Disclaimer
This abstract book has been produced using author-supplied copy. Editing has been restricted to corrections of spelling and style where appropriate. No responsibility is assumed for any claims, instructions, methods or drug dosages contained in the abstracts; it is recommended that these are verified independently.

Indexed by Index Medicus and MEDLINE
Information on this journal can be accessed at: www.wileyonlinelibrary.com/journal/nmo

WILEY

This journal is available online at Wiley Online Library. Visit www.onlinelibrary.wiley.com to search the articles and register for table of contents e-mail alerts.
NEUROGASTROENTEROLOGY
AND MOTILITY

Volume 29 Supplement 2 August 2017

ABSTRACTS

3 Abstracts
141 Author index
ABSTRACTS

ORAL PRESENTATIONS: DIETARY INTERVENTIONS INCLUDING PROBIOTICS, PREBIOTICS AND SYNBIOtics

1 | Bifidobacterium Breve NCFB 2258 stimulates vagal nerve firing across an intact colonic barrier

D. O’Malley1; M. Buckley2; A. Leahy2; C. Stanton3
1 University College Cork, Dept. of Physiology, Ireland; 2 Department of Physiology, Cork, Ireland; 3 Teagasc Food Research Centre, Cork, Ireland

Objective: Mounting evidence implicates the vagus nerve in signalling between colonic bacteria and the central nervous system (CNS), in what has been termed the microbiome-gut-brain axis. However, the mechanism by which bacteria signal across an intact barrier to their eukaryotic hosts is not understood. Bifidobacterium Breve NCFB 2258 is a commensal bacterial strain which produces polyunsaturated fatty acids (PUFAs) with reported health-promoting effects. The study aim was to investigate if this bacterial strain could signal across the gut barrier to stimulate the host nervous system.

Methods: Using ex-vivo Sprague Dawley rat colonic tissue, immunofluorescent staining and calcium imaging were utilised to investigate activation of submucosal neurons in response to mucosal application of PUFA-producing probiotic secretions (supernatants). To determine if the effects were local to the enteric nervous system or if they also stimulated colonic afferents, extracellular recordings of vagal nerve activity were also undertaken.

Results: Mucosal exposure to the bacterial supernatants stimulated increased nuclear expression of cFos and peroxisome proliferator-activated receptor alpha (PPARα) in submucosal neurons. A robust increase in neuronal [Ca2+]i was also observed in response to mucosal application of supernatants. This response was reduced (P < .001) but not abolished by the PPARα antagonist, GW6471. Similarly, exposure of the colonic mucosa to supernatants (P < .001) stimulated increased firing in vagal afferents. The PPARα antagonist reduced (P < .001) but did not abolish this response.

Conclusions: These findings illustrate that PUFA secretions from Bifidobacterium breve NCFB 2258 signal across a healthy intact gut barrier to the intrinsic and extrinsic gut nerves. Supernatants induced activation of underlying submucosal neurons, which regulate absorption and secretion, but may also act as a relay for gut-to-brain signalling. Indeed, supernatants also increased vagal afferent firing, which was mediated in part by activation of PPARα. These findings begin to elucidate the molecular mechanisms underlying signalling by specific bacteria in the microbiome-gut-brain signalling axis.

Policy of full disclosure: None.

2 | Protease activity and tryptase expression is increased in a post-inflammatory rat model for visceral hypersensitivity

H. Ceuleers1; J. G. de Man1; J. Joossens1; K. Augustyns1; S. M. Francque2; A.-M. Lambeir1; I. de Meester1; B. Y. de Winter1
1 University of Antwerp, Wilrijk, Belgium; 2 Antwerp University Hospital, Edegem, Belgium

Objective: Previously, we confirmed beneficial effects of the serine protease inhibitors nafamostat mesilate and the newly developed UAMC-0050 and UAMC-1162 on visceral hypersensitivity in an acute and post-colitis rat model [Ceuleers et al. Neurogastro 2015, DDW 2016, DDW 2017]. The objective of this study was to explore which serine proteases are specifically involved based on the profiles of the inhibitors used targeting trypsin, matriptase, uPA, cathepsin G and kallikrein 2, 4, 8.

Methods: As previously described, male Sprague-Dawley rats were intrarectally instilled with TNBS (colitis) or 0.9% NaCl (control). Successively, colonoscopies were performed to document the acute colitis on day 3 and the complete healing of the mucosa in the post-colitis phase (day 10-18). Colon sampling of control, acute colitis and post-colitis rats was performed to measure the mRNA expression of the serine proteases described above by qPCR, as well as to quantify mast cell tryptase by immunohistochemistry. Next, fecal samples were collected at day 0 (control), day 3 (acute colitis) and the day of sacrifice (post-colitis) to determine general protease activity using an azocasein assay.

Results: All TNBS rats developed acute colitis on day 3 and the complete healing of the mucosa in the post-colitis phase (day 10-18). Colon sampling of control, acute colitis and post-colitis rats was performed to measure the mRNA expression of the serine proteases described above by qPCR, as well as to quantify mast cell tryptase by immunohistochemistry. Next, fecal samples were collected at day 0 (control), day 3 (acute colitis) and the day of sacrifice (post-colitis) to determine general protease activity using an azocasein assay.

Results (Table): All TNBS rats developed acute colitis on day 3, while the post-inflammatory status was confirmed on the day of sacrifice for post-colitis rats. The qPCR experiments showed a significant downregulation of matriptase in the colon of rats with acute colitis compared to controls. In post-colitis rats, tryptase was significantly upregulated,
NEW TECHNOLOGIES IN CLINICAL NEUROGASTROENTEROLOGY

25 | Optogenetic induction of propagating colonic motor complexes and propulsion of fecal content induced by light

J. Feng1; T. Hibberd2; J. Luo3; P. Yang4; H. Hu4; N. Spencer5

1University of Washington, St. Louis, USA; 2Department of Human Physiology, Bedford Park, Australia; 3Washington University, St. Louis, USA; 4Department of Anesthesiology, St. Louis, USA; 5Flinders University, Dept. of Human Physiology, Bedford Park, Australia

Optogenetics is an exciting technique that has been shown to selectively control neural pathways in the central nervous system (CNS), but not in the enteric nervous system (ENS), leading to changes in gastrointestinal (GI) transit. The ability to selectively control GI-motility and GI-transit without using non-specific agonists or antagonists (that act all throughout the body) offers great hope for patients with impaired GI-transit, but without having to endure the side effects of non-specific drugs. Our aims were two fold. Firstly, to generate transgenic mice expressing channelrhodopsin in specific excitatory neurons of the enteric nervous system (ENS). Secondly, to demonstrate that specific wavelengths of light can modify colonic motility and the propulsion of content, without using any agonists or antagonists. To do this, we generated a novel transgenic mouse using Cre-driven expression of the light-gated cation channel, channelrhodopsin-H134R (ChR2-H134R) in excitatory enteric neurons expressing calretinin (CAL). Immunohistochemical analysis of colonic myenteric neurons revealed 97% of the cholinergic CAL-immunoreactive neurons were selectively expressing ChR2(H134R)-eYFP+.

Methods:

Mechanical recordings were made from intact whole colons in vitro (n=7). Both CAL-Chr2(H134R) and wild-type mice generated ongoing propagating neurogenic colonic motor complexes (CMCs), with a mean interval 280±37 seconds (n=7). Focal illumination (1-5 Hz, 10-60 seconds) of blue light to the proximal, mid or distal colon evoked a significantly premature CMC in CAL-Chr2(H134R) mice (P=.006, N=7; Figure 1), but not in the wild-type littermates. Also, green light had no effect in CAL-Chr2(H134R) mice. Video imaging of colonic wall movements revealed that light-evoked CMCs caused propulsion of fecal pellets over significant lengths along the isolated whole mouse colon of CAL-Chr2(H134R) mice. Tetrodotoxin prevented optogenetic activation of CMCs (7/7 times tested, n=3). We provide the first demonstration that focal illumination of light to specific regions along the large intestine can evoke propagating neurogenic contractions (CMCs), leading to the propulsion of fecal content. Optogenetics offers great potential for controlling the excitability of the ENS and improving GI-transit, without using drugs that are well known to act on receptors all throughout the body; and without inducing numerous unwanted side effects, in many organ systems. Funded by NH&MRC #1067335 N.J.S and an NIH RO1 to H.Hu.

Policy of full disclosure: None.