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Are the log-growth rates of city sizes distributed normally?
Empirical evidence for the US
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Abstract We have studied the log-growth population rate distributions of the US
incorporated places (resp., all places) for the period 1990-2000 (resp. 2000-2010)
and the recently constructed US City Clustering Algorithm (CCA) population data
in the period 1991-2000. Also, we have considered the samples of US incorporated
places that are one decade old in 1910, five decades old in 1950and nine decades old
in 1990.

An excellent parametric description of these log-growth rates is obtained by means
of a newly introduced distribution called “double mixture exponential Generalized
Beta 2 (dmeGB2)”. The normal distribution is not the one empirically observed for
the same datasets.

Keywords urban log-growth rates distribution· exponential distribution· exponen-
tial Generalized Beta 2 distribution· US population log-growth rates

JEL: C46, R11, R12.

1 Introduction

Several studies have dealt with the theory of the growth process of cities, see, e.g.,
Duranton and Puga (2014). Also, several articles have dealtwith the temporal di-
mension of city growth, sometimes finding deviations from the usual Gibrat’s Law
(Cuberes, 2011; Sánchez-Vidal et al., 2014; Giesen and Suedekum, 2014; Desmet and Rappaport,
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2015). In addition, the classical article of Ioannides and Overman (2003) studies
growth rates but only in a non-parametric way, using 3D stochastic kernels. However,
almost none of the published works deal with the study of the parametric descrip-
tion of the distribution of city growth rates, one exceptionbeing Schluter and Trede
(2013). This is possibly due to the lack of good data sets in order to carry on the study
until very recent times. In Ramos and Sanz-Gracia (2016) we have used some exam-
ples of this kind of data to study the city size distribution of the US, with remarkable
success. Using these datasets, the computation of the log-growth rates is relatively
easy so the study of their distribution is a natural subsequent task.

This research also has theoretical implications, since Gibrat’s process, as it is de-
scribed in Sutton (1997) and references therein, Eeckhout (2004) and Delli Gatti et al.
(2005), takes the log-growth rates to be normally distributed. For another overview of
Gibrat’s Law see, e.g., González-Val et al. (2014). If, empirically, the former assump-
tion happens not to hold, and moreover an alternative description for the log-growth
rates is found with associated finite variances,1 then one of the usual assumptions of
Gibrat’s process would deserve a reconsideration.2

In this article we have succeeded in parameterizing the distribution of log-growth
rates with a newly introduced functional form in all the cases studied, with the so-
called “double mixture exponential Generalized Beta 2 (dmeGB2)”. In the estimated
cases of this distribution, the variances are always finite,and almost equal to the
empirical variances. This new distribution will offer a quite better performance than
the normal distribution. However, in order to assess the robustness of the results with
regards to other alternatives, we will analyze the Student-t and asymmetric Laplace
normal distributions as well.3

The rest of the article is organized as follows. Section 2 describes the databases
used. Section 3 introduces the parametric distributions used in this paper. Section 4
describes the empirical results obtained. Finally, in Section 5 we have offered a dis-
cussion and some conclusions.

2 The databases

We have used in this article data about US urban centers from three sources. The first
is the decennial data of the US Census Bureau of “incorporated places” without any
size restriction, for the period 1900-2000. These include governmental units classi-
fied under state laws such as cities, towns, boroughs or villages. Alaska, Hawaii and
Puerto Rico have not been considered due to data limitations. The data has been
collected from the original documents of the annual census published by the US

1 The assumption of the finite variances for the log-growth rates is essential for the application of the
standard Central Limit Theorem, rather than the assumptionthat the log-growth rates are normal. For
alternative Central Limit Theorems when studying city size, see, e.g., Lee and Li (2013).

2 In this article we are not testing whether the city size distribution is lognormal, something implied
if Gibrat’s Law is fulfilled (Eeckhout, 2004). That is investigated in other articles, like for example
Giesen et al. (2010); González-Val et al. (2015); Ramos andSanz-Gracia (2016).

3 It is worth recalling that Schluter and Trede (2013) considered a model with the conclusion that the
normalized growth city size distribution of German cities follows a Student-t.
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Census Bureau.4 These data sets were first introduced in González-Val (2010), see
therein for details, and later used in other works like Sánchez-Vidal et al. (2014);
González-Val et al. (2015); Ramos and Sanz-Gracia (2016).For the sake of brevity
in this paper, we will consider the necessary data for constructing the 1990-2000
log-growth rates of incorporated places. In addition, we will take directly the one
decade of age in 1910 (d1 1910), five decades of age in 1950 (d5 1950) and nine
decades of age in 1990 (d9 1990) samples of the database constructed for the article
Sánchez-Vidal et al. (2014) in order to perform a robustness check of our approach
with regards to the age of cities in the case of the US incorporated places during the
20th century. We have taken three representative samples with ashigh as possible
number of observations according to the whole database.

The second source consists of all US urban places, unincorporated and incorpo-
rated, and without size restrictions, also provided by the US Census Bureau for the
years 2000 and 2010. The data for the year 2000 was first used inEeckhout (2004) and
later in Levy (2009), Eeckhout (2009), Giesen et al. (2010),Ioannides and Skouras
(2013) and Giesen and Suedekum (2014). The two samples were also used in González-Val et al.
(2015); Ramos and Sanz-Gracia (2016).

The third comes from a different and recent approach to defining city centers,
described in detail in Rozenfeld et al. (2008, 2011). They use a so called “City Clus-
tering Algorithm” (CCA) to get “an automated and systematicway of building pop-
ulation clusters based on the geographical location of people.” (op. cit.) We have
used their US clusters data based on the radius of 2 km. and forthe years 1991 and
2000. Data sets of this type have been used in Ioannides and Skouras (2013) and
Giesen and Suedekum (2014).

[Table 1 near here]
We have offered in Table 1 the descriptive statistics of the used log-growth data

for the US.

3 Description of the distributions presented

In this section we will introduce the distributions used along the paper5 for the (two
consecutive periods) log-growth rates, denoted by

gi,t = log xi,t − log xi,t−1 ∈ (−∞,∞)

4 http://www.census.gov/prod/www/decennial.htmlLast accessed: June24th, 2016.
5 From a practical point of view, it is our interest in this paper to obtain a very good parametric fit of the

log-growth rate distributions. For that, we have first triedseveral well-known distributions in the economics
literature: the normal, the asymmetric exponential power (AEP) of Bottazzi and Secchi (2011), which gen-
eralizes the Laplace distribution of, e.g., Johnson et al. (1995), Stanley et al. (1996) and references therein,
theα-stable distribution, see, e.g., Zolotarev (1986); Uchaikin and Zolotarev (1999) and references therein
(the calculations for theα-stable distribution have been performed using the STABLE software of Robust
Analysis Inc., seehttp://www.robustanalysis.com/) the generalized hyperbolic distribution
(Barndorff-Nielsen, 1977; Barndorff-Nielsen and Halgreen, 1977; Barndorff-Nielsen and Stelzer, 2005),
the (non-standardized) Student-t distribution, see, e.g., Johnson et al. (1995) and references therein, and
the asymmetric double Laplace normal (Reed, 2002, 2003; Reed and Jorgensen, 2004; Manas, 2009). The
results for the distributions not presented here are available from the author upon request.



4 Arturo Ramos

wherexi,t is the city populationi at timet. When a fixedt is taken we will simply
write g ∈ (−∞,∞) for the variable of all log-growth rates of the cross-sections
taken.

3.1 Normal distribution

Firstly, we have recalled the normal distribution for the log-growth ratesg. We thus
set

fn(g, µ, σ) =
1

√
2πσ

exp

(

−
(g − µ)2

2σ2

)

whereµ is real andσ > 0 are, respectively, the mean and the standard deviation of
the variableg according to this distribution.

3.2 The non-standarized Student-t distribution

The non-standardizedStudent-t distribution for the log-growth ratesg, see, e.g., Johnson et al.
(1995) and references therein, is given by the following probability density function
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whereµ ∈ R (location parameter),σ > 0 (scale parameter),ν > 0 is the number of
degrees of freedom, andΓ (·) denotes the Gamma function. Particular cases of this
distribution are the Cauchy distribution (ν = 1) and the normal distribution (ν = ∞).
If 1 < ν ≤ 2 the variance of the distribution becomes infinite. This distribution
has been used to study city size log-growth rates of Germany by Schluter and Trede
(2013).

3.3 The asymmetric double Laplace normal (adLn)

The third distribution in our study will be the asymmetric double Laplace normal
distribution (adLn), introduced by (Reed, 2002, 2003; Reedand Jorgensen, 2004) and
later used, e.g., by Manas (2009):

fadLn(g, α, β, µ, σ)
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whereerf is the error function associated to the normal distributionandµ ∈ R,
α, β, σ > 0 are the four parameters of the distribution. It has the property that it
approximates different exponential laws in each of its two tails: fadLn(g) ≈ e−αg



US city log-growth rates 5

wheng → ∞ andfadLn(g) ≈ eβg wheng → −∞. The body is approximately
normal, although it is not possible to exactly delineate theswitch between the normal
and the exponential behaviors since the adLn distribution is the convolution of an
asymmetric double Laplace with a normal distribution.

3.4 The double mixture exponential Generalized Beta 2 (dmeGB2)

For our new distribution “double mixture exponential Generalized Beta 2” we have
first defined some basic functions which will be employed by the former.

Then, let us consider

feGB2(g, a, b, p, q) =
a exp((g − b)ap)

B(p, q) (1 + exp(a(g − b)))
p+q

cdfeGB2(g, a, b, p, q) =
1

B(p, q)
B

(

exp(a(g − b))

1 + exp(a(g − b))
, p, q

)

u(g, ζ) = exp(−ζg)

l(g, ρ) = exp(ρg)

ThefeGB2 (cdfeGB2) is the exponential version of the Generalized Beta of the sec-
ond kind density (resp., cumulative distribution function, cdf) (McDonald, 1984;
McDonald and Xu, 1995; Kleiber and Kotz, 2003),

B(z, p, q) =

∫ z

0

tp−1(1− t)q−1 dt , z ∈ [0, 1]

is the incomplete Beta function andB(p, q) = B(1, p, q) is the Beta function. The
three parametersa, p, q are positive shape parameters andb ∈ R is a location param-
eter. The functionu(g, ζ) will model the decreasing exponential part of the upper tail
of our new distribution, whereζ > 0, andl(g, ρ) corresponds to the increasing expo-
nential lower tail, withρ > 0. The functionsu, l are not normalized at this stage as in
Ioannides and Skouras (2013). Note that if the variablex follows a Pareto distribution
andy = lnx, theny follows an exponential distribution.

The new distribution we have introduced here, which yields the best results out
of the ones we have dealt with, has two tails which are exponential with a mixture
of exponential Generalized Beta 2, and body of this last type. The switch between
the tails and the body occurs at two exact thresholdsǫ (lower tail-body) andτ > ǫ

(body-upper tail). For the lower tail, the combining coefficient will be denoted by
ν ∈ (0, 1), and byθ ∈ (0, 1) for the upper tail. We require continuity of the density
function at the threshold points and overall normalizationto one. Equal weight of the
distributions of the mixing at the tails are also imposed, asin Ioannides and Skouras
(2013), so that the parametersν, θ control the proportion of each component of the
combination in the lower (resp. upper) tail.
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The resulting composite density is given by:

fdmeGB2(g, ρ, ǫ, ν, a, b, p, q, τ, ζ, θ)

=







b2[(1− ν) d2 feGB2(g, a, b, p, q) + ν e2 l(g, ρ)] g < ǫ

b2 feGB2(g, a, b, p, q) ǫ ≤ g ≤ τ

b2[(1− θ) c2 feGB2(g, a, b, p, q) + θ a2 u(g, ζ)] τ < g

where the constants (i.e., quantities that do not depend on the variableg) are given as
follows:
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(1− θ) exp(−τζ)
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+

θ u(τ, ζ)

feGB2(τ, a, b, p, q)
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2 = e2

exp(ǫρ)

ρ
+ cdfeGB2(τ, a, b, p, q)− cdfeGB2(ǫ, a, b, p, q) +

a2

ζ exp(τζ)

This distribution depends on ten parameters(ρ, ǫ, ν, a, b, p, q, τ, ζ, θ) to be esti-
mated below by Maximum Likelihood (ML). Also, this distribution can be obtained
in an exact way from an optimization model similar to that of Ramos and Sanz-Gracia
(2016); we enclose a MATHEMATICA r notebook with the main optimization equa-
tions as supplementary material. The model is based heavilyon a previous model by
Parker (1999).

4 Results

In this Section we have recalled briefly the empirical results concerning the US sam-
ples on use.

We have estimated the studied distributions by the method ofMaximum Likeli-
hood (ML), using the software MATLABr and MATHEMATICA r. We have reported
on Tables 2, 3 and 4 the estimated values of the parameters forthe Student-t, the
adLn and dmeGB2 and the corresponding standard errors (SE) computed according
to Efron and Hinkley (1978) and McCullough and Vinod (2003).The ML estimators
for the parameters of the normal distribution are exact, being the mean and standard
deviation of each empirical data sample, see simply Table 1.We can see that the es-
timations are rather precise in almost all cases, possibly except the estimations ofǫ
for the dmeGB2 in the samples of d1 1910, d5 1950 and d9 1990. Also, we have not
been able to estimate the adLn for the sample of all US places (2000-2010).

[Table 2 near here]
[Table 3 near here]
[Table 4 near here]
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We have computed numerically as well the means and the standard deviations
(SD) of the variableg according to the estimated Student-t, adLn and dmeGB2 dis-
tributions, which are shown in Table 5. From it, we can observe that the computed
means and standard deviations for the adLn are very similar to the empirical ones,
and those for the dmeGB2 are almost identical. More importantly, the computed stan-
dard deviations according to the dmeGB2 are always finite. Incontrast, the estimated
Student-t for the sample of all US places (2000-2010) has infinite standard deviation.

[Table 5 near here]
In order to assess the goodness of fit of the four distributions explicitly shown

in this paper, we have used three standard statistical tests: the Kolmogorov–Smirnov
(KS) test, the Crámer–von Mises (CM) test and the Anderson–Darling (AD) test.
These test are very powerful when the sample size is as high asin the cases of this
article (Razali and Wah, 2011) and the last one is particularly useful when one wants
to see the adequacy of the distribution at the tails, see, e.g., Cirillo (2013). The results
are shown on Table 6. Very briefly, the normal and Student-t distributions arestrongly
rejected always by the three tests. The adLn is not rejected by the three tests for the
samples d1 1910, d5 1950 but otherwise always rejected. Meanwhile, the dmeGB2 is
not rejected in 100% of the cases, and not by a small margin precisely.

[Table 6 near here]
Additionally, we have computed more metrics allowing to select the best one

amongst the hypothesized distributions, namely themsd and the pseudoR2 quantities
adapted from Duranton (2007) to this particular case (we simply replace the log-
variable by the variable under study):

msd =
1

m

m
∑

j=1

[Actual log growth rate(j)

−Mean Simulated log growth rate(j)]2 (1)

R2 = 1−
msd

var
(2)

wherevar is the empirical variance for log-growth rates andm is the number of
observations in the empirical sample.

For themsd andR2 quantities, we have generated 100 random samples6 and the
results are shown in Table 7. From it, it is clear that the dmeGB2 provides a much
better fit than the other distributions.7

[Table 7 near here]
Also, we have computed the Akaike Information Criterion (AIC) and Bayesian

or Schwarz Information Criterion (BIC) (Burnham and Anderson, 2002, 2004), very

6 Each of these samples is of the sample size of the empirical data. The total generated observations
range from about 298,000 to 3,020,000 depending on the case under study and we hope the results to be
statistically significant. We have chosen a number of generated samples reasonably high enough while
maintaining computational feasibility.

7 The pseudo-R2 becomes negative for the Student-t and the sample of all US places (2000-2010). This
is because the estimated Student-t in this case has infinite standard deviation and the generated samples
according to the former induce a hugemsd quantity.
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well adapted to the maximum likelihood estimation we have performed before. For
the computed AIC and BIC see the Table 8.

By these two different types of criteria we can see that the dmeGB2 greatly out-
performs the other distributions when considering the log-growth rates of US city
sizes for all the used samples, in spite of the fact that our new distribution depends on
ten parameters instead of less parameters of the other distributions. In particular, the
dmeGB2 is much better than the normal distribution for describing these log-growth
rates.

[Table 8 near here]
As a complement of the KS, CM, AD,msd, pseudo-R2, AIC and BIC criteria,

we have shown in Figure 1 an informal graphical approximation of the obtained fits
for three of the used samples. We can observe excellent fits with small deviations, if
any, at the tails (the deviations at the tails are subject to an amplification effect, see,
e.g., González-Val et al. (2013)). However, the overall fitof the densities is visually
excellent. Let us remark that on the plots of the tails thecdf for the lower tail or
1− cdf for the upper tail are nearly exponential, and therefore thegraphs are almost
linear, in agreement with previous knowledge (Johnson et al., 1995; Stanley et al.,
1996; Bottazzi and Secchi, 2011).

[Figure 1 near here]

5 Discussion and conclusions

In the preceding Section we have seen that a very appropriateparametric model for
the log-growth rate distribution of the city size of the US isthe newly introduced (in
Subsection 3.4) dmeGB2.

In our opinion, the excellent parametric fit of this distribution is by itself a signif-
icant advance of the theory of the growth of city sizes.

Likewise, the normal distribution for the log-growth ratesis clearly rejected em-
pirically in all our samples, so one of the assumptions of theGibrat’s process (see,
e.g., Sutton (1997) and references therein, Eeckhout (2004) and Delli Gatti et al.
(2005)) may not hold, and it deserves a reconsideration.

The variances given by the dmeGB2 in all our cases of study arefinite, so we
have found an example of distribution for the log-growth rates of city size for the US,
always not rejected empirically and with finite variances. This is an alternative to the
normal distribution.

This does not mean that other assumptions of Gibrat’s process do not hold in
principle. On the contrary, more research can be done in thisrespect, see the recent
article Ramos (2015).

However, one might wonder how the city size distribution would be under the
log-growth rates behaving in the described way. We should recall first that regarding
the US city size distribution the recent work of Ramos and Sanz-Gracia (2016) has
appeared. In it, an empirically observed distribution (“threshold double Pareto Gen-
eralized Beta 2 (tdPGB2)” for places is derived in an exact way from a theoretical
model of maximization of the net output of the system of cities in the US. In this
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model, the resulting city size distribution has parametersthat depend on the elastici-
ties of the production function with respect to the population, to the number of cities,
and of the congestion costs with respect to population. The threshold parameters sep-
arating the lower tail, the body and the upper tail are endogenously determined by the
ML estimation procedure. In this way an economic model generates exactly the city
size distribution. Time changes in the mentioned elasticities induce time changes in
the city size distribution, and therefore log-growth ratesare generated. It is striking
that the observed US city log-size distributions and log-growth rates have distribu-
tions of thesamefamily dmeGB2, according to Ramos and Sanz-Gracia (2016) and
this paper.

Additionally, the usual Gibrat’s process takes the log-growth rates to be normal,
and then, the resulting log-sizes are obtained adding up theinitial log-sizes and the
consecutive log-growth rates. If the log-growth rates are identically and indepen-
dently distributed (i.i.d.) as normal distributions, the resulting distribution for log-
sizes will be normal as well, because theconvolutionof normal distributions is again
a normal distribution, in anexactway.

The class of distributions which areexactlyclosed under convolution is known
to consist of theα-stable ones, see, e.g., Zolotarev (1986); Uchaikin and Zolotarev
(1999) and references therein. Except in the case ofα = 2, which corresponds to
the normal distribution, these distributions have the problem of possessing infinite
variances.

In this article we have proved empirically that the log-growth rates of US city
sizes do not follow a normal distribution and a better model than all of the previously
used distributions has been proposed successfully, namelythe dmeGB2. This distri-
bution has finite variances for the cases studied (and almostequal to the empirical
ones). Since the observed distributions for US city log-sizes and log-growth rates are
so similar in practical terms, this leads us to think that thenew family of distributions
dmeGB2 may beapproximatelyclosed under convolution in a sense that has to be
made precise in statistical terms.8 If this property holds, it might be a link between
the observed log-growth rates and the resulting observed city log-size distribution,
with a similar rationale of the standard process of generating a lognormal distribution
for city sizes out of normal distributions for log-growth rates.

All these implications are to be compared with current theories of urban growth,
see, e.g., Duranton and Puga (2014); the review of this work from this new perspec-
tive will probably shed new light into the determinants of city size and city growth.

In conclusion, our research complements that of other authors and possibly opens
a new avenue for further investigations.

Acknowledgements I would like to thank Rafael González-Val and Marı́a Vera-Cabello for the databases
used and Fernando Sanz-Gracia for constructive comments ona previous version of the manuscript, al-
though all remaining errors are mine.

8 In another paper or papers as it is out of the scope of the present article.
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Table 1: Descriptive statistics of the log-growth rates forthe used samples

Sample Obs Mean SD Min Max
Ip 1990-2000 19,048 0.075 0.262 -4.467 3.581
Ap 2000-2010 24,685 0.035 0.282 -5.278 6.075
CCA 1991-2000 (2 km) 30,201 0.105 0.156 -2.398 3.773
d1 1910 3,291 0.186 0.415 -1.914 3.723
d5 1950 3,088 0.047 0.312 -2.398 2.705
d9 1990 2,987 0.056 0.261 -1.580 3.581

Table 2: ML estimators and standard errors (SE) for the Student-t and the studied
log-growth rate samples. The estimators for the normal distribution are the mean and
standard deviation of the log-growth data, see Table 1

Sample Student-t
µ (SE) σ (SE) ν (SE)

Ip 1990-2000 0.040 (0.001) 0.124 (0.001) 2.123 (0.033)
Ap 2000-2010 0.004 (0.001) 0.107 (0.001) 1.804 (0.022)
CCA 1991-2000 (2 km) 0.083 (0.001) 0.097 (0.001) 3.426 (0.053)
d1 1910 0.148 (0.006) 0.263 (0.005) 3.001 (0.135)
d5 1950 0.014 (0.004) 0.179 (0.003) 2.680 (0.115)
d9 1990 0.031 (0.003) 0.135 (0.003) 2.394 (0.098)

Table 3: ML estimators and standard errors (SE) for the asymmetric double Laplace
normal (adLn) and the studied log-growth rate samples.

Sample adLn
a (SE) b (SE) µ (SE) σ (SE)

Ip 1990-2000 5.114 (0.040) 8.519 (0.079) -0.003 (0.001) 0.009 (0.006)
Ap 2000-2010 – – – –
CCA 1991-2000 (2 km) 7.755 (0.048) 19.465 (0.180) 0.027 (0.001) 0.038 (0.001)
d1 1910 3.005 (0.058) 4.679 (0.106) 0.067 (0.005) 0.074 (0.012)
d5 1950 4.197 (0.084) 6.537 (0.154) -0.039 (0.004) 0.055 (0.008)
d9 1990 5.230 (0.105) 7.851 (0.182) -0.008 (0.003) 0.029 (0.007)
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Table 4: ML estimators and standard errors (SE) for the dmeGB2 and the studied
log-growth rate samples.

Sample dmeGB2
ρ (SE) ǫ (SE) ν (SE)

Ip 1990-2000 2.69 (0.13) -0.000 (0.014) 0.082 (0.006)
Ap 2000-2010 1.80 (0.08) -0.000 (0.012) 0.054 (0.003)
CCA 1991-2000 (2 km) 3.04 (0.32) -0.121 (0.004) 0.265 (0.023)
d1 1910 3.27 (0.15) 0.000 (0.026) 0.490 (0.034)
d5 1950 1.79 (0.31) 0.000 (0.080) 0.032 (0.010)
d9 1990 2.89 (0.33) 0.000 (0.027) 0.085 (0.017)

a (SE) b (SE) p (SE) q (SE)
Ip 1990-2000 34.79 (0.27) -0.006 (0.001) 0.327 (0.003) 0.193 (0.002)
Ap 2000-2010 54.61 (0.38) -0.017 (0.001) 0.192 (0.002) 0.150 (0.001)
CCA 1991-2000 (2 km) 20.40 (0.10) -0.019 (0.001) 1.581 (0.012) 0.432 (0.003)
d1 1910 11.92 (0.31) -0.067 (0.006) 0.911 (0.038) 0.199 (0.006)
d5 1950 22.17 (0.55) -0.080 (0.005) 0.353 (0.009) 0.122 (0.005)
d9 1990 63.83 (1.91) -0.041 (0.004) 0.155 (0.005) 0.038 (0.002)

τ (SE) ζ (SE) θ (SE)
Ip 1990-2000 0.31 (0.01) 2.57 (0.08) 0.51 (0.02)
Ap 2000-2010 0.17 (0.01) 2.45 (0.06) 0.46 (0.01)
CCA 1991-2000 (2 km) -0.02 (0.02) 2.15 (0.21) 0.02 (0.04)
d1 1910 0.36 (0.03) 5.09 (0.30) 0.38 (0.04)
d5 1950 0.16 (0.01) 7.94 (0.37) 0.49 (0.03)
d9 1990 0.11 (0.01) 7.91 (0.26) 0.74 (0.02)

Table 5: Means and standard deviations (SD) according to theestimated distributions
and the studied log-growth rate samples. Those corresponding to the normal distribu-
tion are exactly the mean and standard deviations of the empirical samples. Compare
with the values in Table 1.

Sample Student-t adLn dmeGB2
Mean SD Mean SD Mean SD

Ip 1990-2000 0.040 0.514 0.075 0.228 0.075 0.260
Ap 2000-2010 0.004 ∞ – – 0.035 0.273
CCA 1991-2000 (2 km) 0.083 0.150 0.105 0.144 0.105 0.155
d1 1910 0.148 0.456 0.186 0.402 0.186 0.415
d5 1950 0.014 0.355 0.047 0.288 0.047 0.312
d9 1990 0.031 0.332 0.056 0.232 0.056 0.261
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Table 6:p-values (statistics) of the Kolmogorov–Smirnov (KS), Cramér–Von Mises
(CM) and Anderson–Darling (AD) tests for the used samples and density functions.
Non-rejections at the 5% significance level are marked in bold

Sample normal Student-t
KS CM AD KS CM AD

Ip 1990-2000 0 (0.129) 0 (109.391) 0 (614.161) 0 (0.042) 0 (9.401) 0 (90.109)
Ap 2000-2010 0 (0.154) 0 (204.089) 0 (1132.13) 0 (0.037) 0 (9.897) 0 (87.714)
CCA 1991-2000 (2 km) 0 (0.097) 0 (97.453) 0 (602.344) 0 (0.054) 0 (16.381) 0 (185.934)
d1 1910 0 (0.086) 0 (9.103) 0 (52.647) 0.002 (0.033) 0.004 (0.933) 0 (9.300)
d5 1950 0 (0.101) 0 (11.783) 0 (68.490) 0.010 (0.030) 0.010 (0.758) 0 (8.568)
d9 1990 0 (0.120) 0 (16.284) 0 (91.614) 0.003 (0.033) 0.010 (0.764) 0 (7.566)

adLn dmeGB2
KS CM AD KS CM AD

Ip 1990-2000 0 (0.029) 0 (3.450) 0 (24.177) 0.770 (0.005) 0.588 (0.099) 0.248 (1.253)
Ap 2000-2010 – – – 0.689 (0.005) 0.734 (0.073) 0.678 (0.569)
CCA 1991-2000 (2 km) 0.017 (0.010) 0.008 (0.779) 0 (8.315)0.798 (0.004) 0.886 (0.048) 0.927 (0.314)
d1 1910 0.543 (0.014) 0.620 (0.093) 0.405 (0.914) 0.9979 (0.007) 0.9997 (0.015) 0.9999 (0.103)
d5 1950 0.119 (0.022) 0.218 (0.229) 0.086 (2.053) 0.9307 (0.010) 0.9523 (0.036) 0.9906 (0.199)
d9 1990 0.013 (0.030) 0.046 (0.474) 0.012 (3.727)0.9737 (0.009) 0.9883 (0.026) 0.9933 (0.188)

Table 7: Values of themsd (in units of 10−3) and of the pseudoR2 inspired by
Duranton (2007) for the used samples and distributions. Themost favoured values
are marked in bold. From the definition of the pseudoR2 in Eq. (2) it may happen
that it becomes negative ifmsd is huge.

Sample normal Student-t
msd R2 msd R2

Ip 1990-2000 13.12 0.8095 25.36 0.6319
Ap 2000-2010 22.66 0.7160 130.22 -0.6325
CCA 1991-2000 (2 km) 4.44 0.8168 2.15 0.9115
d1 1910 13.11 0.9239 11.33 0.9342
d5 1950 12.03 0.8763 8.46 0.9130
d9 1990 11.60 0.8298 8.12 0.8810

Sample adLn dmeGB2
msd R2 msd R2

Ip 1990-2000 4.46 0.9352 0.64 0.9907
Ap 2000-2010 – – 1.00 0.9874
CCA 1991-2000 (2 km) 1.57 0.9352 0.09 0.9963
d1 1910 1.11 0.9935 0.18 0.9990
d5 1950 2.89 0.9703 0.16 0.9984
d9 1990 3.87 0.9432 0.52 0.9924
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Table 8: Maximum log-likelihoods, AIC and BIC for the used distributions and log-
growth rates samples. The lowest values of AIC and BIC for each sample are marked
in boldface

Sample normal Student-t
log-likelihood AIC BIC log-likelihood AIC BIC

Ip 1990-2000 -1,548 3,100 3,116 3,067 -6,129 -6,105
Ap 2000-2010 -3,817 7,638 7,655 5,244 -10,482 -10,458
CCA 1991-2000 (2 km) 13,302 -26,600 -26,584 18,284 -36,561 -36,536
d1 1910 -1,775 3,554 3,567 -1,443 2,893 2,911
d5 1950 -784 1,572 1,584 -301 608 626
d9 1990 -228 459 471 410 -813 -795

adLn dmeGB2
log-likelihood AIC BIC log-likelihood AIC BIC

Ip 1990-2000 3,053 -6,098 -6067 3,509 -6,998 -6,920
Ap 2000-2010 – – – 5,625 -11,231 -11,150
CCA 1991-2000 (2 km) 19,251 -38,493 -38,460 19,771-39,521 -39,438
d1 1910 -1,405 2,818 2,842 -1,388 2,795 2,856
d5 1950 -295 598 622 -254 529 589
d9 1990 384 -760 -736 446 -873 -813
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Fig. 1: First row: empirical and estimated dmeGB2ln(cdf) for the lower tail. Second
row: empirical (Gaussian kernel density, bandwidth=0.02)and estimated dmeGB2
density functions. Third row: empirical and estimated dmeGB2 ln(1 − cdf) for the
upper tail. Left-hand column: log-growth rates of all US places (2000-2010) and
dmeGB2. Middle column: log-growth rates of US CCA clusters (1991-2000), 2 km
and dmeGB2. Right-hand column: log-growth rates of US d1 1910 and dmeGB2.
Empirical in blue, estimated in red in all cases.
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