Assessment of respiratory flow cycle morphology in patients with chronic heart failure
Resumen: Breathing pattern as periodic breathing (PB) in chronic heart failure (CHF) is associated with poor prognosis and high mortality risk. This work investigates the significance of a number of time domain parameters for characterizing respiratory flow cycle morphology in patients with CHF. Thus, our primary goal is to detect PB pattern and identify patients at higher risk. In addition, differences in respiratory flow cycle morphology between CHF patients (with and without PB) and healthy subjects are studied. Differences between these parameters are assessed by investigating the following three classification issues: CHF patients with PB versus with non-periodic breathing (nPB), CHF patients (both PB and nPB) versus healthy subjects, and nPB patients versus healthy subjects. Twenty-six CHF patients (8/18 with PB/nPB) and 35 healthy subjects are studied. The results show that the maximal expiratory flow interval is shorter and with lower dispersion in CHF patients than in healthy subjects. The flow slopes are much steeper in CHF patients, especially for PB. Both inspiration and expiration durations are reduced in CHF patients, mostly for PB. Using the classification and regression tree technique, the most discriminant parameters are selected. For signals shorter than 1 min, the time domain parameters produce better results than the spectral parameters, with accuracies for each classification of 82/78, 89/85, and 91/89 %, respectively. It is concluded that morphologic analysis in the time domain is useful, especially when short signals are analyzed.
Idioma: Inglés
DOI: 10.1007/s11517-016-1498-5
Año: 2016
Publicado en: MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING 55, 2 (2016), 245-255
ISSN: 0140-0118

Factor impacto JCR: 1.916 (2016)
Categ. JCR: COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS rank: 52 / 105 = 0.495 (2016) - Q2 - T2
Categ. JCR: MATHEMATICAL & COMPUTATIONAL BIOLOGY rank: 15 / 57 = 0.263 (2016) - Q2 - T1
Categ. JCR: MEDICAL INFORMATICS rank: 12 / 23 = 0.522 (2016) - Q3 - T2
Categ. JCR: ENGINEERING, BIOMEDICAL rank: 40 / 77 = 0.519 (2016) - Q3 - T2

Factor impacto SCIMAGO: 0.712 - Computer Science Applications (Q2) - Biomedical Engineering (Q2)

Tipo y forma: Artículo (PostPrint)
Área (Departamento): Área Teoría Señal y Comunicac. (Dpto. Ingeniería Electrón.Com.)

Derechos Reservados Derechos reservados por el editor de la revista


Exportado de SIDERAL (2020-02-21-13:37:06)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2017-07-17, última modificación el 2020-02-21


Postprint:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)