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ABSTRACT- Optimization of the efficiency of an induction heating application is essential 

in order to improve both reliability and performance. For this purpose, multi-stranded cables 

with litz structure are often used in induction heating applications. This paper presents an 

analysis and optimization of the efficiency of induction heating systems focusing on the 

optimal copper volume of the winding with respect to different constraints. The analysis is 

based on the concept of a one-strand one-turn coil, which captures the dissipative effects of an 

induction heating system and reduces the number of variables of the analysis. An expression 

for the efficiency of the induction heating system is derived. It is found that, with the 

geometry and the other parameters of the system fixed, efficiency depends on the copper 

volume of the windings. In order to use this result to optimize the efficiency of an application, 

volume restrictions, the packing factor and the window utilization factor are also considered. 

The optimum frequency for an induction heating system is also studied in this work. An 

experimental verification for both planar and solenoidal cases is also presented. 

INDEX TERMS- Electromagnetic analysis, induction heating, loss optimization. 
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I. INTRODUCTION 

Induction heating technology is applied in many different fields, ranging from medical [1, 

2] to industrial uses [3]. Its advantages include efficient and rapid heating as well as electrical 

isolation. The basic arrangement of an induction heating system consists of an ac source 

feeding a coupled coil-target system. Usually, coils are arranged in several turns following an 

axisymmetric geometry adapted to the shape of the induction target. In industrial systems, 

solenoid-type induction systems are the most common [4, 5], whereas in medical and 

residential applications, planar arrangements are preferred [6, 7]. An illustration of these 

arrangements is depicted in Fig. 1.  

The designs of induction heating coils are depend on several factors, for example, rated 

power, minimum loss, size, temperature, weight or a combination of these. Historically, 

copper tubes have been used in the industrial induction heating sphere, because they meet the 

specific requirements of frequency (up to several MHz), power (up to hundreds of kW) or 

temperature (800 ºC or higher) with a moderate cost. On the other hand, litz wire is the cable 

of choice in residential applications, such as induction cookers, mainly due to the optimal 

balance between efficiency and cost. Nowadays, the growing concern about efficient power 

conversion makes litz wire an interesting option not only for residential applications but also 

for industrial applications at the medium range of frequency, power or temperature. 

Considering these potential applications, it is important to have in mind temperature 

  

(a) (b) 

Fig. 1.  Typical induction heating arrangements. (a) Planar. (b) Solenoidal.  
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limitations of litz wire, which depends on the working temperature of the insulation materials. 

Therefore, litz wire coils could not be appropriate for some induction heating applications as 

melting, forging, or brazing because radiant or convection heating of the coil may exceed its 

limit temperature. However, there are other industrial applications, as the sealing of cans by 

means of aluminum caps, where litz wire could be an interesting option. Moreover, litz wire 

could be also used in combination with appropriate low-emissive bobbins (such as ceramic 

materials) with moderate increase the temperature due the radiation of the workpiece. 

Litz wire has been object of study in many papers, mainly with the aim of loss modeling 

[8-13] and optimal design [14-18] of inductors and transformers for Switch Mode Power 

Supplies (SMPS). Comparatively, the number of studies devoted to litz-wire windings for 

induction heating applications is small, which in part is due to the fact that the sphere of use 

and market for SMPS are quite different from those of induction heating. The existing works 

in the field of induction heating are mainly focused on loss modeling [19, 20] and efficiency 

analysis [21]. The studies mentioned above for SMPS could to a greater or a lesser extent be 

applied to induction heating and they are undoubtedly a valuable starting point. However, 

coils for induction heating systems have several differences compared to the magnetic 

components of SMPS and, therefore, there is room for further contributions, especially in the 

field of the efficiency-oriented design. 

The design of inductors and transformers is often focused on the minimization of winding 

losses, which can be accomplished by an appropriate selection of the number and radius of the 

strands, while considering other restrictions such as the total volume or cost. However, the 

design of induction heating coils should rather be focused on the efficiency of energy 

transference, which depends on both the dissipation in the workpiece and the losses of the 

windings. In an induction system these dissipations are not decoupled: rather, both depend on 

the global magnetic field of the specific application and the frequency, being of special 
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importance the frequency dependency which should be accounted for in order to optimize the 

induction heating system. 

The winding volume of inductors and transformers for SMPS is usually closely related to 

the size of the bobbin and the core. The design tools developed by manufacturers or 

researchers [16] often includes a list of the standard bobbins in order to check if the volume 

occupied by the windings of the designs fits in a specific bobbin. In the induction heating 

field the winding volume mainly depends on the available space in each specific application, 

and sometimes this is a major restriction which makes the design more difficult. For example, 

in domestic induction heating appliances (both conventional [22] or total active surfaces 

[23]), the assembly of coils and power electronics in the housing imposes severe volume 

restrictions which are reflected in the design of the inductors. Volume restrictions become 

more evident in PCB implementations of planar windings with litz-wire structure [24, 25] and 

microfabricated inductors [26]. In other applications, the dissipated heat must be concentrated 

in a small area and therefore the coil should be adapted to the heating zone. 

Considering the aforementioned differences, in this paper we present a study on induction 

heating systems with litz wire focusing on the optimization of the efficiency with respect to 

the copper volume. Different restrictions such as the operating frequency, the window area 

utilization or the radius of the strands are also considered. For this purpose, a semi-analytical 

method combining finite element (FEA) field simulations and formulas for calculating the 

loss is followed. This paper is organized as follows. In Section II an electromagnetic analysis 

of the efficiency of an induction heating system is presented. Section III describes the design 

issues. Section IV presents an experimental verification of the proposed model, and Section V 

summarizes the findings of this study. 

II. ELECTROMAGNETIC ANALYSIS OF THE INDUCTION HEATING 

EFFICIENCY 
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The most common electrical model of an induction heating system consists of an 

inductance, Lind, and resistance, R, connected in series, as is shown in Fig. 2. The resistance is 

often divided in the induced resistance term, Rind, and the resistance of the winding, Rw [27]. 

These electrical parameters can be obtained either by means of FEA simulations [25] or 

analytical models [6]. Both methods give frequency-dependent impedances which, assuming 

linearity, can be used to estimate the current Io by applying Fourier series. 

The inductive efficiency of an inductor system is defined as the ratio between the power 

transferred to the target, Pind, with respect to the total electrical power supplied to the coil, 

Psupplied. In terms of resistances, the induction efficiency can be expressed as follows [21]: 

 indind ind

ind

supplied ind

21

2

21

2

,   


o

wo

I RP R

P R RI R
 (1) 

where Io is the current of the coil, Rind represents the inductive power transferred to the target, 

and Rw the power dissipated in the windings. These resistances are modeled in the following 

sections by means of FEA field simulations of the induction heating system. From these 

simulations, the induced impedance of an ideal-winding induction heating system, Zind, is 

extracted. The winding resistance, Rw, is calculated by combining these simulations with the 

ac loss model of the real cable. 

A. Electromagnetic modeling of the induction system 

 

Fig. 2.  Equivalent circuit of induction heating systems. 
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Rectangular cross section coils of rotational symmetry are considered in this analysis. This 

geometry corresponds to the planar and solenoidal arrangements schematically represented in 

Fig. 3(a) and (b), where rint and rext are the internal and external radii of the coil, respectively; 

and t  the thickness. It is assumed that the coils consist of n  equally distributed turns which 

are compactly wound with a litz wire of ns isolated strands of radius rw. It is important to note 

that the number of turns, n, and number of strands, ns, are constrained by several factors, as 

the packing factor of the isolated strands. This effect is later separately accounted for with 

design purposes. 

Thus, considering the properties of an ideal litz wire (i.e. a multi-stranded wire whose 

strands are equivalent), the electrical current can be assumed to be uniformly distributed in 

over the entire cross-sectional area of the winding, Swinding, in the required frequency range. 

Consequently, the coils can be assumed to an ideal conducting media, i.e. null conductivity σ 

= 0, which are modeled in the FEA simulations by the following constant current density Jcoil: 

 
 coil

turn coil ext int

  


φ φ φˆ ˆ ˆo o o
I I I

n n
S S t r r

J , (2) 

where φ̂  is the unit vector representing the azimuthal direction of the system, Sturn, Scoil are 

the turn and the coil cross-sectional areas respectively.  

 

 

(a) (b) 

Fig. 3.  Typical induction heating arrangements. (a) Planar coil in transverse flux configuration. (b) Solenoidal 

coil in longitudinal flux configuration. 
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The workpiece and the flux concentrator (a ferrite for the planar configuration) are also 

included in the system. These media are characterized by means of the electrical conductivity 


k

 and magnetic permeability 
k

 where k  could be the load or the ferrite. In this analysis, 

the ferrite is considered a loss-free medium. Geometrical parameters and distances from the 

media to the coils are also represented in Fig. 3(a) and (b). In order to be illustrative, a FEA 

field simulation of a planar arrangement is represented in Fig. 4, where the workpiece has 

been replaced by the impedance boundary condition (IBC) [28]. 

B. Analysis of inductive power transferred to the target 

The induced equivalent impedance 
ind

Z  of these systems is defined as Zind = Vind / Io, 

where Vind is the induced voltage of the ideal loss-free coils. Neglecting capacitive effects, Zind 

is modeled as a resistance in series with an inductance, i.e. Zind = Rind + jωLind, where Rind 

represents the inductive power transferred to the target and Lind represents the magnetic field 

of the system. 

Voltage 
ind

V  is the integral of the azimuthal electric field, 


E , along the projection of the 

coil. Taking into account the axial symmetry and also considering that the coil consists of n 

equally-distributed turns, the induced voltage is obtained by integrating Eφ over the entire 

winding volume divided by the cross-sectional area Scoil and multiplied by the number of turns 

n. Therefore 
ind

V  becomes: 

 

Fig. 4.  Magnetic flux density extracted from FEA field simulations of a winding placed between a ferromagnetic 

medium acting as a load and a flux concentrator. 
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ext

int
ind

winding coil
0
2 .


      E dl

r t

r

n
V rE dzdr

S
 (3) 

where Eφ is obtained from the FEA simulations and r is the radial coordinate . 

Regarding the equivalent impedance, the number of turns of the coil is of especial 

relevance. In order to parameterize the number of turns it is convenient to consider coils with 

only one turn, i.e. 1n  , and the same geometries of those presented in Fig. 3. These coils are 

here called as one-turn coils. Let 
 ,1

E  be the electric field generated by a one-turn coil. 

Therefore, the corresponding one-turn voltage 
ind,1

V  is: 

 
ext

int
ind,1

coil

,10

1
2 .


   

r t

r
V rE drdz

S
 (4) 

It is worth to note that the length of the one-turn coil corresponds to the average length of 

the turns of the coil, also calledMLT , which is defined as: 

  ext

int
ext int

coil
0

1
2 .    

r t

r
MLT rdrdz r r

S
 (5) 

Assuming linearity of the media, the field 


E  of (3) can be calculated as 
 


,1
E nE  

Therefore, (3) can be rewritten as follows: 

 
ext

int

ind,1

ind ind,1

coil

2

,10

1
2 .




 
    

  
 

r t

r

V

V n n rE drdz n V
S

 (6) 

Therefore, the impedance of the loss-free coil is: 

 
ind

ind ind ind,1 ind,1

,12 2 2 2

,1

0

,   
V

Z n n Z n R j n L
I

 (7) 

where 
ind,1

Z , 
ind,1

R  and 
ind,1

L  are the impedance, resistance and inductance of the one-turn 

coil, respectively. 
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C. Analysis of dissipation in the windings  

The winding loss model is based on the decomposition in DC, skin and proximity losses 

[29]. Therefore, associating losses to resistances, the winding resistance, 
w

R , is: 

 
cond prox

, 
w

R R R  (8) 

where 
cond

R  includes the DC and skin resistances (here called conduction resistance), and 

prox
R  corresponds to the proximity losses induced by the coil itself. 

In this case, regarding 
w

R , the number of strands of the wire is also of especial relevance. 

Considering ideal litz-wire structure (i.e. equivalence of strands), it is also convenient to 

consider the number of strands as a parameter. Therefore the analysis of 
w

R  is carried out for 

wires with one strand, 1
s

n  . Taking into account the parameterization with respect to the 

number of turns of the previous section, in this section the loss analysis of the coil is carried 

out on the basis of the one-strand one-turn coil. 

The conduction resistance per unit length of a round strand of radius 
w

r  is: 

  cond u.l. cond


 
 

2

1
,

w w

w w

R r
r

 (9) 

where 
w

 is the conductor conductivity. The skin depth of the conductor is 

   



1 2

0w w
f , 

0
 being the free-space permeability and f  the frequency. The function 

 cond


w w
r  includes the geometry and frequency dependencies of the skin losses. For the 

case of an isolated and widely-spaced round strand, an exact expression of  cond


w w
r  

expressed in terms of Bessel functions has been known for years [30, 31]. For closely-packed 

multi-stranded wires this function is not exact, but a small discrepancy is observed for strand 

diameters equal to or lesser than skin depth [14]. 
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Let 
cond,11

R  be the DC and skin resistance of the one-strand one-turn coil of strand radius 

w
r . Considering that the length of this turn is the coil volume divided by the cross section 

area (i.e. the MLT ) and applying (9), 
cond,11

R  is: 

   ext

int
cond, 11 cond

coil

 
 

    2 0

1 1
2

r t

w rw
w w

MLT

R r rdrdz
Sr

 (10) 

Assuming equivalence of the strands and also assuming a strand radius equal to or lesser 

than skin depth, the cable can be considered as the parallel of 
s

n  equivalent strands. 

Moreover, the coil can be considered as the series connection of n  turns of MLT  length. 

Therefore, 
cond

R  is: 

  cond cond,11 cond


 
  

2
.

w w
s s w w

n n MLT
R R r

n n r
 (11) 

A similar analysis for the proximity resistance, 
prox

R , can be carried out. The proximity 

resistance per unit length of a round strand of radius 
w

r  can be written as: 

  prox u.l. prox





 

24
,

w w o

w

R r H  (12) 

where 
o

H  is the spatial average of the transverse magnetic field applied to the strand for a 

coil current  A 1
o

I . For the systems of Fig. 3(a) ad (b), the value of 
2

o
H  at any point can 

be calculated by FEA and depends on the surrounding media. The geometry and frequency 

dependencies of the proximity resistance are included in the function  prox


w w
r , which 

includes Bessel functions. For isolated and widely-spaced round strands an exact expression 

of  prox


w w
r  with Bessel functions is also known [30, 31]. 
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Let 
prox,11

R  be the proximity resistance of the one-strand one-turn coil of strand radius 
w

r . 

This resistance can be calculated by applying (12), which requires 
2

,1o
H , i.e., the spatial 

average of the field generated by the one-turn coil at the positions of the coil. This value is 

obtained by integrating 
2

,1
2

o
r H  on the coil volume and dividing by the cross-sectional 

area: 

  
coil

prox prox

coil

2

,11 ,1

4 1
2 .


 


   H

w w o

Sw

R r r drdz
S

 (13) 

Assuming linearity of the media, 
o

H  can be expressed as the field generated by the the 

one-strand one-turn coil, 
,1o

H , multiplied by the number of turns, i.e.  
,1o o

nH H . 

Moreover, as in the section above, the cable is considered as the parallel of 
s

n  strands and the 

coil is the series connection of n  equally distributed turns. Therefore: 

  
coil

prox prox prox,11


 


  

2
3 3

,1

4
2 ,

s w o sw
Sw

R n n r r n n RH  (14) 

where 

coil


2

,1
2

o
S

r H is the mean value of 
2

,1
2

o
r H  in the cross-sectional area of the coil. 

It is worth noting several aspects of the last equation. Firstly, the magnetic field 
,1o

H  is 

frequency-dependent because conductive media are present in the system. Secondly, 

TABLE I: IMPEDANCE COMPONENTS 

Component Symbol Expression One-turn equivalent coil of one-strand 

Induction impedance 
ind

Z  
ind ind,1

 2Z n Z  
ext

int
ind,1

coil


    ,10

1
2

r t

r
Z rE dS

S
 

Conduction resistance 
cond

R  cond cond,11


s

n
R R

n
 turn

cond,11 cond  

 
    

 
2

w

ww w

l r
R

r
 

Proximity resistance 
prox

R  
prox prox,11

 3

s
R n n R  

coil

prox,11 prox




 

 
    

 

2

,1

4
2w

o
Sw w

r
R r H  

    

 



 

 

 

12 

according to the ideal model coil adopted, 
,1o

H is not affected by the self-induced currents in 

the coil conductors. This assumption is potentially valid if cables with enough stranding level 

are used. Third, considering that  prox


w w
r  of (14) is only valid for isolated and widely-

spaced round strands, this equation cannot be considered as exact. However, the 

approximation (14) is valid if the strand radius is equal to or lesser than skin depth. Some 

authors have further evaluated this approximation [12]. 

The impedance contributions in induction heating systems and their dependencies with 

respect to n  and 
s

n  are summarized in Table I. 

D. LF and HF resistance approximation 

In a specific design, the optimization of the strand diameter, the number of strands or the 

operating frequency is usually required. However, it is cumbersome to extract practical values 

from (11) and (14) due to the fact that  cond


w w
r  and  prox


w w

r  include Bessel 

functions. Several authors have proposed alternative simplified expressions to calculate the ac 

loss in multi-stranded cables, [13, 32, 33]. Another possibility is to take approximations based 

on the asymptotic tendencies of  cond


w w
r  and  prox


w w

r  at the low-frequency (LF) 

and high-frequency (HF) values [34]. At the low-frequency (LF) range it can be proved that: 

 
 

   

LF

cond

LF

prox

 

  

  

  
4

1 1

1 4 1

w w w w

w w w w w w

r r

r r r
 (15) 

The resistances for the one-strand one-turn equivalent coil become: 

 

 
coil

LF

cond, 11 , 11

LF

prox, 11

2

42

,1

1
1

2 1


 

    

  

   H

DC w w

w w

w o w w w w
S

MLT
R R r

r

R r r r

 (16) 
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Taking into account the assumptions of uniform current coil distribution and strand radius 

equal to or lesser than skin depth, the LF approximation is used in order to obtain practical 

and simple equations for the design of induction heating systems. 

Concluding this section, the main assumptions adopted in the presented modeling are 

summarized as follows: 

 Ideal winding modeled as a constant current density. 

 Linear materials and loss-free flux concentrators, which allows to use the Fourier 

series to obtain the current for any periodic voltage waveform. 

 Ideal litz-wire structure. 

 Widely-spaced round strands. 

 Low frequency approximation of the frequency-dependent strand losses. 

III. EFFICIENCY-ORIENTED DESIGN 

A study of the induction efficiency has been carried out, focusing on the optimization of 

the induction efficiency with respect to some practical parameters such as the operation 

frequency, the winding parameters and the coil volume. 

A. Induction efficiency and coil volume 

Considering the previous modeling and applying (1), (7), (8), (11) and (14), the induction 

efficiency can be expressed as: 

 ind,1

ind

ind,1 cond,11 prox,11

 
 

.
1

s s

R

R nn R nn R
 (17) 

According to this expression, induction efficiency depends on the resistances 

corresponding to the one-strand one-turn coil, 
ind,1

R , 
cond,11

R , 
prox,11

R  (which includes the 

frequency-dependency) and the factor 
s

nn , i.e. the number of turns multiplied by the number 
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of strands. It can also be deduced that the induction efficiency depends on the copper volume 

defined as     2

Cu s w
V nn r MLT . 

Therefore, if the system geometry, the wire radius 
w

r  and the operating frequency are 

fixed, different coils with the same result of the number of turns multiplied by the number of 

strands, 
s

nn , (i.e. coils with the same copper volume) have the same efficiency. Fig. 5 shows 

the induction efficiency for different 
s

nn  factors (continuous line) with respect to the 

frequency for a given wire radius (rw = 0.1 mm).  

In the following sections, equation (17) is used to optimize the induction efficiency for 

design purposes. 

B. Condition of maximum efficiency 

When the winding area without geometrical restrictions, the frequency and the wire radius 

w
r  are fixed, the solution of  ind

   0
s

nn  gives the 
s

nn  which maximizes the induction 

efficiency. It is worth noting that, in this case, the maximum winding area is not restricted by 

 

Fig. 5.  Induction efficiency with respect to the frequency for different factors 
s

nn  (continuous line), for the 

optimum value of 
,maxs s

nn nn  (dashed cyan line) and with respect to the optimum frequency 
opt

f f  for given 

s
nn  and wire radius rw (dashed magenta line). The system corresponds to a solenoidal coil with  mm 0.1

w
r  

with a ferromagnetic load in longitudinal flux configuration. 
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the winding area of a bobbin (which is associated to a magnetic core) as occurs in SMPS. 

Rather, it depends on the specific induction heating application. According to (17), the 

following condition is obtained: 

 
cond,11 prox,11,max

.
s

nn R R  (18) 

The same condition can be obtained if 
cond prox

R R  or, in other words, if the optimum 

efficiency occurs when the conduction (DC+skin) equals the proximity resistances. This result 

has also been found by other authors, as can be seen in several works concerning litz-wire 

transformer winding [14]. The maximum induction efficiency 
ind max


,

 for a given system is 

represented by the dashed cyan line in Fig. 5, which corresponds to the envelope of the set of 

curves obtained for different values of 
s

nn . This envelope was numerically obtained and 

subsequently represented. Nevertheless, 
ind max


,

 can be analytically obtained by applying the 

result (18) in (17) giving: 

 
ind,1

ind,max

ind,1 cond,11 prox,11

.
2

 


R

R R R
 (19) 

Fig. 6 shows the factor 
,maxs

nn  as a function of frequency for different strand radii. As is 

shown, at a low frequency regime, the higher the frequency, the lower the 
,maxs

nn . In other 

words, for the same strand radius, an increase in the frequency allows either the number of 

turns or the number of strands to be reduced achieving the maximum efficiency. At a high 

frequency regime, 
,maxs

nn  is much more constant with respect to the frequency. 

Equation (18) gives the theoretical 
,maxs

nn  value that maximizes the induction efficiency. 

However, for design purposes, in order to make the selection of 
w

r  easier, it is more useful to 

have an expression of 
,maxs

nn  in terms of 
w

r  than in terms of 
cond,11 prox,11

,R R  because the latter 
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include Bessel functions among other dependencies. Therefore, applying the LF 

approximation of 
cond,11 prox,11

,R R  (16), 
,maxs

nn  is rewritten as follows: 

 

coil

LF

,max 32

,1

1 1 1
1.

2


 



 

H
s w w

w o w
o

S

MLT
nn r

f rr

 (20) 

Moreover, applying the LF approximation, the maximum inductive efficiency, 
ind max


,

is 

given by: 

 

coil

LF ind,1

ind,max

ind,1

 
 



  

 
2

0

,1

1
, 1.

2
w w

w

o
S

R
r

r
R MLT r H

 (21) 

C. Frequency design for maximum efficiency 

Equation (18) provides the factor 
,maxs

nn  which maximizes 
ind

 . According to the results 

presented in Fig. 5, it may seem that the maximum efficiency of a design can be achieved by 

simply selecting the appropriate 
,maxs

nn  at a given frequency using the envelope of the 
ind max


,

, 

 

Fig. 6.  Factor 
,maxs

nn  which maximizes the efficiency as a function of the frequency for different strand radii 

(continuous line). Factor 
s

nn  which maximizes the efficiency at 
opt

f  for different strand radii (dashed line). 

Available 
ava,s

nn  for the solenoidal configuration of Table III (dashed line of constant value) 
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which is represented by the cyan curve. However, in some cases the factor 
s

nn  could be fixed 

for different reasons, for example for a fixed number of turns or a fixed number of strands, 

and the optimization should be performed for a specific 
s

nn . In these cases, it may also be 

interesting to obtain the frequency 
opt

f  maximizing the inductive efficiency. 

Therefore, for a specific 
s

nn  factor, the theoretical frequency 
opt

f  at which the maximum 

efficiency is achieved can be obtained by 
ind

   / 0f , where 
ind

  is given by (17). Taking 

into account that several terms of this equation, such as    ind 1 cond prox
  

,
, ,

w w w w
R r r  

and the magnetic field, are frequency dependent and therefore are not straightforwardly 

derivable with respect to the frequency, the solution of the above mentioned condition has 

been obtained using post-processing numerical calculations. Fig. 5 shows the 
ind

  considering 

the frequency axis as the 
opt

f  for a set of different 
s

nn  values. This line corresponds to the 

peak values of the efficiency curves for different 
s

nn  values and it is represented by a dashed 

magenta line. It is worth noting that this line is very close but not coincident with the 
ind max


,

 

obtained in the previous section. The difference lies in the fact that 
ind max


,

 corresponds to the 

envelope whereas the 
ind

  at the optimal frequency
opt

f  corresponds instead to the peak of the 

efficiency curves. 

Curves of 
s

nn  which maximize 
ind

  at 
opt

f  for different strand radii are also shown in Fig. 

6 with slopping dashed lines. As in the previous case, this line is close but not coincident with 

,maxs
nn  for the reasons above commented. 
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D. Geometry winding restrictions 

In the previous section, a winding area without any spatial or volume restrictions has been 

considered. However, the maximum copper volume is usually restricted by several factors 

which usually are modeled by means of the utilization factor 
u

K . This factor is defined as the 

ratio between the copper cross-section, 
Cu

S , and the coil cross-section, 
coil

S . Therefore, the 

actual copper cross-section available, SCu, is given by: 

 
Cu coil

. 
u

S K S  (22) 

The window utilization factor depends on the strand radius, the wire insulation and the 

packing factor of the winding. In this case, the window utilization factor is defined as the 

product of the strand insulation factor, 
i

K , and by the air factor, 
a

K , i.e.  
u i a

K K K  [35]. 

An estimation of 
a

K  is here proposed considering that the turns are arranged according to 

a square pattern and the strands according to a triangular pattern [35] 

   4 2 3  / /
a

K . Therefore: 

 
ins

2

,
4 2 3

   
    

w

u

w

r
K

r t
 (23) 

 

Fig. 7.  Copper factor utilization, 
u

K . Table of [25] (crosses) and equation (24) approximation (continuous line). 
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where 
ins

t  is the insulation thickness. The window utilization factor can be approximated by a 

power law as follows [14]: 

   .
b

u w a
K r r  (24) 

Parameters 2979 m 0.0
a

r  and 1295 0.b  have been obtained by means of a curve-fit 

tool from data provided by the manufacturers for double insulation strands [36]. The 

manufacturer’s curve and the fitted data are compared in Fig. 7. The approximation adopted 

here only considers simple arrangements which consist of a group of strands bunched and 

twisted into a bundle. Therefore, it doesn’t take into account more complex constructions 

consisting of several groups, like those described above, which are twisted into higher level 

bundles. Apart from this consideration, other packing factors can be considered and included 

by adapting the parameters 
a

r  and b . 

Considering the window utilization factor and also considering (22) the available 
s

nn  is: 

 
ava coil

 2

,
.

s u w
nn K S r  (25) 

 

Fig. 8.  Frequency-dependent inductive efficiency without winding restrictions, 
ind,max

  (dash line and triangles) 

and with geometry restrictions 
ind,ava

  (dashed line and squares). The feasible designs corresponds to the 

continuous line. 
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According to Fig. 7, design with small strands have smaller utilization factor. Fig. 6 shows 

(dashed line of constant value) the 
ava,s

nn  for the solenoidal configuration of the Table II and 

different strand radii. This value is proportional to the available copper cross section for this 

specific geometry. 

The induction efficiency corresponding to the available copper volume, 
ind ava


,

 is obtained 

by inserting 
ava,s

nn  in (17). Fig. 8 shows both the maximum efficiency without restrictions 

ind,max
 and with restrictions 

ind ava


,
 for different strand radii. The point where both efficiencies 

meet corresponds to an optimum design which takes exactly the available volume. At lower 

frequencies the theoretical 
s

nn  would require more space than is available and therefore 

designs with maximum efficiency are not feasible and efficiency decreases. However, at 

higher frequencies the theoretical 
s

nn  would require less space than is available and therefore 

the efficiency is coincident with 
ind,max

 . In Fig. 8 the curve of feasible designs, composed of 

sections of the 
ind,max

 and 
ind ava


,

 curves, is represented by continuous line. 

 

Fig. 9.  Induction efficiency for different strand radii considering the winding restrictions, 
ind ava


,

 (continuous 

line). The optimum available efficency 
ind,opt,ava

 achieved for the best strand radius at each frequency, 
opt,ava,w

r , 

corresponds to the dashed line and cyan square mark. The available efficiency under geometry restrictions with 

respect to the optimum frequency 
opt

f f  is also represented by a magenta dashed line and square mark. 
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As has been mentioned, 
ind ava


,

 is obtained by considering 
ava,s

nn  in (17). Applying the LF 

asymptotic approximation, the following available efficiency is obtained: 

 

coil

LF ind,1

ind,ava

ind,1 coil

coil




  



 
2

2

,14

1 1
2

u w o
Su w w w

R

MLT
R K S r r

K S
H

 (26) 

From the design point of view, it is of interest to calculate the strand radius which 

provides the optimum efficiency at a fixed frequency considering the geometry restrictions 

opt,ava,w
r  and also considering the system geometry. This radius can be obtained by applying the 

condition LF

ind,ava
0  

w
r  in (26), resulting in the following expression: 

 
 

 

opt,ava

coil

1

1

2

, 2
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.
2

2
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 
 

H

b
b

a w

w

o

rb MLT
r

b S
r

 (27) 

The optimum efficiency achieved with these strands, 
ind,opt,ava

 , can be calculated by inserting 

opt,ava,w
r  in (26). Fig. 9 shows a set of curves of the induction efficiency with respect to the 

frequency for different strands when winding restrictions are considered. The envelope of the 

complete set of curves defines the optimum available efficiency at different frequencies for 

the strand radii given in (27). It is interesting to remark that at the low frequency range, the 

thicker the wire, the higher the efficiency; whereas at the higher frequency range it is inferred 

that the efficiency can be improved by using finer strands. 

Regarding the set of curves in Fig. 9, for a fixed strand radius a frequency can be 

calculated at which the efficiency is optimized. This frequency is called 
opt,ava

f  because the 

geometry restrictions are also considered. As in the previous section, this frequency is 

obtained by numerical processing. In Fig. 9 the magenta line represents the peaks of 

efficiency for different strand radii. As in the previous section, the efficiencies at 
opt,ava

f  are 
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lower than the envelope curve called 
ind,opt,ava

 . This fact can be explained by means of an 

example. The peak efficiency of the strand radius 0.05
w

r  mm at 
opt,ava

 100f  kHz is 

slightly higher than 96%. However, the cyan curve indicates that a 
ind,opt,ava

96.8%   could be 

achieved at  100f  kHz by using a strand with a radius smaller than 0.05
w

r  mm. Some 

results which could help when selecting the strand radius for optimal efficiency at a fixed 

frequency are given in the next section. 

E. Selection of the strand radii at a fixed frequency 

Usually, the switching frequency of a specific application is fixed or bounded by different 

reasons and therefore the strand radius should be selected according to an optimal efficiency 

criterion. Fig. 10 shows the strand radii corresponding to the envelope and peak of efficiency 

curves, called 
,opt,avaw

r  and 
opt,ava


w

r f f , respectively. According to this figure, the strand 

radius 0.1
w

r  mm is the best option at a fixed frequency of  12f  kHz. On the other hand, 

at  100f  kHz the highest efficiency corresponds to rw = 20 µm. Therefore, this figure 

shows that the higher the frequency, the smaller the radius. However, this choice could lead to 

 

Fig. 10.  Strand radius for achieving the maximum efficiency without geometrical restrictions (cyan line) and the 

optimum available efficency 
ind,opt,ava

 (magenta line) at a given frequency. 
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small radius and expensive designs. Considering that the cost of litz wire greatly depends on 

the strand diameter, several authors have proposed design methods including not only the 

efficiency but also the cost [15]. 

F. Practical design guidance 

Before ending this section, a guidance of possible methodology intended to optimize the 

efficiency of an induction heating system is presented. This guidance is based on the 

optimization of different scenarios with different specifications. Two different cases are 

considered in each scenario. 

 
TABLE II: PRACTICAL DESIGN EXAMPLES INCLUDING GEOMETRY RESTRICTIONS 

Scenario I: Maximum efficiency design given the frequency 

Parameter Case-I.a Case-I.b Calculation Equation Figure 

f 12.0 kHz 100.0 kHz Specification -- -- 

rw 100 µm 20 µm  rw,opt,ava (27) Fig. 10 

nns 1764 35800 nns,ava |rw = rw,opt,ava  (25) Fig. 6 

ηind 92.0 % 96.8 % η
LF

ind,ava |rw = rw,opt,ava, f (26) Fig. 9 

Scenario II: Frequency design for maximum efficiency given the wire radius 

Parameter Case-II.a Case-II.b Calculation Equation Figure 

f 40.2 kHz 100.0 kHz f = fopt,ava ∂ηind,ava/∂f = 0 Fig. 9 

rw 100 µm 50 µm Specification -- -- 

nns 1764 6450 nns| f = fopt,ava, rw (25) Fig. 6 

ηind 94.8 % 96.1 % η
LF

ind,ava| f = fopt,ava, rw (26) Fig. 9 

Scenario III: Frequency design for a fixed prototype  

Parameter Case-III.a Case-III.b Calculation Equation Figure 

f 61.4 kHz 175 kHz f = fopt ∂ηind /∂f = 0 Fig. 5 

rw 100 µm 100 µm Specification -- -- 

nns 1200 400 Specification -- -- 

ηind 94.0 % 90.2 % ηind | f = fopt, nns, rw (21) Fig. 5 

     

Scenario IV: Optimal copper volume design given wire radius and frequency  

Parameter Case-IV.a Case-IV.b Calculation Equation Figure 

f 10 kHz 300 kHz Specification -- -- 

rw 100 µm 100 µm Specification -- -- 

nns 1764 388 nns,max ≤ nns,ava (18), (25) Fig. 6 

ηind 94 % 89.2 % ηind,max, ηind,ava (19) Fig. 8 

      

 

Table II summarizes these scenarios and also includes the specified parameters 

(highlighted by gray), the equations used in each case, the resulting parameters of the 
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calculations, and the figures used in the optimization. For this reason, the ordinal number of 

scenarios and cases also corresponds to the labels which appear in curves of Fig. 5, Fig. 6, 

Fig. 8, Fig. 9, Fig. 10. The optimization carried out in some scenarios is explained as follows. 

Scenario I corresponds to an optimization case in which the frequency is specified and the 

radius of the strand, the number of turns and the number of strands for maximum efficiency 

have to be determined. In this case, the strand radius is calculated by means of (27). Once 

rw,opt,ava is calculated, the available product of the number of turns by the number of strands is 

calculated by means of (25). The achieved efficiency at this design is obtained by using (26). 

In the Scenario II the radius of the strand is specified and the optimization consists of 

calculating the frequency, the number of strands and turns which maximizes the efficiency. 

Scenario III corresponds to a case where the prototype geometry is specified and the 

optimization consists of determining the frequency which maximizes the efficiency. Finally, 

in scenario IV the copper volume which optimizes the efficiency for a given strand radius and 

frequency is determined. This optimization is often required for magnetic design of SMPS. 

Before ending this Section, it is worth to comment some aspects of the design of 

solenoidal arrangements (Fig. 3(b)) because its design is more similar to the magnetic design 

for SMPS than planar arrangements (Fig. 3(a)). In magnetic design for SMPS, it is usual to 

consider if a specific design fits in a smaller bobbin in order to reduce the size of the 

application. Redesigns usually lead to changes of some parameters, as the frequency or the 

strand radius. Similarly, the effect of the external radius of the solenoidal arrangement of 

Table III (whose internal radius is 12. 5 mm) is analyzed by means of the presented method. 

The results are presented in Fig. 11. As it is shown, designs with smaller external radii can be 

obtained by increasing the operating frequency. In general it is also observed that at a fixed 

frequency, the increase of the external radius lead to a reduction of the efficiency. 
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IV. EXPERIMENTAL VERIFICATION 

A. Small-signal tests 

Several planar and solenoidal coils were built in order to verify the previous results. A 

picture of both arrangements is depicted in Fig. 12. For both configurations, three prototypes 

with different numbers of turns, strands and constant 
s

nn  were tested. The parameters of the 

prototypes are presented in Table III. For the solenoidal configuration the manufactured 
s

nn  

factor was 1200. 

The small signal tests consisted of resistance measurements and comparisons with the 

 
 

(a) (b) 

Fig. 12.  Experimental arrangements. (a) Planar. (b) Solenoidal. 

 

Fig. 11.  Efficiency of the solenoidal induction heating system with respect to the external radius of the coil at 

different frequencies.. 
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results of the model described in the Section II. The resistance was measured by means of a 

high precision Agilent E4980A LCR-meter. The signal level was set to 10 mA and the 

frequency was ranged between 1 kHz and 2 MHz. Coils were measured in different scenarios 

which include different media. The media properties are presented in Table IV. 

TABLE III  GEOMETRY OF THE PROTOTYPES 

Definition Symbol Planar configuration Solenoidal configuration 

Coil internal radius 
int

r  17.5 mm 12.5 mm 

Coil external radius 
ext

r  32.5 mm 15.5 mm 

Coil thickness t  4.5 mm 38.0 mm 

Distance coil load 
l

d  6.0 mm 8.0 mm 

Thickness load 
l

t  4.0 mm 4.5 mm 

Distance coil flux-concentrator f
d  1.0 mm - 

Flux concentrator thickness f
t  4.5 mm - 

Wire radius 
w

r  0.1 mm 0.1 mm 

Factor nns s
nn  960 1200 

 

TABLE IV: MEDIA CHARACTERISTICS 

Medium Relative permeability, µr Electric conductivity, σ  

Air 1 0 

Flux concentrator 2000 0 

Planar load 170 8e6 [S/m] 

Solenoidal Load 150 8e6 [S/m] 

   

 

Fig. 12(a) shows experimental and calculated resistance for the three planar coils with 

constant 
s

nn  in air. Moreover, Fig. 12(b) shows experimental and calculated resistances for 

the three planar coils placed between a conductive media (the work-piece) and the flux 

concentrator. The experimental and calculated resistances for solenoidal coils in air and with 

the target load are presented in Fig. 13(a) in and Fig. 13(b), respectively. In general, a good 

agreement is observed between the measured and calculated results in the different tested 

scenarios, which confirm the accuracy of the proposed model. Moreover, considering the 

experimental verification, the discrepancy observed at low frequency in the resistance of some 

configurations is associated with the low resistance values at the low frequency range, i.e. 
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tens of mΩ. At this frequency range the resistance of the coil almost corresponds to the DC 

resistance and therefore measurements are affected by the setup arrangement, as the proper 

connection of all strands, length of the terminals, among others. 

Fig. 14 and Fig. 15 show the experimental and calculated values of the inductive 

efficiency for the prototypes with planar and solenoidal configurations, respectively. The 

experimental results were obtained according to the method proposed in [21], which 

combines the results shown in the previous figures to obtain the experimental efficiency 

values. This method assumes that the calculated Rind can be used for estimating the 

experimental efficiency if the total measured resistance matches with calculations. According 

  

(a) (b) 

Fig. 13.  Experimental (circle mark) and calculated (continuous line) resistance values for the planar 

configuration. (a) Coils in air. (b) Planar coils between a magnetic substrate and a load. 

  

(a) (b) 

Fig. 14.  Experimental (circle mark) and calculated (continuous line) resistance values for the solenoidal 

configuration. (a) Coils in air. (b) Coils with load. 
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to Fig. 14 and Fig. 15, coils with constant 
s

nn  (and for the same wire radius) have the same 

induction efficiency. This result is valid for both planar and solenoidal configurations. 

B. Test under real working conditions 

Litz wire has been used in induction cooking much more widely than in industrial 

induction heating. There are several reasons for this, mainly derived from the superior thermal 

performance of copper tubes such as high temperature operation and possibility of cooling. 

Other reasons are the low cost of copper tubes and the limitations of litz wire above 1 MHz 

[37]. However, in industrial applications with lower thermal requirements, low operation 

 

Fig. 15.  Induction efficiency for the planar configuration. Experimental-calculated (circle mark) and calculated 

(continuous line) values. 

 

Fig. 16.  Induction efficiency for the solenoidal configuration. Experimental-calculated (circle mark) and 

calculated (continuous line) values. 
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frequency or oriented to high efficiency performance, litz wire could compete with copper 

tubes. 

A solenoidal coil in real working conditions was tested with the purpose of verifying if litz 

wire is a feasible option for application in several induction systems. The solenoidal coil 

consisted of  30n  turns which were wound with a cable of  40
s

n  strands of  mm 0.1
w

r

, i.e.  1200
s

nn . The coil was fed by a half-bridge series resonant inverter. The switching 

frequency at resonance was equal to the optimum operation frequency  kHz 61.4
opt
f  for 

the considered design. Other parameters of the setup were: resonant capacitor  600
r

C  nF, 

dc bus voltage amplitude Vdc = 50 V and output power  500
o

P W [27]. The equivalent 

circuit of the converter connected to the induction heating system and the main waveforms 

captured are represented in Fig. 16. According to the waveform of the inductor current io , it 

can be deduced that the first harmonic current contains most power. In these applications with 

resonant converters working near the resonant frequency it is often considered that the first 

harmonic carries up to the 95% of the total power [38].  

 

 

(a) (b) 

Fig. 17.  Resonant converter connected to an inductor heating system. (a) Equivalent circuit of the converter (b) 

Oscilloscope capture of the main waveforms. 
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Moreover, thermocouples have been placed in outermost turns (Twire1, Twire2) and in the 

internal wall of the bobbin (Tbobbin). Several tests were carried out. The location of the 

thermocouples is pointed out and the measured temperatures after 50 seconds at nominal 

power are depicted in Fig. 17. 

Moreover Fig. 18 shows a picture of the prototype in real working conditions in different 

times (15, 25 and 35 seconds) along the test realized. These tests correspond to an extreme 

case where the workpiece is heated up to red hot (about 800 ºC). However, according to Fig. 

 

 

(a) (b) 

Fig. 19.  Thermal measurements. (a) Thermocouples location. (b) Thermal mesurements. 

Tbobbin Twire,1 Twire,2

   

(a) (b) (c) 

 

Fig. 18.  Pictures of the solenoidal inductor in real working conditions. (a) t = 15 seconds. (b) t = 25 seconds. (c) t 

= 35 seconds. 
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17 the temperature of both the copper and the bobbin is much lower. As it was commented in 

the introduction, low-emissive materials for the bobbin help to not exceed the self-heating of 

the windings. 

V. CONCLUSION 

This work presents an analysis of the efficiency of litz-wire induction heating systems 

with respect to the frequency and geometry parameters (number of turns, number of strands 

and wire radius). The analysis reveals that the induction efficiency could be maximized with 

respect to the number of turns multiplied by the number of strands (which is equivalent to the 

copper volume) for fixed frequency and strand diameter. Moreover, an optimization of the 

induction efficiency with respect to the operation frequency for a given coil geometry is also 

derived by means of a post-processing tool. Furthermore, strand radius selection criteria have 

been provided and the optimum wire radius maximizing the inductive efficiency under 

geometry restrictions is also investigated. Finally, several measurements have been carried 

out in order to verify the proposed calculation method. 

ACKNOWLEDGEMENT 

This work was partly supported by the Spanish MINECO under Project TEC2013-42937-

R, Project CSD2009-00046, and Project RTC-2014-1847-6, by the FPU grant AP2010-4446, 

by the DGA-FSE, by the University of Zaragoza under Project JIUZ-2014-TEC-08, and by 

the BSH Home Appliances Group. 

REFERENCES 

[1] X. Wang, J. Tang, and L. Shi, "Induction heating of magnetic fluids for hyperthermia 

treatment," IEEE Transactions on Magnetics, vol. 46, pp. 1043-1051, Apr. 2010. 

[2] P. D. Barba, F. Dughiero, and E. Sieni, "Magnetic field synthesis in the design of 

inductors for magnetic fluid hyperthermia," IEEE Transactions on Magnetics, vol. 46, 

pp. 2931-2934, Aug. 2010. 



 

 

 

32 

[3] H. N. Pham, H. Fujita, K. Ozaki, and N. Uchida, "Dynamic Analysis and Control for 

Resonant Currents in a Zone-Control Induction Heating System," IEEE Transactions 

on Power Electronics, vol. 28, pp. 1297-1307, Mar. 2013. 

[4] F. Dughiero, M. Forzan, C. Pozza, and E. Sieni, "A Translational Coupled 

Electromagnetic and Thermal Innovative Model for Induction Welding of Tubes," 

IEEE Transactions on Magnetics, vol. 48, pp. 483-486, Feb. 2012. 

[5] H. N. Pham, H. Fujita, K. Ozaki, and N. Uchida, "Phase angle control of high-

frequency resonant currents in a multiple inverter system for zone-control induction 

heating," IEEE Transactions on Power Electronics, vol. 26, pp. 3357-3366, Nov. 

2011. 

[6] J. Acero, C. Carretero, O. Lucia, R. Alonso, and J. M. Burdio, "Mutual Impedance of 

Small Ring-Type Coils for Multiwinding Induction Heating Appliances," IEEE 

Transactions on Power Electronics, vol. 28, pp. 1025-1035, Feb. 2013. 

[7] C. R. Sullivan and L. Beghou, "Design methodology for a high-Q self-resonant coil 

for medical and wireless-power applications," in Control and Modeling for Power 

Electronics (COMPEL), 2013 IEEE 14th Workshop on, 2013, pp. 1-8. 

[8] M. Bartoli, A. Reatti, and M. K. Kazimierczuk, "Minimum copper and core losses 

power inductor design " presented at the Thirty-First Industry Applications Annual 

Meeting  Conference, IAS '96, San Diego, CA, 1996. 

[9] H. Rossmanith, M. Doebroenti, M. Albach, and D. Exner, "Measurement and 

characterization of high frequency losses in nonideal litz wires," IEEE Transactions 

on Power Electronics, vol. 26, pp. 3386-3394, Nov. 2011. 

[10] R. P. Wojda and M. K. Kazimierczuk, "Winding resistance of litz-wire and multi-

strand inductors," IET Electric Power Applications, vol. 5, pp. 257-268, 2012. 

[11] H. Hamalainen, J. Pyrhonen, J. Nerg, and J. Talvitie, "AC Resistance Factor of Litz-

Wire Windings Used in Low-Voltage High-Power Generators," IEEE Transactions on 

Industrial Electronics, vol. 61, pp. 693-700, Feb. 2014. 

[12] D. C. Meeker, "An improved continuum skin and proximity effect model for 

hexagonally packed wires," Journal of Computational and Applied Mathematics, vol. 

236, pp. 4635-4644, 2012. 

[13] C. R. Sullivan, "Computationally efficient winding loss calculation with multiple 

windings, arbitrary waveforms, and two-dimensional or three-dimensional field 

geometry," IEEE Transactions on Power Electronics, vol. 16, pp. 142-150, Jan. 2001. 

[14] C. R. Sullivan, "Optimal choice for number of strands in a litz-wire transformer 

winding," IEEE Transactions on Power Electronics, vol. 14, pp. 283-291, Mar. 1999. 

[15] C. R. Sullivan, "Cost-constrained selection of strand diameter and number in a litz-

wire transformer winding," IEEE Transactions on Power Electronics, vol. 16, pp. 

281-288, Mar. 2001. 

[16] J. D. Pollock, T. Abdallah, and C. R. Sullivan, "Easy-to-use CAD tools for litz-wire 

winding optimization," in Applied Power Electronics Conference and Exposition, 

2003. APEC '03. Eighteenth Annual IEEE, 2003, pp. 1157-1163. 

[17] C. R. Sullivan and R. Y. Zhang, "Simplified design method for litz wire," in Applied 

Power Electronics Conference and Exposition (APEC), 2014 Twenty-Ninth Annual 

IEEE, 2014, pp. 2667-2674. 

[18] A. Stadler, "The optimization of high frequency inductors with litz-wire windings," 

presented at the The 8th International Conference on Compatibility and Power 

Electronics (CPE), 2013, Ljubljana, 2013. 

[19] J. Acero, R. Alonso, J. M. Burdío, L. A. Barragán, and D. Puyal, "Frequency-

dependent resistance in litz-wire planar windings for domestic induction heating 

appliances," IEEE Transactions on Power Electronics, vol. 21, pp. 856-866, 2006. 



 

 

 

33 

[20] G. Cerri, S. A. Kovyryalov, and V. M. Primiani, "Modelling of a Litz-wire planar 

winding geometry for an accurate reactance evaluation," Science, Measurement & 

Technology, IET, vol. 4, pp. 214-219, July 2010. 

[21] J. Acero, C. Carretero, R. Alonso, and J. M. Burdío, "Quantitative evaluation of 

induction efficiency in domestic induction heating applications," IEEE Trans. on 

Magnetics, vol. 49, pp. 1382-1389, Apr. 2013. 

[22] J. Acero, J. M. Burdío, L. A. Barragán, D. Navarro, R. Alonso, J. R. García, F. 

Monterde, P. Hernández, S. Llorente, and I. Garde, "Domestic induction appliances," 

IEEE Industry Applications Magazine, vol. 16, pp. 39-47, March/April 2010. 

[23] O. Lucia, J. Acero, C. Carretero, and J. M. Burdio, "Induction Heating Appliances: 

Toward More Flexible Cooking Surfaces," IEEE Industrial Electronics Magazine, vol. 

7, pp. 35-47, Sept. 2013. 

[24] I. Lope, C. Carretero, J. Acero, R. Alonso, and J. M. Burdio, "Frequency-Dependent 

Resistance of Planar Coils in Printed Circuit Board With Litz Structure," IEEE 

Transactions on Magnetics, vol. 50, pp. 1-9, 2014. 

[25] I. Lope, C. Carretero, J. Acero, R. Alonso, and J. M. Burdio, "AC power losses model 

for planar windings with rectangular cross-sectional conductors," IEEE Transactions 

on Power Electronics, vol. 29, pp. 23-28, Jan. 2014. 

[26] C. Feeney, N. Wang, S. C. OMathuna, and M. Duffy, "A 20-MHz 1.8-W DC-DC 

Converter With Parallel Microinductors and Improved Light-Load Efficiency," IEEE 

Transactions on Power Electronics, vol. 30, pp. 771-779, 2015. 

[27] H. Sarnago, O. Lucia, A. Mediano, and J. M. Burdio, "Analytical Model of the Half-

Bridge Series Resonant Inverter for Improved Power Conversion Efficiency and 

Performance," IEEE Transactions on Power Electronics, vol. 30, pp. 4128-4143, Aug 

2015. 

[28] C. Carretero, O. Lucia, J. Acero, and J. M. Burdio, "Computational Modeling of Two 

Partly Coupled Coils Supplied by a Double Half-Bridge Resonant Inverter for 

Induction Heating Appliances," Industrial Electronics, IEEE Transactions on, vol. 60, 

pp. 3092-3105, Aug. 2013. 

[29] J. A. Ferreira, Electromagnetic Modelling of Power Electronics converters. Norwell, 

MA: Kluwer, 1989. 

[30] C. Carretero, J. Acero, and R. Alonso, "TM-TE decomposition of power losses in 

multi-stranded litz-wires used in electronic devices," Progress In Electromagnetic 

Research, vol. 123, pp. 83-103, Dec. 2012. 

[31] J. Gyselinck and P. Dular, "Frequency-domain homogenization of bundles of wires in 

2-D magnetodynamic FE calculations," IEEE Transactions on Magnetics, vol. 41, pp. 

1416-1419, May 2005. 

[32] X. Nan and C. R. Sullivan, "An improved calculation of proximity-effect loss in high-

frequency windings of round conductors," presented at the 2003 IEEE 34th Annual 

Power Electronics Specialist Conference, 2003. PESC '03, 2003. 

[33] X. Nan and C. R. Sullivan, "Simplified high-accuracy calculation of eddy-current loss 

in round-wire windings," presented at the 2004 IEEE 35th Annual Power Electronics 

Specialists Conference, 2004. PESC 04, 2004. 

[34] R. P. Wojda and M. K. Kazimierczuk, "Analytical optimization of solid-round-wire 

windings," IEEE Transactions on Industrial Electronics, vol. 60, pp. 1033-1041, Mar. 

2013. 

[35] M. K. Kazimierczuk, High Frequency Magnetic Components, 2nd ed. New York: 

John Wiley and Sons, 2009. 

[36] W. G. Hurley and W. H. Wölfle, Transformers and Inductors for Power Electronics. 

Theory, Design and Applications. United Kingdom: John Wiley & Sons,, 2013. 



 

 

 

34 

[37] C. R. Sullivan, "Layered foil as an alternative to litz wire: Multiple methods for equal 

current sharing among layers," in 2014 IEEE 15th Workshop on Control and Modeling 

for Power Electronics (COMPEL), 2014, pp. 1-7. 

[38] J. Jordan, V. Esteve, E. Sanchis-Kilders, E. J. Dede, E. Maset, J. B. Ejea, and A. 

Ferreres, "A comparative performance study of a 1200 V Si and SiC MOSFET 

intrinsic diode on an induction heating inverter," IEEE Transactions on Power 

Electronics, vol. 29, pp. 2550-2562, 2014. 

 

 


