denoted as [¢)]z € R and
[tV]o € Q. Observe also that R and Q are differentiable manifolds.

Proposition 1.52. The differentiable manifold Q is isomorphic to the unit sphere S*"~1 C R?", where
n denotes the complex dimension of the initial Hilbert space.

Proof. The manifold Mg is a 2n-dimensional differentiable manifold with a global chart (Mg o, ¢g)
described in (1.49). Elements of Q are the orbits of A. Because of the expression (1.108) of the flow of A,
it is possible to consider the inclusion 1o : @ — Mg that associates to each orbit the only point in it with
unit norm. As seen in the previous chapter, the norm in M is equivalent to the canonical norm in R?",
Thus, the set tg(Q) is mapped onto the points of R?" with unit norm, hence (¢ 01g0)(Q) ~ S?"~1. O

Both R and Q are (2n — 1)-dimensional differentiable manifold. New projections can be established
in each manifold, thus completing the projection onto the manifold P, previously defined.

Proposition 1.53. The vector field A projects onto R, defining a regular foliation. Likewise, the vector
field T projects onto Q, defining also a reqular foliation. The diagram shown in Table 1.4 is commutative,
i.e. the projections mrp : R — P and mgp : Q = P satisfy that

TRPOTMR = TQP OTpMQ = T. (1109)
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Proof. The commutativity of both vector fields makes possible to project A on R, and also I" onto Q.
As A and I' are non-zero at every point of Mg g, their respective projections to R and Q define regular
foliations. The commutativity of the diagram is a straightforward consequence. O

Mg .0

Lo
TMR
TMO

Figure 1.4: The diagram illustrates the differentiable manifolds appearing in the study of quantum systems.
The projections and natural inclusions are indicated.

An additional inclusion can be defined. Namely, the projective manifold P can be naturally mapped
into the manifold R, as shown next.

Proposition 1.54. There exists a differentiable embedding vp : P — R such that mrp otp = Idp.

Proof. Due to the commutativity of the diagram in Table 1.4, for every element of P there exists an
element of Q projecting to it under mgp. Let for : @ — R be the map defined as for = Tyr © Lg.
Hence, mrp o for(Q) = P and mrp|ior (0) : for(Q) — P is surjective.

It can be shown that it is also injective. Take 91,15 € 1o(Q), which implies that |41 = ||¥2]|-
Consider their equivalence classes [)1]gr, [¢2]r € R. Then, if mrp([1]r) = mrp([2]r), necessarily
[1) = el®[hy) with @ € R. As equivalence classes in R are defined by the action of the U(1), it is
immediate that [¢1]gr = [¥2]r. Therefore, m7xrp is a bijection when restricted to for(Q). The inverse
map, defined as ¢tp, is thus a differentiable embedding. O

In Chapter 2, these manifolds will be revisited, and the properties of Lie systems determined by
time-dependent Schrodinger equations will be considered on each one of the differentiable manifolds R,
Q and P. For obvious reasons, they will be collectively referred to as the quantum quotient manifolds.

1.3.3 Lie derivatives of the Kahler structure

The Kahler structure on Mg o cannot be projected directly onto P. The reason is that the values of the
tensor fields along the leaves of the foliation Fa r are not preserved by the Lie group action r described
in (1.107). Explicit computations of the changes in the Kéhler structures are presented next.

Proposition 1.55. The Lie derivatives with respect to A and I' of the tensor fields w, g and J defining
the Kdhler structure are

Law=2w, Lrw=0; Lag=2g, Lrg=0; LAJ =LpJ=0. (1.110)

Proof. Take an element a = (p, /%) € Rx U(1) and consider the map r,(¢) := r(a, 1) induced by (1.107).
For each ¢ € Mg o, the push-forward (rq).y : TyMg,0 — T, () Mg, is defined as

(7)ot <§tw<t>

to

d
t0> = &(raow)(t) , (1.111)

for every smooth curve ¥(t) on Mg . In particular, by considering curves of the form |1 (¢)) = |to) +t|v),
it is immediate to find the expression for the push forward as

(Ta)wy (V) = peosdpv + psin @ Jy(y) (V) & [(Ta)syp(v)) = pe?|v), Wi € Mgy Yv€TyMgyo. (1.112)
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The pull-back by 7, of any covariant (0,2)-tensor T at 7,(¢) € Mg ¢ is, by definition:

(ra)y (T) (v, ) = 7((ra) sy (v), (ra)wi:(v)),  Vo,0" € TyMgo, Vi € M.

Thus, particularising to tensor fields w and g, (1.63) and (1.112) are enough to compute their pull-backs:

*

ra(w) = p*w, rilg) =p’g, Va=(p,e*)eRxU(L). (1.113)

Both tensor fields are invariant under phase changes, but not under dilations. The Lie derivative with
respect to A is computed by by considering the flow (1.108) of this vector field. Thus, replacing p = et
and taking the time derivative, the Lie derivatives of tensor fields w and g are obtained.

Regarding the complex structure J, it is immediate from (1.112) to see that J commutes with 7,.:

J(ro«(Z)) = pcosp J(Z) — psing Z = . (J(Z)). (1.114)
It is therefore equivariant under the Lie group action. O

Proposition 1.56. The Lie derivatives with respect to A and I' of the contravariant tensor fields €0 and
G are
LAQ=-20 LAG=-2G, LrQ=LrG=0. (1.115)

Proof. Let t € T(®?(Mg) be a non-degenerate twice-covariant tensor field on Mg. It defines a map
t: X(Mg) — /\1(MQ) by HX)(Y) = t(X,Y), with X,Y € X(Mg). As t is non-degenerate, ¢ is an
invertible map. Let T : /\1(MQ) — X(Mg) be its inverse, T = ¢, and T € T29(Mg) be the twice-
contravariant tensor field defined by T'(«, 8) = S(T(«)). Given a 1-form o € /\1(MQ) and its image
vector field X, = T (), the following holds for any Z € X(Mg):
Lra=Ly(x,t) = tx,(Lgt) + zxt = tx. (Lzt) + 12, Xa]) = T(Lza) = T(ix, (Lat)) + [Z, Xa).
On the other hand,
[Z,Xo] = L2(Xa) = L2(taT) = ta(L2T) + tr,0T = ta(LsT) + T(Lz0).

With both expressions, the following result is obtained:

T(ix,(Lzt)) = —ta(L2T), Vae N'(Mg). (1.116)

In particular, if £zt = At, it is immediate to find that £Lz;T = —\T. By taking ¢ equal to w and g and
using (1.110), the results follow. O

As a consequence of Proposition 1.55, only the complex structure J is constant along the fibres of
the foliation Fa r of Mg . The Riemannian tensor g and the symplectic form w are not, which means
that they are not m-related to tensors on the set of leaves P. It is possible, however, to define new tensor
fields on M¢ o with better properties, by using the reduction procedure introduced in Section 1.3.1.

1.3.4 Reduction of tensor fields to the projective manifold

The group action 7 : (R4 x U(1)) x Mg — Mg defines a foliation of the manifold, which is regular on
Magq,0, as proved in Theorem 1.50. Consider the reduction procedure presented in Section 1.3.1, and its
applications to observable functions on Mg o, defined in (1.84):

fa@) = (WAlY), e Mqo, Ae€O. (1.117)

As proved above, these functions form a Lie-Jordan algebra Fo(Mg,) of functions. They are not,
however, invariant under the group action:

A(fa) =2fa, T(fa) =0, Vfa€ Fo(Mgqo). (1.118)

Thus, the first step in the reduction procedure is to find a suitable set of invariant functions under the
action.
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Proposition 1.57. For any observable A € O, let us define a function ea on Mg o is defined as

_ (Y[AR)
ea(y) = Wy Y € Mg (1.119)

The function ea is known as the expectation value function of A. The set of expectation value functions
on Mg, is denoted by Eo(Mg,0). Expectation value functions are invariant under the group action of
Ry x U(1) on Mgy.

Proof. It is immediate to check that A(eq) =T'(ea) =0, for any e4 € Eo(Mg,0). Alternatively, if (1.119)
is seen as a function on Hy, there exists a symmetry under the change |¢) — A|¢), for any A € Cp, hence
the functions are invariant under the described group action. O

Proposition 1.58. The Poisson bracket and symmetric product of expectation value functions are
1 1
{ea,ep} = EeﬂA,BH, (ea,ep) = E(eA@B—ZeAeB), VA,B e O. (1.120)

Proof. Expression (1.119) can be rewritten as eq = fflfA. Together with relations in (1.119), the
Poisson bracket of expectation value functions e4 and ep is

1 1
{ea,ep} = {‘j{j, J;f} = f?f[[A,B]] = 71481

The symmetric product of functions is computed in a similar way:

1 1
(ea,ep) = (J;;j’ J}?) = JTIQfA@B — 4f1}§3 + Qf;;;B = E (eaoB — 2€4€B),

Observe that the last term is obtain because of %I being the identity element of the Jordan product of
observables; see (1.20). O

It is thus concluded that £ (Mg o) is not a closed set under these composition laws. In other words,
the Poisson bracket and symmetric product cannot be reduced directly onto P. This is in accordance with
Proposition 1.56, as the contravariant tensor fields describing these composition laws are not invariant
under the described group action. However, relations in (1.56) offer a simple way to solve this problem.
It is possible to define new composition laws of smooth functions on Mg ¢ such that they satisfy the
conditions in Theorem 1.49. Consider the composition laws in C*° (Mg ) defined by

(£ Y @) =1L FYW), (£ ) @)= IR, )W), V€ C®(Mqp), Yo e Mzg,o, :
1.121

with ||¢||? = (1)) = f1(). Consider the products of functions in £o(Mg,9). By (1.120), the composi-
tions of any two expectation value functions are

{ea,eB} =eqa ), (ea.eB) =eaon —2eaep, VA BeO. (1.122)

which are preserved by the described group action. Observe that the second product (e4,ep)’ is not an
expectation value function, yet it is invariant by the group action. Thus, it is possible to reduce these
composition laws through the projection 7 : Mg o —+ P. They can be given a tensorial description. Let
V', G' be the contravariant (2, 0)-tensor fields on Mg o defined as

L= 101PQy, Gy = [WIPGy, Yo € Mo (1.123)
By (1.121), the action of these tensor fields on exact 1-forms yields the required composition laws:
af,df)y={frY, G'@Af.df)y=F), Vi €C¥(Mgp). (1.124)

However, the comments presented in Section 1.3.1 have to be taken into consideration. While these
are, by definition, m-projectable tensor fields, they are not the best choice to represent on Mg the
composition laws existing on P. A better characterisation can be obtained by describing the generalised
distributions of vector fields associated with expectation value functions.
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Proposition 1.59. Consider the maps V', G’ : /\1(MQ70) — X(Mg,o) defined as () == 1aQ and
G'(a) := 1aG, for any a € /\1(MQ,0). The image by these maps of the differentials of expectation value
functions are

X = (dey) = Xa+esl, Yh:=G'(des) =Ya—es, VAcO. (1.125)

For any A € O, vector fields X'y and Y}, are orthogonal (with respect to the metric g) to A and I’ at each
point:
9(X4,A) = g(X),T) =0, g(Y4,A)=g(YyT)=0. (1.126)

Proof. The expressions of X/, and Y are deduced from the C*>° (Mg o)-linearity of tensor fields and maps
defined from them, in particular of ' and G’. By definitions given in (1.123),

XYy = (dea) = fFQ(AfA) — F2FaQ (df1) = Q(dfa) — eaQ(dfr) = Xa +eal,
Vi =G (dea) = fTIG(dfa) — f2FaG(df1) = G(dfa) — eaG(dfr) = Ya — eal,

where relations eq = f; Lf4 and (1.92) have been used. Orthogonality can be proved by considering the
values of these vector fields at each ¢ € Mq ¢ and their corresponding vectors on H. Thus,

. . (WlAlY) (V] Al)

X/ = —iAly +1<7¢, Y) = Al) — ——=|), 1.127

obtained from (1.58), (1.59) and (1.86). These vectors are orthogonal to |¢) with respect to the Hermitian
structure, hence orthogonal to both A and I" with respect to tensor fields g and w, as proved in Proposition
1.34. O

In order to characterise in an appropriate way the structure of the projective manifold P, it is advisable
to consider new tensor fields on Mg which behave in a similar way to €' and G’ when acting on
expectation value functions. In particular, vector fields associated to any function (not only to expectation
value functions) should be orthogonal to both A and I, hence to the fibres of the foliation Fa r.

Theorem 1.60. Consider the tensor fields (~27> and é'p on Mg, defined, at each point 1 € Mg o, by
~ 9 1 1 ~ 9 1 1
@p)y 1= [P — Ay ©Ty + 1Ty © Ay, (Gp)y = 1P — Ay @ Ay — LTy @Ty. (1128)

These are the only tensor fields such that, when evaluated on differentials of expectation value func-
tions, yield the same results as Q' and G', and such that the generalised distributions generated by their
contractions with 1-forms are always orthogonal to both A and T.

Proof. These vector fields can be directly constructed from Q' and G’, thus proving uniqueness. Consider
the tangent space Ty Mg o at any point ¢ € Mg . The values of vector fields A and I' generate a certain
subspace Vy, = span{Ay,T'y} C TyMgo. As a consequence of Proposition 1.34, orthogonality with
respect to this subspace can be equivalently defined with respect to g and to w. Thus, any tangent vector
v € Ty Mg, can be decomposed in a unique way as

v=v+a Ay +bTy,
such that v is orthogonal to V, and real coefficients a and b take the values

g(Aw,U) _ g(Aw’U) _ _w(ri/nv) b— g(Fw,’U) _ g(rw,v) _ W(Aﬂ)vv) (1.129)

CT gy Ay) T 2lP 200l 7 7 9Ty, Ty) — 2[9l° 291

where relation (1.69) between tensor fields g, w and J has been taken into account. The orthogonal
component v is thus uniquely determined. Consider now, for a generic 1-form o € /\1(MQ,0), the vector
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fields ' (a) and G'(a). At each point ¢ € Mg o, the orthogonal components to Vy, of the tangent vectors
defined by these vector fields are

_ _ w(T,2(a)) () w(A, (@) (v)
(@), = (@), + <2||w|2) Bv = <2||w) Fe

=l (B0~ 5 @ (R@LT) () Ay + 5 w (B@)2) () Ty
= 1917 (8@)) + 5 au(Ty) Ay~ 3 ag(Ay) Ty,
AG@) W) g(E@) W)
2[IP? v 2l
=l (G(@), = 5 9 (G(@).2) @) &y + 5 9 (Gla)T) () T

L'y

2 2
5 (A 1 1
= 1P (), 5 @p(By) Ay = 5 ay(Ty) Ty,
where C°°-linearity of tensor fields and relations Q= o7t G = g1, presented in (1.79), have been
used. These expressions are valid for any a € /\1(MQ,0) and any 1 € Mg o, thus they define tensor fields
ﬁp and ép on the manifold Mg . O

These are the appropriate tensor fields to describe the structure of the projective manifold P on the
ambient manifold Mg o [97,99]. Their existence is relevant in relation with the habitual way in which
most physicists describe Quantum Mechanics. All the analysis of group actions, equivalence relations and
projective manifolds are put aside, and computations are done on Hilbert spaces. Some attention is paid
to the norm of states, which is assumed to be constant along evolution. Thus, the projective manifold
P is ‘embedded’ into the Hilbert space. Such embedding is, in fact, not possible. As pointed out in the
diagram of Figure 1.4, the only two possible embeddings are tp : P — R and 1o : @ — Mg o. The reason
is that the fibration induced by I' is not trivial, thus a differentiable embedding of P into Mg ¢ does not
exist. Habitual computations of Quantum Mechanics never take this fact into account, yet they produce
valid results. Theorem 1.60 proves that, in fact, there exists a mathematically rigorous way to describe
the properties of P in Mg, not through an embedding, but by the definition of appropriate geometric
objects. Dynamics associated with these tensor fields is naturally orthogonal to the fibres. Expectation
value functions, which happen to be the appropriate representations of observables, are constant along
the fibres, and these tensor fields act on them in the desired way. As a summary, the structures presented
here reproduce in an appropriate way the properties of quantum system by taking into account the
natural fibration induced by the group action Cy on the quantum manifold Mg .

1.3.5 The Kahler structure of the projective manifold of pure states

The reduction procedure yields a pair of tensor fields on P as the push-forward by 7 : Mg o — P of the
tensor fields Qp and Gp:

Qp =7, (ﬁp) , Gp:=m, (ép) . (1.130)

The tensorial description makes possible to define composition laws for arbitrary smooth functions on P,
not only expectation value functions. It is convenient to consider the following definitions:

{1y =Qp(df.df’),  (f, f)p =Gpdf,df) +2ff, VI [ € C™(P). (1.131)
Proposition 1.61. For any A € O, there exists a unique function €4 € P such that

W*(GA) =€y € 5(MQ’0). (1.132)
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This function €4 is called the expectation value function of A on P. Let E(P) be the set of expectation
value functions on P. Composition laws defined in (1.131) determine a Lie-Jordan structure on the set:

{EAafB}’PZE[[A,B]]a (EA,GB)pZEAQB, VA,BGO. (1133)

Proof. Consider the fibration Far on Mg ¢ and the projection onto P. Any function which is constant
along the fibres is the pull-back of a function on P. This is the case of expectation value functions.
Composition laws are immediately computed from (1.131) and (1.122). O

As in the case of the quantum manifold Mg, a covariant description of the structure is also possible.
In this way, a Kéhler structure is obtained on the manifold P.

Lemma 1.62. Consider the maps Qp, Gp : A'(P) = X(Mg,0) defined by
Op(0) == 1a(Qp), Gp(a) = 1a(Gp) (1.134)
These maps are invertible.

Proof. Consider the definition (1.128) of the m-projectable tensor fields. Observe that the initial tensor
fields 2 and G on Mg are of maximum rank, while the additional terms ensure that the reduced tensor
fields are constant along the fibres. Hence, after the projection by 7, which eliminates the directions
along the fibres, invertibility is recovered. O

Theorem 1.63. Let wp and gp be the covariant (0,2)-tensor fields on P defined by

wp(X,Y) = 0p (051(X),051(Y)) . gp(X,Y) = Gp (G31(X).G51(V)), VXY €X(P). (1.135)
The projective manifold P is an almost Kdihler manifold with respect to the tensors field gp,wp and Jp,
where Jp is the tensor field on P w-related with the complex structure J on Mg .

Proof. Compatibility between these structures can be proved by computing their counterparts on Mg g.
Let gp := 7*(gp) and Wp = 7*(wp) denote the corresponding pull-backs onto Mg . Their expressions
are

. gy (v, w) (v]) (Plw) - wy (v, w) (v]) (Plw)
(o) = S~ e S Gry(ow) = S - 2m e, (1130)
for any 9 € Mg, and any v,w € TyM¢ 0. They satisfy the relation
Ip(J(X),Y) =p(X,Y), VXY € X(Mgy). (1.137)

Therefore, the corresponding w-related tensor fields P, say gp, wp and Jp, define an almost Kéhler
structure on the manifold P. O

The tensor fields gp and wp obtained on P are known in the literature of complex manifolds as
the Fubini-Study metric. It was first introduced in the first years of the 20th century by Fubini and
Study [132,254]. The Fubini-Study has been described in many works [91,216,217]. See in particular
the geometric approach of Anandan [22], which share many similarities with the reduction procedure
presented here.

Hamiltonian and gradient vector fields on the projective manifold are defined as usual. For any smooth
function f € C*°(P), their Hamiltonian and gradient vector fields are, respectively,

Xp = —Qp(df), Ypjs:=Gp(df). (1.138)

Proposition 1.64. Hamiltonian and gradient vector fields on P satisfy the following commutation rela-
tions:

(Xp. 5, Xpnl = —Xp (p0yp>  (Xpss YPul = —Yp pnyn, Yo 5. YPnl = Xpirny, foh€C(P).
(1.139)
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Proof. Similar to Proposition 1.42. O

Observe the similarities and differences between this result and Proposition 1.42. In both cases,
Hamiltonian vector field close a Lie algebra with respect to the commutator. The complexification of this
algebra is obtained by considering also gradient vector fields. Differences arise between both proposition
for the case of gradient and Hamiltonian vector fields associated to observables. As before, the notation
is shortened as Xpas := Xp., and Ypys := Yp.,. The Lie algebra generated by these Hamiltonian
and gradient vector fields is isomorphic to sl(H), the Lie algebra of traceless linear operators on the
complex Hilbert space H. Compare these properties with Corollary 1.47. As expected, as a result of the
projection from Mg ¢ to P, smaller Lie algebras of vector fields are obtained. This is in agreement with
the decomposition gl(H) = sl(H) @ C.

Due to the commutation relations in Proposition 1.42, Hamiltonian vector fields on Mg o are m-related
with Hamiltonian vector fields on O. In particular, it is possible to recover the description of unitary
evolution by Hamiltonian vector fields, in this case on P.

Theorem 1.65. The unitary dynamics of quantum systems, generated by the Schrodinger equation in
the algebraic formalism, is described on the manifold of states P by the Hamiltonian vector field Xpg
associated to the Hamiltonian operator H of the system. This vector field is w-related with the Hamiltonian
vector field Xg on Mg .

As a last result regarding expectation value functions, observe that the differential de 4 give informa-
tion on the spectral decomposition of the observable A.

Theorem 1.66. Consider an observable A.

The critical points of an expectation value function e4 € Eo(P) are the equivalence classes [Py] € P
of the points ¥y € Mg o representing the eigenvectors of A € O. The values of €4 at such critical points
give the corresponding eigenvalues of A. In other words, if |y) € H is an eigenvector of A with (real)
etgenvalue A, then

(dea)n) =0, ea([n]) = A (1.140)
Proof. Tf |3) € H is an eigenvector of A, then
_ (alAla)
ea([nl) = NN A

In order to compute the differential de4, consider a trajectory |iy) + t|v) in H. By direct computation,
if A|1ﬁ)\> = )\|1/))\>, then

d (Px + tv] Al + tv)

dt (¥a +tola +tv) |
for any |v) € H. This proves that the function eq = 7*(e4) satisfies X(ea)(9n) = dea(X)(¥n) =0

for any vector field X € X(Mq,), hence (des)®x) = 0. And as e, is projectable, this proves that
(dea)ppn) = 0. O

=0. (1.141)

1.4 The geometric description of the 2-level system

As a practical application of the geometric formalism, the 2-level system is again considered. In Section
1.1.7, the properties of this system were studied in the algebraic setting. These results can be reproduced
with the geometric tools presented above.

The Hilbert space associated to a 2-level system is H = C2. Therefore, the corresponding real
differentiable manifold M is 4-dimensional, and there exists a global chart ¢ : Mg — R*, which is
determined in terms of the coordinates on C? with respect to an orthonormal basis E = {|e1),|e2)} as
follows:

1
) = (2) € C® = ¢p(v) = (q1,p1,42,p2) €RY, 25 = ﬁ(q_j +ip;), j=1,2. (1.142)
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The relation between elements in the basis E and coordinate vector fields is given by (1.52). Any
tangent vector v to Mg at a generic point v can thus be related to a vector in H, and vice-versa.

U= +wr — €eTyMg < |u) =

1 (v +iw 2
— . . 1.14
7 (w +1w2> eC ( 3)

0
i v i
dq1 |, " 042 |, p2|,,
It is thus possible to explicitly compute the expressions for the tensor fields. The vector field J,

defined in (1.54) as |Jy(v)) =i|v) for any ¥ € Mg, any v € Ty, Mg, takes the form

—dp2 ® 9 (1.144)

0
T=dn®g s Op2 g2

—dp1 ® =— +dg ® —

0 0
op1 oq
The coordinate expressions of the tensor fields g and w can also be computed directly:

g=dq ®dq: +dp; @ dpy +dge ® dgz + dp2 @ dpa, w = dg1 Adp; + dga A dpa. (1.145)

The vector fields that represent the linear structure, A and I', are

7] 0 0 0

I'=¢g— —p1— +qp— —po—. 1.146
5292 qlapl plafh Q2ap2 anQQ ( )

0
+ g

0 0
A=qg—+p1— 942

o0 opr + P2

Let us now compute the explicit expression of functions associated to observables. Recall that a basis
of Herm(2) is given by the matrices o, 01, 02,03 defined in (1.38). Thus, any observable is represented
by a matrix A € Herm(2) of the form

3 .
. __[a+az a1 —1lag
A= Eﬁ a;0; = (a1 tiay ag— a3> ,  Qp,ai,as,a3 € R. (1.147)

The functions associated to the matrices in the basis have the following expressions:

i 1
Foo8) = (0louls) = 3 (an —onsan = ipa) (5 §) (% I0) = Jtat +0% + a2+ ).

q2 +1p2

. . (0 1 +i
(q1 —ip1, g2 — ip2) (1 0) <Z; N iﬁ;) = q1q2 + p1p2,
. . —i +1i
( —1p1,q2 — lp2) ( O) <q; + 1}2) = ¢q2P1 — q1P2,
. . 0 q1 +1ip 1
(q1 —ip1, g2 — ip2) (0 _1) <q; +1p;> 5 (gt + i — a3 = pd).

Observe that all the four function are quadratic in the coordinates, as expected. The function f4 for a
general matrix of the form (1.147) is

for(¥) = (Plo|¢p) =

o

for (V) = (Y]oaldh) =

—-

—_

fos (V) = (Ylos|y) =

l\.’)\»—~ [\D\H [\3\»—\ M\r—l

1
Z a;fo, (¥ (ao +a3)(qf +pi) + §(a0 —a3)(g5 + p3) + a1q1g2 — axq1pa + azqepr + a1p1ps.

(1.148)
Generic Hamiltonian and gradient vector fields can be thus computed. The contravariant tensor fields G
and € are

0 0 0 0 0 0 0 0 Q 0 0 0 0

=@t Rt — Q@+ =— @ —, = — AN —F — A —. 1.149
0p1 O Op1  Opr 0qz  Oqz  Opz  Opo dqgi  Opy  Ogqz  Ope ( )
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Thus, applying the results of Proposition 1.41, it is immediate to compute the gradient and Hamiltonian
vector fields associated to a generic observable A:

~ 0 1o}
Xa=-Q(dfa) =((ao + az)p1 + azq2 + ¢11102)5,7q1 — ((ao +a3)q1 + a1g2 — a2p2)87)1

0 0
+ (—a2q1 + a1p1 + (ap — 03)172)87(12 — (a1q1 + agp1 + (ap — 03)(]2)87172, (1.150)

~ 0 0
Y4 = G(dfa) =((ao + az)q1 + a1g2 — a2p2)87ql + ((ao + az)p1 + azqz + a1p2)87pl

0
+ (a1q1 + azp1 + (a0 — az)q2) s — + (—a2q1 + a1p1 + (ap — az)p2) (1.151)

9
O0q2 a2’

It is immediate to check that J(X4) = Ya.

In this simple case, the result of Theorem 1.44, namely that the relation between A and f4 is a
bijection, can be directly computed. Consider the points 11,12 € Mg with coordinates

¢E(’l/)1) = (1707070)a ¢E(w2) = (ana 170) (1152)

The value of X 4 at ¢ and s is enough to determine the matrix A. For simplicity, matrix expressions
are used for the tangent vectors to Mg. The Hamiltonian vector field X4 takes the values:

0 as
_ | ~@ —as _ —aq
Xa)w = T, 7| Xaw = 0 : (1.153)
—ax —aon + as

These values completely determine the numbers ag, a1, a2, a3. As X4 is determined by the function f4,
this proves that the relation between observables and functions associated to them is bijective.
Let us now consider a diagonal Hamiltonian, as in (1.40):

E 0 1 1
H= ( 00 E1> , FEo,B1eR= fg(y) = 5Eo(qf +p?) + 5El(q§ + p2). (1.154)

The Hamiltonian vector field X g associated to this function is

0 0 0 0
Xy =FEwp1— — Eoqt— + E1po— — E1qo— 1.155
H 0P1 o0 091 opr + Lap2 o0 192 op2 ( )

Let ¢(t) be an integral curve of Xg. The coordinates of the points along the curve satisfy the following
differential equations:

dg dpy dgo dpa
— =X =FE — =X = —F, — =X =F — =X = —Fiqo.
" #(q1) = Bop1, m(p1) 0q1 1(q2) = Bip2, 1 (p2) 142
(1.156)
This system of differential equations can be written in matrix form as
q1 0 EO 0 0 q1
d | ps —Ey O 0 0 D1
- = 1.157
dt q2 O O 0 E1 q2 ( )
D2 0 0 —-FE O D2
By direct integration, the coordinates of points along such integral curve are
q1(t) = qio cos(Eot) + prosin(Eot), pi(t) = pio cos(Eot) — qio sin(Eot) (1.158)

q2(t) = qoo cos(Ert) + paosin(Eit), pa(t) = pag cos(Ert) — qaosin(E1t)),
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with g10, P10, G20, P20 being the coordinates at t = 0. If each point ¥ (t) with these coordinates is mapped
onto C?, the result presented in (1.43) is recovered:

1 [(cos(Ept) —isin(Eot))(qio +ip1o)\ 1 (e Eot(q10 + ip1o)
W) =7 <(COS(E(1)L‘) - isin(E?t))(%g + ipig)) NG (e‘iElt(q;g + ip;§)> ’ (1.159)

V2 V2

thus recovering the algebraic solution (1.43) to the Schrédinger equation of the 2-level system.

Up to this point, the geometric formalism reproduces precisely all the aspects already presented in
the algebraic approach to the Schrodinger picture. Let us now focus on the geometric description of the
the manifold of states P, which is the complex projective space of dimension 1, i.e. P = CP! [212].

The projective manifold P is the set of leaves in the foliation Fa 1 by vector fields A and I' in Mg o.
For any element ¢ € Mg o, let us denote by [¢] the corresponding leaf, which is itself a point in P. It
is necessary to define coordinates in P in order to study its properties. As a global chart for P does not
exist, at least two local charts are needed. In his book, Nakahara describes this atlas in the language of
complex manifold. An atlas {(U, £%), (V, ¢%)} for CP! can be defined by the open sets

U=CP!'—{[e1]}, V =CP'—{[es]}, (1.160)

and the following complex coordinate functions:

EW) =2, wlev; ¢C(W)=2, Wev (1.161)

21 %)

It is immediate to obtain from these expressions an atlas of real charts on P by taking the real and
imaginary parts of the coordinates as

=g +i&, ¢ =¢1+igo. (1.162)

The values of these coordinates, with respect to the global coordinates (¢1,p1, g2, p2) on Mg, can thus
be computed. The chart (U, &) is defined by the coordinates

q1q2 + p1p2 q1p2 — P142
= y y = —5 = 1.163

In the same way, the chart (V, ¢) on P has the following coordinates:

_ P —ap

b1 = q1g2 + p1p2
| = A2 TP
%+ 13

(1.164)
43 + p3

o([Y]) = (41, P2), , O2

Together, they form an atlas {(U, €), (V, ¢)} for the projective manifold P. There is a clear interpretation
of these coordinate charts. Observe that both U and V are obtained from P by removing a single point,
and their corresponding coordinates map them onto the whole plane R?. This is precisely the same as
when stereographic coordinates are taken on the sphere S2. The complex projective space CP! is in fact
isomorphic to the sphere S2. Thus, it is possible to describe the pure states of a 2-level quantum system
by points on the surface of a sphere. This description, presented in Figure 1.5, is known as the Bloch
sphere. It was first introduced by Bloch in the context of [45]. First introduced in the study of nuclear
magnetism [46], it is a useful tool in the analysis of properties of 2-level systems.

Consider thus a unit sphere S? embedded into the Euclidean space R3. In other words, the sphere
52 is described by 3-dimensional coordinates xi,zs, 3, with the constraint 2! 4+ x2 + 23 = 1. The
relation between S? and CP! can be proved by consider the stereographic projections of the sphere.
Thus, consider the stereographic projection onto the (z1, z2)-plane from the south pole, with coordinates
&1,&. A simple trigonometric computation shows that these coordinates are obtained as

T
1+ 3

T2
143

& = , &= , atta? a2t =1, ws A - (1.165)
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T2
o) + n>]uo> +il1)

Al

(1))

Figure 1.5: Representation on the sphere S* of the pure states of a 2-level system. This representation is known
as the Bloch sphere. Coordinates of the points on the sphere are given by (1.166). It is possible to compute the
elements [¢p] € P that correspond to the intersections of the Bloch sphere with the coordinate axes. These are
presented in the figure, in the basis determined by the eigenvectors of Hamiltonian (1.154). Observe that, for
these energy levels, the north and south poles are respectively the ground state and the first excited state of the
system. Notice also that antipodal points on the Bloch sphere correspond to orthogonal states of the system,
when expressed as vectors on a Hilbert space.

The relation with the description of pure states of a 2-level system is obtained by assuming that relations
(1.163) are satisfied. This proves that it is possible to map points in Mg o onto R? by

Ang +pip2) _ Aope-pie) G+ 63— p

1: b 2 — b 3 = . (1166)
@} +p? + ¢3 + pl at+pi+a3+ 3 ai +pi+a3+ 3

An identical result is obtained by assuming a stereographic projection from the north pole, with
coordinates ¢1, ¢ given by (1.164). As a consequence of relation (1.166), every point [¢)] € CP! is
mapped onto a point on the sphere S' € R?, being this map a bijection. It is therefore possible to
describe pure states of a 2-level system as points on the sphere, as in Figure 1.5. Observe also that the
coordinates thus obtained are precisely the expectation value functions of the Pauli matrices. This is a
consequence of a result proved in [70], and reproduced below in Theorem 2.25, which states that it is
always possible to obtain local coordinates for the projective manifold of any finite-dimensional quantum
system by means of expectation values of observables.

It is immediate to compute tensor fields Qp and Gp, defined in (1.130), by means of relations (1.128),
(1.149) and (1.166). Their values, in the given coordinates, are

0 0 0
Qp—QxlaixZ/\aimg—‘rzl‘Qaixg/\aixl

B B B) B B 9 3 B 9
Gp=2(®+ @a—+7-® )—Z%‘xka@

31171 6:]91 (3'£E2 al’g 6$3 8:103 A T &rk ’
J,k=

+2z35— A5,
(1.167)

with the constraint z? + 23 + 22 = 1 on the coordinates. The contractions of these tensor fields with
exact 1-forms define, as usual, distributions of Hamiltonian and gradient vector fields on the sphere S*.
In order to understand the dynamics of a 2-level quantum system, consider the expectation value function
eq associated to the Hamiltonian given in (1.154), whose value on the sphere is

Ei+Ey Ei—Ey

e (1, T2, 73) = 5 T g O (w1, 79, 23) € S*. (1.168)
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1.0

Figure 1.6: Representation of Hamiltonian vector field in (1.169) for Ey < Ei. The case Ey > FE1 would be
obtained by inverting the arrows. The integrals curves of this vector field are the parallels of the sphere. There
are two fixed points, the north and south poles. The period of rotation for non-fixed points arond the xs-axis
is given by (1.170). It is thus concluded that unitary evolution of a 2-level quantum system is represented by a
rotation on the sphere S? with constant angular velocity.

The Hamiltonian vector field associated to this function is

~ 0 0
X’P,H = —Qp(dGH) = (El - E())J}Qa—ml - (E]_ - Eo)l‘la—xQ. (1169)

Integral curves of this vector fields are the projection onto the manifold P of trajectories in (1.159).
In other words, they are the solutions of the projection of the Schrodinger equation onto P for a system
with Hamiltonian (1.154). The values of this vector field are represented in Figure 1.6. Observe how its
integral curves are periodic orbits around the z3-axis. A relevan difference with the analysis of dynamics
on Mg is the existence of fixed points. Vector field Xp g is zero at both north and south poles. By

Figure 1.5, these points are precisely the ground and excited states of the system, as expected. Regarding
periodic orbits, it is immediate that period of rotation around the x3-axis is

2

T T
|Eq — Eo

(1.170)

This period is independent of the initial conditions. The behaviour for any other Hamiltonian operator is
similar, namely a rotation around an axis with constant period depending only on the eigenvalues of the
Hamiltonian. The results presented here are obtained by direct computation and are hard to generalise
to larger quantum systems. Thus, the 2-level system offers great possibilities to study the properties of
projective spaces.

Tt is also possible to consider gradient vector fields on P, defined by (1.138). The gradient vector field
for the expectation value function ey is

~ 0 0 0
Y’p7H = Gp(dEH) = (E1 — E()) (.’L‘la—xl + x28_x2) — (E1 - E())(l — x%)a—xg (1171)



40 CHAPTER 1. GEOMETRIC FORMULATION OF THE SCHRODINGER PICTURE
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Figure 1.7: Gradient vector field (1.171) on the sphere S®. The integral curves of this vector field are the
meridians on the sphere, with the north and south poles being fixed points. Observe that it takes infinite time
to reach the south pole from a generic initial state. Thus, the south pole is a stable fixed point, while the north
pole is unstable.

The values of this vector field are plotted in Figure 1.7. Unlike in the case of Hamiltonian vector fields,
integral curves of gradient vector fields are not periodic. Instead, there exist a stable and an unstable
fixed points, which in this particular case correspond respectively to the excited and the ground state
of Hamiltonian (1.154). Observe that, because of the properties of gradient vector fields, these integral
curves are the projection onto P of the solutions of the following differential equation on #:

d
V) = " (). (1.172)

This is, roughly speaking, the Schrodinger equation for a complex Hamiltonian iH. These equations are
use in dissipation models, as those proposed by Kaufman [173], Morrison [210] and Rajeev [225]. In the
case of gradient vector field (1.171), ‘dissipation’ occurs from the ground state to the excited state of
the system; the opposite behaviour is obtained by reversing the sign of the Hamiltonian. It is however
important to notice that this is not the usual way in which dissipation occurs in nature. Firstly, dissipation
is usually a probabilistic behaviour, while the evolution presented here is deterministic. Following chapters
will deal with more realistic models of dissipation (see for example Section 3.4. Secondly, contrary to
physical intuition, there exists an unstable fixed state (in this case, the ground state, on the north pole
of the sphere). As a conclusion, the dissipation models with complex Hamiltonian should be used with
care and only in situations in which dynamics is fully understood.

1.5 Analysis of the geometric characterisation of Quantum Me-
chanics
As a conclusion for this first chapter, let us remark the main advantages and applications of this geometric

formulation. As shown, it is possible to describe the Schrodinger picture of Quantum Mechanics in a
completely different way to the usual algebraic formulation. The characteristics of the theory is explicitly
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determined by tensor fields, defining the Kéhler structure of the quantum manifold Mg. This description
is similar to the Hamiltonian formulation of Classical Mechanics, which has proved to be useful in many
different situations.

The different aspects of the theory (observables, evolution...) have been successfully described in
geometric terms. Furthermore, the geometric description offers a clear advantage in the study of the
projective Hilbert space P. This is precisely the set of pure states of a quantum system, and a geometric
analysis is much better adapted for its study than an algebraic one, as seen above. The manifold P is
proved to hold also a Kahler structure, with similar structures to those obtained on Mg.

The contravariant tensor fields defined on P by (1.130) are very important in the understanding of
quantum systems. The Poisson tensor field Qp reproduces the commutator of observables, which plays a
role in many aspects of the theory. While this was achieved also at the level of the larger manifold My,
the properties of the symmetric tensor Gp are a new feature that boosts the importance of the study
of the manifold P. This tensor reproduces the covariance of observables, a very important quantity in
the probabilistic interpretation of Quantum Mechanics. In particular, the product (e4,€e4) is in direct
relation with the standard derivation of the observable A, defined in (1.23):

Grp(dea,dea) ([]) = 22 ([8]) — 2(ea([¥])? = 2Dy A2, ¥[Y] € P. (1.173)

Tensor fields 2p and Gp reproduce the quantum characteristics of observables. They are also the key to
understand the difference between Classical and Quantum Mechanics. A classical system is described by
a Poisson manifold, where observables are represented by functions on the manifold [3]. These functions
form a Poisson algebra, defined with respect to the commutative, point-wise product of functions and
with the natural Poisson bracket of the manifold.

The case of Quantum Mechanics is similar in some aspects, but with important differences. Quantum
systems are described in terms of a Kahler manifold P, which is a particular case of a Poisson manifold. It
has therefore a richer structure, represented by the symmetric tensor field Gp and the complex structure
connecting it with the Poisson tensor field Qp. Observables are represented by elements in a Lie-Jordan
algebra of functions defined with respect to the products induced by both tensor fields.

The main difference between both theories is therefore the new tensor field Gp. Its importance can
be deduced from (1.131). The value of this tensor field is in direct connection with the difference between
the Jordan product of functions and the point-wise products. Thus, if a classical limit of the theory were
to be found, both products should become equal, hence Gp would become zero and the system would be
described by a Poisson manifold, as expected. It can thus be concluded, by (1.131) and by its connection
with the standard derivation of observables given in (1.173), that Gp is a fundamental ingredient in the
description of quantum systems.

Applications of the geometric formalism are studied along the dissertation. Chapter 2 offers an analysis
of the Schrédinger equation in terms of Lie systems. This is a powerful geometric tool in the resolution
of differential equations. It will be shown that it is possible to solve the dynamics of quantum systems
in this way. Chapter 5 also presents interesting applications in the study of mixed quantum-classical
systems, a common problem in molecular dynamics. With this geometric formalism, it is possible to
rigorously describe mixed states.






Chapter 2

Lie systems in Quantum Mechanics

A geometric description of Quantum Mechanics offers the possibility to consider quantum systems from
a new perspective. Geometrical tools can be used in order to find solutions for usual problems. As an
example of the huge potential of this formalism, the present chapter presents a systematic and powerful
method for solving the Schrodinger equation making use of the theory of Lie systems.

Since its first conception by Newton and Leibniz, the theory of differential equations have been under
study by innumerable mathematicians and scientists. Many different tools have been developed in order to
deepen into their analysis. This is the case of Lie systems, particular cases of time-dependent vector fields
appearing in the geometric analysis of differential equations [76,80,82,190,275]. The main characteristic
defining a Lie system is the existence of a superposition rule, which gives the general solution to the system
in terms of a finite number of independent particular solutions. The Lie-Scheffers theorem [32,190] shows
that a geometrical description of differential equations allows for an easy characterisation of Lie systems.

In the framework of Quantum Mechanics, consider the expression of the time-dependent Schréodinger
equation:

. d
ih [0(®) = H@Ol(®), teR. (2.1)
This is a linear differential equation. Therefore, if the Hilbert space is n-dimensional, the general solution
is obtained in terms of n functionally-independent particular solutions |11 (t)), ..., |¢,(t)) as
j=1

Thus, there always exists a linear superposition rule for the Schrodinger equation depending on n par-
ticular solutions. This approach, however, has limitations, as non-linear superposition rules, which also
exist for many problems, are not considered. Furthermore, an algebraic description cannot be extended
to the set of pure states of the quantum system, namely the projective Hilbert space. A more general
description is needed in order to properly describe superposition rules.

As shown recently by Carifiena, Clemente-Gallardo, de Lucas and the author, [70], a geometric de-
scription of Quantum Mechanics gives a very detailed characterisation of the problem. Schrédinger
equations are, effectively, Lie systems, and as such they admit superposition rules. The additional sym-
metries of these systems, namely the preservation of the canonical Kéhler structure, allow for the explicit
computation of these superposition rules. Thus, it has been found that a Schrédinger equation on an
n-dimensional Hilbert space, with n > 2 has a superposition rule depending on n — 1 particular solutions.
This is an improvement with respect to the solution presented in (2.2), albeit with an additional price.
The superposition rule thus obtained is, for n < 2, non-linear. It is nevertheless a very important result
with applications in problems such as the numerical resolution of Schrodinger equation.

Another clear advantage of this geometrical approach is the description of the projective space. As
shown before, this manifold can be easily described in geometrical terms. It is in fact possible to obtain

43
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in this way superposition rules for Schrodinger equations in finite-dimensional systems. Thus, it can
be concluded that Lie systems are a powerful tool in the characterisation of the properties of quantum
systems, in particular in the analysis of its unitary evolution.

This chapter presents the application of the theory of Lie systems to the study of quantum systems.
It is mainly based in the results presented in the aforementioned work [70]. Section 2.1 presents a short
summary of the theory of Lie systems. Sections 2.2 and 2.3 characterise geometrically the properties of
Schrédinger equation as Lie-systems. Their superposition rules can be computed, as done in Section 2.4.
Finally, Section 2.5 presents the particular case of 2-level systems.

2.1 Lie systems

A Lie system [76, 80, ,275] is a non-autonomous system of first-order differential equations whose
general solution can be written in terms of a finite number of particular solutions via a function called
a superposition rule. To properly present the theory of Lie systems, some preliminary definitions are
needed.

Definition 2.1. A generalized distribution D on a manifold N is a function mapping each x € N to a
linear subspace D, C T, N. We say that D is reqular at 2’ € N ifr : x € N — dim D, € NU {0} is
locally constant around x'. Similarly, D is said to be reqular on an open U C N when r is constant on
U. Finally, a vector field Y on N takes values in D, in shortY € D, if Y, € D, for all x € N.

Definition 2.2. A t-dependent vector field X on N is a map X : (t,z) € Rx N — X(t,x) € TN
such that Ty o X = 7o, where wo : (t,2) € RX N — x € N and 7y is the canonical projection of the

tangent bundle. A t-dependent vector field X on N amounts to a family of vector fields {X;}ier, with
Xz e Nw— X(t,z) € TN for allt € R.

Definition 2.3. The smallest Lie algebra of a t-dependent vector field X is the smallest real Lie algebra,
VX, containing {X; }ier, namely VY = Lie({X; }ier).

An integral curve of X is an integral curve v : R — R x IV of the so-called suspension of X, i.e. the
vector field X (t,x) + 8/0t on R x N [3]. The curve 7 always admits a reparametrisation ¢ = #(¢) such
that o )

T2 0
— O =X (2:3)
This system is referred to as the associated system of X'. Conversely, a system of first-order differential
equations in normal form is always the associated system of a unique ¢-dependent vector field. This
induces a bijection between t-dependent vector fields and systems of first-order differential equations in
normal form. This justifies to denote by X both a t-dependent vector field and its associated system.

Definition 2.4. A superposition rule depending on m particular solutions for a system X on N is a
Junction ® : (uqy,..., Uy A) € N™ X N = ®(ugy, ..., umm);A) € N such that the general solution,
x(t), of X can be brought into the form x(t) = ®(x(1)(t), ..., Tum)(t); ), where x(1)(t), ..., Tam)(t) is a
generic set of particular solutions to X and A € N.

Theorem 2.5 (The Lie-Scheffers Theorem [80, D). A system X on N admits a superposition
rule if and only if X =Y. _ bo(t) Xy for a family by(t),...,b.(t) of t-dependent functions and a basis
X1,..., X, of a real Lie algebra of vector fields on N.

If X possesses a superposition rule, then X is called a Lie system. The associated real Lie algebra
of vector fields (Xi,...,X,) is called a Vessiot-Guldberg Lie algebra of X. The Lie-Scheffers theorem
amounts to saying that & is a Lie system if and only if V< is finite-dimensional. This fact is the keystone
of the theory of Lie systems. From a practical point of view, superposition rules make possible the
resolution of differential equations by means of linear algebra. Because of this, solutions of Lie systems
can be obtained in many cases, either analytically or with help of numerical tools.
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2.1.1 The superposition rule

One of the most important characteristics of Lie systems is the existence of superposition rules. These
functions, as mentioned, give an algebraic solution to a differential problem. The computation of their
superposition rules has been thoroughly studied [30,82,275]. It is possible to obtain the superposition
rule of a Lie system by means of its diagonal prolongations, as proved below.

In the following, let IV be a differentiable manifold. For any natural number m > 1, the product set
N™ =N x---x N (m times) is also a differentiable manifold. Each copy of the initial manifold N in the
product manifold N™ is indexed as N("), with r from 0 to m — 1. The same notation is used for points,

functions and geometrical objects. Points in N take the form (z(®,z(M) ... ,2(m=1) € N™. Regarding
coordinate functions, if N is an n-dimensional manifold with coordinates (x1,...,x,), then N™ is an
mn-dimensional manifold with coordinates (9:50), 29 xgl), T O ,xgm_l), . ,xﬁ[”‘”).

Definition 2.6. Let (E,N,7: E — N) be a vector bundle. Its diagonal prolongation to N™ is a vector
bundle (B N™ 7. Elml — N™) where EM™ .= E x -+ x E (m-times) and 7™ is the only map
satisfying that Ty j o rm =70 wg; for j =0,1,....m =1, with mg ; : EM™ - E and N N™ = N
being the natural projections of E™ and N™ into the j-th copy of E and N within E" and N™,
respectively.

Definition 2.7. Given a section e : N — E of (E, N, T), its diagonal prolongation to N™ is the section
el™ of (EI™, N™ 7Iml) given by
elm = e 4 ... 4 lm=1), (2.4)

Observe that the diagonal prolongation to N™ of a section e : N — F is the only section el™ :
N™ — Elm gatisfying that TE,j O el™ = eo wn,; for j =0,1,...,m — 1. A particular case of diagonal
prolongations is that of functions. Given a function f on N, the function fl”) on N™ takes the value

Fr@®, 20,2t D) = @)+ f@D) 4+ @), @0,z 0, D) e N (2.5)

There exists a natural symmetry in the study of diagonal prolongations given by the interchange of
copies of the initial manifold N. In particular, given the diagonal prolongation to N™ of a vector bundle
over N, the interchange of any two copies of the manifold implies a change in its sections that has to be
properly described.

Proposition 2.8. Let (E,N,7: E — N) be a vector bundle and e : N™ — E™ q section of its diagonal
prolongation to N™. For any r = 0,1,...,m — 1, there exists a unique section €, : N — E such that
TEyO€=€ 0TN,. These sections completely determine the value of e:

m—1

e=el) +e) 4o el = 3 el (2.6)
r=0
In particular, given a section e : N — E and its diagonal prolongation el™ then e[rm] = e for every

r=0,1,...,m—1.

Definition 2.9. Let (E,N,7 : E — N) be a vector bundle. For any s,s' = 0,1,...,m — 1, let SE, be
the endomorphism of the set of sections of (E[m],Nm,T[m] : E[m]) defined as

m—1

SE, () = Z ) 4 el 4 egf). (2.7)
r=0
r#s,s’

The applications thus defined interchange two of the terms of a section € given as in (2.6). Observe
that SE, is symmetric under the interchange of its indexes, and that it is the identity application for
s = s'. Also, if /™ is the diagonal prolongation of a section e : N — E, then SE,(el™) = e[™ for any
s, =0,1,...,m—1.
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Diagonal prolongations pay a key role in the resolution of Lie systems. The following result gives the
number of particular solutions that are needed in order to obtain the general solution of a Lie system by
means of a superposition rule.

Theorem 2.10. [80,82] Let X be a Lie system on an n-dimensional manifold N and V its Vessiot-
Guldberg Lie algebra. The number m of particular solutions needed to obtain the general solution to X
by means of a superposition rule is the minimum integer such that the diagonal prolongations of elements
iV to N™ span at every point a distribution of rank dim V.

The superposition rule is obtained by means of the implicit function theorem. Let I1,...,1I, €
F(N™+1) be n common first integrals of the diagonal prolongations of elements in V to N™* satisfying
the condition

01,
det 1 £0. (2.8)
(6%&‘”)
Then, it is possible to solve, at least in the neighbourhood of a point € N™*! for the values of
xgo), . ,xS?’ in terms of the remaining coordinates and the values ki, ..., k&, that the first integrals
Ii,..., I, take in such point:
q)(x(l),...,x("L)7k1,...,kn) =20, (2.9)

By replacing the arguments of ® by independent particular solution z!(t),...,2™(t) to X, the general
solution z(t) is obtained:

Bz (t), ..., 2™ (t), ks ..., kn) = x(t). (2.10)

This procedure to obtain the superposition rule is therefore based in the first integrals of some vector
fields. Here is where the additional structures that appear in particular cases of Lie systems play an
important role. The properties of Lie systems can be exploit to obtain in a systematic way the first
integrals that determine the superposition rule.

2.1.2 Additional structures in Lie systems

As noted above, the existence of additional structures in a manifold makes possible for Lie systems to
have richer properties, leading to simplified procedures to solve their integral curves. This is the case
of Lie-Hamilton systems in symplectic, Poisson or Dirac manifolds [36, 75, , , ,194]. When V¥
consists of Hamiltonian vector fields relative to some geometric structure, much more powerful methods
can be devised to study Lie systems.

Definition 2.11. A system X on N is said to be a Lie-Hamilton system if V* is a Vessiot-Guldberg Lie
algebra of Hamiltonian vector fields relative to some Poisson bivector field on N.

Definition 2.12. A Lie-Hamiltonian structure is a triple (N, h), where Q is a Poisson bivector on N
and h: (t,x) € R X N — hy(z) := h(t,z) € R is such that Lie({h¢ }er, {-, }a), with {-,-}q being the Lie
bracket induced by Q [265], is finite-dimensional.

The following theorem, presented in [31], gives a characterisation of Lie-Hamilton systems.

Theorem 2.13. A system X on N is a Lie-Hamilton system if and only if there exists a Lie-Hamiltonian
structure (N, h) such that X is a Hamiltonian vector field for the function hy for each t € R. We say
that Lie({h¢ }er, {-, - }q) s a Lie-Hamilton algebra of X.

Following this idea, the existence of a Kahler structure makes possible to define a new type of Lie
systems, the so called Lie-Kéahler systems [70]. They are defined as those Lie systems on the manifold
such that the Kéhler structure is preserved along the evolution. As a consequence, the superposition rule
can be determined by the Kéhler structure.
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Definition 2.14. A system X on a Kdhler manifold (M,w,g,J) is called a Lie-Kdhler system if it is
a Lie-Hamilton structure with respect to the Poisson bivector determined by the symplectic form w and
preserves the complex structure, i.e. Lx,J =0 for anyt € R.

Proposition 2.15. If X is a Lie-Kahler system on a Kdahler manifold (M, w, g,J), then for any t € R,
the vector field X; is a Killing vector field with respect to the metric tensor g.

Proof. Tensor fields w, g and J are related by (1.66). If both w and J are symmetries for a certain vector
field, then g is also a symmetry. The proposition follows as a consequence. O

The following result could be restated in order to use it as an alternate definition of Lie-K&hler
systems.

Proposition 2.16. If X is a Lie-Kdahler system on a Kdahler manifold (M,w,g,J), then any vector field
in its Vessiot-Guldberg Lie algebra is a symmetry of the Kdhler structure on M.

Proof. This result is evident as a consequence of the definition of Lie-K&hler systems and Proposition
2.15. O

The existence of symmetries for Lie systems is a key property in order to obtain the superposition
rule. As it will be detailed in following sections, Lie-K&hler systems can be solved with help of these
symmetries.

2.2 Lie-Kahler systems in Quantum Mechanics

It is known that Lie systems appear in the geometric study of time-dependent Schrodinger equations
[44,83,85,86]. The expression of this equation in natural units (with i =1) is

o) = HOW), teR (211)

where H(t) is a Hermitian operator on H for every ¢t. This operator is called the time-dependent Hamil-
tonian of the system. The aim of this section is to prove that, for finite-dimensional systems, it is possible
to describe such an equation in terms of a Lie system.

Definition 2.17. A time-dependent Hamiltonian H(t) is called a quantum Lie system if there exists a
set of r real differentiable functions by,...,b,. such that

H(t) = Z b (t)H,;, (2.12)

where the Hermitian operators Hy, ..., H, close a finite-dimensional Lie algebra V1, called the quantum
Vessiot-Guldberg Lie algebra of H(t).

Proposition 2.18. Any time-dependent Hamiltonian on a finite-dimensional Hilbert space is a quantum
Lie system.

Proof. If the Hilbert space H is finite-dimensional, any basis {Hj, ..., H,} for Herm(?) makes possible
to write a generic time-dependent Hamiltonian H(¢) in the form of (2.12). For particular cases, it may
be possible to find smaller quantum Vessiot-Guldberg Lie algebras for H(t). O

Theorem 2.19. Consider a quantum Lie system H(t) on a finite-dimensional Hilbert space H, with
VH = Lie(Hy, ..., H,) its quantum Vessiot-Guldberg Lie algebra. The time-dependent vector field X
on the differentiable manifold Mg defined as

X =" bi(0)X;, (2.13)
j=1
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with X; := Xpu, being the Hamiltonian vector field on Mg associated to the Hermitian operator Hj,
for j =1,...,r, is a Lie-Kdhler system on Mqg. The associated system of XH s the time-dependent
Schréidinger equation.

Proof. Hamiltonian vector fields satisfy the commutation relation (1.91). If the Lie bracket of V7 is
[[HjaHk]] = El cjkiHy, then

[Xjan]:_X[[H],Hk]] :_chlela jak:1,27"'7r'
=1

Therefore, Lie(X1, ..., X,.) is a finite-dimensional Lie algebra isomorphic to V1. As a consequence of the
Lie-Scheffers Theorem 2.5, X is a Lie system with Lie(X, ..., X,) as its Vessiot-Guldberg Lie algebra.

For each t € R, the vector field X is Hamiltonian with respect to the function on M, associated
with the operator 3, b;(t)H; = H(t). Because of Theorem 1.48, its associated differential equation is
(2.11), thus proving the relation between Lie systems and the time-dependent Schrodinger equation. [

2.2.1 2-level Lie systems

The above result can be exemplified by studying a 2-level quantum system. The algebraic and geometric
descriptions of 2-level systems have been presented in sections 1.1.7 and 1.4, respectively. The Hilbert
space of the system is isomorphic to C2, and observables are represented by matrices in Herm(2). The
time-dependent Schrodinger equation is therefore the particularisation of (2.11) to the 2-level system:

%W)(t» — SH@(®),  H(t) € Herm(2), Vi€ R. (2.14)

A basis for Herm(2) is given by matrices og, 01, 02, 03, defined in Definition 1.38. A generic Hermitian
matrix takes the form

3 3 .
ap +az a; — 109
A:E a'alzaa—&—g a;o; = ) ag,ai,as,a3 € R 2.15
=~ 305 000 e 773 ay; +1as ag — as ) 0,01, 0d2,043 5 ( )

A time-dependent Hamiltonian can thus be written as

3
H(t) = By(t)oo + » _ Bj(t)o;. (2.16)
j=1
Physically, this Hamiltonian models a %—spin system coupled with a time-dependent magnetic field
(B1(t), Ba(t), B3(t)). The time-dependent Hamiltonian H(t) is therefore a quantum Lie system. It
determines a Schrodinger equation of the form (2.14) in C2 [30].

Consider now the geometric formalism presented in the previous chapter. As detailed in Section 1.4,
the Hilbert space H = C? is replaced by a 4-dimensional differentiable manifold Mg, provided with a

global chart with coordinates (q1,p1, 42, p2). These coordinates, as presented in (1.49), are

1 1
— ; - +ips). 2.17
21 \/i(% + 1;01), 22 ﬂ((h lpz) ( )

The quantum Lie system H(t) defines a Lie-Kihler system X# on Mg with expression:

X" =3"B;(t)X;, (2.18)
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The associated system of X is the geometrical equivalent of the Schrédinger equation (2.14). Its
coordinate expression is

T 0 By(t) + Bs(t) —Bs(t) By (t) T
d |'pi| _ | —Bolt) — Bs(t) 0 —Bi(t) —Bs(t) p1 (2.19)
dt | ¢ By(t) By (t) 0 Bo(t) — Bs(t) | | a2 '

P2 —Bi(t) Bs(t) Bs(t) — Bo(t) 0 P2

The vector fields Xo, X1, X2, X3 span the Vessiot-Guldberg Lie algebra of X. The commutation
relations can be directly computed by their coordinate expressions:

0 0 0 0 0 0 0 0
Xo=pis— @5~ +P2r— — @5, Xi=p2r— Qs +tP1is— Q15—
dq1 Op1 02 Op2 oq p1 0q2 Op2 (2.20)
P R T U S T I I H
2= —q2 o P2 op q1 7 P Opa’ 3=D1 e q1 Op P2 P q2 Opa’
As expected, these vector fields span a 4-dimensional Lie algebra isomorphic to Herm(2):
(X0, ] =0, [X1,Xo]=—-X3, [Xo,X3]=-X1, [X3,X1]=—-X>. (2.21)

Recall that Mg admits a Kéahler structure composed of a symplectic form w, a metric g and an
almost-complex structure J. Their coordinate expressions are given in (1.144) and (1.145). The vector
fields Xg, X1, X2, X3 are Hamiltonian with respect to w. Their Hamiltonian functions are

ho(¥) = (Y]oo|y) = %(Qf +pi 4@ +p3), k() = (Ylo1|v) = qraz + pips,
(2.22)

ha() = (bloal) = aipa — pras, hs() = (Blosle) = 5(ai + 7 — & — 23).

with tx w = dh, for a = 0,1,2,3. These Hamiltonian functions span a Lie algebra isomorphic to
Herm(2):
{ho,-} =0, {h1, ha} = hs, {ha,h3} = h, {h3, h1} = ha. (2.23)

Notice that hy, ha, hz are functionally independent, but h3 = 4(h? + h3 + h3).

The t-dependent Schrodinger equation (2.14) enjoys an additional property. Vector fields Xg, X7, Xo
and X3 are Killing vector fields with respect to g, namely Lx,_ g =0 for « = 0,1,2,3. Using this, it can
be proved in an intrinsic geometric way that

Il = g(Xo,Xo), 12 = Q(X17X1) —|—g(X2,X2) —‘rg(X;;,Xg), 13 = h% —|—h§ —|—h§, I4 = ho (224)

are constants of the motion for X. This example is relevant because it illustrates how to define the above
constants of the motion geometrically in terms of g and the Hamiltonian functions due to w.

Note also that the description in terms of real coordinates comes from a linear complex differential
equation. This gives rise to a symmetry (g1, p1, g2, p2) € Mg — (—p1, ¢1, —p2,q2) € Mg of system (2.19),
which is the counterpart of the multiplication by the imaginary unit in C2. Therefore, the Lie system
preserves the complex structure J in Mg.

2.2.2 Schrodinger equations and Lie-Kahler systems

The results obtained for the 2-level system can be generalised to larger systems. Lie systems appearing in
Quantum Mechanics have the property of preserving the natural Kéhler structure. This in turn facilitates
the computation of symmetries, key ingredients in the computation of superposition rules.

Theorem 2.20. Every time-dependent Schridinger equation on a finite-dimensional Hilbert space H
defines a Lie-Kdhler system on the associated Kdhler manifold Mg, whose Vessiot-Guldberg Lie algebra
is isomorphic to a subalgebra of Herm(H).
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Proof. 1t is clear by Theorem 2.19 the relation between time-dependent Schrodinger equations on H and
Lie systems on Mg. The Vessiot-Guldberg Lie algebra of X H is isomorphic to the quantum Vessiot-
Guldberg Lie algebra VH of H(t), which in turn is a subalgebra of Herm(#), as proved in Proposition
2.18. The preservation of the Kahler structure of Mg remains to be proved.

Consider the natural action g : U(H) x H — H of the unitary Lie group U(#) on the Hilbert space
‘H. By definition, this action preserves Hermitian product on H. Due to linearity properties, the action
also preserves the multiplication by scalar, in particular by the imaginary unit.

(UelUx) = (0lx), Ulilg)) =iUl¢), YU e U(H), V|¢),[x) € H. (2.25)

The action ¢y defines additionally an action par : U(H) x Mg — Mg on the differentiable manifold
Mg. The Hermitian and complex structures on H are replaced by the Kahler structure on Mg, which
therefore is preserved by this action.

As proved in the previous chapter, the action ¢, is generated by Hamiltonian vector fields. Thus, as
every vector in the Vessiot-Guldberg Lie algebra of X is Hamiltonian, it preserves the Kihler structure,
hence X is a Lie-Kihler system. O

Proposition 2.21. The space It of time-independent constants of motion for a Lie-Kdhler system X is
a Poisson algebra with respect to the Poisson bracket of the Kahler structure and a commutative algebra
relative to the bracket induced by the Riemannian structure.

Proof. This proposition is a consequence of simple computation of differential geometry. Lie derivatives
and contractions satisfy the following relation [104, 177]:

[Lx,ty] = ux,y]s (2.26)

for any pair of vector fields X,Y.

Any time-independent constant of motion f € I satisfies X;(f) = Lx,(f) = 0 for any ¢t € R. On the
other hand, the Hamiltonian vector field X associated to f satisfies df = ¢tx,w, with w the symplectic
structure on the Kahler manifold. The two relation combined yield the following result:

d([,)(t(f)) = EXt(df) =0= ﬁXt(LXfw) =0= L[X,,.,Xf]w = O,

where the fact that A is a Lie-Kéhler system, hence £y,w = 0, has been considered.
The Poisson bracket of any two functions f, f’ is defined as {f, f'} = w(Xy, Xy/). Its Lie derivative
with respect to a vector field Y € X(Mg) satisfies the following relation:

Ly ({f, ['}) = Ly (w(Xf, X)) = (Lyw)(Xy, Xpr) — w([Y, X¢], Xpr) — w(Xy, [Y, X))

In particular, this relation is held for Y = X;. If f and f’ are constants of motion, then the right-hand
side of the equality is zero, hence

Lx,({f, ') =0, f.f eI*. (2.27)

Therefore {f, f'} is also a constant of motion. Likewise, the symmetric product defined by the metric g
provided by the Kéhler structure satisfies a similar relation. O

The presence of a Kéahler structure makes possible to devise techniques in order to obtain constants
of the motion and superposition rules for Lie-Kahler systems, as hinted for the 2-level system. If two
vector fields Y7, Yo commute with all the elements of the Vessiot-Guldberg Lie algebra of a Lie-Kahler
system X, then g(Y71,Y7), g(Y2,Y2), g(Y1,Ys) and w(Y7, Ys) are constants of motion for X.
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2.3 Lie systems on the quantum quotient manifolds

As fully explained in Section 1.3, the proper description of the states of quantum systems requires an
analysis of the fibration Far of Mg generated by vector fields I' and A. This fibration is regular on
Moo = Mg — {0}, and a projection onto the manifold of leaves of the foliation can be determined.
Furthermore, as these vector fields commute, the projection can be decomposed in two steps, and carried
out in any order.

As a result, different quotient manifolds R, Q and P are obtained. They are collectively referred to as
the quantum quotient manifolds. The diagram in Figure 2.1 reproduces the existing maps and inclusions.
Also, the relevant structures in each manifold are indicated. The following sections consider the properties
of Lie systems determined by time-dependent Schrodinger equations on each of the quantum quotient
manifolds.

MQ,O Lo

Ké&hler
TMR
/ m

g
Symplectic/Riemann Presymplectic

& e
e P

Kéhler

Figure 2.1: The diagram illustrates the differentiable manifolds appearing in the study of quantum systems. The
projections and natural inclusions are indicated. Each manifold is labelled according to the relevant geometric
structure it possesses. These structures are useful in the determination of superposition rules for Lie systems.

2.3.1 Lie systems on the manifold O

Consider the inclusion tg : @ — Mg, as indicated in Figure 2.1. Since the unitary evolution in H
determined by the Schrédinger equation preserves the norm of vector, its geometrical counterpart on
Mg o leaves 1o(Q) invariant. Thus, it seems natural at first to restrict the associate Lie-K&hler system
to the unity sphere Q. Nevertheless, as shown below, such a restriction is generally no longer neither a
Lie-Ké&hler system nor a Lie-Hamilton one.

Proposition 2.22. Consider the Lie-Kdihler system X on Mg,o determined by a quantum Lie system
H(t). It can be projected to Q giving rise to a Lie system Xg possessing a Vessiot-Guldberg Lie algebra
Vo of Hamiltonian vector fields with respect to the presymplectic form wg := tgw with 1o : @ — Mg. If

VS = Vo, then Xg is not a Lie-Hamilton system.

Proof. For a generic quantum Lie system H(t), the Vessiot-Guldberg Lie algebra VX" of XH is the Lie
algebra of fundamental vector fields of the unitary action on Mg, namely ¢y : U(H) x Mg — Mg, as
proved in Proposition 2.18. Recall that unitary action preserves the Hermitian product in . Hence,
the norm ||3|| defined by the metric g is invariant under ya; and, in consequence, a first-integral of
its fundamental vector fields, which span V< " The restrictions of the elements of VX" to Q become
tangent to to(Q) and therefore they span a finite-dimensional Lie algebra of vector fields Vg on Q. The
Lie-Kihler system X, being generated by the elements in V% H, can also be restricted to tg(Q). It gives
rise to a Lie system Xg on Q admitting a Vessiot-Guldberg Lie algebra Vg.

The embedding 1o : Q@ — Mg gives rise to a presymplectic structure wg = tow on Q, where w is

the natural symplectic structure on Mg. Since the elements of V¥ " are Hamiltonian vector fields on
Mg with Hamiltonian functions hpy () = 1(|H|¢) with H € Herm(#), their restrictions to Q are
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Hamiltonian relative to the presymplectic form wg with Hamiltonian functions t5hg. Therefore, the
algebra Vg on Q is composed of Hamiltonian vector fields relative to the presymplectic structure wg.

H
As @ is an orbit of ¢y, then TQ = Dv”* |, which is an odd (2n — 1)-dimensional distribution on Q.
H
From assumption, VX2 = Vg, and hence DXe = DVe = Dv”* |o = TQ. The so-called no-go Theorem

for Lie-Hamilton systems (see [34]) states that previous conditions are enough to ensure that Xg is not
a Lie-Hamilton system. O

A Dirac structure is a generalisation of presymplectic and Poisson manifolds. In fact, presymplectic
and Poisson manifolds can be naturally attached to Dirac structures whose Hamiltonian vector fields
are exactly the Hamilton vector fields of the structures originating them (see [75] for details). This fact
makes possible to prove the following.

Corollary 2.23. The Lie system Xg on Q determined by a quantum Lie system H(t) is a Dirac-Lie
system with respect to the Dirac structure induced by wg.

2.3.2 Lie systems on the manifold R

The next results prove that the projection of the restriction of the Lie-Kahler system X ¥ to Mg, onto
R exists and it is a Lie-Hamilton system. It can be endowed with a natural coordinate system coming
from this fact. Some preliminary results are given in the form of lemmas.

Lemma 2.24. The manifold R satisfies the following relation:

SU(n)

oD - R,. (2.28)

R = Mq,o/U(1) =
Proof. Recall from Section 1.3.2 that Q is obtained as the set of leaves of the foliation by A of Mg o.
As A is the infinitesimal generator of the group action of R, on the manifold, then it is clear that
Mgo = Q x Ry. If H is the Hilbert space of an n-level system, then the Lie group U(#) acts naturally
on Q transitively. The isotropy group of an element ¢ € Q is given by the special unitary transformations
leaving v invariant, i.e. U(n — 1). Hence Q@ 2 U(n)/U(n — 1). Consider the natural group morphism

(n—1)—times
——
K:AeUQ)— diag( 1,...,1 ,det A) € U(n).
The Lie group K(U(1)) acts on SU(n) by inner automorphisms giving rise to a semidirect product
U(1) x SU(n). Moreover, there exists a Lie group isomorphism A € U(n) — (K(det A), K(det ™ A)A) €
U(1) x SU(n). Therefore,
SU(n)

e Uln=1)

XR+’:

Q M x Ry, (2.29)

Ry ~
U "
as proposed. O

Lemma 2.25. The manifold R admits a local coordinate system on a neighbourhood of each point given
by 2n — 1 functions fo(¢p) = %<¢|Ha|1/1>, for a = 1,2,...,2n — 1, for certain traceless observables
H, € Herm(H).

Proof. For n > 1 any two elements of Mg ¢ with the same norm can be connected by the action of an
element of SU(n). Hence, the special unitary action SU(n) x Mg, — Mg, with n > 1, has (2n — 1)-
dimensional orbits, which are embedded submanifolds of Mg . Since dim SU(n) = n? —1 > 2n —1
for n > 1, for any point of Mg o there exists an open neighbourhood Ay where 2n — 1 fundamental
vector fields of ¢ are linearly independent at each point. As they are also Hamiltonian vector fields, their
Hamiltonian functions, which can be taken of the form f, () = 2 (¢|H,|¢), with H, € Herm(#) traceless
observables and o« = 1,2,...,2n — 1, are functionally independent on Agy. These functions are invariant
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under the natural action of U(1) on Mg o, and give rise to well-defined functions fi |z, ..., fon—1|r, on an
open subset of R. As f1,..., fan—1 are functionally independent on Ay C Mg o, then fi|g,..., fon—1lr
are functionally independent and provide a local coordinate system on R. O

This lemma provides a method to obtain coordinates on the quantum quotient manifold R of any
finite-dimensional quantum system. To illustrate this result, the 2-level system is characterised. Recall
that a 2-level system is described by a 4-dimensional manifold Mg with coordinates (g1, p1, ¢2,p2), as
described in Section 1.4. The time-dependent Schrodinger equation has already been discussed in Section
2.2.1, which in turn defines the following Lie-K&hler system

3
X" =3"B;(t)X;, (2.30)

The vector fields Xy, X1, Xa, X3, given in (2.20), are Hamiltonian vector fields with respect to the natural
symplectic structure on M¢g. Their Hamiltonian functions hg, h1, he, hs are given in (2.22).

Functions h1, he, hg satisfy the conditions of Lemma 2.25, as they are the functions associated to the
traceless observables o1,09,03 € Herm(2). As any other traceless observable is a linear combination of
them, it can be concluded by Lemma 2.25 that these functions define a coordinate system on R. To
verify it, consider the map ¢, : Mg o — R3 given by

T = qi1q2 + p1p2 = Re (2] 22),
$o (1) = (ha (), ha(¥), ha()) = (z,y,2) € R® = § ¥ = @P2 — gop1 = Im (2f22),

1 1
z=5(@ +rt - —p8) = 51 — =),
(2.31)
where the complex notation (21, 22) = (¢1 + @p1, g2 + ip2) is used. Observe that

1
2+ P+ 22 = Z(|Zl|2 + |22])2. (2.32)

The manifold R is defined as the set of equivalence classes under the natural action of U(1). With
this complex notation, this action is simply (e, (21, 22)) — (e¥21,€!®23). Hence, x,y, 2 are constant
along these equivalence classes. Furthermore, if 9,9’ € Mg o belong to the same equivalence class, then
o (1) = ¢o(¥"). This implication works on both directions. Indeed, consider two points ¢ = (21, 22) and
' = (21, 24) such that ¢,(¢) = ¢ (¢)'). Then, because of (2.31) and (2.32):

a1l = |21l,  le2] = 23], 2{22 = (21)"%. (2.33)
In view of this, (21, z2) = €'¥(2}, 24) for some o € R. Thus, if ¢! (z,y, z) is not empty, it gives rise to an

equivalence class of R.
It remains to be proved that ¢, is a surjection. For every (z,y, z) € R3, it can be verified that

b0 (VAT T2 42), VAV 157 - ) = (002), (2:31)

where © € [0, 27) is the unique angle satisfying

< Y

P o, -7

The above expressions show that ¢, is surjective. Therefore, ¢ *(z,y, 2) is the equivalence class of an
element of R for every (z,y,2) € R} and R = R}.

Once defined an appropriate differentiable structure on the manifold R, the following results show the
properties of the Lie systems representing the time-dependent Schrodinger equation on this manifold.

= sin©.
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Proposition 2.26. The time-dependent Schrodinger equation, when restricted to Mg o, can be projected
onto R originating a Lie-system Xg possessing a Vessiot-Guldberg Lie algebra Vi ~ su(H) of Hamilto-
nian vector fields with respect to the projection of Q on Mg o onto R.

Proof. The C-linear Lie group action ¢ppr : U(H) X Mg o — Mg, induces, due to its C-linearity, an
action ¢r on R such that the map myr is equivariant, as follows:

pr: UH)xR — R,
(9, [WIr)  — lom(g,¥)]r.

Let Vs denote the algebra of fundamental vector fields of ¢ As a consequence of (2.35), vectors in Vi
project onto R giving rise to a new finite-dimensional Lie algebra of vector fields Vx. The projection
map myr : Moo — R induces a Lie algebra morphism 7ar«|v,, : Vir — Vg. Then, the restriction to
Mg, of the Lie-Kihler system X' describing Schrédinger equation also projects onto R, giving rise to
a Lie system Xg .

It can be proved that Xg admits a Vessiot-Guldberg Lie algebra isomorphic to su(H). As Vi ~
u(H) ~ R @ su(H), the kernel of mpsr+|v,,, which is an ideal of Vj;, may be either zero, isomorphic to R,
to su(H) or to u(H). The one-parameter group of diffeomorphism induced by the vector field T" is given
by @ : ) € Mg — etp € Mg . Hence, mpr«(T') = 0 and T belongs to the center of Vy;. As Vg # 0
and in view of the decomposition of Vs, then ker mpyr. ~ (I') and Im mprra|v,, =~ su(#H). Thus, the
projection of the Lie-Kihler system X onto R admits a Vessiot-Guldberg Lie algebra Vz ~ su(H). O

(2.35)

In the case of 2-level systems, a simple computation shows that there exist vector fields Y, on R such
that myr«(Xo) = Ya for @ =1,2,3. Indeed,

0 0 0 0 0 0
Y —_ s P Y = —_— R Y = —UY— _ 2.36
! 28y+y82’ 2= %5 %oz y5x+$8y (2.36)
The Lie brackets between these vector fields read
3

Y1,Ys] = =Y3, [Yo,Y3]=-Y;, [Y3,Yi|=-Y, = [V;,Y;]= —Zﬁjklyb Jk=1,2,3 (2.37)
=1

The projection of the Lie-Kéhler system X' given in (2.13) onto R, i.e. the t-dependent vector field
XH on R satisfying (XH); = marr.(Xy), becomes

X =Y "B;(t)Y;, teR (2.38)

Comparison between (1.39) and (2.37) shows that the Vessiot-Guldberg Lie algebra of X% is isomorphic
to Herm(2) = su*(2). Therefore, X4 is a Lie system. Observe that Yi,Ys,Y3 span a two-dimensional
distribution on R.

Returning to the general case, the following proposition shows that R can be endowed with a Poisson
structure, turning Vz into a Lie algebra of Hamiltonian vector fields.

Proposition 2.27. The Lie system X& is a Lie-Hamilton system with respect to the bivector field
TR« (§2), which is a Poisson tensor.

Proof. Since Lr§) = 0, the Poisson bivector {2 on Mg o can be projected onto R. Additionally,
TR« ([, Qsn) = [Taure (), Tarr ()]s, (2.39)

with [, -]sy being the Schouten-Nijenhuis bracket [265]. Thus, mpr.(£2) is a Poisson bivector on R.
The vector fields X, spanning the Vessiot-Guldberg Lie algebra Vj; of X are Hamiltonian relative to
the restrictions to Mg o of the functions h, in (2.22). Such Hamiltonian functions are invariant with
respect to the action of U(1) on Mg, and hence projectable onto R. The projections myr«(Xq) are
thus Hamiltonian vector fields with Hamiltonian functions z, such that h, = 7}z (zo). Therefore, the
Vessiot-Guldberg Lie algebra Vx on R consists of Hamiltonian vector fields relative to mprr.(€2). O
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Proposition 2.28. The Vessiot-Guldberg Lie algebra of the Lie system Xf-g consists of Killing vector
fields with respect to the metric induced by the projection of the tensor field G onto R.

Proof. As shown in (1.115), the Lie derivative of G with respect to I' is zero. Hence, G projects onto R.
Since G is Riemannian, it is non-degenerate, and so is its projection onto R. giving rise to a Riemannian
metric on R. The vector fields of V), are Killing relative to G and projectable under my;r.. Therefore,
their projections, namely the elements of Vi, are also Killing vector fields relative to the projection of G
onto R and span a Vessiot-Guldberg Lie algebra Vi of Killing vector fields. O

The projections of the contravariant tensor fields 2 and G onto R can be easily computed for the
2-level system. For example, the Poisson bivector €2 on Mg projects onto R giving rise to the Poisson
bivector

i (Q)—Zi/\g-ﬁ-xg/\g—&- 2/\g
MR = 2 Moy T Yoy 52 " Yoz " B

in the coordinate system given in (2.31). Similarly, the tensor field G on Mg projects onto R giving rise
to the tensor field

(2.40)

0 0 0 0 0 0
D) =2+ ) L L@ — @ — . 2.41
murs(G) = (@7 4y + ) 8x®8x+8y®8y+8z®8z ( )
This tensor field naturally defines a Riemannian metric gg on R given by
dr®@der+dy®dy +dz ®dz
gr = oy (2.42)

(22 4 42 + 22)1/2

It is immediate to check that the Lie derivatives of these tensor fields with respect to the vector fields
(2.36) are zero, in agreement with Propositions 2.27 and 2.28.

2.3.3 Lie-Kahler system on the projective manifold P

As proved above, it is possible to project the Lie-Kihler system X' associated to a quantum Lie system
H(t) onto the projective manifold P. Additionally, this manifold presents a K&hler structure that is
preserved along the evolution. Thus, the time-dependent vector field representing the projective time-
dependent Schrodinger equation happens to be again a Lie-K&hler system.

Lemma 2.29. The Lie-Kdihler system X on Mg o related to a time-dependent Schrédinger equation is
projectable under m : Mg o — P onto a Lie system Xg.

Proof. Let op : U(H) x Mg o — Mg, be the action the unitary group on Mg . There exists a natural
action of U(H) onto P given by

N
= [om(g,9)lp. (2.43)

Then, the map 7 : Mg, — P is equivariant. Let Vj; and Vp denote the Lie algebras of fundamental
vector fields of ¢); and @p, respectively. Each vector field of V), projects onto a fundamental vector
field of pp. As X takes values in Vjy, this ensures X}, = 7, (XfT) to exist for each ¢t € R. Thus, X}
is a Lie system whose Vessiot-Guldberg Lie algebra is Vp. O

Definition 2.30. Given a Schridinger equation (2.11), with X its corresponding Lie-Kdhler system on
Magq, the projective Schrédinger equation on P is the system of differential equations

% =XH(t,¢), c€eP, VteR, (2.44)

where Xg is the projection onto P of XH under m: Mg o — P.
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Theorem 2.31. The system (2.44) is a Lie-Kdhler system with respect to the natural Kdhler structure
on P. Its Vessiot-Guldberg Lie algebra is, in general, isomorphic to su(H).

Proof. In view of Theorem 2.20, the vector fields of Vj; leave invariant G and €2, i.e. LxQ =LxG =0
for every X € V). Since this vectors are projectable onto P, they span a Vessiot-Guldberg Lie algebra
Vp for X} of Kéhler vector fields relative to the natural Kihler structure on P.

The natural projection map 7 : Mg o — P induces a Lie algebra morphism 7.|v,, : Vi — Vp. As
Vi ~ u(H) ~ R @ su(H), the kernel of m,|y,,, which is an ideal of Vjs, may be either zero, isomorphic
to R, to su(H) or to u(H). The one-parameter group of diffeomorphism induced by the vector field T on
Mg, is given by ol .y € Mg,o — €' € Mgo. Hence, m.(I') = 0 and I' belongs to the kernel. Since
Vp # {0} and in view of the decomposition of Vi, then kerm, ~ (I') and Imm,|y,, ~ su(H). Thus,
V’p ~ SU(H). O

2.4 Superposition rules for Schrodinger equations

The previous section has proved the equivalence between Schrédinger equation and Lie systems. Thus,
the tools developed for the study of Lie systems can be employed in order to describe quantum evolution.
In particular, it is possible to devise superposition rules that give as a result the general solution to the
Schrodinger equation, either on Mg or on any of the quantum quotient manifolds.

As explained in the beginning of the present chapter, the existence of superposition rules in Quantum
Mechanics is not a new discovery. Consider a Schrodinger equation on a finite-dimensional Hilbert space
Ha

WS () = HOWD), <R (2.45)

The general solution for this differential equation can be obtained, due to the linear nature of H, as
() =D kilw;(t), k..., kn €C, n=dimcH, teR, (2.46)
j=1

with [¢1(2)), ..., |¥n(t)) linearly independent particular solutions. A similar expression cannot be found
on the projective Hilbert space, as it is not a linear space. Lie systems, not being bounded to linearity
conditions, generalise this idea. As shown in the following theorems, it is possible to derive a superposition
rule on Mg and also on the quantum quotient manifolds. It is proved below that the superposition rule
on Mg thus obtained depends only on n — 1 particular solution; however, unlike (2.46), it is non-linear
for n < 2.

2.4.1 Particular solutions of the Schrodinger equation

It is possible to determine, for each manifold, the necessary number of particular solutions in order to
derive the superposition rule. The algorithm that gives the number of necessary particular solution has
been presented in [30,82], and summarised in Section 2.1.1. The aim of the present section is to apply this
algorithm to the Lie-Kahler system on Mg. In order to obtain a relevant result, physical considerations
have to be made. Due to the expression (2.12) of quantum Lie systems, the general Vessiot-Guldberg
Lie algebra of a generic Lie-Kéhler system on Mg is isomorphic to O = Herm(?). From a physical
perspective, however, only vector fields with non-zero projection onto P are relevant. This is no the case
of the Hamiltonian vector field X; associated with the identity observable. This element, and any one
proportional to it, can thus been taken out of the Vessiot-Guldberg algebra of the Lie-Kéahler system.
The result is isomorphic to the algebra of traceless Hermitian operators on A, which is itself isomorphic
to su(H). This is the algebra of traceless skew-Hermitian operators on H, and the Lie algebra associated
to the Lie group SU(H) of special unitary transformations on H. Because of this physical property, an
interesting result can be obtained, as seen next.
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Theorem 2.32. Every Lie-Kdhler system X on Mg with a Vessiot-Guldberg Lie algebra VH isomorphic
to su(H) admits a superposition rule depending on n — 1 particular solutions.

Proof. Consider a traceless quantum Lie-system H (t) on H and its corresponding Lie system X on My.
In light of Theorem 2.20, this system admits a Vessiot-Guldberg Lie algebra V of Kéahler vector fields
isomorphic to su(?). The first step to derive a superposition rule is the determination of the smallest
m € N so that the diagonal prolongations to Mg of the vector fields of VH span a distribution of rank
dim V¥ at a generic point. Since V¥ C V) and V# ~ su(H), the elements of V are fundamental vector
fields of the standard linear action of SU(H) on Mg (thought of as a C-linear space). The diagonal
prolongations of V' to M3 span the tangent space to the orbits of the Lie group action

o SUH)x MG — MY
Uity ... ,tm) — (Ui, ..., Uthy).

The fundamental vector fields of this action span a distribution of rank dim V" at § € M¢' if and only
if its isotropy group O¢ at £ € M} is discrete. With the hypothesis m = n — 1, the elements U € Ok,

with £ := (Y1,...,¢n_1) € Mg_l, satisfy

(2.47)

U¢j:¢ja ]:1,2,,n—1 (248)

At a generic point of Mg_l, the components 1, ...,%,_1 can be assumed to be linearly independent
elements (over C). Then, the knowledge of the action of U on these elements fixes U on {1, ...,¥,_1)c C
Mg, where it acts as the identity map. If ¢ is orthogonal to (¢1, ..., %¥n_1)c with respect to the natural
Hermitian product on #, then U must also be orthogonal to (¢1,...,%,_1)c because of (2.48) and
the unitarity of U. Therefore, U is proportional to 1. Since U € SU(H), then Uy = ¢ and U = 1d.
Therefore, the isotropy group of ¢™ is trivial at a generic point of Mg_l, the fundamental vector fields
of ™ are linearly independent over R and there exists a superposition rule depending on n — 1 particular
solutions. O

It is worth noting that, if m < n—1, then the isotropy group for ¢™ is not trivial at any point of Mg
Given m linearly independent elements (41, ..., %,,) over C, there exist special unitary transformations
on Mg acting as the identity on (¢1,. .., % )c and leaving stable its orthogonal complement. Hence, the
isotropy group on any point of Mg' is not discrete.

Since the elements of U(H) act on Mg preserving the norm relative to the Kéhler structure, the Lie
group action ¢y given in the proof of the previous theorem can be restricted to Q™. In view of this, the
previous proof can be slightly modified to prove that the restriction of ¢}; to Q™ have a trivial isotropy
group at a generic point for m = n — 1. This proves the following corollary.

Corollary 2.33. FEvery Lie system Xg on Q with a Vessiot-Guldberg Lie algebra VH C Vg isomorphic
to su(H) admits a superposition rule depending on n — 1 particular solutions.

Similar results can be proved for the Lie systems on the remaining quantum quotient manifold R and
P, as seen next.

Theorem 2.34. Fvery Lie system X{I on R admits a superposition rule depending on n particular
solutions.

Proof. In view of Proposition 2.26, the Lie system XX admits a Vessiot-Guldberg Lie algebra Vg of
fundamental vector fields isomorphic to su(H). Also the proof of Proposition 2.26 shows that the diagonal
prolongation of the elements of Vx to R™ are the fundamental vector fields of the Lie group action

om - SU(H) x R™ - Rm

U;[1r, - [Umlr) — (Utrlr, -, [Udm]r)- (2.49)

The derivation of a superposition rule for Xg requires the determination of the needed number m of
particular solutions. This number is the smallest positive integer so that the diagonal prolongations of
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vector fields in Vi become linearly independent at a generic point. This occurs at £ € R™ if and only
if the isotropy group of this action at £ is discrete. If m = n, then the elements of the isotropy group of
% at a generic point (¢q,...,1,) € R" satisfy

U[wJ]R = [wj]Ra J = 1723"'777“ (250)

At a generic point of R™, the components 1, . . ., ¥, are linearly independent elements (over C). In view of
(2.50), the operator U diagonalises on the basis ¢1,...,9,. Since U € U(H), then (U, Ut;) = (15, 1;)
for i, = 1,2,...,n and all factors in the diagonal of the matrix representation of U must be equal. As
U € SU(H), the multiplication of such diagonal elements must be equal to 1. This fixes U = ei2mk/n
for k € Z. Therefore, the stability group of ¢ is discrete at a generic point of R", the fundamental
vector fields of ¢/, are linearly independent over R at a generic point and X{I admits a superposition
rule depending on n particular solutions. O

As presented in Figure 2.1, the projective manifold that P can be embedded naturally within R.
Additionally, the projection mgp : R — P is equivariant relative to the the Lie group action of SU(H)
on R and the action pp of SU(H) on P. Following the same line of reasoning as in Corollary 2.33, the
following result can be proved.

Corollary 2.35. FEvery Lie-Kdhler system on P admits a superposition rule depending on n particular
solutions.

2.4.2 Constants of motion and superposition rules

The next step in order to obtain the superposition rules for Schrodinger equations is the computation
of constants of motion. The characterisation of Lie systems on the relevant manifold, that has been
carried out along the chapter, makes this task easier. As shown next, it is possible to describe a general
method in order to obtain constant of motion for Lie-Kahler systems. This method could have interesting
applications in order to obtain solutions for the Schrodinger equation, as it can be easily implemented
in numerical computations. Thus, Lie systems prove to be a powerful tool in the computation of the
dynamics of quantum systems.

Firstly, this section describes the procedure to obtain a superposition rule for a Lie-K&ahler system
XH on Mg, determined by a traceless quantum Lie system H (t), as given by (2.13):

H(t) =Y bi)H, = Xx7=>bt)X;, X;:=Xg, (2.51)
j=1 j=1

As shown by Theorem 2.32; this superposition rule depends on n — 1 particular solutions, one less than
the linear one (2.46). In contrast, the new superposition rule is not linear (except in the case of 2-level
systems; see next section).

The superposition rule is derived through a number of constant of motions of the diagonal extension
of the Lie system to (Mg)™. The number of necessary functions is equal to the dimension of the manifold
Mgq. Thus, the superposition rule for the Schrédinger equation on Mg is obtained in terms of 2n functions
on (Mg)™. These functions are first integrals for the diagonal prolongation X ["] and hence for all the

diagonal prolongations X([f,l], with a« = 1,2,...,r, of the vector fields spanning the Vessiot-Guldberg Lie
algebra of X,

Lemma 2.36. Consider the volume form Qqy on the complex Hilbert space H defined in the given coor-
dinate system as
Qy :=dz1 A+ Adzy,. (2.52)

Let Qr, Q5 be the n-forms on Mg defined as in terms of the real and imaginary parts of Qyy:

(QR)p(v1,. - yvn) = vVRReQu (Jv1), .-y vn)), () (v1,. .o vn) = VRIm Qs (1), ..., o),
(2.53)
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for any ¥ € Mg and any set vi,...,v, € TyMqg. These n-forms are symmetries of Lie-Kdhler systems
associated with traceless quantum Lie systems.

Proof. The rate of change in volume in A for a unitary evolution is proportional to the trace of the
generator of such evolution. Thus, traceless generators define evolutions that preserve the volume. When

transported to Mg, these evolutions preserve both Qr and €. O
The value Q4 value on a set of vectors [11), ..., [¢)") € H can be directly computed by the determinant
of their coordinates as ) )
Y1 Uy
Qu([h),.. ") =det [ 1 ], (2.54)
Pp - 4

with w{, ..., %) € C the coordinates of [1)7) in the given basis, for j = 1,2,...,n. The real and imaginary
parts of this determinant yield the values of Qg and ;. In particular, this expression is useful to compute
their coordinate expressions. For the 2-level system, their expressions are

Qrp = dql A dQQ — dpl A dpg7 Q= dql A\ dp2 =+ dp1 A\ dQQ. (255)
Larger expressions are obtained for systems with greater dimension.

Lemma 2.37. The functions I{,I3,... IS, I3 - (Mg)™ — R defined as

n
I§ = gM(AD S (AD)Y)) = Z(Q(O)ql(cj) (O)p](cj))’

k=1

0 0
(@ VpY) — pV ),

NE

s._ _[n 0 j _
I3 = gi(r©, 5p;(A0))) = (2.56)

b
Il

1

I’ICL = Q%] (A(O)7 SOl(A(l))a AR SO(7L—1)(A(n71))> Re(det(q/) w(n 1)))
I’fb = Q[In] (A(O)7 SOI (A(l))a ey SO(nfl)(A(n_l))) = Im(det(w(o), A ’w(n—l)))y

are constants of motion for the diagonal prolongation X™1") of the Lie-Kdihler system X on Mg defined
by a traceless quantum Lie system H(t). These functions satisfy the relations

or;  or; oI oI
¢\ g1 9" 9q;”
Jmlarey =drs, j=1,2,...,n;  det % % a{;) ai; #0. (2.57)
J 7 Ty p; Op; (9p ap
or; o1y ajg ajg
apy)  apy apy)  apy)

Proof. The Lie-Kéhler system is decomposed as in (2.51). The vector fields X7, ..., X, are Kahler vector
fields relative to the Kéhler structure (g,w, J) on Mg. Therefore, their diagonal prolongations XL”] are
Kihler relative to the diagonal prolongation (g™, wl™ Jl"l) to (Mg)™ of the Kahler structure (g,w, J),
namely

n n—1 n n—1
wl = Z Z dg; (@) A dp Z Z dq(a) ® dg, () 4 dp(a) ® dpja)),
j=1a=0 j=1a=0 (258)
(9 @ 9 (a)
(n] — a
J *ZZ 8(“)®dqj 8(“)®d
j=1a=0 \9Pj
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Similarly, if X is a Hamiltonian vector field relative to w with Hamiltonian function hx, then X[ ig
a Hamiltonian vector field with Hamiltonian function h[)?]. As the vector fields X {n], et ,Xm are Killing
vector fields with respect to gl™ and symmetries of the tensor fields S, for r,s = 0,1,2,...,n — 1 and

r # s, presented in (2.7), the following common first-integrals for all such vector fields are obtained:

n

15 = g A, S0, (A0) = Y (" a” + pp),

k=1
n j=1...,n—1
15 = g, 8o,(A0) = 3" (g p}) — pVa),
k=1

As (gI") wlM)| gy conform a Kihler structure, the functions satisfy by definition the relation JI"(dI¢) =

dIf, for K =1,...,n — 1. Observe that these functions are first-integrals not only for XC[:L], but also for
I'l"). Thus, the last two functions I¢, I? are not first-integrals of '™, They can be constructed with help
of the n-forms Qr and Q. Let IS, I be the function defined as

¢ = ol (A<0>, Sor(AM), ... So(n_l)(A(”‘l))> 7
3= ol (A(O), Sor (A, ... so(n_l)(AWl))) .

These functions satisfy also that J™(dI¢) = dIf.

It remains to be proved that the determinant of the matrix of derivatives with respect to qgo)’ p(lo),
ceny q%o), pS’) is not zero. Observe that the pairs of functions (If, I7) and (];,, I), with 5,3 =1,2,...,n,
depend on different variables if j # j’, so their derivatives are independent functions. Also, the relation
Jmldr £) = dI; proves that I{ and I; are independent, for any j = 1,2,...,n. Thus, the determinant

does not cancel (at a generic point). O
With the functions defined in (2.56), consider the following system of equations:
L@ g0 0Dy =k, O W, p0) =k =120, (2.59)

The solution 1(?) to the system can be obtained, at least locally, in terms of the coordinates of (1),
..., ™1 and 2n real constants ki, ..., kan. In other words, Lemma 2.37, in particular equation (2.57),
guarantees that the functions are functionally independent and the system (2.59) can be solved locally
for (%), The solution for the system is computed next.

Theorem 2.38. There ezists a superposition rule ® : (Mg)" ™! x R™ — Mg for the Lie-Kdhler system
XH on Mg associated to a traceless quantum Lie system H(t). Locally, the superposition rule takes the
form

a;” SR p o 1arg 1 an
M2 M2 [[p™=0112 [lp™=D[12 0 ggl® O gg{®
qu) Y U G S | G ) CHN W) 1
| | TR O [0 eI 095 ©gp0 | [
g gy Py g P 1o 1 ar | \ken
) 2 2
& O] ]2 [@D[E  JEDE 89,0 6 5
p g A S W) RN W)
@12 ]2 [[pn=D]]2 [[p™=D[]2 0 gp® O gp®
(2.60)
where ki, ..., kan are real numbers, M, ... =1 Mg are a set of points which are linearly indepen-

dent when considered as vectors in H, and © := HZ: [|ab(@) 2.
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Proof. Due to (2.57), the system of equations
I]C(,(/)(O)a?nb(l)vw(n_l)) = k2j—17 I]S(Z/)(O)aqwb(l)vw(n_l)) = k2ja .7 = 1a2a"'an7 (261)

can be solved locally for 1(%). The resulting expressions is the superposition rule for the system. Since
all functions are linear in the coordinates of ©(?), then the system can be written in matrix form as

oIf oI§ o oI oIf q§1> pgli . q%) pS)
1 1
8q(0) ap(O) 8q(0) 8p(0) pg ) 7q§ ) o p7<1 ) *q; )
ar; oI or; o1 | (g : : - : o
Tt (n 1) (n—1) (n 1) (n—1)
3q(0) 8]2(0) aq(o) Bp(o) p§0> 2] - Dr ng) k1
(n 1) 7q(n—1) o (n 1) _(n-1)
.. : — 1 an . = . .
BIC 8IC o BIC 8IC qglo) ¢ ¢ o aIE oI qy(lo) kon
0" op” 0 oY | \p® og” " oqy)  op )
or, oL, oL 98I, oI3 oI oIs oIs
quo) 8])50) aq’go) 8]);0) 8(](0) ap(o) aq(o) 8}7(0)

This expression can be simplified enough so that the coefficient matrix can be inverted. Observe that

Z(qg(r)qg(s) +p{7p\) = gM(AM S, (AL)),

j=1
" r,s,=1,...,n—1. (2.62)
> (78 = p ) = g, 5., (A1),
j=1
These values are constants of motion. Given a set of linearly independent vectors 1), ... (=1 ¢ Mg,

one can always find linear combinations of them such that these functions are zero for r # s. Also, the
following relations hold:

oIS N OI¢ " oI N oI

(1) (1) Zin | i) (i) YIn
qa Pa - « — 4y

l 3p&0)] zzl [ 8q(0) 3p(0)

- (@) (D) (n=1)yy =
8(1&0) ( (¢ - Re(detW 7¢ 9. 71/) )) - 07

.\ OIC N OI¢ " o OIF o OI i .
[p(” i g2 ] = [q((;) Lt pl) "] = Im(det (@, "), ... p(=1)) =0,
a 1

@ E) ((10) @ 9 (0) = aq((xo) 8])((10)
" ore \ ore \ " ors \ ors \°| =t
n 4| = — Zn S e — W(Q)H27
> |(ain) () | =2 | () () | -1

fori =1,...,n — 1. Defining © := HZ: 4(®)||? and choosing ¥V, ..., (=D so that the quantities
n (2.62) are zero, the coefficient matrix can be inverted, giving as a result (2.60). This expression gives
rise to a superposition rule P : (MQ)”_1 x R*™ — Mg for the Lie-Kihler system X#. O

Corollary 2.39. The projection Xg onto Q of the Lie-Kdhler system XH has a superposition rule
Do : (Q)" ! x Q — Q, whose expression is given by (2.60) together with the constraints

2n
[l =...=llnal =1, D k=1 (2.63)
a=1

Proof. This is a direct consequence of the inclusion 1o : @ — Mg already introduced in previous section.
Observe that, with the given constraints, the resulting solution satisfies

;i (@0 +GOP) =1 (2.64)
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This makes possible to restrict the above superposition rule to a new one of the form ®g : o 1x90—-50
for XH. O
Q

A non-linear superposition rule for the Schrodinger equation on Mg has thus been obtained. It is
determined by the constants of motion computed on (Mg)™ for the diagonal prolongation X' (] of the
Lie-Kahler system X . It is possible to obtain an analytic result because of the easy expressions of the
coordinates on Mq. A similar procedure could be carried out in the projective manifold P, as it also has
a Kahler structure. However, a general result as the one presented in (2.60) would be, at least, much
more complicated. This is due to P lacking a global chart. Therefore, it will not be computed for the
general case. Nevertheless, it is possible to derive a superposition rule for simple cases. Next sections
presents the computations for the 2-level system.

2.5 Superposition rules for 2-level systems

This section illustrates the theory presented in this chapter by describing superposition rules for 2-level
systems on Mg and on the quantum quotient manifolds. Recall the existing commutative diagram
presented in Figure 2.1. For the sake of completeness, the diagram is reproduced in Figure 2.2, where
under each space appear the smallest number of particular solutions for its corresponding superposition
rule.

Moo= R*

m=1 Lo

TMR

TMQ
R = R3 w Q= Mgo/Ry 283
m=2 m=1
TRP
\ TQP
Lp
P=R/R, =52

m=2

Figure 2.2: Diagram of the differentiable manifold appearing in the study of 2-level quantum systems. The
number m under each manifold represents the number of particular solutions of the Schrédinger equation in said
manifold that determine the general solution.

On each space, there exists a Lie system admitting Vessiot-Guldberg Lie algebra of Hamiltonian vector
fields relative to different compatible geometric structures, which in turn makes possible the obtention
of their superposition rules geometrically. The following subsections provide these superposition rules,
their relevant geometric properties and their potential applications in Quantum Mechanics.

2.5.1 Superposition rule for a 2-level system on M
Consider a time-dependent vector field X! on Mg of the form

3
XM =>"B;(t)X;, teR. (2.65)

It is an immediate consequence of Theorem 2.20 that X' is a Lie-Kéhler system whose Vessiot-Guldberg
Lie algebra V = (X3, Xo, X3), with X1, X5, X3 given by (2.20), consists of Kahler vector fields relative to
the standard Kéhler structure (g,w,J) on Mg. Also, X’ commutes for any ¢ € R with the phase change
vector field I and with the dilation vector field A, namely T' and A are Lie symmetries of X7,



2.5. SUPERPOSITION RULES FOR 2-LEVEL SYSTEMS 63

The superposition rule for Y¥ depends on a number m of particular solutions that has to be determine.
This is the smallest integer such that the diagonal prolongations to (Mg)™ ~ (R4)m of X1, X5, X3 are
linearly independent at a generic point [30]. The coordinate expressions for X, X2, X3, given in (2.20),
show that they are already linearly independent at a generic point of Mg. Hence m = 1, i.e. the
superposition rule does depend on a mere particular solution. This is a lower number than in the case of
the standard quantum linear superposition rule (2.2), which depends on two particular solutions.

The next step is to obtain the functions that determine the superposition rule. These functions
are given by Lemma 2.37, and they are first integrals for the diagonal prolongations X?],XE,XE] of
X1, X2, X3 to (Mg)? ~ (R$)2. Consider the diagonal prolongations gt Wl R o (Mg)? of the Kéhler
structure on Mg:

ol = sz () A dp;r)’ g[z] _ 21:

r=0j=1 r=0j

(r) r) (r) ()
(dg; ®dq] +dp; " @dp; ),

2
=1

<

(2.66)
g — o _ 0 (r)
ZZ(@ @) 8(_r)®dpj )
r=0 j=1 d;
The functions presented in Lemma 2.37 are the following:

[10(1/)(0),,/}(1)) =g[2](A(O) 501A(1)> (0) 1) (0) (1)+q£0) (1)+p(20)pél),
If(w(o),w(l)) wl(AO 55 AM)Y = q ) p(o)qg) + q(U) @ _ (0) ( ), o.67)
5@, M) Q% (A 55 AWy = qg ) pg ) (1) (0) (1) +ng)pg ),
B@®, M) =0 (A0 55,A1) = ¢ (1) (0)6151) q(o)p( S pPgY.

With the expression of J2 given in (2.66), it is immediate to check that these functions satisfy the
relations

JE(drg) = arg,  JRArs) = dIs. (2.68)
Thus is seems clear that the four functions are independent, hence the matrix of derivatives presented
in (2.57) has to be non-singular in generic points. This matrix can be easily computed in this case, as it
has the following expression:
oIy 01§ oIf oIf
aq(o) ap(o) 3(](0) ap(o)

o1 o opl”  9q oy C B O NN ¢ BE)
| = — P 4 P2 ds (2 69)
o(0) C c . . o _ O _ 1 & :
01§ 01§ 01§ 01 ‘le p12) q%l) Py N
8q(0) 3p(0) 3(](0) 3]?(0) pé ) qé —D *qg

ary oIy oIy Ol
00" opt” 04 opy)

The determinant of this matrix is

det (az%)) = (@ + @ + O + ) (2.70)

Thus, the matrix is regular everywhere in Mg except for the point with coordinates (0,0, 0,0). It is thus
possible to obtain a superposition rule.
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Consider the system of equations

kl,k27k3,]€4 € R. (271)

As detailed in Theorem 2.38, this system of equations is linear in 1/(?), and thus can be written in matrix
form as

(1) (1) (1) (1) (0)

Dy Do q; k1
(1) —q}" —pél) a” ||| _ k| (2.72)
(1) S d k3
(1) —¢ pV =iV \p” s

The matrix of coefficients is (%) , which can be inverted, thus giving the expression of the superposition
rule. The inverse of this matrix is
1 1 1 1
I U

1 (1) pl(l) (1) (1)
( 8{0)) =0 © 1 ) ) OGN (1) ; (2.73)
oY @2+ @2+ @2+ 2 (e’ ) o
1 1) n (1)
D2 4> P

which is in agreement with the expression given in (2.60). Thus, a non-linear superposition rule in Mg

could be given by
(0)

o e
Dy or \ ko
=| —= . 2.74
qéo) (aw(o) > ks ( )
(0) ky
D2

It is possible to further simplify this expression. Observe that the non-linearity is a consequence of
the denominator in (2.73). This denominator is simply the norm of the point in Mg with coordinates
(¢ (1), pg ), ds ), ) ) As proved several times in the preceding sections, the norm is preserved under the
evolution due to the unitarity of Schréodinger equations. Thus, the constants k1, ko, k3, k4 can be replaced
by new numbers that incorporate this factor. By defining the numbers

k;

¢ = , J=1,2,3,4, (2.75)
@+ @2+ 002 + )
expression (2.74) can be rewritten as
q£0) q(l) p(l) q(l) (1) .
p§°) (1) (1) (1) (1) co
o | = <1> <1> (1) Lo : (2.76)
) —pi €
péo) (1) —qél) (1) —q%l) cq

Lastly, the right-side term can be rewritten as a matrix depending on ¢y, co, ¢3, ¢4 acting on a vector of
coordinates in Mq. All these computations are the proof to the following result

Theorem 2.40. There exists a superposition rule for the Lie-Kdihler system XH on Mg of the 2-level
system, given on (2.65), depending on a single particular solution. The superposition Tule

D MQXMQ — MQ

WD, ) o YO =a@w0, ), (2.77)
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can be given the following coordinate expression:

0 1
q% ) c1 Co c3 Cy Q§ )
0 1
pg. ) _ —C2 C1 Cq —C3 pg. ) 2.78
o= |_c —c W |- (2.78)
qs 3 4 C1 C2 qs
pgo) —Cq C3 —C2 C1 pél)

2.5.2 Superposition rule for the 2-level system on Q

Consider the projection myrg : Mg,0 — @ and the natural embedding tg : @ — Mg ¢ defined in Section
2.3. The Lie-Kihler system X can be projected through 770 onto a system Xg on Q, as in Proposition
2.22. This proposition also ensures that the vector fields X;|g, X2|o, and X3|g are Hamiltonian with
respect to the presymplectic structure tpw, admitting Hamiltonian functions hi = tohi. Also, since the
vector fields X7, X2, and X3 are Killing vector fields for g on Mg o, then the vector fields X1|g, X2|0,
and X3|g are also Killing vector fields with respect to t5g.

As Proposition 2.22 ensures that the restrictions Xi|g, X2|g, X3|g are linearly independent at a
generic point of Q, then X|g admits a superposition rule depending on a unique particular solution. This
superposition rule can be obtained by using a similar approach as in the above section, i.e. obtaining three
common first-integrals for the diagonal prolongations X {2] lo, sz lo, X E] |o, which are Killing vector fields
with respect to (L*Qg)m and Hamiltonian vector fields relative to the presymplectic structure (L*Qw)[z].
The latter can be employed to obtain the common first-integrals through invariant functions constructed
through (L*Qg)m7 (L*Qw)m. Importantly, the vector A is not tangent to Q and it cannot be used to
construct invariants. An alternative option is to consider the pull-back via tg of the first integrals on
(Mg ,0)? computed in the above section, thus determining the superposition rule.

Instead of the above, the following approach shoes that the superposition rule for Xg can be obtained
from of the superposition for X*. Observe that X¥ is a Lie system on Mg o with a superposition rule
D : Mgy x Mgo — Mg, and that X/ is tangent to the submanifold to(Q) C Mg, for each t € R.
Assume also that there exists S C Mg o such that ®(Q x S) = Q. Then, the initial superposition rule
can be restricted to elements on Q giving rise to a new superposition principle.

Indeed, the superposition rule ¢ defined in Theorem 2.40 and evaluated on points w(gl), cg € 9, ie.

H’(/J(Ql)H = |lcg|| = 1. The resulting point @(wg),cQ) satisfies that

1915, ca)ll = lleall 195 = 1= @@, o) € Q.

Conversely, there always exists, for points ¢(Qo) € Qand cg € Q, apoint ’(/J(Ql) € Q such that @(z/}(gl), cs) =
w(go)' Hence Xg admits a superposition rule ®g : @ x Q@ — Q which can be formally written as (2.78).

2.5.3 Superposition rules for the 2-level system on R and P

The procedure developed for the Lie-Kéahler system can be repeated in order to obtain a superposition
rule on the quotient manifold R. In particular, the 2-level system is a simple example in which the
superposition rule can be written explicitly.

Recall from Lemma 2.25 that there exists a way to obtain coordinate systems in R. In the case of
2-level systems, there exists a global chart with coordinates x,y, z, as given by (2.31). A Lie system Xg
on R determined by a quantum Lie system H(¢) can be written as

3
X, =Y B;(1)Y;, (2.79)
j=1

where Y1, Ys, Y3 are given by (2.36). The superposition rule for X depends on m particular solutions,
where m is the smallest integer such that the diagonal prolongations Yl[m], YQ["L], Y3[m] to R™ are linearly
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independent at a generic point. Observe that Yi,Ys, and Y3 span a two-dimensional distribution on R.
As the diagonal prolongations enlarge the dimensions of the distributions, it is enough to consider R? to
obtain linearly independent vectors at generic points, hence m = 2 [30,82].

The superposition rule is obtained by computing constants of motion of the diagonal prolongation of
Xg to R3. That is to say, it is necessary to compute common first integrals on R? for the vector fields

Bl _ o 9 0 9 m 9 o 9 9 0 9 0
=5 Y 50 T g0 Y g T gy Y g

Bl _ 0 9 _ ©_0 m_ 9 w0 @ 0 (9 0

D (1 B oy A W Bl o B A - ) S W o (2.80)
Bl _ 0 9 0 9 m_ 9 . 0 @ 9 (9 0

LS nm T g Y gm Y g Y e T @

As proved in Proposition 2.28, vector fields in the Vessiot-Guldberg Lie algebra of X# are Killing
with respect to the metric ggr on R, given in (2.42). As a consequence, the dilation vector field A on R,
with expression

0 0 0

is a symmetry of Y7, Y5 and Y3. The same is true with respect to the diagonal prolongations. Thus, from
the geometric properties of Xg it is possible to obtain constants of motion Iy, Io, I3 : R* — R as

1] ’

] ’

1 (@, xM x@)) .= gBIAO® 55 A =

L(x©, 0 x@) .= gBIAO g, AD) =

js(x(0)7x(1)’x(2)) — g[3](A(°),A(O)) - HX(O)”7

where xU) € R denotes a point with coordinates (x(j),y(j), 2)) € R3, with j = 0, 1,2, and the norm in

R has the expression ||x|| = /22 + y2 + 22.

As the considered vector fields are Killing with respect to the metric, norms are preserved. Thus, it is
possible to obtain new constants of motion simply by multiplying functions in (2.82) by the norm [|x(©)|.
The new functions are

L(x©, 0 x@) i 200 4 O (1) 4 0),0)
L(x© xU) x@) i 20)52) 4 0)(2) | (0),2) (2.83)
L(x@,xM x@) = [xO)2 = (29)? + (y )2 + (:9)?,

The matrix of derivatives of these functions is

on, oL oL
9r0  9y® 9200

PICO R CO R CY

oI ) P ol 0l (2) (2) )
— | = =|z y z . (2.84)
<ax<o> 520 5y 920 2 g0 250

o, Ay Ol
920 9y® 9200

The computation of its determinant,

o1 0 1 2
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shows that the matrix is regular if x(9, x() and x(®) are linearly independent. In this expression and
the following, it is useful to use the vector notation that is common in R3. Thus, x - y and x X y denote
respectively the scalar and vectorial product of vectors in R3.

As the matrix of derivatives is regular at a generic point (x(%), X(l),X(2)) € R3, it is possible to solve
the following system for x(%):

L(x© xW x®)y = k,, ki, ko, ks €R, ks> 0. (2.86)

The solution of these system of equations is precisely the superposition rule for the Lie system ng .
The system of equations can be rewritten as a set of three vector equations in R?:

X X1 = k1, X - X9 = ko, X -x = ks, (2.87)

with ki, ko, ks € R and k3 > 0. Since x; and x5 are not collinear when the matrix (2.84) is regular, this
system is easily solved in x by defining an orthonormal system relative to the standard scalar product
on R3:
f X ;o [[x1[[*x2 — (%1 - X2)%1
X] 1= —, 5 1= = = -
¢ a1/l 2]z 12 = (x1 - x2)

These two new vectors together with their cross product, x} x x5, conform an orthonormal basis for R3.
From (2.87), the general expression for x is

x = K, + kxh = s — (k)2 — (k)2 ) % x5, (2.88)
where the coefficients k] and k) are

k1 / ;L kollx1]]? — k1(x1 - x2)

kl=x-x) = — ky=x- x4 = :
[ /I[P ll2 ]2 = (x1 - x2)?

e l”

Replacing k7 and k% in (2.88), the solution to the system of equations (2.87) is

X :512X1 + 021Xo £ \/]C3H|X1||2HX2||2 - (X1 'X2)2] - (k‘1X1 - k2X2)2 X1 X Xg

[ {2 = (x1 - x2)?

)

where &;; := k;||x;]|* — kj(x; - x;). As the Lie system X% is linear in the chosen coordinate system and
the Riemannian metric related to the standard scalar product on R is invariant under the elements of
Vg, it follows that ||x1]|%, ||x2]|? and x; - x5 are constant along particular solutions of XA . Tt is thus
possible to simplify the expression, leading to the following results.

Theorem 2.41. The superposition rule for the Lie system Xg on R is a function

dr: R2><A - R

2.89
(x1,x%2, (k1, k2, k3)) — x=Or(x1,X2, (K1, k2, k3)), (2:89)

with A == {(k1, k2, k3) € R3 : k3 > 0}, which can be written as
X = 019X + 021X2 + \/k3k12 — (k1x1 — k2X2)2 X1 X Xag, (290)

where ki := ||x1|]?[|x2|* — (x1 - x2)2.
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Regarding the projective manifold P, deriving a superposition rule for Xg amounts to obtain a
superposition rule for the solutions to ng on tp(P), namely those equivalence classes of R coming from
elements of Mg ¢ with the same module.

To obtain the superposition rule for the system Xg on P, consider the natural embedding of P into R
whose image is the set of elements (z,y, z) € R such that 22 + 3%+ 22 = 1. Therefore, P is diffeomorphic
to a sphere S? C R? ~ R3. Consider the superposition rule defined for X{g when restricted to points in
52 i.e. with ||x1]| = ||x2|| = 1. The set of constants has to be constrained in order to obtain solutions in
Q2. From (2.87), the constraints are

[k, k2| <1, ks =1. (2.91)

In consequence, the superposition rule for P can be written in terms of its embedding into R as

X = (512X1 + 521X2 + \/klg — (k1x1 — k2X2)2 X1 X X9, X1,Xg € P, ‘k1|, |]€2| <1. (292)

where k12 := 1 — (x1 - x2)? and &;; := k; — kj(x; - x5), for j,1 = 1,2.

2.6 The relevance of Lie systems in Quantum Mechanics

Systems of differential equations appear in every description of Quantum Mechanics. Thus, it is indu-
bitable that any method of resolution has great importance in Physics. Lie systems offer a new perspective
in this topic. As proved along this chapter, the geometric formalism offers a suitable framework for the
application of this tool. Thus, it is possible to solve the Schrédinger equation for finite-dimensional
systems by means of a superposition rule. Even more, the geometric description is not restricted to the
Hilbert space, as the projective manifold of pure states can also be characterised in geometric terms.
Thus, Lie systems and superposition rules are a powerful tool to describe dynamics on this manifold.
This is very relevant, as the common algebraic description of Quantum Mechanics usually ignores the
projective manifold.

It is remarkable that the superposition rule obtained in this chapter is non linear. Schrodinger
equation, as a linear differentiable equation on a Hilbert space, naturally carries a linear superposition
rule, as indicated in (2.2):

W) = kilv;(t), ki,....kn €C, teER, (2.93)
j=1
where |11 (t)), ..., |¢¥n(t)) are n functionally-independent particular solutions for the Schrédinger system.

The existence of this equation is a property of linear spaces, and gives no information on the structure
of quantum systems. The approach presented here, however, yields a different result. As seen in The-
orem 2.38, Schriodinger equations with traceless Hamiltonians can be solved by means of a non linear
superposition rule. This is related to the quantum nature of the problem. The true set of states for a
quantum system is the projective manifold P, which is non linear. Thus, it is natural to expect that
a Lie system on Mg, that in some way reproduces the true behaviour of quantum systems, enjoys non
linear properties.

Many further studies can be done starting from the results presented here. It is possible to apply
numerical methods in conjunction with superposition rules in order to obtain solutions for particular
dynamics of quantum systems. This may have innumerable applications in Molecular Dynamics, Solid
State Physics and other fields. On the other hand, the theory of Lie systems can be applied to other
formulations of Quantum Mechanics. As seen in the following chapters, a joint description of pure and
mixed states of quantum systems can also be described in geometrical terms. Therefore, Lie systems may
also offer interesting results in field of Molecular Dynamics.



Chapter 3

Geometric formulation: the set of
pure and mixed states

In Chapters 1 and 2 of this dissertation, the geometrical description of pure states of quantum systems
has been studied. Schrédinger picture plays a key role, as it gives an appropriate framework for the study
of quantum systems. A different approach, however, is necessary in order to describe mixed states, i.e.
situations appearing in statistical systems in which there is no complete information on the actual state
of the system. Due to Gleason’s theorem [136], mixed states are usually characterised by density matrices
(see below). Density matrices are Hermitian, positive, trace-class operators on the Hilbert space that
fully characterise the possible statistical ensembles of a quantum system. For the purpose of developing
a geometric formalism, however, it is useful to consider an alternative, although equivalent, approach
offered by the Heisenberg picture. According to it, dynamics of quantum systems can be described as
evolution of observables. This description allows for a characterisation of the set of pure and mixed
states. It is a simple task to perform this analysis in a geometric language, thus appropriately describing
the structures present in these sets. The aim of this chapter is thus to describe the set of pure and mixed
states of quantum systems by means of a geometric formalism.

In its modern formulation, the Heisenberg picture of Quantum Mechanics associates a complex C*-
algebra to each quantum system. Quantum observables are represented by self-adjoint elements in this
algebra, i.e. by invariant elements with respect to the existing involution. In the Heisenberg picture,
observables are taken as the fundamental objects, instead of states, which are simply identified as func-
tionals on the C*-algebra. Dynamics, therefore is characterised in terms of a trajectory on the C*-algebra
of the system. For a careful description of this approach, see the works by Jordan, von Neumann and
Wigner [166], Gelfand and Neimark [133], Segal [239], Emch [120] and Strocchi [252].

The foundation of the algebraic approach to physical systems relies on an empirical interpretation
of Physics. Accordingly, a system is defined by its physical properties, called observables. A proper
mathematical description of the properties of observables is thus enough to completely characterise the
system. This interpretation was first proposed in relation with quantum systems; in this context, it is
commonly known as the Copenhagen interpretation of Quantum Mechanics.

Before dealing with the proper description of the Heisenberg picture, several properties of the alge-
braic structures presented here will be discussed. In particular, Jordan algebras and their relation with
associative and Lie algebras will be presented.

The chapter is organised as follows. Section 3.1 presents the Heisenberg picture of Quantum Mechanics
and describes the Lie-Jordan algebra of observables and the set of states that are associated to quantum
systems in this approach. In order to offer a better characterisation of observables, Section 3.2 offers a
description of Lie-Jordan algebras. Geometric formalism is introduced in Section 3.3, both on the dual
space of the Lie-Jordan algebra of observables and on the set of states of the quantum system. This is
illustrated in Section 3.4 by the description of the set of states of a 2-level system.

69
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3.1 The Heisenberg picture of Quantum Mechanics

This section presents a brief description of Heisenberg picture. In its modern formulation, the Heisenberg
picture of Quantum Mechanics associates a complex C*-algebra to each quantum system. Quantum
observables are represented by self-adjoint elements in this algebra, i.e. by invariant elements with respect
to the existing involution. In the Heisenberg picture, observables are taken as the fundamental objects,
instead of states, which are simply identified as functionals on the C*-algebra. Dynamics, therefore is
characterised in terms of a trajectory on the C*-algebra of the system.

A rigorous derivation of Heisenberg picture can be achieved by means of a careful identification
of the mathematical objects describing physical objects. This minimalistic approach to Physics was
proposed by authors such as Jordan, von Neumann and Wigner [166], Gelfand and Neimark [133], and
Segal [239]. In his work, Segal details the postulates that observables have to satisfy, which are based
on physical properties shared by all systems. From them, it is possible to prove that observables are
necessarily elements of a complex C*-algebra that encodes their properties. It should be stressed that
this mathematical description can be particularised to any physical system, either classical or quantum,
as it is based on the physical properties that any observable has to satisfy.

Since its first proposal several works have dealt with this algebraic description of physical systems,
such as those by Emch [120] and Strocchi [252]. This last reference presents a pedagogical approach to
the algebraic description, which will be summarised in the first part of the section. When particularising
to the case of quantum systems, the Heisenberg picture of Quantum Mechanics is obtained. The main
features of this picture are presented in the remaining of the section.

3.1.1 An algebraic description of physical systems

From an empirical point of view, physical systems are described by the values of the measurements of
physical magnitudes on them. In other words, systems are characterised by the observables that can be
measured on them and by the possible values of such measures. Thus, the properties of the set O of
observables of a physical system have to be determined.

An observable A € O is characterised by the values of its measurements in different states of the
system. These values are always real numbers, hence it is a simple matter to consider additions and
sums of observables. Following the book by Strocchi [252], the set O of observables of a mathematical
system can be given the structure of a real linear space. In the same way, it is possible to consider powers
A™, whose measurements will give the corresponding powers of the values of the measurements of A. In
particular, the 0-power of an observable is A = I, the ‘identity observable’ whose value is 1 for any
measurement.

The linear structure and the existence of powers in O make possible to define the following symmetric
product:

A®B=(A+B)?-A>-B? ABcO. (3.1)
With this definition, the square of an observable A € O is obtained as A® A = 2A2. If linearity is assumed
on its arguments, it satisfies the properties of a Jordan product [165, ]. Thus, O has naturally the

structure of a linear Jordan algebra, presented in Definition 1.11 and reproduced here.

Definition 3.1. A linear Jordan algebra over a field K is a pair (J,®) where J is a linear space over K
and ® is a symmetric K-bilinear composition law in J, called the Jordan product of the algebra, satisfying
the Jordan identity

(zoy) or’=20(yor?), xycl (3.2)

where x* == x © x. A linear Jordan algebra is called unital if there exists an element 1 € J such that
r©1=ux for any x € J.

2

As shown by Segal [239], the description of observables as elements in linear Jordan algebras is enough
in order to represent most of the desired properties of physical system. It is possible, however, to obtain a
simpler characterisation by considering the complex extension of the set of observables O. Its description
requires the following definitions.
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Definition 3.2. A Banach algebra B over a field K is an associative algebra over K which is also a
normed and complete space. The norm ||| and the associative composition law of a Banach algebra
satisfy the condition

eyl < llzllllyll,  Vz,y € B. (3.3)

Definition 3.3. A C*-algebra A is an involutive Banach algebra over the field C of complex numbers,
satisfying the condition
lz*z|| = ||z]|*,  Va e A, (3.4)

where * is an involution in A which is also an antiautomorphism
()" ==z, (zy)" =y z*, Vax,ye A (3.5)
An element x € A is said to be self-adjoint if x* = x.

Since its conception, it is known that linear Jordan algebras are divided in two kinds: special and
exceptional [4, , ,201]. Special Jordan algebras can always be embedded in a larger C*-algebra;
exceptional Jordan algebras, which are few, do not have this property. Furthermore, exceptional Jordan
algebra do not appear in the study of physical systems [201]. Thus, the algebraic description of the
Heisenberg picture assumes that, for any physical system, there always exists a complex C*-algebra A
whose self-adjoint elements constitute the set O of observables.

States of the system are represented in this interpretation by functions on O that associate to each
observable the possible results of its measurements. These functions are assumed to be linear. Thus,
the set S of states of the system is a subset of the dual space O*, or equivalently a subset of A4*. Given
a state p € § and an observable A € O, the quantity p(A) is known as the expectation value of A for
the state p. This number represents the average value of A when evaluated on a system in the state p,
which in general represents a probability distribution on the phase space of the system. Because of the
properties of observables and averages of measurements, the states are normalised positive functions:

p(I)=1, p(A*)>0, VpeS, VAcO. (3.6)

By linearity, states can be extended to act on the whole C*-algebra. Thus, a state p on the C*-algebra
A is a linear map p : A — C satisfying

p(I)=1, p(A*A) >0, p(A)=p(A"), VpeS, VAcA (3.7)

This extension of states to the whole C*-algebra is useful in an algebraic formulation of the theory, as it
allows for a matrix characterisation of states. However, a geometric formalism can deal directly with the
algebra O of observables. Thus, (3.6) will be enough in order to characterise the geometric properties of
the set S of states.

As proved in the aforementioned references, it is enough to determine the C*-algebra associated with
a physical system and the corresponding set of states in order to fully characterise it. Different theories
are represent by different properties of the observables and states. Classical Mechanics is described by a
commutative C*-algebra of observables. Quantum systems, on the other hand, require a non-commutative
algebra of observables. This is the most important difference between both theories.

3.1.2 The C*-algebra of the Heisenberg picture

Classical Mechanics is a trivial case of the mathematical structure defined above. It is simple to prove that
Classical Mechanics is described by an Abelian algebra of observables, and that this algebraic approach
recovers the canonical description of classical systems.

In the case of Quantum Mechanics, the situation is different, as shown by experiments carried out
in the first years of the 20th century. Realistic measurements on physical systems are always subject to
some indetermination, i.e. some dispersion on the values of the measurement. In order to obtain this
dispersion, recall that states p allow to compute expectation value of observables. Thus, the standard
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derivation A,A of an observable A for a system on a state p is given in the algebraic setting by the

following quantity [252]:
ApA = /p(A%) = (p(A))>. (3.8)

Classical Mechanics assumes that there exists no lower bound to the values of these dispersions. As proved
experimentally, however, this is not always the case when two observables are measured simultaneously.
In particular, if the position X; of a quantum particle along a certain direction and momentum P; in the
same direction are measured, the Heisenberg uncertainty principle holds for any state of the system:

1
(ApX;) (A, P)) = > (3.9)
in natural units, i.e. with & = 1. Observe that the Heisenberg uncertainty principle was already deduced
in (1.27) in the context of the Schrédinger picture. As in that case, there exists a generalisation of this

relation for any pair of observables.

Theorem 3.4. The following relation between standard derivations of observables holds:

1
(8,4)8,B) > S|ol14, B)|, VAB€O, Vpes, (3.10)
with [A, B] = AB — BA.
Proof. See the book by Strocchi [252] for a derivation of this relation, which is a consequence of the
positivity of states. O

This relation is the extention to pure and mixed states of the Robertson uncertainty relation, presented
in Corollary 1.16. A non-zero lower bound to the product (A,A)(A,B) exists for any pair A,B € O
if and only if O is a non-Abelian algebra. The non-commutativity of observables is a basic notion in
Quantum Mechanics, and it represents the most fundamental difference with classical theories.

The characterisation of non-commutative C*-algebras is a relevant topic, necessary in order to un-
derstand the equivalence of Schrodinger and Heisenberg pictures. Elements in a C*-algebra can always
be represented as operators acting on a Hilbert space, described by the Gelfand-Naimark-Segal (GNS)
representation. The result establishes an isomorphism between C*-algebras and bounded operators on
Hilbert spaces, as proved by the Gelfand-Naimark theorem. The results are presented next; proofs can
be found in [81,122,252] and refereces therein.

Theorem 3.5 (GNS representation). Let A be a C*-algebra and p a state on A. There exists a Hilbert
space (Hp, (:|")p) and a representation m, : A — B(H,), with B(H,) the algebra of bounded operators on
H,, satisfying the following statements:

1. There exists a cyclic vector |1,) € H,, i.e. the set {m,(A)|,), A € A} is norm dense in H,.
2. Ezpectation values of observables are given by p(A) = (¥,|m,(A)|1Y,) -

3. Any other representation m on a Hilbert space (H, (-,-)) satisfying p(A) = (¢, 7(A)Y), with ¢ € H
a cyclic vector, is unitarily equivalent to m,, i.e. there exists a unitary operator U : H — Hp such
that

Un(AU ™ =m,(A), U) = [¢,). (3.11)

Theorem 3.6 (Gelfand-Naimark). A C*-algebra is isomorphic to an algebra B(H) of bounded operators
on a certain Hilbert space H.

As a consequence of these results, Hilbert spaces arise naturally from an algebraic description of
quantum systems. It is in fact possible to relate the Hilbert spaces obtained via the GNS representation
with the Schrodinger picture. This proves that the algebraic approach describes all the properties of
quantum systems.
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The last ingredient that remains to be identified in the Heisenberg picture is the evolution of quantum
systems. Consider a family of maps ®; : 4 — A, with ¢t € R describing the evolution of an isolated system.
If the state of the system is p, then p(®;(A)) is continuous in t. As argued in [252], this implies that
7, and 7, o ®; are unitarily equivalent representations of A onto H,. Going a step further with the
Gelfand-Naimark theorem, because of the isomorphism A = B(H,), the evolution map ®; can be written
as

O, (A) =UTAU,, Ac A, (3.12)

with {U;} a family of unitary operators on H,. As computed in Section 1.1.5, the expression for U; in
natural units is
U = exp(—itH), (3.13)

where H is a self-adjoint operator on #,. Thus, the differential equation of the family {®;} is the

following:
d
&q)t(A) =i[H, Al = —[H, A]. (3.14)
0
This is known as the Heisenberg equation. When restricted to the set of observables O C A, it describes
the evolution of isolated systems in algebraic terms.

3.1.3 The set of quantum states

As explained in (3.6), the set S of quantum states is a subset of the dual space O*. Its defining properties
are rewritten here:
p(I)=1, p(A*) >0, VpeS, VAcO. (3.15)

This section will provide a complete characterisation of this set. It has a very rich structure with has
great relevance in its geometric description.

Proposition 3.7. The set S is a convex set.

Proof. Given two states p1, p2, let us consider the linear combination p = A1p; + Agp2. For p to be
a state, relations (3.15) have to be satisfied. The normalization condition requires that A\ + Ao = 1.
Regarding positivity, p is a positive function only if both A;p; and Aspo are positive, which is guaranteed
by imposing A1, A2 > 0. These two conditions imply that any convex combination of states is also a state,
and thus S is a convex set in O*. O

Definition 3.8. A state in S is called pure if it cannot be obtained as a non-trivial convex combination
of states. Otherwise, the state is said to be mized. The set of pure states will be denoted as S;.

As a convex set, S has a boundary, which is determined by the positivity condition. In order to give
a proper description of S, consider the set of normalised functions

S={fc0r:&I) =1} (3.16)

Proposition 3.9. The set of states S is a closed set in §, and dim S = dim 8. Pure states belong to the
boundary of S.

Proof. Normalization condition implies that dimS = dimS = dim O — 1. Any state in the interior of S
is a convex combination of at least two points at the boundary, i.e. it is mixed. Thus, pure states belong
necessarily to the boundary of S. O

The boundary of the set of states is a hyper-surface that includes both pure and mixed states. A
proper description of this boundary for arbitrarily large quantum systems is a challenging problem. The
simplest case corresponds to the 2-level system. As presented below, the set of states of this system can
be described by a 3-dimensional sphere, called the Bloch sphere [11]. The boundary is the surface of the
sphere, and comprehends only pure states. The 3-level system has been completely described by Goyal et
al. [140]. Some properties of this system are presented in Appendix A. For larger systems, the description
of the boundary of S is a challenging and greatly difficult problem.
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3.1.4 The momentum map

The GNS representation describes how Hilbert spaces can be associated to C*-algebras. Thus, the
Schrédinger picture of Quantum Mechanics can be derived from the Heisenberg picture. Obviously, this
is not enough to assure that both approaches are equivalent. The missing element is the momentum map.
When considered in the quantum setting, the momentum map allows to describe pure states quantum
systems in terms of rank-one projectors. From this point, it is a simple task to relate both descriptions
of Quantum Mechanics.

Definition 3.10. Consider a symplectic manifold (M,w), a Lie group G with Lie algebra g and an
action ¢ : G x M — M preserving the symplectic structure w. For any element g € g, there exists an
infinitesimal generator of the Lie group action ¢(g) € X(M). A momentum map for the action ¢ is a
map p: M — g* satisfying

dpg = Ly w, Vg€ g, (3.17)

with the function pg on M being defined as pq(x) = p(z)(g).

The momentum map can be considered in the analysis of quantum systems by the Schrodinger picture,
presented in Chapter 1. Consider a complex Hilbert space (H,(-|-)). For simplicity, assume in the
following that the Hilbert space is finite-dimensional. A linear map U : H — H is said to be unitary if it
preserves the Hermitian product:

(UIUY') = ('), V), [¢') € H. (3.18)

The set U(H) of unitary transformation of H is in fact a real Lie group. Its Lie algebra u(#) is the real
algebra of linear skew-Hermitian operators on H:

wWH)={a:H—H, a=—al}. (3.19)

Clearly, there exists an isomorphism a € w(Hil) — ia € Herm(#H) between the unitary Lie algebra
and the algebra Herm(?) of Hermitian operators on H. Furthermore, there exists an inner product
(-,+) : u(H) x u(H) — R defined by the trace of operators:

(a,b) = Tr(a'b), (3.20)

which defines a canonical isomorphism with its dual algebra. Summing up, the canonical isomorphisms
w(H) = u*(H) = Herm(#H) hold.

Consider now the geometric formulation of the Schrédinger picture, presented in Chapter 1. The
Hilbert space (H,(-|-)) of a quantum system can be replaced by a real Kéhler manifold (Mg, w,g, J).
There exists a bijection v : H — Mg that relates both approaches, with the Kéhler structure being
related with the Hermitian product on H. By composition with v, it is immediate to define an action
om  U(H) x Mg — Mg of the unitary group on Mg which preserves the Kéhler structure, and in
particular the symplectic form w. Thus, it is possible to define a momentum map to this action.

Proposition 3.11. Consider the map par : Mg — Herm(H) defined by
Tr (par(¥)A) == fa(¥) = W[AlY), ¢ € Mg, A€ Herm(H). (3:21)

This is a momentum map for the Lie group action ¢ of the unitary group on Mg.

Proof. The infinitesimal generators of the action ¢y : U(H)x Mg — Mg are the Hamiltonian vector fields
with respect to functions associated to observables (see Section 1.2.4). For an observable A € Herm(H)
and the corresponding element —iA € u*(#H), relation (3.21) implies the following:

(par)—ia = fa,  oum(—id) = X4, (3.22)

with the notation of Definition 3.10. Relation (3.17) is satisfied by definition of Hamiltonian vector fields,
hence pps is @ momentum map for the Lie group action ¢y. O
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Consider now the projection 7 : Mg ¢ — P. As detailed in Section 1.3, this projection can be described
in terms of an action of the group Cy = Ry xU(1) on Mg, which commutes with the action of the unitary
group. Therefore, it is possible to define an action ¢p : U(H) x P — P as ¢p(U, [¢]) := [¢pm (U, ¥)]. It
is immediate to see that this action preserves the Kéhler structure on P. Similarly to the case above, it
is possible to define a momentum map for this action.

Proposition 3.12. Consider a map pp from the projective manifold P to Herm(H) defined by

pp: P — Herm(H) Te(5yA) = ea([¥)]) = Al VA € Herm(H). (3.23)

W] = by = pp(]) (Wly)
The map pp is a momentum map for the Lie group action ¢p : U(H) x P — P.

Proof. As in the previous case, the map thus defined associates Hermitian operators with expectation
value functions on P. As the action of the unitary group on P is generated by Hamiltonian vector fields,
it is immediate to prove that up is indeed a momentum map for the Lie group action. O

Corollary 3.13. The image set up(P) is the set of rank-one orthogonal projectors on H, satisfying the
relations
b\2 = Z)\v TI‘(,E) = 15 V//)\E :U"P(P) (324)

Regarding the identification between Schrodinger and Heisenberg picture, recall that the Lie-Jordan
algebra O of observables of the quantum system is precisely the algebra Herm(#) of Hermitian operators
on H. Due to the existing isomorphism, the image set up(P) can be embedded into the dual space O*,
thus obtaining the following straightforward result.

Proposition 3.14. There exists a bijection between the set S C O* of states of a quantum system and
the set D(H) of density matrices on H, defined as

D(H) = {p € Herm(H) | Tx(p) = 1, 5 > 0}. (3.25)

The description of observables and states of a quantum system in terms of Hermitian operators on a
Hilbert space H is useful for their characterisation. In particular, the concepts of rank and eigenvalues
are easily defined in this way.

Definition 3.15. The rank of an element € € O* is defined to be the rank of the corresponding operator
& € Herm(H) by the isomorphism above described.

Proposition 3.16. Let p € S — p € D(H) denote the bijection described in Proposition 3.1/. Eigenval-
ues of p satisfy the relations:

> A=1; A>0, VA€ spec(p). (3.26)

A€spec(p)

Let D1 (H) denote the image by this bijection of the set Sy of pure states. Then, p € D1(H) if and only if
spec(p) = {1,0,0,...}. In the finite-dimensional case, a state p € S is said completely mized if it belongs
to the interior of S, in which case all the eigenvalues of p are positive, A > 0 for any A € spec(p).

Proof. Relations 3.26 are deduced from the definition of the set D(H) in (3.25). The spectrum for pure
states is a consequence of the momentum map. Completely mixed states are positive-definite, which
requires the positivity of its eigenvalues. O

The momentum map offers an alternative description in terms of rank-one projectors for pure states
of quantum systems. The study of statistical quantum ensembles proves that it is necessary to consider
also convex combinations of these operators. Thus, the whole set of density matrices is necessary in
order to fully describe pure and mixed states of quantum systems. Next section presents in detail these
features.



76 CHAPTER 3. GEOMETRIC FORMULATION: THE SET OF PURE AND MIXED STATES

3.1.5 Statistical quantum ensembles

The treatment of statistical systems of both classical and quantum systems presents similarities, but
also important differences. In the classical setting, the symplectic structure of the phase-space plays
an important role in the description of the evolution of statistical ensemble. The same is true for
quantum systems. However, differences appear in the independence of events. While classical states
are independent, quantum ones are not. This feature has a huge relevance in the description of quantum
statistical systems.

In general, statistical ensembles are represented by probability densities on the phase-space of the
corresponding systems. This is also true in the quantum setting. For simplicity, in the following quantum
systems are considered to be finite-dimensional, thus being possible to describe them in geometric terms.
The set of pure states of a quantum system is identified a differentiable manifold P, the projective space
associated to the usual Hilbert space of the quantum system. Therefore, a quantum statistical ensemble
is described by a probability density function Fp on P, i.e. a function on the manifold satisfying a
normalisation condition:

/P Fp (1)) dup = 1, (3.27)

being dup the symplectic volume element on P. The probability density function encodes all the in-
formation on the statistical ensemble. In particular, it determines the outcome of measurements on the
ensemble.

Definition 3.17. The expectation value of an observable A € O on the statistical ensemble described by
the probability distribution F is

(A)p = /P F(i)ea(i]) dup, (3.28)

with €4 the corresponding expectation value function on P.

The value of (A) r is obtained by weighting the values of €4 on P with the corresponding probabilities
determined by F', analogously to the classical case. However, quantum systems have additional structures
that have to be considered. Gleason’s theorem [136] shows that expectation values of observables on P
can be written in terms of density matrices. First proved by Gleason in 1957, it is a central result in
mathematical physics and quantum information.

Theorem 3.18 (Gleason’s theorem). Let H be a separable Hilbert space of complex dimension at least
3. For any probability measure 5P on the set Q of self-adjoint projectors on H there exists a unique trace
class operator w such that

P(E) = Tr(wE), VE € Q. (3.29)

For a Hilbert space of complex dimension 2, it is not possible to prove the result for generic probability
measures. An analogue to the Gleason theorem can be obtained, extending it to the 2-dimensional
case [64]. This is obtained by means of the momentum map pp : P — u*(H) = Herm(H) defined in
Proposition 3.12.

Theorem 3.19. Consider a statistical ensemble described by a probability density function F on P. Let
ps(F) be the density matriz defined as

ps(F) = [ Ppsdur. (3.30)

~

with py = pp([Y]) the density matriz associated with [¢] by the momentum map pp : P — u*(H)
Herm(H). The expectation value of an observable A € O for this probability density is

(A)p = Tr(Aps(F)). (3.31)
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Proof. As a consequence of Proposition 3.12, the momentum map defines a unique py = pp([¢]) such
that ea([¢)]) = Tr(Apy). Linearity of the trace makes possible to rewrite (3.28) in terms of density
matrices, thus substituting (3.30) and obtaining the result. O

An interesting result can be extracted from Theorem 3.19. The set of density matrices is convex,
which means that any p can be decomposed as a sum of rank-one projectors

p=>_\ibi, (3.32)
j=1

with 7 < dim . Recall that this decomposition is not unique. Observe that mixed density matrices
no longer satisfy the first condition in (3.24). A measurement of the grade of mixture represented by a
density matrix is obtained by the purity P, defined as

P(p) = Tt(3*). (3.33)

Clearly, pure states have purity 1, as p> = p. The minimum purity is %, with n the complex dimension of
the Hilbert space of the system. It corresponds to the maximally mixed state of the system, with density
matrix %I .

There exists a certain freedom in the choice of the probability density function determining a quantum
ensemble. It is possible to modify F' in such a way that the expectation value (3.28) of any observable
is invariant. In other words, there exist infinitely many probability density functions that define the
same density matrix for the quantum ensemble. Among them, the following proposition gives a preferred
choice for the characterisation of the ensemble.

Proposition 3.20. Let F' be a probability density function on P, and ps(F) its associated density matriz
by (3.30). Consider a particular decomposition of ps(F) in terms of rank-one projectors as

ps(F) = A\ibj- (3.34)
j=1

Then, there exists a discrete probability density function Fp on P defined by

Fp([]) = Y Ao (] = ), W] eP, (3.35)
j=1
with [¢;] the pre-image of p; by the momentum map for j =1,2,...,r, which satisfies that
ps(F) = ps(Fp). (3.36)
Proof. By relation (3.30) and decomposition (3.34), it is immediate to check that probability density
functions F' and Fp are pre-images of the same density matrix. O

As a consequence of Proposition (3.20), any statistical ensemble on P can be redefined as an ensemble
of mutually exclusive pure states. This description is particularly useful in the comparison of properties
of classical and quantum statistical ensembles. In particular, it is possible to relate the concept of von
Neuman entropy for density matrices [267] with the entropy of a classical statistical ensemble. In general,
the entropy is a measurement of the information that a statistical ensemble gives on the actual state of
the system. The Gibbs formula gives the entropy Sg for a classical statistical ensemble with a discrete
set of microstates. If the probability of the microstate j is p;, then the Gibbs entropy is

Sa = —kp ij Inp;, (3.37)
J

with kg the Boltzmann constant.



78 CHAPTER 3. GEOMETRIC FORMULATION: THE SET OF PURE AND MIXED STATES

Consider now a quantum system described by a density matrix p. The von Neumann entropy Sy for
p is defined as [11,267]
Sn(p)==— Y. Aln(})=-php, (3.38)

A€spec(p

Proposition (3.20) shows that the density matrix p can decomposed as in (3.32). Thus, it is always
possible to obtain a discrete probability density function Fp as in (3.35) such that p = ps(Fp). In this
way, classical entropy S and von Neumann entropy Sy are obtained by similar formulas. Observe that
quantum pure states are characterised by having zero von Neumann entropy, while the maximally mixed
state of an n-level system has entropy equal to Inn. Thus, the von Neumann entropy measures the grade
of mixture of quantum system, in a similar way to the purity introduced in (3.33).

Regarding dynamics, consider a time-dependent probability density function F; on P. Becaus of
(3.30), it induces a trajectory ps(F:) on the set of density matrices. In the case of isolated systems, the
evolution of density matrices is determined by the Liouville-von Neumann equation [59],

d

th = {Ft7€H}; (339)
dt

with ey € Eo(P) the expectation value function on P of the Hamiltonian operator H € O of the quantum
system. The corresponding trajectory ps(F;) on the set of density matrices evolves accordingly to the
Liouville-von Neumann equation:

SPs(F) = —ilH, ps(F). (3.40)

Because of the expression of the Liouville-von Neumann equation, any two equivalent Markovian
probability density functions on P determine the same evolution for the density matrix defined by them.
In other words, expectation values and the evolution of density matrices are identical for equivalent
probability density functions. This supports the statement that the objects that truly represents quantum
statistical ensembles are density matrices.

The computation of the density matrix associated to a given statistical ensemble may be a difficult
problem. Some particular ensembles are however easy to describe. It is possible to apply this description
to the microcanonical and canonical ensembles of quantum systems. An extension to the description of
hybrid classical-quantum systems is also possible. These aspects will be presented in Chapter 5.

3.2 Characterisation of Lie-Jordan algebras

Before describing the geometrical formalism of the Heisenberg picture, thi section presents a deeper
analysis of the observables of quantum systems. According to the Heisenberg picture, observables are
self-adjoint elements in a C*-algebra. However, recall from Section 3.1.1 that this was proposed as a
simplification of the actual structure of observables, namely the existence of a Jordan product. Thus,
it is advisable to take a look to linear Jordan algebras, its relation with Lie brackets and the possible
extensions to these structures [169].

The discovery of Jordan algebras is closely related to the first formulations of Quantum Mechanics.
When Heisenberg first proposed his theory of ‘matrix mechanics’ [152], it was clear that the properties
of the set of observables led to its identification as a Lie algebra. A short time later, Jordan realised that
an additional structure was needed in order to properly describe the theory in algebraic terms. Jordan
first presented and described a new algebraic structure that was defined in terms of the anticommutator
of observables [165, 166]. This operation is now called a Jordan product in his honour.

Since its conception by Jordan, there have been many works devoted to the study of Jordan algebras.
Reviews on the history and properties of Jordan algebras can be found in the works by Jacobson [162],
McCrimmon [201,202] and Springer [248]. An alternative conception of that proposed by Jordan can be
achieved in terms of quadratic operators, as presented by Jacobson [161] and McCrimmon [200]. There
have also been attempts to generalise the Jordan structure, which led to the definition of Jordan triple
systems and Jordan pairs [160, 192].
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Definition 3.1 of linear Jordan algebras is the one originally presented by Jordan [165,166]. In partic-
ular, given an associative algebra A, a Jordan product can be obtained by symmetrising the associative
product:

rQy=xy+yr, z,y€A (3.41)

Associative algebras are therefore a particular case of linear Jordan algebras. They are also Lie
algebras, as a Lie bracket can be obtained by the antisymmetrisation of the associative product:

[z, 9] = 2y —yz, x,y€ A (3.42)

Thus, A can be given different algebraic structures satisfying some compatibility relations among them.
It is possible to generalise this characterisation and define Lie-Jordan algebras, algebraic structures
consisting of two different products over a linear space such that they satisfy certain properties [121,185].

Definition 3.21. A Lie-Jordan algebra over a field K (either R or C) is a triple (J,[-,-],®) where
(J,[-,-]) is a Lie algebra over K, (J,®) is a linear Jordan algebra over K and the Lie bracket and Jordan
product satisfy the relations:

[z.y 0zl =[z,yl 0z +yOz,2], (zoy)o0z-20@yoz)=AN[z:z]y], Vzyzel (343)
where A is some real positive scalar.

Due to its relevance in the study of quantum systems, the present section intends to properly charac-
terise Lie-Jordan algebras. The relations in (3.43) indicate some interesting properties. The Lie bracket
defines derivations of the Jordan product by fixing one of its arguments. Therefore, in order to deter-
mine the conditions under which a Jordan algebra can be provided with a Lie structure, derivations of
the Jordan product have to be carefully examined. The second relation also plays an important role in
determining which are these derivations.

Lie-Jordan algebras appear naturally in the realm of quantum observables. In fact, the structure
given to them is obtained when self-adjoint elements of a C*-algebra are considered.

Proposition 3.22. Let A be a C*-algebra, and O the set of real elements in A. The triple (O, ®, [-,-]),
is a Lie-Jordan algebra over the field of real numbers R, where the Lie product and the Jordan product
are defined in terms of the associative product in A by

lz,y] = —i(zy —yz), z0y=zy+yz, z,y€O. (3.44)

Proof. The set O inherits the R-linear structure of A. Direct computations show that (O, ®, [-,-]) fulfils
the requirements to be a Lie-Jordan algebra. O

Observe that the relation between complex C*-algebras and real Lie-Jordan algebras can be inverted.
The associative product in the C*-algebra is recovered in the complexification of O as

1 i
vy =520y + 5wyl (3.45)

2:

In particular, x %x Ox.

3.2.1 Inner derivations of Jordan algebras

Modern theory of Jordan algebras put aside the binary product and consider a different approach based
on the definition of an appropriate set of operators [202]. Some of the properties of Jordan algebras are
thus obtained in terms of these operators. In the particular case of unital algebras, both approaches are
equivalent. In fact, linear Jordan algebras can also be described in terms of operators, as seen next.
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Definition 3.23. Consider a linear Jordan algebra (J,®). For every x € J, let the linear operator
Ly : J — J be the Jordan multiplication operator defined as

L,(y) =20y=y0Ou. (3.46)
The set of Jordan multiplication operators will be denoted as L(J).

Proposition 3.24. The Jordan multiplication operators of a linear Jordan algebra (J,®) satisfy the
following relation:
Lo, L] =0, Ve, (3.47)

where [-,-] denotes the usual commutator of operators.

Proof. This is a direct consequence is immediate from definition (3.46) of Jordan multiplication operators
L, and expression (3.2) for Jordan identity. O

This approach allows for a generalisation of the properties of linear Jordan algebras. Different sets
of operators can be defined, leading to equivalent Jordan structures. This is the case of the so-called
quadratic Jordan algebras.

Definition 3.25. A quadratic Jordan algebra over a field K is a pair (J,Uy), where J a linear space
over K and the family Uy := {U, : € J} consists of K-linear operators on J satisfying the fundamental
formula

Uv,y) = UUyUy, 1w,y € J. (3.48)

A quadratic Jordan algebra is called unital if there exists an element 1 € J such that Uy is the identity
operator on J.

The formula (3.48) plays the role of the Jordan identity in the case of quadratic Jordan algebras, as
will be shown below. A new family of operators can be defined in this algebra as

Vou(2) = Upqr —Us = U)y), x,y,2€J. (3.49)

Proposition 3.26. The set V; ; of linear combinations of operators of the form Vy ,, with x,y € J, has
a Lie algebra structure with respect to the following commutation relation:

[Vwﬂﬁ sz,w] = VVI,y(z),w - Vtz,Vy,I(w)- (350)
Proof. As seen in [201], this formula is a direct consequence of (3.48). O

The relation (3.50) is the starting point of the so-called Jordan triple systems, linear spaces together
with a family of operators satisfying this relation. This and other generalisations of Jordan algebras, such
as Jordan pairs, lay beyond the scope of the present work; see [202] for a description of these structures.

Consider again the case of an associative algebra .\A. Families of operators U, and V., can be obtained
by the simple expressions

Us(y) = zyz, Vpyu(z) =2yz +2yz, z,y,z € A (3.51)

The quadratic dependence in x of the operator U, is the reason that led to the name of quadratic Jordan
algebras.

The linear and quadratic approaches to Jordan algebras are equivalent when a unit element is present
in the Jordan algebra [202].

Proposition 3.27. A pair (J,®) is a unital linear Jordan algebra if and only if (J,Uy) is a unital
quadratic Jordan algebra with the following relations between operators Uy, V, , and Ly:

1
Vi), Vz,y,z€J (3.52)

Uy =2L2 — L2, Vipy=2Laooy + [La, Ly]), Lu(y) = 5
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From now onwards, when the context is clear, a unital linear and unital quadratic Jordan algebra will
be simply referred to as a unital Jordan algebra and denoted as J.

The operators defined here are enough to deal with the relation between Lie and Jordan algebras, in
the compatibility sense of (3.43). It is possible to construct a Lie algebra associated with a given Jordan
algebra in terms of the so-called Tits-Kantor-Koecher (TKK) construction [172,178,179,258,259]. In its
more general form, Jordan pairs are the main ingredient in this construction, which can be particularised
to the case of Jordan algebras as follows.

Theorem 3.28 (Tits-Kantor-Koecher contruction). Given a unital Jordan algebra J, there always
exists a graded Lie algebra TKK(J) :==L_1® Lo® L1, where L_y = L4y = J and Lo = V5, while the
graded Lie brackets of elements are

T.a4] = (T(@))+, [To] = —(T"(@)-, [T =TT —T'T,

(3.53)
[x-i-ay—] = Viys [:v_,y+} = —Vyu, [-T-&-vy-i-] = [x—ay—} =0,

where T,T' € Ly, x,y € J, and the subindices indicate the component of TK K(J) to which each element
belongs, i.e. x4,y+ € Ly, x—,y— € L_y and so on. The conjugation in Ly = Vj; is defined by
Voy=Vya-

The TKK construction establishes a relation between elements in the Jordan algebra and operators. Its
connection with Lie-Jordan algebras is not, however, immediate, as the operators V. , are not derivations
of the Jordan algebra. Instead, a new type of operators have to be defined.

Lemma 3.29. Given a unital Jordan algebra J and arbitrary elements x,y € J, let Dy, denote the
linear operator on J defined as
1
Dy y = Z(sz —Vyz) =Lz, Ly (3.54)
Such an operator is a derivation of the Jordan product. Let 0 denote the set of these operators and their
linear combinations. Such a set is a Lie algebra with respect to the commutator of operators. Elements
in 0 are called inner derivations of J.

Proof. The operator D, , = [L,, L,| satisfies the relations
D, y(2) =20 (20y)— (20 2)Oy, Dyy(202") =D, (2)©02' +20D, (), Va,y,z 2 €J (3.55)

The second relation proves that D, , is a derivation of the Jordan product. This derivation relation can

be rewritten as [D; , L.] = Lp, (=), from which follows that

[Dgc,y, Dz,w] = DDz,y(z),w + Dz,Dz,y(w)~ (3,56)

The commutator of operators is thus an inner operation in the set of inner derivations 0, which proves
that 9 is a Lie algebra. O

By comparison of (3.43) and (3.55), it can be deduced that inner derivations of a Jordan algebra are
related to a compatible Lie bracket, in the sense of (3.43). A more formal description can be obtained in
terms of the TKK construction. Let J be a Jordan algebra and TK K (J) its associated Lie algebra as in
Theorem 3.28. The map

1
wiJ xJ =0, wy):= Z([$+7y—] = [y+,2-]) = Dayy, (3.57)
where [-, -] denotes the Lie bracket in TK K (J), makes possible to obtain the inner derivations in terms of

this construction. Recall that ? contains also linear combinations of operators of the form D, ,; therefore,
in general w(J,J) C 0. In the particular case of Lie-Jordan algebras, the algebra of inner derivations
satisfies a series of properties.
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Theorem 3.30. Let (J,[-,-],®) be a Lie-Jordan algebra. The following statements are satisfied

1. Inner derivations of the Jordan product are the adjoint representation (with respect to the Lie
product) of elements in [J, J], i.e.

o =w(J,J)=ad([J,J]) = [J,J]/Z, (3.58)
where Z is the centre of the Lie algebra (J,[-,-]).

2. If the algebra is unital, i.e. there exists an element 1 € J that acts as the unit element for the
Jordan product, then 1 € Z.

3. The action of the inner derivations on J is such that d(J) = [[J, J], J].
4. The centre Z of the Lie structure satisfies Z C kerd.

5. FElements in the derived series of the algebra of inner derivations 0 are the adjoint representations
(with respect to the Lie bracket) of elements in the derived series of J:

0™ = ad(JHY), n=0,1,2,..., (3.59)

with 90D = [ 9] 20 =3, JtD) = [J0) JM] and JO) = J. In particular, J is solvable
if and only if 0 is solvable.

6. Elements in the central series of J satisfy the following properties:
On) = ad(J(gnH)), U(H)(J) =Jeant2, n=0,1,2,..., (3.60)

With 041y = W) (J), (), 90) =0, Jns1) = [Jn), J] and Joy = J. In particular, J is nilpotent
if and only if 9,y = {0} for some n.

Proof. Statement 1. is proved by considering equations (3.43), (3.54) and (3.57). It can be deduced from
them that w(x,y) = —Aad[, ). Furthermore, as ad(z) +ad(z’) = ad(z + 2’) and [J, J] is a linear space,
then w is an exhaustive function and ? = w(J, J). Statement 2. is directly proved by taking y = z =1 in
the derivation relation (3.43). It follows that [z,1] = 0 for any « € J, and therefore 1 € Z. Statements
3.-6. are a direct consequence of 1., as they are standard properties of adjoint representations of Lie
algebras. O

These results characterise the Lie structure of a Lie-Jordan algebra in terms of only the inner deriva-
tions of the Jordan product. Therefore, they are useful in order to solve the inverse problem: to determine
when a certain Jordan algebra is compatible with a Lie product in the sense of (3.43). The study of
the algebra of inner derivations and its properties, together with a classification of Lie algebras, may
give information on which Lie products, if any, are compatible with the initial Jordan algebra. Such an
analysis has relevance in the study of the contractions of algebras presented in Chapter 4.

From a physical point of view, the connection between Lie and Jordan algebras is fundamental in
order to undertand the properties of quantum systems. Both structures are physically relevant. The
Lie bracket determines the dynamics of isolated systems. Either in the Heisenberg picture, via the
Heisenberg equation, or in the case of density matrices, by the von Neumann equation, the differential
equation governing the evolution of an isolated system is defined by means of this Lie bracket. On the
other side, the Jordan product plays an important role in the description of the probabilistic nature of
Quantum Mechanics. Together, they are needed in order to fully characterise quantum systems. And
as a result of the above results, they are not fully independent. The Lie and Jordan structures, hence
the dynamics and the probabilistic nature, are interconnected. Thus, the analysis of Lie-Jordan algebras
as a whole [72,169,202], either algebraically or geometrically, is necessary for a correct description of
Quantum Mechanics.
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3.2.2 Four-dimensional Lie-Jordan algebras

Simple cases can be studied in order to illustrate Theorem 3.30. Four-dimensional examples are relevant
from a physical perspective, as they model the algebra of observables of a 2-level quantum system. Thus,
consider a 4-dimensional unital Jordan algebra .J over R, and let {1, a,b, c} be a basis of J. The element
1 is the unit element of the product ®; the product of the remaining elements are

a®a=bob=cOc=1, a@b=bOc=coa=0. (3.61)

In terms of the given basis, linear operators on J are represented by 4 x 4 matrices. In particular,
the coordinate expression of the left-multiplication operators are the following (where dots represents 0
elements):

e N e DU R 2 R

The algebra of inner derivations of the Jordan algebra is generated by the commutators of these operators:

Dy = [Le, Lu] = s De=leLd=|0
1 -1
A
D3 :=[Ly, La] = | A
and [Lq1,-] = 0. These generators satisfy the commutation relations
[D1,Ds] = D3, [D2, Ds] = Dy, [D3, Di] = Ds. (3.62)

Therefore, in this example 0 = w(J, J) = su(2), the Lie algebra of the special unitary group on C2.

Assume now that J is in fact a Lie-Jordan algebra with a certain Lie bracket [-,-]. Theorem 3.30 can
be applied to this hypothesis, with the aim of checking its compatibility with the obtained algebra of
inner derivation. As a first consequence, observe that the centre of is the 1-dimensional space spanned
by the unity element. Because of (3.43), the unity element in a Lie-Jordan algebra is always in the centre.
Hence it can be concluded that Z = kerd = {¢1 : ¢t € R}. If this is the case, then Z N [J,J] = {0} and,
because of (3.58), it can be concluded that [J, J] =2 0 = su(2). As J is 4-dimensional, the only possibility
is

J=su(2) @ Z. (3.63)
A direct computation shows that the triple (J, [-, ], ®) with Lie bracket
[[aa b]] =¢ [[ba C]] =a, [[Ca a]] =0, (364)

and Jordan product given by (3.61) is in fact a Lie-Jordan algebra.
Another example of a 4-dimensional unital Jordan algebra can be given by the following product
between elements in the basis:

a®a=0, bOb=cOc=1, a®@b=bOc=cOa=0. (3.65)
The coordinate expressions of the left-multiplication operators of this Jordan algebra read:
1 - . . o o1 o1
1 - 1 - . . e
Ll - 1 ) La — . R Lb - 1 - . N B Lc - )
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while the inner derivations of the Jordan algebra are generated by

Dy = [Le, L] = 4| De=lald=| 0 T
1
A
Ds:=[Ly, L= |~ |,
and [L1,-] = 0. These generators satisfy the commutation relations
[D1, Do = D3, [D2, D3] =0, [D3,Di1] = Ds. (3.66)

The algebra of inner derivations 9 is isomorphic to the Lie algebra of the Euclidean group on the plane,
¢(2). In this case, the centre of d has dimension 2, and it is generated by elements {1, a}.

Let us assume that a Lie bracket exists on J. As 0 is 3-dimensional, then the centre of the cor-
responding Lie algebra has to be at most 1-dimensional, which would give as in the previous example
Z = {tl : t € R}. This leads to the only possibility that J is isomorphic, as a Lie algebra, to A3z & Z,
where Aj is a 3-dimensional Lie algebra such that [As, As] = ¢(2). Such an algebra does not exist;
therefore, the given Jordan algebra is not compatible with any Lie structure.

There are cases in which a Jordan algebra is compatible with more than one Lie structure. Consider
once again a 4-dimensional unital Jordan algebra J, with basis {1, a, b, ¢} and a Jordan product such that
the product of any two non-unit elements in the basis is zero:

a®a=b0b=cOc=a0b=boc=cO®a=0, x@l=x, Vxel (3.67)

A computation identical to those of the previous examples shows that the algebra of inner derivations
is 0 = {0}. This indicates that any Lie bracket on J such that [J, J] C Z is compatible with the given
Jordan product. In particular, the Jordan algebra is compatible with an Abelian algebra in which any two
elements commute. However, this is not the only possibility. The Heisenberg algebra h(1) is a nilpotent
algebra determined by the product

[a,b] =¢, [a,c] =[b,c]=0. (3.68)

Thus, it is possible to find several different Lie structures compatible with a given Jordan algebra.

It can be concluded from this analysis that the relation between Lie and Jordan algebras can be
characterised by Theorem 3.30. In the following, both structures will be represented by tensor fields on
differentiable manifolds. Their compatibility can be described in similar terms. In Chapter 4, changes
in these tensor fields will be considered, thus being necessary to check the compatibility of the new
structures.

3.3 The geometry of the set of states

Once that the set of states S is fully characterised in algebraic terms, a geometric formulation of its
properties can be addressed. Recall that S is a subset of the dual space O* of the Lie-Jordan algebra of
observables O. Thus, it is natural to consider first the geometric properties of O*, and from them derive
the properties of S. This is the aim of the present section.

A comment should be made regarding the dimensionality of quantum systems. Heisenberg picture can
be modelled on Hilbert spaces of infinite dimensions, such as atomic systems (which in fact was the aim
of its original formulation). However, as mentioned previously, the reason why the geometric formulation
presented along this dissertation is restricted to the case of finite-dimensional quantum systems, which
nevertheless is useful to describe a huge number of physical problems, either exactly (such as spin systems
and problems of quantum information) or by approximations (by considering a finite number of energy
levels, restricting the wave functions to a grid with a finite number of points, etc.).
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3.3.1 The dual space of the algebra of observables

Given an algebra, there exists a natural tensorial description of its algebraic properties on its dual
space [31, , , 142]. In the case of the Lie-Jordan algebra O of observables of a finite-dimensional
quantum system, consider the dual space O* of real R-linear functionals on (0. Because of the linear
structure, tangent and cotangent bundles of O* satisfy the following canonical isomorphisms:

TO* = 0 x 0%, T*O" = 0" x (0*) = 0" x 0. (3.69)

In particular, at each point on O, the tangent and cotangent spaces to the manifold are canonically
isomorphic to O* and O, respectively. Consider furthermore the inner product in O given by the trace:

(A,B) = Tr(AB), A,Be€O. (3.70)

As usual, the inner product defines an isomorphism between the algebra O and its dual space. Regarding
notation, elements in O* are denoted with a bar, as follows:

A(B) := (A, B), VA, Be€O, (3.71)

where A is an element in O*. The existing isomorphisms are summarised in the diagram in Figure 3.1.

T:0" — > T;0"

%/ |
7
N Ve
N Ve
0 \o*i/“’ﬁ

N
p

Figure 3.1: The diagram represents the canonical isomorphism ¢¢ : Tg(’)* — O and gg : T;0" — O for the

tangent and cotangent spaces to O* at any point £. The inner product in O determines by (3.71) an isomorphism
p: O — O, with p(4) = A. By composition, an isomorphism pg = cpgl opogs: T;O" = T:O" is obtained.

In order to simplify the notation, isomorphisms 7;0* = O* and Tg O* = O will be implicitly assumed.
Thus, it will be clear for the context if the elements are either tangent and cotangent vectors to O*, or
elements in O and O, respectively.

Several geometric objects on O are related with relevant structures in the description of Quantum
Mechanics. In particular, quantum observables are identified with linear functions on O*.

Definition 3.31. Given an observable A € O, the R-linear function fa : O* — R is defined by
fa(€) =€(4), vEe 0" (3.72)

The set of such functions will be denoted as Fo(O%).

*

This is an injective R-linear homomorphism of linear spaces, A € O — f4 € (O*)*, which is an

isomorphism for the finite-dimensional case that is being considered here.

Proposition 3.32. At any point £ € O, the differential of a function fo € Fo(O*) associated to an
observable A € O takes the value
(de)ngeTgO* ~ Q. (3.73)

Thus, the cotangent space Tg(’)* to the dual space at any point & € O* is generated by the differentials of
functions in Fo(O).

As a consequence of this property, it is immediate to describe the Lie bracket and the Jordan product
on O in terms of (2, 0)-tensor fields on O*.
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Theorem 3.33. There exist two contravariant (2,0)-tensor fields A and R, respectively skew-symmetric
and symmetric, defined by their actions on functions in Fo(O*) b

A(dfa,dfp)(&) = &([A, B]) = flas)(&), R(dfa,dfs)(&) =E&(A® B) = faews(§), (3.74)
for any A,B € O, any £ € O*.

Proof. Proposition 3.32 shows that it is enough to consider functions in Fp (O*) in order to fully determine
geometrical objects. The requirements of C'*°(O*)-linearity on the arguments are satisfied by the R-
linearity of the Lie bracket and the Jordan product. O

The tensor field A is the canonical Kirillov-Kostant-Souriau Poisson tensor field, while R is a symmetric
tensor field [141]. Their coordinate expressions will be computed next. Assume that O carries an inner
product, and consider an orthonormal basis {o; };L:l for O. An observable A € O takes the form A = o/ oj,
with a',...,a" € R and where summation over repeated indices is understood. The composition laws in
O are determined by their structure constants cé . and dé K

loj,ox] :cé-kcrl, 0; ® oy :dék o, Jk=1,2,....n, (3.75)
where clk = —ckj and dlk = d . Let {0]} _, be the dual basis on O, i.e. the set of linear functions on
@) satlsfymg _ 4

ol(ok) =61, jk=12,...,n (3.76)

Any element £ € O* can be decomposed in this basis as £ = &;07. Coordinate functions on O* with
respect to the given basis are functions associated to the elements in the basis of O*:

& =E&(0)) = fo,(6), £€O. (3.77)

Coordinate functions on O* will be denoted as z; = f,,. The function associated to an observable
A = aloj; is thus f4 = a/z;. With this notation, and in view of (3.74) and (3.75), the coordinate
expressions of the tensor fields A and R are the following:

. 0 0 0

ANs—, R=djo— 0 - ® =—. (3.78)

A== ¢
2 9z, " By ox; Oy

where v Aw = v ® w — w @ v, as in the notation introduced in Section 1.2.1 and following the definition
for the exterior product by Crampin and Pirani [104].

The properties of A and R as tensor fields makes possible to associate a Hamiltonian and a gradient
vector fields to any smooth function on O* [142]. These vector fields act, as usual, as derivations on the
algebra of smooth functions with respect to the usual point-wise product.

Definition 3.34. Let X; and Y} denote the Hamiltonian and gradient vector fields, respectively, on O*
associated with a smooth function f € C*°(O*) by means of A and R:

Xf = —Lde7 Yf = Lde, f S COO(O*) (3.79)

Proposition 3.35. Hamiltonian and gradient vector fields of functions in Fo(O*) take the following
values at each point:

(XfA) IIA f]]a (YfB)g =B0O¢, VAa BeO, Ve o*. (380)

Proof. By definitions (3.79) and (3.74), it is immediate that

(X1a)g (fo) = =€([A, C]) = —Tr(¢[A, C]) = —Tr([¢, A]C) = [4,€](C), VA, C €0, VEeO,

and where £ = p~*(€). The desired results follows from the identification (dfc)g = C by (3.73). The
value of Yy, at each point is found in a similar way. O
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Proposition 3.36. Tensor fields A and R define respectively a Poisson bracket and a symmetric product
of functions as

{f,9} = A(df,dg), (f,g9)=R(df,dg), Vf,ge C>*(O"). (3.81)

Furthermore, their restriction to the set (O*)* of R-linear functions defines a Lie-Jordan structure with
products

(fa,fB) = faon, {fa, fB}=flas, A BeO. (3.82)

Proof. The composition laws can be rewritten in terms of Hamiltonian and gradient vector fields as
{f,9} = Xs(g) and (f,9) = Ys(g). These relations and the defining properties of the composition laws
of Lie-Jordan algebras, presented in Definition 3.21, prove the asserted statements. O

Observe that Hamiltonian vector fields of R-linear functions are also derivations of the algebras
(Fo(0*),{-,-}) and (Fo(O*),(-,-)) of R-linear functions. In the language of Dirac [112], Hamiltonian
vector fields are both c-derivations and g-derivations.

Proposition 3.37. The commutator of two Hamiltonian vector fields is a Hamiltonian vector field. More
specifically,
[Xf,Xg] = —X{ﬁg}, Vf,g c COO(O*) (3.83)

Moreover, Hamiltonian and gradient vector fields corresponding to functions in Fo(O*) satisfy the fol-
lowing commutation relations:

[YfA7YfB] = X{fA1fB} = Xf[[A,B]]’ [XfA7YfB] = _Y{fA,fB} = _Yf[[A,B]]’ VA,B € O. (3'84)

Proof. If Xy and X, are Hamiltonian vector fields, then, for each h € C*°(0*), the following relation
holds:

[Xf’Xg](h) = {fv {g’h’}} - {97 {f?h}} = {{fvg}’ h’} = _X{f,g}(h’)'

Similar expressions are found for the other identities when properly restricted to R-linear functions. [

3.3.2 Geometric characterisation of the set of quantum states

As states of a quantum system can always be identified with density matrices, the results by Grabowski,
Kus$ and Marmo [141,142] can be applied to the description of states. These works deal with the properties
of the sets of positive operators and of density matrices. Both sets can be described as stratified manifolds,
with each stratum being determined by the rank of its elements. Due to the existing isomorphism between
S and D(H), it is possible to obtain similar results on the set S of quantum states of a quantum. The
first step is the identification of distributions of gradient and Hamiltonian vector fields.

Definition 3.38. Let Dy and Dg denote respectively the generalised distribution on O* of Hamiltonian
and gradient vector fields. That is, Dy and Dg are maps that associate to each point &€ € O* the subspace
of T¢O* generated respectively by Hamiltonian and gradient vector field:

Dp:€£€ 0" Dp§) = span{(Xy)e | f € C=(0")} C TO%,

¢ * a e} * * (385)
Dpg: &€ O+ Dg(§) = span{(Yy)¢ | f € C(0")} C T¢O".
Let Dy : £ € O* — D(€) C T¢O* denote the generalised distribution defined by
Di(€) = Da(§) ® Dr(€), &€ O™ (3.86)
As proved in [142], the distributions Dy and D; on O* are involutive. By Frobenius theorem, they

can be integrated to generalised foliations F, and JFi, respectively. Their leaves are characterised in the
finite-dimensional case by the GNS representation. For physical systems, there exists an isomorphism
7w, A — B(H,), with p € S and H, being a finite-dimensional complex Hilbert space H,. With this
identification, and due to the canonical isomorphism between O and O* induced by the inner product,
the relation O* = O = Herm(#,) follows. It is thus possible to state the following results, proved in [142]
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Proposition 3.39. The distribution Dy on OF is involutive and can be integrated to a generalised
foliation Fa. The leaves correspond to the orbits of the action of the unitary group U(H,) on A via its

isomorphism with B(H,), defined by (U,§) — Um,(&)U*.

Distribution Dp is not involutive, as seen clearly from (3.84). The commutator of two gradient vector
fields is a Hamiltonian vector field. Thus, distribution D;, spanned by both Hamiltonian and gradient
vector fields, is involutive.

Proposition 3.40. The distribution D1 on O* is involutive and can be integrated to a generalised foliation
Fi1. The leaves correspond to the orbits of the action of the general linear group GL(H,) on A via
its isomorphism with B(H,), defined by (T,&) — Tn,(§)T*. Leaves are classified by the rank of their
elements.

This result has a direct application to the description of the set of states S. From Proposition 3.16,
states can be classified according to their rank as points in O*, or equivalently, according to the leave
of the foliation F; on which they lay. It can be proved [141] that states of constant rank conform
submanifolds of O*, and therefore S has the structure of a stratified manifold. The following statements
clarify these concepts.

Proposition 3.41. Let I C O* denote the set of real positive linear functionals ( : O — R. It is a
stratified manifold,

=1, (3.87)
k=0

where the stratum Il is the set of rank k elements in II.

Proof. By definition, each stratum Il is a leaf of the foliation F; corresponding to the distribution D1
of Hamiltonian and gradient vector fields, hence a submanifold of O*. O

Proposition 3.42. The set of states S is a stratified manifold,

n
S = U Sk, where S =11} ﬂ§ (3.88)
k=1
Proof. 1t is clear from (3.15) that § = IIN S, from which the result follows. O

Strata of S are determined by the rank of their elements. Special attention has to be paid to the
stratum S;. This is precisely the image by the momentum map of the projective manifold P of pure
states of the system. Thus, the momentum map embeds in a natural way the pure states in the whole set
of states of the system. This has important consequences, as seen later, in order to relate the geometric
structures on S and the ones previously introduced in Chapter 1.

Observe that, as a result of Propositions 3.41 and 3.42, both IT and S have a boundary. Then cannot
therefore be described as differentiable manifolds. It is however possible to use differentiable calculus if
adequate definitions and properties are established.

Definition 3.43. A manifold with boundary N of dimension n is a topological space together with an
atlas {(U;, i)}, where U; are open sets in N and ¢; : U; — R"™1 x R>q, with R>g = {z € R: 2 > 0},
and such that no atlas defines a differentiable structure on N.

Observe that any differentiable manifold satisfies the first condition in this definition. The second
condition is added so that manifolds with boundary are explicitly assumed not to be differentiable man-
ifolds.

Proposition 3.44. Both 1l and S are manifolds with boundary, with a natural embedding into O*. There
also ezists a natural embedding of S into S.
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Proof. By definition, Il and S are closed. The embeddings are also clear from the definitions. O

The embedding of a manifold with boundary into a differentiable manifold with same dimension is the
key to carry out differential calculus on them. In practice, computations will be carried out on the larger
manifold. At each particular situation, the results obtained have to be compatible with the boundary,
even though if they are obtained by differential operations that could not be naturally carried out in the
manifold with boundary. Thus, the boundary is seen simply as a constraint for the possible results of the
problems.

Because of Definition 3.43 and Proposition 3.44, in the following S will usually be understood as a
closed subset of S. This presents many advantages from a computational perspective. Also, for physical
systems, the set of space S inherits an affine structure. Consider the usual identification of observables
as Hermitian operators on a complex Hilbert space H, i.e. O = Herm(H). Thus, there exists an inner
product on the Lie-Jordan algebra of observables O, defined by the trace as in (3.70). This, in turn,
defines a metric on the dual space O*. The subspace S is an affine subspace of O* with respect to this
metric. The appropriate restriction of this metric to S allows to define distances on the subspace, and
by extension on the set of states S.

3.3.3 Reduction of tensor fields

The next step in the description of quantum systems is the characterisation of geometric objects on the

set of states S. This can be achieved in an analogous way to the method presented for the Schrodinger

picture. It is possible to relate S with the action of a Lie group on the manifold, thus allowing for a

reduction of the tensorial structures. See Section 1.3.1 for a description of the reduction procedure.
Consider the dilation vector field Ap on O*

Ap = Yfz = (A(g)é = 57 4 f e 0. (3.89)

As in any linear space, such a vector field defines an integrable distribution on O} := O* — {0}. Equiva-
lently, Ap is the infinitesimal generator of the group action rp : Ry x Of — Of defined as

ro(a,&) =af, YacR,, VEcOp. (3.90)

This is free and transitive, hence the quotient Of /R is a differentiable manifold. The reduction of the
algebra of functions on the manifold, described in Proposition 3.36, is carried out by considering invariant
functions under rp.

It is immediate to check that the Lie-Jordan algebra Fu(O*) of functions associated to observables
is not invariant under the group action:

Ao(fa) = (f1,fa) = fa, VYfa€ Fo(O"). (3.91)

As in the case of the Schrédinger picture, it is necessary to obtain a new set of functions which are
invariant under the described group action.

Definition 3.45. The expectation value function ea on OF of an observable A € O is defined as

- fa©) _ Ti(4g)

eA(g)_fI@ e V€ € O (3.92)

The set of expectation value functions on O* is denoted as Eo(Of).

Proposition 3.46. Expectation value functions on O* are invariant under the group action ro : Ry x
Oy — Og.
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Proof. The vector field Ap, which is the infinitesimal generator of the action, acts on a differential way
on the definition (3.92):

1 1
Ao(ea) = —Ao(fa) — %Ao(fl) = —fa— %f[ =0, Vese&o(Op).
Jr f[ J1 1
Thus, expectation value functions are invariant under the group action. O

The next step is the characterisation of the algebraic structure of Eo(Of). Recall that the Poisson
bracket and the symmetric product on O*, as presented in Proposition 3.36, act on a differential way on
their arguments. Thus, it is immediate to compute the following expressions:

1 1
{6A7€B}:E6HA13]]’ (eAaeB):E(eAGB*2eAeB)» Vea,en 650(05) (3.93)

From these expressions, the following result is deduced.

Proposition 3.47. The set of expectation value functions Eo(OF) is closed under the following compo-
sition rules:

{ea,eB} = fr{ea,es}, (ea,en) = fi(ea,ep)+2esep, Vea,ep € En(O}). (3.94)

The composition laws thus defined can be extended to the whole set of smooth functions on Of. They
can be given a tensorial description, in terms of the contravariant (2, 0)-tensor fields A’ and R’ defined as

A/ = f]A, R/ = f]R (395)

By definition, these tensor fields are invariant along the orbits of the group action re.

A last step has to be taken in order to properly describe the set of states of quantum systems. Recall
that this set is characterised in (3.15) by positivity and normalisation conditions. The connection between
these conditions and the projection onto the quotient manifold described above is represented in Figure
3.2. The quotient manifold Of/R; can be embedded into Of as the unit sphere. However, only the
intersection of this sphere with the cone II — 0 of positive elements in O represent states of the quantum
system. It is thus immediate to map this intersection onto the hyperplane S of trace-one elements. The
result is the set S of states of the quantum system. The map w : (Of/R) NIy — S is in fact a bijection.
Observe in Figure 3.2 that orbits of the described group action are rays steaming from the origin. Thus,
the only difference between both sets is the choice of representative of these orbits.

All these tools are enough to describe the geometric properties of the set of states S. By Proposition
3.46, the Lie-Jordan algebra o (O*) of expectation value functions on O* is invariant under the group
action. Thus, its restriction £o(S) to S is also a Lie-Jordan algebra, with identical composition laws. In
fact, as these can be given a tensorial description, they can be obtained as the projection onto Of /R,
and then the mapping onto S, of the tensor fields A’ and R’. The results are summarised as follows.

Theorem 3.48. There exists a pair of tensor fields As and Rs on the manifold with boundary S which
are (w o mo)-related with the restrictions of A’ and R’ to the cone Iy:

As = (@omo)u(N), Rs=(womo).(R). (3.96)
Consider the composition laws on C*(S) defined as

(. F'}s = As@f,df),  (f, f)s = Rs(df,df) + 2ff, Vf, f' € Co(S). (3.97)
The set Eo(S) is a Lie-Jordan algebra with respect to these composition laws:

{ea,eBls = €pa,B), (€a,€B)s =€apn, VA, BeO. (3.98)
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S={co|Te=1}

Figure 3.2: Orbits of the group action ro : Ry x Of — Of are rays steaming from the point 0 € O*. By taking
out this point, it is possible to describe the projection 7o : Of — Of/R4. The resulting quotient manifold can
be embedded as the unit sphere in Og. On the other side, the set S of states of the system, defined in (3.15), is
defined as the intersection of the hyperplane S of trace-one elements and the cone Iy of positive elements. It is
thus possible to define a bijection w : (Of/R1) NIy — S by relating points in the same orbits of the described
group action. Regarding dimensions, recall that O* is a n>-dimensional real space, with n > 2, hence Sisa
(n® — 1)-dimensional affine space. The axis are only meant to reflect the linear nature of the manifold, and are
not in relation with its dimensionality.

Proof. The action of tensor fields As and Rs on the differentials of expectation value functions on S are
As(dea,dep) = €pa,B], Rs(dea,dep) = ecaop — 2€a€p, Vea,ep € Eo(S). (3.99)
From these, the composition laws of En(S) follow. O

Corollary 3.49. The algebra of expectation value functions Eo(S) gives rise to an associative complex
algebra by defining the following product:

1 1
GA*€B:§(€A,€B)S+§{€A7€B}S:€A37 A,BEO. (3.100)

Some comments could be added with respect to these structures. The bracket (-,-)s in (3.98) can be
rewritten as

Rs(dea,dep)(p) = (ea,en)s(p) — 2ea(p)es(p), A,Be O, peS. (3.101)

The action of Rs on expectation value function gives the deviation of the Jordan product from the point-
wise product, i.e. of the non-local product with respect to the local product. In this sense, this tensor
field captures non-locality of Quantum Mechanics.

In connection with the probabilistic nature of Quantum Mechanics, the tensor field Rs is related with
the definitions of variance Var(A) and covariance Cov(A, B) of observables:

Var(A)(p) = Rs(dea, dea)(p) = 2e42(p) — 2(ea(p))?,

Cov(A, B)(p) = Rs(dea,de)(p) = cann(p) — 2ea(p)es(p), (3.102)

i.e. the variance and covariance in terms of expectation values of observables. The relation between
Jordan algebras and statistics was already present in the original works by Jordan [165, 166]. Future
works will further develop the importance of this tensor field; for now, it is enough to consider that
it represents the Jordan product of observables and is therefore necessary to properly describe their
algebraic properties.
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Definition 3.50. Let )?g and 179 denote, respectively, the Hamiltonian and gradient vector fields on S,
that is, the evaluations of Rs and As on the exact 1-form dg, i.e.

X, = —taghs, Y, =144Rs. (3.103)

for any g € C*°(S). In particular, for expectation value functions, the notation will be simplified as

Xa=X.,, Yo=Y, A€O. (3.104)
Proposition 3.51. The commutators of Hamiltonian and gradient vector fields are
[(Xa,Xp] = —X[an), [Ya,Ys]=X[app, [Xa,Yp] = widetildeYa g, (3.105)
for any A, B € O.
Proof. The result follows by use of Jacobi identity, Jordan identity and relations (3.43). O

Corollary 3.52. For a quantum n-level system, the Hamiltonian and gradient vector fields of expectation
value functions span the complezification sl(n,C) of the Lie algebra of the special unitary group su(n).

Thus, a geometric characterisation of the set of states S is obtained. Due to it being a manifold
with a non-smooth boundary, the differentiable structure of the set S is described in terms of a larger
differentiable manifold of which S is a subset. Thus, it is possible to obtain a pair of tensor fields Ag
and Rs that reproduce the algebraic properties of observables. These tensor fields have additionally
physical relevance. The Poisson tensor field Ag characterises the unitary evolution of quantum systems,
represented by the von Neumann equation in the language of density operators. On the other hand,
the symmetric tensor field Rs is related to the variance and covariance of observables, a characteristic
of quantum systems that had not been described geometrically before. Finally, functions associated to
observables are also in connection with physical systems, as they give precisely the expectation values
that are measured on the system. The geometric characterisation thus described represents satisfactorily
the physical properties of quantum systems.

3.3.4 Relation with the geometric description of the Schrodinger picture

The results obtained above can be compared with those computed in Chapter 1 concerning the manifold
P of pure states. Similarities, and also differences, exist between both descriptions. The reduction
procedure that defines the new set of contravariant tensor fields are analogous in both cases. This is not
a simple coincidence. In fact, it is possible to relate both approaches by means of the momentum maps
py M — O and pp : P — O defined in Section 3.1.4. Recall that the projection m.Mg o — P is
defined by the orbits of the Lie group action r : (Ry x U(1)) x Mg — Mg,o. The orbits by U(1) are
mapped into a single point by pas. Thus, the diagram in Figure 3.3 is obtained.

Moo — par(Mgy) = I

i |oln.

P PP ip(P) =S,

Figure 3.3: Relation between the reduction procedures on the Schrodinger pictures and on the space O*. The
description of pure states by means of the differentiable manifold P is a part of the total description of states by
the state S. Results for both approaches can thus be related in an appropriate way.

Not only the projections, but also the geometric structure of both approaches is related. Observe
that, unlike in the case of the manifold P, the structure present in S is not that of an almost Kéahler
manifold. The reason is the lack of an almost complex structure on S relating contravariant tensor fields
As and Rs. Nevertheless, such a structure can be defined for some submanifolds of S [142]. For the
purpose at hand, it is enough to consider the stratum S; of rank-one elements.
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Theorem 3.53. The contravariant tensor fields Qp and Gp on P are related with the tensor fields As
and Rs on S by means of the push-forward of the momentum map pup : P — O*:

(1) (P) ) = (As)up(wp>  (1P)fy ((GP)w) = (Bs)up(u) VI € P (3.106)

The stratum Sy is an almost Kdhler manifold.

Proof. As in previous proofs, it is enough to consider the action of these tensor fields on the differential
of expectation value functions. Thus, consider a function e4 € £o(S). Its action on points in S = up(P)

ea(up () = T (Aup () = W V] € P.

Hence (up)«(€als,) € Eo(P). As any function in £o(P) can be obtained in this way, it is concluded that
the pull-back by up of the restriction to Sy of expectation value functions is precisely (up)«(Eo(S)|s,) =
Eo(P). Tt is thus immediate, by the similarity of definitions of the contravariant tensor fields, that relation
(3.106) holds. As a corollary, the restrictions to S; of As and Rs satisfy the same relations that their
preimages 2p and Gp, hence the stratum is a Kahler manifold with respect to an appropriate almost
complex structure, which shall be pp-related with the one existing on P. O

It is immediate to conclude from this theorem that Hamiltonian and gradient vector fields on S,
when restricted to Sy, are in one-to-one correspondence with Hamiltonian and gradient vector fields on
‘P. This restriction can always be done, as these vector fields are always tangents to the strata of S, as
proved by Graboswki, Ku$§ and Marmo [141, 142]. This identification between both approaches explains
the similarity of commutations relations obtained in (1.64) and in (3.51), both being related with the Lie
and Jordan products of observables.

As a last comment, unitary dynamics in both descriptions is represented by means of Hamiltonian
vector fields. When restricted to S1, the unitary evolution of pure states is related by the momentum map
with the representation of the Schrodinger equation on the manifold P. Thus, pure states are completely
described by the properties of the set S, as expected.

3.3.5 Vector fields as transformations on the set of states

Among the many properties of the geometric formalism, it is important for later chapters to consider
the objects on S representing R-linear operators on O*. As fully explained in [31, p. 108], the ’easy’
tensorialisation principle gives a clear relation between operators and vector fields on linear spaces. A
direct application of this principle is the following result

Proposition 3.54. For any R-linear transformation T : O* — O, there exists a vector field 2T €
X(O0*), whose value at each point is

(Zr)e =T(E) (3.107)

Proof. For any £ € O*, consider the isomorphism O* = T:O*. Following the ’easy’ tensorialisation

principle, the transformation T can be interpreted as associating to every point £ a tangent vector T'(€).
This defines a vector field Z7 € X(0*) with value T'(§) at each point £ € O*. O

In particular, the action of 2T on linear functions is

Zr(f)(€) = FA(T(©) = fraa) () =E(THA)), £ 0", AcO. (3.108)
where T : O — O denotes the dual map of T, defined as
T(E)(A) = £(T*(A)), VEe O, VAecO (3.109)

Lemma 3.55. Let T,T' : O* — O* be two linear transformations. Their associated vector fields by
Proposition 3.5/ satisfy L R
[Z1, Z1/]| = —Zi7.11). (3.110)
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Proof. Due to the linear structure of O*, the flow ®] associated to the vector field 2T can be written as
o 1 _ ) _

(&) =E+1T(€) + 5152T2(§) +0(%), £€O* teR. (3.111)

It is possible thus to compute the commutator [ZT, ET/] by applying the following relation [104]:

= = 1 d2 ’ ’ = 2 — = =
Zr, Zr)e = 5o (@7 087,007 0 0])(@)| =515 €~ EILTIE +0()|,_, = —IT.T(E).
at each point £ € O*, thus proving the proposition. O

Particular cases of vector fields presented in Proposition 3.54. are Hamiltonian and gradient vector
fields on O*. Lie and Jordan products on O define respectively adjoint and L4 operators (see Definition
3.23):

ada(B)=[A,B], La(B)=AGB, ABecO. (3.112)

Let coad 4 and coL 4 be the respective dual operators on O*, related with the respective operators on O
by in (3.109):
(CO&dA)u = adyu, (COLA)ﬁ =Ly, AcO. (3.113)

If the identification O* =2 O = Herm(H) for some Hilbert space H, then these operators take the form
coada(€) = —[A, €], coLsa=A0E VA€, VEe O (3.114)

These operators are in direct relation with the Hamiltonian and gradient vector fields, as proved in [141]
and presented next.

Proposition 3.56. The Hamiltonian and gradient vector fields on O* satisfy the relations

~ ~

XA = —ZcoadA, YA = ZcoLA7 AeO. (3.115)

Proof. Because of linearity, it is enough to prove these relations for linear functions. By (3.108), the
following relation holds:

Zeont s (/5)(€) = £(ada(B)) = £([A, B]) = Xa(f5)(). VABe€O, ¥EeO".
A similar relation holds for gradient vector fields, thus completing the proof. O

As in the case of tensor fields, presented in previous sections, these vector field are not in general
projectable onto S. It is however possible to define appropriate vector fields on S by the action of Zp on
expectation value functions.

Theorem 3.57. An R-linear transformation T : O* — O* that preserves positivity defines a vector field
Zp € X(S) whose action on expectation value functions is

Zr(ea)(p) = erscay(p) — ersry(plealp), peS, A€O. (3.116)

Proof. The transformation T defines a vector field 2T € X(O*) by Proposition 3.54. Its action on the
pull-back of expectation value functions is:

Zr(ea)(§) = fztf) ZT(fA)(g)_JJ;jL‘((;))Q Zr(11)(©€) = ers(ay (@ —ersy(Deald), €€ 0%, A€ 0, (3.117)

This expression can be restricted to S. The additional requirement regarding preservation of positivity
ensures that the vector field can be further restricted to &, thus completing the proof. O
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The properties of these vector fields on S are similar to those obtained for the larger manifold O*. In
particular, by Lemma 3.55 and equation (3.117) it is immediate to conclude that

[Z7, Z11) = = Zi7 171 (3.118)

It is important to notice the role of linearity in the geometric description of states. A generic linear
vector field on the larger manifold O* does not preserve the normalisation of states, and thus cannot
be restricted to S. It is possible to consider its action on relevant functions, i.e. on the pull-back to
O* of expectation value functions. Thus, vector fields are obtained on S which by definition preserve
the normalisation. Linearity, however, is lost in (3.116). Observe that, if the defining transformation T
preserves the set of states, then T%(I) = 0 and the resulting vector field Z7 is also linear on S, as expected.
This is for example the case of Hamiltonian vector fields. Gradient vector fields, on the contrary, are not
linear on S, as seen in the example of a 2-level system.

3.4 Example: pure and mixed states of a 2-level system

The geometric formalism presented above will be illustrated by considering the space of states of a 2-level
system. The aim of this section is to find the expressions of the tensor fields As and Rs, thus determining
Hamiltonian and gradient vector fields. These vector fields can be plotted on a 3-dimensional space, giving
some insight into the geometric properties of the space of states.

Recall from Section 1.1.7 that the C*-algebra associated to a 2-level system is isomorphic to End(C?).
Therefore, both the set of observables O and its dual space O* are isomorphic to the set Herm(2) of 2 x 2
Hermitian matrices. A basis {Uu}izo of O is given by the three Pauli matrices and the identity matrix:

10 0 1 0 — 1 0
0’0:(0 1), 0'1:(1 0), (72:<Z. 0), 0'32(0 1) (3.119)

The Lie and Jordan product of the elements in the basis {o,} have been computed in (1.39). They can
be written in a compact form as

[[O’j,O’k]]ZQEjklo’l, O'j@O'kZQCSjkO'(), j,k:1,2,3 (3 120)
00,0, = |ou,00] =0, 09g®o,=0,009=20,, w=0,1,23. '
Iz Iz W Iz Iz

In the following, indexes denoted by Greek letters will run from 0 to 3, while those represented by Latin
letters will take values 1, 2 and 3.
Consider the inner product in O defined as in (3.70) by the trace:

(A, B) = tr(AB). (3.121)
As O is finite-dimensional, the inner product defines an isomorphism between O and O*. The dual basis

{o"}—o in O* is defined as:

1
ot(o,) =04, wr=0,1,2,3 = ot= 20w K= 0,1,2,3. (3.122)

where all the elements are considered as Hermitian matrices on C2. An element £ € O* takes the form
_ 1
=yt = 3%uTu- (3.123)

In particular, states p € S C O* must be unit-trace positive elements, which gives the following result.
Proposition 3.58. The coordinate expression of a state of the 2-level system is

1

_ 1 —
p:O'O“Fl'jO'J:( BRI

X1 -|—’L{I?2 ].—1'3

5 ) o]+ a3 +a23 < 1. (3.124)
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Figure 3.4: Three-dimensional representation of pure and mixed states of a 2-level systems as points in a ball
of unit radius, called the Bloch ball. The surface S1 of the sphere corresponds to pure states, while mixed states
are represented by points in the interior S3. Via the momentum map, it is ismmediate to identify the surface S1
with the manifold P of pure states presented in Section 1.4. See in particular Figure 1.5, as this identification
allows to associate the pure states there represetned with the corresponding points in S. Observe that, unlike
Figure 1.5, in the present case also the interior points of the ball are considered. In particular, the centre of the
ball is the maximally mixed state pg.

Proof. Consider a generic element & = z,ot € O*. Then:

- 1
tr(§) = o, tx(§?) = (a5 + 2T + 25 + 23).
An element in O* is a state if it satisfies conditions in (3.15), or in matrix notation, if it is normalised
and positive. This leads to the expression presented in the proposition. O]

Therefore, the set of states is 3-dimensional, as it can be parametrised by points (1, 72, r3) € R? such
that their norm is not greater than 1. That is to say, the set of states is parametrised by the solid ball of
radius 1 in R3, as presented in Figure 3.4. This representation of the set of states of the 2-level system
is called the Bloch ball [11]. Points on the surface of the ball (that is, vectors with radius 1) parametrise
states that are rank-1 projectors, as p?> = p; these are the pure states of the system. The interior of the
ball parametrises mixed states. In the language of Proposition 3.42, the set of states is stratified as

S=85US,, (3.125)

with &7 the surface of the Bloch ball and S, its interior. It is thus immediate to identify the sphere S
with the manifold P of pure states of the system, as in Section 1.4.

Observables are represented by expectation value functions on S. With the given basis, the association
between observables and expectation value functions is

A:a“aﬂéea:ao—ﬁ—ajxj, a®,at,a? a3 € R, (3.126)

Proposition 3.59. The coordinate expressions for the contravariant tensor fields As and Rs are

3 3 3
) ) ) ) ) )
As= > €uais—N5— =2 —®a—— > 2Thn— © .
5= TG, N o Rs ) Bz ® o TiTh g ® e (3.127)
Jk,l1=1 Jj=1 J,k=1



3.4. EXAMPLE: PURE AND MIXED STATES OF A 2-LEVEL SYSTEM 97

Proof. Coordinate functions on S are given by the expectation value functions associated to the Pauli
matrices. The values of As and Rs on these coordinate functions are the following

As(dzj, dzr)(p) = €[o,.0](P) = 2€5m121,

(3.128)
Rs(dzj, dzi)(p) = €5,00, (p) — 2¢j(p)er(p) = 2051 — 2z 52k

From these results follow the coordinate expressions presented in the Proposition. O

Observe that, when restricted to the surface of the ball, it is possible to relate (3.128) with the
expression (1.167) for the Poisson and symmetric tensors Qp and Gp on the manifold P. This is in total
agreement with the result of Theorem 3.53, thus illustrating the embedding of the manifold of pure states
into the set S.

The algebra of observables is recovered on S as the algebra of expectation value functions o (S) with
products

{6,4,63}5 ZAs(d6A,d€B), (6,4,63)5 ZRS(deA,dGB)+2€AGB, fO’I”allA,B S O. (3.129)
With the decomposition given in (3.126), their explicit expressions are

i1k
{ea,eBts =2€jp a’b"w; = €pa, By,

. ) VA, B, e O. 3.130
(ea,eB)s =2a"V* + 2(a]b0 + aobj)ij = €AGB; ( :

As expected, the algebra £ (S) is isomorphic to the algebra of observables.

With the given expressions, it is possible to compute explicitely gradient and Hamiltonian vector
fields on the Bloch ball. In order to compare with the results presented in Section 1.4 for the geometric
description of the Schrodinger picture and the manifold P, consider a diagonal Hamiltonian H in the
given basis:

_(Ey 0
H_<0 E1>7 Ey < Ey. (3.131)

Its associated expectation value function on § is

_htbe BB ves. (3.132)
2 2
Observe that the restriction of this function to the surface of the sphere, i.e. to pure states, gives as a
result the expectation value function computed in (1.168). Again, this is in agreement with the embedding
of the manifold P of pure states into S, as described in Section 3.3.4.
The Hamiltonian vector field Xy associated to this function is obtained by the contractoin of the
tensor field Ag by the 1-form deg:

er(p) = Tr(Hp)

XH = _LdeHAS = (El — E()) (l‘gaaxl — X 881:2) . (3133)
The corresponding system of differential equations determining the integral curves of the Hamiltonian
vector field is
dl’l o E1 — EO dl’g o E1 — Eo d.’Eg
T e T BT
The vector field X is therefore the generator of rotations around the zz-axis. The plot of this vector
field for Fy < E7 can be found in Figure 3.5. The distance to the center of the Bloch ball is preserved
along the integral curves. In fact, as proved in [141,142], the distribution D, of Hamiltonian vector fields
define a foliation of the Bloch ball whose leaves are all possible spheres with centre in (0,0, 0).
The stratification of the Bloch ball, however, is different for gradient vector fields. In order to
understand the difference, consider the gradient vector field Yy associated to egy:

=0. (3.134)

= 0 0 0
Yy = LdeHRS = (El — Eo) (331.733% + .13233387;82 — (1 — xg)%) . (3135)
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10

Figure 3.5: 3-dimensional plot of the Hamiltonian vector field Xy, defined in (3.133). The integral curves of
the vector field are rotations around the x3 axis. Therefore, the fixed points are the points on the axis.

The corresponding system of differential equations for its integral curves is

dd% = (E1 — Eo)r173, dd% = (E1 — Eo)r173, %

The values of the vector field at each point of S are plotted in Figure 3.6. Contrary to the case of
the Hamiltonian vector field X, the integral curves of Yy are not periodic. Instead, there exist two
fixed points of the dynamics, with coordinates (0,0,1) and (0,0, —1), which are respectively unstable and
stable. This is identical to the case studied in Section 1.4.

Regarding the stratification of the set S of states, observe that the gradient vector field does not, in
general, preserve the distance to the center along its integral curves. Only integral curves on the surface
preserve it. Thus, as expected, both gradient and Hamiltonian vector fields are tangent to the surface of
the Bloch ball. In the interior, gradient vector fields break the stratification in terms of concentric spheres
generated by Hamiltonian vector fields. Thus, a distribution of both gradient and Hamiltonian vector
fields requires to consider the interior of the Bloch ball as a single stratum, in agreement with [141,142].

= —(Ey — Ep)(1 — z3). (3.136)

3.5 Relevance of a geometric description of pure and mixed
states

The present chapter offers a new description of the states of quantum systems in geometric terms, which
allows for a better characterisation of quantum systems. The developed geometrical formalism can be
seen as an extension of the one presented in Chapter 1 for the description of pure states. In both cases,
the main geometrical objects are the tensor fields that represent the algebraic properties of observables.
As seen in Sections 3.1 and 3.2, two main algebraic structures have to be considered. The Lie bracket
of observables describes the dynamics of the system, while the Jordan product is connected with the
probabilistic nature of Quantum Mechanics. Both structures are interconnected, and both are necessary
in order to understand the mathematical properties of the theory and the differences with Classical
Mechanics.
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Figure 3.6: Full 3-dimensional plot of the gradient vector field defined in (3.135). The vector field takes value
zero nowhere except at points (0,0,1) and (0,0, —1). It is important to notice that the vector field is tangent to
the surface of the ball, that is, to the subset of pure states.

It is possible to move from an algebraic description of observables to a geometric one [141,142]. A
further step can be taken by considering, as in Chapter 1, a reduction procedure. In this way, a new
geometric description of quantum states is obtained. The set S of pure and mixed states is thus described
by a stratified manifold, each stratum being itself a differentiable manifold. The whole set, however, lacks
a differentiable structure. Instead, in order to carry out differential calculus, it is necessary to embed it
into a larger manifold .S, with the properties explained in the text. The set & thus presents a boundary,
a property that has to be taken into account mainly in the analysis of dynamical systems (see Chapter
4).

Regarding tensor fields, most the conclusions reached in Chapter 1 can be restated here. There
exist two tensor fields, As and Rg, representing respectively the Lie bracket and Jordan product of
observables. The tensor fields Ag defines a Poisson bracket on smooth functions, and it determines
the unitary evolution of quantum systems. Regarding the symmetric tensor field Rg, it represents in a
geometrical way the statistical properties of quantum systems. In particular, the standard derivation of
an observable A € O for a state p € S, given by (3.8), is recovered as

Rs(dGA,dEA)(p) = 2¢e42(p) — 2(6A(p]))2 = 2(APA)2, Vp € S. (3137)

This is clearly an extension to pure and mixed states of expression (1.173).

The geometric formalism allows for a better characterisation of quantum systems and their dynamics.
Thus, Chapter 4 presents some applications of this formalism to the analysis of open quantum systems.
It is possible to consider more general dynamics than the unitary evolution determined by the Poisson
tensor As. In particular, the Markovian evolution of open quantum systems will be presented in geometric
terms. Different aspects of the dynamics can thus be considered. For example, the geometric setting is
useful in order to describe control problems on open quantum systems. Furthermore, it is possible to
analyse from a new light some problems that are hard to describe in a geometric setting. In particular,
Chapter 4 describes the behaviour of tensorial structures under Markovian evolution, thus leading to a
geometric description of the contraction of algebras of observables. The analysis of these contractions,
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presented by Marmo and co-workers [7,92, 158], can now be given an intrinsic formulation in geometric
terms. The behaviour and evolution of tensor fields can be directly analysed in the geometric setting.
Thus, it can be concluded that a geometric formalism offers the possibility to study the intrinsic properties
of quantum systems and their behaviour in different situations.



Chapter 4

Markovian evolution of open
quantum systems

The geometric formalism presented in previous chapters offers a new setting for the study of open quantum
system and to the description of their interaction with an environment. This interaction implies an
interchange of energy and information, and thus statistical ensembles are to be considered. The geometric
description of pure and mixed states can thus be applied to the analysis of open quantum systems. In
particular, this chapter focuses on the characterisation of Markovian evolution, for which a rigorous
mathematical framework exists [59, 139, 191].

The geometric formalism makes possible to describe also the evolution of algebraic structures that are
intrinsic to Quantum Mechanics. In the realm of differential geometry, every geometric object evolves
along a given trajectory. Thus, it is a simple issue to compute the change of the tensor fields As and
Rs , which encode the algebraic structure of the set of quantum observables. Quantum evolution may
thus modify the algebraic properties of observables in a non trivial matter. This is in connection with
the mathematical construction known as contraction of algebras [78,268,270]. Although contractions of
algebras of quantum observables can be computed in an algebraic setting [7,92,158], the procedure requires
an explicit computation of the evolution of observables before computing the contraction. The geometric
formalism is much more suitable for this characterisation, as it provides a setting in which the algebraic
structures, represented by tensor fields, can be dealt with directly. These and other considerations
motivate a geometric analysis of the dynamics of open quantum systems.

The chapter is organised as follows. Section 4.1 offers a definition and characterisation of open quan-
tum systems and Markovian evolution, both from algebraic and geometric perspectives. The description
of the evolution in terms of vector fields makes possible to study the contraction of algebras of observables.
Thus, Section 4.2 presents a mathematical introduction to the theory of contractions of algebras. In the
sight of that, Section 4.3 presents a geometric approach to the contraction of algebras, particularised to
the case of quantum systems with Markovian evolution. Section 4.4 offers a mathematical description of
the action of Markovian evolution on the manifold of states, the set of limit points of the evolution and
its relation with the contraction of algebras. Finally, Section 4.5 presents an application of geometric
control theory to Markovian systems. Examples will be offered in order to illustrate the results.

4.1 Open quantum systems

A quantum system is called open if it is not isolated, i.e. if it interacts with its environment in any way.
Assuming that there is no change in the number of particles in the system, interactions take the form of
interchanges of energy and information. Consider for example the decay of a quantum system, such as an
atom or molecule. If the system is in an excited state, then it has a certain probability of decaying onto
the ground state and emitting a photon with the exceeding energy. In this way, energy is interchanged

101
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between the system and the environment. In addition, if the decay is subject to probabilistic rules, there
is also a change on the entropy of the system. A characterisation of open quantum systems and their
dynamics can be found in many works [5,59,123]. Refer also to the book by Rivas and Huelga [220],
which is the main source for many of the arguments presented in this introduction.

The study of open quantum systems has to deal with the characterisation of the states of the systems
and the description of their evolution. Consider a quantum system with associated Hilbert space H; as
described in Chapter 1, pure states of the systems are represented by points in the projective Hilbert
space P. By definition, however, the available information on the actual state of an open quantum
system may change as a result of the interaction with the environment. In other words, a pure state may
evolve into a mixed state, and viceversa. For this reason, the state of the system has to be described
by statistical ensembles on P. As it was detailed in Section 3.1.5, these ensembles are represented by
density matrices on H. Geometrically, the set D(H) of density matrices is identified as a manifold with
boundary S, which has been fully described in Chapter 3. Thus, the analysis of open quantum systems
motivates the characterisation of the manifold with boundary S of pure and mixed states of the system.

Open quantum systems can be analysed from the perspective of composite systems. This point of
view is useful for the characterisation of observables and evolution. Thus, consider an open quantum
system A and its environment B. Assuming the universal validity of Quantum Mechanics, the result
is a composite quantum system AB with no external interactions, i.e. an isolated composite quantum
system. It is thus subject to unitary evolution, and the state and properties of the composite system AB
completely characterise the original open quantum system A.

In the Schrédinger picture, composition of quantum systems is carried out by means of tensorial
products [102]. Thus, let H4 and Hp be the Hilbert spaces associated with the open quantum system
A and its environment B, respectively. The Hilbert space of the composite system AB is then Hap :=
Ha ® Hp. Observables and states of each system are described as usual; assume in the following for
simplicity that all the involved Hilbert spaces are finite-dimensional. It is possible to relate states and
observables of an open quantum system with those of its corresponding composite system by means of
the properties of tensorial products. See the book by Nielsen and Chuang for a pedagogical description
of these relations [214, p. 107], reproduced here. The following proposition mathematically describes
observables of the subsytem A on the composite system, as graphically presented in Figure 4.1.

Proposition 4.1. The representation of an observable M € O = Herm(H 4) on the composite system
with Hilbert space Hap = Ha @ Hp is

MZM@)[BEOAB:HGI‘IH(’HAB), (4.1)
with Ig € O = Herm(H ) the identity observable on Hp.

Proof. Consider the spectral decomposition of M:

M= Z mP,,, (4.2)

me&spec(M)

with P, the orthogonal projectors onto the corresponding eigenspaces of M. Physically, the eigenvalues
m € spec(M) represent the possible results of a measurement of M on the system A. Consider now the
situation in which the same observable is measured on the composite system AB. It is now represented
by M = Oap, but the possible results of the measurement do not change, thus spec(M) = spec(M).
Regarding projectors, the state of the environment B has no influence on the outcome of the measurement
process. Thus, the spectral decomposition of M is

M= > mP,®Is, (4.3)

mespec(M)

hence M = M ® Ig. O
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ol=

M
U]

Figure 4.1: Consider a physical quantity being measured on a system A, represented by M € O4. If A is seen as
a subsystem of a larger composite system AB, then the quantity is now represented by M € Oap. The outcome
of the measurement process, however, are independent of these considerations, as the measure is carried only on
A. As a consequence of this fact, Proposition 4.1 shows that M is indeed unique, given by M = M ® Ig.

The opposite relation, from AB to A, is carried out by means of the partial trace. Let Trg : 0B —
O4 be the map defined as

T'Y(M @ N) := M Tr(N), YM € O4, VN e Op, (4.4)

and extended by linearity to the whole space Oap = O4 ®Op. The restriction of Trg to density matrices
defines a map Trp : Sap — Sa, called the partial trace, with the following property.

Theorem 4.2. The partial trace Trp : Sap — Sa is the unique map satisfying the relation

em(Trg(pas)) = ex;(paB), Vpap € Sap, VM € Oy, (4.5)

where exr € E0,(Sa) and €53 € E0,,(Sap) are the expectation value functions of M and M = M ® I,
respectively.

Proof. Consider a map f : Sqp — Sa such that the following relation holds:

em(f(paB)) = e3;(paB), Ypap € Sap, VM € Oy, (4.6)

The goal is to prove that this map is unique. Let {o;} be an orthogonal basis for O4 (with respect to
the usual inner product defined by the trace), and {07} its dual basis on O%. Consider the inclusion
Sa C OF; any pa is thus written as
pa = Ze"i (pa)o?. (4.7)
J

In particular, for any pap € Sap, consider the decomposition of f(pap) in this basis:

flpas) = € (f(pan))o’ => ez, (pan)o’.

J J

Thus, by assuming that f satisfies (4.6), the image f(pap) is uniquely determined. In other words, f is
unique. Lastly, it is immediate to check that relation (4.5) holds for the partial trace, thus completing
the proof. O

The partial trace plays an important role in the description of the dynamics of open quantum systems.
The postulates of Quantum Mechanics describe the dynamics of isolated quantum systems in terms of
unitary maps. Thus, if the evolution of the composite system starting at ¢y is given by a family of
unitary map {U(t, to) : Sap — Sap,t > to}, its composition with the partial trace defines, for every
initial condition pap o € Sap, a trajectory on S4 by

pa(t) = Trp (Ut t0) (pap0)), > to. (48)
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The description of these trajectories are the main goal of the study of open quantum systems. Observe
that, in general, p4(t) depends on the initial state pap o of the composite system. In other words, the
evolution of an open quantum system depends on the state of the environment with which it is interacting.
As this state is in general impossible to determine, the description of the evolution of an open quantum
system is a challenging problem. Different strategies have been designed in order to deal with the dynamics
of open quantum systems. Refer to the works by Davies, Huelga, Kossakowski, Kraus, Rivas, Stinespring,
Sudarshan and many others [32,35,59,93, 105, 123, 137—139, 167, 181, 182,205,219, 224,226, 232,249, 250].

4.1.1 Completely positive maps

Consider an open quantum system, with S as its set of pure and mixed states. Its evolution between any
two instants tg,t; can always be described by a dynamical map

gt17t0 :S— S. (49)

If this map is derived from (4.8), then it depends strongly on the state of the environment and its
interaction with the system. Some assumptions have to be made in order to characterise dynamical
maps. The concepts of completely positive maps and Kraus operators are useful in this characterisation

Definition 4.3. A linear map K : Herm(H) — Herm(H), with H a complex Hilbert space, is said to
be completely positive if the image of a positive element is a positive element. The map f is said to be
completely positive if, for any complex Hilbert space H', the map K®@Id : Herm(HQH') — Herm(HQH')
18 positive.

Lemma 4.4. [182] Any completely positive map K : Herm(H) — Herm(H), with H an n-dimensional
complex Hilbert space, can be written as

K(A) =Y V;AV], (4.10)
j=1

with 1 <r <n? and Vi,...,V, € GL(H). The map K is called a Kraus operator. The right-hand side
decomposition is not unique.

Proposition 4.5. Let K(H) denote the set of Kraus operators on Herm(H). Composition of maps defines
a semigroup structure on K(H). Any K € K(H) whose inverse is also a Kraus map, i.e K~1 € K(H),
can be uniquely written as

K(A)=VAVT VeGL(H). (4.11)
Proof. Tt is immediate from (4.10) that the composition of any two Kraus maps is also a Kraus map.
As the composing matrices Vi,...,V, are not required to be invertible, Kraus maps are not in general

invertible. The characterisation of invertible Kraus maps was done by Grabowski, Ku$§ and Marmo [142].
Consider the spectral decomposition of a Kraus map K given by (4.10), which determines a unique

expression in terms of mutually orthogonal operators Cy,...,Cr € GL(H):
R R
K(A):ZCSAC;’? Tr(CSCS’):65,8’7 ‘/}:Zajscsv j:1327"'u’ru 578/21127"~7R§n2~
s=1 s=1

(4.12)
If K € K(H) is invertible as a Kraus map, then there exist operator Wy, ..., W,, € GL(H) such that

K=Y A) =Y WeAW, = (KoK~ (A) =Y (V;Wp)A(V;Wi)T = A, VA € Herm(H).
k=1 Jsk
The map K o K~ is trivially decomposed by (4.12) as (K o K~ ')(A) = I AI, hence V;W}, = ay,I for
some complex numbers a;;. Assuming that none of these operators is zero, the only possibility is that

all operators Vi,...,V, are invertible and proportional among them. Hence K(A) = VAV for some
V € GL(H) proportional to each Vi,..., V. O



4.1. OPEN QUANTUM SYSTEMS 105

When the initial correlations with the environment can be neglected, and the dynamical map &, 4,
is assumed to be linear (with respect to the linear structure in O*), then & ., is a completely positive
map [6,59,181]. In this case, it is possible to describe the dynamical map in terms of a trace-preserving
Kraus operator [220]:

g(thto ZV tl,to)pV tl,to ZV tl,to tl,t())—] (413)

j=1

Such a map is called a universal dynamical map. Observe that the composition of universal dynamical
maps is not well defined. In order to understand the problem, consider three different times ¢, t1, t2, such
that the system is uncorrelated with the environment at tg. Maps E(t1,t9) and E(ta,to) are therefore
universal dynamical maps. One could be tempted to decompose the evolution as

Etatr © Etrto = Eba it (4.14)

The map &4, ,, however, is not in general an universal dynamical map. The reason is that at ¢; there
may exist correlation between the open system and the environment. In fact, if the maps are obtained
as in (4.8), then unitary evolution of the composite system naturally produces correlation between its
composing parts. The evolution of open quantum systems in correlated states with the environment is
carried out by means of non-positive dynamical maps. These maps, however, have to be dealt with care,
as non-physical descriptions may occur. See the works by Jordan, Shaji and Sudarshan [167,211,242],
and other references [227,233,260], for a discussion of the relevance of completely positive maps in the
description of open quantum systems and the evolution of correlated states by non-positive maps.

4.1.2 Markovian evolution

As seen above, the difficulties in the description of universal dynamical maps comes from the correlation
between the open system and its environment. Consider a case in which the environment is much larger
than the open system, for example, if it is a thermal bath or a measurement equipement. In such cases,
it is safe to neglect correlations and any dynamical map is completely positive. This is a situation in
which a more detailed description of the evolution can be offered.

Definition 4.6. The evolution of an open quantum system is said to be Markovian if the universal
dynamical maps Ey ¢ : S — S for every t' >t satisfy the condition

gtz,tl [0} gtl’to = gtz,t()? Vtg Z tl Z to. (415)

It is usually said that systems subject to Markovian evolution ‘have no memory’. This expression
means that the evolution at a given time ¢ depends only on the state of the system at ¢, and not on any
previus state at t” < t. In the context of composite systems, the ‘memory’ of a system is represented by
the state of the interacting environment. If, as in the case at hand, this environment is not affected by
the system, then Markovian evolution is achieved. Observe also the similarities between this description
of the evolution of open quantum systems and the analysis of unitary evolutions presented in Section
1.1.5, in relation with the description of the Schrodinger picture of Quantum Mechanics.

In the context of Quantum Mechanics, the study of Markovian evolution of open quantum systems was
given a formal description by Gorini, Kossakowski and Sudarshan [139] and independently by Lindblad
[191]. They were able to determine explicitely the differential equation goverining Markovian dynamics.
For simplicity, assume in the following that maps &, ¢, depend only on the difference ¢, — ¢;. Thus, the
evolution of an open quantum system starting at time ¢y is described by a family of linear completely-
positive transformations {®f : & — S,t > 0}, with oty = (I)th—tl for any ty > t; > to and with &}
being the identity map. By (4.15), this family has a semigroup structure:

®f o @) =df,, tt' >0. (4.16)
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Theorem 4.7 (The Kossakowski-Lindblad equation [139,191]). Let H be a n-dimensional Hilbert
space describing a quantum system and S C Herm(H) its set of pure and mized states. Assume that the
evolution of the system is given by a semigroup of linear completely-positive maps {®F : S — S,t > 0}.
These maps satisfy the differential equation

d
S0k (p) = L(BE(p)), (4.17)
The linear map L : Herm(H) — Herm(H) is called the Kossakowski-Lindblad operator. It is given by the
expression

2 2 2
. 1 n—1 . 1 n—1 n—1
j=1 j=1 j=1

with p € S, H' = H, tr(H) =0, tr(V;) = 0 (mdtr(VjTVk) =0ifj#k, forj,k=1,2,...,n2 —1. Fora
given evolution, H is uniquely determined by the trace restriction.

Kossakowski-Lindblad equation characterises the evolution of states of a quantum system. Due to the
natural equivalence between density matrices and points in the manifold with boundary S, fully described
in Chapter 3, it is immediate to describe this equation in geometric terms. In this way, it is possible
to analyse the change in the properties and structures associated with quantum systems evolving under
Markovian dynamics.

It is important to notice that the decomposition in (4.18) is not unique. The observable H is fully
determined by imposing TrH =. However, there exist multiple sets of operators Vi, ..., V. yielding the
same Kossakowski-Lindblad operator. This is a consequence of the properties of Kraus maps, introduced
in Lemma 4.4. Thus, in the analysis of Markovian dynamics of open quantum systems, it is advisable to
consider the Kraus term in (4.18) as a whole. This approach is followed in the next section when vector
fields determined by linear maps on O* are considered.

A simple generalisation of the Kossakowksi-Lindblad equation can be easily obtained by dropping the
description of evolution in terms of a semigroup of maps. If general maps &, +, : S = S, not necessarily
depending only on the difference ¢’ — ¢, then the evolution is determined by a time-dependent generator

(1) [220]
S 0) = LOEn (@), 121210 (4.19)

For each ¢, the operator L(t) can be expressed as in (4.18). In other words, this evolution is described by
a time-dependent Kossakowski-Lindblad equation. Althogh this topic will not be further explored in this
dissertation, analogies with the study of time-dependent Schrédinger equations exist. In particular, the
geometric formalism offers the possibility to introduce the study of Lie systems in the context of open
quantum systems, which as in the cases presented in Chapter 2 would profit from the existing geometric
structures on the set of pure and mixe states.

4.1.3 The Kossakowski-Lindblad vector field

According to (4.18), Kossakowski-Lindblad operator L is a linear transformation of matrices acting on
H. Within the geometric formalism developed in Chapter 3, it is thus natural to consider it as a map
L : O — O*. The next result follows.

Proposition 4.8. There exists a unique vector field Z; € X(S), whose action on expectation value
functions is

ZL(EA)(p) = €LI(A) (p)7 pE S? Ae Ov (420)

and whose integral curves are solutions to the Kossakowski-Lindblad equation.
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Proof. By application of Theorem 3.57, it is immediate to associate a vector field Z;, € X(S) to the
Kossakowski-Lindblad operator. Let L* : O — O be the dual operator. It is immediate from (4.18) that
LA(I) = 0, from which the expression given for Z;, follows. O

Clearly, the new vector field Z, is neither Hamiltonian, gradient nor a combination of them. It is thus
expectable that it presents new characteristics, different from those deduced of Hamiltonian and gradient
vector fields. In particular, recall the stratification of the set of states in terms of the rank, described in
Proposition 3.42. At each point of the manifold, gradient and Hamiltonian vector fields are tangent to
the corresponding stratum. This is not so, in general, for Kossakowski-Lindblad vector fields of the form
(4.20). Their integral curves may thus intersect different strata of the manifold S. The following result,
by Grabwoski, Ku§ and Marmo [141], illustrates the properties of this vector field.

Theorem 4.9. [141] Every smooth curve in S is tangent to the stratum Sy, to which it actually belongs.

Corollary 4.10. Under Markovian evolution, the rank of the state of a quantum system may change
either at the initial time or at infinite time. It cannot change under finite time evolution.

Proof. The rank of a state is uniquely determined by the stratum of & to which it belongs. Theorem
4.9 rules out almost every possible change in ranks. The only two possibilities are the ones stated. A
non-invertible evolution is by definition not differentiable at initial time, which means that the rank may
change. It is also possible to define smooth curves on a stratum of S whose limit belongs to the boundary
of the stratum, which is, by definition, a different stratum. O

Corollary 4.10, together with smoothness condition, characterises the geometric properties of vector
field Zy. The vector field has clearly no limitation in the interior of the set S. The boundary has to be
taken into consideration. Clearly, as the Kossakowski-Lindblad operator preserves positivity, the vector
field Z;, never points outside of the boundary. Because of continuity, this means that, at each point with
certain rank, the vector field never points towards another stratum with larger rank. This proves the
following result.

Proposition 4.11. Let v : [0,00) — S be an integral curve of the Kossakowski-Lindblad vector field.
Then,

rank(~y(t)) > rank(y(0)), Vt > 0. (4.21)

Rank of states may only increase in infinite time if the asymptotic limit of an integral curve belongs
to a different stratum. These properties of vector fields are graphically represented for the 2-level system
in Figure 4.2.

New aspects of the Kossawkoski-Lindblad vector field can be studied by inspection of (4.18). Observe
that it can be decomposed in three parts: a commutator, an anti-commutator and a Kraus operator on
p- Recall from Chapter 3 that the first two summands are respectively related with Hamiltonian and
gradient vector fields. In order to understand the relevance of the third summand, consider first a vector
field on S of the form

W=Xy+Yr, HUFEeO. (4.22)

This is a generic linear combination of a Hamiltonian vector field X g and a gradient vector field f”p. The
action of the vector field W on an expectation value function €4, with A € O, is the following:

Wiea)(p) = eqm,a1(p) + eroalp) —er(p)ealp), p€S. (4.23)

Recall that expectation value functions are linear on S. Thus, because of the last summand, W(e,) is
in general a non-linear function on the set of states. In short, the vector field W is said to be non-linear.
Observe that this non-linearity comes from the gradient part of the vector field W. Linearity is obtained
only for F' = 0.
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In contraposition with W, the Kossakowski-Lindblad vector field Zy, is linear, as deduced from its
simple expression (4.20). The Kraus operator in (4.18) is responsible for the linear nature of this vector
field. In order to understand its relevance, consider a Kraus map K as in (4.10):

K(A) = Z V;AVS, A€ Herm(H). (4.24)
=1

The isomorphism O = O* = Herm(H) allows for the identification of the Kraus operator as a map
K : O* — O*. Hence it is possible to apply Theorem 3.57, obtaining a vector field Zx € X(S).
Proposition 4.12. The action of the vector field Zx on an expectation value function €4 is

Zi(ea)(p) = excray(p) — ev(p)ealp), V=D V;V;€0, peS, AcO, (4.25)

j=1
with the dual Kraus operator K* : O — O being defined as
K*(A)=> V;AV;, A€ O=Herm(H). (4.26)
j=1

Proof. This is a direct application of Theorem 3.57. Observe that
K1) =3 ViV, =V,
j=1

thus obtaining the proposed expression. O

Now, consider the vector field W’ which is a linear combination of three different vector fields with
real coefficients, defined as follows.

W' =Xy +Yr+Zx, HFeO. (4.27)
As before, the action of W’ on expectation value functions can be directly computed:

W' () () = eqsa)(p) + eroalp) + ea(K () — er(plealp) — ev(plealp), peS, AcO.  (4.28)

- V‘VV

(a) (b) ()

Figure 4.2: Representations of different Kossawkoski-Lindblad vector fields for the 2-level system on the Bloch
ball introduced in Chapter 3. They correspond to (a) phase damping, (b) decay and (c) dissipation of the
system. These examples will be fully explained in later sections.
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The non-linearity of this vector field is now due to the last two terms. Thus, in contraposition to
(4.23), linearity can be regained in this case by imposing a fine tuning between the last two summands
in (4.28):

er(p)+ev(p) =0 Vpes. (4.29)

This tuning can be achieved by considering the following expression for the observable F' appearing in
(4.27):

F=-V== V'V, (4.30)
j=1

Linearity is thus achieved. The resulting vector field is the generator of the Markovian dynamics associ-
ated with the Kossakowski-Lindblad equation.

Theorem 4.13. [72] Let H be an observable and let K be the Kraus operator defined as in (4.24). The
vector field Zy, on S defined as

n?—1
Zy=Xpg—-Yy+Zx, V=> VV=K). (4.31)

j=1

is such that the system of differential equations for its integral curves is given by the Kossakowski-Lindblad
equation (4.18). Its action on expectation value functions is

Zr(ea)(p) = €pm,a)(p) — evoalp) +exsay(p), peS, A€O (4.32)

where the dual map K* : O — O is defined as in (4.26).

The last two vector fields in the decomposition of Z7 given in (4.31) are not independent. The
gradient vector field Yy, is uniquely determined for each possible vector field Zx. Such relation follows,
as indicated before, in order to obtain R-linear transformations in the space of states. The resulting
vector field is well defined in the whole set of states S, but is not in general tangent to each stratum
of the set, as a consequence of Theorem 4.9 proved in [141]. As seen above, this geometric approach to
Markovian dynamics allows for an in-depth study of its properties, such as the importance of linearity.
Observe that, due to Lemma 4.4, vector field Z, is the more general linear positivity-preserving vector
field that can be written on §. Generalisations of this vector field could be easily described, mimicing
the description of non-positive dynamical maps mentioned in 4.1.1. The geometric formalism, however,
offers another possible generalisation. Non-linear maps could be described by dropping the constraint in
the expression of the gradient vector field in (4.31). In this way, it is possible to extend the study of open
quantum system to non-linear dynamics. This could have applications in cases in which the interaction
with the environment is not negligible, such as spin chains or molecular systems.

4.1.4 Markovian dynamics for 2-level systems

In order to get some insight on the properties of the Kossakowski-Lindblad vector field, several simple
examples can be computed. The coordinate expressions for the observables of a 2-level system have been
presented in Sections 1.1.7 and 3.4. A basis of the algebra of observables O = Herm(C?) is given by the
three Pauli matrices and the identity matrix:

1 0 0 1 0 —i 1 0
0'0:<0 1), 0'1:(1 0), ng(i O), 0'3:<0 _1>. (433)

The Lie and Jordan product of the elements in these basis are the following:

[[O'j70'k]] = 2¢€;p101, UjQUk:26jk0'07 7, k=1,2,3 (4 34)
loo,0.] = [o4,00] =0, 00©® 0, =0,000=20,, n=0,1,2,3. ’
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Figure 4.3: Vector field and limit manifold for the phase damping of a 2-level quantum system. The limit
manifold is the intersection of the Bloch ball with the x3-axis, as computed in (4.40).

The set of states S is a three-dimensional manifold. As stated in Proposition 3.58, states of the system
can be written as

1<1+x3 T — 1To

_ -0 J —
=0 +x;j0) == .
P J r1+iry 1 — a3

5 ) . ardaial <1, (4.35)

where o# = %aw with ¢ =0, 1,2, 3, is the dual basis to (4.33).

Phase damping of 2-level systems

As a first example, consider the phase damping of a 2-level system. Phase damping is a quantum process
in which the interaction with an environment causes losses of quantum information, while the energy of
the system does not vary. For the particular case of a 2-level system, the phase damping is modelised by
the following Kossakowski-Lindblad operator [7,92]:

L(p) = —v(p — o3po3), p€S. (4.36)

In order to obtain the explicit expression for the associated vector field Z;, on S, consider the basis for
O given in (4.33). As L is a self-adjoint operator on matrices, i.e. L = L¥, the following follows

L¥(01) = —2v01, L*(o9) = —2y09, Lf(o3) =0, L*I)=0.

The coordinate expression of the vector field Z;, can be computed directly by Proposition 4.8:

7] 0

A plot of this vector field and its integral curves on the Bloch ball can be found in Figure 4.3. By direct
integration, the following coordinate expression for the flow of Z; can be found:

®F (10, T20, T30) = (€72 w10, e w90, 130). (4.38)

The limit manifold Sy, of the evolution is defined as the subset of S towards which the whole states

of the system evolve:
S = lim dL(S). (4.39)
— 00
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\/ N/

(b)

Figure 4.4: (a) Decay of a two level system. (b) Vector field and limit manifold for the decay of a 2-level
quantum system. The limit manifold is the pure state corresponding to the ground state of the system.

0)
(a)

From (4.37) and (4.38), the limit manifold coincides with the fixed points of the dynamics. This subset
is
S ={peS|p=0"+z30%}. (4.40)

In the representation in terms of the Bloch ball, presented in Figure 4.3, the limit manifold corresponds
to the intersection of the Bloch ball with the zz-axis. Points in the ball evolve in such a way that they
tend to this axis. Observe that the properties stated in Section 4.3 are present here. Recall that rank 1
states belong to the surface S; of the ball, while rank 2 states are in the interior Sy of the ball. Evolution
starting on the surface for ¢t = 0 immediately enter the interior Sy, except for the two fixed points on the
surface. For any t > 0, evolution has to preserve the strata; in this case, evolution occurs inside Ss. In
this example, no change in rank occurs in the asymptotic limit.

Decay of 2-level systems

Other examples of Markovian evolution can be considered. Consider the decay of a 2-level system onto
its ground state, as graphically represented in Figure 4.4. This phenomenon is modelled by the following
Kossakowski-Lindblad operator [39]:

1 0 1
L(p) = JpJ' = (' Tp+ pJT), J:ﬁ<0 0)’ y>0, (4.41)

where the eigenstates of the Hamiltonian are taken as a basis for the Hilbert space of the system. The

vector field Z;, associated to this operator is given by Proposition 4.8:
y 0 y 0 0

Z, =—=T1=— — — To— 1—x3)=—. 4.42

L 2 1 8x1 2 xzafﬂg +fY( xS)al'g ( )

This vector field can be easily plotted on the Bloch ball, as seen in Figure 4.4. By direct integration,

the flow of Z, is ) )
OF (210, 720, w30) = (€772 @10, 2210, 1 — V(1 — 30)). (4.43)

Clearly, the limit manifold of the dynamic is

SL:{pZUO+U3=<(1) 8)}7 (4.44)

which corresponds to the ground state of the system. As in the previous example, the rank of states
increases from ¢t = 0 to ¢ > 0 for starting points on the surface of the Bloch sphere, in agreement with
Proposition 4.11. Strata are thus preserved by the evolution for ¢ > 0.
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Dissipation of 2-level systems

As a last example, consider the following Kossakowski-Lindblad operator:
2
L(p) =) (ijJ} - %(Jijp + pJPj)) ; (4.45)

j=1

where operators Ji, Jo are defined as

0 1 0 0
J1ﬁ<0 0>, JQ\/"}TQ<1 0), ’)’1,’72>0, (446)

This Kossakowski-Lindblad operator models the dissipation of a 2-level system [39]. Physically, there exist
transitions between both energy levels, modelled by the parameters y; and 7. Their values determine
the limit of the evolution.

The vector field Zy, associated to this operator can be directly computed by Proposition 4.8. It can
also be computed separately for each summand, thus obtaining:

0 0 0
Zle—ﬂxli—ﬂxz + (1 —x3) )
2 8351 2 (91’2 T3 (447)
g 2 0 % 0 _7(1+x,)a
L2 2 or, 2 %0 2 3 O,

Define the quantities v := 1 + 2 and § := 1 — 2. The total Kossakowski-Lindblad vector field Zp, is

v 0 v 0

0
Zn =2+ Zps = Lo~ Yoy O (5 -
L L1+ Zro 1 B 52 92 + (6 —yx3)

o (4.48)

Figure 4.5: Dissipation of a 2-level system for different values of the parameters in (4.45). In the case v1 = 72,
the limit of the evolution is the maximally mixed state.

The vector fields for different values of the parameters are represented in Figure 4.5. The limit set of
the evolution is composed of a single point:

SL:{pES|p:UO+ja3}. (4.49)

For § = 7, i.e. for 79 = 0, the decay presented in the previous section is obtained. On the other hand, for
d = 0, the limit of the evolution is ¢, the maximally mixed state. This case corresponds to the complete
dissipation of the state of the system, in the sense that the entropy of the system is maximised by the
dynamics.
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4.2 Contractions of finite-dimensional algebras

Once the behaviour of open quantum systems is understood, it is possible to apply the geometric for-
malims to the study of different properties of the system. A particularly interesting feature is the
behaviour of observables under Markovian evolution. As recently proved by Chrudcinski, Marmo and
co-workers, [7,92,158], the behaviour of the algebraic structures of the observables of an open quantum
system is not trivial, and can in fact be explicitely computed. The algebra of observables is subject to a
contraction, thus effectively leading in the asymptotic limit to a new algebra, hence to a quantum system
with different properties. The contraction of algebras of quantum observables has recently been presented
in a scientific paper [72]. For a complete characterisation of these contractions, the present section deals
with the mathematical description of this procedure.

The motivation behind the study of contractions of algebras comes from physical problems, and
in particlar of the study of the classical limit of Special Relativity. An algebraic characterisation of the
problem shows that, when varying the speed of light ¢, the Poincaré group evolves in a specific way whose
limit is precisely the Galileo group. In the 1950’s, Segal [240] and independently Inonii and Wigner [159]
aimed to describe this phenomenon in terms of Linear Algebra. They found that, when the parameters
describing the properties of the algebra are changed, it is possible to obtain in the asymptotic limit a
different algebraic structure. Such a procedure is nowadays known as a contraction of the algebra. The
present section is devoted to the description of those characteristics of the theory of contractions that are
relevant in connection with the study of quantum systems.

Consider an n-dimensional algebra (V, ) and a basis {e;}7_; for the algebra. The product * can be
described in terms of the corresponding structure constants cé- i defined as

ej*ek:c;kel, 5, k=1,2,...,n. (4.50)

A generic regular linear transformation U : V' — V of the algebra amounts for a change of basis in V' of
the form
¢ :=Uej = Ufek, j=12,...,n, (4.51)

being U j’“ the components of the matrix representation of the transformation U. The products of the
elements in this new basis can be related to those of the initial ones (4.50) as follows:

e x e, =UlUle, x eq = ¢ UrUlle, = (cp , UPUL(U ™)) e}, j.k=1,2,...,n. (4.52)

It is possible though to see the transformation U under a different light. Namely, as a way to introduce
a new product g in the linear space V. This product is defined as

axgb=U"1UaxUb), abeV. (4.53)

By acting with U~! on (4.52), the new product of elements in the basis can be obtained. Thus, the
structure constants (CU)é»k of the new product are simply given by

e; %y ey = (cU)é»kel, (cU)é»,C = c;quU,g(U_l)l Gk 1=1,2,... n. (4.54)

(3]

Lemma 4.14. The regular linear transformation U : V. — V is an algebra isomorphism between (V)
and (V, xy), with both products related by (4.53).

Proof. By acting with U on (4.53), it is immediate to obtain that U(a xy b) = Ua % Ub. O

Consider now a family of linear transformations {U(e) : V — V | 0 < e < 1} depending continuously
on the parameter €, with U(1) being the identity transformation, and such that U(e) is regular for € > 0
and U(0) is singular. Thus, for every ¢ > 0, there exists a new product *. on V given by

ax.b=U"Ye) (Ule)axU(e)b), a,beV, 0<e<l. (4.55)
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As a result, these transformations define a family {(V;*.) | 0 < € < 1} of algebras that are isomorphic
among them. The structure constants Cé‘k(E) for each product *. are

o) = c;qu(e)Ug(e)(Ufl)i(e), Gkl=1,2....n, 0<e<l. (4.56)

Observe that the definition (4.55) makes no sense for e = 0, as U(0) is not invertible. However, once
the family of algebras is obtained, it is possible to take into consideration the existence of an asymptotic
limit when e — 0.

Definition 4.15. Consider the family of algebras {(V,x.) | 0 < € < 1} defined as above. If there exists
an asymptotic limit for the family when € — 0, let %o be the product defined as

a*xgb=limax.b, a,beV. (4.57)
e—0

The algebra (V,xq) is called a contraction of the algebra (V).

The theory of contraction deals with the classification of algebras for which a contraction can be
obtained, and with the characterisation of such contractions. Observe that, in general, the contraction
(V, *q) of an algebra (V, *) is not isomorphic to it. Thus, contractions are in a sense a way to establish a
hierarchy between different algebras.

Characterisation and generalisation of contractions introduced by Segal, Inénii and Wigner have been

studied in detail. Among other authors, important contributions are due to Saletan [231], who proposed
a new type of algebra contraction; Weimar-Woods [268-271], who fully described the contraction of Lie
algebras; and Carifiena, Grabowski and Marmo [77-79], who described the theory in a more geometric
setting. Other contributions can be found in [107, , 189] and references therein.

4.2.1 Behaviour of properties of algebraic structures under contraction

The contraction procedure can be applied to any type of algebra. The particular case of Lie algebras
has been fully described [268-271]. For the study of Quantum Mechanics, and due to the algebraic
nature of the set of observables presented in Section 3.2, however, a more general setting is necessary.
The description of contractions for generic algebras has been achieved by Carifiena, Grabowski and
Marmo [78]. Concerning the case of Quantum Mechanics, one of the results presented in their work has
particular importance. Namely, the nature and properties of a contracted algebra with respect to the
initial one.

Consider a finite-dimensional algebra (V,x*) over a field K. The properties of any algebra can be
described in term of a certain number N of properties A, 1,...,A. n. A property A, ; amounts to the
determination of a function p, ; : V x --- x V — K, depending on the product *, that satisfies a certain
condition. For example, a property can be expressed by writing

Ay pwglar,...,ar,) =0, Vai,...,a,, €V, (4.58)

with 7; a natural number. Such a property only uses universal quantifiers, and the equality is satisfied
for any element in the algebra. This is the case of the associativity property,

Aci: pea(ar,az,a3) = (a1 ¥ a2) xaz —aq * (ag*az) =0, Vai,az,a3 €V,
or the skew-symmetry property,
Av2: pxp(ar,a2) =ay xaz +agxay =0, Vaj,az €V.

Other properties, however, may be satisfied only for a particular element in the algebra, i.e. they
depend on existential qualifiers:

Asjr Fer,..es, €V pajler, .. es,a1,.,a,) =0, Vay,...,ay; € V. (4.59)
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A typical example corresponds to the existence of an element unit:

A,3: dleV . l,a)=1%xa—a=0,
o pra(l,a) Va e V.
A,z: eV 1y, 5(l,a) =a*x1—-a=0,
Theorem 4.16. Consider an algebra satisfying certain properties with universal quantifiers, in the form
of (4.58). Any contraction of this algebra satisfies the same properties.

Proof. This result is proved in [78]. Given a family of linear transformations {U(e)} satisfying the same
properties as above, and due to Lemma 4.14, the algebras (V,*) and (V,*.) are isomorphic, thus they
satisfy the same properties in the form of (4.58). This is preserved in the limit € — 0. O

Observe that existential qualifiers are not preserved by generic contractions. For example, the exis-
tence of a unit may not be satisfied for a contracted algebra if U(e)~!1 is not defined in the limit € — 0.
This consideration, however, proves the following:

Corollary 4.17. The contraction of a unital algebra is unital if the unity is preserved along the contrac-
tion.

This result is relevant in the context of Quantum Mechanics. Observables of a finite-dimensional
quantum system are elements of a unital real Lie-Jordan algebra. If this algebra is contracted, by
Theorem 4.16 the contracted algebra will be again a Lie-Jordan algebra. It will also be unital if the
contraction procedure preserves the unit observable. If such is the case, the contracted algebra can again
be seen as the set of observables of a certain hypothetical quantum system.

4.2.2 Three-dimensional Lie algebras

In order to illustrate the theory of contractions of algebras, some simple examples will be considered. The
contractions of three-dimensional Lie algebras have been classified by Weimar-Woods [269]. A relevant
algebra in the context of Quantum Mechanics is the Lie algebra su(2) of the special unitary group acting
on C2. This algebra is isomorphic to the Lie algebra of traceless observables of a 2-level quantum system,
as described in Section 1.1.7. Thus, the possible contractions of this algebra will be computed next.
Consider a basis {ey, €2, e3} for the Lie algebra su(2) = (V,[-,]), with V 22 R3, such that the commu-
tations relations are
[61,62] = €3, [62, 63] = €1, [637 61] = €9, (460)

In order to obtain a contraction of this algebra, take a family {U(e)} of linear transformations of the
algebra such that
U(e)ey =€e1, Ule)ea=c€ea, Ule)es=e3, 0<e<1. (4.61)

That is to say, the matrix representation of U(¢) in the given basis is

€ 0
Ue)= |0 0], 0<e<1. (4.62)
0 1

o N O

By (4.55), the product [+, ] can be computed for each € € (0,1]. Thus, the products among the elements
in the basis are

[e1,ea]c = U (e)[e er, € ea] = €%e3, [en,e3]lc = e1, [es,er]e =€, 0<e<1. (4.63)

According to Definition 4.15, a contraction of the initial algebra is obtained if, when ¢ — 0, the asymptotic
limits of these products exist. As this condition is satisfied, the given family of transformations does define
a contraction of the su(2) algebra. The contracted algebra has the following product:

[61, 62]0 = 0, [62, 63]0 = e, [63, 61]0 = €92. (464)
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Observe the characteristics of this algebra. There exists an Abelian subalgebra generated by e; and eq,
which is additionally an ideal of the algebra. This is precisely the case of the Lie algebra ¢(2) of the
Euclidean group on the plane, which describes translations and rotations. Thus, the contracted algebra
of su(2) by (4.61) is ¢(2). The contraction theory thus relates two Lie algebras that, at first sight, were
independent. Observe that the main difference between su(2) and ¢(2) is the value of the product between
e; and eg. It is a key characteristics of contractions the fact that the algebras become ‘more Abelian’.
The behaviour of algebras under a contraction procedure can be understood by inspecting the prop-
erties of the maps described in (4.61). Observe that the only invariant subset of su(2) is the subalgebra
generated by es. It is a standard result in the study of contractions of algebras, first proved by Inénii

and Wigner [159], that a family of transformations such as (4.61) defines a contraction of the algebra if
and only if the invariant subspace of the transformations is a subalgebra.
The contraction described by (4.63) and (4.64) is a case of an Inénii-Wigner contraction [159]. Other

types of contractions are possible. Consider the following family {U/(8)} of linear transformations of the
su(2) algebra

6 0 O
U)er =0 e, U(d)ea=26ey, U(des=20%3, < UWB)=[0 5 0], 0<5<1. (4.65)
0 0 &2
As in the previous example, (4.55) gives the definition of a new product [-,-]5, which can be computed

for each 0 € (0,1]:

[61, 62]:5 = ﬁ71(5)[661, 562] = 071(5)(5263) = €3, [62, 63]’5 = 5261, [63, 6’1]:; = 5262, 0 S 0 S 1.
(4.66)
Again, there exist limits for these expression when § — 0. The limit algebra is described by the following
product:
le1,e2]y =es, lea,es]y, =0, [es,ei]y=0. (4.67)

This algebra is isomorphic to the Lie algebra h of the Heisenberg group H, defined as the group of real
3 x 3 upper triangular matrices of the following form [146]:

1 b
H(1) = 0 clla,bc,eR . (4.68)
0 1

O = Q

Such a group appears in the study of one-dimensional quantum systems. From the perspective of con-
tractions, the Lie algebra § is related with su(2) by means of a contraction. Observe that, as in the
previous case, the contracted algebra has more commuting elements than the initial one.

To conclude this characterisation of contractions of three-dimensional Lie algebras, consider the fol-
lowing facts. Any Lie algebra can be contracted onto an Abelian algebra by the family of transformations
{U(€) = €l}. Tt is also possible [269] to find a contraction from e(2) to h. Thus, the contraction of algebras
establish the following hierarchy of three-dimensional Lie algebras:

su(2) — ¢(2) — h — Abelian. (4.69)
These contractions play an important role in the analysis of 2-level quantum systems that will be carried
out in following sections.
4.3 Geometric description of Markovian dynamics

The contraction of algebras appear naturally in the study of Markovian open quantum systems [7, 72,
,158]. A geometric description of Markovian dynamics is particularly well suited for the description of
this phenomenon. The present section details the geometric properties of such dynamics.
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While the usual matrix mechanics describes the evolution of observables, the geometric formalism is
more flexible. Given a vector field, as Zy, one can obtain the evolution of any function or tensor field, for
example, functions as concurrence, purity or entropies. This section will focus mainly on the evolution of
the contravariant tensor fields As and Rs under the action of the Kossakowski-Lindblad vector field Z,
and the corresponding semigroup {®f : § — S,t > 0} of R-linear transformations. Observe that the flow
of a generic vector field on S is indeed a semigroup, and not a group, as S is a manifold with boundary.
The inverse of ®F is defined on the envolving manifold S, but not necessarily on S.

Consider a vector field X on a manifold M, whose flow is a semigroup of transformations {®5 : S —
S,t > 0}. The change along the integral curves of X of tensor fields is determined by the Lie derivative
with respect to X. As in the rest of this paper, the notation followed is the one of the book by Crampin
and Pirani [104]. The expression for the Lie derivative of a contravariant tensor field 7" on M with respect
to the vector field X is defined as

1
T = lim - (T — ®X(T)). 4.
LxT = lim (T = ®3(T)) (4.70)

By integration, it is possible to determine the push-forward by ®;X of contravariant tensor fields. There-
fore, given a vector field on a manifold, each contravariant tensor field T defines a family {®;(7T),t > 0}
of tensor fields on the manifold.

Definition 4.18. Let S be the set of states of a quantum open system with a Markovian evolution. If Zj,
is the Kossakowski-Lindblad vector field, the families {Ast,t > 0} and {Rs,t > 0} are defined as those
obtained by the push-forward of the contravariant tensor fields As and Rs that reproduces the algebraic
structure of quantum observables:

2
Aoy =e %A = As — 1L, As + (L7, )PAs =+
t.2 t>0, (4.71)
RS,t —e 2y Rs = Rs — tﬁZLRS + g(ACZL)QRS —
These families have a huge relevance in the characterisation of the dynamics of quantum systems.
Recall that, as proved in Chapter 3, contravariant tensor fields Ag and Rgs codify the algebraic structure
of the quantum observables of the system. Thus, evolution of the tensor fields is in direct relation with
changes in the algebraic properties of observables. This is precisely the main topic in the theory of
contractions of algebras. The analysis of these families of tensor fields may provide with information
on the behaviour of quantum systems, in particular of their observables. The relation between evolved
tensor fields As; and Rs+ is made explicit by the following result.

Proposition 4.19. Consider the families {As,t > 0} and {Rs,t > 0} defined in (4.71). Then, for
every t > 0, there exists a Lie-Jordan algebra of expectation value functions with composition laws defined
by

{ea,ep}i(p) = Ast(dea,dep)(p),  (ea,ep)i(p) = Rs,(dea,dep)(p) + 2€a(ples(p), p€S. (4.72)
with A, B € O. All the resulting algebras are isomorphic for any finite time t > 0.

Proof. The transformations ®F defining the flow of the vector field Zy is invertible for any finite .
Therefore, tensorial properties are preserved, as it is a point transformation. For any finite ¢ > 0, the
Lie-Jordan algebra of expectation value functions is isomorphic to the initial one. Hence all these algebras
are isomorphic. O

The families may or may not have asymptotic limits when ¢ — oco. If they exist, let them be denoted
Ag’oo = lim Ag_t, RS,oo = lim RS,t~ (4.73)
t—o0 ’ t—o0

The interest of these limits rests on the algebra in the space of functions that they define. As expected,
a contraction of the algebra of expectation value functions is obtained.
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Theorem 4.20. Suppose that the limits As o and Rs ~ of the families presented in Proposition 4.19
do exit. Then, the set of expectation value functions Eo(S) on S is a Lie-Jordan algebra with respect to
the products {-, }oo and (-,")oo defined as

{ea,eBtoo(p) = As oo(dea, des)(p),

(6147 EB)oo(p) = RS,oo(dEA7 deB)(p) + 26A(p)63(p)7 PE S. (4'74)

This algebra gives rise to an associative complex algebra with respect to the product
€A *00 €8 = (€4,€B)oo +1{€4,€B}00, A,B€O. (4.75)

Proof. The new algebra is by definition a contraction of the initial algebra of expectation value functions
(which was isomorphic to @). As proved in Theorem 4.16, algebraic properties depending on universal
qualifiers (skew-symmetry, Jacobi identity, etc.) are preserved by the contraction procedure. Thus, the
contracted algebra satisfies the same properties as the initial one, i.e. it is a Lie-Jordan algebra. Observe
that the unity element e; = 1 is preserved by the contraction procedure. Thus, the condition of Corollary
4.17 is satisfied, and the contracted algebra is also unital. Finally, complex associative algebras can
always obtained from real Lie-Jordan algebras, as is the case. O

Observe that there exists a one-to-one correspondence between expectation value functions and quan-
tum observables. Thus, the new algebra thus obtained immediately defines a contraction of the algebra
of observables of the system. Notice that, from an algebraic point of view, the contracted Poisson and
symmetric brackets no longer represent the commutator or anti-commutator of observables. In fact,
products in (4.74) define a new pair of operations [, ]o and ©®s on the set of observables,

€[A,B]w = 1€4,€B}ocs €A0.B = (€4,€B)oes A,B€O. (4.76)

which are different from the initial ones. Thus, a contraction of the algebra of observables is obtained.
Due to the nature of the contraction procedure, some non-commuting observables [A4, B] # 0 in the initial
algebra may satisfy [A, B]e = 0. Similarly, the non-associativity of the Jordan product may disappear,
obtaining A ®. B = AB. Thus, the contraction of the algebra is connected with the transition from
quantum to classical observables. The physical implications of the contraction procedure is a promising
topic that will be discussed in future works.

4.3.1 Contractions for open 2-level systems

In order to illustrate the described contraction of algebras, consider the Markovian evolutions of 2-level
systems described in Section 4.1.4. With the given coordinate system, it is immediate to write the
coordinate expressions for the tensor fields As and Rs, as proved in 3.59:

3 3
0 0 0 0 0 0
As = T — A——, Rs=2Y — @ — —2 T @ ——. .
S Z R Oz’ s Zax»@)am Z xjxk&v-@axk (4.77)
j.k,l=1 J =19 J k=1 J
Contractions for the phase damping of 2-level systems
The phase damping of a 2-level system is described by (4.37):

0 0

Zp, =—2 — — . 4.78

L K (xl 6371 + o2 8$2) ( )

The 2-level system has great advantages from a computational point of view. Namely, the Lie deriva-
tives of Ag and Rgs with respect to this vector field can be directly computed:

0 0 0 13} 13} 0
Lz, (As) = 879338701 A Iy’ Lz, (Rs) = 8787:51 & o + 8707332 @ D2y’
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In order to compute the coordinate expressions of the families As,; and Rs:, consider the expansion
given in Proposition 4.19. Thus, the resulting ¢-dependent tensor fields are

0 0 0 0 0
=941ty i Ny R
Asp =2 aagy =N g T2 182A8x3+226a:3/\8x1
£>0. (4.79)
0 0 0 0 0 0
e g 4+ T - —_— ) — — E
Rs =2e <8x1 ® oy * Oxo ®© 81‘2) + 283&3 ® 83:3 2 x]xk 8xk

7,k=1

Theorem 4.21. There exist asymptotic limits As o and Rs o for the families of tensor fields given in
(4.79), determined by the Markovian evolution generated by the vector field (4.37). The limits are

PR P
Ag o =2 2
S0 = 2T~ A axg + xza axl
4.80)
9 9 (
Rsoo=2— 92 —2 7.
S, 8563 © 8%3 szl REALY 817 8xk

Consider the products of smooth functions on S defined by

{f»g}oo :AS,oo(dfadg)v (fvg)oo :RS,oo(dfadg)"_fg' (481)

The product {-, -}~ s a Poisson bracket, while (-,-)oo i a symmetric product.

Proof. The existence of the limits to (4.79) is clear by direct inspection. Tensorial properties are preserved
in the family, as in Theorem 4.20. Thus the resulting tensor fields define the same type of products as
the initial ones. O

Tt is immediate to check that the set of expectation value functions £»(S) on § is a Lie-Jordan algebra
with respect to the products {-, - }oc and (-, -)oo. Recall from (3.126) that the relation between observables
and expectations value functions is the following:

a=a'c, & e = +az;. (4.82)

As the products are R-linear, it is enough to describe the products of constant and linear functions. The
unit function satisfies {f,1}oc = 0 and (f,1)s = f for any smooth function f on §. Regarding linear
functions, they satisfy the following products:

{1, 23}00 = =222, {22,23}00 =271, {Z1,22}00 =0,

4.83
(xlaxl)oo - (an-rQ)oo = 0; (.133,3)3)00 = 2a ( )

and the rest of the products vanish identically. It is immediate to check that these products define a
Lie-Jordan algebra.

Similarly, the *.-product of functions introduced in Theorem 4.20 can be computed. The constant
unit function acts as the unit element, as €, %5, 1 = 1 %o, €, = a for any expectation value function. The
products of linear functions are

T1 *eo 1 = 0, T1 *oo g = 0, T *oo Ty = —2iT9,
To *oo 1 = 0, To *oo Ty = 0, To koo T3 = 2177, (4.84)
T3 *0 .’E1:21£C27 T3 *0 LEQZ—Qi(El, T3 *0 (E3:2.

It can be check by direct computation that the *..-product is associative.

One can conclude that the phase damping of a 2-level system defines a contraction of the algebra of
expectation values. That is, starting from the algebra given by (3.130), the evolution defines a transfor-
mation of the products. In the asymptotic limit, the algebra described in (4.83) is obtained. This new
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algebra is not isomorphic to the initial one, however it is still a Lie-Jordan algebra, and it gives rise to
a complex associative product. Notice that the contraction defines new products over the same linear
space: the functions are not modified, and they are still expectation value functions on S.

For the sake of completeness, observe that Lie algebra (£0(S), {-, - }oo) is isomorphic to the Lie algebra
on the plane. This result is in agreement with previous works [7,92], which obtain similar results from
an algebraic computation. The tensorial description presents the advantage of dealing directly with the
algebraic structures codified in terms of tensor fields. As seen in the example, it is not necessary to
compute the evolution of expectation value functions in order to obtain the results. As fewer objects are
to be dealt with, a possible generalisation to more abstract settings can thus be more easily achieved in
the tensorial description.

Contractions for the dissipation of 2-level systems

Consider now the dissipation of the 2-level system, described by (4.48):
0
Zp=——x1— — —xo— + (0 — yr3)=—. (4.85)
i x 3

The families As + and Rs; of contravariant tensor fields are determined by the expansions in Proposition
(4.19). The terms in the expansions can be computed directly. The Lie derivatives of the Poisson tensor
fields As are

0 0 0 0 0 0
Lz, (As) = 25—(%1 A G + 27%170%2 A G + 2vx9 925 A P
0 0 0 0 0 0
2 _ o o 2, 0 9 2, 9 g
LZL (AS) n 276833‘1 A 8.’)32 + 27 o &rg 4 6333 + 2,-)/ 2 85[13 A 8.%'17
0 0 0 0 0 0
5, (As) =292 N — + 2701 AN — + 2900 A —
LauBs) =20 g N oy P 150 " o T 2T 25y N By

On the other hand, the terms in the expansion of Rs; are the following:

d d d 9 d d
=N Q@ — + 29— Q@ — + 4(y — QR —
Lz, (Rs) s ® oz + Y93 ® o +4(y 5x3)8x3 ® o
d d d G,
) — —__9 — —
dxq o, ®s Ds 0o 92y s O3’

0 0 0 0 0
L% (Rs) =27 — @ — 4+ 27— ® — + 4(27* — 6% — y0w3)— @ —
ZL( S> i 6$1 © 81‘1 + i €T © 81‘2 + ( " U (E3)af£3 © 81‘3
0 0 0 0
—2’}/(51'17@)5‘7—2’}/5%27 ®S -
€T €T o

. 0 0 . 0 0 0
3 —9~3 9~3 A(4~3 — 382 — ~2§
Ly, (Rs) =2y o, ®8$1 + 2y s ®0m2 +4(473 — 3y v Ig)axg ®ax3
0 0 0 0
_2 25 _2 26
Ton Bxl ©s 3x5 V0T 8x2 ©s 8$37

Integration of these derivatives by (4.71) is immediate. The only complication may arise from the (3, z3)
terms in the Lie derivatives of Rs. This term is easily integrated by considering the following property
concerning the vector field Z;, and Lie derivatives:

n a 6 _ n n n—1 n .
7L ((a—&-bxg)%@m) =(27)"a+ (2" — D" b+ 4" "bxsz, n=1,2,..., (4.86)
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which is proved by direct computation from (4.85). Substituting all these results in (4.71), the following
families of tensor fields are obtained:

20 0 0 0 0 0 0
Asi=(2 Z (e —1) ) =— A — +2e "z BT P Ly
Sit ( T3 + 5 (e )) P /\81;2 + 2e 8 A s + 2e x281;3 /\8951
_ 0 0 0 0 20cy , _ 0 0
—2e 2 [ T o 4 T g | et ) v
s =2e (3331 0x1 + 0xo ® 6952) y (e )6351 ©s Oxs
(4.87)
251’2 —t (’9 3
B T(e B 1)8x2 8303 —2 Z %xk axk

52 6 (6 262 45
+12({1-— e M 44— — a3 efyt——2—|——x3 i@)i
v 7\ ol v Oxz ~ Ox3

In this example, asymptotic limits for these tensor fields also exist. A new contraction of the algebra
of expectation functions, hence of the algebra of quantum observables, is obtained.

Theorem 4.22. There exist asymptotic limits As o and Rs  for the families of tensor field given in
(4.87), determined by the Markovian evolution generated by the vector field (4.48). The limits are

Asmo = (xg_é) O , 9

8.131 8:227
Re (2, 00 W 00
S0 = Gy Y By 0wy T O (4.88)
26 5\ 0 B 2 )
(5 = 9
+ ( - ’y) O3 ® Oxs j; xjxka © Oxy,

The product {f, g}oo = As,c0(df,dg) and (f,9)ec = Rs,00(df,dg) + fg of smooth functions are a Poisson

bracket and a symmetric product

In the particular case § = 0, the limit manifold of the evolution is, as computed before, the maximally
mixed state of the system. In this case, the limit tensor fields are much simpler:

) b B)
Ao =283 A =, Rsoo=—2 Z i~ 8xk (4.89)
7,k=1

In this particular case, it is immediate to characterise the new Lie-Jordan algebra of expectation value
functions, defined by the products

{1, 22} 00 =223, {@1,23}00 = {22, 23}00 = 0; (j,2x) =0, j,k=1,2,3. (4.90)

the remaining products vanishing identically. Regarding the product f *s ¢ = (f,9)oo + 1{f,9}o0, the
only non-zero products of x; functions are

X1 koo T = —(Tg %o 1) = 2ixs3. (4.91)

Thus, the x.,-product is associative.

It can be concluded from (4.90) that contracted Lie algebra (Eo(S),{:, }s) is isomorphic to the
Heisenberg algebra. As proved in [269], the only non-trivial contractions of the su(2) Lie algebra are the
Euclidean algebra and the Heisenberg algebra. It is thus possible to describe all the possible contractions
of this algebra by means of Markovian evolution of the corresponding quantum system. Also, with our
approach, the Jordan algebra is also contracted, thus obtaining all the non-trivial contractions of the
Lie-Jordan algebra of observables of a 2-level quantum system.
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4.3.2 Contractions for open 3-level systems

The manifold of states of a 3-level system presents a richer structure than that of 2-level systems. While
the later is composed of two strata, manifolds of states of 3-level systems are decomposed in three strata,
two of them composing the boundary. It is therefore of interest to consider evolution of a 3-level system.
The structure of the set S of pure and mixed states of a 3-level system is summarised in Appendix A. A
detailed description of this set can be found in the work by Goyal and coworkers [140].

Regarding contractions, consider the model of decoherence for massive particles, presented in [7,92]:

Lu(p) = =X, [X,p]l, p€S, v>0. (4.92)

where X is the position operator. This model can be discretised by considering a finite number d of
positions &, along a circle. The positions are given by

2
T = (COS P, SIN D)y P = %, m=12...,d. (4.93)

Let {|m)}4,_, denote the basis of eigenstates of the position operator. In this basis, the Kossakowski-
Lindblad operator Lj; takes the form

Easb ] = =3 = ol o] = =ty (T o, (1.94)

formn=1,2,...,d.

Taking d = 3, a Markovian evolution for the 3-level system is obtained. Starting from the operator
defined in (4.92), it is immediate to obtain the corresponding vector field Z;, on S by Proposition 4.8:

0 0 0 0 0 0
L =—37 (1‘1 a1 —|—Z‘28 - —|—$4a + 5 — +1‘67 —|—$7> . (495)

Computations similar to those carried out in the previous section are necessary in order to determine
the families of tensor fields As; and Rs ;. The corresponding Lie derivatives are

£7ZLLA5 :( ) (2.%3881 A 882 (I3 + \[.738)7 A 875 + (\[3;8 )886 ai7>
+(3’Y)" <x7/\8 —.’L‘Gi/\i—fﬂf5i/\£—.’L‘4i/\i
8x1 31'4 5‘:51 8955 8x1 31’6 5‘:51 8.27
0 0 0 0 0 0 0
+x68 84+x787x2/\87x5_x487/\87%_x587@ 87‘%7
+x2i/\i+ 0 /\axla/\aerQa/\a)
81‘4 81‘6 8334 81‘7 81‘5 0%6 8335 81‘7 ’

. (2 o o o9 _ 0
‘CZLRS :(6’}/) (;(2+\/§I8) <6$L’1 ®87{L‘1 +aw2®6$2)
(4.96)

L o 9 o9 0
+ 5 (443w — V3rg) (a 4®3x4+8x5®8x5)
7 d 9 B d
- 3x3—\fxs)(36®6%+8z7®8x7>)
+(37)"< 0 ®si+a§7i ®s =— 0 -l-x;;i (X)si-i-frg)i@si
(9 X1 8 Zq 6 8 Ts 8331 6%‘6 833‘1 (91‘7
—$7i®si+ T — 0 ®s 75— 0 +x5i®si— 4i Si
8$2 8334 8 8 Is 8332 8$6 83?2 (9.’137
0 0 0 0 0 0 0 0
+33187®S87%—$287x4®587x7+$287m5®567x6+1‘187x5®5 8;107)
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Even for a simple vector field as the one presented in (4.95), expressions become much complex when
the dimension of the quantum system increases. For this reason, the use of mathematical software is
necessary in order to study quantum systems with 3 or more energy levels. For this particular case, given
these expressions, it is possible to deduce from (4.71) that the families of tensor fields As; and Rs; have
an asymptotic limit when ¢ goes to infinity.

Theorem 4.23. The limit tensor fields As oo and Rs o of the families induced by vector field (4.95)
exists, being their coordinate expressions

0
Ao ==
> gl%’“m " o
js (4.97)
0
R‘S‘,oo = Z ( ) +Zdjklxl> ® aixk -2 Z $J$k al‘k
Jk=1 J,k=1

where the new constants CShi and d5 Sware respectively antisymmetric and symmetric on the first two
indexes. Their non-zero values are

o0 — o0 _ o0 — o0 — o0 _ o0 — o0 _ o0 _ oo _ oo —
C31p = Cg31 = 2, C3y5 = C534 = C376 = Ca37 = L, Cgus = Chga = Cge7 = Crg = \/3»
000 “ 330 880 = 3>

el digy = dgzs =1, dgge = dgzr = —1,
1

0 00 00 00 0o 2
digs = dsgs = dggg = d7gr = 7%’ dgss = 7%'

coO . Joo  __ Joo  __ Joo
d181*d282*d383*d3387

and their respective permutations.

These new structure constants define a contraction of the Lie-Jordan algebra of observables, presented
in Appendix A. Observe that there exist differences between both algebras. For example, the new
structure constants are no longer totally symmetric or antisymmetric. The identification of this new
algebra is not obvious, and its properties are yet to be studied.

4.4 Analysis on the limit of Markovian evolution

In the analysis of Markovian evolutions presented in Sections 4.1 and 4.3, several common features have
been presented. In the examples, the limit of the evolution is described by a subset of S, which coincides
with the set of fixed points of the dynamics. The general case is similar, although a bit more complex,
as the flows of many vector fields, in particular Hamiltonian ones, do not have a well-defined limit. This
problem is solved with the concept of limit manifolds.

Definition 4.24. Consider an evolution on a differentiable manifold M described by a family of diffeo-
morphisms {®; : M — M,t € R}. If it exists, the subset

My = tlgglo o, (M) (4.99)
1s called the limit set of the evolution. If, in addition, My is a submanifold of M, then it is called the
limit manifold of the evolution.

The main reference for the description of limit manifold is the book by Hirsch, Pugh and Schub [155].
Observe that, with this definition, periodic evolutions are easily dealt with. The analysis of limit manifold
is an interesting topic, with many applications in the study of open quantum systems and, in general
physical problems. The affine structure of the set S of pure and mixed states of a quantum systems
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allows for the description of affine and projective vector fields on S [104, 147,193,228, 277], with direct
application to the characterisation of Markovian evolution [163].

For the purpose of this dissertation, however, a much simpler description can be offered. The set S
is a convex subset of the linear space O*. It is a simple matter to combine this linear structure with the
Kossakowski-Lindblad equation (4.17), in order to obtain a characerisation of the limits of the Markovian
evolution of open quantum systems. This section presents an analysis of these limits, followed by a
discussion on their impact on the behaviour of tensor fields, in particular As and Rs, when subject to
Markovian evolution.

4.4.1 Limit manifolds for Markovian evolution

Let V be a real linear space. Consider the differential equation

dz
& A, 4.100
3 = A (4.100)
with A € GL(V). For the initial condition x(0) = ¢ € V, the solution of this equation is

z(t) = ey, teR. (4.101)

Stability and unstability of this solution can be easily considered. In fact, this equation is usually the
first example studied in the analysis of dynamical systems. The analysis of the spectrum of A is enough
in order to determine the properties of asymptotic limits.

Theorem 4.25. Consider the map ® : V — V, with t € R. defined by (4.101):
o () = e, (4.102)

The asymptotic limit
Vi, = lim dA(V) (4.103)

exists if and only if A has no eigenvalue with positive real part. In this case, Vi, is a linear subspace of
V.

Proof. As mentioned, differential equation (4.100) is a simple case of a dynamical system. As such, the
theory of Lyapunov exponents gives the solution to the stability problem. For simplicity, consider an
eigenvalue A of A such that Re A > 0, and an eigenvector vy € V such that Avy = Avy. Then,

O (vy) = evy = B lim D7 (vy).
t—00

Identical behaviours are obtained for generalised eigenvectors of A with eigenvalue A. Thus, non-positivity
of real parts of eigenvectors is a necessary condition for the existence of the limit V. If Re A < 0, the limit
of ®A(vy) is the origin 0 € V, while purely complex eigenvectors define oeriodic trajectories. For both
cases, the limit of ®{ (V) does exist, thus proving the theorem. For a full characterisation of dynamical
systems and Lyapunov exponents, see [90, ,273] and references therein.

Assuming that this conditions are satisfied, it is immediate to determine that V7, is in fact a subspace
of V. Consider the generalised eigenspaces E) of A associated to a purely complex eigenvalue A (including
zero). As all their elements belong to periodic integral curves of (4.100), they are necessarily in V. On
the other hand, if ReA < 0, then there is no element in v € V — {0} such that the asymptotic limit
of ®{(v) belongs to Ey, as can be checked by inverting the sign of ¢ in (4.101). As a consequence, the
limit set V7, is spanned by the generalised eigenspaces E) with purely complex eigenvalues, hence it is a
subspace of V. O

This result has a direct application to the study of Markovian dynamics of quantum systems. Observe
that the Kossawkoski-Lindblad equation (4.17) is determined by a linear operator L : O* — O*. Theorem
4.25 characterises the properties of the solutions to the Kossakowski-Lindlbad equation on O*. They can
be then projected onto & by the map described in Figure 3.2. Then, the following result is obtained.
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Theorem 4.26. Consider the Kossakowski-Lindblad vector field Z;, € X(S) determined by the linear
operator L : O* — O* given in (4.18), and let ®7 : S — S be its flow. The limit set Sp, defined as

Sy = lim (®7(S)), (4.104)

t—o0

does exist. It is a conver subsel of S. Furthermore, there exists an affine subspace §L C S such that
S, =5,US.

Proof. The existence of the limit set Sy is obvious, as S is a compact manifold. As seen in Theorem
4.25, limit sets always exist as long as vectors are not mapped into the infinity. However, such thing
is not possible in S, hence ®7(S) has an asymptotic limit. Its characterisation is a direct consequence
of Theorem 4.25. The linear map L : O* — O defines a limit subspace (O*)}, of the dynamics, which
has to be projected onto S. However, from L(I) = 0, it is clear that the result of this projection is
S, = SU (O*), which is clearly convex. The last property comes from the fact that S is an affine
subspace of O*, hence §L =SU (O*)r is an affine subspace of S. O

Important consequences can be extracted from this result. For any Markovian evolution ®7 : § — S,
the limit manifold Sy, is a manifold with boundary in S. Tt is thus possible to carry out differential
calculus in the limit manifold, with the usual limitiations of the boundary. This boundary already has
played a role in the existence of the limit of Markovian evolution. The study of limit manifolds in affine
spaces may offers useful results in the analysis of the dynamics of open quantum systems.

4.4.2 Contractions of tensor fields

Once the limit manifolds of Markovian evolution have been determined, some interesting results can be
obtained concerning the behaviour of contravariant tensor fields. These results are particularly interesting
in the analysis of the contractions of algebras of observables in the study of open quantum systems,
presented in Section 4.3. For this reason, the following results are concieved for vector fields determining
Markovian-like evolutions.

In the following, consider a vector field Z € Z{(g) on the differentiable manifold S. Let o7 - S8,
with ¢ € R, denote its flow, and assume that, as in the case of Markovian evolution, there exists a limit
manifold

Sy = lim (®7(9)). (4.105)
t—o00
For simplicity, assume that this manifold coincides with the set of fixed point of the dynamics. Because of
Theorem (4.25), this is equivalent to the assumption that the Lyapunov exponents of the evolution either
are zero, or have negative real part. From a physical perspective, this evolution can always be obtained
by adding a controlled unitary evolution to the system, typically by a laser acting on the system.

As mentioned, it is interesting to characterise the behaviour of contravariant tensor fields with respect

to the flow of Z. Any r-contravariant tensor field T' defines a family of tensor fields on S by

T, == ®(T), t>0. (4.106)

When the limit of the family exists,
Too := tlim T;, (4.107)

it is called the contraction of 7. The aim of this section is to obtain some sufficient conditions that
ensure the existence of this contraction. With the assumed properties for Z, the following results can be
obtained.

Proposition 4.27. If T, exists, then the vector field Z is a Lie symmetry of Ty, t.e. LzT = 0.
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Proof. As the flow ®7 is a diffeomorphism for every ¢t € R and T, is assumed to exist, it follows that:
2T, = o2 (lim <I>tZ*T) = lim %, T=T,, VscR
t—o00 t— o0

Substituting the above in the definition of the Lie derivative L7714, it can be concluded that Z is a
symmetry of Ty. O

Proposition 4.28. The value of Too on Sy, is determined by its value on any open set U D Sy,.

Proof. Since ®Z, is invertible for each t € R, it follows that
7, (Too)(o1, ..., ) (x) = Too(®Z5(0r1), ..., 875 () (®Z (2)), Vau,...,ar € N'(S), VzeS.
Proposition 4.27 establishes that ®7 (Ti,) = T for any ¢ € R. Thus, this expression can be rewritten as
Too(o, ..., a0)(2) = Too(®Z% (1), . .., ®Z5 () (7 (2)), Vou,...,ar € A'(S), Vo eS. (4.108)

By assumption, there exists a limit manifold S;. As a consequence, there always exists a value 7, such
that, for any ¢ > 7, the evolution ®Z(z) is arbitrarily close to Sy, e.g. ®Z(z) € U. In view of this and
(4.108), the value of T, at = ¢ Sy, is completely determined by its value at ®Z(x) C U. Hence, Tw, on
the whole S is determined by its value on U. O

Theorem 4.29. The family of tensors at x1, € Sy, given by {(T})z,, t = 0}, has a well defined asymptotic
limit t — oo, which coincides with (T ), when the asymptotic tensor field T does exist.

Proof. For every t > 0 the tensor (T}),, is defined by its action on covector fields at x;,. By hypothesis,
any x7, € Sy, is a fixed point of the diffeomorphisms ®Z. Hence, for any ay, ..., q, € Ty, S,

(Tt)wL (041, e ,Ozr) = TEL(((I)tZ*)wL (041), s ((I)tZ*)wL (O‘T))'

The pull-back (®7*),, has an asymptotic limit when ¢ — co, which proves the existence of the limit of
the family of tensors {(7}),,, t > 0}. O

Proposition 4.28 and Theorem 4.29 present an interesting idea. When restricted to the limit manifold,
the contraction of a contravarian tensor field always exists. Observe that this is precisely the case of
the second example presented in Section 4.3.2. On the other hand, if the contraction exists on points
arbitrarily close to the limit manifold, then by Proposition 4.28 it exists on the whole manifold. These
facts how the path to follow. As presented schematically in Figure 4.6, it is necessary to investigate the
behaviour of the tensor field in directions which are not tangent to the limit manifold. Thus, the relevant
objects in this analysis are the Lie derivatives of the tensor field with respect to vector fields that are not
tangent to S;. These objects are characterised in the following results.

Theorem 4.30. Consider a set 20 C f{(g) generating the tangent space to S at every x € §L, i.€.
span{W, | W € W} =T, S, VzeS.. (4.109)

Given a contravariant tensor field T on 3’, for every x € Sy, and every W € 20 consider the families
{(LwTy)s | t € R} of tensors at x. Then, the contraction Ts of the contravariant tensor field T exists if
and only if there exist asymptotic limits to all these families when t — oco.

Proof. Consider the integral curves vy (zo,7) of every W € 20, with yw (x9,0) = x¢ € Sp. Because of
condition (4.109), for every € > 0 the set

Ue = {yw (0, 0)|zo € Sp,—e<6§< €} (4.110)

is an open set in S containing S, 1. For arbitrarily small values of €, it is possible to determine the value of
any tensor on U, simply by its value on Sy, and its Lie derivatives with respect to tensor fields W € 20.
In particular, this gives the value of T} on U, hence on & by Proposition 4.28. By continuity, if the
families of Lie derivatives have an asymtotic limit, then the family {7;} has an asymptotic limit T,,. O
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%),

Figure 4.6: Consider a Markovian evolution in S whose limit manifold is S;. Because of Theorem 4.29, the
asymptotic limit of any family of contravariant tensor field T3, as defined in (4.107), exists when restricted to SL.
élso, Proposition 4.28 shows that the value of T} on S is determined by its value on an open set U containing
S1. Therefore, the analysis of the global existence of Tw is done by considering the directions going out of Si,
as in Theorem 4.30.

The result of this theorem allows to check the existence of the asymptotic tensor field by computing
the evolution of the tensor fields £T;. In particular examples, these tensor fields have simple expressions.
The computations are easier if the set 20 is wisely chosen.

Lemma 4.31. Let W be a vector field such that [Z,W] = AW, for some X\ € R. The following relation
holds:
LwT, = eNMOZ(LywT). (4.111)

Proof. With the hypothesis [Z, W] = AW, the Lie derivative with respect to W and Z satisfy the relation
LwLz=(Lz—\Lw. By integrating this expression, the relation between Ly and the flow of Z is

Lw o <I>tZ* =tz N6 L = e)‘t@ﬁ oLy.
When applied to the tensor field T, the result follows. O

In general, it is possible to compute ®Z (L T) by knowing the values of LT and L£zLy T, which
can have relatively simple expressions. This gives the value of Ly/T;, and it is easy to compute the
existence of the asymptotic limit when ¢t — co.

Theorem 4.32. Given a contravariant field T and a symmetry W of Z, then a necessary condition for
the existence of its contraction T is that the limit of P (LwT) exists. If such contraction Too exists,
then
lim @4 (LwT) = LwToo- (4.112)
t—o0

Proof. Let W be a Lie symmetry of Z, i.e. [W,Z] = 0. Then, [Lw,Lz] = Ljw,z = 0, which implies that
LwT; = O (LwT). If the contraction T, exists, then, because of the linearity of the Lie derivative,
LwToo is the limit of the family of tensors {LywT:}. Hence the family {®+.(LwT)} has a well-defined
limit. O

Theorem 4.33. Let f be a function such that A(Zf) = 0. Given a bivector field T, let us denote
its contraction with f as 7 = u(df)T. A necessary condition for the existence of the limit To, is the
convergence of the family of vector fields {r s} given by

7t,p = Udf) Tt = Ppu(7y). (4.113)

If the limit T, exists, then
tlim T,f = U(df)Too- (4.114)
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Proof. For any bivector field T, the definition of Lie derivative gives
(LzT)(df,dg) = Lz((df)T)(dg) — T(dAZ(f),9)-

If f satisfies d(Zf) = 0, then «(df)LzT = Lz(¢(df)T). Therefore, the evolution by the flow of Z gives
g = U@ (T1) = Br ((dN)T) = Duul(Z).

If the limit T, exists, then this family has a limit given by 7 5 = ¢t(df)Teo. O

Theorem 4.34. Let f,g € F(M) be such that d(Zf) = d(Zg) = 0. The existence of Ts, requires the
existence of the asymptotic limit of the family of functions {®* (T(df,dg)), t > 0} when t — co.

Proof. If a function f satisfy the hypothesis d(Zf) = 0, then df is constant along the integral curves of
Z. For such function f, g,

Ty(df,dg)(z) = T(df,dg)(Pz—i(x)) = % _(T(df,dg))(x).

The limit of T; can therefore be studied by considering the family of functions {@*Zy_t(T(df, dg)), t >
0}. O

These results offer several useful tools for the geometric analysis of contractions. The main result
of this section is Theorem 4.29, as it proves that, when restricted to the limit manifold, there always
exists the contraction of any contravariant tensor field. From a physical perspective, this result has a
huge impact. It proves that, when dealing with non-unitary evolutions, quantum observables preserve
their properties in the limit of the evolution. That is, if a quantum system evolves into a subset of the
manifold of states S, then the observables of the system, restricted to this limit subset, still conform an
algebra. This will no longer be, as shown in the example, the same algebra as the one for the initial
state. The characterisation of these contracted algebras, restricted to limit manifolds, is an interesting
topic that could help to describe the properties of open quantum systems.

4.4.3 Application to the phase damping of a 2-level system

In order to finish this approach to the field of geometric contractions and limit manifold, the phase
damping of a 2-level system is revisited, with the purpose of illustrating the above results. As shown in
Section 4.1.4, the phase damping is determined by the vector field given by (4.37):

0 0
Zp = -2 —_— — . 4.115
L 0l (901 o + 22 8:172> ( )

As before, consider the Bloch ball for the 2-level system. The limit manifold Sy for Zp is precisely
the set of fixed points, as computed in (4.40) and represented again in Figure 4.7:

St ={(0,0,25) | 25 € [~1,1]}. (4.116)

It is possible to apply the theorems presented along this section in order to study the evolution of the
contravariant tensor fields As and Rg. As proved in Proposition 3.59, their coordinate expressions are
the following:

3
0 0 0 0 0
As= > euaig— s =23 T @ -2z ® _
S €kl L] 813]' a$k7 RS aCCj & aij ‘ 1{,EJZL']€ 81:j ® 8l‘k (4 117)

Jikl=1 j=1

I I o 0 5 0 0
AS|SL = 2!1737 A 727 RS|$L = 28,’1}1 X 6;81 +28m2 (24 8.’172 + 2(1 Ig)axg X 81}3. (4118)
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Figure 4.7: Vector field and limit manifold for the phase damping of a 2-level quantum system.

By Theorem 4.29, both As; and Rs: have well-defined limits when evaluated on Sy, Their contrac-
tions with 1-forms generate vector fields tangent to S;. Therefore, as a direct computation shows, the
asymptotic tensor fields on Sy, are

Aswls, =0, Rsools, =2(1 —25)7—® —. (4.119)

It can be easily proved by Theorem 4.30 that the asymptotic tensor fields As o and Rs o exist on all
the manifold S. Consider the following family 20 = {W;, Wa, W5} of vector fields:
0 0 0
Wi=—, Wo=—  Wzg=_—. 4.120
! 8I1 2 a(L‘g 3 81‘3 ( )
These vector fields generate the tangent space to the manifold at every point. They satisfy the following
commutation relations with the Kossakowski-Lindblad vector field:

[Z, Wl] = ’7W1, [Z, WQ] = ’YWQ, [Z, Wg] =0. (4121)

Therefore, these vector fields satisfy the condition of Proposition 4.31. As a result, computations required
in Theorem 4.30 are much simpler. For example,
0 0 0 0 0 0
LwAs =2—A=—, LzLw,As=2y—AN+— = ®L(Liw,As) =2 " — AN —.
o L (Lwihs) =207 50 " o

Similar computation can be done for the remaining vector fields, and also for their actions on the tensor
field Rs. Substituting the results in equation (4.111) and taking into account the eigenvalues found in
(4.121), the following is obtained:

0 0 0 0 0 0
Asy) =2— AN — Asy) =2— N — Asy) =2e 21— 4.122
EWl( S7t> axQ /\ 81'3, ‘CW2( S;t) 31'3 /\ axlﬁ EWS( St) € a /\ 81'2 ( )
8 8 0
Lyw,(Rst) = —2-—®sA, Lw,(Rsy)= ®s A, Lw,(Rst) = 27— Qs A. (4.123)

82 63

All of these families of tensor fields have an asymptotic limit when ¢ — oco. Therefore, the asymptotic
tensor fields As oo, Rs,00 do exist. Their values can be obtained by integrating the limits of (4.122) and
(4.123) along the integral lines of Wy, Wy, W3, with initial conditions (4.119). The result is

0 0 0 0 0

P
Aso = 22,2 9 9 =29 o % oagA, 4124
Soo =2g NG F 2w S Ags fs, 923 © D © (4.124)
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which coincide with the results presented in Theorem 4.21. The advantage of the procedure presented here
is clear. The evolution of tensor fields is decomposed along different directions on the manifold. Along
each particular direction, tensor fields can be easily studied. It is thus possible to compute the contraction,
if it exists, of a contravariant tensor field. And if this contraction is not possible, the procedure presented
here offers information on the problematic directions and the nature of the divergence.

4.5 Geometric control of Markovian evolution

The description of open quantum systems leads in a natural way to consider its controllability properties.
Experimentally, control of quantum systems is carried out by means of external fields such as lasers,
mathematically represented by unitary evolutions. The control of quantum systems has a broad set
of applications, and in particular has a great importance in relation with quantum information theory.
Controllability of the Kossakowski-Lindblad equation has been addressed in several works [17,18,20,21].
This section presents the fundamentals of this approach and its application to the study of controllabioity
of open quantu systems.

4.5.1 Basic concepts of geometric control theory

A control system is a dynamical system whose dynamical laws depend on arbitrary parameters, called
controls

q
X(u)=Xo+ > weXp, Xo,X1,...,Xg€X(M), u=(uy,...u,) €U CR™ (4.125)
k=1

The set U is called the set of admissible controls. The controls of the system are usually given by a
time-dependent function w : I C R — U, which can be determined according to different strategies. This
control function is responsible of the changes in the behaviour of the system.

Control theory is a large subject with many applications in physical and engineering problems. It is
also a very interesting topic in the study of differential geometry. In particular, the present section focuses
on the application of control theory to Lie groups, and its relevance in the analysis of open quantum
systems. Deeper descriptions of control of Lie groups can be found in the book by Jurdjevic [170] and in
the review by Sachkov [229]. In particular, affine systems have also been studied in geometric terms [171].

The geometric description of a control system is based on the following approach. The states space of
the system is considered to be a differentiable manifold M. The action of controls on the system is easily
represented in a geometric setting by means of vector fields. For simplicity, assume that the controlled
vector field X (u) is complete and smooth. Given a control function u(t), the solution for the control
problem with initial condition zy € M is a trajectory z(t) on M satisfying the following differential
equation:

%m(t) = X(u(t))zw), =z(0)=zo. (4.126)
In order to obtain the optimal control function, requirements are usually established on this trajectory.
For example, a control problem may ask for a trajectory that transfers the state of the system between
two prescribed states. Instead, it may be required that the trajectory is close enough to some fixed states,
while a certain function is minimised, such as the length of the trajectory or the time of transition.
Some additional concepts are required in order to solve control problems. The concept of reachable
set determines which transitions are allowed in a control problem [170].

Definition 4.35. The reachable set R(x,t) of a point x € M at a time t > 0 is the set of points xgr € M
such that, for some control function u(t), the integral curve of X (u(t)) starting at x reaches the point xg
at time t. The reachable set of x is

R(z) = | R(z,1). (4.127)

t>0
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Definition 4.36. Consider a control system on a manifold M.
1. The system is controllable if R(x) = M for any x € M.

2. The system is small-time controllable if any x € M belongs to the interior of its reachable sets,
x € int R(x,t) for any t > 0.

3. The system is accessible if R(x, < t) contains non-empty open sets of M for any t > 0.

Small-time controllability is equivalent to reversibility of controlled dynamics. It is important to
notice that it is a sufficient, although not necessary, condition for controllability [170]. Also, in relation
to the application to open quantum systems, recall that the set of states of the system is compact, which
implies that limit points of the dynamics are not reached in finite time. Also, as it will be seen, it is
not always possible to reach points in the boundary with finite controls; however in most cases, if the
controls are not bounded, the system can evolve to a state arbitrarily close to the boundary. Summing
all, the following definition will be useful in the description of controlled open quantum systems.

Definition 4.37. A control system is called almost controllable if the closure of R(x) is cl R(x) = M for
any x € M.

The geometric analysis of control problems allows for a deep understanding of the behaviour of the
systems. Accessibility is the key for the description of the direction in which the system may be controlled.
Even if the evolution is not invertible, it may be possible to analyse closed trajectories that allow for
controllability of the system. This is the case of most controllable open quantum systems. The following
theorem makes possible a geometric description of accessibility.

Theorem 4.38. [170] A control system determined by a vector field X (u) as in (4.125) is accessible if
and only if Lie(Xo, X1,...,X,) generates the tangent space to M at each point of the manifold.

There are many other interesting properties of control systems that are easily described in geometric
terms. In the following, these properties will be applied to the study of controlled Markovian evolution
of quantum systems. The results prove that the geometric formalism of Quantum Mechanics has a broad
range of applications to the study of many different problems.

4.5.2 Control of open quantum systems

The application of control theory to Quantum Mechanics has been an interesting topic of study for
decades. As the ability to manipulate matter and light at microscopic scales increases, the relevance
of these problems has been growing. Many works have been devoted to the analysis of these systems
[ Ty DO, B, Oy T, ]

The control of open quantum systems is an important topic in many fields. In particular, it has a great
relevance in the realm of quantum computing. The set of vector fields which are necessary to make the
system controllable correspond to a set of universal quantum gates, as they can implement any quantum
algorythm on the given system. Geometric control theory has great potential in the analysis of controlled
quantum systems. It is possible to combine this theory with the geometric formalism presented in this
dissertation in order to characterise control problems in Quantum Mechanics. The control of pure states
of quantum systems can be described by means of the Schrédinger picture, as developed in Chapters 1
and 2. This leads to the concept of quantum splines, smooth curves on the manifold of pure states of a
quantum system that evolves in a controlled way [60]. The manifold of pure states has the advantage of
being controllable by unitary vector fields, thus allowing for many different control strategies.

The control of open quantum systems is a more complex topic. Pure and mixed states have to be
considered, and in general the evolution is hard to describe. As a first approach to the problem, consider
unitary evolution on the manifold of states S, generated by a Hamiltonian vector field Xg,. Control of the
system is modelled by perturbations of this vector field. Physically, this corresponds to the action on the
quantum system by external agents. Such an action is usually achieved by an external electromagnetic
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field, e.g. a laser, which can be turned on and off at will. The action of electromagnetic fields on a
quantum system is represented by Hamiltonian vector fields on the manifold of states [21]. Thus, the
controlled dynamics is governed by the following control vector field

q
X(u):XHO—i—Zu;CXHk, u=(u1,...,uq) €U, (4.128)

j=1
where Hy, H,,...,H, are observables of the quantum system. Some results can be proved for this

controlled system.

Proposition 4.39. The control system with vector field (4.128) is small-time controllable by unitary
controls.

Proof. 1t is possible to take some Hy, proportional to Hy and a large enough set U of admissible parameters
such that X (u) = 0 for some u € U. Hence every point in S belongs to the set of reachable states, as it
is stable for some control. O

Proposition 4.40. The control system defined by the vector field
X(u) =Xy, +uXy, ueR, (4.129)
is accessible and controllable on each of the symplectic leaves of S if and only if [Xnu,, Xp] # 0.

Proof. For an n-level system, the algebra of Hamiltonian vector fields on S is isomorphic to su(n), which
is a simple Lie algebra. Thus, any two non-commuting elements generate the whole algebra. Thus, if
[Xr,, Xu] # 0, then Lie(Xp,, Xg) ~ su(n). Symplectic leaves are by definition orbits of the Hamiltonian
vector field on S§. The tangent space of each leaf is generated by Hamiltonian vector fields, thus satisfying
Theorem 4.38 and proving accessibility. Finally, unitary evolution is invertible, therefore controllable. [J

The case of Markovian evolution is more complex and it is difficult to establish global results. The
geometric formalism offers a nice description of the dynamics, as seen in Section 4.3. Control of Markovian
evolution has been object of study in recent years; see the works by Altafini and co-workers [17-21] and
references therein. As before, control will be assumed to be achieved by Hamiltonian vector fields. The
controlled vector field takes the following form:

a q
X(u) =25+ wXp, = Xg, + > wXp, +Yv + Zi, u=(u,...,uy) €U, (4.130)
j=1 j=1
where Hy, Hy, ..., Hy are observables of the quantum system.

Proposition 4.41. A generic Markovian evolution of a quantum system is neither small-time controllable
nor controllable by unitary controls.

Proof. As shown in Theorem 4.13, the Kossakowski-Lindblad vector field is not (in general) a Hamiltonian
vector field. Thus, there exists no combination of Hamiltonian vector fields and controls such that generic
points in S are stable under the controlled dynamics. In other words, X (u), # 0 for every v € U and
generic points p € S, hence the system is not small-time controllable. Regarding controllability, recall
from Theorem 4.9 and Corollary 4.10 that rank of states cannot increase in finite-time. Thus, the
reachable set R(p) for any p € S consists necessarily of elements with rank equal or less than p, plus
those in the limit manifold of the dynamics. As Hamiltonian vector fields do not change the rank, it is
never possible to achieve controllability of open quantum systems by unitary controls. O

Although controllability is not possible, open quantum systems may be almost controllable, in the
sense of Definition 4.37. While no controlled dynamics may cause a transition from a mixed state to a
generic pure state, it is sometimes possible to reach a mixed state infinitesimally close to such a pure
state. In this sense, almost controllability is a nice property for open quantum systems. The following
results describe the conditions that those systems have to satisfy.
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Theorem 4.42. An open quantum system evolving under generic Markovian dynamics with generic
unitary controls is accessible.

Proof. This theorem has been proved in detail from an algebraic formalims by Altafini [19,20]. In the
geometric setting, consider Theorem 4.38. It has to be proved that the tangent space to S at each point
can be obtained by elements in the associated algebra g = Lie(Zr, Xg,, ..., Xg,) to (4.130). This tangent
space is necessarily generated by all the transformations of states that preserve positivity. Therefore, by
direct application of the results by Gorini, Kossakowski, Sudarshan [139] and Lindblad [191], it is enough
to prove that all possible Kossakowski-Lindblad vector fields are elements of g. Recall that the expressionf
of the Kossakowski-Lindblad operator is

T

MMZ—MMM—%EJWWWM+K@%.mm:ijmﬂ (4.131)
j=1 j=1

with p € S, Hy € O = Herm(H), V1,..., V. € sl(H), tr(Hy) = 0 and tr(VjTVk) =0if 7 # k, for
G k=1,2,...,r<n?—-1.

Observe that the algebra g involves Lie brackets of vector fields on S, which may not preserve the pos-
itivity condition of states. Thus, for the description of accessibility, the envolving differentiable manifold
S of the manifold with boundary S will be considered (see Section 3.3.2).

Proposition 3.51 gives the commutation relations between Hamiltonian and gradient vector fields; in
particular:

[XA,XB]:X[[A,B]], A, B € 0.

The commutator of the Kossakowski-Lindblad vector field Z with a generic Hamiltonian vector field
XH is
(Xu, Z1] = [ Xu, Xuo) + [(Xu, W]+ [Xu, Zx] = —Xm,8,] — Y[,V] = Zicoad s, K]

where the last term is obtained by (3.118). The value of the operator [coady, K] can be computed by its
action on a generic state:

(coadsn, K](p) = S_IH, ViloV) + S ViplH Vi)' = >~ 43041 = 3" BB, (4.132)
j=1 j=1 j=1 j=1

where A; = V;+[H,V;] and B; = V; —[H, V}]. Observe that this is not a Kraus operator, but an element
in the linear space of operators generated by them. Thus, it does not preserve positivity and cannot be
restricted to S. This is the reason why accessibility has to be studied on the envolving differentiable
manifold S.

The algebra sl(H) is a semisimple algebra, hence Lie(H, Vi, ..., V,) = sl(H) for generic H,V;,...,V, €
s[(H). As a consequence, by (4.132), every possible Kraus operator is contained in Lie(coady, K). As

generic Markovian dynamics are determined by arbitrary elements Vi,...,V,2_1; € sl(H), the algebra
g = Lie(Z1,, Xy ) contains all possible Kossakowski-Lindblad vector fields, hence by the above argument
the system is accessible by unitary controls. O

Proposition 4.43. Assume that the Markovian evolution of a quantum system preserves the mazimally
mized state. Then, the system is neither controllable nor almost controllable by unitary controls.

Proof. This result is a direct consequence of the fact that the vector field describing a unital Markovian
evolution never increases the purity on S. Therefore, for any pg € S, the reachable set has no points with
purity larger than that of py:

Vp € R(po), P(p) < P(po). (4.133)

If P(po) < 1, then cIR(pg) # S and the system is not almost controllable. O
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This result indicates that decoherence-like process, such as the phase damping, cannot be fully con-
trolled. Evolution of the system always tends towards the increase in the degree of mixture of the system.
Other systems, however, can be adequately controlled. This is the case of those systems for which the
behaviour is precisely the opposite: they increase the purity of the system. The next result describes this

property.

Theorem 4.44. Consider an open quantum system evolving under Markovian evolution and whose limit
manifold is a subset of the boundary of the manifold of states. Then, the system is almost controllable by
unitary controls.

In order to prove this theorem, it is interesting to consider first the following particular case.

Proposition 4.45. An accessible open quantum system evolving under Markovian evolution whose limit
manifold is a single pure state,

S = {PL S Sl}, (4.134)

s almost controllable by unitary controls.

Proof. Recall that S is a convex set, i.e. any internal point is a convex combination of two points in the
boundary. In particular, given a fixed point in the boundary, say py,, all the possible convex combinations
with points in the boundary generate the whole manifold §. Assume that the quantum system is in fact
an n-level system. Any point p, € S of rank n can thus be describe as a convex combination of two
states:

pn=apr +bp’, a,b>0, a+b=1, (4.135)

where p’ is a state of rank at most n — 1. Almost controllability is proved if every n-rank state can be
reached.

Regarding Markovian dynamics, the integral curves of the Kossakowski-Lindblad vector field with no
Hamiltonian term are straight lines, as seen in the examples of Section 4.1.4. Any straight line with
points in the interior of a compact convex set meets the boundary at two points. Therefore, integral
curves starting at the boundary of S cover the whole manifold S. From the point of view of control
theory, in order to prove that the system is controllable, it is enough to describe how to reach every point
in the boundary.

Within this line of reasoning, the proposition can be proved by induction. Consider firstly the 2-level
system, as in [19]. Tt is known that the boundary coincides with the set of pure states, and therefore
all the points in the boundary are reachable from the limit point p; by unitary controls. Following the
above reasoning, the 2-level system is controllable.

Consider now the case of an n-level system, and take any state pp on the boundary of S. It has rank
at most n — 1, and it is either a pure state or a convex combination of a pure state p; and some other
state. Recall pure states are almost reachable from pr, as they are a leaf of the foliation generated by
Hamiltonian vector fields. If pp is pure, it is almost reachable. Else, unitary controls allow to almost
reach pz. And if it is assumed by hypothesis that the (n — 1)-level system is almost reachable, then any
state pp on the boundary can be almost reached. Thus, the n-level system is almost controllable. O

Proof of Theorem 4.44. Let S, be the limit manifold, and choose a pure state p; € Sp. It is possible
to design a Hamiltonian vector field on S such that every other element in Sy is not stable. Thus, by
controlling the system with this vector field, the problem reduces to the one presented in Proposition
4.45, with {pr} as the limit manifold, thus proving almost-controllability. O

These results offer the possibility to study control strategies in quantum systems. Below some simple
examples are presented in which the controllability is analysed. They offer a good starting point for the
geometric characterisation of controlled Markovian dynamics.
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4.5.3 Control of the decay of the 2-level system

In order to illustrate the results of the previous section, the decay of a 2-level system will be considered.
This example has been presented in Section 4.1.4. By application of the above results, and in particular
Theorem 4.42, the system is proved to be accessible if adequate unitary controls are chosen. Recall that
the Kossakowski-Lindlbad vector field of the system is

Zp, = =210y — yr202 +2v(1 — 23)03, v > 0. (4.136)
Consider then the following controlled vector field:
X(u)=Zp+uX1, X1=u300—12203, u€eR. (4.137)

The associated algebra g = Lie(Zy,, X;) can be directly computed, thus proving accessibility by Theorem
4.38. The following computation relations are satisfied

[ZL, Xl] = 7(2 - 3:1?3)82 + 3’756233 = 2’7(92 — 37Xy,
[ZL,05] = v02, [X1,00] = 05, [Z1,03] =705, [X1,03] = —0o.

Thus, the generated Lie algebra is
g:Lie(ZL,Xl) :Span{ZL7X1,82,83}. (4138)

The system is accessible everywhere except in the plane 7 = 0. Global accessibility can be achieved by
considering a more general unitary control:

X(u) =7Zr +u1 X1 +usXe, Xo=x103— 2301, ui,us€R. (4139)
An identical computation shows that these vectors generate the algebra
g= Lie(ZL, Xl, X2) = span{ZL, Xl, XQ, )(37 61, 82, 83}, (4140)

and the system is accessible.

The limit manifold of this evolution is a single point, Sy, = {(0,0,1)}. Thus, by Proposition 4.45, the
system is almost controllable. This has been already shown graphically in [19]. It is possible to obtain,
by unitary control, closed trajectories on the Bloch ball. By the same procedure, it is possible to design
trajectories that connect any two mixed states. Controlled trajectories are shown in Figure 4.8.

Regarding pure states, Theorem 4.9 and Corollary 4.10 rule out the possibility of reaching any point
on the boundary in finite time. However, if no constraints are imposed on the set of admissible controls,
then it is possible to reach points arbitrarily close to any pure state. Thus, clR(p) = S for any p € S,
and the system is almost controllable.

Another interesting aspect of the unitary control is the change of the limit point. Consider the case
presented in (4.137). For u # 0, the limit point is no longer (0,0, 1); instead, the following equation has
to be solved:

—yx1 =0
Z(u)=0= < uxs—yr2=0 =21 =0, 20 =
29(1 —x3) —ux3 =0

2ury 2v2

_ = . 4.141
u? + 242’ RCI + 22 ( )

The limit point is a mixed state for u # 0, and evolves towards pg when u — oco.

4.6 Outlook of the geometric description of Markovian evolu-
tion

Open quantum systems are one of the more relevant topics in the development of modern Quantum
Physics. They appear in a gret variety of fields: Chemistry, Solid State Physics, Quantum Optics, etc.
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Figure 4.8: Unitary control of the decay of a 2-level system. Any mixed state can be reached from any initial
one, thus proving the almost-reachability of the system. The plot shows how to evolve from any states zo to
any mixed states x1. Markovian evolution, determined by vector field Zp,, drives the system to the ground state.
Hence, the state of a system with initial state zo changes along the dashed line until it reaches x4. At that
situation, an appropriate Hamiltonian vector field Xy changes the state to g (ideally in zero time). From it,
the system evolves again along a straight line determined by Z,, thus reaching x1

Therefore, it is interesting to develop new description of these systems if they offer the possibility to
analyse them from a different perspective. The geometric formalism of Quantum Mechanics is succesful
in this task. The set of pure and mixed states of a quantum system, described in Chapter 3, can
be characterise geometrically, which provides a suitable setting for the characterisation of non-unitary
dynamics. In particular, Markovian dynamics can be given a simple description in terms of vector fields,
which reproduce the Kossakowski-Lindblad equation [139,191]. From these vector fields, it is immediate
to reproduce the dynamics.

Two main applications of this geometric description of Markovian dynamics have been considered:
the contractions of algebras of observables and the unitary control of the dynamics. The contractions
of algebras is a mathematical construction with a great relevance in the analysis of physical systems.
In fact, it was the analysis of the classical limit of Special Relativity that led Inoénii, Wigner [159] and
Segal [240] to the description of the contractions of algebras. In the realm of Quantum Mechanics,
contractions of algebras of observables of open quantum systems were recently observed by Chruscinski,
Marmo and co-workers [7,92, 158]. This phenomenon can easily be described in geometric terms [72].
Thus, the Kossakowski-Lindblad vector field induces a transformation in the relevant tensor fields on the
manifold of states, which may end up in a contraction of the algebra. The geometric formalism presents
here an advantage over the algebraic description of quantum systems. It is possible to characterise
the Kossakowksi-Lindblad vector field in order to analyse the properties of its limit manifold. This
allows to determine if contractions may exist. Instead, an algebraic approach requires always the explicit
computation of the evolution, and no a priori arguments for the presence of contractions exist. The
procedure developed here can also be extended to other kinds of evolutions and manifolds [168]. Thus
the geometric formalism is easily adapted to more general quantum systems.

The other relevant application discussed here is the control of Markovian dynamics. Differential
geometry offers many tools that allow for the analysis and characterisation of control systems. Thus,
the formalism presented here can be combined with the results of Altafini [17,18,20,21] in order to shed
some light on the controllability properties of open quantum systems. The main conclusion is that most
systems can be easily controlled by unitary evolutions, such as those induced by interactions with lasers.
As proved, the reason for this property is the possibility to move along the boundary of the manifold of



4.6. OUTLOOK OF THE GEOMETRIC DESCRIPTION OF MARKOVIAN EVOLUTION 137

states by unitary evolutions, which again can be easily understood from a geometric perspective. Future
development of the control theory of open quantum systems may involve the incorporation of Lie systems,
in a similar way to Chapter 2, and the analysis of time-dependent Kossakowski-Lindblad equations, as
introduced by Rivas and Huelga [226].






Chapter 5

Hybrid quantum-classical dynamics

Open quantum systems are ubiquitous in the description of Nature. No system is isolated from its
environment, and thus an appropriate description of this interaction is relevant. As seen in Chapter 4,
Markovian evolution is a particular case in which quantum systems evolve in a very specific way. However,
there are other examples of quantum systems that have great interest in many different areas, such as
Chemistry and Biology. This is the case of hybrid quantum-classical systems.

Molecular modelling has been a challenging problem for a long time. Since the early days of Quantum
Mechanics, the proposal of efficient descriptions of full molecules constitutes one of the boundaries of the
discipline. Indeed, the Schrodinger equation for a combined system of electrons and nuclei is generally
impossible to solve explicitly and approximations are necessary.

Typically, molecular dynamical models take advantage of the different behaviour of light and heavy
particles. The approximations are based on the consideration of classical evolutions for the nuclei, while
electrons retain their quantum nature [55,56]. Dynamics of classical and quantum particles are obviously
interrelated. These characterisations of molecular systems are known as hybrid quantum-classical models.
They are widely used in the description of molecular dynamics.

Hybrid quantum-classical models are introduced as approximations to the Schrédinger equation of a
molecular system. See references such as the book by Marx and Hutter [198], the review by Yonehara,
Hanasaki and Takatsuka [276] and references therein for a full description of these models. One of
the fundamental hypothesis in the development of the models is the validity of the Born-Oppenheimer
approximation [52,54], according to which the evolution of electrons and nuclei can be separated. It
is thus possible to characterise the electronic dynamics for fixed configurations of the nuclei, which are
assumed to evolve more slowly. This is the basis of the so-called time-dependent self-consistent field
method [108], which is a close approximation to the actual molecular system. The computation cost of
this method, however, is usually large. Thus, the dynamics is further simplified by considering classical
evolutions for the nuclei. Depending on the constraints imposed on the evolution, different models are
obtained. For example, Born-Oppenheimer dynamics considers that electrons always stay at the ground
state for any nuclear configuration [198]. Instead, the present chapter focuses on the analysis of the
Ehrenfest model, which allows for transitions between electronic energy levels. The Ehrenfest model is
discussed in detail in Section 5.1.

Despite its many advantages, the Ehrenfest model does not offer a good description of decoherence.
This is a purely quantum phenomenon, which has a huge importance in the characterisation of molecular
systems [261,279]. Hybrid quantum-classical models, however, are deterministic, and thus coherence of
quantum states is always preserved. It is thus a relevant topic the appropriate modification of these
models in order to incorporate decoherence-like effects. Several approaches have been proposed, such

as trajectory surface hopping algorithms by Tully and co-workers [184, , 262-2064], stochastic mean
field by Prezhdo [222] or the methods proposed by Subotnik [255,256] by Neria and Nitzan [213] and
others [10,43,238].

All these approaches share some common features. Namely, they propose algorithms that force a

139
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decoherence-like behaviour into Ehrenfest dynamics. There exists, however, an alternative approach
based on statistical ensembles that incorporates these effects in a more natural way. As proposed by
Alonso, Clemente-Gallardo and collaborators, the author among them [8—10,14,15], a statistical extension
of Ehrenfest dynamics can be achieved by means of a proper geometric characterisation of the model. The
path led by the aforementioned works is followed here, thus combining the geometric formalism developed
along this dissertation with the description of hybrid quantum-classical systems. This approach has clear
advantages, such as allowing for an intrinsic formulation of the model, independent of coordinates. The
geometric characterisation of statistical molecular ensembles, evolving under Ehrenfest dynamics, shows
that decoherence-like effects, such as changes in purity, appear.

The chapter is organised as follows. Section 5.1 offers a first approach to the Ehrenfest model, by
summarising the hypothesis and approximations made in the Schrédinger equation in order to obtain the
model. The geometric characterisation of the dynamics is presented in Section 5.2. With this formalism,
it is possible to develop a statistical model, as proved in Section 5.3. The thermodynamic limit is also
analysed, as presented in [9, 15]. Finally, Section 5.4 focuses on the applications of the formalism to
practical examples. In particular, to the simulation of the dynamics of diatomic molecules. Numerical
results thus obtained are in agreement with the theory.

5.1 Derivation of hybrid quantum-classical models

Molecular systems, even the smallest ones, are characterised by a huge number of degrees of freedom.
Even supercomputers have great difficulties in the exact computation of their dynamics. It is necessary to
consider approximations to the Schrodinger equation in order to describe, at least partially, the dynamics
of molecular systems. This section presents the derivation of hybrid quantum-classical models from
molecular Schrodinger equations. As a result of the implemented approximations, nuclei follow classical
laws of motion, while dynamics of electrons is still quantum. For further details, see [10,55,50, , ,

,198] and references therein.

The motivation for the derivation of hybrid quantum-classical models can be found in the Ehrenfest
theorem [56,124]. This theorem, first presented by Ehrenfest in 1927 [118], describes the change in time of
the expectation values of observables. In its most simple case, consider a wave function v (r,t) describing
a massive particle on a one-dimensional space, moving in a scalar potential V(). As proved by Ehrenfest,
the expectation values of the position r and momentum p operators satisfy the following relations:

d 1 d oV
G0 =0 5o =-(5), (5.1

with M the mass of the particle. The form of these equations is similar to that of Hamilton equations
appearing in Classical Mechanics. As first noted by Moyal [211], a power expansion of the scalar potential
V(r), followed by some modifications and approximations, is the key point in the computation of a
classical limit for the model [198]. The idea behind the development of hybrid quantum-classical models
in molecular dynamics is the extension of these approximations to some particles conforming the molecular
system.

Consider a molecule with m atoms. Chemistry models show that the valence electrons are responsible
for the properties of the molecule. The remaining electrons, which occupy the inner orbitals with lower
energies, stay always close to their respective nuclei. For this reason, it is advisable to consider a nucleus
and its inner electrons as a single entity, which shall be called a core. Therefore, a molecule is comprised
of m cores and a certain number n of valence electrons. The state of a molecule at a time ¢ is described
by a wave function ¥(r, R,t) on the configuration space of valence electrons and cores, where

r=(ry,...,r,) ER® R=(Ry,...,R,) € R (5.2)

Each particle is characterised by its mass and its charge. In atomic units, every electron has mass equal
to 1 and charge equal to —1, while the mass and charge of the J-th core are respectively M; and Z;.
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Only Coulomb interactions are considered, modelled by the following potential:

—~  ZiZk

(5.3)

J<ZK|RJ—RK| Z < |r; _rk| Jz:ljz:l| Ry —r1j|

The evolution of the state of the molecule is determined by the Schrodinger equation:
8
W R 1) = Hr R)U(r, Rot), (5.4)
where H(r, R) is the standard molecular Hamiltonian. It is useful to write this operator as
where H,(r, R) is called the electronic Hamiltonian of the system and is defined as
1 n

He(r,R) = — > Vi+V(rR). (5.6)

The classical behaviour of cores can now be introduced in different ways, each leading to a different
model. The traditional approach is based in the computation of the eigenvectors of H.(r, R) for fixed
positions of the cores [114,198]. This approach is based in the factorisation of the wave function according
to the Born ansatz [52,183]. By use of the Born-Oppenheimer approximation [52,54], and considering
the classical limit for the cores, a hybrid quantum-classical description of the molecule is obtained. This
approach is usually known as the Born-Oppenheimer model, and is characterised by restricting the state
of the quantum part to a fixed eigenvector of the electronic Hamiltonian, computed for each configuration
of the cores. See in particular [198, p. 11] and references therein for a detailed description of the model.

It is possible to consider a different derivation of quantum-classical dynamics that retains a quantum
evolution for the electronic subsystem. As before, some ansatzs and approximations have to be made. The
resulting equations conform the so-called Ehrenfest model, due to its resemblance with the differential
equations deduced in the Ehrenfest theorem. The derivation of the model presented here is based in
the works by Tully [263,264]; see also the works by Marx and Hutter [197,198] and by Bornemann,
Nettensheim and Schiitte [55,56] for further details.

In order to derive the Ehrenfest model, the following hypothesis are considered [56]:

e The cores are localised at a certain time tg. In terms of operators, the variance of their position
operators Ry, for J =1,2,...,m, is considered to be small.

e The mass of cores is much larger than that of the electrons, i.e. M; > 1 for every J =1,2,...,m.

Due to the first hypothesis, the molecular wave function is separable at a time ¢y in a nuclear and an
electronic parts [55]:

(r, R, to) = ¢(r,to)x (R, to), (5.7)

with 9 and x normalised over R3” and R3™, respectively. The separability of the wavefunction was first
proposed by Dirac in 1930 [110]. This property is preserved along time evolution; thus, it is possible
to approximate ¥(r, R,t) by a product of a nuclear and an electronic wavefunctions. Their respective
differential equation are obtained by a variational principle, as shown by McLahlan [203]. For simplicity,
it is advisable to add a time-dependent factor. Thus, the molecular wavefunction is approximated as

U(r, R, t) ~(r,t)x(R,t) exp [i E(t’)dt’} , (5.8)

to
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where the function E(t) is the expectation value function of the electronic Hamiltonian H, at time ¢ > ¢¢:

B = [[ 40 (RO B R0 (R, ) dB. (5.9)

Observe that, due to this separability, the model thus obtained limits the interaction between particles,
as it ignores the possible entangled states of cores and electrons that could appear along evolution [156].

The factorisation of the molecular wavefunctions is an important element in the derivation of molecular
models. For this reason, it has been a topic of study for many years. It is remarkable the work by Abedi,
Maitra and Gross on the exact factorisation of the wavefunction [1]; technical details on this topic
were addressed by Alonso, Clemente-Gallardo, Echenique-Robba and the author, which were in turn
responded [2, 16].

The differentiable equations for ) and x can be obtained either by a variational function or by direct
substitution of (5.8) into the Schrédinger equation (5.4). Due to the extra exponential factor in (5.8), it
is possible to obtain the following system of coupled differential equations:

;WTt %z": P (r,t) (/|XRt|2 (TR)dR)w(rt)

8815 Zm: (R, t) + (/1/)(7“, )" He(r, R)y(r,1) d?“) X(R,1).

Each equation describes the quantum dynamics of the corresponding subsystem. Observe that the equa-
tions are coupled, as the effective potential acting on the cores depends on the state of the electronic
subsystem, and vice versa. These equations are the basis of the time-dependent self-consistent field (TD-
SCF) method, a powerful tool in the description of molecular systems. Descriptions of the method can
be found in numerous woks [134, 198].

From the TDSCF equation, it is possible to derive the Ehrenfest model by imposing the second
hypothesis mentioned above. The assumption of large masses for the cores amounts to considering the
classical limit on their dynamics [144]. As a result, as shown in [56, 198], the nuclear wavefunction can
be written as

(5.10)

X(R, ) = A(R, 1) exp(i S(R, 1)), (5.11)
where the real functions A(R,t) and S(R,t) satisfy the following differential equations:

m

9,42 R, t) Z 7 (A2(R,t)VS(R,t)) =

= (5.12)

9 (.t Z s V3s) + ([ ot 0 R) ar) s() =

The first equation is a continuity equation for the probability density of the nuclear wavefunction. In
particular, if x is assumed to be localised at tg, then it is also localised at posterior times. In the limit
of zero variance, the expectation values of the positions of the cores are identified with their classical
positions.

The second equation in (5.12) is a Hamilton-Jacobi equation for S(R, t). The solution for this equation
is obtained by means of the Huygens principle [29, p. 255]. The linear momenta associated to the
wavefunction x(R,t) are

P;=V,S(R,t), J=1,2,...,m. (5.13)

At this point, it is possible to consider the classical limit of this formulation. Nuclear wave function is
assumed to be localised, hence the state of cores are determined by their positions R. No explicit equation
for the evolution of these positions is given yet. Instead, it is possible to identify the values Py,..., P,
with the classical momenta of the cores. It is thus possible to obtain a classical dynamical system for
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the cores. Observe that the described procedure is similar to the WKB approximation [145, ], a
common approximation in the resolution of the Schrédinger equation. Notice also the change in the
dimensionality of the space describing the states of the cores, as the infinite-dimensional Hilbert space of
nuclear wave functions is approximated by the finite-dimensional phase space of the cores. The reduction
in the dimension is due to the assumption of a very specific kind of nuclear wave functions, namely
localised functions (i.e. Dirac deltas). Summarising, it is possible to go from a quantum description of
the whole system to the following hybrid quantum-classical dynamical system.

Theorem 5.1. The evolution of the classical and quantum degrees of freedom of the described hybrid
quantum-classical system is governed by the following differential equations:

dR,, 1
=Lty = —Pyt
a =3B,
P,

T t)=-Vy, (/w(r, ) He(r,R(t))y(r,t) dr) , (5.14)

.0
1a¢(rv t) = He(rv R(t))’(/J(T, t),

for J=1,2,...,m and H.(r, R) given by (5.6).

Proof. The Hamilton-Jacobi equation (5.12) for S(R,t) is transformed into Hamilton equations for
Ri,...,R,, and Py,...,P,,. On the other side, regarding the electronic degrees of freedom, the proposed
equation is obtained from (5.10). O

Equations (5.14) define collectively the Ehrenfest model for molecular systems. It is important to
notice correlations between evolutions of classical and quantum degrees of freedom. Cores follow classical
laws of motion under a potential depending on the electronic state, often called the Eherenfest potential.
Similarly, the electronic Hamiltonian is determined by the positions of the cores. Observe that, in contrast
with the Born-Oppenheimer model, transitions between electronic states are allowed [198].

5.2 Geometric characterisation of the Ehrenfest model

In spite of formal similarities, Ehrenfest model, as presented in (5.14), is not a Hamiltonian system.
While evolution of classical degrees of freedom is governed by Hamilton-like equations, there are other
requirements that need to be fulfilled, such as the existence of a Poisson bracket. This in turn implies
that a global phase-space description is necessary, encompassing both classical and quantum degrees of
freedom.

The geometric formalism for Quantum Mechanics presented along this dissertation offers a suitable
framework for a Hamiltonian description of Ehrenfest model. Classical Mechanics can be formulated
as a theory on Poisson manifolds. The same is true for Quantum Mechanics. These formulations can
be combined in the same way as when different classical systems are considered. Following previous
works [8, 10, 14], this section presents a geometric description of hybrid quantum-classical systems and of
dynamics described by Ehrenfest model.

5.2.1 The quantum-classical manifold

The geometric formulation of Classical Mechanics was fully described by Abraham and Marsden in
their well-known book [3]. The phase space of the system is identified with the cotangent bundle of a
differentiable manifold, which in its more simple description is the configuration space of the system. It is
a well-known property of differentiable geometry that any cotangent bundle carries a canonical symplectic
form. This in turn determines the dynamics of the system, as the trajectories of classical systems are the
integral curves of Hamiltonian vector fields with respect to such structure.
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Particularising to the case of molecular system, the phase space of the classical particles is

—_—~—
Mc =R6 x - x R® = RO™, (5.15)

Points in the manifold M¢ determine positions and momenta of the classical particles with the following

notation:
¢E=(R,P)=R,4,...,R,,,Pq,...,P,) € Mc. (5.16)

with each position and momentum vector being
RJ:(RJ71,RJ72,RJ73) ERB, PJ:(PJJ,PJ727PJ73) ERS, J:1,2,...,m. (517)

The classical phase space is a symplectic manifold (M¢,wc), with a Poisson bracket denoted as {-, }¢.
Its action on differentiable functions f, g is

3<8f dg af g

B *(Me). 1
ORj 0Py, OPjp 8RJ’]€> ;. f,9€ C%(Mc) (5.18)

{fvg}C = Z

1k=1

The quantum subsystem can be described also in geometric terms. As presented in Chapter 1,
the Hilbert space of the quantum system, and more specifically its projective space, is identified with
a differentiable manifold P. This manifold carries additional structures derived from the Hermitian
product in the Hilbert space. Thus, the configuration space of a quantum system is a Kéhler manifold
(P,wp, gp, Jp). Kéhler manifolds are particular cases of symplectic manifolds, and for the description of
hybrid quantum-classical systems it is enough to consider the symplectic manifold (P, wp), with {-,-}p
its Poisson bracket. Dynamics of quantum systems is also described by Hamiltonian vector fields.

A requisite for the geometrisation of the quantum description is the discretisation of the Hilbert
space of electronic wavefunctions. As explained before, geometric characterisation on infinite dimensional
quantum systems is a challenging problem that lays beyond the scope of this dissertation. A description in
terms of finite dimensional systems is, nevertheless, accurate enough for the case of molecular systems. It
is common, for example, to describe the states of the electronic subsystem in term of Slater determinants.
These are generated by a large enough, although finite, set of eigenvectors for the electronic Hamiltonian.
As a result, electronic states are approximated by elements in a finite dimensional manifold.

An alternative approach takes advantage of the spatial distribution of electrons. If the value of the
electronic wavefunction far away from the cores is assumed to be negligible, then it is possible to bound
the domain of wavefunctions. By discretising this domain, wavefunctions are determined by their values
over a grid of points on R3", thus spanning a finite dimensional Hilbert space. The dimension of the
Hilbert space is equal to the number of points in the space grid. Obviously, large number of points
allows for a good approximation to the continuum case. For computational purposes, this approach is
the one chosen in following sections. Regardless of the actual discretisation procedure, the resulting finite
dimensional Hilbert space and its projective space can be described geometrically as usual.

The geometric description of hybrid quantum-classical systems combines these two approaches. Thus,
the configuration space of a hybrid quantum-classical system is assumed to be the following product
manifold [8, 10, 14]:

MQC = MC X P. (519)

Observe that, with this definition, it is implicitely assumed that there exists no entanglement between

the classical and quantum subsystems.

Proposition 5.2. The product manifold Mgc is a symplectic manifold, being its Poisson bracket defined
as

{f.9}qc =1{f.9}c +{f g}p. (5.20)

Proof. The manifold Mqgc is defined as the direct product of two symplectic manifolds. Hence, it is also
a symplectic manifold. See the book by Abraham and Marsden [3] for a proof of this property. O
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Observe that the reduced Planck constant 7 is not included in (5.20), unlike the product proposed
in [10]. The reason is that, with the definitions presented in Chapter 1, this important constant is already
contained in the quantum Poisson bracket {-,-}p. See in particular Section 1.2.5 for an analysis of the
role of /i in the geometric description of Quantum Mechanics.

5.2.2 The observables of the hybrid quantum-classical system

Both in geometric Classical and Quantum Mechanics, observables are represented by functions on the
corresponding manifolds. The same happens in the product manifold Mgc. It is however necessary to
describe in detail these observables.

In Classical Mechanics, observables are smooth functions fo : Mo — R that assign results of measure-
ments to points on the manifold. Thus, the set of observables on M is simply C*°(M¢), the associative
algebra of smooth functions. Observe that this algebra is obviously closed under the classical Poisson
bracket {-,-}c.

The case of the quantum subsystem is different. As seen in Chapter 1, observables of a quantum
system are the set O = Herm(H) of Hermitian operators on the Hilbert space of the system. When
dealing with the projective manifold P, observables are represented by the set Eo(P) of expectation
value functions:

(] Al)

(¥le)

The set of expectation value functions is thus a subset of all the possible smooth functions on P. It is
note, unlike in the classical case, an associative algebra, but a Lie-Jordan algebra with respect to the
Poisson and symmetric products on P defined by the Kéhler structure (see Chapters 1 and 3).

Observables on the hybrid system have to represented by functions on Mgc that keep some relation
with these two cases. Let Og¢ represent the set of such functions. Due to the geometric structure present
in Mgc, and following the properties of observables in Classical and Quantum Mechanics, the set Og¢c
is required to be closed under the Poisson bracket {-,-}qc.

The extension of C*°(M¢) and of Eo(P) to the product manifold are the subsets of Og¢ representing,
respectively, purely classical and quantum observables. Futhermore, these are Poisson subalgebras with
respect to the Poisson bracket {-,-}gc, defined in (5.20). Examples of these operators are one-particle
operators such as positions and momenta of each particle. Arbitrary linear combinations of these functions
also represent observables. This is the case, for example, of the total linear momentum of the molecule.

More complex combinations have to be considered in order to properly describe the properties of
hybrid systems. Consider a classical-quantum observable A on the molecular system. According to the
geometric formalism, it is represented by a smooth function €4 : Mgc — R. It is possible to determine the
formal expression of these functions. Observe that the restriction of €4 to P is necessarily an expectation
value function, with the specific form (5.21). Thus, it is natural to consider ¢-dependent observables
A(€) € O and define the function e4 as

Eo(P) ={ea, Ac O}, ea(l¥]) = [Y] e P. (5.21)

V[AE)[¢

eate ) = LG (e ) € age (5:22)
(le)

The linear space generated by these functions is denoted as Egc(Mgc). This set, however, is not closed

under the Poisson bracket {-,-}gc [10]. In fact, consider two hybrid observables A, B. The classical and

quantum Poisson bracket of their respective functions are

m 8l ) (B2 ) () (]2 )
tea o€ ;2( W) W) Wl i) )

(W[IAE), BOII¥)
{easepto(&:[¥]) = i) :

By combining both results as in (5.20), it can be concluded that {e4,ep}oc ¢ Eoc(Moc). For the set
Oqc of observable functions to close a Poisson algebra, it is necessary to consider all smooth functions

(5.23)
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on the product manifold:
Ogc = COO(MQc). (5.24)

The set Og¢ includes therefore functions without a clear physical interpretation, as their restrictions
to the quantum subsystems are not expectation value functions. This is however a natural feature of
Ehrenfest dynamics, which stems from the interaction between both subsystems. In a sense, the quantum
subsystem can be regarded as an open quantum system, whose evolution is influenced by an external
system (the classical part) and whose properties are not entirely equivalent to those of isolated quantum
systems.

Two considerations can be made with respect to this issue. Firstly, this feature resembles in a way
the entanglement of quantum particles, in which the description of the system as a whole is intrinsically
different than that of each constituent part. Similarly, in molecular systems, there exists new features (in
this case, new functions) that do not appear when the quantum subsystem is considered alone. Surpris-
ingly, the classical system presents no difficulties. Thus, the entanglement-like behaviour of molecular
systems appears only in the quantum part, not in the classical one, of the system.

The other main consideration has to do with the geometric characterisation of quantum systems. As
seen above, this geometric formalism allows for a join description of the classical and quantum subsystems
of the molecule. But in the case of the observables, the relevance of this description is greater. The set
of functions Og¢ defined in (5.24) makes sense only on a geometric setting, and has no direct correlation
with any object in a algebraic formalism. Thus, the geometric characterisation allows for an extension of
the concept of observables to any smooth function on the manifold.

5.2.3 Ehrenfest model as Hamiltonian dynamics

Consider in particular, the function ey associated to the Hamiltonian of the system. Its value at each
point (&, [¢]) € Mgc gives as a result the energy of the molecule for a configuration £ € M¢ of the nuclei
and a state of the electrons described by [¢)] € P. The value of this function is given by considering the
discrete expression of (5.5):

(Wly)

where H.(R) is the discrete version of the electronic Hamiltonian (5.6). By using this function and the
Poisson bracket (5.20), it is possible to define a Hamiltonian vector field on Mgc whose integral curves
are the solutions to the equations of the Ehrenfest model [10].

G i _ps 4 L) (5.25)

Theorem 5.3. Let XIQIC be the vector field on Mqgc defined as

Xg9(f) = ~{em, floc, e C®(Mge). (5.26)

The integral curves of this vector field are the solution to the set of differentiable equations (5.14) asso-
ciated to the Ehrenfest model.

Proof. Equation (5.26) can be rewritten according to the expression (5.20) of the classical-quantum
Poisson bracket:

Xg () = ~en. fyo ~{en. fp, [ €C™(Mgo). (5.27)
The second term is, by (1.138) and (5.25), the Hamiltonian vector field on P associated to H.(R). Its
integral curves are, by Theorems 1.48 and 1.65, the projection onto P of the solutions to the Schrédinger
equation for H.(R). Regarding the classical degrees of freedom, consider an integral curve for the vector
field XIC?IC. By (5.26), the differential equations for the classical coordinates of this integral curve are:

dR Oe 1
djk = —{eu,Ryr}toc = ka = EPJ,k,
’ J=1,2,....m; k=1,2,3, (528
aPy dex 0 (WIH(R)) (5:28)

= —{en, P == - ’
n {en, Prrtac IRy ORx (YY)
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which are precisely the equations in (5.14). O

This Theorem proves that the Ehrenfest model is recovered as a Hamilton system on the hybrid
quantum-classical manifold Mgc. Evidently, the set Ogc of observable functions is preserved under
evolution, as it is closed under the Poisson bracket. Observe also that it is impossible to obtain any kind
of entanglement between classical and quantum degrees of freedom by means of Ehrenfest dynamics. By
taking Mgc as the differentiable manifold of the system, this entanglement is intrinsically ruled out.
This and the deterministic property of the evolution are the main reasons of the lack of decoherence-like
effects in Ehrenfest dynamics. While several methods exist to include in some way these effects (see
the introduction to this chapter), the geometric description of the dynamics offers another alternative.
A statistical treatment of the theory is possible thanks to the presence of symplectic volumes. As
seen in following sections, theorietical computations and numerical simulations prove the emergence of
decoherence-like effects in this statistical setting, thus expanding the possibilities of Ehrenfest dynamics.

5.3 Ehrenfest statistical model

After writing it in the appropriate way, Ehrenfest equations are Hamiltonian with respect to the symplec-
tic structure on the manifold Mgc. Therefore, from Liouville theorem, there exists a volume dugc on
Mgc which is invariant under the dynamics. Such a volume is obtained as the product of the symplectic
volumes on the classical and quantum manifolds:

duge = duc @ dpp. (5.29)

This makes possible the definition of a Statistical Mechanical model where Ehrenfest equations defines
the dynamics of the microstates. The results presented here are based on previous works by Alonso,
Clemente-Gallardo and co-workers, the author among them [8-10,14,15].

Consider a probability density function on the manifold Mg¢, i.e. a function satisfying a normalisation
condition:

| duacFac(e ) = 1. (5.30)

From an empirical point of view, probability densities are needed in order to describe any molecular
system. Indeed, in a laboratory, any macroscopic system interacting with the molecule has a certain
distribution of states, associated to thermal motion or to a simple uncertainty of the exact state of the
particles.

Recall that Mgc is a product manifold, and integration over the manifold can be solved by iterated
integrals, firstly over M and secondly over P, or vice versa. Thus, it is natural to consider the corre-
sponding marginal probability density functions Fo and Fg, which encode respectively the uncertainties
of the classical and quantum degrees of freedom.

Feo(§) == /PduQFQc(& [¥]), Fo([Y)]) = /M dpucFoc(§,[¥]), €€ Mg, []eP. (5.31)

A probability density function defines expectation values for any magnitude measured on the manifold,
either classical, quantum or hybrid. The expectation value of a hybrid A observable, represented by a
function e (¢, [¢]) on Mgc, is thus defined as

(4) = /M dpocFoc € [W)eal6, [0]): (5.32)

Consider the particular cases of a purely classical magnitude A, or on the contrary a purely quantum
one Ag. In these cases, the expectation values of the magnitudes can be computed by means of the
corresponding marginal distributions:

(Ac) = /N AncFel©)facl). (A) = /P dugFo([])eaq (W), (5.33)
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Thus, classical and quantum Statistical Mechanics are recovered. In fact, observe that the second equation
gives the expectation value for a quantum observable, which can therefore written in a more standard
way [14]. By Gleason’s theorem, there exists a density matrix p such that

(Aq) = Tr(pAq). (5.34)

This density matrix can be explicitly obtained by averaging the projectors on the quantum states by the
distribution Fyc:

p= b _ )]
p= /MQC duqoFaele, WD riny = /7, Ao Fo (W) s (5.35)

As presented in Section (3.1.5), when dealing with statistical quantum ensemble, density matrices are
correct object that describes their properties. The reason has to do with the superposition principle of
Quantum Mechanics. Pure states, represented by points in the quantum manifold P, are not independent.
Thus, for any probability density function on P there exist equivalent functions which give the same
expectation value for any observables of the system. All of them are represented by the same density
matrix.

Hybrid classical-quantum system present analogous characteristics. By (5.35), quantum marginal
distributions are represented by density matrices for the quantum subsystem. This concept can be
extended to properly describe the total probability distribution Fyc, which also presents some ambiguity
in the quantum degrees of freedom.

Proposition 5.4. For every probability distribution Foc on Mgc and every £ € Mc, let p(§) be the
operator defined as

S(E) i— )l
7(E) = /P s Fao (€. W) s (5.36)

This is a Hermitian, positive operator whose trace gives the classical marginal distrubition functions,

Fe(§) =Tr(p(€)), V€€ Mc, (5.37)

If a quantum-classical observable A defines for every & € Mc a quantum observable A(€) € Ogq, then the
expectation value of A is

(4) = / ducTH(P(E)A(L)). (5.38)

Proof. The expression of F(€) is deduced from (5.31) and (5.36). Regarding the expectation values of
observables, if A defines a {-dependent quantum observable, then its corresponding function e4 on Mgc
is given by (5.22). This expression, together with (5.32) and (5.36), proves the result. O

Observe that the operator p(£) is not of unit trace, thereforeit is not a density matrix. It is however
a positive, Hermitian operator, and it is related with the density matrix p of the quantum subsystem by
the following relation:

p= [ ano p(&) = [ dngrolu) it (5.39)
Mc P <¢|¢>

In order to understand the difference between these objects, consider Gleason’s theorem. For each
& € Mg, it is possible to apply the theorem to the probability density defined by Foc (€, [¢]), in order
to obtain a density matrix describing the expectation values of quantum observables. For this reason,
p(§) is Hermitian and positive for every & € M¢. It is not, however, of unit trace, as Foo(€, [¢]) is not
normalised for a fixed value of {. Normalisation only occurs for the whole manifold Mgc; indeed, it is
immediate to prove that

| anemiaie) = mip) = 1. (5.40)



5.3. EHRENFEST STATISTICAL MODEL 149

Some examples are useful in order to illustrate the introduced concepts. The simplest distribution on
Mgc is given by Dirac’s delta functions:

Fae (&, []) = 6(€ = &)o([¢] = [to]), (o, [¥0]) € Mgo- (5.41)

The corresponding density matrix representation is

|%0) (1o

(tolto) (5:42)

p(&) = 0(§ = &o) 7~

The next step is to consider some uncertainty on the initial conditions of any of the two subsystems.
For example, if the uncertainty is presented in the classical subsystem, then the distribution is

Foc (&, [¥]) = F(O([¥] — [o]), o] € P. (5.43)
The corresponding density matrix is
Sy — ey [P0 (Wol
p(&) = f(§) Golvo) (5.44)

This case describes a flat distribution of molecules whose quantum degrees of freedom are at the initial
state ¥y but whose classical subsystems are described by a distribution f(£). This is the case studied
in [14] for a simplified model where the distribution was chosen as

N
Z 5 gk gla"'vgN € MC~ (545)

Another physically relevant case, namely the canonical ensemble of hybrid quantum-classical systems
[9, 10, 15], are considered in Section 5.5.

Once that the statistical model is describe, it is possible to incorporate dynamics. Consider the
Ehrenfest dynamics on the product manifold Mgc = Mc x P. As the dynamics is Hamiltonian with
respect to the function fy defined in (5.25) , the volume element dugc(€,) is invariant with respect
to the evolution. This makes possible to consider the Liouville equation [33,34], which determines
trajectories Fc(t) on the space of distributions:

S Fao(t) = {err, Fac ()} ac. (5.40)

As dynamics preserves the volume, the evolution Foc(t) of a distribution defines in turn an evolution
for the density matrix of the quantum subsystem:

) (Y|
(W)

(5.47)

)

A(t) = /M dugeFac (€ [6);1)

This evolution is, in general, quite complicated from a mathematical point of view, and certainly can
not be written as the solution of von Neumann master equation, even if Ehrenfest electronic equation in
(5.14) were linear [14].

From this point of view, the statistical version of Ehrenfest dynamics is powerful enough to incorporate
at least some of the correlation between nuclear and electronic degrees of freedom that is lost in the
purely dynamical Ehrenfest model. Furthermore, the geometric approach, which does not depend on any
particular choice of basis for the system, makes possible to consider an intrinsic definition of decoherence
time. For a system losing coherence along evolution, it shall be consider that such decoherence time is
reached when its purity stabilises.
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5.4 Decoherence-like effects for diatomic molecules

The geometric description of the Ehrenfest model and its extension to statistical ensembles has con-
siderable potential. In order to illustrate the theory, particular examples have been studied. Namely,
the evolution of statistical ensembles of diatomic molecules under the Ehrenfest dynamics. This section
presents a detailed description of the problem and the method used in order to obtain significant results.
The initial statistical ensemble is constructed in such a way that all the uncertainty is on the classical
degrees of freedom. Therefore, the quantum density matrix corresponds to a pure state. This choice of
the initial conditions allows for an optimal characterisation of the decoherence effects appearing along
evolution.

Recall that the geometric formalism used to describe hybrid quantum-classical systems is the reason
why statistics and dynamics can be successfully combined. It is thus possible to consider the evolution
of the initial distribution, which in turns defines a time-dependent density matrix for the quantum
subsystem, which is in general not pure. Explicit computations of the purity of the quantum system
along time are also presented.

5.4.1 Modellisation of diatomic molecules

According to the Ehrenfest model, diatomic molecules are divided in a classical and a quantum subsystem.
The quantum subsystem is composed of the valence electrons, while the cores of the molecule form the
classical subsystem. In this case, there are only 2 cores, thus the classical phase space is Mo = R!2,
Classical degrees of freedom are the position R;, Ry and momenta Py, Ps of the cores.

In order to simplify the model, the atoms composing the molecule are assumed to be identical and of
unit valence. Thus, the masses of the cores are My = My := M, while their electric charge is Z; = Z; = 1.
There are many physical examples of such molecules: Hy, Nao, . ..

Regarding the quantum subsystem, a further simplification is made. For practical reasons that will
be made clear later, the molecule is assumed to be ionised. Thus, there is a single valence electron in
the quantum subsystem. The evolution of the system is determined by equations (5.14) of the Ehrenfest
model, with electronic Hamiltonian given by

2

- P, L L1 ! 5.15)
¢ T 2m. dmeg |[R1 — Ro|  4meg — Ry —r| ’

The initial statistical ensemble of molecules is defined as follows. The valence electron is assumed to
be in a completely determined state [ig] € P, while the cores are described by a distribution over a set
of N equally probable discrete points &1, ...,Eny € Mc. The initial distribution is thus:

Fool(&, [¥];0 NZM )8 ([¥] — [vo))- (5.49)

This is a natural assumption, as in practice it is impossible to determine with complete precision the
initial state of the particles.

The evolution of this statistical system is computed by solving the Ehrenfest dynamics N times.
For the initial condition (&, [¢o]), with & = 1,2,..., N, the corresponding solution of the Ehrenfest
equations (5.14) are denoted as (£x(t), [k (¢)]). The resulting set of trajectories determine the distribution
Foc(§,[¥];t) at any time as

N
Foolé, Z (& = &))5([] — [Yr(t)]), t>0. (5.50)
k:

Observe that, unlike (5.49), this distribution is no longer separable in classical and quantum degrees of
freedom.
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The evolution of the density matrix p for the quantum subsystem is immediately computed as

)

S(0) = [4) o~ 1) W ()]
0=, e Facte it G = 5 ST GR GRS (5.5

The quantum state described by this density matrix is, in general, mixed.

5.4.2 Characterisation of the numerical simulations

In order to explicitly solve the Ehrenfest dynamics, numerical methods are required. Simulations have
been performed using the Octopus code. As described in its web page',

‘Octopus is a scientific program aimed at the ab initio virtual experimentation on a hopefully
ever-increasing range of system types. Electrons are described quantum-mechanically within
density-functional theory, in its time-dependent form when doing simulations in time. Nuclei
are described classically as point particles. Electron-nucleus interaction is described within
the pseudopotential approximation’.

The code for Octopus has been developed for the last years by Andrade, Castro, Rubio and many
others [24,25,89,195]. Tt is a powerful tool in the analysis and characterisation of molecular systems,
from simple systems to the most complex ones. It thus offers great possibilities for the statistical analysis
of molecular systems, in particular the Ehrenfest model.

The computations of Octopus have been performed with the avaliable resources at the BIFI institute?,
in Zaragoza (Spain), of which the author is member. BIFI hosts, among many other computational
resources, the computer Tesla, composed of two 12-core Xeon processors, together with a 24 GB common
RAM. This is the computer on which the simulations have been implemented.

Observe that the description offered by Octopus is not the one offerd by the Ehrenfest model. Octopus
implements density-functional theory simulations, based on the Kohn-Sham model. Without entering into
details, it so happens that both models are identical for the case in which the quantum subsystem of
the molecular system is composed of a single valence electron [13]. This is the practical reason why the
model described in section 5.4.1 considers ionised molecules, thus having only one valence electron.

The simulations with Octopus are based on a discretisation of the three-dimensional space that de-
scribes the position of the valence electron. Thus, the wave function describing the state of the quantum
subsystem takes values on a three-dimensional bounded grid, hence the corresponding Hilbert space is
finite-dimensional. The grid is composed of equispaced points in R3, with the additional constraint of
belonging to the bulk of a sphere of radius rg, centred at the origin. Hence points in the grid take the
form

(ad,b6,c0) € R®, (a® +b* +c*)6* <rk, a,bccZ, (5.52)

with ¢ the grid parameter. This parameter is to be taken small enough, and the radius large enough, so
that the accuracy of the results is not compromised.

For practical purposes, the electrostatic potential between cores cannot be modelled directly by the
Coulomb potential. The divergence in the potential when the distance between cores goes to zero presents
computational problems. Octopus offers the possibility of using user-defined electrostatic potential. Thus,
instead of the Coulomb potential in (5.6), the following approximate potential is used in the simulations:

1 B
Va(Ri Rz) = ——— (a? + [Ry — Rol?) vz (5.53)

TEN

with a a positive parameter that has to be specified.

Lyww.tddft.org/programs/octopus.

2BIFT is the short name for the ‘Instituto de Computacién y Fisica de Sistemas Complejos’ (Institute for Biocomputation
and Physics of Complex Systems), located at Edificio I+D, ¢/Mariano Esquillor, 50.018 Zaragoza (Spain).
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Octopus allows for the computation of the spectrum and eigenvectors of the electronic Hamiltonian
H, (&) for a given configuration of the cores. This makes possible a further simplification in the computa-
tions, and mainly in the storage, of simulations. The ny lower eigenvalues of the spectrum, are computed
for the initial configuration of the cores. Their corresponding eigenvectors are used as a truncated bases
for the Hilbert space of the quantum system. Thus, the states of the quantum subsystem are described
by elements in H = C™# (or rather in its projective space). By taking adequate values of ny, simula-
tion time and required storage space are significantly reduced without compromising the accuracy of the
results.

In order to characterise the cores, their mass, initial positions and initial momenta have to be deter-
mined. A consideration has to be done regarding masses. Observe that the model described in Section
5.4.1 accurately described a ionised hydrogen molecule Hj . It is not advisable, however, to consider
this system as a model. The reason has to do with the small mass of the hydrogen atom. It has been
proved in literature that hybrid quantum-classical systems are not accurate enough to describe such small
atoms. A larger mass is thus preferable. For the simulations, the atomic mass of the sodium is used, thus
M = 23 a.u.. For practical purposes, the parameter a = 0.4 in (5.53) is chosen.

In order to finish the description of the simulations, the initial conditions of the cores have to be
described. It is advisable to consider identical initial positions of the cores for a given statistical ensemble.
Thus, the basis of H given by the electronic Hamiltonian is common for all the simulations. The evolution
under the Ehrenfest dynamics consists of vibrations of the cores around the equilibrium positions of the
cores for the given state of the electron. These are taken as the initial positions R; o and Ry of the
cores.

5.4.3 Parameter fitting

Numerical computations can be performed with Octopus in order to obtain the equilibrium energy of
the molecular system for each configuration of the cores and each value of the parameters J, rg and a in
(5.52) and (5.53). These simulations, in turn, allow for the determination of the optimal values for these
parameters.

The grid parameters  and rg determine the number of points in the grid. If this number is not large
enough, the electronic wave functions is not accurately computed and numerical problems arise. In order
to fix the values of the parameters, ground state computations may be performed.

Recall that the electronic Hamiltonian H.(R) depends parametrically on the classical degrees of
freedom of the system. A ground state computation gives, for each R € RS, the ground state energy
Ey(R) of the electronic Hamiltonian. The cores are seized in rest; thus, the total energy Er(R) of the
molecular system is obtained by evaluating (5.25):

Er(R) (a® + Ry — Ro|?) Y2 + Ey(R). (5.54)

T e

A large number of grid points is necessary in order to obtain valid results. Figure 5.1 shows the
ground state energy Fo(R) for some ground state computations. These are performed for fixed positions
of the cores and with different values § and rg. By examining these graphics, the following values for the
parameters are chosen:

0=0.6au, re=6.5au. (5.55)

The value for a models the radius of the cores, as it represents the repulsion among the inner atomic
electrons. Figure 5.2 shows, for a = 0.4 a.u., the total energy Ep(R) of the molecular system (5.54)
in terms of the distance between the cores. The minimum total energy corresponds to a distance of
2.69554 a.u..

If the z-axis is chosen along the line linking the cores and the centre os mass is take and the origin
of coordinates, then the equilibrium positions of the cores for the ground state energy are approximately
taken as

R; = (1.3 a.u.,0,0), Ry =(-1.3 a.u.,0,0). (5.56)

With this choice, the centre of mass of the classical subsystem is at the centre of the grid.
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Figure 5.1: Ground state simulations for a = 0.4. The cores are in positions Ri,0 = (1.3 a.u.,0,0) and
Ry, = (—1.3 a.u.,0,0). Graphic (a) represents the ground state energy of simulations performed by varying the
grid parameter 9, with a fixed grid radius rq¢ = 6.5 a.u. Conversely, simulations whose ground state energies are
represented in (b) are performed varying the grid radius r¢, while keeping fixed the grid parameter as 6 = 0.6 a.u.
In both graphics, the ground state energy stabilises for large numbers of grid points.

5.4.4 Initial statistical ensembles

Different statistical ensembles are characterised by the initial state [1)g] € P of the quantum subsystem
and the set of initial classical degrees of freedom &;,...,En € Mc, as seen in (5.49). Large enough
statistical samples are obtained for NV = 40. In order to simplify the computations, the positions of the
cores are taken constant; thus, the initial classical degrees of freedom are of the form

£ = (Ri0,R20,P1;,P2j), j=1,2,...,40. (5.57)

In the following, the initial states of the quantum system for the statistical ensembles is given in terms
of the eigenstates {|¢po(Ro)), |¢#1(Ro)), ...} of the electronic Hamiltonian H.(Rg) for the initial positions
of the cores. Three different statistical ensembles are considered:

1. For the first statistical ensemble, the initial quantum state is taken as the first excited state of the
electronic Hamiltonian:

[vo) = |$1(Ro))- (5.58)

The initial positions of the cores are taken as their equilibrium positions for this quantum state.
These equilibrium positions are computed by performing numerical simulations with Octopus.
These simulations show that the cores vibrates about the equilibrium positions; the oscillation
amplitude depends on the initial distance to the equilibrium positions. By performing several sim-
ulations, it is possible to find initial conditions for which the amplitude of oscillation is negligible.
These are taken as the the equilibrium positions of the cores; their values are

Ry = (3.35 a.1.,0,0), Rao=(—3.35au.,0,0). (5.59)

The initial momenta of the cores have to be carefully chosen. Small momenta would yield almost
static dynamics, while large momenta would cause dissociation of the molecule or, at least, unre-
alistic behaviour. Numerical computations show that momentum initial values up to 4 - 107° a.u.
produce reasonable dynamics, as seen in Figures 5.3a and 5.3b. Observe that oscillations occur,
approximately, around the positions proposed in (5.59). The initial momenta of the cores are also
chosen so that the centre of mass is static and the movement occurs. The following values have
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Figure 5.2: Total energy Er(R) of the diatomic molecule for a = 0.40 a.u. The minimum energy corresponds
to an interatomic distance of 2.69554 a.u.

been chosen:
Pi;=(0.1-107* a.u.,0,0), Pyy = (—0.1-10* a.u.,0,0);

Pi5=(03-10"* au.,0,0), Pyy = (-0.3-10"* a.u.,0,0);

P12 =(3.9-107% au.,0,0), Pyoy = (—3.9-107* a.u.,0,0);
Pio = (-0.1-107* a.u.,0,0), Pyo; = (0.1-107* a.u.,0,0);
P12 = (-03-10"* au.,0,0), Pyg = (0.3-107* a.u.,0,0);

(5.60)

ey

Py =(-3.9-107% a.u,0,0), Pyy = (3.9-107* a.u.,0,0).
2. The initial quantum state for the second statistical ensemble is taken as a linear combination of the
ground state and the excited state of the electronic Hamiltonian:
1
V2

The initial positions of the cores are again taken as their equilibrium positions for this state of the
quantum subsystem. Their values are found to be:

Ry = (2.70 a.1.,0,0), Rag = (—2.70 a.u.,0,0). (5.62)

[90) = —=(IPo(Ro) + 91(Ro)))- (5.61)

Initial momenta of the cores are again given by (5.60). Figures 5.3c and 5.3d show oscillations for
some of these values, which again occur around the proposed positions for the cores.

3. For the third statistical ensemble, the initial quantum state is taken as a linear combination of the
three first eigenvectors of the electronic Hamiltonian:
1
V3

The initial positions of the cores are taken as the equilibrium positions of the cores, whose values
are

o) = —=(ldo(Ro) + [¢1(Ro) + |p2(Ro)))- (5.63)

Ry = (2.70 a.u.,0,0), Raog=(—2.70 a.u.,0,0). (5.64)
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Figure 5.3: Oscillations of the cores along the z-axis for the proposed initial conditions, with the maximum
values of the momenta proposed in (5.60), i.e. values P1 20, P2,20 and P1 40, P2,40, with module 3.9 - 107 a.u..
Each pair of graphisc corresponds to a different statistical ensamble. Graphics (a) and (b) are obtained by taken
as initial conditions the ones proposed for the first statistical ensemble in (5.58) and (5.59). Graphics (c) and
(d) correspond to the second statistical ensemble, with initial conditions (5.61) and (5.62). Graphics (e) and (f)
represent oscillations for the initial conditions proposed for the third statistical ensemble in (5.63) and (5.64).

Initial momenta of the cores are taken by (5.60), as in the previous cases. Figures 5.3e and 5.3f
show oscillations for some these values.

Numerical simulations for each set of initial conditions have been performed. Each simulation com-
putes the molecular dynamics for a time of 50, 000 a.u., which corresponds roughly to 5 oscillations of the
molecule, as in the graphics in Figure 5.3. With the chosen parameters, the molecular system is stable
for this simulation time. The time step used in the simulations is 0.1 a.u., having thus simulated 500,000
time steps for a total of 120 trajectories.

As a result of the simulations, trajectories (£(¢), [¢(t)]) on Mg are obtained. They define the time-
dependent distribution Fgc (€, [#];t), given by (5.50):

N
Fac(€, W) = + 3 0(6 ~ &()a([u] — [ea (), >0, (5.65)
k=1

The aim of the simulations is the study of the properties of the quantum subsystem in each statistical
ensemble. These properties can be computed by means of the density matrix of the quantum subsystem,
whose value is given by (5.51):

o %) Y () (r (t)]
Alt) = /MQCduQc Foc(&. w6t w g ( | wk e (5.66)

Thus, once that the computations have been performed, it is immediate to compute p(t), thus character-
ising the system.
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Figure 5.4: Purity of the quantum subsystem for the three statistical ensembles. In all cases, purity approxi-
mately stabilises around the value 1/n, with n the number of eigenstates of the electronic Hamiltonian that form
the initial state of the ensemble.

5.4.5 Numerical results: decoherence-like effects

Recall that the purity of a quantum state represented by a density matrix p is a scalar with value
P(p) = Te(p?). (5.67)

The purity of a pure state is 1, while mixed states have lower purity. For a system with n possible states,
the lowest value of the purity is %; it corresponds to the maximally entangled state of the system.

Purity can be computed for the simulated statistical ensembles. The value of purity for the whole
simulation time and for each of the three statistical ensembles appears in Figure 5.4. A qualitative
difference appears between the different ensembles. The first ensemble shows that the purity of the
subsystem is constant and equal to 1. Thus, the quantum state is always pure. This result proves that
the eigenstates of the electronic Hamiltonian are very stable along evolution (similar results have been
obtained for other initial states).

The other ensembles show completely different behaviours. The purity greatly decreases in the first
part of the simulation, and after that it only suffers small variations. Several conclusions can be deduced
from this graphics:

e The lower value of the purity is related with the number of eigenvectors of H.(Rp) considered in
the initial state of the system. Graphic 5.4b resembles the decoherence of a 2-level system, which
would have a minimum for the purity of 0.5. Similarly, graphic 5.4c could represent the behaviour
of a 3-level system, with % being the minimum of the purity. The actual purity has in fact smaller
values. This may be due to the fact that the basis of the electronic Hamiltonian changes with the
positions of the cores, and more than 2 or 3 eigenvectors have to be considered to fully describe
the state of the electron. Anyway, this result proves that the asymptotic value of purity does
not correspond to a distribution of random projectors as it happened in the toy model considered
in [14]. Instead, the purity reflects the emergence of relevant projectors of p(t), related with the
eigenvectors of H,(Rp) considered in the initial states.

e Consider the ensembles in which decoherence-like effects, in particular changes in purity, appears.
These effects are in direct relation with the number of trajectories considered in the sample. Figure
5.5 represents the value of the purity for values of the number N of total simulations between 2 and
40, for ensemble number 2. (whose purity is represented in Figure 5.4b). For low numbers of N,
purity shows a periodical behaviour that disappears when more trajectories are considered. This
graphic shows that the relative maxima in the purity presented in Figure 5.4b are remininscences of
this periodic behaviour. In the limit N — oo, it is expectable for these small variations to dissapear.
Thus, the statistical Ehrenfest model correctly predicts the behaviour of purity in systems subject
to the decoherence phenomenon.
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Tine {a,u.}

Figure 5.5: Purity of the ensemble number 2., with initial conditions given by (5.60), (5.61) and (5.62). The
purity is computed for different numbers N of trajectories, between 2 and 40. The purity for N = 40 coincides
with the graph in Figure 5.4b. While the purity for low numbers of N presents a periodic behaviour (specially for
N = 2,3), the decoherence-like behaviour is clear for large values of N. The decoherence time stabilises and the
oscillations in the value of the purity become smaller, thus proving the appearance of decoherence-like properties
in the statistical description of the Ehrenfest model.

e Observe that small periodic oscillations appear in 5.4b, and also slightly in 5.4c. This corresponds
precisely with the oscillations of the cores, as seen in 5.3. Again, the positions of the cores determine
the electronic Hamiltonian H.(R) and its spectrum. As oscillations of the cores are approximately
harmonic, all of them pass through the equilibrium position at similar times. When this occurs,
the resemblance with 2-level and 3-levels systems is more accurate, and the relative minimum of

1

the purity goes to % or 3, respectively.

e Decoherence time can be estimated as the time in which the purity of the system reaches values near
its minimum. Figure 5.6 offers the value of the purity for the first part of the simulation. Estimated
values for the decoherence time are 450 a.u. for the second statistical ensemble and 650 a.u. for the
third statistical ensemble. Observe also in 5.5 that decoherence time depends on the number N of
considered trajectories, and stabilises for large values.

An analogous characterisation can be carried in terms of the von Neumann entropy of the quantum
subsystem. Its value for a density matrix p is

Sv@=-p @ =— 3. A\ (5.68)

A€spec(p)

The von Neumann entropy is shown in Figure 5.7. As seen, the results are in accordance to those obtained
for the purity.

Observe that the behaviour of both purity and von Neumann entropy is similar to the evolution
of bipartite systems with entanglement between their parts. The Hamiltonian evolution of a system
preserves coherence; however if one part of the system is traced out and there exists entanglemente,
the remaining subsystem does not evolve in general in a coherent way. Formally, the same situation
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Figure 5.6: Enlargement of the first part of graphics 5.4b and 5.4c, respectively.
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Figure 5.7: Von Neumann entropy of the quantum subsystem for the statistical ensembles given by (a) initial
state (5.61) and (b) initial state (5.63).

occurs in the description of the statistical Ehrenfest model. The description of the quantum subsystem
in terms of density matrices is equivalent to the concept of partial trace in bipartite systems. While
no true entanglement can occur between classical and quantum subsystems, as discussed in Section
5.2.1, statistical ensembles act on a similar way, as it is no longer possible to consider separately both
subsystems.

Summarising, it can be concluded that the use of a statistical model based on Ehrenfest dynamics
does provide a framework to describe non-coherent evolutions of molecular systems. It allows to take
into account, to some extent, the correlation of the nuclear and electronic degrees of freedom via the
uncertainty transfer capabilities of the hybrid quantum-classical statistical framework.

5.5 The hybrid canonical ensemble for the Ehrenfest model

5.5.1 Hybrid microcanonical and canonical ensembles

The statistical description of the Ehrenfest model can be applied to relevant physical examples. In [10],
both the microcanonical and the canonical ensembles were considered. Their definitions are simple, once
that the geometric formalism has unified the description of the classical and quantum subsystems. The
microcanical ensemble is defined as the probability distribution on Mgc where all points with energy F
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are equally probable:

Fgm(fa [7/1]) = VLE(S(E - eH(fv [¢]))a VE = /M d:UQC 6(E - GH(fa [w]))a (67 [1/)]) € MQC7 (569)
QC
that is, Vg is the volume of the subset 6;11 (E) C Mgc. Observe that this is analogous to the micro-
canonical ensemble for pure quantum systems introduced by Brody and Hughston [62].
The hybrid microcanonical ensemble determined by Fgm resembles the classical case because of the
geometric characterisation of hybrid quantum-classical systems. Thus, tools of Statistical Mechanics are
useful in this setting. The hybrid canonical ensemble can be directly defined by the following probability

distribution: )
FHC(fa ['(/)]) = Ee_BEH(E,[w])v (f? [w]) € MQC’ (570)

where 3 = (kgT)~! is the usual parameter of the canonical ensemble and H is the energy observable of
the hybrid quantum-classical system. The partition function Zg¢ is defined as expected:

Zyc :=/ duge e Ben(& YD) (5.71)
Mgc

Particularising to the case of molecular systems, the energy function ey is given by (5.25). It is thus
possible to perform some computations on the partition function. Recall that the volume form is defined
by (5.29). Thus, the integral in (5.71) can be separated as

P2
ZHco :/ duc eiﬁz"ﬁ/ dup e Perer (WD) (5.72)
Mc P

As Mo = RS, positions and momenta of classical particles can be further separated. The integral in
momenta is a simple Gaussian integral, which yields the following result:

i m "
o Mc\ 2
ZHC:< m c) / dR/ dpip e B @D o= (T My)
5 R3m P J=1

It is interesting to compute the £-dependent density matrix, defined in (5.36) for the general case. Its
value in the hybrid canonical ensemble is

~ _ |9) (] _ L —BZJ% —Ben,(r) ([¥]) 1) (]
pc(©) = [ duaPuc(e W) Tl = [ dup e penn@ BB 1)

The formulas presented here are the starting point in the analysis of statistical distribution of molecular
systems described by the Ehrenfest model.

Extensivity of molecular magnitudes is not a general property. Observe that the partition function
(5.71) is not factorisable even for non-interacting Hamiltonians [9]. Thus, magnitudes such as the en-
tropy or the internal energy of the system, which are derived from Zpyc are not in general extensive.
Interestingly, extensivity is recovered for some magnitudes in the thermodynamic limit, as proved in [15]
and reproduced below.

5.5.2 Numerical simulations for the hybrid canonical ensemble

The hybrid canonical ensemble can be incorporated into the statistical description of the Ehrenfest model
previously discussed. In this way, it is possible to consider the validity of the formalism in a more realistic
setting. Consider therefore a hybrid classical-quantum system an its associated symplectic manifold Mqc,
as in Proposition 5.2. Let H be the Hamiltonian of the system and ey its expectation value function
on Mgc. In the Ehrenfest model, Theorem 5.3 proves that the dynamics of the system is governed by
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the Hamiltonian vector field ch associated with eg. As a consequence, the evolution of a probability
density function F' on Mgc obeys the Liouville equation (5.46):

S (1) = {err, Flt) e (5.74)

Proposition 5.5. The probability distribution function Fyc of the hybrid canonical ensemble, introduced
in (5.70), is invariant under the dynamics described by the Ehrenfest model.

Proof. Probability distribution function Fy¢ is defined only in terms of the expectation value function
er. Therefore, the Poisson bracket between both functions is zero, and by Liouville equation Fy¢ is
constant in time. O]

As a consequence, all quantities derived from Fpyc are time independent. This is the case of the

different objects describing the statistical ensemble. Consider in particular the marginal probability
density function Frc,c for the classical subsystem:

Frc,o(§) = /PdMPFHc(fa [W]) = Tr(puc (), V€€ Mc, (5.75)

Proposition 5.6. Consider a molecular system with probability density described by the hybrid canonical
ensemble. The marginal probability density function Fryc,c for the classical subsystem takes the form

1 P2
Fire.c(§) = 5o (—5 > o, Veff(R)> , (5.76)
where the effective potential Vs is defined as
1
Verp(R) == —Bln [/ dpp e—ﬂfHe<RJ<[¢J>] : (5.77)
P

Proof. Due to the particular expression of the Hamiltonian expectation value function ey, it is possible
to separate the exponentials in R and P in expression (5.70) for Fyc. As a consequence, integration over
the quantum degrees of freedom yields the proposed result. O

This proposition provides a useful characterisation of the probability density describing the classical
subsystem. Indeed, it is identical to the one obtained for a canonical ensemble of the classical subsystem
under potential V. ¢¢. The interaction between the quantum and classical subsystems is thus incorporated
in this effective potential, a powerful tool in the description of molecular dynamics. Observe also that
the effective potential depends on the parameter 3, hence the behaviour of classical particles, mainly
oscillations, is expected to change with the temperature of the system.

Observe that it is always possible to write the effective potential as

(V|He(R) — Eo(R)IIW)]
(V1) '

where Ey(R) is the ground state energy for the electronic Hamiltonian H.(R). As the exponents in the
integrand are always non-positive, it can be deduced that V.¢f(R) < Eo(R) for every positions R of
the cores (see [11,12]). Observe that the difference between the effective potential and the ground state
energy depends on the temperature and the energy levels of the Hamiltonian.

In order to confirm the validity of this description of the hybrid canonical ensemble, numerical simu-
lations have been performed. The chosen model is again an ionised diatomic molecule, as in simulations
presented in Section 5.4. The molecule is assumed to evolve by the Ehrenfest model. Probabilities for

Vess(R) = Bo(R) - 5o { /P djip exp <—5 (5.78)
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Figure 5.8: (a) Eigenvalues of the electronic Hamiltonian H.(R) in (5.81), corresponding to the ground state
and the 4 first excited states. (b) Difference between the ground state energy and the energy of the first excited
state of He(R).

each initial condition are computed from (5.70) with different values for 8. Thus, the hybrid canonical
ensemble for the Ehrenfest model is effectively represented by the following probability density function:

1
Frc(& 1)) = Tno > Ao o] 6(€ = &0.) 8([W] — [o,]), (& [¥]) € Mgc, (5.79)
j=1
where (£o,1, [¥0.1])s - - -, (§o,n, [to,n]) are the initial conditions for the N simulations, and with the follow-
ing definitions:
N
Ao [to,5]) == e PertCoalvosD =12 Ny (o= Mg, [W))- (5.80)

j=1

Recall that the value of ey is the total energy of the system (including kinetic, potential and electronic
terms), as given in (5.25):

1 g, (WIH(R)Y)

The R-dependent eigenvalues of H.(R) are represented in Figure 5.8. In order to understand the
relevance in the proposed statistical ensemble of each energy level, the difference between the two lowest
eigenvalues Ey(R) and E1(R) is also represented. From this graph the following lower bound can deduced:

(5.81)

E\(R) — Eo(R) > 0.01 au., (5.82)

for the relevant positions R in the simulation. From this bound, it can be deduced for which temperatures
the contribution of the two lowest energy levels are comparable:

0.01 a.u.

=1=7T=3,157K .
T =T =3,157K, (5.83)

with the value kg = 3.1668 - 10~%a.u./K for the Boltzmann constant. Thus, for ambient temperatures,
the most relevant contribution corresponds to the ground state. This implies, for example, that the
effective potential is not very different from the ground state energy if temperatures are much lower than
3,000 K. Nevertheless, in order to minimise numerical errors, several energy levels will be considered in
the computations below, and in particular in the computation of quantities represented in Figures 5.9
and 5.10.
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For j = 1,2,...,N, the evolution (§;(¢),[¢;(t)]) of the diatomic molecule with initial conditions
(0,5, [¥o,5]) is simulated by Octopus. The parameters for the simulations are identical to those presented
in Section 5.4.2. The result is a time-dependent probability density function with expression

N
Y Méo.s o)) 86 = &) 8([0] = [ (), (& []) € Mqc- (5.84)

J:1

1
!/

FHC (5 7 C
Observe that the probability of each particular trajectory does not change in time. The hybrid canonical
ensemble gives a initial probability distribution over the manifold Mgc of the hybrid system. Probability
is assigned only to the initial conditions, which henceforth evolve according to the Ehrenfest model.
Proposition 5.5 ensures that, for any posterior time ¢, function Fy,~(&,[¢],t) obtained by (5.84) is again
(up to the possibilities of the discretisation procedure) the probability distribution function of the hybrid
canonical ensemble.

The accuracy of this statement can be checked computationally. Simulations have been performed
with the following initial condition for the molecules:

ROl,j = 7R027j, ||R017j — ROQJH S {5 a.u.,6.5 a.u.,8 a.u.},
POl,j = —Pog)j, ||P017j|| = ||P027]‘|| S {072 ) 10_4M 3,.1]..}7 (585)
[o0,5) € {l¢o(Ro,5)), [01(Ro,;)), 92(Ro,5)), [d3(Ro.;)), [¢4(Ro ;) [d5(Fo5)) }

with & ; = (Ro,;, Po,;) = (Ro1,5, Ro2,j, Po1,j, Po1,;) € Mc the initial position and momenta of the cores,
and M = 23 u.m.a. The possible initial states of the electron depend on the positions of the cores, as
they are taken to be the eigenstates of the R-dependent electronic Hamiltonian of the Ehrenfest model.
Initial positions and momenta of the cores are taken scattered on the manifold, satisfying conditions
in (5.85). As a result, a small sample of trajectories is obtained. A much detailed analysis of the
hybrid canonical ensemble in the Ehrenfest model can be carried out by considering a larger number of
initial conditions. Such a comprehensive study, however, lays beyond the scope of this dissertation. The
computed simulations are indeed enough to check the qualitative validity of the proposed description of
the hybrid canonical ensemble of the Ehrenfest model.

Proposition 5.6 can be adapted to the analysis of the described sample of trajectories. If the probability
density function of the hybrid system is given by (5.84), then the marginal classical probability density
function is

Foo(ét) ZA (€0.5> [Yo,5]) 6(€ — (1), (&) € Mc. (5.86)

CH
Following Proposition 5.6, the behaviour of classical particles can be modelled by an effective potential

eff (R,t). In order to properly define this effective potential, for every positions R = (Ry, Rz) € RS of
the cores, consider a neighbourhood U(R) of R. Then, for each time ¢ > 0, define the set of trajectories

I(R,t) = {j1, j2, .. .} as those for which the positions of the cores at t are in U(R), i.e. R;i(t), Rj2(t),... €
U(R). With this definitions, the effective potential can be computed with the following expression

crp(Rt) = ;ln > eXP( Z Pj;(t) ) Ao.g5 [ 5| (5.87)

JEI(R,t)

The sum thus incorporates all simulated trajectories for which the cores at ¢ are in positions close to R.
Figure 5.9 presents, for different values of the temperature, the time average values of the effective
potential, defined as usual:

1 T
elff(R) = ;/0 Ve/ff(R, t) dt (588)

The reason for this time-average is the need for a largee sampling of points on the configuration space of the
cores, so that expression (5.87) gives valid results. The values presented in Figure 5.9 are thus computed
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Figure 5.9: Time-average effective potential Ve'f ¢ for the computed simulations, in terms of the distance between
the cores. The solid line represents the ground state energy Eo(R) of the electronic Hamiltonian. As expected
from (5.78) and [12], the values of the effective potential are below the ground state energy. This difference
depends on the values of the temperature, thus reproducing the results in the aforementioned work.

by the simulated trajectories of the diatomic molecule. Lower temperatures are characterised by effective
potentials closer to the ground state energy Eo(R). In agreement with (5.78), the effective potential is
lower when the temperature increases. These computations are in perfect agreement with the results
presented in [12], and support the validity of the proposed description of the hybrid canonical ensemble.
Thus, the proposed model has applications in the computation of statistical molecular ensembles and
potential energy surfaces, not only of diatomic molecules, but hopefully of more complex systems.

Other relevant magnitude in the analysis of molecular systems is the internuclear distance D. Its
expectation value can be computed for the proposed hybrid statistical ensemble as

(D) (1) = /M dc Ry — Rol| Fiyer o6, 1). (5.89)

Figure (5.10) presents, for different temperatures, the value of the time-average expectation value of the

internuclear distance: i
(D) = 1/ (D) (t)dt. (5.90)
T Jo
The internuclear distance increases with the temperature, as larger molecular vibrations are statistically
relevant. This increment, however, is small compared with the value of the internuclear distance. This
graph can be compared with the results presented by Alonso and co-workers [11]. In their work, the
authors obtain a similar graph for a manganese diatomic molecule. The increment in the internuclear
distance computed by them, however, was at least 20 times higher than the one presented in Figure 5.10.
Two possible explanations exist for this discrepance. Firstly, the molecules considered are not equal, and
their energy levels may present different behaviours. Furthermore, the diatomic molecule here presented
is ionised, which also has relevance in the description of the energy levels of the molecule. And secondly,
the statistical ensemble presented in (5.85) is probably not large enough for a cuantitative description of
the molecular properties. As a consequence, mor re precise computations may be carried out in order to
confirm the validity of the presented results.
It can thus be concluded that the offered description of the hybrid canonical ensemble of the Ehren-
fest model describes a realistic behaviour of molecular systems. The model is able to describe in an
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Figure 5.10: Intercore distance for different temperatures, in the described hybrid canonical ensemble. The
observed increments in the intercore distance is small, in comparison with the value of the distance. Nevertheless,
this is in agreement with the equilibrium positions for the cores that can be estimated from Figure 5.9 as the
minima of the effective potential, and which are approximately equal to the expectation values of the intercore
distance.

accurate way the behaviour of nuclei in the molecule, and characterises the changes in this behaviour for
different temperatures. Also, this proposal incorporates in a natural way the decoherence effects that are
expectable in these systems, therefore providing an adequate characterisation of the actual dynamics of
molecules.

5.5.3 Extensivity of the hybrid canonical ensemble in the thermodynamic
limit

The description of a thermodynamic limit for a hybrid classical-quantum system is not immediate. In
order to clearly identify the problem, consider first the case of Classical Statistical Mechanics. The
thermodynamic limit of a classical ensemble is defined in terms of a family of systems with an increasing
number of components, but with a given constraint. Namely, that the number of components by volume
element is constant. This volume is obviously defined in terms of the positions of the components of the
system.

When considering finite dimensional quantum systems, it is precisely this definition of volume that
has to be carefully considered. It is not so clear what three-dimensional volume means in terms of the
quantum projective manifold P, whose points represent the states of the quantum system. In other
words, without a notion of volume it is not possible to define a density that has to be kept constant when
reaching the thermodynamic limit. For this reason, finite dimensional quantum statistical ensembles are
hard to describe in this limit.

Hybrid classical-quantum ensembles, however, do not have this problem. It is possible to determine
a volume associated to the classical subsystem. Because of this, it makes sense to consider the thermo-
dynamics limit in the description of molecular systems in terms of hybrid models.

In order to describe this limit, consider an ensemble of N hybrid quantum-classical systems, each one
with n quantum particles and m classical particles, as before. The ensemble is modelled on a differentiable
manifold

Mgc(N) = Mc(N) x P(N), (5.91)
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where the classical part is simply the Cartesian product of the classical manifolds of each component:

N
—~
Mc(N)ZMcx'-'XMc. (592)

The quantum manifold, however, has to be carefully defined. The entanglement between the quantum
subsystems has to be considered. Therefore, if P is the projective manifold of a Hilbert space H, then

P(N) is the projective manifold of
N

——
HN) =Ho - oH. (5.93)

Observables on the ensemble of N systems are written as Ay. In particular, the volume of the
ensemble is Viy. The density of the ensembles is thus defined as

N
dy = —. 5.94
N = (5.94)
Thus, for any observable Ay, its thermodynamic limit A, is defined as
Ao = lim Ap, (5.95)
N—o00

while keeping dy constant.

Any one-system observable can be extended to the whole ensemble by adding their contributions to
each system. This can be directly done at the level of observables on the quantum subsystem. Let A be
a hybrid one-system observable, which defines a family of quantum Hermitian operators A(¢) depending
on the classical parameters. Consider an ensemble of N systems. The contributions to all of the systems
defines a quantum operator

N k—1 N—k
AN(E):ZI®"'®I®A(&)®I®“'®L §=(&,&,...,&n) € Mc(N), (5.96)
h—1

with I the identity operator on H. Thus, the hybrid observable Ay is represented by a smooth function
el 1 Moo (N) — R defined as

(Y[An(&)IY)
@lyy 7

The probability density function for a hybrid canonical ensemble of N system is obtained as in (5.70).
It is defined as

ex (& [¥]) = (&, [¥]) € Mgc(N). (5.97)

FRo(€ 1) = gy M, (€ u]) € Mac(N), (5.99)
H

where the partition function is
Mgc(N)

with dﬂgc the corresponding volume form. Observe that the molecular Hamiltonian H and the electronic
Hamiltonian H, are extended according to (5.96). As before, it is possible to separate variables in the
definition of the partition function, which gives the following result:

3Nm

ZN = 2mMo\ / dR / Ay e Petreim (WD) (5.100)
5 ]R3N7" P
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Statistical description of the thermodynamic limit

It is possible to compute from (5.100) the thermodynamic limit of the partition function, the operator
p(€) and other thermodynamic magnitudes [15]. The following results allow for a good characterisation
of the properties of hybrid quantum-classical systems in the thermodynamic limit. The thermodynamic
limit of the partition function and the matrix p%c(f) for the given ensemble are presented next. The
proofs can be found in Appendix B.

Theorem 5.7. In the thermodynamic limit, the partition function Z]}}]C of the hybrid canonical ensemble
takes the value

d=1 oMo 2 TrH.n(R)
ZN =T S / —p——eM = nN. 101
HC = =) ( 5 ) o dRexp | —f p , d:=n (5.101)

Observe that the partition function does not factorise even for large values of N. Physically, this factor
represents the volume of the quantum subsystem. Due to the presence of entanglement, the addition of
components to the ensemble modifies the possible states of the quantum particles. It is useful to write
(5.101) as

3m

=1 - 7 g
Zie =va(Z)Y, a= R VARES <2 g@) /Rsm dR exp (_5Tr(fi(R))). (5.102)

Observe that Z! is the partition function for a probability distribution F' on Mgc on which all the
quantum states are equally probable, while classical states follow the canonical ensemble distribution.
Such a distribution is a particular case of F¢ obtained for a Hamiltonian proportional to the identity,
H.(R) = f.(R)I, for every R € R3™,

Theorem 5.8. Consider the matrix p%c(f) describing the hybrid canonical ensemble of N systems:

o N )]
(€)= /P o, S Fiele ) (5.103)

The value of pN(£) in the thermodynamics limit is

mN 2
prc(€) :W exp <—5 <Z ;;L + TrHedN(R)>> In

J=1

N " P2 TrH.(R
®nlexp<5<22M]J+ r n( )))I,

(5.104)

J=1
with d = n™ and Iy the identity observable in H(N).

The matrix p%c(§ ) can thus be written as a tensor product of one-system matrices. This proves that,
in the thermodynamic limit, the matrix piy (&) is factorisable, and the entanglement between different
systems vanishes.

Thermodynamic magnitudes

Consider on the first place the internal energy Uy for an ensemble of IV particles, given by

)
Uy = 95 n(Z5e). (5.105)

The following result presents the behaviour of the internal energy in the thermodynamic limit.
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Proposition 5.9. The internal energy for an ensemble with a large number N of particles can be ap-
proximated as

Un = Nuy, (5.106)
with uy being defined in terms of the Z1 factor introduced in (5.102):
102" 3m orMe\ E Tr(H.(R)) Tr(H.(R))
__ Loz _3m / ar ) o (g WD) 5 407
wim g e =z () [ an I o (gD sa07)

Proof. For large values of N, the logarithm of Z gc can be directly computed. Its value is
In(Ze) = In(yw) + N In(2Y),
and thus, the internal energy for an ensemble with a large number of components is simply
A
zZt op
with u; the density of internal energy, or equivalently the internal energy associated to Z!. Its value can
be computed from the derivative with respect to 8 of (5.102):

UN: :Nuh

3m
2

1
0z _ —3—mZ1 _ (2mMc / AR Tr(H.(R)) exp _ﬂTr(He(R)) 7
85 25 6 R3Nm n n

thus obtained the proposed expression. O

The internal energy Uy is therefore an extensive magnitude in the thermodynamic limit. Observe
that the non-extensivity for finite values of N is mainly due to the quantum nature of the model, in
particular to the entanglement between the quantum subsystems of the components. While this effect
cannot be totally neglected in the thermodynamic limit, as the partition function is not factorisable, it
becomes a residual effect that does not affect the extensivity of magnitudes.

Other thermodynamic magnitudes can be analysed in a similar way. Again, extensivity is recov-
ered in the thermodynamic limit. In particular, results in Theorems 5.7 and 5.8 allow to compute the
thermodynamic limit of average values of quantum-like observables.

Proposition 5.10. Consider an observable A giving rise to a £-dependent quantum observables A(£), as
in (5.38). The expectation value of the extended observable An to an ensemble of N systems, defined by
(5.96), can be approximated for large values of N as

(An) = % /Mc dpic exp (—5 (Z ;]\);’J + ﬁ(I{;(R))>> Tf(‘s(g)). (5.108)

J=1

Proof. By definition, the expectation value of Ay is obtained as
)= [ dpe T (e©An(©).
Mc(N)

For large values of N, the matrix pN(£) is approximated by (5.104). As a result, expectation value
(An) can be approximated by

1 & P2 TrH.n(R) B

)5 e (2 (2 - 52 i - o
15 K P2 LTeH(Ry) | Tr(AE)) '
~(ZO)N ;/MC(N) duc exp <—5 <JZ_1 o0, + ’; " " )

where (B.15) is used for both H.n(§) and An(§). For each j = 1,2,..., N, it is possible to integrate
every classical variable except &;; by (5.102), these integrals are all equal to Z'. The only remaining term
is the integral in £;, which is identical for every j, thus obtaining the proposed result. O



168 CHAPTER 5. HYBRID QUANTUM-CLASSICAL DYNAMICS

The expectation value computed in Proposition 5.10 is therefore extensive in the thermodynamic
limit. In fact, it can be written as

(Av) = N(A)', (A= % /M dpc exp (—B <Z ;]:;’J - ﬂ(fij(m)» I (’2(5)) (5.110)
c J=1

Observe that (A)! is the expectation value of A for the same distribution F' defining the partition
function Z! in (5.102). Observe that both purely classical and quantum observables are particular cases
of the proposed £-dependent observables. Purely quantum observables are represented in this setting as
constant observables with respect to £&. On the other part, a purely classical observable A, represented
by a smooth function fo on the classical manifold M¢, can be extended to the hybrid quantum-classical
system as

Ac(§) = fe(§) 1, &€ Mc. (5.111)

Consider the thermodynamic limit. It is immediate from (5.108) that the expectation value of the
observable extended to an ensemble of N systems can be approximated, for large values of N, as

((Ac)n) = N(Ac), (5.112)

with (A¢) the expectation value of A for a single system. This expectation value can be computed with
respect to both Fgc or, as in (5.110), with respect to a distribution F'* for a Hamiltonian H.(R) = f.(R)I
proportional to the identity for every R € R3™. Both distribution produce the same result, as they differ
only on the quantum part and A¢ is a purely classical observable.

Von Neumann entropy

Finally, the von Neumann entropy Sy of the system can also be analysed in the thermodynamic limit.
Equation (3.38) gives the the expression for the von Neumann entropy of a purely quantum system. In
order to extend this definition to a hybrid quantum-classical ensemble, it is very important to take into
account the proper definition of its probabilistic nature. When considering the entropy of a system, the set
of microstates considered must be chosen in such a way that each one of them defines a mutually exclusive
event with respect to any other state. This is what von Neumann entropy does for purely quantum
systems, where the spectral decomposition of the density matrix represents the mutually exclusive set of
events. In the case of a hybrid system, two points of the phase space (§1, [¥1]), (§2, [¥2]) € Mcg represent
mutually exclusive events if and only if & # &5 and [¢1], [1)2] represent orthogonal states. For each point
¢ € M¢ , the representation of the probability of the corresponding quantum system is the matrix p(&).
Thus, the von Neumann entropy can be computed for each £ € M¢. As any two points in Mg are
mutually exclusive, in order to consistently define the entropy of the hybrid system, this value has to
be integrated over My. As a result, the von Neumann entropy of a hybrid quantum-classical system is
defined (in natural units) as

SN = d/J,C Tr(pHc(f) lanc(g)). (5.113)
Mc

Proposition 5.11. In the thermodynamic limit, the von Neumann entropy (Sny)n of an ensemble of N
systems can be approrimated as

(Sn)x = — A e T o€ I pi(©)

=— Nn(nZ') - Z—lﬁ /dMC exp [5 (Z ;]:/;J + T (H;(R))>

J=1

" P2 Tr(H.(R))
(5.114)
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Proof. This expression is directly computed by considering approximation (5.104) for the matrix p¥ ~(£).
O

The von Neumann entropy is therefore additive in the thermodynamic limit. This additivity is in
direct connection with the factorisability of ch (€), shown in (5.104). The entropy of a system computes
the number of accessible states of an ensemble. If there is no entanglement between the different systems
of the ensemble, then necessarily the entropy is an additive magnitude on these systems.

5.6 Outlook of the geometric Ehrenfest model

Quantum Mechanics is a theory with a broad range of applications. One of the main problems it
presents, however, is the difficulty to find exact solutions for the Schrédinger equation. Approxima-
tions are mandatory in almost every problem. In the context of molecular systems, hybrid quantum-
classical dynamics are a powerful tool in the description of the evolution of complex quantum sys-
tems [40, 184,222, 255-257,261-264,276,279].

The present chapter shows a relevant application of the geometric formalism developed along this
dissertations. Molecular systems have to be divided in two constituent subsystems, namely electrons and
nuclei. They are assumed to evolve accordingly to different theories, Quantum and Classical Mechanics,
respectively. Thus, it is not easy, at first, to give a joint distribution of the constituent elements of the
molecule. Nevertheless, the geometric formalism offers a solution to this problem, as shown. It is possible
to describe both the classical and quantum part in geometric terms. The properties of differentiable
manifolds allow for the definition of a product manifold that describes the states of the molecule as a
whole [8, 10, 14]. Thus, a geometric formalism provides a suitable framework for the study of hybrid
quantum-classical models.

This chapter focuses on the Ehrenfest model for hybrid quantum-classical systems. This is a deter-
ministic model that, at first, do not incorporate the probabilistic properties that are inherent to quantum
systems. However, the geometric description of molecular systems allows for the development of sta-
tistical distribution. After all, in the geometric setting, states of hybrid quantum-classical system are
described by points on a Poisson manifold. There exists a symplectic volume (preserved by Hamiltonian
evolution), which allows to consider time-dependent probability densities on the manifold. The relevant
statistical objects have thus been computed. It is interesting to consider the termodynamical limit, in
which some classical properties, in particular separability of thermodynamical magnitudes (but not of
the partition function), are recovered.

In this geometric setting, Ehrenfest dynamics does incorporate decoherence-like properties [3, 11].
This has been deeply proved along the chapter, where numerical results are offered. A specific molecular
system has been studied, namely a diatomic molecule with a single valence electron. Yet even this simple
model is enough to prove the changes in the properties of quantum systems that are usually associated
with the probabilistic nature of the measurement process. The purity of the system changes as expected,
and so does the von Neumann entropy. Thus, it has been proved that is is enough to consider statistical
distributions of molecular system in order to reproduce by the Ehrenfest model some aspects of the
decoherence phenomenon.

The results presented here follow the path started by the collaborators of the author [10,14]. Tt is
thus expectable that more complex models will be studied in the future. The geometric formalism is
a powerful tool in the study of molecular dynamics. It offers the possibility to analyse changes in the
properties presented here, such as purity and von Neumann entropy, and even other phenomena, as the
possible appearance of pointer states. All of this may help to understand the decoherence phenomenon
of quantum systems and the probabilistic nature of Quantum Mechanics.






Appendix A

Properties of the 3-level system

This appendix deals with the description of the set of states of a 3-level system. Chosen a basis, the
Hilbert space H of the system is isomorphic to C?, and the observables of the system are identified as
O = Herm(3), the set of 3 x 3 complex Hermitian matrices. A basis {Ag, A1, A2, ..., As} for this space is
given by the Gell-Mann matrices, together with the identity matrix:

01 0 0 —i 0 1 0 0
M=110 0], Xx=[i 0 0], =0 -1 0],
00 0 0 0 0 0 0 0
0 0 1 00 —i 00 0
M=10 0 0], =[0 0 0], =10 0 1], (A.1)
-1 0 0 i 0 0 010
00 0 L (100 100
=100 —i|, x=—[01 0], =101 0|=1,
0 i 0 V3\o 0 —2 00 1

Gell-Mann matrices were introduced as an extension to Herm(3) of the Pauli matrices. They are traceless,
orthogonal matrices, with respect to the inner product defined by the trace:

TI“()\J‘) = 07 TT(AJ)\]C) = 26jk?? j, k= 1, 2, e ,8. (AQ)

As proved in the text, the observables of a quantum system form a Lie-Jordan algebra. The Lie
bracket and the Jordan product are determined by the structure constants c;; and d;g;, obtained by the
product of the elements in the bases:

8
A Akl = =15 = Akdj) =D e,
=0

; j.k=0,1,2,...,8. (A.3)

A O = XA+ AN = Zdjkl)\la
=0

These structure constants can be directly computed. The Lie structure constants cjx; are a set of totally
antisymmetric numbers with respect to the indices, with values

Cl23 =2, Cl47 = Cl65 = C246 = Co57 = C345 = C376 = 1, Ca53 = Cars = V/3. (A.4)
The remaining elements are either zero or obtained by permutations of the indices. Similarly, the Jordan
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structure constants d;j; are totally symmetric with respect to the indices. The non-zero values are

4
dooo = 2., di1o = dazo = d330 = daao = ds50 = deeo = dr70 = dsso = 3
2
di1s = daog = d3szs = el diae = di57 = dasg = dgaa = dzss =1, doar = dges = dsr7 = =1, (A.5)
duss = dsss = doos = drrs = — =, dsgs = ——
448 = ds58 = dees = dr7s 73 s 7

and their permutations.
A dual basis {M};—¢,.. s on the space O* of R-linear functionals on O is defined as

N\ =0, 4, k=0,1,2,....8 (A.6)

Due to the presence of an inner product on O, defined by the trace of observables, there exists an
isomorphism O* = O = Herm(3). Thus, it is possible to identify the elements in the dual bases with the
following complex matrices:

_ 1 00
MN==-), 7=12,....8 XN=-[01 0]. (A.7)
0 0 1

As presented in the main text, the set S of pure and mixed states is a subset of this dual space, defined
as
S={pec 0| p(I)=1; p(4*) > 0, VA € O}. (A.8)

The normalisation condition can be directly implemented in the given basis by writting states as
8
p:Z:Cj)\J—i—)\O, X = (x1,29,...,28) € R3. (A.9)
j=1

The positivity of states imposes conditions on the possible values of this coefficients. However, unlike
in the case of a 2-level system, these conditions are of a huge complexity. A recent work by Goyal
and co-workers [140] presents a detalied characterisation of states of a 3-level system. They show that
the stratum &; of pure states of the three-level system corresponds to imposing in (A.9) the following
conditions:

81:{p60*|p(1)=1,X*X=§X,X-X:}, (A.10)

where the * product is defined in terms of the Jordan structure constants of the Lie-Jordan algebra of

observables as
8

(x*xy), = Z djkl TjYr, X,y € RE, 1=1,2,...,8. (A.11)
Jk=1

Thus, pure states of the system are represented by points on a sphere. However, unlike in the case of the
2-level systemin, only a portion of this sphere is required for this description. Recall also that S is the
image by the momentum map of the manifold P of pure states, which in this case is isomorphic to CP?,
hence 4-dimensional, the same as Sj.

Another difference between 2-level and 3-level systems appears in the study of the boundary of the
set S of pure and mixed states. In the present case, the boundary 0S8 is composed of pure states, but
also of rank-2 elements, thus S = §; U Sa. It was also proved by Goyal and co-workers [110] that this
boundary can be described as

8S={p€(9* \p(I):l,Q}oX—(x*x)-x:g, x-xgg}, (A.12)
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with relation (A.9) between p and x. This boundary has a rich structure, and it is possible to consider
pairs of points, evolution of von Neumann entropy and other characteristics of its points. Finally, the
total set S is defined as

S:{pe(’)*|p([):1,2x-x—(x*x)-x§S, X~X§§}, (A.13)

_ The set S is therefore a manifold with boundary, embedded into the larger differentiable manifold
S ={p e O | p(I) = 1}. Thus, differentiable calculus can be carried out on S by considering this
embedding. Coordinate functions are associated to the Gell-Mann matrices:

ex;(p) = Tr(Njp) = x5, j=1,2,...,8. (A.14)

The contravariant tensor fields As and Rs reproduce the algebraic properties of observables. In the
given coordinate system, these tensor fields are

8
1 0 0
Ac == o 9 a9
° 2 jg:_f]km O : Oz’
’ . ) ) (A.15)
Rs j%::l <d3k0 + ;%ww) oz, 8:1% Z TjThy — (%k

with the structure constants given by (A.4) and (A.5). It is thus possible to carry out computations
similar to those implemented for 2-level systems. In particular, in the main text contractions of the
corresponding Lie-Jordan algebras of expectation value functions are considered. These contractions are
found by computing the Lie derivatives of Ag and Rs with respect to the vector fields determining the
evolution. These lengthy computations can be carry out by means of mathematical software, such as
Wolfram Mathematica or MATLAB. In this way, it is possible to devise a practical method for the study
of higher dimensional quantum systems.






Appendix B

Thermodynamic limit for the hybrid
canonical ensemble

B.1 Integrals on spherical surfaces

The computations for the thermodynamic limit of the hybrid quantum-classical canonical ensemble in-
volve the computation of integrals to spherical surfaces. For this reason, the present section deals with
some useful computations. Consider an even-dimensional Euclidean space R2?9, with Cartesian coordi-
nates (21, g, ...,Z2q). Spherical coordinates are introduced by means of a radial coordinate r and 2¢ —1
angles 61, 60s,...,024_2 and ¢, as follows [151]:

r1 =rcosfq,

To = 7sin 6 cos O, r € (0, 00),
91,92,...,6‘2(1,2 € (0,7T), (Bl)
Tog—1 = rsinfysinby - - -sinfyq_o cos @, v € (0,27).

Toq = rsinf; sinfy - - -sin fyq_o sin p,
The volume element dug in spherical coordinates is immediately obtained as
dpr = daidas - - - deog = r201gin2072 9, sin?773 9, - - - sin O2g—o drdf1dbs - - - dbzg—o de. (B.2)

Consider now the restriction to the unit sphere S29=! C RY. The volume element dug is simply
obtained by considering constant radius r = 1:

dps = sin®772 0 sin®773 0, - - - sin O2g—2d01dO; - - - dbzg—o dep. (B.3)

Integrals can easily computed in this coordinates. As a first example, consider the integral of the volume
element, which gives the area Ag of S29~! considered as a hypersurface in R?%:

T ™ T 27
AS = / d/ﬁs = / sin2q72 €1d91 / sin2q73 92d92 s / sin 92,1,2 d92q72 / ng. (B4)
S29-1 0 0 0 0

Integrals of trigonometric functions are tabulated. Thus, given the following values,

1-3-----(25—1)
2. 4. 2f

Iy == / sin? 0do = =
0 j=1,2,... (B.5)

IQjJrl = / SiIle—i_1 0do =2
0
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the area Ag is given by the following expression:

AS = 471' Izqufgq,;g e IQ ES 27’(’2(.[3]4) e (Izq,;gIQq,Q) = (BG)

(-1

The integrals of powers of coordinate functions can also be computed. Odd powers are odd functions
on $?"~1 hence their integrals are zero. On the other side, consider for example the function x2. By
comparison with (B.4), its integral is obtained as follows:

A v U
Ag) ::/ x% dus = 5 / cos? 01 sin??2 9,df; = / (sian*2 — sinzq)91d91
0 0

S2q—1 Izqu 2q—2
Ag 2q—1 29 1 4
= Io,_ I = A 1-— = = = B'7
Togp (2072~ T = A ( 2 ) (G-1)'2 ¢ (B.1)

Because of symmetry, integrals of x3, 23, etc. are also equal to A(;). Higher order powers define a family
of integrals that play a relevant role in the computation of partition functions. They will be denoted as

251,252,124 r Y i . .

Agh’]z i) = /2 la:ijllxifscii dus, Ji,j2,---0r=1,2,..., 1 <2q, (B.8)
S2a-

and ki,ko,... .k, = 1,2,...,2q, with k; # kj for any j # j'. Again, because of the symmetry of

the space, the integrals are equal for any set of coordinate functions. The values of these integrals are

computed in the same way as (B.7), i.e. by use of the expression (B.4) for the area and integrals defined

in (B.5):

As

AG? :/ wtwydug = ———
241 Iog—2lz4—3

/ cos? 6 sin?? 6,d6, / cos? 05 sin?973 H5dhs
0 0

A T T
-5 / (sian 6, — sin?4t2 01)d6; / (sin2q_3 0y — sin2q_1)02d92
Izy 21243 Jy 0
Ag 2q — 1 (2q1)(2q+1)) < 2q2>
=——2 (I, — I Ing_3—Iy_1)=A — 1-
12q7212qig( 29 = I2g12)(I2g-3 = I2g-1) = As ( 5 5420+ 2) 51
277 2¢—-1 1 I i (B.9)
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s G201 1 dis S Tog—2 4(q + 2)! ( )

It is important to notice that the total value of the integral decrease with the increase of the powers
of the coordinate function. The integral of a 2p-grade polynomial is proportional to m, which
decreases rapidly for higher values of p.
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B.2 Trace of observables in thermodynamic limit

Consider an ensemble of N molecules. Any one-molecule observable A(£) can be extended to the whole
ensemble by (5.96). Consider in particular the case of the electronic Hamiltonian H.:

k—1 N-—k
a 3Nm
Hn(R) =) T®--@I®H(Ry)®@T®---@1,  R=(Ry,Ry,...,Ry) e RN, (B.14)

k=1

with I the identity operator on the n-dimensional complex Hilbert space H associated to a single molecule.
The behaviour of the partition function in the thermodynamic limit depends on the trace of this operator:

N N
TrHey(R) =Y (Trl)N"'TrHo(Ry) = n™ ") TrH.(Ry) (B.15)
k=1 k=1

As the different subsystems are identical, the integrals on the positions of the cores must coincide. In
particular,

/ TrH.(R;)dR :/ TrH.(Ry)dR, (B.16)
R%> R%>
for any pair of indexes j,k = 1,2,..., N. Computations of partition functions always involve integrals

on the degrees of freedom. Thus, the trace of Hn(R) can be written

 Nd

TrH.n(R) ~ NoN " TrH (1) = — TrH(r), ReR3*N™ rcR¥™, (B.17)

n
with d = nV, and where the symbol ~ indicates that the integrals of both sides over the corresponding
spaces are equal. A similar behaviour occurs for powers of H.y(R):

Te(Hox (R)") ~ S Ta(HL(r)?) + (ZD TR (r )T, () + 90, (B.18)

B.3 Proof of Theorem 5.7

The results obtained above are useful for the computation of the thermodynamics limit of the partition
function for a hybrid quantum-classical system. Consider first a simpler case, namely a canonical distri-
bution for a (finite-dimensional) purely quantum system, described by the following partition function:

ZQ:/ e=Ber (D) gy, (B.19)
P

with H € O the Hamiltonian of the system. The manifold P of pure states is obtained by means of
a foliation of the d-dimensional complex Hilbert space H, or alternatively of the 2d-dimensional real
manifold M¢g. Section 1.3.2 describes the properties of this foliation. As a consequence, it is possible to

write P as
P =5%-1/g1 (B.20)

with S2¢=1 the unit sphere in Mg. It is therefore possible to replace the integral on P in (B.19) by an
integral to S2¢~!, multiplied by the corresponding factor:

1 Bl H|w) L (=8) :
4o =+ - dus = — HlwYd
2 3 Jna© =53 JRCEERTE
1

T or

N 8 2y, B 3 )
( Lo ans=6 [ wiawans+ 5 [ @it -5 [ wim) dMs+---(B~21)
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The value of each integral can be computed by the results presented in Section B.1. Consider a basis
{l¢;)} for the Hilbert space H, composed of eigenvectors of the Hamiltonian H, say

H|¢;) = Ejl¢;), j=1,2,...,d (B.22)

Any vector [¢) € H can thus be written in a unique way as a linear combination of these vectors, which
gives the following expression for the expectation value of the Hamiltonian on $2¢~1:

d
) =Y zle) = (WH|Y) = ZEW (B.23)
j=1

By decomposing the complex coeflicients in their real and imaginary parts, namely z; = a; + ib; for
j=1,2,...,d, the integrals in (B.21) can be computed with the results given in Section B.1:

2r?
= Ag = B.24
/Sm,l dus =As =Gy (B:24)

d d
/szd (| H|p)dps = Z /SM (@] b)) dus =249 E; = 7mq (B.25)
j=1 j=1

/ W H ) ps = S5 Ek/ (a2 + %) (a2 + b2)dus
SQd 2d—1

7,k=1

=> & Ek/ (a3 ai + b3bi)dus + QZEjEk/ ajbipdpus + ZEf/ (a3 + bj)dps
2d—1 S2d—1 J 1

ik ok §2d-
=245P N " BBy, + 2487 BB + 248 Y B = 4487 (TeH)? + 2(AY) - ASY)Tv(H?)
j#k gk J
2w d 37Td 7Td 2 27Td 2 2
N (TrH)? 42 - Tr(H?) = TrH)? + Tr(H B.2
= () (2(d+1)! 2(d+1)!> H(H) = gy (T + Te(HT), (B.26)
d
/2d < |H|’l/}> d,us = Z E; EkEl/Qd (a] +b2)(ak +bk)(al —|—b2)dus = 2A(222) Z E ELE;
S gk l=1 - AkAL
+6A(42)ZE Ej, +2A<6)ZE3+6A‘2“) > B EkEl—l—GA(“)ZE Ey,
J#k J J#k,l 5,1

=245 ((TcH)® — 3TvH Tr(H?) + 2 Te(H?)) + 645" (TeH Tr(H?) — Tr(H®))
+2A9Tr(H?) + 645> (TrH)® — TvH Tr(H?)) + 645 TrH Tr(H?)

o

= @ra) (TvH)® + 3TeH Tr(H?) + 2 Tr(H?)) . (B.27)

Substituting in (B.21), the following expression for the quantum partition function Ag is obtained:

B 7Talfl B 62
20 == (ldTrH+2d(d+1)

ﬁS
6d(d+1)(d+2)

((TxH)? + Tr(H?)) +
(B.28)
((TvH)? + 3TrH Tr(H?) 4+ 2 Tr(H?)) + - - ) .

This is the expression for the partition function of a quantum canonical ensemble associated to a
system with Hamiltonian H and d-dimensional complex Hilbert space. It is immediate to extend this
expression to hybrid quantum-classical systems, and also to ensembles with large numbers of particles.
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Thus, partition function Z¥, given in (5.100), can be written in a similar way to (B.28) as

rd-1 2rMc g B B> 2 2
(T) /Rst dR <1 -5 TrHen(R) + 2dT 1) ((TrHen (R))” + Tr(Hen (R)?)) +

g 3 2 3
_Gd(d+1—)(d+2) ((TrHen (R))® + 3TrHen (R) Tr(Hen (R)?) 4+ 2 Tr(Hen (R)%)) + -+ ),

N
Znc T (d—1)

(B.29)

with H.n(R) the extension for N particles of the electronic Hamiltonian system, and d = n"V the
dimension of the total Hilbert space for N instances of n-level systems. In the thermodynamic limit,
the number of systems N goes to infinity, and the dimension d of the total Hilbert space diverges much
faster. It is thus simple to describe the behaviour in this limit of the different terms in (B.29). First,
consider the following expression for the coefficients:

d(d+1)~--1(d+s—1):d13(1_8(82;1)+19(d12)>‘ (B-30)

This is an alternating series, which allows to determine the following bounds for the coefficients in (B.29):
1 1

1 s(s—1)
ds(l 2d ><d(d+1)---(d+s—1)<ds' (B-31)

Each summand in (B.29) consists of a sum of terms with different combinations of powers and traces.
The given bounds allow to determine the leading term for each summand by applying the results in
Section B.2:

et (1- 20 g O e M, (B.32)
Nt o2 2 s(s—1) (TrHen(R))* > TrHen (R)? _ N1 a2 5
s (et 1)) ot (1)? (1= 2D ) g (M OV RGO ¢ N (e () o (),

(B.33)

etcetera. For large values of N, dimension d = n'V diverges very fast. It is clear that the first term is the
only relevant contribution, as all the remaining terms are negligible compared to it. Thus, the expression
(B.29) for large values of N is

3Nm

d—1

m 2m M, 2 8 32
Zﬁc:(d—l)!( ﬂc> /Rde(l‘deHeN<R>+2d2<TrHeN(R>>2—~-)

B rd-1 2rMo\ 2 BTrH.n(R)
_(d—l)!<,6’> /RdeeXp< d )

where relation TrH,y(R) ~ n¥ "N TrH,(r) has been used.

(B.34)

B.4 Proof of Theorem 5.8

Consider a purely quantum canonical ensemble for a d-dimensional quantum system with Hamiltonian
H:
1
Fo([¥]) = e Pen®D 7, — / e=Ben (D) gy, (B.35)
ZQ P
Distribution Fy determines a density matrix pg, which gives a better description of the statistical en-
semble. It is defined as

1 o
PQ Z/PdMPFQ(W])Pw = ZQ/Pd/MDe PenllvD . (B.36)
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Consider a basis {|¢;)} for the Hilbert space #, composed of eigenvectors of the Hamiltonian H, as in
(B.22). It is then possible to compute the elements of pg as

1 —Be * 1 = _/Bl *
piv = @lvalon) = 5o [ dupeir sz = oS S [ s iz an)
1—0 . 2d—1

with the decomposition given in (B.23). Integrals are computed as in Section B.3. For j # k, integrals
involve odd powers of coordinate functions on S??~!, hence

k=0, j#k. (B.38)

Density matrix is therefore diagonal on this basis. Its diagonal elements are

1 n
= d > =B8) E. dps |20 %2
Pjj 212, (/5271_1 HS|ZJ| 57:1 /Sgn_l s |z ‘ZJ|

B < 21, 121,12
+7 Z ETES g2n—1 d,uS |Z7’| |ZS| |ZJ| +

r,s=1

1
_27TZQ

(249 —4BAGHTeH + 45245 (TeH)? +262(A0? — AG*)Tem? 4 )

1
o (28487 - 2848 4 282(A0Y 342 + - ) E,

271'ZQ
1 2 4(6)  ap2 4(42) 2 4(2,2,2) 2
+ 0z (5 AD 332402 | 9p2422 | )Ej+
7.‘.dfl ﬂ BQ
= 1— ™TH+ —F — ((TrH)? + TrH?) + ...
d!ZQ( a1t g gy () + Tel) + )
Wd_lﬂ 7Td_162 )

__" P g E2 ...
dr0Zo 7 T drozg 0 T

computed with the integrals presented in Section B.1. Finally, the expression for the density matrix of
the given ensemble is

p _ (1 - oy 5 ((TrH)? 4+ TrH?) + > I
a1z, d+1 2(d +1)(d+ 2)
7T.dflﬁ 7.‘.(17162 ) (B39)
- H+ H?> 4 -

(d-‘r 1)!ZQ (d+2)!ZQ

As in Section B.3, this result can be directly extended to the case of a hybrid quantum-classical ensemble
of N molecules. Thus, a matrix p™ (£) is obtained in terms of a partition function Z, and a Hamiltonian
H.n(R) as

N =T B (R)Jrﬁ—Q((TrH (R)? + TeHon (R)?) +... ) T
PHOS) =17 d+1 N 2(d+ 1)(d +2) eN eN
ﬂ_d—l/Be—,BEk 7Td_152e_BEk 9
TP T NR) - T H R
@ 0z, e gy Hen B

(B.40)
with E}, the total kinetic energy of the cores and d = nV. The coefficient of I is similar to the expression
(B.29) for the partition function. Therefore, the same arguments of Section B.3 can be used here to
simplify this coeflicient in the thermodynamic limit. In the remaining terms, observe that the elements of
the Hamiltonian for N molecules scale with N. Therefore, for large values of N, as d diverges much faster,
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the terms proportional to H.n(R), Hen(R)?, etc., are negligible with respect to the term proportional
to the identity I. Thus, in the thermodynamic limit,

d—1,—BE}
mile ox (5TrHeN(R))I'

N _
prc(§) = iz y (B.41)






Conclusions

The present dissertation describes in detail geometrical properties, dynamics and statistical behaviour
of open quantum systems. The geometric formalism had already been successfully developed for the
Schrédinger picture. The dissertation presents an extension or generalisation of this formalism to the
study of pure and mixed states of quantum systems. This is a necessary tool in order to fully describe the
properties of open quantum systems. Applications of the formalism to different situations have also been
discussed. The dynamics of open quantum systems, in particular the Markovian evolution induced by the
Kossakowski-Lindblad contributions, has been analysed. Applications in the field of Molecular Dynamics
include the study of hybrid quantum-classical systems from a geometric perspective. Dynamics and
also statistics of these systems are studied, obtaining interesting results in the description of molecular
systems. The main conclusions that can be drawn from the dissertation are the following:

e The geometric formalism of the the Schrodinger picture of Quantum Mechanics identifies the com-
plex Hilbert space H of the system with a Kahler manifold Mg. The Hermitian product on #H
is represented by a pair of contravariant tensor fields €2 and G on Mg. Quantum observables are
identified with smooth functions on this manifold. A similar construction allows to describe geo-
metrically the projective Hilbert space P, whose elements represent the pure states of the quantum
system. The main contribution of the dissertation in this topic is the precise description of the
reduction procedure that relates geometric structures on Mg and on P. As a result, tensor fields
Qp and Gp, which encode the Lie bracket and Jordan products of observables respectively, are
obtained on P.

e A geometric formulation of Quantum Mechanics allows to use geometric tools in the analysis of
different problems. The dissertation deals with the description of the Schrodinger equation in terms
of Lie-Kéhler systems. Due to the existing geometric structures on Mg, it is possible to define in a
rigorous way a superposition rule for this equation. This is a non-linear superposition rule (except
for a 2-level system). It presents advantges over typical linear superposition rules for linear systems,
as it depends on less particular solution. Furthermore, the described method can be easily applied
to other manifolds, such as P. Thus, the analysis of the Schrédinger picture in terms of Lie-Kéhler
systems makes possible to obtain a superposition rule directly on the manifold P of pure states of
the system.

e In order to provide a better characterisation of open quantum systems, a description of Lie-Jordan
algebras is offered. The dissertation proves that the Lie structure of a Lie-Jordan algebra can be
described in terms of only the inner derivations of the Jordan product. This offers the possibility
for a classification of Lie-Jordan algebras, which physically amounts for a characterisation of the
different algebras of observables that can be found in quantum systems. From a physical point
of view, the connection between Lie and Jordan structures proves that both are relevant in the
description of Quantum Mechanics, as they encode the unitary dynamics and the probabilistic
nature of the theory.

e The main contribution of the dissertation to the study of Quantum Mechanics is the geometric
description of the manifold S of pure and mixed states of a quantum system. The Heisenberg
picture describes the states of a system as linear, positive functionals on the Lie-Jordan algebra O

183



184

CONCLUSIONS

of observables on the system. Thus the set S is a convex subset of the dual space O* to the algebra
O. By means of a reduction procedure, similar and indeed related to the one performed on the
Schrédinger picture, it is possible to describe the tensor fields As and Rs on S that reproduce the
algebraic structure of O. Following the results proved in the characterisation of Lie-Jordan algebras,
these new tensor fields codify the quantum nature of the system. While Ag is a Poisson tensor field
governing unitary dynamics of the system, the tensor field Rs describes the probabilistic nature of
Quantum Mechanics, as it determines the standard derivation of an observable A as

Rs(dea,dea)(p) = 2e42(p) — 2(ea(p))? = 2(A,4)%, VpeS.

The manifold of states S has a rich structure, that can be analysed by the foliation induced by
gradient and Hamiltonian vector fields. It can thus be concluded that a geometric description of
quantum systems allows for a better characterisation of the manifold S of pure and mixed states of
the system. Also, it offers new tools for the study of dynamics and properties of quantum systems.

The dissertation presents a geometric description of Markovian evolution of open quantum systems.
The geometric formalism makes possible to describe the Kossakowski-Lindblad equation in terms
of a vector field on the manifold S of the form

Z, =X+ Yy + Zg,

i.e. as a sum of a Hamiltonian vector field, a gradient vector field, and a vector field determined
by a Kraus operator. This decomposition allows for a better characterisation of the properties of
Markovian dynamics.

One of the properties of Markovian evolution of open quantum systems is the contraction of its
associated algebra of observables. The dissertations offers a description of these contractions by
means of the geometric formalism, which presents some advantages over the usual algebraic ap-
proach. Given the tensor fields As and Rs on the manifold S, the Markovian evolution determined
by the Kossakowski-Lindblad vector field Zj, defines the following families of tensor fields on S:

t2
AS,t :e_tEZLAS = Ag — tACZLAS =+ E(EZL)QAS —

t2
RS,t :eftﬁzL Rs = Rs — tLZLRS =+ E(ﬁzL)ZRS —

t>0,

If the limits of these families for ¢ — oo exist, they define a contraction of the Lie-Jordan algebra of
observables on the system. Physically, the limit of the Markovian evolution defines a new quantum
system, with an algebra of observables which is different from the initial one.

Evolution of open quantum systems and contractions of algebras benefit from an appropriate de-
scription of the limit manifolds of the evolution. In the case of Markovian evolution, limit manifolds
can be studied in terms of affine structures. The dissertation presents a set of results that connects
the properties of these limit manifold with the contraction of algebras. It has been shown that the
restriction to limit manifolds always produces a contraction of the algebras of observables. In phys-
ical terms, the limit of a quantum system always can be described as a quantum system, although
usually with differences from the initial one. The obtained result also present the conditions under
which this contraction can be extended to the whole manifold of states S.

Control problems of open quantum systems are investigated. In the geometric formalism, it is
possible to apply the results of geometric control theory in order to classify open quantum systems
with respect to their controllability properties, as it is detailed in the dissertation. Thus, the
geometric formalism offers new tools for the design of control strategies of open quantum systems.
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e Lastly, properties open quantum systems are analysed in the context of Molecular Dynamics. Hy-
brid quantum-classical models are common in the description of molecular systems A geometric
characterisation of the models presentes advantages in the study of these systems. The dissertation
presents particular case of the Ehrenfest model, for which the geometric formalism makes possible
to consider an extension of the model to statistical ensembles. In this way, it is possible to describe
the decoherence-like effects, observed in molecular systems, and which are not present in the stan-
dard Ehrenfest model. Other aspects of the model, such as the hybrid canonical ensemble and its
thermodynamic limit, are also investigated. Numerical simulation have been performed in order to
support the validity of the proposed statistical Ehrenfest model.

Future research on the properties and dynamics of open quantum systems will take profit of the
results of this dissertation. Some of the many possible topic that will be covered in future works are the
following:

e The description of Lie systems in Quantum Mechanics has been restricted to the Schrodinger
picture. However, the existing geometric structures on the manifold S of pure and mixed states
makes relevant the analysis of Lie systems also in this setting. It is thus expectable that similar or
more general results will be obtained. This offers the possibility to study superposition rules not
only for unitary evolution, but also for more general dynamics of open quantum systems.

e Control theory of open quantum systems has applications in a broad range of fields, from Molecular
Dynamic to Quantum Optics. For this reason, a deep characterisation of control problems in
Quantum Mechanics is a relevant problem. The described geometric formalism offers the possibility
to analyse these problems from a new point of view, which may offer new solutions and application
to many different situations.

e The geometric description of hybrid quantum-classical systems allows to describe the different
components of the systems in similar terms. This provides a better characterisation of the systems
and their dynamics. The proposed description of the Ehrenfest model will be further analysed and
extended. Also, it remains open the possibility to describe geometrically other hybrid models in
Molecular Dynamics.






Conclusiones

La presente tesis describe de forma detallada las propiedades geométricas, la dindmica y el compor-
tamiento estadistico de los sistemas cudnticos abiertos. Basandose en el formalismo geométrico para la
imagen de Schrodinger desarrollado con anterioridad, la tesis presenta una extension o generalizacion al
estudio de estados puros y mezcla de sistemas cudnticos, necesarios para una completa descripcién de las
propiedades de los sistemas cudnticos abiertos. A su vez, se han enunciado diversas aplicaciones del for-
malismo a distintas situaciones. Se ha analizado la dindmica de sistemas cudnticos abiertos, en particular
la evolucién markoviana inducida por la ecuacién de Kossakowski-Lindblad. Otras aplicaciones, esta vez
en el campo de la Dinamica Molecular, incluyen el estudio de sistemas hibridos clasico-cuanticos desde
una perspectiva geométrica. Las principales conclusiones extraidas de la tesis doctoral son las siguientes:

e Fl formalismo geométrico de la imagen de Schrodinger de la Mecanica Cuantica permite identificar
el espacio de Hilbert complejo ‘H del sistema con una variedad Kéhler Mg. El producto hermitico
en H se representa mediante un par de campos tensoriales contravariantes Q2 y G' en Mg, mientras
que los observables del sistema cudntico se identifican con funciones diferenciables en la variedad.
Una construccién similar permite describir de forma geométrica el espacio projectivo de Hilbert P,
cuyos elementos representan los estados puros del sistema cuantico. La principal contribucién de la
tesis a esta descripcion es la caracterizacién del proceso de reduccién que relaciona las estructuras
geométricas en las variedades diferenciables Mg y P. Como resultado de esta reduccién, se obtienen
los campos tensoriales 2p and Gp en P que describen el paréntesis de Lie y el producto de Jordan
de observables, respectivamente.

e La formulacién geométrica de la Mecdnica Cudntica permite el uso de herramientas geométricas
en el andlisis de diversos problemas. La tesis trata en particular la descripcién de la ecuaciéon de
Schrodinger como un sistema de Lie-Kéhler. Gracias a las estructuras geométricas existentes en
Mg, es posible definir de manera rigurosa una regla de superposicién para esta ecuacién, la cual es
no lineal, excepto en el caso de sistemas de 2 niveles. Esta presenta ventajas frente a la regla de
superposicién lineal tipica de sistemas lineales, ya que depende de menos soluciones particulares.
Ademis, el método descrito puede aplicarse facilmente a otras variedades, como es el caso de P. De
esta forma, el andlisis de la ecuacién de Schrodinger mediante sistemas de Lie-Kéhler hace posible
la obtencién de una regla de superposiciéon directamente en la variedad P de estados puros del
sistema.

e En el contexto de la caracterizacién de sistemas cudnticos abiertos, la tesis presenta una descripcion
de las algebras de Lie-Jordan. Se ha demostrado que la estructura de Lie en estas algebras puede
describirse mediante el andlisis de las derivaciones internas del producto de Jordan. Esto ofrece
la posibilidad de realizar una clasificacién de dlgebras de Lie-Jordan, lo que puede interpretarse
fisicamente como una caracterizacién de las disversas dlgebras de observables que pueden encon-
trarse en los sistemas cudnticos. Desde un punto de vista fisico, la relacién entre las estructuras de
Lie y Jordan demuestra que ambas son relevantes en la descripcion de la Mecanica Cuantica, dado
que son necesarios para la descripcion de la evolucién unitaria y la naturaleza probabilistica de la
teoria.
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e La principal contribucién de la tesis al estudio de la Mecénica Cuantica es la descripcién geométrica

de la variedad S de estados puros y mezcla del sistema cuantico. La imagen de Heisenberg escribe
los estados de un sistema como funcionales lineales y positivos en el algebra de Lie-Jordan de
observables O del sistema. Como resultado, el conjunto S es un subconjunto convexo del espacio
dual O* del algebra 0. Mediante un proceso de reduccion, similar y de hecho relacionado con
el presentado en la imagen de Schrodinger, es posible describir los campos tensoriales As y Rg
en S que reproducen la estructura algebraica en . De acuerdo con los resultados obtenidos
en la caracterizacion de las dlgebras de Lie-Jordan, estos nuevos campos tensoriales describen la
naturaleza cudntica del sistema. El campo tensorial Ag es de tipo Poisson, y determina la evolucién
unitaria del sistema. Por su partte, el campo tensorial Rs describe la naturaleza probabilistica de
la Mecanica Cuéntica, dado que determina la desviacién estandar de un observable A mediante la
siguiente relacién:

Rs(dea,dea)(p) = 2¢42(p) — 2(ea(p))? = 2(A,A4)%, VpeS.

La variedad de estados S tiene una estructura muy rica, la cual puede analizarse mediante la
foliacién inducida por los campos vectoriales gradientes y hamiltonianos. Por tanto, se concluye
que una descripcion geométrica de los sistemas cuanticos permite una mejor caracterizacion de la
variedad S de estados puros y mixtos del sistema, ademés de ofrecer nuevas herramientas para el
estudio de la dindmica y las propiedades de los sistemas cuanticos.

La tesis presenta una descripcién geométrica de la evolucién markoviana de sistemas cuanticos abier-
tos. El formalismo geométrico permite describir la evolucién de Kossakowski-Lindblad mediante
un campo vectorial en la variedad S dado por

Zr, =Xug+Yv + Zg,

es decir, como una suma de un campo vectorial hamiltoniano, un campo vectorial gradiente y un
tercer campo vectorial determinado por un operador de Kraus. Esta descomposicién permite una
mejor descripcion de las propiedades de la dindmica markoviana.

Una de las propiedades de la evolucién markoviana de un sistemas abierto es la contraccién de
su algebra de observables asociada. La tesis estudia estas contracciones mediante el formalismo
geométrico, lo que presenta ventajas frente al andlisis algebraico usual. Dados los campos tenso-
rials As y Rs en la variedad S, la evolucién markoviana determinada por el campo vectorial de
Kossakowski-Lindblad Zj, define las siguientes familias de tensores en S:
t2
Asy=e 2L A\g = As —tLy, As + Q(EZL)QAS —
2 t >0,

Rsy=e "7t Rs = Rs —tLz, Rs + 5 (Lz,)°Rs — -,

’ 2
Si existen los limites de estas families cuando ¢ — oo, se obtiene una contracciéon del dlgebra de
observables del sistema. Desde un punto de vista fisico, el limite de la evolucién markoviana define
un nuevo sistema cudntico, con un algebra de observables distinta a la inicial.

Los analisis de la evolucién de sistemas cudnticos abiertos y de las contracciones de algebras se
benefician de una correcta descripcion de las variedades limite para la evolucién. En el caso de
evolucién markoviana, las variedades limite presentan una estructura afin. La tesis expone un con-
junto de resultados que relacionan las propiedades de estas variedades limite con las contracciones
de &lgebras. Se ha demostrado que la restricciéon de la dindmica a las variedades limite siempre
produce una contraccién del algebra de observables. Fisicamente, este hecho implica que el limite
de un sistema cudntico siempre puede interpretarse como otro sistema cudntico, normalmente con
importantes diferencias con el inicial. La tesis presenta también las condiciones bajo las cuales esta
contraccién puede extenderse al total de la variedad S de estados puros y mezcla.



189

e Se han analizado problemas de control de sistemas cuanticos abiertos. En el formalismo geométrico,
es posible aplicar los resultados de la teoria de control geométrico para realizar una clasificacion de
sistemas cuanticos abiertos de acuerdo a criterios de controlabilidad, como se explica en la tesis.
De esta forma, el formalismo geométrico ofrece nuevas herramientas para el diseno de estrategias
de control de sistemas cudnticos abiertos.

e Por tultimo, se han estudiado las propiedades de los sistemas cudnticos abiertos en el contexto de la
Dinamica Molecular. Es comun utilizar modelos hibridos clasico-cudnticos en el analisis de sistemas
moleculares. Una descripciéon geométrica de estos modelos presenta ventajas en el estudio de estos
sistemas. La tesis presenta el caso particular del modelo de Ehrenfest, para el cual el formalismo
geométrico hace posible considerar una extensiéon del modelo a distribuciones estadisticas. De esta
forma, se logran describir efectos de decoherencia observados en sistemas moleculares, y que no son
predichos por el modelo de Ehrenfest estandar. Se han analizado otros aspectos del modelo, como
la distribucién canénica hibrida y su limite termodindmico. Ademds, se han realizado simulaciones
numéricas que respaldan la validez del modelo de Ehrenfest estadistico propuesto.

Los resultados presentados en esta tesis serdn de utilidad en futuras investigacione en torno a las
propiedades y dindmica de los sistemas cudnticos abiertos. Algunos de los muchos posibles temas de
investigacion que seran tratados en proximos trabajos son los siguientes:

e La descripcion de sistemas de Lie en Mecanica Cuantica se ha restringido a la imagen de Schrodinger.
Sin embargo, las estructuras geométricas presentes en la variedad S de estados puros y mezcla pone
de relevancia el andlisis de sistemas de Lie en este contexto. Se espera por tanto obtener resultados
similares a los presentados, o incluso mas generales. Esto ofrece la posibilidad de estudiar reglas de
superposicién, no solo para evoluciones unitarias, sino también para dindmicas de sistemas cuanticos
abiertos mas generales.

e La teoria de control de sistemas cudnticos abiertos tiene aplicaciones en un muchos campos, desde
Dindamica Molecular hasta Optica Cuéntica. Por este motivo, es importante llevar a cabo una
descripcién detallada de problemas de control de sistemas cuanticos. El formalismo geométrico
aqui descrito ofrece la posilidad de analizar estos problemas desde una nueva perspectiva, lo que
puede ofrecer nuevas soluciones y aplicaciones a situaciones muy diversas.

e La descripciéon geométrica de sistemas hibridos clasico-cudnticos permite describir los distintos
componentes del sistema de manera similar. Esto permite una mejor caracterizacion de los sistemas
y de su dindmica. La descripcién del modelo de Ehrenfest propuesta serd analizada en detalle
y extendida. Ademds, queda abierta la posibilidad de describir geométricamente otros modelos
hibridos de Dindmica Molecular.
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