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Arethelog-growth rates of city sizesdistributed normally?
Empirical evidencefor the US
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Abstract We have studied the log-growth population rate distrimgiof the US
incorporated places (resp., all places) for the period 123D (resp. 2000-2010)
and the recently constructed US City Clustering AlgoritheCA) population data
in the period 1991-2000. Also, we have considered the sangl&)S incorporated
places that are one decade old in 1910, five decades old inak&b0ine decades old
in 1990.

An excellent parametric description of these log-growthsas obtained by means
of a newly introduced distribution called “double mixtungpenential Generalized
Beta 2 (dmeGB2)”". The normal distribution is not the one emogily observed for
the same datasets.

Keywords urban log-growth rates distributiorexponential distribution exponen-
tial Generalized Beta 2 distributiorJS population log-growth rates
JEL: C46, R11, R12.

1 Introduction

Several studies have dealt with the theory of the growthgssof cities, see, e.g.,

Duranton and Puga (2014). Also, several articles have aeditthe temporal di-

mension of city growth, sometimes finding deviations frora tisual Gibrat's Law

<. 2011; Sanchez-Vidal etlal., 2014; Giesen andekuen, 2014; Desmet and Rappaport
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[2015). In addition, the classical article lof loannides ame@ah [(2003) studies
growth rates but only in a non-parametric way, using 3D sastib kernels. However,
almost none of the published works deal with the study of th&metric descrip-
tion of the distribution of city growth rates, one exceptiming Schluter and Trede
M). This is possibly due to the lack of good data setsdeioio carry on the study
until very recent times. In Ramos and Sanz-Grécia (2016)ave ised some exam-
ples of this kind of data to study the city size distributidrifee US, with remarkable
success. Using these datasets, the computation of therdogfgrates is relatively
easy so the study of their distribution is a natural subsetpask.

This research also has theoretical implications, sincea®Bfyprocess, as it is de-
scribed i Suttdrl (1997) and references thelein, EeckB60#) and Delli Gatti et Al.
M) takes the log-growth rates to be normally distedutor another overview of
Gibrat's Law see, e.gd., Gonzalez-Val et al. (2014). If, @mally, the former assump-
tion happens not to hold, and moreover an alternative gagmmifor the log-growth
rates is found with associated finite varian@eéisen one of the usual assumptions of
Gibrat’s process would deserve a reconsiderdgion.

In this article we have succeeded in parameterizing thalaision of log-growth
rates with a newly introduced functional form in all the caséudied, with the so-
called “double mixture exponential Generalized Beta 2 (@B2)". In the estimated
cases of this distribution, the variances are always fimite] almost equal to the
empirical variances. This new distribution will offer a tpibetter performance than
the normal distribution. However, in order to assess thesttess of the results with
regards to other alternatives, we will analyze the Studemmd asymmetric Laplace
normal distributions as well

The rest of the article is organized as follows. Sedfibn Zudess the databases
used. Sectiohl3 introduces the parametric distributioesl irs this paper. Sectidd 4
describes the empirical results obtained. Finally, in Bedf we have offered a dis-
cussion and some conclusions.

2 The databases

We have used in this article data about US urban centers fioea sources. The first
is the decennial data of the US Census Bureau of “incorpodaees” without any
size restriction, for the period 1900-2000. These incluoeegnmental units classi-
fied under state laws such as cities, towns, boroughs oge#laAlaska, Hawaii and
Puerto Rico have not been considered due to data limitatibms data has been
collected from the original documents of the annual censusighed by the US

1 The assumption of the finite variances for the log-growtkesas essential for the application of the
standard Central Limit Theorem, rather than the assumgtiehthe log-growth rates are normal. For
alternative Central Limit Theorems when studying city sie, e.gl, Lee and I[i (2013).

2 In this article we are not testing whether the city size distion is lognormal, something implied
if Gibrat's Law is fulfilled (Eeckholit| 2004). That is invégted in other articles, like for example
[Giesen et dI[(2010): Gonzalez-Val et Al (2015): RamosSawt-Gracla (2016).

3 It is worth recalling thalt Schiuter and Tréde (2013) considea model with the conclusion that the
normalized growth city size distribution of German citiefidws a Student-t.
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Census Buredfi These data sets were first introducedl in Gonzalez'Vval (2GHe
therein for details, and later used in other works like $@zeVidal et al. [(2014);
|G_Qﬂzal§zALaLe1_él.L(2Q15LRam9§_anQ_Sanz_G}ana_{2m)rhe sake of brevity
in this paper, we will consider the necessary data for cansitrg the 1990-2000
log-growth rates of incorporated places. In addition, wé take directly the one
decade of age in 1910 (d1 1910), five decades of age in 19509%6®) hnd nine
decades of age in 1990 (d9 1990) samples of the databaseuztedtfor the article

- IL.(2014) in order to perform a robustreeck of our approach
with regards to the age of cities in the case of the US incagdrplaces during the
20" century. We have taken three representative samples witiighsas possible
number of observations according to the whole database.

The second source consists of all US urban places, unin@igzband incorpo-
rated, and without size restrictions, also provided by ti&Q&nsus Bureau for the
years 2000 and 2010. The data for the year 2000 was first ugetkho t%@ and
later in[Levy (2009), Eeckhdut (2009), Giesen étlal. (201@nnides and Skouras
(2013) andl Giesen and Suedeklim (2014). The two samples {sengsad iIhQ.QﬂZ&I&Zﬂ@.LQtJaI.
(2015); Ramos and Sanz-Gracia (2016).

The third comes from a different and recent approach to dficity centers,
described in detail in Rozenfeld et al. (2008, 2011). Theyaiso called “City Clus-
tering Algorithm” (CCA) to get “an automated and systematay of building pop-
ulation clusters based on the geographical location of lg€ofop. cit) We have
used their US clusters data based on the radius of 2 km. ariddgrears 1991 and
2000. Data sets of this type have been used in loannides and&(2013) and
Giesen and Suedekiif (2014).

[Table[d near here]

We have offered in Tablg 1 the descriptive statistics of theduog-growth data
for the US.

3 Description of the distributions presented

In this section we will introduce the distributions usedrajdhe pap&for the (two
consecutive periods) log-growth rates, denoted by

git =logw;, —logw;—1 € (—o0,00)

4 http://ww. census. gov/ prod/ ww/ decenni al . ht m Last accessed: Jundth, 2016.

5 From a practical point of view, it is our interest in this pafeobtain a very good parametric fit of the
log-growth rate distributions. For that, we have first trsesteral well-known distributions in the economics
literature: the normal, the asymmetric exponential pow&R) of(Bottazzi and SecéHi (2d11), which gen-
eralizes the Laplace distribution of, e[g.. JohnsonleflaB%)| Stanley et &l (1996) and references therein,
the a-stable distribution, see, e .. Zolotarev (1986); Ucimeéind Zolotarév[(1999) and references therein

(the calculations for the-stable distribution have been performed using the STABafErvg@re of Robust
Analysis Inc seédht t p: //vwwv robust anal ysi s. coni ) the generalized hyperbolic distribution

[ Barndorff-Nielsen and StelzEr, 2005),
the (non- standardlzed) Student-t dlstnbutlon see, [@ahnson et al[ (1905) and references therein, and
the asymmetric double Laplace nor@mmwmw@mm The
results for the distributions not presented here are &leifiom the author upon request.
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wherez; ; is the city populatiori at timet. When a fixed is taken we will simply
write g € (—o0,o0) for the variable of all log-growth rates of the cross-sewio
taken.

3.1 Normal distribution

Firstly, we have recalled the normal distribution for thg-lgrowth rateg;. We thus

set ) ( )2
o _g—p
fn(gvﬂa U) = \/%J exp ( 2052 )

wherey is real andr > 0 are, respectively, the mean and the standard deviation of
the variabley according to this distribution.

3.2 The non-standarized Student-t distribution

The non-standardized Student-t distribution for the logwgh ratesy, see, e.gl, Johnson ef al.
(1995) and references therein, is given by the followindoptiility density function

_rtl

v+l _ 2 2
o= L (13(052)

wherey € R (location parameter) > 0 (scale parametery, > 0 is the number of
degrees of freedom, and(-) denotes the Gamma function. Particular cases of this
distribution are the Cauchy distribution & 1) and the normal distribution/(= o).

If 1 < v < 2 the variance of the distribution becomes infinite. Thisribsttion

has been used to study city size log-growth rates of Germg!Schluter and Trede
(2013).

3.3 The asymmetric double Laplace normal (adLn)

The third distribution in our study will be the asymmetricuiide Laplace normal
distribution (adLn), introduced by (Reed, 2002, 2003; Raed Jorgensen, 2004) and
later used, e.g., t& :éﬂis_(_LbOQ):

fadLn(ga a, ﬂa ey U)

af a?o?\ _ g—p—aoc?
=———exp|au+ e Y l+erf | ——

e (o ) (e (7))
(aaﬁ | B*a*\ s, f(9— 1t BO’Z .
“mge (o ) e (wf (L) 1)

whereerf is the error function associated to the normal distributod 1 € R,

a, 8,0 > 0 are the four parameters of the distribution. It has the mtyplat it
approximates different exponential laws in each of its teitst f,qrn(g) ~ e~ 9
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wheng — oo and faain(g) ~ €9 wheng — —oc. The body is approximately
normal, although it is not possible to exactly delineatesthiécch between the normal
and the exponential behaviors since the adLn distribusotihé convolution of an
asymmetric double Laplace with a normal distribution.

3.4 The double mixture exponential Generalized Beta 2 (dB®G

For our new distribution “double mixture exponential Gealized Beta 2” we have
first defined some basic functions which will be employed teyftirmer.
Then, let us consider

aexp((g — b)ap)
B(p,q) (1+ exp(a(g — b))’

exp(alg — b))
B<1+wmwg—mrp”>

feGBQ(g;a7bap7 q) =

The fogp2 (cdfegp2) is the exponential version of the Generalized Beta of tlte se
ond kind density (resp., cumulative distribution functiauif) (McDonald, 1984;
Mmmm&m@mwos)

man@:/twwr¢w*ﬁ,zemu
0

is the incomplete Beta function ariél(p, ) = B(1, p, q) is the Beta function. The
three parameteis p, ¢ are positive shape parameters arelR is a location param-
eter. The function(g, ¢) will model the decreasing exponential part of the upper tail
of our new distribution, wheré > 0, andi(g, p) corresponds to the increasing expo-
nential lower tail, withp > 0. The functions:, [ are not normalized at this stage as in
loannides and Skouras (2013). Note that if the varialitglows a Pareto distribution
andy = In z, theny follows an exponential distribution.
The new distribution we have introduced here, which yieldshest results out
of the ones we have dealt with, has two tails which are exptalemith a mixture
of exponential Generalized Beta 2, and body of this last.tjjpe switch between
the tails and the body occurs at two exact threshelfewer tail-body) andr > ¢
(body-upper tail). For the lower tail, the combining coeaéfict will be denoted by
€ (0,1), and byf € (0, 1) for the upper tail. We require continuity of the density
function at the threshold points and overall normalizatmaone. Equal weight of the
distributions of the mixing at the tails are also imposedndsannides and Skouras
), so that the parametersf control the proportion of each component of the
combination in the lower (resp. upper) tail.
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The resulting composite density is given by:

fdmeGBQ(g7p765 V7a/ab7paq77-7<)9)
ba[(1 = v) dz fecp2(9,a,b,p.q) +ve2l(g,p)] g <e
= b2feGB2(gaa7bap7Q) ESQST
b2[(1*Q)CQfEGBQ(gaavbaZ%Q)+9a2u(gvg)] T<g

where the constants (i.e., quantities that do not depenkeovariabley) are given as
follows:

exp(—pe) v pcdfeana(e, a,b,p, q) (e, p)
Jeanz(€,a,b,p,q)

i _(A-v)explep) | vilep)

pcdfecpa(e, a,b,p,q)  fecra(e, a,b,p,q)

g exp(7¢) (1 — edfeg2(, a, b, p, ) u(7, ¢)

d2_1:171/+

c f—
2 feam2(T,0,0,p,q)
al = (1 —0) exp(=7¢) bu(r.¢)
2 C (1 — CdfeGBQ (7-7 a, b7pa q)) feGB2 (T’ a b,p7 q)
- exp(ep) -
bl — o PR L gp b,p,q) — cdfe b exp(r()
2 = + cdfeap2(7, @, b, p, q) — cdfep2(€, a,b,p, q) + ¢ exp(7¢)

This distribution depends on ten parametgrs, v, a, b, p, q, 7, ¢, 0) to be esti-
mated below by Maximum Likelihood (ML). Also, this distritian can be obtained
in an exact way from an optimization model similar to that affibs and Sanz-Gracia
M); we enclose a MrHEMATICA® notebook with the main optimization equa-
tions as supplementary material. The model is based heawviéyprevious model by

[Parkerl(1999).

4 Results

In this Section we have recalled briefly the empirical resattncerning the US sam-
ples on use.

We have estimated the studied distributions by the methddafimum Likeli-
hood (ML), using the software MATLAB and MATHEMATICA ®. We have reported
on TabledP[13 and] 4 the estimated values of the parameteteddBtudent-t, the
adLn and dmeGB2 and the corresponding standard errors (Bi)uted according
to|Efron and Hinklelyl(1978) and McCullough and Vihod (200@)e ML estimators
for the parameters of the normal distribution are exactidpéie mean and standard
deviation of each empirical data sample, see simply TadbWelcan see that the es-
timations are rather precise in almost all cases, possiugp the estimations af
for the dmeGB2 in the samples of d1 1910, d5 1950 and d9 19%0, Ale have not
been able to estimate the adLn for the sample of all US pl&&30(2010).

[Table[2 near here]

[Table[3 near here]

[Table[4 near here]
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We have computed numerically as well the means and the sthaésiations
(SD) of the variablegy according to the estimated Student-t, adLn and dmeGB2 dis-
tributions, which are shown in Taklé 5. From it, we can obsdhat the computed
means and standard deviations for the adLn are very sinailtive empirical ones,
and those for the dmeGB2 are almost identical. More impdstahe computed stan-
dard deviations according to the dmeGB2 are always finiteofrirast, the estimated
Student-t for the sample of all US places (2000-2010) hasitafstandard deviation.

[Table[3 near here]

In order to assess the goodness of fit of the four distribstexplicitly shown
in this paper, we have used three standard statistical thst&olmogorov—Smirnov
(KS) test, the Cramer—von Mises (CM) test and the AnderBamling (AD) test.
These test are very powerful when the sample size is as highthe cases of this
article (Razali and Wah, 2011) and the last one is partibuleeful when one wants
to see the adequacy of the distribution at the tails, see% (2013). The results
are shown on Tablg 6. Very briefly, the normal and Studergttibutions arestrongly
rejected always by the three tests. The adLn is not rejectelebthree tests for the
samples d1 1910, d5 1950 but otherwise always rejected. Makm the dmeGB2 is
not rejected in 100% of the cases, and not by a small margeisaly.

[Table[® near here]

Additionally, we have computed more metrics allowing toesélthe best one
amongst the hypothesized distributions, namelyithé and the pseud&? quantities
adapted fronmbl@m) to this particular case (weplsimeplace the log-
variable by the variable under study):

m

1
d=— Actual 1 th rate(y
ms — ;[ ctual log growth rate(j)
—Mean Simulated log growth rate(5)] (1)
Ro- 2 2)
var

wherevar is the empirical variance for log-growth rates amdis the number of
observations in the empirical sample.

For themsd and R? quantities, we have generated 100 random saﬁ\ﬁhﬂ;the
results are shown in Tablé 7. From it, it is clear that the dB2@rovides a much
better fit than the other distributioMls.

[Table[Z near here]

Also, we have computed the Akaike Information Criterion CAland Bayesian

or Schwarz Information Criterion (BIC) (Burnham and Andet$2002| 2004), very

6 Each of these samples is of the sample size of the empirital @ae total generated observations
range from about 298,000 to 3,020,000 depending on the cafer study and we hope the results to be
statistically significant. We have chosen a number of geeéraamples reasonably high enough while
maintaining computational feasibility.

7 The pseudak? becomes negative for the Student-t and the sample of all &t®pl(2000-2010). This
is because the estimated Student-t in this case has inftaitélard deviation and the generated samples
according to the former induce a huged quantity.
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well adapted to the maximum likelihood estimation we havdquened before. For
the computed AIC and BIC see the Table 8.

By these two different types of criteria we can see that the@BR greatly out-
performs the other distributions when considering thedogwth rates of US city
sizes for all the used samples, in spite of the fact that owrdistribution depends on
ten parameters instead of less parameters of the othébdi&ins. In particular, the
dmeGB2 is much better than the normal distribution for degay these log-growth
rates.

[Table[8 near here]

As a complement of the KS, CM, ADnsd, pseudok?, AIC and BIC criteria,
we have shown in Figuid 1 an informal graphical approxinmatibthe obtained fits
for three of the used samples. We can observe excellent fitsswiall deviations, if
any, at the tails (the deviations at the tails are subjechtaraplification effect, see,
e.g..Gonzalez-Val et al. (2013)). However, the overabfithe densities is visually
excellent. Let us remark that on the plots of the tails ¢ié for the lower tail or
1 — cdf for the upper tail are nearly exponential, and thereforetiaphs are almost
linear, in agreement with previous knowledbe (Johnson! ;L Stanley et al.,
(1996 Bottazzi and Secchi, 2011).

[Figured near here]

5 Discussion and conclusions

In the preceding Section we have seen that a very appropaatenetric model for
the log-growth rate distribution of the city size of the UShgs newly introduced (in
Subsectiof 3]4) dmeGB?2.

In our opinion, the excellent parametric fit of this disttilon is by itself a signif-
icant advance of the theory of the growth of city sizes.

Likewise, the normal distribution for the log-growth rateslearly rejected em-
pirically in all our samples, so one of the assumptions ofGilerat's process (see,
e. .,E@n@iﬂ) and references thergin, Eeckhout §280d! Delli Gatti et all.

)) may not hold, and it deserves a reconsideration.

The variances given by the dmeGB2 in all our cases of studyigite, so we
have found an example of distribution for the log-growtlesadf city size for the US,
always not rejected empirically and with finite variancelsisTis an alternative to the
normal distribution.

This does not mean that other assumptions of Gibrat's psodesnot hold in
principle. On the contrary, more research can be done inrésigect, see the recent
articlelRamds (2015).

However, one might wonder how the city size distribution Vdolbe under the
log-growth rates behaving in the described way. We showdlrérst that regarding
the US city size distribution the recent worklof Ramos andzSaracia 6) has
appeared. In it, an empirically observed distribution gghold double Pareto Gen-
eralized Beta 2 (tdPGB2)” for places is derived in an exagt fvtam a theoretical
model of maximization of the net output of the system of sitie the US. In this
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model, the resulting city size distribution has parameteas depend on the elastici-
ties of the production function with respect to the popuwalatito the number of cities,
and of the congestion costs with respect to population. fifeshold parameters sep
arating the lower tail, the body and the upper tail are endogsly determined by the
ML estimation procedure. In this way an economic model gatesrexactly the city
size distribution. Time changes in the mentioned elag@iinduce time changes in
the city size distribution, and therefore log-growth rages generated. It is striking
that the observed US city log-size distributions and logagh rates have distribu-

tions of thesamefamily dmeGB2, according to Ramos and Sanz-Gracia (2016) an
this paper.

Additionally, the usual Gibrat's process takes the logwglorates to be normal,
and then, the resulting log-sizes are obtained adding upiti@ log-sizes and the
consecutive log-growth rates. If the log-growth rates aientically and indepen-
dently distributed (i.i.d.) as normal distributions, tresulting distribution for log-
sizes will be normal as well, because ttevolutionof normal distributions is again
a normal distribution, in aexactway.

The class of distributions which aexactlyclosed under convolution is known
to consist of thex-stable ones, see, e.g., Zolotarev (1986); Uchaikin andtZoy
d@) and references therein. Except in the case ef 2, which corresponds to
the normal distribution, these distributions have the fobof possessing infinite
variances.

In this article we have proved empirically that the log-gtbwates of US city
sizes do not follow a normal distribution and a better molehtall of the previously
used distributions has been proposed successfully, naimelymeGB2. This distri-
bution has finite variances for the cases studied (and aletpsil to the empirical
ones). Since the observed distributions for US city logsiand log-growth rates are
so similar in practical terms, this leads us to think thatrtber family of distributions
dmeGB2 may beapproximatelyclosed under convolution in a sense that has to be
made precise in statistical terfhét this property holds, it might be a link between
the observed log-growth rates and the resulting obsentgdag-size distribution,
with a similar rationale of the standard process of genagatilognormal distribution
for city sizes out of normal distributions for log-growthea.

All these implications are to be compared with current thesoof urban growth,

see, e.gl, Duranton and Pliga (2014); the review of this work this new perspec-
tive will probably shed new light into the determinants df&ize and city growth.

In conclusion, our research complements that of other asitirad possibly opens
a new avenue for further investigations.

Acknowledgements | would like to thank Rafael Gonzalez-Val and Maria Verab€llo for the databases
used and Fernando Sanz-Gracia for constructive commerdspoevious version of the manuscript, al-
though all remaining errors are mine.

8 |n another paper or papers as it is out of the scope of theprastcle.
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Table 1: Descriptive statistics of the log-growth ratestfe used samples

Sample Obs Mean SD Min Max

Ip 1990-2000 19,048 0.075 0.262 -4.467 3.581
Ap 2000-2010 24,685 0.035 0.282 -5278 6.075
CCA 1991-2000 (2 km) 30,201 0.105 0.156 -2.398 3.773
d1 1910 3,291 0.186 0.415 -1.914 3.723
d5 1950 3,088 0.047 0.312 -2.398 2.705
d9 1990 2,987 0.056 0.261 -1.580 3.581

Table 2: ML estimators and standard errors (SE) for the Sisdland the studied
log-growth rate samples. The estimators for the normalidigion are the mean and
standard deviation of the log-growth data, see Table 1

Sample Student-t
u (SE) o (SE) v (SE)

Ip 1990-2000 0.040 (0.001) 0.124 (0.001) 2.123(0.033)
Ap 2000-2010 0.004 (0.001) 0.107 (0.001) 1.804 (0.022)
CCA 1991-2000 (2 km)  0.083 (0.001) 0.097 (0.001) 3.426 (8)05
d1 1910 0.148 (0.006) 0.263 (0.005) 3.001 (0.135)
d5 1950 0.014 (0.004) 0.179(0.003) 2.680 (0.115)
d9 1990 0.031 (0.003) 0.135(0.003) 2.394 (0.098)

Table 3: ML estimators and standard errors (SE) for the asgtmedouble Laplace
normal (adLn) and the studied log-growth rate samples.

Sample adLn
a (SE) b (SE) 1 (SE) o (SE)
Ip 1990-2000 5.114 (0.040) 8.519 (0.079) -0.003 (0.001) 09(D.006)

Ap 2000-2010 -
CCA 1991-2000 (2km)  7.755(0.048) 19.465(0.180)  0.0270D)0 0.038 (0.001)
d1 1910 3.005(0.058)  4.679 (0.106)  0.067 (0.005)  0.074.%).0
d5 1950 4197 (0.084)  6.537 (0.154) -0.039 (0.004)  0.05HE).
d9 1990 5.230 (0.105)  7.851(0.182) -0.008 (0.003)  0.0ZW(.
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Table 4: ML estimators and standard errors (SE) for the dnie@ml the studied
log-growth rate samples.

Sample dmeGB2
p (SE) € (SE) v (SE)
Ip 1990-2000 2.69(0.13) -0.000(0.014) 0.082 (0.006)
Ap 2000-2010 1.80 (0.08) -0.000 (0.012)  0.054 (0.003)
CCA 1991-2000 (2 km) 3.04(0.32) -0.121(0.004) 0.265 (0)023
d11910 3.27(0.15)  0.000 (0.026)  0.490 (0.034)
d5 1950 1.79(0.31)  0.000(0.080) 0.032 (0.010)
d9 1990 2.89(0.33)  0.000 (0.027) 0.085 (0.017)
a (SE) b (SE) p (SE) q (SE)
Ip 1990-2000 34.79(0.27) -0.006 (0.001) 0.327 (0.003) B(DA02)
Ap 2000-2010 54.61(0.38) -0.017(0.001) 0.192(0.002) @(D5001)
CCA 1991-2000 (2 km)  20.40 (0.10) -0.019 (0.001)  1.581 (8)01 0.432 (0.003)
d1 1910 11.92(0.31) -0.067 (0.006) 0.911(0.038) 0.1996).0
d5 1950 22.17 (0.55) -0.080 (0.005) 0.353(0.009) 0.12208).0
d9 1990 63.83(1.91) -0.041(0.004) 0.155(0.005) 0.038@).0
7 (SE) ¢ (SE) 6 (SE)
Ip 1990-2000 0.31(0.01) 2.57 (0.08) 0.51 (0.02)
Ap 2000-2010 0.17 (0.01) 2.45 (0.06) 0.46 (0.01)
CCA 1991-2000 (2 km)  -0.02 (0.02) 2.15(0.21) 0.02 (0.04)
d11910 0.36 (0.03) 5.09 (0.30) 0.38 (0.04)
d5 1950 0.16 (0.01) 7.94 (0.37) 0.49 (0.03)
d9 1990 0.11(0.01) 7.91 (0.26) 0.74 (0.02)

Table 5: Means and standard deviations (SD) according tedtimated distributions
and the studied log-growth rate samples. Those correspgtalihe normal distribu-
tion are exactly the mean and standard deviations of theramalgamples. Compare
with the values in Tablgl 1.

Sample Student-t adLn dmeGB2

Mean SD Mean SD Mean SD
Ip 1990-2000 0.040 0.514 0.075 0.228 0.075 0.260
Ap 2000-2010 0.004 00 - - 0.035 0.273
CCA 1991-2000 (2 km) 0.083 0.150 0.105 0.144 0.105 0.155
d1 1910 0.148 0.456 0.186 0.402 0.186  0.415
d5 1950 0.014 0.355 0.047 0.288 0.047 0.312
d9 1990 0.031 0.332 0.056 0.232 0.056 0.261
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Table 6:p-values (statistics) of the Kolmogorov—Smirnov (KS), CaarVon Mises
(CM) and Anderson—Darling (AD) tests for the used samplesdamsity functions.
Non-rejections at the 5% significance level are marked id bol

Sample normal Student-t
KS CM AD KS CM AD
Ip 1990-2000 0(0.129) 0 (109.391) 0(614.161) 0 (0.042) 009) 0 (90.109)
Ap 2000-2010 0 (0.154) 0 (204.089) 0(1132.13) 0 (0.037) 899) 0 (87.714)
CCA 1991-2000 (2 km) 0(0.097) 0(97.453) 0 (602.344) 0(0)054 0 (16.381) 0(185.934)
d1 1910 0 (0.086) 0(9.103) 0(52.647) 0.002 (0.033) 0.0023®). 0 (9.300)
d5 1950 0(0.101) 0(11.783) 0(68.490)  0.010 (0.030) 0.01168) 0 (8.568)
d9 1990 0(0.120) 0(16.284) 0(91.614) 0.003 (0.033) 0.01164) 0 (7.566)
adLn dmeGB2
KS CM AD KS CM AD
Ip 1990-2000 0 (0.029) 0 (3.450) 0(24.177) 0.770(0.005)  0588(0.099)  0.248 (1.253)
Ap 2000-2010 - - — 0.689(0.005) 0.734 (0.073) 0.678 (0.569)
CCA 1991-2000 (2 km)  0.017 (0.010)  0.008 (0.779) 0(8.315)0.798 (0.004)  0.886(0.048)  0.927 (0.314)
d1 1910 0.543(0.014) 0.620(0.093) 0.405(0.914) 0.9979 (0.007)  0.9997 (0.015)  0.9999 (0.103)
d5 1950 0.119(0.022) 0.218(0.229)  0.086 (2.053) 0.9307 (0.010) 0.9523 (0.036)  0.9906 (0.199)
d9 1990 0.013 (0.030) 0.046 (0.474) 0.012 (3.727p.9737 (0.009)  0.9883 (0.026)  0.9933 (0.188)

Table 7: Values of thensd (in units of 10~3) and of the pseudd:? inspired by
7) for the used samples and distributions.mbst favoured values
are marked in bold. From the definition of the pseuthin Eq. (2) it may happen
that it becomes negativeiifisd is huge.

Sample normal Student-t

msd R2 msd R2
Ip 1990-2000 13.12  0.8095 2536  0.6319
Ap 2000-2010 22.66 0.7160 130.22 -0.6325
CCA 1991-2000 (2 km) 4.44  0.8168 215  0.9115
d1 1910 13.11  0.9239 11.33  0.9342
d5 1950 12.03 0.8763 8.46  0.9130
d9 1990 11.60 0.8298 8.12  0.8810
Sample adLn dmeGB2

msd R2 msd R2
Ip 1990-2000 4.46 0.9352 0.64  0.9907
Ap 2000-2010 - - 1.00 0.9874
CCA 1991-2000 (2 km) 157 0.9352 0.09  0.9963
d1 1910 1.11  0.9935 0.18  0.9990
d5 1950 2.89 0.9703 016  0.9984

d9 1990 3.87 0.9432 052 09924
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Table 8: Maximum log-likelihoods, AIC and BIC for the usedtiibutions and log-
growth rates samples. The lowest values of AIC and BIC foheaenple are marked

in boldface
Sample normal Student-t
log-likelihood AlC BIC log-likelihood AIC BIC
Ip 1990-2000 -1,548 3,100 3,116 3,067 -6,129
Ap 2000-2010 -3,817 7,638 7,655 5,244 -10,482 -10,458
CCA 1991-2000 (2 km) 13,302 -26,600 -26,584 18,284 -36,5616,536
d1 1910 -1,775 3,554 3,567 -1,443 2,893
d5 1950 -784 1,572 1,584 -301 608 626
d9 1990 -228 459 471 410 -813 =795
adLn dmeGB2
log-likelihood AlC BIC log-likelihood AIC BIC
Ip 1990-2000 3,053 -6,098 -6067 3,509 -6,998 -6,920
Ap 2000-2010 - - - 5,625 -11,231  -11,150
CCA 1991-2000 (2 km) 19,251  -38,493  -38,460 19,77139,521  -39,438
d1 1910 -1,405 2,818 2,842 -1,388 2,795 2,856
d5 1950 -295 598 622 -254 529 589
d9 1990 384 -760 -736 446 -873 -813
Lower tail dmeGB2 loggrowth US all places2000-2010 ety Lower tail dmeGB2 loggrowth US CCA(1991-2000, 2km - Lower tail dmeGB2 loggrowth US d1 191 "
S g / ,/-4"//
T " s

eeeee

E t 1 =Y

Upper tail dmeGB?2 loggrowth US all places2000-2010
In a-cd)

Upper tail dmeGB2 loggrowth US CCA(1991-2000, 2km
In a-cdl)

T
T

Upper tail dmeGB2 loggrowth US d1 191

o L
3 1 2 3

Fig. 1: First row: empirical and estimated dmeGIB2cdf) for the lower tail. Second
row: empirical (Gaussian kernel density, bandwidth=0&2) estimated dmeGB2
density functions. Third row: empirical and estimated dB&Gu(1 — cdf) for the
upper tail. Left-hand column: log-growth rates of all US qda (2000-2010) and
dmeGB2. Middle column: log-growth rates of US CCA clusteir891-2000), 2 km
and dmeGB2. Right-hand column: log-growth rates of US d101&id dmeGB2.
Empirical in blue, estimated in red in all cases.
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