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Abstract

The θ dependence of the vacuum energy density in CPN−1 models is re-analysed in the semiclassical
approach, the 1/N expansion and arguments based on the nodal structure of vacuum wavefunctionals. The
1/N expansion is shown not to be in contradiction with instanton physics at finite (spacetime) volume V .
The interplay of large volume V and large N parameter gives rise to two regimes with different θ depen-
dence, one behaving as a dilute instanton gas and the other dominated by the traditional large N picture,
where instantons reappear as resonances of the one-loop effective action, even in the absence of regular
instantonic solutions. The realms of the two regimes are given in terms of the mass gap m by m2V � N

and m2V � N , respectively. The small volume regime m2V � N is relevant for physical effects associ-
ated to the physics of the boundary, like the leading rôle of edge states in the quantum Hall effect, which,
however, do not play any rôle in the thermodynamic limit at large N . Depending on the order in which the
limits N → ∞ and V → ∞ are taken, two different theories are obtained; this is the hallmark of a phase
transition at 1/N = 0.
© 2010 Elsevier B.V. All rights reserved.
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1. Introduction

A lack of nonperturbative analytical methods haunts the study of the infrared behaviour of
confining field theories such as QCD. The main tools used for this purpose rely on approx-
imations (e.g., semiclassical, large number of colours), and rigorous results are attainable in
few corners of parameter space. The bordering region between topology and field physics is
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Fig. 1. Structure of the vacuum energy density in the traditional large N picture (above) and in the semiclassical picture
dominated by instantons (below).

especially troubling, since different methods arise sometimes from apparently incompatible hy-
potheses and physical pictures.

Two-dimensional CPN−1 sigma models [1–3] are regarded as a convenient testing ground to
prepare the assault on four-dimensional gauge theories, because both kinds of theories share a
number of important properties: conformal invariance at the classical level, asymptotic freedom,
dynamical mass generation, confinement, existence of a topological term θ and instantons for all
values of the number of colours N .

A relevant problem in these theories with topological properties is the θ dependence of the
vacuum energy density, the quantity that determines the phase structure of the theory (for a recent
review, see [4]). In particular, the fate of the discrete parity symmetry P upon quantisation at the
values θ = 0 and θ = π (the only values for which it is classically conserved) is an issue.

Perhaps the simplest model in which the subtlety of the θ -dependence of the vacuum energy
E0 is manifest is the quantum rotor [5], i.e., the quantum mechanical problem of the dynamics of
a charged particle on the circumference S1 enclosing a magnetic flux θ . In the absence of pertur-
bations, the vacuum energy is quadratic in θ ; periodicity of the physics in θ → θ + 2π imposes
that the ground level is twofold degenerate for θ = π (i.e., half a flux quantum across the region
bounded by S1) and there parity is spontaneously broken. This, as we will see, mimics the tra-
ditional picture of the large N expansion in CPN−1 models. However, even slight perturbations
compatible with reflection symmetry lift the degeneracy of the rotor, by a level repulsion mech-
anism, making the curve E0(θ) smooth at θ = π . A convenient approximate method is that of
the dilute instanton gas, where the vacuum is understood in terms of tunnelling processes among
classical vacua. In the dilute approximation, the vacuum energy (a pure nonperturbative effect) is
a smooth periodic function of θ proportional to (1− cos θ). This corresponds to the semiclassical
approximation in CPN−1 models, where instantons play an all-important rôle.

These two regimes have the following paradigmatic expressions for E0(θ), illustrated in Fig. 1:

E0(θ) ∝ min
{
(θ + 2πk)2; k ∈ Z

}
(large N), (1)

E0(θ) ∝ 1 − cos θ (semiclassical). (2)
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We now consider the situation in CPN−1 models. Exact solutions are known for the quantum
CP1 model (equivalent to the O(3) model) both at θ = 0 and θ = π . In the first case [6], the solu-
tion exhibits a mass gap, the spectrum consists of an SU(2) triplet, and parity is conserved. This
agrees with the Haldane map [7], which transforms this model into a chain of integer classical
spins. Vafa and Witten [8] argued that there is no first order phase transition with spontaneous par-
ity breaking at θ = 0 for QCD, their argument being applicable straightforwardly to all CPN−1

models (see [9] for a proof of the Vafa–Witten theorem using the topological charge as an order
parameter).

The exact solution of the quantum CP1 model at θ = π [10] also conserves parity but shows
no mass gap (this result was anticipated in [11]). The critical behaviour of the model is described
by an SU(2) WZNW model at level k = 1. This also agrees with the Haldane map, which trans-
forms this model into a chain of half-odd spins. By the Lieb–Schulz–Mattis theorem [12], the
absence of mass gap implies that P is conserved. On the other hand, the absence of a first order
phase transition with spontaneous P breakdown at θ = π has been argued to hold for all CPN−1

models [13], by analyzing the nodal structure of the vacuum in the Hamiltonian formalism [14]
in analogy with QCD [15].

For the intermediate region 0 < θ < π , analytical techniques are lacking, and we must rely
on approximations and numerical simulations. We will discuss two important approximations,
which have been argued to be mutually incompatible: the semiclassical method and the 1/N

expansion.
The semiclassical approach [16] is based, as in the case of the rotor, on the picture of the

quantum vacuum of 4d gauge theories and 2d CPN−1 models built from tunnelling processes
among classical vacua. These nonperturbative processes are dominated by instantons and anti-
instantons, (anti)selfdual solutions of the classical Euclidean equations of motion. A dilute gas
approximation gives a θ dependence of the vacuum energy density of the form

E0(θ) ∝ m2(1 − cos θ), (3)

where m is the mass gap. This dependence cannot be seen in perturbation theory due to the
nonanalytic dependence of the mass gap on the coupling.

However, a vacuum based on a dilute gas of instantons and antiinstantons is not satisfactory,
since the statistical ensemble is dominated by the infrared divergent contribution of arbitrarily
large instantons, whose density n as a function of size ρ is

n(ρ)dρ ∝ (�ρ)N
dρ

ρ3
(4)

for the CPN−1 model, with Λ a typical scale of the theory. A statistical mechanical treatment
of interacting instanton fluids has been developed [17,18], bringing about the instanton liquid
picture of the QCD vacuum [19]. This may be very relevant for the behaviour of these theories at
finite temperature and high density. We note in passing that the dilute gas approximation breaks
down as well in the ultraviolet for the CP1 model, as pointed out by Lüscher [20] building on his
work with Berg [21] on the geometric definition of a topological charge density on the lattice.
Technically, the topological susceptibility in this model does not scale according to the perturba-
tive renormalisation group due to small distance fluctuations. This is reflected in the singularity
of (4) as ρ → 0 for N = 2; it may also be understood a consequence of the slow vanishing rate
of the density of Lee–Yang zeros as θ → 0 [9]. What is remarkable is that, although the semi-
classical analysis does not reveal any ultraviolet instanton singularity in the case of CP2 model,
numerical simulations suggest a similar pathology [22].
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The 1/N expansion [23,24] stands as an alternative to the semiclassical method. This tech-
nique is based on the simplification of both 4d SU(N) gauge theories and 2d CPN−1 models
when N is taken to infinity keeping certain parameter combinations constant.

The 1/N expansion of CPN−1 models, as developed in [3] and [25], agrees at θ = 0 with
the known spectrum, given by a massive particle in the adjoint representation of SU(N). The
mass mT is generated dynamically, and the particle turns out to be a composite state of two
fundamental fields, bound together by a Coulomb potential. For θ 	= 0, this analysis predicts a
quadratic θ dependence

E0(θ) = 3

2π

m2
Tθ2

N
(5)

of the vacuum energy density around θ = 0. This dependence can be made to agree with the
fundamental requirement that physics be periodic in θ with period 2π only if there is a first order
cusp at odd multiples of θ = π , i.e., a first order phase transition accompanied by spontaneous
parity breakdown, as shown in the upper part of Fig. 1.

Instanton effects, being nonperturbative, are not visible in the perturbative expression (5). This
led Witten [25] to argue that the 1/N expansion is not sensitive to instantons — equivalently, that
instantons play no significant rôle in the quantum CPN−1 models (or in 4d gauge theories) to the
extent that the 1/N expansion is a good approximation thereof. Jevicki [26], however, argued that
instantons resurface in the 1/N expansion as poles of the integrand of the partition function Z

(Eq. (8)), and that Z can be computed both by the saddle point method and by using a functional
Cauchy theorem summing the residues of all these poles (representing resonances). Then the
large N limit and instanton effects would not be a priori incompatible with each other.

The quadratic dependence (5) agrees with the holographic picture provided by the Malda-
cena conjecture [27], and moreover with lattice measurements of the topological susceptibility
of CPN−1 models (see [4] for a review). The Witten–Veneziano formula [28,29], derived in this
approximation, gives a phenomenologically correct value of the η′ mass in terms of the topo-
logical susceptibility at θ = 0. However, the appearance of a first order cusp at θ = π is in
contradiction with the results arising from the nodal analysis of the vacuum [13], and with the
intuition that level repulsion generically destroys level crossings.

In this work we show how this discrepancy stems from the fact that the large N limit and
the thermodynamical limit do not commute. The traditional formulation of the 1/N expan-
sion starts directly at infinite spacetime volume V = LT = ∞. As we shall see, a procedure
in which the thermodynamic limit is taken after the N → ∞ limit provides results compatible
both with instanton physics and with the rigorous results at θ = π , and different from the re-
verse order of limits. A finite volume analysis is in order. This agrees with Schwab’s [30,31]
and Münster’s [32,33] approach in the case of the sphere; we moreover outline the application
of Jevicki’s residue method. We find the case of the torus much more tractable and amenable
to explicit computation after integration over the dual torus parametrising the different holomor-
phic bundle structures within each topological charge sector. In particular, Jevicki’s approach
requires computation of the residues of meromorphic functions instead of functionals, and his
programme can be carried out in the simplest cases exhibiting the reappearance of instantons
as resonances (poles) in the one-loop effective action. Remarkably, in spite of the absence of
regular unit charge instantons on the torus [34], the contribution of this sector is nonzero in the
resonance approach: this we interpret as the effect of rough configurations near the forbidden
regular instanton.
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At finite volume there are two regimes: one dominated by instantons for low mass theories,
m2V � N , and another regime where they are strongly suppressed, m2V � N . The second
regime is the relevant one for CPN−1 theories in the thermodynamic limit, but the other regime
is relevant for effects where the finite volume or space topology play a leading rôle, like in the
appearance of edge states in the quantum Hall effect.

The structure of the article is as follows. In Section 2, the traditional large N picture of CPN−1

models is reviewed. The θ dependence of CPN−1 models formulated on the sphere is considered
in Section 3. The corresponding analysis for the case of the torus is performed in Section 4. The
consequences of this analysis are discussed in Section 5.

2. The traditional picture of the 1/N expansion

The traditional large N picture of CPN−1 models was developed in [3] and [25]. We shall
now give a brief account of it before the analysis in finite volume.

The large N method is based in a saddle point approximation of the partition function, defined
on the infinite 2d Euclidean plane, after integration of the fundamental Ψ , Ψ † fields (taking
values in C

N , i.e., in representatives of projective classes in CPN−1). We introduce the dummy
U(1) gauge field

Aν = − i

2

(
Ψ †∂μΨ − (∂μΨ )†Ψ

)
, (6)

and a scalar field α(x) imposing the constraint Ψ †Ψ = 1 at each point as a Lagrange multiplier.
Starting from the full partition function at θ = 0,

Z =
∫

DΨ DΨ † DAμδ
[
Ψ †Ψ − 1

]
exp

{
− N

2g2
0

∫
R2

d2x |DμΨ |2
}

=
∫

DΨ DΨ † DAμDα exp

{
− N

2g2
0

∫
R2

d2x |DμΨ |2 − N

2g2
0

∫
R2

d2xα(x)
(
Ψ †Ψ − 1

)}
, (7)

we perform the Gaussian integration over Ψ , Ψ † to obtain

Z =
∫

DAμDα e−NSeff[Aμ,α], (8)

where the effective action is

Seff[Aμ,α] = Tr ln
(−D2

μ − α(x)
) − 1

2g2
0

∫
R2

d2x α(x). (9)

The saddle point equations

δSeff

δα(x)
= 1

−D2
μ + α

(x, x) − 1

2g2
0

= 0, (10)

δSeff

δAμ(x)
= 2i

Dμ

−D2
μ + α

(x, x) = 0, (11)

can be solved within a renormalisation scheme to yield a saddle configuration

Aμ = 0, α = m2
T ≡ μ2 exp

{
− 2π

2

}
, (12)
gR(μ)
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where μ is a mass scale and gR the corresponding renormalised coupling.
Perturbation theory around the saddle configuration reveals a dynamical system of an N -plet

of charged scalars Ψ , with a short range interaction due to the field α, and electromagnetic
interaction due to the field Aμ. The latter develops an effective kinetic term and couples to the

scalars with effective electric charge eeff =
√

12πm2
T/N . Thus there is a confining Coulomb

interaction between scalars, and the spectrum at θ = 0 consists of (Ψ Ψ †) bound states, with
mass gap 2mT, living in the adjoint representation of SU(N).

For θ 	= 0, the topological term in the action is

−iθQ = −i
θ

2π

∫
d2x F01, (13)

Q being the magnetic flux associated with the U(1) field Aμ and its field strength Fμν , or
equivalently, the topological charge of the field Ψ , which is an integer for smooth finite-action
configurations. This term plays the rôle of an external electric field in electrodynamics. There-
fore, in this picture of the CPN−1 models, its contribution to the vacuum energy density is

E0(θ) = 1

2
e2

eff

(
θ

2π

)2

= 3

2π

m2
Tθ2

N
, (14)

yielding a topological susceptibility

χt =
(

d2 E0(θ)

dθ2

)
θ=0

= 3m2
T

πN
. (15)

This quadratic dependence is perturbative, i.e., it can be seen in terms of Feynman diagrams.
Instanton effects, nonperturbative in nature, were argued in [25] to be exponentially suppressed
in the 1/N expansion, and therefore irrelevant for the physics of the CPN−1 models. However,
we have seen that the level crossing and first order phase transition at θ = π implied by (14) and
the requirement of 2π -periodicity in θ are in contradiction with the nodal arguments of [13]. We
will next go over to a compact space with the purpose of showing that this incompatibility stems
from the infinite volume starting point of the traditional 1/N analysis.

3. 1/N expansion on S2

Clarifying the interplay of N and the volume, and the effects of taking these to infinity in
different orders, requires the CPN−1 models to be first formulated in a compact (Euclidean)
space.

Schwab [30,31] and Münster [32,33] studied the 1/N expansion of CPN−1 models on S2,
and observed that the k = 1 contribution to the partition function is dominated, for large N , by
a saddle point given by a rotationally invariant instanton (in the sense that global U(N) transfor-
mations can be compensated by O(3) rotations in Euclidean space). The saddle point equations

1

−DμDμ + α
(x, x) = 1

2g2
0

,

Dν

−DμDμ + α
(x, x) = 0, (16)

admit for N > |k|, in a uniform topological charge density background, solutions with constant
α(x). Indeed, the second equation holds due to parity. The first equation states rotation invariance
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of the propagator G(x,x) of a particle with mass
√

α. It is easy to show that G(x,y) depends
only on the geodesic distance between x and y, and therefore the first equation has solutions with
constant α.

3.1. The effective action on the sphere

Thus, we begin [35,36] with a spherical spacetime of radius R and volume V = 4πR2, and
the action of the CPN−1 model on a background of topological charge k,

Sk = − N

2g2
0

∫
Ψ †�kΨ + N

2g2
0

∫
m2(Ψ †Ψ − 1

)
, (17)

where integration implies the measure d2x
√

g, and �k is the covariant Laplacian in the back-
ground chosen. The magnetic flux for the composite U(1) field is quantised,

ΦB = 4πR2B = 2πk, k ∈ Z. (18)

We rewrite the constant saddle point value of the α field as m2, variable still to be integrated
upon.

Integrating out Ψ , Ψ † yields the functional determinant of the operator −�k + m2, which is
computed in the ζ function renormalisation scheme at energy scale μ. Discarding unessential
factors,

Zk =
∫

dm2 e−NSeff
k , (19)

with effective action

Seff
k = ln det

(−1

μ2
�k + m2

μ2

)
− 4πR2

2g2
0

m2

≡ ln det A − 4πR2

2g2
0

m2. (20)

The eigenvalues of A are

λn = 1

μ2R2

[(
n + |k|

2
+ 1

)(
n + |k|

2

)
− k2

4
+ m2R2

]
≡ λ̃n

μ2R2
, n = 0,1,2, . . . , (21)

with degeneracy dn = 2n + |k| + 1.
We use the ζ -function definition of the determinant, equivalent to a renormalisation at scale μ:

ln detζ A =
∞∑

n=0

dn lnλn =
∞∑

n=0

dn ln λ̃n −
( ∞∑

n=0

dn

)
ln

(
μ2R2)

→ −ζ ′̃
A(0) − ζÃ(0) ln

(
μ2R2), (22)

ζÃ being the ζ function associated with the operator Ã ≡ μ2R2 A, i.e. the analytic continuation
of

ζÃ(s) ≡
∞∑ dn

λ̃s
, (Re s > 1) (23)
n=0 n
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Fig. 2. Effective action in the k = 1 sector on the sphere, for real m2R2.

for all complex s 	= 1.
From the small s expansion of (23), we obtain the effective action for topological sector k:

Seff
k = −ζ ′̃

A(0) − ζÃ(0) ln
(
μ2R2) − 4πR2

2g2
R

m2

= 2

(
k2

4
+ 1

4
− m2R2

)
+

(
m2R2 − 1

3

)
ln

(
μ2R2) − 4πR2

2g2
R

m2

+ 2

√
k2

4
+ 1

4
− m2R2 ln

Γ (
|k|+1

2 +
√

k2

4 + 1
4 − m2R2)

Γ (
|k|+1

2 −
√

k2

4 + 1
4 − m2R2)

− 2ζ ′
H

(
−1; |k| + 1

2
+

√
k2

4
+ 1

4
− m2R2

)

− 2ζ ′
H

(
−1; |k| + 1

2
−

√
k2

4
+ 1

4
− m2R2

)
. (24)

Here we have used the Hurwitz zeta function ζH (s;v), defined by analytical continuation to all
s 	= 1 of

ζH (s;v) =
∞∑

n=0

(n + v)−s = 1

Γ (s)

∞∫
0

dt
t s−1e−vt

1 − e−t
, Re s > 1, (25)

and its derivative ζ ′
H (s;v) with respect to s. Function (24) is defined for all complex values of

m2R2, bar isolated singularities.

3.2. Zeros and saddle points of the effective action

In order to compute Zk , integration over m2 is still to be performed, through imaginary values
in order to ensure convergence.
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Let us study the behaviour of the effective action for real m2R2 (see Fig. 2). To begin with,
the integrand of Zk has N(2n + |k| + 1)-fold poles at

m2R2 = pn = −
(

n + |k|
2

+ 1

)(
n + |k|

2

)
+ k2

4
, n = 0,1,2, . . . , (26)

reproducing the eigenvalues and degeneracies of −�k + m2. In this sense, in the way predicted
by Jevicki, the partition function can be computed by deforming the integration curve so as
to surround the poles, and summing the residues at each of them. However, the problem of
computing and summing the residues is too difficult to be tackled analytically, although the
previous formulae can be used in a numerical approach (more progress can be made analytically
in the case of the torus, as will be seen in next section).

Alternatively, we can use the saddle point method. The zeros of the derivative,

dSeff
k

d(m2R2)
= ln

(
μ2R2) − 4π

2g2
R

− ψ

( |k| + 1

2
+

√
k2 + 1

4
− m2R2

)

− ψ

( |k| + 1

2
−

√
k2 + 1

4
− m2R2

)
, (27)

alternate with the poles in the real m2R2 axis, as seen in Fig. 2 (here ψ(z) = Γ ′(z)/Γ (z) is the
digamma function). There is a unique saddle point s0 to the right of the first pole p0 = −|k|

2 ,
which we assume to be dominant.

The partition function of sector k in the saddle point approximation is

Z
(s0)
k = 1

R2
e−NSeff

k (s0)

√
2π

N |Seff ′′
k (s0)|

, (28)

up to quadratic order. Explicit results can be obtained for large m2R2, in which region the effec-
tive action can be expanded as

Seff
k = −

(
m2R2 − 1

3

)
ln

m2

μ2
− 4πR2

2g2
R

m2 + m2R2

+
(

k2

24
− 1

15

)
1

m2R2
+

(
k2

40
− 4

315

)
1

m4R4
+ O

(
m−6R−6), (29)

and the saddle point is found to be

m2
kR

2 = m2
TR2 + 1

3
−

(
k2

24
− 1

90

)
1

m2
TR2

−
(

k2

45
− 16

2835

)
1

m4
TR4

+ O
(
m−6R−6), (30)

where m2
T = μ2 exp{−2π/g2

R} is the infinite volume saddle point in (12).
The total partition function after summing all topological sectors is
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Z(s0)(θ) =
∑
k∈Z

Z
(s0)
k e−ikθ

=
√

2π

N

mT

R
exp

{
2πN

3g2
R

− Nm2
TR2 + N

90m2
TR2

}
×

∑
k∈Z

exp

{
− Nk2

24m2
TR2

− ikθ

}(
1 + O

(
m−4

T R−4))
≡

√
2π

N

mT

R
exp

{
2πN

3g2
R

− Nm2
TR2 + N

90m2
TR2

}
× ϑ3

(
θ

2π

∣∣∣∣ iN

24πm2
TR2

)(
1 + O

(
m−4

T R−4)), (31)

where the last equation uses Jacobi’s ϑ3 function:

ϑ3(z|τ) =
∑
n∈Z

eiπτn2
ei2πnz. (32)

Two asymptotic regimes for (31) can be analysed. For N � m2
TR2, the sum therein can be

truncated, keeping just the k = −1,0,1 sectors. Then the vacuum energy density has a typical
dilute instanton gas θ dependence,

E0(θ) − E0(0) = − 1

4πR2
ln

Z(s0)(θ)

Z(s0)(0)

≈ 1

4πR2
exp

{
− N

24m2
TR2

}
(1 − cos θ). (33)

But if m2
TR2 � N , using the Poisson resummation formula for the θ function in (31) and

keeping the dominant term in the dual sum, we have

Z(s0)(θ) ≈ 4
√

3πm2
T

N
exp

{
2πN

3g2
R

− Nm2
TR2 + N

90m2
TR2

− 6m2
TR2

N
θ̃ 2

}
, (34)

θ̃ being the angle in (−π,+π ] differing from θ in an integer. The corresponding vacuum energy
density coincides with the traditional large N prediction:

E (s0)
0 (θ) − E (s0)

0 (0) ≈ 3m2
T

2πN
θ̃ 2, (35)

which is periodic in θ and undergoes first order phase transitions with level crossing at θ =
(2� + 1)π , � ∈ Z.

Before commenting on these two different limiting procedures, let us perform the same anal-
ysis on the torus [35,36].

4. 1/N expansion on T2

We consider a toric spacetime of linear size L and spacetime volume V = L2. Functional
integration over the fields of the CPN−1 model on the torus involves an additional variable, the
complex coordinate u ∈ T̂2 in the dual torus parametrising the different holomorphic bundle
structures associated with the complex line bundle Ek(T2,C) [37].
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In this case, the effective action Seff
u [Aμ,α] resulting from integration of the Ψ , Ψ † fields

does not have saddle points. Specifically, the saddle point equations

1

−D2
μ + α

(x, x) = 1

2g2
0

,

Dμ

−D2
μ + α

(x, x) = 0, (36)

do not have solutions with constant α and topological charge density.

4.1. Quantum saddle points and the effective action on T2

The arguments used for the sphere can, nevertheless, be adapted to the torus, generalising the
saddle point method. By integrating over u (i.e., averaging over u), the irregularities of the saddle
point configurations are swept off [35,36]. Upon integration over u, a reduced effective action
Sred obtains,

exp
{−Sred[Aμ,α,N]} =

∫
T̂2

d2u e−NSeff
u [Aμ,α], (37)

which can be argued to be dominated by constant topological density in the large N limit. The
generalised saddle point equations

δ

δAμ

∂

∂N
Sred[Aμ,α,N ] = 0,

δ

δα

∂

∂N
Sred[Aμ,α,N] = 0, (38)

hold in this case because they remain finite as N → ∞. Their solutions we call quantum saddle
points.

To compute the effective action in the sectors of nonzero topological charge, the ζ function
method is used, renormalising at energy scale μ:

Seff
k = ln det

(−1

μ2
�k + m2

μ2

)
− m2L2

2g2
0

≡ −ζ ′
B(0) − ζB(0) ln

μ2L2

4π |k| − m2L2

2g2
0

. (39)

The spectrum of the Laplacian on the torus, in a background with uniformly distributed topolog-
ical charge 2πk 	= 0, is independent of the holonomies u and consists of Landau levels −2ω(n+
1/2), n = 0,1, . . . , with ω = |B| = 2π |k|

L2 , where L is the linear size of the torus. These levels

have |k|-fold degeneracy [38]. The zeta function for operator B = (−L2�k + m2L2)/(4π |k|) is

ζB(s) =
∞∑

n=0

|k|
(

n + m2L2

4π |k| + 1

2

)−s

= |k|ζH

(
s; m2L2

4π |k| + 1

2

)

= −|k|m
2L2

4π |k| + s|k| ln

{
1√
2π

Γ

(
m2L2

4π |k| + 1

2

)}
+ O

(
s2), (40)

yielding the effective action (see [39])
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Seff
k = −m2L2

4π

{
2π

g2
R

+ ln
4π |k|
μ2L2

}
− |k| ln

{
1√
2π

Γ

(
m2L2

4π |k| + 1

2

)}
= −m2L2

4π
ln

4π |k|
m2

TL2
− |k| ln

{
1√
2π

Γ

(
m2L2

4π |k| + 1

2

)}
(41)

where m2 is the (constant) saddle point value of the α field, and gR = gR(μ) is the renormalised
coupling at scale μ. In the last equation, m2

T = μ2 exp{−2π/g2
R(μ)} stands for the large N dy-

namically generated mass at infinite volume.
Expression (41) can be checked to coincide with the dominant term in a large volume, constant

B expansion of the corresponding effective action (24) for the sphere:

SS2

ef,k
V →∞−→ ST2

ef,k + O
(
V 0) (B = const). (42)

The contribution of topological sector k to the partition function on the torus now depends
only on m2, all other fields having been integrated out:

Zk =
∫

dm2 e−NSef
k . (43)

As in the previous sections, the integration is performed through imaginary values of m2 to
guarantee convergence.

In order to make the functional dependences in some the following expressions clear, it is
useful to define dimensionless variables

y = m2L2

4π |k| , y0 = m2
TL2

4π |k| . (44)

Then the k-sector partition function is

Zk = 4π |k|
L2

∫
dy

(
Γ (y + 1

2 )√
2π

)N |k|
e−N |k|y lny0 = 4π |k|

L2

∫
dy e−N |k|S̃(y), (45)

where the function

S̃(y) = Seff
k

|k| = y lny0 − ln
Γ (y + 1/2)√

2π
(46)

is defined for all complex values of y, except for a series of poles of the integrand of Zk , as can
be seen in Fig. 3.

For small values of y, that is, when |k| � m2L2, the exponent simplifies:

S̃(y) = −y ln
y

y0
+ y + 1

24y
− 7

2880y3
+ O

(
y−4), (47)

meaning that the effective action has an expansion in powers of the topological number k where
the first nontrivial term is quadratic:

Seff
k = −m2L2

4π
ln

m2

m2
T

+ m2L2

4π
+ πk2

6m2L2
+ O

(
k4

m6L6

)
. (48)

In the opposite limit, when |k| � m2L2, that is, for large y,

S̃(y) = ln 2 + {
lny0 − ψ(1/2)

}
y − π2

y2 − 1
ψ ′′(1/2)y3 − π2

y4 + O
(
y5). (49)
2 4 6 24
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Fig. 3. Effective action S̃(y) for the torus, with y ∈ R.

Written in terms of the effective action, we see that the leading term is linear in the absolute value
of the topological number:

Seff
k = ln 2

2
|k| + m2L2

4π

{
ln

m2
TL2

4π |k| − ψ(1/2)

}
+ O

(
m4L4

|k|
)

. (50)

Notice the change of asymptotic behaviour of the effective action Seff
k in the different topological

sectors. According to Eqs. (48) and (50), for small values of the topological charge, |k| < m2V ,
the effective action is quadratic in k, whereas for large topological charges its leading term is
linear in |k| [9]. This change of asymptotic behaviour has important physical consequences.

4.2. Zeros and saddle points on the torus

Extrema of S̃(y) allow us to perform a saddle point approximation by deforming the integra-
tion contour so that it passes through the dominant extremum. The exponent in the Zk integral
has an overall N |k| factor, therefore the saddle point approximation is a large N |k| expansion,
and results in terms of y are general for all k 	= 0 sectors.

Poles of the integrand of Zk give us a chance of testing Jevicki’s proposal, since functional
integration has been reduced to integration along a path in the complex plane. The integration
contour must be deformed so that it surrounds each pole. In spite of the fact that various fields
have been integrated out in the effective action we are working with, we shall see that instantons
reappear in these poles.

The structure of saddle points of S̃k and poles of the integrand of Zk is represented in Fig. 4.

4.2.1. Poles and Jevicki’s approach
Let us consider the poles. There is an infinite series of N |k|-fold poles at values mn of m such

that

y = m2
nL

2

4π |k| ≡ pn = −
(

n + 1

2

)
, n = 0,1,2, . . . . (51)

Their multiplicity is equal to the complex dimension of the moduli space of charge k instantons
in the CPN−1 model (see [40]).

The partition function can be written as a sum over residues à la Jevicki,
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Fig. 4. Structure of poles pn of the effective action (squares) and saddle points sn of the integrand of the partition function
(circles) on the torus, in the complex plane of the variable y = m2

TL2/(4π |k|). Note that zeros and poles tend to coalesce
as n grows.

Zk = 8π2|k|
L2

∞∑
n=0

Res
y→pn

(
Γ (y + 1

2 )√
2π

)N |k|
e−N |k|y lny0

= 8π2|k|
L2

(
y0

2π

)N |k|
2

∞∑
n=0

enN |k| lny0 Res
ε→0

{
y−ε

0 Γ (−n + ε)
}N |k|

. (52)

There is no difficulty in computing and summing the residues for the first cases, N |k| = 1 and
N |k| = 2:

ZN |k|=1 = √
2

2πmT

L
exp

{
−m2

TL2

4π

}
(53)

and

ZN |k|=2 = m2
TK0

(
2m2

TL2

4π |k|
)

(54)

(where K0 is a modified Bessel function), but the partition function for higher values of N |k|
turns out to be more difficult to compute. From the expansion of (52), we can write it as

Zk = 8π2|k|
L2

(
y0√
2π

)N |k|
2

∞∑
n=0

(
(−y0)

n

n!
)N |k|

TN |k|−1,n(y0). (55)

The function TR,n(y0) is given by

TR,n(y0) =
∞∑

r,s,t=0

δr+s+t,Rarbsct,n, (56)

with coefficients defined by the expansions
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y−ε
0 =

∞∑
r=0

arε
r ,

πε

sinπε
∼

∞∑
s=0

bsε
s,

n!
Γ (n + 1 − ε)

∼
∞∑
t=0

ct,nε
s . (57)

Expressions for ar , bs are readily found,

ar = (− lny0)
r

r! ,

bs =
{

2(2s−1−1)πs |Bs |
s! , s even,

0, s odd,
(58)

where Bs are Bernoulli numbers. As for ct,n, it can be written as a sum over Young tableaux of
order t ,

ct,n =
∑

Y.T.(t)

(−1)
t−∑t

j=1 νj

∏t
i=1[ψ(i−1)(n + 1)]νi∏t

�=1 �!ν�ν�!
, (59)

where νj , j = 1, . . . , t , are the numbers of rows with j elements, such that
∑t

j=1 jνj = t , and
ψ is the digamma function.

As an example, for the k = 1 sector in the CP1 model we need

T1,n = ψ(n + 1) − lny0, (60)

from which Eq. (54) obtains. For the k = 2 sector in the same model, expression (59) is already
too cumbersome to compute (56) explicitly:

T3,n = −1

6
(lny0)

3 − π2

6
lny0 +

[
1

2
(lny0)

2 + π2

6

]
ψ(n + 1)

− (lny0)

(
1

2
ψ(n + 1)2 − ψ ′(n + 1)

)
+ 1

6
ψ(n + 1)3 − 1

2
ψ(n + 1)ψ ′(n + 1) + 1

6
ψ ′′(n + 1). (61)

However, it is not necessary to perform the summation in (55) to realise that the pole structure
has a natural interpretation in terms of instantons. From the original classical action

S
[
Ψ,Ψ †,Aμ,α

] = N

2g2
0

∫
T2

d2x |DμΨ |2 + N

2g2
0

∫
T2

d2x α(x)
(
Ψ †Ψ − 1

)
, (62)

the classical equations of motion(−D2
μ + α

)
Ψ = 0, α = Ψ †D2

μΨ (63)

ensure that, for classical solutions, the value of the action is given by the integral of −α:

Scl = N

2g2
0

∫
2

d2x |DμΨ |2 = N

2g2
0

∫
2

d2x (−α). (64)
T T
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The nth pole of the integrand of Zk corresponds to a value of α = m2 such that

m2L2

4π |k| = −
(

n + 1

2

)
�⇒ Scl = N

2g2
0

m2L2 = (1 + 2n)
N

2g2
0

2π |k|, (65)

i.e., it exactly matches the classical action of a multiinstanton configuration composed of an
instanton and n instanton–antiinstanton pairs (Fig. 4). This is in contrast with the case of the
sphere, where the structure of poles of the integrand of Zk does not correspond to charge k

multiinstanton configurations.
Notice that, although there are no unit charge instantons on the torus [34], there is a nontrivial

contribution of the k = ±1 sectors to the total partition function. This is so because the dominant
configurations in the partition function are not the smooth classical solutions, but rather the rough
configurations in the neighbourhood of these. The classical solution fails to exist for unit charge,
but this is a classical accident, which does not affect the quantum dynamics of the system because
of the nonzero contribution of the neighbouring configurations.

4.2.2. The saddle point method
Now let us consider the extrema of S̃(y). These are the zeros of its derivative,

dS̃(y)

dy
= lny0 − ψ(y + 1/2), (66)

and constitute a sequence y = sn, n = 0,1, . . . . Saddle points and poles alternate, s0 > p0 >

s1 > p1 > · · ·, as seen in Figs. 3 and 4. The saddle points approach the poles for large n,
limn→∞ sn/pn = 1.

If the dominant saddle point s0 lies in the region y � 1, we can find its location as an expan-
sion in powers of y−1

0 starting from (47):

s0 = y0 + 1

24y0
− 12097

576y3
0

+ O
(
y−5

0

)
. (67)

Equivalently, the infinite volume value m2
T of the saddle point receives finite volume corrections,

m2
s0

= m2
T

(
1 + 2π2|k|

3m4
TL4

+ O
(
y−6

0

))
. (68)

We evaluate the partition function in sector k, up to quadratic order,

Z
(s0)
k ≈ 4π |k|

L2

√
2π

N |k|e−N |k|S̃(s0)

(
d2S̃

dy2

)−1/2

s0

, (69)

from which

Z
(s0)
k = 4π |k|

L2

√
2πy0

N |k| exp

{
−N |k|y0 − N |k|

24y0
+ 1

16y2
0

+ 29N |k|
5760y3

0

+ O
(
y−5

0

)}
= 4πmT√

2NL
exp

{
−N

m2
TL2

4π
− π

6

Nk2

m2
TL2

+
(

π |k|
m2

TL2

)2

+ O
(
y−3

0

)}
. (70)

The partition function in the trivial topological sector can be computed in the large m2L2 limit
by substituting an integral for the sum in the definition of the ζ function,

Z0 =
∫

dm2 exp

{
N

m2L2

4π

(
ln

m2

2
− 1

)}
, (71)
mT
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and coincides with the B → 0 limit of the result for Zk . There are no poles in this sector, which
is compatible with the absence of instantons of zero topological charge, and its only saddle point
yields an approximation

Z
(s0)
0 ≈ 4πmT√

2NL
exp

{
−N

m2
TL2

4π

}
, (72)

agreeing with the result (70) for the nontrivial sectors.
The full partition function in terms of the vacuum angle θ , in the saddle point approximation,

is the sum

Z(s0)(θ) =
∑
k∈Z

Z
(s0)
k e−ikθ

≈ 4πmT√
2NL

exp

{
−N

m2
TL2

4π

}∑
k∈Z

exp

{
−π

6

Nk2

m2
TL2

− ikθ

}

= 4πmT√
2NL

exp

{
−N

m2
TL2

4π

}
ϑ3

(
θ

2π

∣∣∣∣ iN

6m2
TL2

)
. (73)

Still in the region y � 1, i.e. m2L2 � 4π |k|, let us analyse this partition function in two
different regimes, depending on the relation between the number N and m2

TL2.
For N � m2

TL2, the contribution of high topological sectors (large |k|) to (73) can be ne-
glected. Keeping just sectors k = 0,±1, we obtain

Z(s0)(θ) ≈ 4πmT√
2NL

exp

{
−N

m2
TL2

4π

}(
1 + 2 exp

{
−π

6

N

m2
TL2

}
cos θ

)
, (74)

giving rise to a vacuum energy density

E (s0)
0 (θ) − E (s0)

0 (0) = − 1

L2
ln

Z(s0)(θ)

Z(s0)(0)

≈ 4

L2
exp

{
−π

6

N

m2
TL2

}
(1 − cos θ), (75)

i.e., the typical E0(θ) dependence of a dilute instanton gas. This is a 2π -periodic function, smooth
for all values of θ including θ = ±π . Hence, there is no first order phase transition.

This regime would be compatible with a definition of the 1/N expansion in which both the
large N limit and the 1/N corrections are studied in finite volume.

However, if we move to the region m2
TL2 � N , it proves convenient to use the Poisson for-

mula in (73) to get

Z(s0)(θ) = 4
√

3πm2
T

N
exp

{
−N

m2
TL2

4π

}
ϑ

[
θ

2π
0

](
0

∣∣∣∣ i6m2
TL2

N

)
= 4

√
3πm2

T

N
exp

{
−N

m2
TL2

4π

}∑
q∈Z

exp

{
−6πm2

TL2

N

(
q + θ

2π

)2}
, (76)

where the ϑ function with characteristics is given by

ϑ

[
a

b

]
(z|τ) =

∑
exp

{
iπτ(n + a)2 + i2π(n + a)(z + b)

}
. (77)
n∈Z
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Now, it is the dual sum in q that is dominated by the low |q| terms. Defining again θ̃ as the angle
in [−π,+π ] differing from θ by an integer,

Z(s0)(θ) ≈ 4
√

3πm2
T

N
exp

{
−N

m2
TL2

4π
− 3m2

TL2

2πN
θ̃ 2

}
. (78)

This reproduces the traditional large N picture, where instanton effects are suppressed, and the
vacuum energy density depends quadratically on θ within the interval [−π,+π ]:

E (s0)
0 (θ) − E (s0)

0 (0) ≈ 3m2
T

2πN
θ̃ 2. (79)

Periodicity in θ is guaranteed because E0(θ) depends on the periodic variable θ̃ , but this
function is not smooth at odd multiples of π , where θ̃ is doubly defined, levels cross and a first
order phase transition occurs.

This regime is compatible with a definition of the 1/N expansion in which the thermodynamic
limit is performed first, and N is taken to infinity afterwards.

These results agree with the analysis of CPN−1 models on the sphere. Since the physical
pictures pertaining to the regimes N � m2

TL2 and m2
TL2 � N are different, the limits N → ∞

and V → ∞ do not commute, and the orders in which these limits are taken determine different
theories. This behaviour points towards the existence of a phase transition in the N → ∞ theory.

5. Discussion

After the careful analysis of the large N method on the sphere and the torus, we conclude that
the apparent incompatibility between instanton physics and the 1/N expansion has its cause in
the formulation of the latter in infinite volume and is a subtle effect of the noncommutativity of
the large N and thermodynamic limits.

To clarify this, consider the essential dependence of the vacuum energy density on the angle
θ , the volume V , and the number of colours N , at fixed saddle point mass mT

E0(θ) = − 1

V
ln

ϑ3
(

θ
2π

∣∣ iN

6m2
TV

)
ϑ3

(
0
∣∣ iN

6m2
TV

) , (80)

which is valid in the cases of the sphere and the torus provided we define the free energy as a
function of θ by subtraction of the contribution at θ = 0 for each N .

The various limits of (80) are best discussed in terms of a dimensionless variable x ≡
N/(6m2

TV ) and the function

N

6m2
T

E0(θ) ≡ f (θ, x) = −x ln
ϑ3

(
θ

2π

∣∣ix)
ϑ3(0|ix)

= −x ln
ϑ

[
θ/(2π)

0

] (
0
∣∣ i
x

)
ϑ3

(
0
∣∣ i
x

) . (81)

The last equation is obtained by applying the Poisson resummation formula, that is, the modular
transformation of the theta functions. For x strictly positive, f is a well defined real analytic
function of θ ∈ R. The nonanalyticities for complex θ are branch cuts located at the zeros of the
Jacobi ϑ3 function, that is, for θ = (1 + ix)π and its translations by integer multiples of 2π and
of i2πx. These zeros never occur for real values of θ .

The two limiting regimes we have been discussing are given in terms of the dimensionless
quantities as:
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• Semiclassical: send x to infinity (meaning N � m2
TV ). In this case

ϑ3

(
θ

2π

∣∣∣∣ix)
= 1 + 2e−πx cos θ + O

(
e−2πx

)
, (82)

and we recover the nonperturbative result

f (θ, x) = xe−πx(1 − cos θ) + O
(
e−2πx

)
, (83)

equivalent to

E0(θ) = 1

V
exp

{
− πN

6m2
TV

}
(1 − cos θ) + O

(
m2

T

N
exp

{
− πN

3m2
TV

})
, (84)

equivalent to (2) (and vanishing as x → ∞ together with all of its derivatives).
• Traditional large N : send x to zero (meaning N � m2

TV ). This is a problematic limit for the
modular parameter τ = ix, which leaves the upper half plane. We consider separately the
regions θ ∈ (−π,π) and θ = π (the rest of the function is obtained by periodicity):

f
(
θ ∈ (−π,π), x

) = θ2

4π
+ O

(
exp

{
−π(1 − θ/π)2

x

})
,

f (θ = π,x) = π2

4π
− x ln 2 + O

(
e−π/x

)
, (85)

reproducing (1), including the first order cusp at θ = π :

E0
(
θ ∈ (−π,π)

) = 3m2
T

2πN
θ2 + O

(
m2

T

N
exp

{
−6πm2

TV (1 − θ/π)2

N

})
,

E0(θ = π) = 3m2
T

2πN
π2 − ln 2

V
+ O

(
m2

T

N
exp

{
−6πm2

TV

N

})
. (86)

The rôle of ix as a modular parameter suggests an analogy with finite temperature models,
where the number of colours corresponds to the inverse temperature β . In this sense, we expect
that the physics at 1/N = 0 corresponds to zero temperature phenomena. The fact that the ther-
modynamic and large N limits do not commute (reflected in the behaviour of x) would suggest
the presence of a phase transition exactly at zero temperature, i.e., 1/N = 0.

Returning to physical quantities, we have shown that finite volume effects in the θ dependence
of the vacuum energy density for CPN−1 models on S2 and T2, when all topological sectors are
taken into account, give rise to two asymptotic regimes, one dominated by instanton effects
(when N � m2

TV ) and the other by the conventional large N picture (when N � m2
TV ). These

are smoothly connected by an interpolating region.
It should be realised that the basic hypotheses of the method of large N do not hold when

N � m2
TV , for which precisely the traditional large N results obtain. The saddle point technique

needs N to be the largest dimensionless parameter of the theory, in particular larger than m2
TV .

Two very different theories are defined by interchanging the noncommuting limits N → ∞ and
V → ∞. In principle, the only procedure consistent with the saddle point method is taking the
large N limit first, and then going over to the thermodynamic limit.

However, for small values of θ , where the large N approximation is expected to hold [41], both
procedures seem to make sense. Lattice measurements of the θ = 0 topological susceptibility
agree with the traditional large N picture, corresponding to performing first the V → ∞ limit,
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Table 1
Numerical values of the mass gap m for different CPN−1 models at different volumes m2L2. The models are in the
thermodynamic regime m2L2 > N in all cases. The rôle of instantons is only manifest in the cases CP1 and CP2 [22].

Reference m L m2L2 N

[42] Blatter et al. 0.165 40 43.6 2
[43] Ahmad et al. 0.179 50 80.1 2
[22] Lian–Thacker 0.111 100 123.2 2
[44] Keith–Hynes–Thacker 0.179 50 80.1 2
[22] Lian–Thacker 0.084 100 70.6 3
[45] Campostrini et al. 0.066 120 62.7 4
[47] Burkhalter et al. 0.131 32 17.6 4
[22] Lian–Thacker 0.088 100 77.4 4
[44] Keith–Hynes–Thacker 0.180 50 81.0 4
[43] Ahmad et al. 0.186 50 86.5 6
[22] Lian–Thacker 0.085 100 72.2 6
[45] Campostrini et al. 0.196 72 199.1 10
[48] Del Debbio et al. 0.192 60 132.7 10
[43] Ahmad et al. 0.212 50 112.4 10
[22] Lian–Thacker 0.058 100 33.6 10
[44] Keith–Hynes–Thacker 0.212 50 112.4 10
[48] Del Debbio et al. 0.397 42 278.0 15
[48] Del Debbio et al. 0.418 30 157.3 21
[49] Vicari 0.287 60 296.5 21
[48] Del Debbio et al. 0.305 56 291.8 21
[49] Vicari 0.411 42 298.0 41

and then taking N to infinity. However, these simulations have been only carried out for values
of the parameters such that m2

TV � N (see Table 1 and Refs. [46,50,51]), agreeing with our
analysis in the region not validated by the saddle point method. It would be interesting to rerun
these simulations for smaller volumes, still close to the thermodynamic limit with a stable mass
gap, but where an instanton-dominated θ dependence of the vacuum energy density could emerge
and eventually take over. Notice that the singularity of the topological susceptibility pointed out
by lattice simulations in the CP1 model is also found in the semiclassical scenario. The existence
of such a singularity can also be understood by the presence of a family of Lee–Yang zeros of
the analytic continuation of the partition function in the complex θ -plane, converging to θ = 0 in
the thermodynamic limit [9].

As regards the neighbourhood of θ = π , the nodal analysis of [13] appears incompatible with
a first order phase transition at θ = π . This is the behaviour of the system for lower values of
N for any volume, i.e. CP1 and CP2 models. For larger values of N , for instance N > 4, this
behaviour is only observed for small volumes, i.e. volumes which verify m2V � N . For larger
volumes the effect is swept off by the infrared fluctuations and the system undergoes a phase
transition at θ = π with spontaneous CP symmetry breaking.

The behaviour for intermediate values of θ has so far proved elusive to numerical techniques,
due to the inaccuracies inherent to lattice simulations in this region. Let us however remark
that a novel technique [52] based on analytically continuing the θ dependence to imaginary
values has been introduced to overcome this problem. This technique has been applied to the
CP9 model [53], with conclusions agreeing with the usual large N expansion. The consistency
of this technique for any value of N is supported by the absence of singularities in the analytic
extension of the partition function to the whole θ -plane [9].
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Summing up, the large N method is compatible with instanton effects. Besides, the results on
θ dependence obtained with this tool agree with the known behaviour at θ = 0, i.e., the vacuum
energy density is differentiable there and the Vafa–Witten theorem holds. It is also compatible
with the numerical determination of the topological susceptibility at θ = 0. The analysis of the
poles of the partition function on the torus supports the method of Jevicki, whereby instantonic
effects appear in the large N limit in the form of resonances. First order phase transitions with
spontaneous parity breaking at θ = π appear in the formulation of the models directly at infinite
volume, and we have exposed the analytic roots of this fact. The large N method is thus in
agreement with all exact results on θ dependence, and provides a valuable bridge between the
angles θ = 0 and θ = π .

Let us remark that the behaviour of the theory in finite volume plays a fundamental rôle in
condensed matter settings, where sigma models can be used as effective theories for the quantum
Hall effect [54–57]. In this context, the Hall conductivity is identified with the coupling of the
topological term, and the stability of Hall plateaux is linked to the renormalisation group running
of the couplings (including θ ). The large N limit of CPN−1 models was studied in connection
with this phenomenon in a series of papers (see, e.g., [58–62]), in which the different regimes we
have discussed were also identified; in this case the traditional large N limit at infinite volume is
blind to edge effects, which of course are crucial for the physics of the Hall effect. In particular,
edge currents are a finite size effect and this suggests that the m2V � N regime of CPN−1 sigma
models is the relevant regime for their description.

Finally, we remark that the difference between the two regimes is due to the asymptotic
behaviour of the effective action in the different topological sectors. According to Eqs. (48)
and (50), for small values of the topological charge, |k| < m2V , the effective action is quadratic
in k, whereas for large topological charges its leading term is linear in |k| [9]. The two regimes
also differ at finite temperature. Since the spacetime volume is V = LT , the change of asymp-
totic dependence of the effective action on the topological charge can be associated with a finite
temperature crossover from the low temperature regime β = 1/T > m2L/|q| to the high temper-
ature regime β < m2L/|q| and cannot be related to any phase transition [63]. One might expect
a similar phenomenon in QCD, although in that case there is a finite temperature phase transition
[64].
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