
Analysis of Network-on-Chip Topologies for Cost-Efficient Chip
Multiprocessors

Marta Ort́ın-Obón · Daŕıo Suárez-Gracia ·
Maŕıa Villarroya-Gaudó · Cruz Izu ·
Vı́ctor Viñals-Yúfera

Abstract As chip multiprocessors accommodate a growing number of cores, they demand intercon-
nection networks that simultaneously provide low latency, high bandwidth, and low power. Our goal
is to provide a comprehensive study of the interactions between the interconnection network and the
memory hierarchy to enable a better co-design of both components. We explore the implications of
the interconnect choice on overall performance by comparing the behaviour of three topologies (mesh,
torus, and ring) and their concentrated versions. Simply choosing the concentrated mesh over the ring
improves performance by over 40% in a 64-core chip.

The key strength of this work is the holistic analysis of the network-on-chip and the memory
hierarchy. Experiments are carried out with a full-system simulator that carefully models the processors
(single and multithreaded), memory hierarchy, and interconnection network, and executes realistic
parallel and multiprogrammed workloads. We corroborate conclusions from several previous works:
network diameter is critical, the concentrated mesh offers the best area-energy-delay trade-off, and
traffic is very light and highly unbalanced. We also provide interesting insights about application-
specific features that are hidden when studying only average results. We include a fairness analysis
for multiprogrammed applications, and refute the idea of the memory controller placement greatly
affecting performance.

Keywords: interconnection networks, chip multiprocessor, topology, mesh, torus, ring

1 Introduction

Nowadays, a single chip may contain multiple processors and a significant amount of memory. A popular
trend consists of interconnecting several nodes, each of them with a core and one or more levels of
private and/or shared cache memories. Nodes communicate through an interconnection network that
allows them to exchange coherence messages and cache blocks, and has a major impact on overall
performance, energy consumption, and area. We focus on general purpose CMPs, where both high-
performance and low-power are required in equal shares.

Only a few works study the interconnect by modelling in detail the processors, memory hierarchy,
and interconnection network. However, those analysis are often performed with synthetic traffic or

M. Ort́ın-Obón (corresponding author) · M. Villarroya-Gaudó · V. Viñals-Yúfera
Departamento de Informática e Ingenieŕıa de Sistemas, Universidad de Zaragoza
Tel.: +34-876555341
E-mail: {ortin.marta, mvg, victor}@unizar.es

D. Suárez-Gracia
Qualcomm Research Silicon Valley
E-mail: dario@unizar.es

C. Izu
Department of Computer Science, University of Adelaide
E-mail: cruz@cs.adelaide.edu.au

2 Marta Ort́ın-Obón et al.

application traces that do not entirely capture the behaviour of a real execution [10,25,30,6]. This work
simulates both parallel and multiprogrammed workloads with real applications, carefully modelling all
the components above-mentioned. This allows us to study the effect of the interconnection network
configuration on the whole system and the real interactions between the memory subsystem and the
interconnect. We revisit the comparison of several topologies with our detailed simulation framework
to update the results, validate or refute previous conclusions, and complete them with further analysis.
We present an analysis of three topologies with varying degrees of complexity, performance, power,
and area: mesh, torus, and ring. We model CMPs with 16 and 64 single-threaded cores, including a
configuration with 16 4-threaded cores, and explore the effect of modifying the location and number of
memory controllers. Our goal is to draw meaningful conclusions on the studied network configurations
and study the details, pointing out the best choice from an integrated performance, area, and energy
standpoint.

The rest of this document is organized as follows: Section 2 presents the related work; Section 3
describes the CMP architecture and the interconnection network configuration; Section 4 introduces
the methodology followed in this work; Section 5 describes the qualitative analysis of the topologies;
Section 6 explains our simulation results, and Section 7 concludes the paper.

2 Related work

Several publications have highlighted the impact of the network on performance, energy, and chip area.
However, only a few papers focus on the comparison of interconnection network configurations. Balfour
and Dally present an analysis of how different topologies affect performance, area, and energy efficiency
[6]. However, they do not model the memory subsystem, only use synthetic traffic patterns, and do not
consider simple topologies like the ring. Gilabert et al. focus on physical synthesis of several networks,
but do not simulate real applications or systems larger than 16 cores [16]. Villanueva et al. highlight
the importance of a comprehensive simulation framework and present results of the execution of real
parallel applications and its close relationship with cache behaviour [41]. Sanchez et al. explore the
implications of interconnection network design for CMPs [36]. We complement their results including a
simple topology (ring), multiprogrammed workloads, traffic distribution analysis, the effect of memory
controller placement, and the influence of the network topology on fairness.

Many papers propose alternatives to conventional router architectures, topologies, and flow control
methods on isolation. However, they do not consider the impact on the overall system and back up
the results with network-only simulations of synthetic traffic and traces. Carara et al. revisit circuit-
switching which, as opposed to packet-switching, allows to reduce buffer size, and guarantees through-
put and latency [10]; Walter et al. try to avoid hotspots on systems on chip by implementing a dis-
tributed access regulation technique that fairly allocates resources for certain modules [42]; Mishra et
al. propose an heterogeneous on-chip interconnect that allocates more resources for routers suffering
higher traffic but they only get good results with a mesh topology [33]; Koibuchi et al. detect that
adding random links to a ring topology results in big performance gains, although they only experiment
with a network simulator [25]. All these studies either do not model the whole system, do not include
a significant variety of real workloads, or do not experiment with different topologies. Also, most of
them only include network-related metrics and fail to report on overall performance, or elaborate con-
clusions based on IPC (instructions per cycle), which has been reported to be unsuitable for parallel
applications [47].

Another approach consists on designing the network considering the behaviour of the memory
subsystem and the coherence protocol. Yoon et al. propose an architecture with parallel physical
networks with narrower links and smaller routers that eliminates virtual channels [45]. Seiculescu et al.
propose to use two dedicated networks: one for requests and one for replies [37]. Lodde et al. introduce
a smaller network for invalidation messages, but only test their design with memory access traces
[30]. Agarwal et al. propose embedding small in-network coherence filters inside on-chip routers to
dynamically track sharing patterns and eliminate broadcast messages [5]. These studies try to improve
the performance of the most commonly used networks, but do not venture with less conventional
topologies. Also, they only experiment with a maximum of 16 cores. Krishna et al. propose a system

3

to improve the frequent 1-to-many and many-to-1 communication patterns by forking and aggregating
packets to avoid the increment in traffic as the number of nodes increases [26]. Bezerra et al. try to
reduce traffic by statically mapping memory blocks to physical locations on the chip that are close to
cores that access them [8]. The last two proposals are only evaluated with a typical mesh topology.

3 CMP Architecture Framework

This section presents the modelled CMP architecture and a detailed description of all the interconnec-
tion network configurations.

3.1 General System Architecture

Our study focuses on homogeneous CMPs. The system is composed of several tiles connected by an
interconnection network. Each tile has a core with a private first level cache (L1) split into data and
instructions and a bank of the shared second level cache (L2), both connected to the router. In the
initial setting, four tiles in the edges of the chip also include a memory controller. Figure 1 depicts
the block diagram of the chip and a tile with memory controller. It also includes the connections
between the elements in the tile and the router. Table 1 summarizes the key parameters of the system.
To model the architecture we based our design on other systems with similar characteristics, both
from academia [46,37,7] and industry (Tilera’s TILEPro64 [40], Intel Xeon Phi [20], and Intel 48-core
processor [19]). To size our L2 cache (which is our last level cache) we have taken a configuration very
frequently used in academia [1,2,22] that is also a nice compromise among the sizes of shared last level
caches in high and low-end commercial platforms. For example, the AMD Opteron processor has a
shared L3 cache of 6 MB for 6 cores [11]; IBM Power8 has 8 to 12 cores with 8 threads per core, and
includes an L3 cache with 64 to 96 MB, as well as an L4 cache with 32 to 64 MB [18]; Intel Xeon D
has 1.5 MB of L2 cache per core [24]; Sparc M7 has 32 cores and 64 MB of shared L3 cache [34].

An interesting design trend for CMPs is to integrate a large number of nodes by using simple cores.
That is why we are modelling systems with 16 and 64 Ultrasparc III Plus single-thread in-order cores.
However, we also consider the effect of multithreading by simulating a configuration with 16 cores with
4 threads each.

We use a directory-based MESI coherence protocol. All the traffic that traverses the interconnection
network is a direct consequence of the memory activity, either to move cache lines (instructions or data)
among tiles or for coherence management. Therefore, it is important to model the caches realistically,
even though our main interest lies in the interconnect [28,36].

Memory
channels

 DRAM
Main memory

CORE

L1I L1D

L2
tag&data

Dir

R

MC

CMP Node

Register files, branch
predictor, ALUs, control, ...

Fig. 1: Block diagram including a chip and the components of a tile. MC stands for memory controller,
R is the router, and Dir is the directory, which is included in the L2 cache. This example router has
two input and two output ports connected to other neighboring tiles.

4 Marta Ort́ın-Obón et al.

Table 1: Main characteristics of the CMP.

Cores 16 single and multithreaded cores, and 64 single-threaded cores, Ultrasparc III Plus,
in order, 1 instruction/cycle and thread, 2GHz frequency

Coherence protocol Directory-based, MESI, directory distributed among L2 cache banks

Consistency model Sequential

Private L1 cache 32KB data and instruction caches, 4-way set associative, 2-cycle hit access time,
64B line size, pseudo-LRU replacement policy

Shared L2 cache Physically distributed, 1 bank/tile, 1MB per bank, 16-way set associative, 64B line size
Pseudo-LRU replacement policy, inclusive, interleaved by line address
7-cycle hit access time

Memory 4 memory controllers, distributed in the edges of the chip,
(both for 16 and 64-core architectures), 160-cycle latency
Section 6.7 considers different number and location of memory controllers

Table 2: Main characteristics of the interconnection network.

General Two virtual networks (requests and replies), 2 virtual channels (VCs) per virtual network

Routers 4-stage pipeline: routing and input buffering, VC alloc, switch alloc, and switch traversal
Round-robin 2-phase VC/switch allocators
5-flit buffers per VC, they store an entire message
(3-flits per buffer in the ring with higher bandwidth)

Links 16-byte flit size (link width), we also consider a higher bandwidth ring with 24B flit size,
1-cycle latency

3.2 Router Architecture

Since our focus is in network topology, we use the same balanced pipelined router in all configurations,
except for some exceptions described later, that minimizes the effects of routing in performance. Flits go
through four stages in the router: input buffering and routing, virtual channel (VC) allocation, switch
allocation, and switch traversal [13] and move following X-Y routing with wormhole credit-based flow
control. The network runs at 2 GHz, using the same clock frequency as the processors. Table 2 sums up
the main parameters of our interconnection network and routers. We use two separate virtual networks
to separate traffic classes in order to avoid protocol deadlock. In practice, this means that we will need
at least as many virtual channels as virtual networks. In our case, we include 2 virtual channels
per virtual network (a total of 4 virtual channels) to improve performance by reducing head-of-line
blocking.

4 Methodology

This section describes the simulation environment and workloads used in this work.

4.1 Simulation Environment

We use Simics to perform full-system simulation with 16 (single and multi-threaded, the latter with 4
threads) and 64 (single-threaded) cores [31]. We include GEMS to model the memory subsystem [32],
and GARNET for the interconnection network [4]. To get the timing, area, and energy expended by
the network we use DSENT [39], a state-of-the-art circuit modelling tool (with 32 nm technology).

5

Table 3: Simulated workloads and execution methodology.

Description

16
cores
1-

thread

16
cores
4-

threads

64
cores
1-

thread

Parallel
Workloads

From PARSEC: blackscholes, bodytrack, canneal, dedup,
ferret, fluidanimate, raytrace, swaptions, vips, and x264

16
threads

64
threads

64
threads

From SPLASH2: barnes, cholesky, fft, lu cb, lu ncb, ocean cp,
ocean ncp, radiosity, radix, raytrace, volrend, water nsquared,
and water spatial
Threads are automatically mapped to the cores by the operating
system
Simulate the whole parallel region

Multiprog.
Workloads

From SPEC CPU2006: perlbench, bzip2, gcc, mcf, sjeng,
libquantum, bwaves, milc, zeusmp, leslie3d, dealII, soplex,
GemsFDTD, lbm, wrf, and sphinx3 16

apps.

16
apps,

4 times
each
(64

total)

16
apps,

4 times
each
(64

total)

20 different mixes with the applications randomly distributed
among the cores
Applications are bound to the cores to avoid migration
Caches are warmed up for 200 million cycles and then, applications
are executed for 500 million cycles

4.2 Workloads

CMPs can execute parallel applications to reduce execution time, and multiprogrammed workloads
(execution of independent programs on each core) to increase throughput. PARSEC is a benchmark
suite composed of shared-memory parallel applications that focuses on emerging workloads and was
designed to be representative of next-generation programs for chip-multiprocessors [9]. SPLASH2 is a
mature benchmark suite that contains a variety of shared-memory, parallel, high performance comput-
ing, and graphics applications [44]. We use a selection of benchmarks from PARSEC and SPLASH2
with scaled inputs from PARSEC 3.0.

We have used SPEC CPU2006 to build multiprogrammed workloads in which each core runs a
different application, so the only network traffic will come from cache misses and replacements [38].
We choose 16 applications with large working sets (according to [17]) to find potential bottlenecks in
the interconnect.

Table 3 describes the workloads and their execution methodology for the different configurations
under test. Table 4 shows the characterization of the workloads with respect to their behaviour in the
memory subsystem. This helps us understand the amount of network traffic the applications generate.
The most noticeable aspect is that the multiprogrammed workloads have a much lower L2 hit rate and
need to access main memory more often.

Table 4: Characterization of the workloads with respect to their behaviour in the memory subsystem

Parallel Applications Multiprogrammed Workloads

16 cores
1-thread

16 cores
4-threads

64 cores
1-thread

16 cores
1-thread

16 cores
4-threads

64 cores
1-thread

LD/ST
instructions

29.7% 26.3% 26.6% 28.3% 26.9% 26.3%

L1D hit rate 93.1% 92.9% 89.3% 95.4% 94.5% 93.0%

misses served by
L2

91.8% 96.8% 95.5% 55.9% 62.1% 47.3%

misses served by
main memory

8.2% 3.9% 4.5% 44.1% 37.9% 52.7%

6 Marta Ort́ın-Obón et al.

5 Topologies for homogeneous CMPs: Qualitative Analysis

We compare today’s most mainstream topologies: mesh, torus, and ring. The 2D mesh is a widespread
choice for large-scale CMPs due to its regularity. Tiles are organized in a regular grid with links
pointing to all 4 cardinal directions: north, south, east, and west. A torus is a mesh with wraparound
links to reduce the average number of hops between tiles, at the cost of longer links (

√
2 times larger

than a mesh[13]), larger area, and high power consumption. While often longer links involve higher
wiring latency [43], we kept constant the link latency for all topologies after verifying feasibility with
DSENT [39].

Driven by the observed low network occupancy and commercial NoCs [20], instead of moving
towards higher-performance topologies, we opt for more efficient options to fit the power budget, such
as bidirectional rings, which require a smaller area but have a larger diameter. Each node has two
links, one in each direction of the ring, as represented in Figure 1.

The torus and the ring have cycles in their topologies, which can lead to deadlocks. To avoid them,
we implement a deadlock avoidance method by setting a dateline in each cycle where messages will be
forced to use a specific virtual channel so that cycles are broken [13,14].

Table 5 summarizes the main characteristics of the three topologies. Note that the comparison
encompasses topologies with different bisection bandwidth, so first, we tune each topology to obtain a
realistic design point, and then, we explore the trade-offs between complexity (which results in more
bandwidth, power, and area) and performance for all configurations.

The number of input and output ports of the router is a direct indicator of the complexity; the higher
the number of ports, the higher the area and expended energy. If we divided the network in two equal
parts, the bandwidth we would have between the two parts is what we call the bisection bandwidth. A
lower bisection bandwidth indicates that communications in the network will be slower. A hop in the
network is a link the message traverses when going from source to destination. When counting the total
number of hops we also include the local links going from the cache to the router, and from the router
to the cache, so the minimum hop count is two (which corresponds to the communication between an
L1 and an L2 in the same node through the router of that node: first hop from source cache to router
and second hop from router to destination cache). The number of hops gives us an idea of the time it
will take a message to traverse the network. In the table, we distinguish the maximum distance (also
called diameter) and the average distance. Besides, the length of the link will have an impact on the
power consumed by the network, which is modelled in DSENT.

The simplicity of the ring topology allows us to test two improved designs. As opposed to the mesh
and torus, which have 4 input and 4 output ports to the outside of the tile, the ring has only two of
each. The number of ports has a direct effect on the amount of buffer space and the complexity of
the switch allocator and crossbar. To make use of this idle space, we test a configuration in which we
increase the link bandwidth keeping the router area slightly under that of the torus. This results in
flits of 24 bytes, which will reduce the number of flits needed per message and, therefore, serialization
latency (RING FLIT24B). Following the same idea, we also include a ring configuration with reduced
latency, where we merge the switch allocation and switch traversal stages, resulting in a 3-cycle router
(RING 3CYCLE R).

Connecting several tiles to the same router to build concentrated topologies is a popular choice to
reduce the network diameter. This choice has been adopted by the new generation of the Intel Xeon
Phi [21]. These designs reduce the amount of resources of the network but might introduce contention.
We include concentrated versions of the topologies with a concentration factor of 4. To avoid increasing
the router radix, we use external concentration with local routers, which allows us to maintain routers
with a small area and high frequency with only a small performance degradation [27]. For the 16-core
chips we implement a concentrated mesh (CMESH), as depicted in Figure 2. Memory controllers are
connected directly to the global router. With only four global routers, the concentrated ring topology
is equivalent to the CMESH; the concentrated torus would have additional links, but we omit the
results because the higher bandwidth does not benefit performance and increases power and area. For
64 cores, we model the CMESH, CTORUS, and CRING. Tables 5 and 6 include the characteristics of
the concentrated versions of the topologies.

7

Table 5: Qualitative comparison of the three topologies for a CMP system with N tiles (we assume
that N will always be a perfect square). We include the basic and the concentrated versions of the
topologies, with a concentration factor of c. The number of inputs/outputs does not consider tiles with
a memory controller, where routers would have one more input and output, or the tiles in the edges
of the mesh, where some ports would be left unused. For the concentrated topologies, indicated ports
are for the global routers; local routers always have 6 ports. W is the link bandwidth and L is the link
length. For the concentrated topologies, we indicate the length of the links that connect the global
routers. Note that the local links have been considered in the hop count formulas. Therefore, to go
from node 0 to node 1 we need 3 hops: one from cache 0 to router 0, one from router 0 to router 1,
and one from router 1 to cache 1. In the average hop count, the +2 in the formulas corresponds to
those local links. For the concentrated topologies, the average hop count is detailed in Table 6 due to
its complexity.

Topology
Inputs/
outputs

Bisection
BW

Max. hops
(diameter)

Avg. hops (Avg
distance)

Link length

2D mesh 6/6 2W
√
N 2

√
N ∼ 2/3

√
N + 2 L

Torus 6/6 8W
√
N

√
N + 2 ∼ 1/2

√
N + 2 L

√
2

Ring 4/4 4W N/2 + 2 ∼ N/4 + 2 L

CMESH 6/6 2W
√

N/c 2
√

N/c + 2 − 2L

CTORUS 6/6 8W
√

N/c
√

N/c + 2 + 2 − 2L
√

2

CRING 4/4 4W (N/c)/2 + 2 + 2 − 2L

Core

L2

L1
LR

LR

GR

GR GR
LR

GR GR

Core

L2

L1

Core

L2

L1Core

L2

L1

LR

LR

LR

LR

LR

LR

LR

Fig. 2: Connection of the nodes to the routers within a four-node cluster (left) and organization of all
local and global routers (right) for a concentrated mesh in a 16-core chip. LR and GR stand for local
router and global router, respectively. The lines that connect routers represent always two links, one
in each direction.

6 Topologies for Homogeneous CMPs: Quantitative Analysis

This section presents the main contributions of our analysis for 16 and 64-core architectures. We
include both system-oriented metrics (performance, area, energy, and fairness) and network metrics
(hop count, network latency, and traffic distribution). We conclude with an analysis of the impact of
memory controller placement.

6.1 Performance

To compare the impact of the network configurations on performance, we analyse the number of proces-
sor cycles it takes for the parallel workloads to complete the parallel section; for the multiprogrammed

8 Marta Ort́ın-Obón et al.

Table 6: Average hop count for the concentrated mesh, torus and ring topologies. N is the num-
ber of tiles and c is the concentration factor. The formula is divided into the inter and intracluster
communications, indicating the probability of each one and the hops in the global network and inside
the clusters. Note that the hops to access and leave the network are now 4 (compared with 2 for the
non-concentrated topologies), because messages need to traverse the local routers.

Intercluster Communications Intracluster Communications

Topology Probability
Hops
global

network

Hops in
cluster

Probability
Hops
global

network

Hops in
cluster

CMESH 1− (c/n) 2/3
√

N/c 4 c/n 0 2.5

CTORUS 1− (c/n) 1/2
√

N/c 4 c/n 0 2.5

CRING 1− (c/n) (N/c)/4 4 c/n 0 2.5

workloads, we check how many instructions get executed in 500 million cycles. Figure 3 represents the
average execution time for the parallel applications and the average CPI (cycles per instruction) for the
multiprogrammed workloads, both normalized to the mesh topology. In 16-core single-threaded archi-
tectures differences between topologies are small, with the ring with 3-cycle routers and the CMESH
being very similar to the mesh, and the torus performing only slightly better. Differences are more
pronounced in the multithreaded configurations because the network needs to support a higher load,
and topologies with fewer resources are more congested. In 64-core chips, the performance of the ring
topologies drops significantly while the concentrated topologies stay very close to the mesh and torus.
The conclusions are the same for both parallel and multiprogrammed workloads, and they are along
the same line as the most recent industry developments: for the second generation of the Xeon Phi
multicore processor, Intel has replaced the ring with a concentrated 2D mesh [20,21].

Regarding the absolute CPI values for the multiprogrammed workloads, the CPI of each core in
the mesh topology is 4.4 for 16 cores with 1 thread, 4.7 for 16 cores with 4 threads, and 6.1 for 64
cores. Even though the miss rate is small, the penalty of a cache miss greatly increases the CPI, with
the highest portion of the miss latency coming from the network latency. Therefore, we can conclude
that the impact of the NoC on performance is large.

In the following sections we analyse network-specific metrics and demonstrate how they influence
the system performance. We show that the network is lightly loaded and that performance is a direct
consequence of the number of hops it takes a message to go from source to destination.

6.2 Average Hop Count

The diameter of the network is critical and concentrated topologies offer faster communications even
though messages have to share a smaller amount of routers and links. In Figure 4 we present candlestick
charts for the hop count of all the configurations, which show the minimum and maximum values, and
the three quartiles. The differences among the workloads are very small. The first thing we notice
is that the hop count directly reflects the performance results, showing that this metric determines
the performance. Both the median and the variability of the hop count are much larger for the ring
topologies, especially with 64 cores, which is a clear indicator of where we experience more pronounced
performance drops. Hop count for the three ring topologies is the same in all cases because the variations
do not affect the topology. However, performance is different because for the ring with 24-byte flits,
data messages are only three flits long instead of five, which reduces the serialization latency; for the
ring with 3-cycle routers, every hop takes a smaller number of cycles.

The high impact of the hop count and, more generally, the network latency, is partly due to
the simple in-order cores of our system. More complex cores capable of running instructions out-of-
order and non-blocking caches would be able to hide some of the network latency by executing other
instructions in parallel with the L2 or memory access. However, the pressure on the caches would

9

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 1.2

 1.4

 1.6

E
x
e
c
u
ti
o
n
 t
im

e
 (

n
o
rm

a
liz

e
d
)

16 cores
 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 1.2

 1.4

 1.6

16 cores, 4 threads
 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 1.2

 1.4

 1.6

64 cores

MESH
TORUS

RING
RING_FLIT24B

RING_3CYCLE_R
CMESH

CTORUS
CRING

(a) Parallel applications

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 1.2

 1.4

 1.6

C
P

I
(n

o
rm

a
liz

e
d
)

16 cores
 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 1.2

 1.4

 1.6

16 cores, 4 threads
 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 1.2

 1.4

 1.6

64 cores

(b) Multiprogrammed workloads

Fig. 3: Average execution time for the parallel applications and CPI (cycles per instruction) for the
multiprogrammed workloads, normalized to the mesh, for 16 single and multithreaded cores and 64
single-threaded cores. In every case, the lower the bars, the better.

not increase enough to give relevance to network throughput, because it has been demonstrated that
supporting only 2 in-flight misses is enough to eliminate most of the memory stall cycles [23].

 0

 2

 4

 6

 8

 10

M
ESH

TO
R
U
S

R
IN

G

FLIT24B

3C
YC

LE_R

C
M

ESH

N
u

m
b

e
r

o
f

H
o

p
s

(a) 16 cores

 0

 2

 4

 6

 8

 10

M
E
S
H

TO
R
U
S

R
IN

G

FLIT24B

3C
Y
C
LE

_R

C
M

E
S
H

(b) 16 cores, 4 threads

 0

 5

 10

 15

 20

 25

 30

 35

M
E
S
H

TO
R
U
S

R
IN

G

FLIT24B

3C
Y
C
LE

_R

C
M

E
S
H

C
TO

R
U
S

C
R
IN

G

(c) 64 cores

Fig. 4: Average hop count for 16 single and multithreaded cores and 64 single-threaded cores. There
are no differences between parallel and multiprogrammed workloads, so results are averaged together
in all configurations. We present candlesticks, where we can see the minimum, maximum, median,
lower quartile (Q1), and upper quartile (Q3) values. Note that scales are different. Hops to traverse
the local links from and to the nodes are included in the count.

10 Marta Ort́ın-Obón et al.

6.3 Network Latency

Network congestion can delay messages and have a large impact on system performance. Figure 5
represents the network latency split in base latency (cycles it would take packets to traverse the
network without contention), blocking latency (extra time spent in the network due to contention),
and queueing latency (time a message is waiting in the network interface before it can get a free virtual
channel to enter the network). The latency for parallel and multiprogrammed workloads is very similar,
with the multiprogrammed workloads having slightly higher blocking latency in some cases. That is
because these workloads access main memory more often (as we will demonstrate in section 6.4), which
creates a bottleneck in the nodes of the network close to the memory controllers.

We can clearly see that the blocking latency is a small percentage of the total latency in the
single-threaded configurations: 14% for 16 cores and 16% for 64 cores. It significantly increases with
multithreaded cores, reaching an average of 31%, because the higher traffic load creates some conges-
tion, especially in networks with fewer resources (ring and concentrated mesh).

If we focus on the two optimized ring versions, we notice that one of them does not consistently
have shorter latency than the other. The 3-cycle router version is normally better, with a shorter
base latency. This is because all messages benefit from faster transmissions, while in the 24-byte flit
version, only data messages, which need more than one flit, improve their latency. However, in the
configurations with 4-threaded cores, the blocking latency is shorter for the ring with 24-byte flits. In
those cases when there is more traffic in the network, a nice effect of having larger flits becomes relevant:
messages with fewer flits can traverse the network in a more compact way, reducing the number of
cycles in which they occupy several routers at a time, thus reducing the probability of conflicts with
other messages. This improvement in the blocking latency results in shorter network latency for the
24-byte flit ring in the multithreaded configuration with multiprogrammed workloads.

As we already mentioned in the previous section, we can notice again that the network latency
results correspond directly with the average hop count and the system performance (the shorter the
latency, the better the performance), which demonstrates the huge impact the network has on the
system. Nevertheless, the network is mostly lightly loaded, so although it may take long to traverse it,
resources are idle most of the time. These results ratify the conclusions of Sanchez et al., which point
out that the number of hops is the most critical parameter of the network [36].

6.4 Traffic Distribution

To analyse traffic distribution, we measure the number of injected flits per node. We notice that traffic
is unevenly distributed in the interconnect, meaning that some resources will be used more often
than others. In this section, we present results for canneal as a representative example of parallel
applications, and a multiprogrammed mix. For a given application and number of cores, the distribution
remains constant when we change the network topology, so we illustrate the results only for the mesh,
torus, ring, and CMESH. Conclusions still hold for all applications and number of cores, so we focus
on a 64-core chip.

Figure 6 depicts a heat map of injected flits per cycle for each node for canneal and a multipro-
grammed mix executed on 64 cores. All the traffic is generated by the memory subsystem, so every
action has a reaction (request-reply, invalidation-ack). Hence, the heat maps also indicate which nodes
are receiving messages more often. The number of flits per cycle is smaller for the ring because a very
similar amount of traffic gets injected in a much larger period of time. Nevertheless, the distribution of
traffic is the same regardless of the topology: certain nodes inject more flits than others. In the parallel
workloads such as canneal (Figures 6a to 6d), this is because a couple of L2 banks are being accessed
more frequently than others, which depends on the physical distribution of the data touched by each
application. The rest of the simulated parallel applications exhibit similar patterns, with 2 out of the
64 nodes injecting more than 40% of the traffic in many applications.

Figures 6e to 6h show results for one of the multiprogrammed mixes. In this case, we see four clear
hotspots in the edges of the chip, where the memory controllers are located. The multiprogrammed
workloads access main memory more often than parallel applications. Apart from that, the rest of

11

 0

 10

 20

 30

 40

 50

 60

M
ESH

TO
R
U
S

R
IN

G

R
IN

G
_FLIT24B

R
IN

G
_3C

YC
LER

C
M

ESH

N
u
m

b
e
r

o
f
c
y
c
le

s

16 cores

 0

 10

 20

 30

 40

 50

 60

M
ESH

TO
R
U
S

R
IN

G

R
IN

G
_FLIT24B

R
IN

G
_3C

YC
LER

C
M

ESH

16 cores, 4 threads

 0

 20

 40

 60

 80

 100

 120

M
ESH

TO
R
U
S

R
IN

G

R
IN

G
_FLIT24B

R
IN

G
_3C

YC
LER

C
M

ESH

C
TO

R
U
S

C
R
IN

G

64 cores

Base latency Blocking latency Queueing latency

(a) Parallel applications

 0

 10

 20

 30

 40

 50

 60

M
ESH

TO
R
U
S

R
IN

G

R
IN

G
_FLIT24B

R
IN

G
_3C

YC
LER

C
M

ESH

N
u
m

b
e
r

o
f
c
y
c
le

s

16 cores

 0

 10

 20

 30

 40

 50

 60

M
ESH

TO
R
U
S

R
IN

G

R
IN

G
_FLIT24B

R
IN

G
_3C

YC
LER

C
M

ESH

16 cores, 4 threads

 0

 20

 40

 60

 80

 100

 120

M
ESH

TO
R
U
S

R
IN

G

R
IN

G
_FLIT24B

R
IN

G
_3C

YC
LER

C
M

ESH

C
TO

R
U
S

C
R
IN

G

64 cores

(b) Multiprogrammed workloads

Fig. 5: Average network latency in number of cycles broken down into base, blocking, and queueing
latency for 16 single and multithreaded cores and 64 single-threaded cores. Note that scales are different.

ideas we introduced for parallel workloads are still valid. There are several parallel applications which
have a larger working set and need to access main memory more often (fft, ocean cp, ocean ncp, and
radix). For those applications, we also see more flits injected from the nodes with memory controllers.

Figure 7 depicts the number of flits per cycle that traverse the network links for canneal and
multiprogrammed mix. We see that link utilization is higher around the nodes with higher injection
rates. Also, it is higher in the ring topologies, since there are fewer links to transport the same amount
of information. The torus wastes more resources because it shows the lowest link usage, even though
it injects the highest number of flits per cycle. In the execution of the multiprogrammed workload in
the mesh topology, we detect that links are used more often in the center of the chip, which is the
characteristic behaviour for this topology with uniform traffic. The location of the memory controllers
in the edges of the chip increases link usage in the center.

Evaluating all the results of this section, we notice that the network is lightly loaded, even around
the most active nodes; furthermore, some parts of the network are idle most of the time. Considering
all applications executed on single-threaded architectures, nodes in parallel and multiprogrammed
workloads inject an average of 0.024 and 0.052 flits per cycle, respectively; for our 16 multi-threaded
core configuration, they inject 0.11 and 0.23 flits per cycle on average. For comparison, Dally shows that
the saturation throughput of an 8x8 mesh with four 1-flit virtual channels is around 0.5 and 0.6 [12], and
that value would be even lighter with larger VCs. Since the network is lightly loaded, congestion delays
are not a major contributor to network latency. Even on the multithreaded configurations where there
is more traffic in the interconnect, we still see the same relative performance among the topologies,
pointing out the paramount importance of the network diameter. This explains why the concentrated
topologies reduce network distance without a significant increment on network contention.

Our results show that real workloads exhibit non-uniform traffic patterns across the network, even
though this cannot be perceived when considering only average statistics. Instead of the fairly uniform
traffic distributions seen with synthetic networking workloads, we observe hotspots in some locations.

12 Marta Ort́ın-Obón et al.

"injflitscycle/dat/proc064/canneal−large−MESH.dat" u 1:2:3

(a) Canneal, Mesh

"injflitscycle/dat/proc064/canneal−large−TORUS.dat" u 1:2:3

(b) Canneal, Torus

"injflitscycle/dat/proc064/canneal−large−RING.dat" u 1:2:3

(c) Canneal, Ring

"injflitscycle/dat/proc064/canneal−large−CMESH.dat" u 1:2:3

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

In
je

c
te

d
 f

lit
s
/c

y
c
le

(d) Canneal, CMESH

"injflitscycle/dat/proc064/mix00−MESH.dat" u 1:2:3

(e) Multi, Mesh

"injflitscycle/dat/proc064/mix00−TORUS.dat" u 1:2:3

(f) Multi, Torus

"injflitscycle/dat/proc064/mix00−RING.dat" u 1:2:3

(g) Multi, Ring

"injflitscycle/dat/proc064/mix00−CMESH.dat" u 1:2:3

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

In
je

c
te

d
 f

lit
s
/c

y
c
le

(h) Multi, CMESH

Fig. 6: Injected flits per cycle and node for the canneal parallel application (top) and a multipro-
grammed mix (bottom) executed in 64 cores.

(a) Canneal, Mesh (b) Canneal, Torus (c) Canneal, Ring

0.00

0.10

0.20

0.30

0.40

0.50

0.60

fl
it
s
/c

y
c
le

(d) Canneal, CMESH

(e) Multi, Mesh (f) Multi, Torus (g) Multi, Ring

0.00

0.10

0.20

0.30

0.40

0.50

0.60
fl
it
s
/c

y
c
le

(h) Multi, CMESH

Fig. 7: Link utilization in flits per cycle for the canneal parallel application (top) and the multipro-
grammed mix (bottom) executed in 64 cores. Each line is the combination of two links, one in each
direction. Injection and ejection links have been left out. In the torus, links that touch the edges of
the chip represent the wraparound links. In the CMESH, lines that make up triangles are connections
between the local and global routers of each cluster of cores.

13

This points out that synthetic traffic patterns should have hotspots in both flit injection and desti-
nation distribution in order to reflect the real traffic load imposed on the network by parallel and
multiprogrammed workloads. They also show the potential of fine-grained network reconfiguration for
real applications. For instance in the form of dynamic resource allocation or frequency/voltage scaling
(DVFS), where some parts of network save power while others increase execution speed. Recent studies
also confirm this potential: Lee et al. use DVFS for thermal management in 3D ICs, both in the cores
and routers, but they do not consider parallel applications [29]; Haghbayan et al. also propose DVFS
control to honour power and thermal constraints in a dark silicon context, but exclude the network
from such control and consider a synthetic task generation model instead of real workloads [35]. Re-
configuration is beyond the scope of the paper but our data adds experimental evidence to its great
interest.

6.5 Area, Energy, and Delay

When making design choices for future architectures we need to consider performance, power, and area.
For parallel applications, we calculate EnergyNetwork*DelayParallelSection (ED); for multiprogrammed
workloads, where we simulate a constant number of cycles, we use EPI*CPI (EPI=EnergyNetwork per
Instruction, CPI=Cycles per Instruction). Figure 8 depicts network area (as reported by DSENT)
versus ED or EPI*CPI normalized to the mesh. To display the variance across the parallel applications
and the multiprogrammed mixes, we represent the results with candlesticks. Ideally, we would like our
configuration to be in the bottom left corner of the graphs.

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

 0.8 1 1.2 1.4 1.6

E
n

e
rg

y
*D

e
la

y
 (

N
o

rm
a

liz
e

d
)

Network area (mm
2
)

MESH

TORUS

RING

RING
FLIT24

RING
3CYCLE−R

CMESH

(a) 16 cores, parallel

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

 0.8 1 1.2 1.4 1.6

Network area (mm
2
)

MESH

TORUS

RING

RING
FLIT24B

RING
3CYCLE−R

CMESH

(b) 16 cores, 4 threads, parallel

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

 3.5 4 4.5 5 5.5 6 6.5 7

Network area (mm
2
)

MESH

TORUS

RING

RING
FLIT24B

RING
3CYCLE−R

CMESH
CTORUSCRING

(c) 64 cores, parallel

0.9

1.0

1.1

1.2

 0.8 1 1.2 1.4 1.6

E
P

I*
C

P
I

(N
o

rm
a

liz
e

d
)

Network area (mm
2
)

MESH

TORUS

RING

RING
FLIT24B

RING
3CYCLE−R

CMESH

(d) 16 cores, multiprogrammed

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

 0.8 1 1.2 1.4 1.6

Network area (mm
2
)

MESH

TORUS

RING

RING
FLIT24B

RING
3CYCLE−R

CMESH

(e) 16 cores, 4 th, multiprogrammed

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

 3.5 4 4.5 5 5.5 6 6.5 7

Network area (mm
2
)

MESH TORUS

RING

RING
FLIT24BRING

3CYCLE−R

CMESH

CTORUS

CRING

(f) 64 cores, multiprogrammed

Fig. 8: Area versus Energy*Delay for the parallel applications (top) and EPI*CPI for the multi-
programmed workload (bottom) for 16 single and multithreaded cores and 64 single-threaded cores,
normalized to the mesh. The RING and RING 3CYCLE R have the same area, but candlesticks have
been slightly shifted on the horizontal axis for better visualization, both have an area of 1.0mm2 for
16 cores and 4.1mm2 for 64 cores.

14 Marta Ort́ın-Obón et al.

For 16 single-threaded cores (plots 8a and 8d), the CMESH offers the lowest values for energy
and delay, with a small area (only 8% bigger than the ring and 18% and 35% smaller than the
mesh and torus, respectively). For 16 multi-threaded cores (plots 8b and 8e) and, especially for 64
cores (plots 8c and 8f), the ED and EPI*CPI increase substantially for the ring topologies with all
workloads. The Delay contributor increases much more significantly with more cores due to the higher
hop count. Therefore, networks with lower diameter perform better when integrating a larger number
of cores. In this case, the CMESH still offers the best trade-offs. We also see that the variance across
the multiprogrammed mixes is very small, pointing out that the way of distributing independent
applications in the chip does not impact either performance or network energy. Our results show that
over-dimensioning the network is not the best solution: a simple topology like the CRING is better
than the torus from all standpoints. Even in the multithreaded architecture (plots 8b and 8e), where
the network has a higher load, the CMESH still offers a better trade-off than the torus.

We also see that the deviation of the results varies among topologies and is bigger with 64 cores.
It is proportional to the variation in network latency, which increases with the average distance of the
network and hop latency. This is because the Delay component of the ED product suffers bigger in-
creases in certain applications where the thread distribution generates disadvantageous traffic patterns
for the ring topology.

6.6 Fairness

In a multiprogrammed environment, fairness determines if resources are evenly distributed among
independent applications. A system is fair if all the multiprogrammed applications experience an equal
slowdown compared to their performance when executed alone. Our interest lies in assessing whether
the topology influences fairness. To numerically quantify fairness, we rely on the following formula:

fairness =

min
i

(
CPIMT

i

CPIST
i

)
max

i

(
CPIMT

i

CPIST
i

)
where CPI, ST , and MT refer to cycles per instruction, single thread, and multi-threaded execu-

tion, respectively [15]. The i index refers to the applications. The ideal value would be 1; the closer we
are to it, the better fairness we have. To calculate the fairness, we take one of the mixes and simulate
both the mix and each application running alone in chip, pinned to the same core in both cases.

Figure 9 shows the fairness for all the topologies on 16 single and multithreaded cores, and 64 single-
threaded cores according to that formula. In order to evaluate if there are any outlier numbers that
are negatively affecting the final results, we present in Figure 10 candlesticks with the ratio between
the CPI of the applications executed along with the rest of applications (CPI-MT) and the CPI of the
same application running alone in the chip (CPI-ST). In this case, fairer configurations will present
short candlesticks, while unfair networks will have big and long candlesticks. The same conclusions
can be extracted from both graphs. With lightly loaded networks, fairness is very similar across all
topologies. It significantly decreases in two cases: for the multithreaded cores respect to the single-
threaded configurations, and for the ring topologies respect to the others with 16 multithreaded cores.
These reductions correspond to cases where the network supports a higher load. In those situations,
there is more congestion on the network, and that has a higher impact on the applications that need
to use it more often, while others with more hits on their first level cache remain undisturbed. In the
multithreaded cores, we clearly notice a correlation between performance and fairness: the mesh, torus,
and CMESH show the highest fairness because more efficient networks can successfully support more
simultaneous communications without interferences.

6.7 Memory Controller Placement

In the previous sections, all configurations had four memory controllers located at the edges of the
chip. It has been demonstrated that the location of the memory controllers impacts memory latency in

15

 0.0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

F
a
ir
n
e
s
s

16 cores
 0.0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

16 cores, 4 threads
 0.0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

64 cores

MESH
TORUS

RING
RING_FLIT24B

RING_3CYCLER
CMESH

CTORUS
CRING

Fig. 9: Fairness for the multiprogrammed workloads in chips with 16 single and multithreaded cores
and 64 single-threaded cores. The higher the bars, the better.

 1

 1.5

 2

 2.5

 3

 3.5

M
ESH

TO
R
U
S

R
IN

G

FLIT24B

3C
YC

LE_R

C
M

ESH

C
P

I−
M

T
/C

P
I−

S
T

(a) 16 cores

 1

 1.5

 2

 2.5

 3

 3.5

M
E
S
H

TO
R
U
S

R
IN

G

FLIT24B

3C
Y
C
LE

_R

C
M

E
S
H

(b) 16 cores, 4 threads

 1

 1.5

 2

 2.5

 3

 3.5

M
E
S
H

TO
R
U
S

R
IN

G

FLIT24B

3C
Y
C
LE

_R

C
M

E
S
H

C
TO

R
U
S

C
R
IN

G

(c) 64 cores

Fig. 10: Fairness for the multiprogrammed workloads in chips with 16 single and multithreaded cores
and 64 single-threaded cores, represented by the ratio of the CPI of the applications executed along
with the rest of applications (CPI-MT) divided by the CPI of the same application running alone in
the chip (CPI-ST). We present candlesticks, where we can see the minimum, maximum, median, lower
quartile (Q1), and upper quartile (Q3).

a mesh topology [3]. We have compared several options varying the number and placement of memory
controllers to look for the best configuration in terms of performance. For the sake of brevity, this
section focuses on multiprogrammed workloads because they exhibit higher main memory access rate.
Also, we limit the design space to the mesh and CMESH topologies, because they are the ones that
offer the best performance, energy, and area trade-offs (as we showed in section 6.5), and to the 64-core
chip, where distances are longer and MC placement has a larger impact. Figure 11 shows the nodes
of the chip where the memory controllers are located for the mesh and the CMESH topologies. We
test 9 configurations for the mesh, with 4, 8, and 16 memory controllers; for the CMESH we test 5
configurations with 4, 8, and 16 controllers. In the CMESH, the MCs are connected directly to the
global routers (see Section 6), so we divide the chip in only 16 squares, which represent clusters of 4
cores each.

We calculate the average performance of the multiprogrammed workloads with all the memory
controller configurations, and see that variations in performance are so small (always smaller than
0.03%) that both the number and placement of memory controllers seem to be a secondary issue. This
is because benchmarks do not miss in the L2 very often, even for the multiprogrammed workloads,
which is where we detected the largest amount of traffic to memory. Increasing the number of memory
controllers does not have a significant impact on performance either.

Abts et al. state that memory controller placement is critical and that a good placement reduces
contention, lowers network latency, and provides predictable performance [3]. Although they simulate

16 Marta Ort́ın-Obón et al.

(a) MESH Baseline (b) MESH B (c) MESH C (d) MESH D (e) MESH E

(f) MESH F (g) MESH G (h) MESH H (i) MESH I

(j) CMESH Base (k) CMESH K (l) CMESH L (m) CMESH M (n) CMESH N

Fig. 11: Memory controller configurations for the mesh -(a) to (i)- and CMESH -(j) to (n)- topologies
with 64 cores. The shaded tiles include a memory controller. For the CMESH, MCs are connected to
the global routers so we only represent the 4-core clusters of the chip.

different workloads than we do and with smaller caches, we have compared the amount of traffic to
memory they have to what we see in our simulations. We have determined that our multiprogrammed
workloads access main memory more often than their applications, increasing the effect of memory
controller placement on overall performance. It is true that some memory controller placements reduce
network latency, but we go a step further and guarantee that the impact on system performance is
negligible for such light traffic to memory.

Our main objective was to determine if the memory controller placement is relevant for this kind
of general purpose CMPs with these applications, which represent reasonable workloads. However, it
is also interesting to determine if the memory controllers could significantly affect performance on a
scenario with more traffic to memory. In order to analyse this, we repeat the experiments with different
system parameters: reduced L2 cache size to increase the traffic to memory (down to 128 KB per core
from the original 1 MB per core), and faster memory access to increase the impact of the network
latency reduction (50 cycles instead of the baseline 150). These new simulations increase the traffic
to memory by 50%, but the effect of the memory controller placement is still small. In average, the
difference in performance with respect to the baseline is 0.6%, which is much more than what we were
seeing before, but still very small. Therefore, we conclude that the memory controller placement does
not have a relevant impact on performance in our general purpose CMP, even with system parameters
that enlarge the impact of the network on memory access time. In any case, our results do not rule out
the importance of this issue in specific situations, such as streaming memory applications or systems
with even smaller caches.

7 Conclusions

Considering the interconnection network and the cache hierarchy simultaneously helps identify im-
provement opportunities in the design of CMPs. Both elements have a significant influence on system
performance, area, and power consumption. We have modelled in detail the processors, memory hi-

17

erarchy, and network using full-system simulation and executing both parallel and multiprogrammed
workloads. We have performed a qualitative and quantitative analysis of three network topologies:
mesh, torus, and ring, including two additional ring configurations (one with more bandwidth and one
with 3-cycle routers) and concentrated networks for CMPs with 16 single and multithreaded cores and
64 single-threaded cores.

Our results show that performance is highly affected by the choice of the interconnect, especially
in 64-core systems, where the ring performance drops by 72% with respect to the CMESH for parallel
workloads. The ring topologies perform worse due to the increased hop count, which translates into
higher network latency. In average, compared with the CMESH, the ring suffers from a 34% network
latency increase in the single-threaded 16-core chip, 60% in the multi-threaded 16-core chip, and 136%
in the 64-core chip. The CMESH topology offers the best performance with low energy consumption
(17% less than the torus for 64 cores) and area (30% smaller than the torus for 64 cores) for all
workloads considered and both 16 and 64-core chips, even with multithreaded cores, which generate a
heavier traffic load.

We have reported that in real applications traffic is very light and not uniformly distributed,
pointing out the potential of heterogeneity, either in the form of dynamic resource allocation or fre-
quency/voltage scaling. For parallel applications, both the injection rate and the message destinations
are more variable than those we see with synthetic traffic patterns, with only 2 nodes injecting an
average of 33% of the traffic in the 64-core chips; for multiprogrammed workloads, traffic is random
with hotspots at the memory controllers, which inject 25% of the traffic.

For multiprogrammed workloads, we have concluded that that contention in the network causes
fairness to drop, especially for networks with lower performance. For example, the mesh has 26%
lower fairnes with 16 single-threaded cores than with 16 multithreaded cores; focusing only on the
multithreaded cores, the ring has 28% lower fairness than the mesh. We have also determined that the
placement and the number of memory controllers has a negligible effect on system performance with
realistic applications, because they have limited memory access.

8 Acknowledgements

This work was supported in part by grants TIN2013-46957-C2-1-P, Consolider NoE TIN2014-52608-
REDC (Spanish Gov.), and gaZ: T48 research group (Aragón Gov. and European ESF), and FPU12/02553.
We also thank the anonymous reviewers that greatly helped to improve this work.

References

1. Abousamra, A., Jones, A., Melhem, R.: Codesign of NoC and cache organization for reducing access latency in
chip multiprocessors. IEEE Transactions on Parallel and Distributed Systems 23(6), 1038–1046 (2012). DOI
10.1109/TPDS.2011.238

2. Abousamra, A., Melhem, R., Jones, A.: Deja-vu switching for multiplane NoCs. In: Sixth IEEE/ACM International
Symposium on Networks on Chip (NoCS), pp. 11 –18 (2012). DOI 10.1109/NOCS.2012.9

3. Abts, D., Enright Jerger, N.D., Kim, J., Gibson, D., Lipasti, M.H.: Achieving predictable performance through better
memory controller placement in many-core CMPs. In: Proceedings of the 36th annual international symposium on
Computer architecture, ISCA ’09, pp. 451–461. ACM, New York, NY, USA (2009). DOI http://doi.acm.org/10.
1145/1555754.1555810. URL http://doi.acm.org/10.1145/1555754.1555810

4. Agarwal, N., Krishna, T., Peh, L.S., Jha, N.: GARNET: A detailed on-chip network model inside a full-system
simulator. In: IEEE International Symposium on Performance Analysis of Systems and Software, ISPASS, pp. 33
–42 (2009). DOI 10.1109/ISPASS.2009.4919636

5. Agarwal, N., Peh, L.S., Jha, N.K.: In-network coherence filtering: snoopy coherence without broadcasts. In:
Proceedings of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 42, pp.
232–243. ACM, New York, NY, USA (2009). DOI http://doi.acm.org/10.1145/1669112.1669143. URL http:

//doi.acm.org/10.1145/1669112.1669143

6. Balfour, J., Dally, W.J.: Design tradeoffs for tiled CMP on-chip networks. In: Proceedings of the 20th annual
international conference on Supercomputing, ICS ’06, pp. 187–198. ACM, New York, NY, USA (2006). DOI
10.1145/1183401.1183430. URL http://doi.acm.org/10.1145/1183401.1183430

7. Barroso, L.A., Gharachorloo, K., McNamara, R., Nowatzyk, A., Qadeer, S., Sano, B., Smith, S., Stets, R., Vergh-
ese, B.: Piranha: a scalable architecture based on single-chip multiprocessing. In: Proceedings of the 27th annual

18 Marta Ort́ın-Obón et al.

international symposium on Computer architecture, ISCA ’00, pp. 282–293. ACM, New York, NY, USA (2000).
DOI 10.1145/339647.339696. URL http://doi.acm.org/10.1145/339647.339696

8. Bezerra, G.B.P., Forrest, S., Zarkesh-Ha, P.: Reducing energy and increasing performance with traffic optimization
in many-core systems. In: Proceedings of the System Level Interconnect Prediction Workshop, SLIP ’11, pp. 3:1–3:7.
IEEE Press, Piscataway, NJ, USA (2011). URL http://dl.acm.org/citation.cfm?id=2134224.2134229

9. Bienia, C., Kumar, S., Singh, J.P., Li, K.: The PARSEC benchmark suite: characterization and architectural impli-
cations. In: Proceedings of the 17th international conference on Parallel architectures and compilation techniques,
PACT ’08, pp. 72–81. ACM, New York, NY, USA (2008). DOI http://doi.acm.org/10.1145/1454115.1454128. URL
http://doi.acm.org/10.1145/1454115.1454128

10. Carara, E., Moraes, F., Calazans, N.: Router architecture for high-performance NoCs. In: Proceedings of the 20th
annual conference on Integrated circuits and systems design, SBCCI ’07, pp. 111–116. ACM, New York, NY, USA
(2007). DOI 10.1145/1284480.1284515. URL http://doi.acm.org/10.1145/1284480.1284515

11. Conway, P., Kalyanasundharam, N., Donley, G., Lepak, K., Hughes, B.: Cache hierarchy and memory subsystem of
the AMD opteron processor. Micro, IEEE 30(2), 16–29 (2010). DOI 10.1109/MM.2010.31

12. Dally, W.: Virtual-channel flow control. In: 17th Annual International Symposium on Computer Architecture, pp.
60–68 (1990). DOI 10.1109/ISCA.1990.134508

13. Dally, W., Towles, B.: Principles and Practices of Interconnection Networks. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA (2003)

14. Dally, W.J., Seitz, C.L.: The torus routing chip. Distributed Computing 1, 187–196 (1986). URL http://authors.

library.caltech.edu/26909/. 10.1007/BF01660031
15. Gabor, R., Weiss, S., Mendelson, A.: Fairness and throughput in switch on event multithreading. In: 39th Annual

IEEE/ACM International Symposium on Microarchitecture, MICRO-39, pp. 149–160 (2006). DOI 10.1109/MICRO.
2006.25

16. Gilabert, F., Medardoni, S., Bertozzi, D., Benini, L., Gomez, M., Lopez, P., Duato, J.: Exploring high-dimensional
topologies for NoC design through an integrated analysis and synthesis framework. In: Second ACM/IEEE Inter-
national Symposium on Networks-on-Chip, NoCs, pp. 107–116 (2008). DOI 10.1109/NOCS.2008.4492730

17. Gove, D.: CPU2006 working set size. SIGARCH Comput. Archit. News 35(1), 90–96 (2007). DOI 10.1145/1241601.
1241619. URL http://doi.acm.org/10.1145/1241601.1241619

18. Halfhill, T.R.: Power8 hits the merchant market. Memory bandwidth helps IBM server processor ace big benchmarks.
Microprocessor report (2014)

19. Howard, J., Dighe, S., Vangal, S., Ruhl, G., Borkar, N., Jain, S., Erraguntla, V., Konow, M., Riepen, M., Gries, M.,
Droege, G., Lund-Larsen, T., Steibl, S., Borkar, S., De, V., Van Der Wijngaart, R.: A 48-core IA-32 processor in 45
nm CMOS using on-die message-passing and DVFS for performance and power scaling. IEEE Journal of Solid-State
Circuits 46(1), 173 –183 (2011). DOI 10.1109/JSSC.2010.2079450

20. Intel: Intel Xeon Phi (2014). URL http://www.intel.es/content/dam/www/public/us/en/documents/datasheets/

xeon-phi-coprocessor-datasheet.pdf. http://www.intel.es/content/dam/www/public/us/en/documents/

datasheets/xeon-phi-coprocessor-datasheet.pdf (Last access November 2015)
21. Intel: Intel Xeon Phi, Knights Landing (2014). URL https://software.intel.com/sites/default/files/managed/

e9/b5/Knights-Corner-is-your-path-to-Knights-Landing.pdf. https://software.intel.com/sites/default/

files/managed/e9/b5/Knights-Corner-is-your-path-to-Knights-Landing.pdf (Last access November 2015)
22. Jerger, N.D.E., Peh, L.S., Lipasti, M.H.: Circuit-switched coherence. In: Proceedings of the Second ACM/IEEE

International Symposium on Networks-on-Chip, NOCS ’08, pp. 193–202. IEEE Computer Society, Washington, DC,
USA (2008). URL http://dl.acm.org/citation.cfm?id=1397757.1397999

23. Jouppi, S.L.K.C.J.B.B.N.P.: Performance impacts of non-blocking caches in out-of-order processors. Tech. rep., HP
Laboratories (2011). URL http://www.hpl.hp.com/techreports/2011/HPL-2011-65.pdf

24. Kanter, D.: 14nm Xeon D secures the data center. Microprocessor report (2015)
25. Koibuchi, M., Matsutani, H., Amano, H., Hsu, D.F., Casanova, H.: A case for random shortcut topologies for HPC

interconnects. In: Proceedings of the 39th International Symposium on Computer Architecture, ISCA ’12, pp.
177–188. IEEE Press, Piscataway, NJ, USA (2012). URL http://dl.acm.org/citation.cfm?id=2337159.2337179

26. Krishna, T., Peh, L.S., Beckmann, B.M., Reinhardt, S.K.: Towards the ideal on-chip fabric for 1-to-many and many-
to-1 communication. In: Proceedings of the 44th Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO-44 ’11, pp. 71–82. ACM, New York, NY, USA (2011). DOI 10.1145/2155620.2155630. URL http://doi.

acm.org/10.1145/2155620.2155630

27. Kumar, P., Pan, Y., Kim, J., Memik, G., Choudhary, A.: Exploring concentration and channel slicing in on-chip
network router. In: Proceedings of the 2009 3rd ACM/IEEE International Symposium on Networks-on-Chip, NOCS
’09, pp. 276–285. IEEE Computer Society, Washington, DC, USA (2009). DOI 10.1109/NOCS.2009.5071477. URL
http://dx.doi.org/10.1109/NOCS.2009.5071477

28. Kumar, R., Zyuban, V., Tullsen, D.M.: Interconnections in multi-core architectures: Understanding mechanisms,
overheads and scaling. In: Proceedings of the 32nd annual international symposium on Computer Architecture,
ISCA ’05, pp. 408–419. IEEE Computer Society, Washington, DC, USA (2005). DOI http://dx.doi.org/10.1109/
ISCA.2005.34. URL http://dx.doi.org/10.1109/ISCA.2005.34

29. Lee, J., Ahn, J., Choi, K., Kang, K.: THOR: Orchestrated thermal management of cores and networks in 3D many-
core architectures. In: 20th Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 773–778 (2015).
DOI 10.1109/ASPDAC.2015.7059104

30. Lodde, M., Roca, T., Flich, J.: Heterogeneous network design for effective support of invalidation-based coherency
protocols. In: Proceedings of the 2012 Interconnection Network Architecture: On-Chip, Multi-Chip Workshop, INA-
OCMC ’12, pp. 1–4. ACM, New York, NY, USA (2012). DOI 10.1145/2107763.2107764. URL http://doi.acm.org/

10.1145/2107763.2107764

19

31. Magnusson, P., Christensson, M., Eskilson, J., Forsgren, D., Hallberg, G., Hogberg, J., Larsson, F., Moestedt, A.,
Werner, B.: Simics: A full system simulation platform. Computer 35(2), 50 –58 (2002). DOI 10.1109/2.982916

32. Martin, M.M.K., Sorin, D.J., Beckmann, B.M., Marty, M.R., Xu, M., Alameldeen, A.R., Moore, K.E., Hill, M.D.,
Wood, D.A.: Multifacet’s general execution-driven multiprocessor simulator (GEMS) toolset. SIGARCH Computer
Architecture News 33, 92–99 (2005). DOI http://doi.acm.org/10.1145/1105734.1105747. URL http://doi.acm.

org/10.1145/1105734.1105747

33. Mishra, A.K., Vijaykrishnan, N., Das, C.R.: A case for heterogeneous on-chip interconnects for CMPs. In: Proceedings
of the 38th annual international symposium on Computer architecture, ISCA ’11, pp. 389–400. ACM, New York,
NY, USA (2011). DOI 10.1145/2000064.2000111. URL http://doi.acm.org/10.1145/2000064.2000111

34. Oracle: Sparc M7-16 Server (2015). URL http://www.oracle.com/us/products/servers-storage/

sparc-m7-16-ds-2687045.pdf. http://www.oracle.com/us/products/servers-storage/

sparc-m7-16-ds-2687045.pdf (Last access November 2015)
35. Rahmani, A.M., Haghbayan, M.H., Kanduri, A., Weldezion, A.Y., Liljeberg, P., Plosila, J., Jantsch, A., Tenhunen, H.:

Dynamic power management for many-core platforms in the dark silicon era: A multi-objective control approach.
In: IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), pp. 219–224 (2015).
DOI 10.1109/ISLPED.2015.7273517

36. Sanchez, D., Michelogiannakis, G., Kozyrakis, C.: An analysis of on-chip interconnection networks for large-scale
chip multiprocessors. ACM Transactions on Architecture and Code Optimization 7(1), 4:1–4:28 (2010). DOI
10.1145/1756065.1736069. URL http://doi.acm.org/10.1145/1756065.1736069

37. Seiculescu, C., Volos, S., Khosro Pour, N., Falsafi, B., De Micheli, G.: CCNoC: On-Chip Interconnects for Cache-
Coherent Manycore Server Chips. In: Proceedings of the Workshop on Energy-Efficient Design (WEED 2011) (2011)

38. Standard Performance Evaluation Corporation (SPEC): SPEC CPU2006. URL http://www.spec.org/cpu2006/.
http://www.spec.org/cpu2006/ (Last access November 2015)

39. Sun, C., Chen, C.H.O., Kurian, G., Wei, L., Miller, J., Agarwal, A., Peh, L.S., Stojanovic, V.: DSENT - a tool
connecting emerging photonics with electronics for opto-electronic networks-on-chip modeling. In: Proceedings of
the 2012 IEEE/ACM Sixth International Symposium on Networks-on-Chip, NOCS ’12, pp. 201–210. IEEE Computer
Society, Washington, DC, USA (2012). DOI 10.1109/NOCS.2012.31. URL http://dx.doi.org/10.1109/NOCS.2012.

31

40. Tilera: TILEPro64 (2008). URL http://www.tilera.com/products/processors/TILEPro_Family. http://www.

tilera.com/products/processors/TILEPro_Family (Last access November 2015)
41. Villanueva, J., Flich, J., Duato, J., Eberle, H., Gura, N., Olesinski, W.: A performance evaluation of 2D-mesh, ring,

and crossbar interconnects for chip multi-processors. In: Network on Chip Architectures, 2009. NoCArc 2009. 2nd
International Workshop on, pp. 51–56 (2009)

42. Walter, I., Cidon, I., Ginosar, R., Kolodny, A.: Access regulation to hot-modules in wormhole NoCs. In: Proceedings
of the First International Symposium on Networks-on-Chip, NOCS ’07, pp. 137–148. IEEE Computer Society,
Washington, DC, USA (2007). DOI http://dx.doi.org/10.1109/NOCS.2007.8. URL http://dx.doi.org/10.1109/

NOCS.2007.8

43. Weste, N., Harris, D.: CMOS VLSI Design: A Circuits and Systems Perspective, 4th edn. Addison-Wesley Publishing
Company, USA (2010)

44. Woo, S.C., Ohara, M., Torrie, E., Singh, J.P., Gupta, A.: The SPLASH-2 programs: characterization and method-
ological considerations. In: Proceedings of the 22nd annual international symposium on Computer architecture,
ISCA ’95, pp. 24–36. ACM, New York, NY, USA (1995). DOI http://doi.acm.org/10.1145/223982.223990. URL
http://doi.acm.org/10.1145/223982.223990

45. Yoon, Y.J., Concer, N., Petracca, M., Carloni, L.: Virtual channels vs. multiple physical networks: a comparative
analysis. In: Proceedings of the 47th Design Automation Conference, DAC ’10, pp. 162–165. ACM, New York, NY,
USA (2010). DOI 10.1145/1837274.1837315. URL http://doi.acm.org/10.1145/1837274.1837315

46. Zhang, M., Asanovic, K.: Victim replication: Maximizing capacity while hiding wire delay in tiled chip mul-
tiprocessors. In: Proceedings of the 32nd annual international symposium on Computer Architecture, ISCA
’05, pp. 336–345. IEEE Computer Society, Washington, DC, USA (2005). DOI 10.1109/ISCA.2005.53. URL
http://dx.doi.org/10.1109/ISCA.2005.53

47. Zhou, P., Yin, J., Zhai, A., Sapatnekar, S.S.: NoC frequency scaling with flexible-pipeline routers. In: Proceedings
of the 17th IEEE/ACM international symposium on Low-power electronics and design, ISLPED ’11, pp. 403–408.
IEEE Press, Piscataway, NJ, USA (2011). URL http://dl.acm.org/citation.cfm?id=2016802.2016897

