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Resumen

En la literatura puede encontrarse una gran cantidad de resultados para el análisis de sistemas de eventos
discretos utilizando modelos del paradigma de las redes de Petri (PN). Entre las aplicaciones se cuentan
la validación en desarrollo de software, la implantación de controladores secuenciales, el análisis de
protocolos de comunicación, de sistemas de manufactura, de cadenas de suministro, etc.

Una de las limitaciones más importantes en el análisis de sistemas de eventos discretos es la comple-
jidad computacional que puede aparecer. En redes de Petri, tal complejidad se puede deber a una red
(estructura) de gran tamaño, un marcado (población) grande y a la interconexión entre los nodos de la
red. Frecuentemente, el conjunto de estados alcanzables de una red crece exponencialmente con respecto
al marcado inicial, lo que es conocido como el problema de explosión de estados, haciendo prohibitivo
el uso de técnicas de análisis por enumeración incluso para sistemas con estructuras pequeñas. Para
evitar dicho problema, en la literatura se ha propuesto el análisis de sistemas de eventos discretos (y en
particular de redes de Petri) por medio de modelos continuos que aproximan el comportamiento de los
sistemas de eventos discretos originales. Este enfoque es conocido como fluidificación.

Este trabajo de Tesis concierne el estudio de redes de Petri continuas temporizadas (TCPN) bajo
semántica de servidores infinitos, que han sido definidas como una aproximación potencial de redes de
Petri estocásticas bajo una interpretación Markoviana. Las razones para esta selección son que las redes
de Petri Markovianas (MPN, donde las transiciones disparan con retardos exponenciales y los conflictos
se resuelven con poĺıtica de carrera) tienen la propiedad de amnesia (por lo que el marcado representa
toda la información necesaria para la futura evolución del sistema), y a que el análisis exacto, por medio
de la Cadena de Markov isomorfa al grafo de alcanzabilidad, implica frecuentemente una complejidad
computacional intratable, debido al problema de explosión de estados antes mencionado.

El uso de TCPNs, para el análisis de las correspondientes MPNs, está condicionado a la preservación
de las propiedades bajo estudio, lo cual no siempre ocurre. Por otro lado, si una MPN admite una
fluidificación razonable, el uso de modelos continuos conlleva una ventaja muy interesante: la posibilidad
de aplicar técnicas y conceptos desarrollados en la Teoŕıa de Control para sistemas continuos. Por
ejemplo, la aplicación de técnicas para el análisis y śıntesis de controladores que rechacen perturbaciones,
para el análisis de la estabilidad, la observabilidad, etc. De esta forma, la fluidificación representa un
puente entre unas clases particulares de sistemas de estados continuos y de eventos discretos.

En este trabajo se investigan algunos temas sobre el modelo TCPN. Primero, se aborda la aprox-
imación que este modelo provee del comportamiento esperado de la red discreta estocástica original.
Después, se considera la conexión entre vivacidad, acotación y temporización en las TCPNs. Mas ade-
lante se analiza la controlabilidad de estos sistemas y se proponen tres estructuras de control diferentes.
Finalmente, se describe como se pueden implantar dichos controladores en los modelos de red de Petri
discretos originales.
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Introduction

In order to logically model and analyze concurrency and synchronization in discrete event dynamical

systems (DEDS), C.A. Petri introduced a certain kind of net formalism [Petri, 1962, Petri, 1966]. Later,

as a result of the studies of A. Holt in the MAC Project of the MIT (during the second half of the 60’s

and the beginning of the 70’s), those systems started to be known as Petri nets (PN). If the original PN

model is event-driven (but fully non-deterministic), the introduction of temporal concepts were proposed

several years later under different approaches. Firstly, introducing deterministic timings in order to deal

with performance and real-time analysis (e.g., [Ramchandani, 1974, Merlin and Farber, 1976]). Later,

stochastic timing extensions were introduced for performance evaluation purposes (e.g., [Molloy, 1982,

Marsan et al., 1984, Florin and Natkin, 1985]). Other extensions to the untimed basic model have been

proposed in order to provide compact representations of certain DEDS, leading to the class of high-

level PNs (e.g., Coloured nets [Jensen, 1981], Predicate-Transition nets [Genrich and Lautenbach, 1981]).

Finally, levels of abstractions and timed interpretations have been interleaved/mixed.

Nowadays, a large amount of results can be found in the literature regarding the analysis of DEDS by

using different PN models. Applications involve the implementation of sequence controllers, validation

in software development, analysis of communication protocols and networks, manufacturing systems,

supply chains, etc.

Fluidization of Petri nets

It is well known that one of the most important limitations in the analysis (and synthesis problems)

of DEDS is the computational complexity that may appear. The complexity in PNs appears due to a

large net structure, a large marking population or a particular interconnection of the nodes (two PN

systems whose nets have the same number of nodes and initially the same number of tokens may have

far different number of states, due to the particular interconnection of their nodes). Frequently, the

set of reachable markings increases exponentially w.r.t. the initial marking, what is known as the state

explosion problem, making prohibitive the application of enumerative techniques even for net systems

with a small structure (i.e., small number of places and transitions).

In this context, the fluidization or continuization (i.e., getting a continuous-state approximation)

was proposed as a relaxation technique in order to overcome the state explosion problem. The idea

consists in the analysis of the DEDS via a relaxed continuous approximation, i.e., a continuous-state

system that behaves (or conserve certain interesting properties) in a similar way than the original model,

reducing thus the computational efforts. In DEDS, fluidization has been explored in queueing net-

works (see, for instance, [Chen and Mandelbaum, 1991], [Dai, 1995], [Altman et al., 2001]), PNs

( [David and Alla, 1987], [Silva and Recalde, 2002]) and more recently in Process Algebra [Hillston, 2005].

(The reader may think in hybrid automata, but this is not a relaxation of a (discrete) automata, on the

contrary, it is an extension of such kind of models). The fluidization of stochastically timed DEDS can
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be seen as particular cases of the approximation of discrete stochastic processes by differential equations,

based on the functional central limit theorem (e.g., [Kurtz, 1970]), nevertheless, fluid versions of DEDS

have been mainly developed following independent ways.

Regarding PNs, David and Alla firstly introduced fluid PNs with constant and variable speeds

[David and Alla, 1987, David and Alla, 1990]. They did extensively work on this topic, motivated by

the advantage of having a system that can be analyzed as a continuous one (technically, they can be seen

as hybrid as well) and behaves (quantitatively) as an original T-timed PN model (examples can be found

in [David and Alla, 2010]). This topic was revisited in [Recalde and Silva, 2001], making emphasis in the

connection with the original discrete models. In fact, there the infinite server semantics (which happens

to be the same that the variable speed) was derived as the approximation of the average behavior of

a Markovian stochastic T-timed PN. From another approaches, in the 90’s different authors proposed

hybrid PN systems that can be used as models per se, rather than relaxations of discrete event systems.

Some of them are the following:

• Trivedi and his group introduced the so called fluid stochastic PNs [Trivedi and Kulkarni, 1993].

This consists in a stochastically timed hybrid model defined as an extension of (discrete) stochastic

PNs in which some places are allowed to have fluid tokens. The purpose of such model is the

performance evaluation of complex stochastic systems.

• In the Valette and coworkers’ approach [Champagnat et al., 1998], a hybrid system is defined as a

combination of a discrete PN and a set of differential and algebraic equations (as a generalization

of hybrid automata). Discrete places are associated to modes for the evolution of the continuous

variables, while continuous guards activate the occurrence of discrete transitions. For example, this

model becomes useful for modeling certain industrial processes under supervision.

• Demongodin and coworkers [Demongodin et al., 1993] extend the hybrid PN formalism of Alla and

David (constant speed in the continuous, deterministic T-timed in the discrete) by adding two new

nodes: batch transitions and batch places. The definition of this model is motivated by the need

of a precise representation of the accumulation phenomena that frequently occurs in conveyors of

certain production systems.

• Giua and coworkers introduced first-order hybrid PNs [Balduzzi et al., 2000]. This follows the basic

definition of Alla and David with a few differences in the evolution rule. The continuous part is

an autonomous continuous subnet where the firing speed of the transitions occurs with piecewise

constant rates that can be chosen from a given set. The discrete part (a discrete subnet) evolves by

the firing of discrete transitions or the emptying at continuous places. The authors have explored

the application of this model for optimization purposes [Giua et al., 2000, Balduzzi et al., 2001].

These hybrid models enjoy a broad representativeness power. Nevertheless, the classical trade-off

between expressiveness and complexity appears, and the analysis (and synthesis problems) in some of

those hybrid systems becomes technically complex (at least, more complex than the analysis of the

models introduced by David and Alla). There are other definitions of fluid and hybrid PN systems,

several of them defined ad hoc for very particular problems. A detailed list of references (providing a

wide overview, even if not updated) can be found in http://bode.diee.unica.it/ hpn/ (a bibliography on

Hybrid PN systems elaborate by A. Giua).
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This dissertation focus on the study of timed continuous Petri nets (TCPN) under infinite server

semantics [Silva and Recalde, 2002] (equivalent to the variable speed fluid model [Alla and David, 1998]).

In [Recalde and Silva, 2001] this model was proposed as a potential approximation of the Markovian

timing interpretation of discrete PNs. The reason for this choice is that Markovian (discrete) PNs

(MPN, where transitions fire with exponentially distributed random delays and conflicts are solved with

a race policy) enjoy the time memoryless property. Therefore the current marking represents all the

information required for the future evolution of the system. Moreover, MPNs are widely used for the

analysis of performance evaluation [Molloy, 1982, Balbo and Silva, 1998], but the exact analysis of MPNs,

via the underlying Markov Chain, frequently leads to untractable computational complexity, because of

the already mentioned state explosion problem.

In order to use a TCPN for the analysis of the corresponding MPN, it is required that the relaxed

model preserves the properties under study of the original discrete one. In PNs the fluidization seems a

promising technique when the initial marking can be assumed as “large enough”(where the relative errors,

and their consequences, tend to be small, because the rounding effects are relatively less significant). In

fact, increasing the population does not affect the complexity of the analysis via fluid models, since, in

the resulting continuous PN, the number of state variables is upper bounded by the number of places,

being independent of the number of tokens in the net system (thus, the initial marking). Consider the

following motivating example (the reader that is not familiar at all with PNs may first consult basics

concepts and terminology in Chapter 1):

Example The PN of fig. 0.1(a) represents a simple manufacturing system, in which transitions repre-

sent stations (containing sets of machines: servers) and places represent intermediate buffers. Considering

a Markovian timing interpretation with unitary rates and initial marking M0 = [3, 2, 0, 1, 0, 1, 0]T , the

transient evolution of the expected value of the marking of place 5 (a buffer) was obtained through several

simulations and drawn in fig. 0.1(b) with a solid line (label E{M}). The marking of the same place for

the corresponding continuous approximation appears in fig. 0.1(b) as a dashed curve (label TCPN). It

can be observed that the TCPN barely approximates the transient behavior of the discrete PN. The un-

derlying Markov chain of the DEDS has 258 states. Next, both the MPN and the TCPN were simulated

with initial markings M0 = 5 · [3, 2, 0, 1, 0, 1, 0]T and M0 = 10 · [3, 2, 0, 1, 0, 1, 0]T . Fig. 0.1(c) and 0.1(d)

show the corresponding trajectories thus obtained. Note that the approximation is good if the initial

marking is multiplied by 5 (fig. 0.1(c)) but it is better if it is multiplied by 10 (fig. 0.1(d)). It can be

said that (in this case) the approximation becomes better when the initial marking is increased. In fact,

in Chapter 2 it will be proved that the quality of the approximation is related to the number of active

servers (transitions’ enabling degrees). In this way, since the net of this example is monotonic w.r.t. the

initial marking, then the number of active servers becomes larger (and thus the approximation is better)

when the initial marking is increased.

The Markov chain for the system with M0 = 5 · [3, 2, 0, 1, 0, 1, 0]T has 100, 000 states, and more than

2.5 million when M0 = 10 · [3, 2, 0, 1, 0, 1, 0]T (the state explosion problem). On the other hand, the

continuous model has only 7 state variables in all the cases (one for each place, actually, two of them

can be eliminated since they are linearly dependent), independently of the initial marking, i.e., the state

explosion problem does not appear in the TCPN system by increasing the number of tokens in the initial

marking.
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Fig. 0.1: (a) A manufacturing system and the transient evolution of the marking of place p5 of the dis-
crete PN (solid line) and the corresponding TCPN (dashed line) for (b) the initial marking M0 =
[3, 2, 0, 1, 0, 1, 0]T , (c) M0 = [15, 10, 0, 5, 0, 5, 0]T and (d) M0 = [30, 20, 0, 10, 0, 10, 0]T .

Relaxations lead to loss of fidelity. Thus, as it may be expected, fluidization does not represent an

universal and perfect tool. The first problem that may arise when using this technique is that the fluid

model does not necessarily preserve the all the behavioral properties of the original DEDS model (for

example, mutex properties are always lost). Thus, for certain cases, the analysis through fluidization

may be useless. In other cases, the fluidization may provide only an educated guess. A second issue

that may appear in the fluidization of PNs is the complexity generated by synchronizations. The model

studied here, from a continuous-state dynamical systems’ perspective, is a piecewise linear one. The

number of embedded linear modes (sets of linear differential equations) increases exponentially w.r.t.

the number of transitions representing rendez-vous (synchronizations). Thus, even if the behavior of

a DEDS is preserved by its corresponding fluid relaxation, this could be too complex to be properly

analyzed. Furthermore, large net structures may lead to continuous models with a large number of

state variables, since one state variable is defined per each place (P-flows introduce linear dependencies

between the state variables, then the number of these can be reduced, nevertheless, frequently most of

the state variables are linearly independent and must be kept).
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On the other hand, when a system admits a reasonable fluidization (in the sense that the fluid

model preserves the desired properties of the discrete one), several advantages can be visualized by using

continuous models: the first one is obviously the reduction of the complexity related to a large marking

population, since in continuous models the state explosion problem does not appear, even more, certain

problems can be analyzed by using algorithms with a polynomial-time complexity (thus, fluidization can

be seen as analogous to the reduction of an integer programming problem into a linear one). Another

interesting advantage is that, techniques and concepts developed in the Control Theory for continuous-

sate systems can be applied to the continuous PN model. For instance, techniques for the analysis and

application of performance controllers that reject perturbations, stability, observability, estimation, etc.

In this way, fluidization represents a bridge between particular classes of continuous-state and discrete

event systems.

State of the art of TCPNs and contributions

TCPNs under infinite server semantics can be seen as piecewise-linear hybrid systems (combining state-

continuous and discrete event dynamics). On the other hand, they inherit concepts and properties from

discrete PNs. In this way, the analysis of TCPNs is achieved by the application of a blend of concepts

and techniques from the control and the PN theories.

In the literature, TCPNs have been mainly considered for modeling (e.g., [Alla and David, 1988,

Amrah et al., 1997]) and control (e.g., [Hennequin et al., 1999, Kara et al., 2009, Lefebvre et al., 2007]).

A particularly broad study of TCPNs have been addressed in the GISED research group at the Uni-

versity of Zaragoza (where the author developed this dissertation), frequently in collaboration with

researches from other countries. Some contributions previously done by this group concern the ap-

proximation to discrete PN systems [Recalde and Silva, 2001, Mahulea et al., 2009], the study of qual-

itative properties [Júlvez et al., 2006], model checking [Kloetzer et al., 2010], performance evaluation

[Júlvez et al., 2005], observability analysis [Júlvez et al., 2008, Mahulea et al., 2010], controllability

analysis [Jiménez et al., 2005], [Mahulea et al., 2008b], control synthesis [Mahulea et al., 2008a],

[Jing et al., 2008a], etc.

In this dissertation, the addressed problems are the approximation of stochastic (discrete) PNs (Chap-

ter 2), the connection between liveness, boundedness and timing (Chapter 3), the analysis of controlla-

bility (Chapter 4) and synthesis of controllers (Chapter 5), and the implementation of these controllers

into the original discrete PN models (Chapter 6). This last issue may be considered as the unifying point

of the other problems addressed in this dissertation. Roughly speaking, given a MPN, if its behavior

can be approximated by a TCPN, a controller for this can be synthesized (after a proper controllability

analysis), and finally, such controller can be implemented into the original MPN, closing the loop of the

synthesis of controllers via fluidization depicted in fig. 0.2.

Regarding the approximation of discrete PNs, few authors have addressed this problem for TCPNs.

In [Zerhouni and Alla, 1990], deterministically timed PNs are considered as the reference models, and a

criterion, based on simulations, is given for deciding if the fluid approximation is correct. Experimentally,

it can be observed that most frequently, infinite server semantics provides a better approximation (but not

necessarily a good one) than finite server semantics. This property was proved in [Mahulea et al., 2009]
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Fig. 0.2: Synthesis of controllers for stochastic PNs (MPN) via fluid models (TCPN).

for a relatively broad subclass of nets, named mono-T-semiflow reducible. From a different approach,

in [Lefebvre et al., 2009] authors introduced a couple of new semantics in order to better approximate

the steady state of a stochastic PN. Despite of these works, there is still a lack of results regarding this

problem. In particular, it would be convenient to improve our understanding of when and why a TCPN

approximates the behavior of the corresponding discrete PN.

Liveness and boundedness in continuous PNs were studied in [Recalde et al., 1999] for the autonomous

model, providing necessary conditions (structural liveness and structural boundedness) for general classes

of nets, and sufficent and necessary for a particular class (Equal Conflict, EQ). Regarding timed models,

in [Júlvez et al., 2006] it was pointed out that if a continuous system reaches a non-live steady state

as timed, it is also non-live as untimed. Nevertheless, the opposite is not true, and there may exist

timings such that the timed model is live (bounded) while the untimed model is not live (unbounded).

Then, some questions arise, e.g., for which structures and timings occur this timing-dependent liveness

(boundedness)? what is the mechanism of such phenomenon?

Controllability and control in TCPNs have been addressed in the literature from a state-continuous

systems approach (for instance, [Jiménez et al., 2005], [Lefebvre et al., 2007], [Mahulea et al., 2008b],

[Kara et al., 2009]). In fact, the control objective frequently considered consists in driving the TCPN

system towards a desired target marking, which is different from the control problems commonly ad-

dressed in DEDS (like disabling events for avoiding forbidden states). Regarding controllability, it is

known that a continuous PN system is frequently not controllable in the sense of continuous-state sys-

tems (a continuous system is said controllable if all states in the state space can be reached from any

other state in the sate space), due to the existence of state invariants [Mahulea et al., 2008b] (related

to marking conservation laws imposed by P-flows). Nevertheless, when all the transitions are control-

lable (meaning that all the activities in the system can be arbitrarily slowed down), the set of reachable
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markings and the set of nonnegative solutions for the fundamental equation are equivalent if the net is

consistent. In case that there exist uncontrollable transitions (when some activities cannot be manipu-

lated), the controllability analysis is much more complex. In a preliminary work [Jiménez et al., 2005],

controllability was studied with uncontrollable transitions, adopting a local controllability notion, for the

particular case of Join-Free net systems (which corresponds to linear systems that evolve in polytopes).

Nevertheless, such controllability study cannot be easily extended to more general net subclasses.

Several authors have proposed control techniques for TCPN models under infinite server semantics,

ranging from fuzzy control [Hennequin et al., 1999], the use of linear matrix inequalities for the synthe-

sis of linear controllers [Kara et al., 2009], to model predictive control [Mahulea et al., 2008a]. A more

detailed discussion about those control techniques is presented in Chapter 5. Despite the existence of

several control laws, there is still a lack of control policies for systems in which the control actions cannot

be applied to all the transitions (in most of the works it is assumed that all the activities in the system

can be arbitrarily slowed down), or for systems having large net structures (that can be addressed by

means of distributed control strategies).

Finally, an issue that remains as an intuitive idea, but have not been formally studied, is the applica-

tion (or interpretation) of a control law, synthesized for a continuous PN, into the original discrete PN

model. This idea has been considered by few authors, in the context of open and closed manufacturing

lines [Amrah et al., 1998, Lefebvre, 1999, Kara et al., 2006]. For instance, in [Amrah et al., 1998] it was

illustrated how a control law, derived for a variable speed continuous PN, can be applied to the original

discrete PN model (a T-timed PN with constant firing delays). Nevertheless, such works do not provide

a formal framework for such control implementation.

In this context, the contributions of this dissertation can be enumerated as follows:

• (Chapter 2) The approximation of the expected dynamical behavior of Markovian PNs by the

corresponding TCPNs has been studied. Sufficient conditions for such approximations have been

provided. Moreover, explanations at the net level for the existence of errors are given. In order

to improve the approximation, a new stochastic continuous model TnCPN (defined by adding

white noise to the flow of the TCPN system) and two hybrid PN models, MHPN and MnHPN,

have been introduced and studied. Assuming ergodicity (i.e., the marking pdf when τ → ∞ is

independent of the initial state, thus the limiting probabilities are unique) and liveness, it has been

proved that the TnCPN and MnHPN models may approximate not only the expected value, but

also the probability distribution of the marking of the Markovian PN when the number of active

servers at the transitions is large. These results have been presented in [Vázquez et al., 2008b,

Vázquez and Silva, 2009a].

• (Chapter 3) Regarding the connection between liveness, boundedness and the timing in continuous

PNs, a couple of concepts (λ-Cv and λ-Ct) have been introduced in order to analyze the case

where the timing allows a TCPN system to behave as conservative and/or consistent when the

autonomous continuous PN does not exhibit those properties. Liveness in TCPNs has been studied

in more detail. It has been shown that non-live steady-state markings are those at which siphons

are unmarked. Later, it has been proven that λ-Ct is sufficient to guarantee that siphons remain

marked (assuming they are initially marked), thus, it is a sufficient condition for timed-liveness.

Finally, a couple of algorithms have been derived in order to compute a timing such that the TCPN
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is λ-Ct or λ-Cv, enforcing thus liveness and boundedness, respectively. These results have been

reported in [Vázquez et al., 2008, Vázquez and Silva, 2010, Vázquez and Silva, 2011].

• (Chapter 4) Controllability on TCPNs, under infinite server semantics, has been studied under a

local controllability concept derived as a reformulation of the classical one (defined for linear time-

invariant systems). For models in which control actions can be applied to all transitions, sufficient

and necessary (structural) conditions for reachability and controllability have been obtained. For

systems with uncontrollable transitions (whose flow cannot be arbitrarily reduced), sufficient and

necessary conditions for controllability, over subsets of equilibrium markings (representing potential

steady states of the system) that belong to a given region (related to a linear mode), have been

derived. Moreover, a sufficient condition for controllability over the union of those subsets has been

obtained. Preliminarily results have been published in [Vázquez et al., 2008a], but more mature

results are presented in this dissertation.

• (Chapter 5) An affine control law has been proposed for TCPNs in which all the transitions are

controllable, ensuring asymptotic stability and feasibility. Based on this affine control law, a

modular-coordinated control strategy has been proposed in order to reduce the complexity during

the synthesis. The resulting scheme consists of a set of affine local controllers and a coordinator that

receives and sends information to the local controllers. Feasibility and convergence to the required

marking have been proved. Finally, a centralized control law structure, for TCPN systems having

uncontrollable transitions, has been proposed, by adapting the classical pole-assignment technique

used in linear systems. Feasibility and closed-loop stability have been proved. These control

proposals are presented in [Vázquez and Silva, 2009c, Vázquez et al., 2011].

• (Chapter 6) A control structure has been derived for the interpretation of a control law, designed

for a TCPN system, into the corresponding MPN one. This control strategy has been applied to

and application example: the stock level control of a Kanban-based automotive assembly line. The

results obtained show the feasibility of the proposed control scheme. Moreover, a different control

problem has been considered by introducing a hybrid PN model for intersections in an urban traffic

network. The proposed model can be used for representing large urban traffic systems. The model

thus obtained is so simple (but still captures key information) that it is possible to use it for the on-

line optimization of the switching times of the traffic lights, by following a model predictive control

procedure. These results have been reported in [Vázquez and Silva, 2009b, Vázquez et al., 2010].

• (Appendix A) Finally, a hybrid PN simulator has been developed for comparing, in a practical

way, Markovian discrete PNs and their relaxations studied in this work.

This list of contributions clearly presents the structure of this document. In fact, note that the

chapters correspond (excepting Chapter 3) to the activities (arcs) depicted in fig. 0.2. It is just required

to mention here Chapter 1, where basic concepts on discrete and continuous PNs, and from the Control

Theory, are recalled. Finally, a couple of appendices are also included, providing some algorithms and

useful results that will be referred along the document.



Chapter 1

Basic concepts and notation

1.1 Basic notation

In the sequel, the following notation is adopted: vectors and matrices are bold, the first in lower case, the

last in uppercase. Given a matrix A of dimension n×m and sets of ordered indexes I = {i1, ..., ir} and

J = {j1, ..., js}, with ir ≤ n and js ≤ m, it will be denoted as A[I, J ] the matrix built with the elements

in the rows indicated by I and the columns indicated by J . A similar notation will be used with vectors.

Then, given a vector a, a[I] represents the vector built with the entries of a indicated in I. In particular,

aj is used to denote the j-th entry of vector a. In case of the product of a matrix A and a column vector

b, [Ab]j is used to denote the j-th entry of the vector resulting from the product A ·b. Moreover, given

a matrix A, [A]j denotes the j-th row of A, while [A]j denotes its j-th column. Given column vectors

a and b, diag(a,b) denotes a diagonal matrix whose diagonal entries are those of vector [aT ,bT ]. This

is extended to matrices, and diag(A,B) denotes a matrix diagonal by blocks, whose diagonal blocks are

the square matrices A and B. Finally, 1 usually denotes a vector whose entries are unitary and whose

size is determined by the context.

Relation operators applied on vectors and matrices are interpreted component-wise. For instance,

given a matrix A of dimension n×m, the notation A ≥ 0 is equivalent to A[i, j] ≥ 0 ∀i ∈ {1, .., n},∀j ∈
{1, ..,m}. The support of a vector a is denoted as ||a|| and is defined as the indices of the non-null entries

of a.

The conventional notation a ∼ Normal(µ, σ) will be used to denote that the random variable (r.v.) a

has a normal probability distribution function (pdf) with mean µ and variance σ. Similarly, the notation

a ∼ Poisson(η) will be used to denote that the r.v. a has a Poisson pdf with parameter η. This notation

can be extended to vectors of r.v.’s. For instance, a ∼ Normal(µ,σ) denotes a vector in which each

entry aj is a normally distributed r.v. with mean µj and variance σj .

1.2 Basic concepts on P/T net systems

Let us provide here a few of basic concepts on Petri nets. A detailed introduction can be found in

[Murata, 1989, Silva, 1993].

Definition 1.1. A place/transition (P/T) net is a bipartite oriented graph defined by the tuple

N = ⟨P, T,Pre,Post⟩, where P and T are disjoint sets of places and transitions, respectively. Post and
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Pre are incidence matrices, natural valued with dimension |P | × |T |, that describe the connection from

the nodes T to those of P , and from P to T , respectively.

For instance, Post[p, t] = w means that there is an arc connecting the place p ∈ P to the transition

t ∈ T with a weight (multiplicity) w, while Pre[p, t] = w means that there is an arc connecting the

transition t ∈ T to the place p ∈ P . On the contrary, Post[p, t] = 0 (resp. Pre[p, t] = 0) means that

there does not exist an arc connecting p ∈ P to t ∈ T (resp. t ∈ T to p ∈ P ).

Definition 1.2. A P/T system is a discrete event system described by the pair ⟨N ,M0⟩, where N is a

P/T net and M0 ∈ N|P | is a vector, named initial marking, that has the information about the number

of marks or tokens that are initially in the places of the net, i.e., the initial marking distribution. The

state in a P/T system is defined as the distribution of marks in the places, codified in the marking vector

M ∈ N|P |. The evolution of the P/T system is described as follows:

I. A transition t ∈ T is said enabled at the marking M ∈ N|P | iff M ≥ Pre[P, t].

II. The occurrence or firing of an enabled transition leads to a new marking distribution M′ ∈ N|P |

that can be computed by using M′ = M+C[P, t] = M+C · et, where C = Post−Pre is named

the token flow matrix or incidence matrix, and et denotes the t-th column vector of the unity

matrix of dimension T .

Given a sequence of occurrences (or firings) σ = t1...tk, the marking reached is given by the so called

fundamental equation

M′ = M+C · σ (1.1)

where σ =
∑

i∈{1,...,k} ei is called the firing count vector. Every reachable marking must agree with the

fundamental equation, i.e., given M′ reachable ∃σ ≥ 0 that fulfills (1.1). Nevertheless, the opposite

does not hold in general in the sense that, given a vector ∃σ ≥ 0, the solution M′ of (1.1) may not be

a reachable marking, because there is not information about the fireability of a sequence represented by

σ.

The set of all the reachable markings, from the initial one M0, is called reachability set, and it is

denoted as RS(M0). The reachability relation can be represented by a reachability graph, where the

nodes are the reachable markings and there is an arc from a node M to another M′ iff there exists a

transition t whose firing transfers the system from M to M′.

Given a P/T net, the set of the input (output) nodes of a node v will be denoted as •v (v•). For

instance, given a place p ∈ P , •p denotes the set of input transitions of p.

In the sequel, given a P/T net, it will be assumed that it is connected, i.e., for every pair of nodes

there is a path connecting them (may be just in one direction), and that every place has a successor, i.e.,

|p•| ≥ 1.

1.2.1 Structural components

Interesting results can be found about the behavior of a P/T system by studying particular sets of nodes

(components) in the graph. Such components can be equivalently analyzed from the incidence matrices

Post and Pre. This approach is known as structural analysis [Silva et al., 1998]. Among the interesting
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Fig. 1.1: a) A conservative and consistent P/T net. b) Evolution of the corresponding MPN for the marking in
p1, with M0 = [10, 0, 0, 0, 0]T and λ = [1, 2, 2, 2]T .

components, let us introduce P- and T- components and siphons, which will be useful in the rest of this

document.

Definition 1.3. Left and right annulers of the incidence matrix C are called P −flows and T −flows,
respectively. If these are nonnegative they are called P − semiflows or T − semiflows. Basis for right

and left annulers of C are denoted as By and Bx, respectively. If there exists a positive right annuler,

i.e., ∃y > 0 s.t. yT ·C = 0, then the net is said to be conservative (denoted as Cv). Similarly, if ∃x > 0

s.t. C · x = 0 the net is said consistent (denoted as Ct).

A P/T system is said structurally bounded and structurally repetitive if there exist y > 0 and x > 0 s.t.

yT ·C ≤ 0 and C · x ≥ 0, respectively.

A set of places Σ is named a siphon iff •Σ ⊆ Σ• (the set of input transitions is included in the

corresponding output one), and it is minimal if it does not contain another siphon.

A T-semiflow x is defined at an algebraical level. At the net level, the support of x defines a

set of transitions, called T-component, that may describe a cyclic sequence σx (if such a sequence

is fireable), i.e., the marking reached after the occurrence of σx is equal to the initial marking since

M′ = M0 +C · x = M0. Analogously, given a P-semiflow y, defined at an algebraical level, its support

defines a set of places, called P-component, involved in a marking conservation law, i.e., for every

reachable marking M′ it holds yTM′ = yTM0 + yTC ·σ = yTM0, so the weighted sum of the marking

in the places of ||y|| remains constant.

Example 1.1. Consider the PN model of fig. 1.1(a). The incidence matrix of this net model is given

by

C =


−1 0 0 1

1 −1 0 0

1 0 −1 0

0 1 0 −1

0 0 1 −1


The vector x = [1, 1, 1, 1]T is a T-semiflow, meaning that by firing all the transitions one time, the marking
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reached is equal to the initial one. Furthermore, since x > 0, the net is consistent. On the other hand,

y = [2, 1, 1, 1, 1]T is a P-semiflow, meaning that the sum yT ·m = 2m[p1]+m[p2]+m[p3]+m[p4]+m[p5]

remains constant during the evolution of the system. The set of places, {p1, p2, p3, p4} defines a minimal

siphon.

Let us introduce now a few of structural definitions. A net is said ordinary if all the arcs have a

weight equal to one, i.e., ∀i, ∀j: Pre[i, j] ∈ {0, 1} and Post[i, j] ∈ {0, 1}. A net is said strongly connected

(resp. P-strongly connected) iff for every pair of nodes (resp. places) x and y, there is a path leading

from x to y.

Two transitions t and t′ are said to be in conflict if •t ∩• t′ ̸= ∅. A conflict {t, t′} is said to

be topologically equal (equivalently, t and t′ are in topological equal conflict relation) if ∃γ > 0 s.t.

Pre[P, t] = γPre[P, t′].

Definition 1.4. Subclasses of nets are defined according to their structure:

I. N is Choice-free (CF) if ∀p ∈ P : |p•| ≤ 1.

II. N is Join-free (JF) if ∀p ∈ T : |•t| ≤ 1.

III. N is Fork-Attribution (FA) if it is CF and JF.

IV. N is Topologically Equal Conflict (TEC) if all the conflicts are topologically equal.

1.3 Markovian Petri nets

In this section, the Markovian stochastic (discrete) Petri net model is introduced (for more details see, for

instance, [Marsan et al., 1995]), together with a difference equation that describes its transient behavior,

obtained via the fundamental equation. This difference equation description will be particularly useful

in the Chapter 2, in order to compare this system with its continuous relaxation.

1.3.1 The Markovian stochastic Petri net model

Definition 1.5. A Markovian stochastic Petri net system (MPN) is a stochastically T-timed Petri net

system in which the transitions fire at independent exponentially distributed random time delays, and

conflicts are solved with a race policy (given two enabled transitions having a common input place, it fires

the one having the lowest associated delay). In this way, a MPN is the tuple ⟨N ,λ,M0⟩, where λ ∈ R|T |
>0

represents the transition rates, i.e., the average delays associated to each server of the corresponding

transitions.

In this work, infinite server semantics (ISS) will be assumed for all the transitions. Accordingly, the

firing time of an enabled transition ti, from a given marking M, is given by an exponentially distributed

random variable with parameter λi · Enab(ti,M), where the integer enabling degree is Enab(ti,M) =

minp∈•ti{⌊M[p]/Pre[p, ti]⌋}.
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Note that, while a P/T net system is an event-driven dynamic system, a MPN is a time-driven one,

i.e., its evolution (the occurrence of the events) is determined by the time, not by decisions taken over

the events. Stochastic PNs are useful for the modeling and analysis of discrete event systems having

an stochastic behavior, in particular, for performance evaluation [Marsan et al., 1995]. According to its

definition, the reachability graph of a MPN system is isomorphous to a Markov Chain [Molloy, 1982],

which is commonly used for analysis purposes. A problem frequently found when using that approach is

the complexity involved in the analysis of a Markov Chain, when the size of this may be too large.

Example 1.2. Consider the MPN model given by the net N of fig. 1.1(a), with rates λ = [1, 2, 2, 2]T

and initial marking M0 = [10, 0, 0, 0, 0]T . Fig. 1.1(b) shows the results after some simulations of this

system. First, if the system is simulated once, the marking at every place takes integer values in a

random way. If a new simulation is achieved, the marking evolution will be different. This can be seen in

fig. 1.1(b), where the dashed curves (labeled M1 and M2) represent the marking at p1 for two different

simulations during 3 time units. Nevertheless, if several simulations are achieved, an average evolution

can be obtained. The solid curve in fig. 1.1(b) (labeled E{M}) represents such average evolution for the

marking at p1, which was computed from 3000 simulations.

The number of nodes in the reachability graph of this system is 506 nodes, meaning that the underlying

Markov Chain is a dynamical system with 506 state-variables (a state-variable is associated to each node,

representing the probability that the system is in the corresponding state marking). The large size of the

Markov Chain makes difficult the exact computation of the average trajectories. For this reason, curve

E{M} in fig. 1.1(b) was obtained through simulations in this example.

In performance evaluation analysis, it is commonly required the computation (or estimation) of

average values in the steady state, e.g., average markings or throughputs (expected firing frequency).

Through this dissertation, it will be frequently considered not only the expected marking in steady state,

but also during the transient evolution of the system.

A MPN system is said to be ergodic if the underlying Markov chain is ergodic, which occurs if the

Markov chain process X(τ) is irreducible and has an unique stationary probability distribution {πj},
with all πj > 0. The stationary distribution {πj} is equal to both the long run probability of finding

the process X(τ) (the marking of the MPN) in state j and the long run fraction of time it spends in

j, independently of the starting state (initial marking) i. Intuitively speaking, an ergodic Markov chain

(thus an ergodic MPN) will always enter its steady state probability distribution {πj} when it has been

run long enough. It is known that a MPN system is ergodic if M0 is a home state. For more details, the

reader may consult [Marsan et al., 1995].

In the sequel, given a MPN system, we suppose that a unique steady-state behavior exists. Even

more, we restrict our study to bounded in average and reversible (i.e., whose initial marking is a home

state) PN systems, therefore, the stochastic process is ergodic.

1.3.2 Difference equation for the MPN system

Given a MPN ⟨N ,λ,M0⟩, define a discrete-time stochastic system ⟨N ,λ,µ0⟩, where the initial state

is given by µ0 = M0 and whose state µk ∈ N|P | (denoting the state at time τ0 + k∆τ , where ∆τ is a
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constant sampling period) evolves according to the difference equation:

µk+1 = µk +C ·∆σ(Fk∆τ) (1.2)

where ∆σ(Fk∆τ) is a column vector of length |T | defined by elements as ∆σi(Fk,i∆τ) ∼
Poisson(Fk,i∆τ) with Fk,i = λi · Enab(ti,µk).

Proposition 1.6. Assuming a small enough sampling ∆τ , the transient marking evolution M of the

MPN system ⟨N ,λ,M0⟩ is approximated by the state µ of the system described by (1.2), i.e., ∀k, the
probability distribution of M(τ0 + k∆τ) is similar to that of µk.

Proof. Denote the initial time as τ0 and consider a particular transition ti. By definition of the MPN,

the time delay of the next firing of each active server of ti is characterized by a random variable having

an exponential pdf with parameter λi. Now, consider a fixed time interval ∆τ . If a server of ti is

always active during ∆τ , then the number of its firings (the number of accomplished jobs) during ∆τ is

characterized by a r.v. having a Poisson pdf with parameter λi ·∆τ (see [Papoulis, 1984]). Furthermore,

since we are considering infinite server semantics, the number of firings of ti during ∆τ is the sum of the

number of firings of each of its servers during this time interval. If ∆τ is small enough then the number of

active servers of ti during this time interval remains almost constant. Therefore, the number of firings of

ti, during the time interval (τ0, τ0+∆τ), can be approximated by a r.v. ∆σi(Fi(τ0)∆τ) having a Poisson

pdf with parameter Fi(τ0)∆τ = λi ·Enab(ti,M0)∆τ , where Enab(ti,M0) is the number of active servers

of ti at M0 (the sum of independent Poisson distributed r.v.’s is also a Poisson distributed r.v., whose

parameter is the sum of the parameters of the summands).

Now, considering the firing count vector ∆σ(F(τ0)∆τ), whose elements are the corresponding r.v.’s

∆σi(Fi(τ0)∆τ) defined for each transition, the marking at time τ0 +∆τ can be approximated by using

the fundamental equation, i.e.

µ(τ0 +∆τ) = M0 +C∆σ(F(τ0)∆τ) (1.3)

where µ(τ0+∆τ) is a random variable that represents the approximation of the marking of the MPN at

time τ0+∆τ . Finally, (1.2) is obtained by generalizing the previous equation for future time steps.

In the previous proposition, the sampling ∆τ must be small enough so the probability thatEnab(ti,µk)

remains constant during a sampling time ∆τ , is almost 1, for every time instant k.

This assumption may lead to approximation errors. Nevertheless, in the Appendix B it is proved that

it can be imposed an arbitrary bound for these errors, by choosing a suitable value for ∆τ . Therefore,

in the sequel, (1.2) will be considered as a valid difference equation for the MPN system, i.e., it will be

assumed that (1.2) holds when µk and µk+1 are replaced by Mk and Mk+1, respectively.

1.4 Continuous and timed continuous Petri nets

In this section, the continuous and timed continuous PN models will be presented. More details about

these models can be found in the literature, for instance [Silva and Recalde, 2004, David and Alla, 2010].
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1.4.1 Continuous Petri nets

Definition 1.7. A continuous PN system is a pair ⟨N ,m0⟩ where N is a P/T net (like in a P/T

system) and m0 ∈ R|P |
≥0 is the initial marking. The evolution rule is different to the case of discrete

P/T systems, since in continuous PNs the firing is not restricted to integer amounts, and so the marking

m ∈ R|P |
≥0 is not forced to be integer. Instead, a transition ti is enabled at m iff for every pj ∈ •ti,

m[pi] > 0; and its enabling degree is enab(ti,m) = minpj∈ •ti{m[pj ]/Pre[pj , ti]}. The firing of ti in a

certain amount α ≤ enab(ti,m) leads to a new marking m′ = m+ α ·C[P, ti].

The usual PN system, ⟨N ,M0⟩ with M0 ∈ N|P |, will be said to be discrete so as to distinguish it from

a continuous PN system ⟨N ,m0⟩, in which m0 ∈ R|P |
≥0 . In the following, the marking of a continuous

PN will be denoted in lower case m, while the marking of the corresponding discrete one will be denoted

in upper case M. Observe that Enab(ti,M) ∈ N in discrete PNs, while enab(ti,m) ∈ R≥0 in continuous

PNs.

Here, we always consider continuous net systems whose initial marking marks all P-semiflows, which

can be verified by solving the following Linear Programming Problem (LPP):

Algorithm 1.1. Verification of marking at P-semiflows.

Compute z = min{yTm0} s.t.

yTC = 0

y ≥ 0

yT · 1 = 1

If z > 0 then there are not unmarked P-semiflows.

1.4.2 Timed continuous Petri nets

Definition 1.8. A timed continuous Petri net (TCPN) is a time-driven continuous-state system

described by the tuple ⟨N ,λ,m0⟩, where ⟨N ,m0⟩ is a continuous PN and the vector λ ∈ R|T |
>0 represents

the transitions rates that determine the temporal evolution of the system. Transitions fire according

to certain speed, which generally is a function of the rates and the instantaneous marking. Like in

Markovian discrete PNs, under infinite server semantics the flow (the firing speed, denoted as f(m))

through a transition ti is defined as the product of the rate, λi, and enab(ti,m), the instantaneous

enabling of the transition, i.e., fi(m) = λi · enab(ti,m) = λi ·minp∈•ti{m[p]/Pre[p, ti]}.

For the flow to be well defined, every continuous transition must have at least one input place, hence

in the following we will assume ∀t ∈ T, |•t| ≥ 1. The “min” in the above definition leads to the concept

of configurations:

Definition 1.9. A configuration is a set of pairs C = {(t1, p1), (t2, p2), ..., (t|T |, p
|T |)} where ∀tk ∈ T ,

pk ∈ •tk is a place that, for some markings, provides the minimum ratio m[pk]/Pre[pk, tj ]. In such case,

it is said that pk constrains tk. An upper bound for the number of configurations is
∏

t∈T |•t|.
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For each possible configuration Ci, a configuration matrix of dimension |T | × |P | is defined, denoted
as Πi, in the following way:

∀j ∈ {1, .., |T |}, k ∈ {1, .., |P |}, [Πi]j,k =

{
1

[Pre]k,j
if pk is constraining tj in Ci

0 otherwise

The set of all configuration matrices of the net system is denoted as {Π}. Given a marking m, the

configuration operator Π(m) is defined as: Π(m) = Πi where Ci is associated to m, i.e., if Πim =

enab(m). If m can be associated to more than one configuration, i.e., if ∃Πi,Πj s.t. Πim = Πjm =

enab(m), and a particular configuration is not specified in the context, then any of them can be taken.

For convention, let us take the one with the lowest index.

In this way, the flow through the transitions can be written in a vectorial form as f(m) = ΛΠ(m)m,

where Λ is a diagonal matrix whose elements are those of λ. The dynamical behavior of a PN system is

described by its state equation:
•
m = CΛΠ(m)m (1.4)

1.4.3 State invariant and marking regions

It is a fact well-known that, given a P-flow y, for any reachable marking m, it holds yTm = yTm0.

Then, whenever a TCPN system has P-flows, linear dependencies between marking variables appear,

introducing state invariants (from a Control Theory perspective). The following definition characterizes

such state invariant.

Definition 1.10. The set Class(m0) is defined as the equivalence class of m0 under the relation

β ⊆ R|P |
≥0 × R|P |

≥0 defined as: (m1,m2) ∈ β iff BT
y m1 = BT

y m2, where By is a basis of P-flows, i.e.,

Class(m0) = {m ∈ R|P |
≥0 |BT

y m = BT
y m0}.

Remark 1.11. For a general TCPN system, every reachable marking belongs to Class(m0).

The set Class(m0) can be partitioned (except on the borders) into subsets of markings associated to

different configurations:

Definition 1.12. For each configuration Ci (equivalently, for each value Πi that the configuration

matrix can take), a marking region is defined as the set ℜi = {m ∈ Class(m0)|Πim ≤ Πjm,∀Πj ∈
{Π}}.

Such regions are convex sets and inside each one the state equation (1.6) is linear, i.e., Π(m) is con-

stant. Consider the affine hull of Class(m0) given by aff{Class(m0)} = {m|m = Cα+m0, α ∈ R|T |}).
In the sequel, let us denote by int{Class(m0)} and int{ℜi} the sets of interior markings of Class(m0)

and ℜi, considering neighborhoods on aff{Class(m0)}. Otherwise stated, mq ∈ int{Class(m0)} if there

exists an open neighborhood N(mq) about mq s.t. N(mq)∩aff{Class(m0} ⊆ Class(m0). Similarly,

mq ∈ int{ℜi} if ∃N(mq) s.t. N(mq)∩aff{Class(m0)} ⊆ ℜi (in fact, int{Class(m0)} is the relative

interior of Class(m0) but int{ℜi} is not the relative interior of ℜi).

Remark 1.13. For each configuration Ci (set of input arcs) there is an associated marking region ℜi,

in the set Class(m0), where the configuration matrix Π(m) takes a fixed value Πi, leading to a constant
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Fig. 1.2: a) A TCPN system and its Class(m0). b) Transient evolution of markings at p1 and p3.

state matrix CΛΠi in the state equation (1.4) (equivalently, each configuration/region corresponds to

a linear operation mode in the sense of piece-wise affine systems [Habets and van Schuppen, 2004]). In

particular, Join-Free net systems are linear.

Example 1.3. Consider the TCPN defined by the net model depicted in fig. 1.2(a) with initial

marking m0 = [1, 0, 2]T and λ = [5, 1]T . There is a synchronization at t1, leading to two configurations:

C1 = {(t1, p1), (t2, p2)} and C2 = {(t1, p3), (t2, p2)}, whose corresponding arcs are depicted in solid line

in fig. 1.2(a). These configurations define the corresponding configuration matrices:

p1 p2 p3

Π1 =
t1

t2

[
1 0 0

0 1 0

]
,

p1 p2 p3

Π2 =
t1

t2

[
0 0 1

0 1 0

]

A basis for the P-flows is given by y = [1, 1, 0]T , meaning that the sum of m[p1]+m[p2] remains constant

and equal to one. In this way, the set Class(m0) is defined as the set {m ≥ 0|[1, 1, 0] ·m = 1}, which
is depicted in fig. 1.2(a) as a shadowed surface. This surface is divided into regions, according to the

configurations, leading to the sets denoted as ℜ1 and ℜ2 in fig. 1.2(a). The bold line that separates

both regions are actually markings belonging to both. While the system evolves in ℜ1, the configuration

associated is C1, an the corresponding configuration matrix is given by Π(m) = Π1, thus, the system

will evolve according to ṁ = CΛΠ1 · m. Analogously, while the system evolves in ℜ2, the transient

behavior is determined by ṁ = CΛΠ2 ·m. From a Control Theory perspective, the system is piecewise

linear.

Finally, fig. 1.2(b) shows the transient evolution of the TCPN system for the marking at places p1

and p3. Note the abrupt change on the tendency of the marking p1 when the curves cross each other

(equivalently, when they cross the vertical dashed line), which corresponds to a change of configuration.
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1.4.4 Discrete-time difference equation

Let us introduced a discrete time version of the state equation of a TCPN system. This will be particularly

used in Chapter 2.

Given a TCPN system and its state equation (1.4), a discrete-time version of it, taking a sampling

period ∆τ , is derived as (by using Taylor’s series, for more details see [Phillips and Nagle, 1984]):

mk+1 = ADmk

whereAD =
∑∞

r=0
(CΛΠ(mk)∆τ)r

r!

For a small enough ∆τ , AD ≃ I+CΛΠ(mk)∆τ (a first order approximation of the Taylor’s series).

Therefore, mk+1 is approximated by

mk+1 ≃ mk +CΛΠ(mk)mk∆τ

= mk +C · fk∆τ
(1.5)

where fk = ΛΠ(mk)mk.

It is important to remark that (1.5) is an approximation of the marking evolution of the TCPN.

The smaller ∆τ the better the approximation. It may occur the case that by simulating the difference

equation (1.5), negative markings are obtained, when the system evolves near to a border of Class(m0)

and ∆τ is not small enough. In such case, a smaller ∆τ needs to be used (assuming liveness, it can be

proved that it always exists a small enough ∆τ that guarantees nonnegative markings). In this way, in

the forthcoming analysis it is assumed that ∆τ is small enough.

1.4.5 Control in TCPNs

Control actions in continuous PNs may only be a reduction of the flow through the transitions. That

is, transitions (machines for example) cannot work faster than their nominal speeds. In the original

discrete Petri net, such control action is analogous to impose additional delays (temporarily blocking)

to the firing of the corresponding enabled transitions.

Definition 1.14. The control vector u ∈ R|T | is defined s.t. ui represents the control action on

ti. The effective flow through a controlled transition is given by: fi(τ) = λi · enabi(τ) − ui(τ), where

0 ≤ ui(τ) ≤ λi · enabi(τ).
Transitions in which a control action can be applied are called controllable. The set of all controllable

transitions is denoted by Tc, and the set of uncontrollable transitions is Tnc = T − Tc. If ti is not

controllable then ui must be null.

The behavior of a TCPN forced system is described by the state equation:

•
m = CΛΠ(m)m−Cu

subject to 0 ≤ u ≤ ΛΠ(m)m
(1.6)

A control action that fulfills the required constraints, i.e., ∀ti ∈ Tnc ui = 0 and 0 ≤ u ≤ ΛΠ(m)m,

is called suitable bounded (s.b.). If an input is not s.b. then it cannot be applied.



1. BASIC CONCEPTS AND NOTATION 19

If all the transitions are controllable, i.e., Tc = T , the controlled state equation can be rewritten as

a linear system without state-feedback:

•
m = Cw

s.t. 0 ≤ w ≤ ΛΠ(m)m
(1.7)

where w represents the control action. The constraint 0 ≤ w ≤ ΛΠ(m)m is equivalent to 0 ≤ u =

f(m)−w ≤ ΛΠ(m)m, i.e., u is s.b..

Definition 1.15. A marking mq for which ∃uq s.b. such that C(ΛΠ(mq)mq − uq) = 0 is called

equilibrium marking, while uq and wq = (ΛΠ(mq)mq −uq) are said to be its corresponding equilibrium

input and equilibrium flow, respectively.

If no control is being applied, i.e., if Tc = ∅, then the equilibrium markings are simply nonnegative

solutions for CΛΠ(mq)mq = 0 and BT
y (m

q −m0) = 0.

1.5 Properties of continuous PNs

In the following, a few useful definitions and properties for continuous PNs are presented.

1.5.1 Liveness definitions

Different concepts for liveness in untimed continuous Petri nets were introduced in [Recalde et al., 1999].

In this work, the concepts regarding to lim-reachability (reachability considering infinite firing sequences)

will be used. Recalling from there:

Definition 1.16. An autonomous (untimed) continuous PN model ⟨N ,m0⟩ is said live if for every

transition tj and for any marking m reachable from m0 (allowing infinite firing sequences), a successor

m′ exists such that enab(tj ,m
′) > 0.

A net N is structurally live if ∃m0 such that ⟨N ,m0⟩ is live.

Those concepts can be extended to timed continuous PNs. This was explored in [Júlvez et al., 2006],

assuming that the TCPN model reaches a steady state mss, i.e., the system reaches mss and remains at

this for all future time. Accordingly,

Definition 1.17. A TCPN system ⟨N ,λ,m0⟩ that reaches a steady state mss is said live if the steady

state flow is positive, which is expressed as f(mss) > 0. The timed net ⟨N ,λ⟩ is said structurally live if

there exists an initial marking m0 such that ⟨N ,λ,m0⟩ is live. Finally, a system ⟨N ,λ,m0⟩ that reaches
a steady state, deadlocks if the steady state flow is null, i.e., fss(mss) = 0.

From an algebraic perspective, steady states in TCPN systems are equilibrium markings, i.e., solutions

of ṁ = CΛΠ(m)m = 0 with m ∈ Class(m0). Equilibrium markings can be classified according to its

flow, independently if they are reachable or not, as follows:

Definition 1.18. An equilibrium marking mss can be classified as:
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1) If f(mss) = 0 then mss is called deadlock marking. The configuration and region related to mss

are called deadlock configuration and deadlock region, respectively.

2) If for some transition tj , [f(mss)]j = 0 (where [f(mss)]j denotes the j-th entry of f(mss)) then

mss is called non-live marking. The configuration and region related to mss are called non-live

configuration and non-live region, respectively.

3) If f(mss) > 0 then mss is called live marking.

If in a given region ℜi there do not exist non-live equilibrium markings, then ℜi is called live region,

and the associated configuration is said live.

Remark 1.19. According to the deadlock-freeness definition, a deadlock occurs when the system

(asymptotically) reaches a deadlock marking. Similarly, the system becomes non-live when it (asymp-

totically) reaches a non-live marking. If the system reaches a live equilibrium marking, then it is live.

1.5.2 Eigenvalues of the state matrix for TCPNs

Regarding TCPNs, inside each region the state equation is linear, sinceΠ(m) is constant. Thus, adopting

a Control Theory perspective, the behavior of a TCPN can be analyzed by regions ℜi (or linear modes)

through the knowledge of the eigenvalues and eigenvectors of the corresponding state matrices CΛΠi.

In particular, given a configuration matrix Πi, a number s ∈ C (in general, complex) is called eigenvalue

if there exists a column vector v ∈ C|P | s.t.:

(s · I−CΛΠi) · v = 0 (1.8)

Vector v is called column eigenvector related to s. Furthermore, if there exists such eigenvalue, there

also exist a row vector w, called row eigenvector related to s s.t.:

w · (s · I−CΛΠi) = 0 (1.9)

Remark 1.20. Eigenvectors are related to P- and T-flows:

1) Given a P-flow y, then ∀Λ,ΠD it holds yT ·CΛΠD = 0, which is equivalent to (1.9) with w = yT

and s = 0. Therefore, P-flows are row eigenvectors related to a zero valued eigenvalue (s = 0), for

any timing and any configuration (already shown in [Mahulea et al., 2008b]).

2) Given a column eigenvector v related to a zero valued eigenvalue (i.e., v that fulfills (1.8) with

s = 0), then the vector ΛΠDv is a T-flow.

Nevertheless, neither all the row eigenvectors related to zero valued eigenvalues are associated to P-flows

nor all the T-flows can be expressed as ΛΠDv with v being a column eigenvector (this is explored in

detail in Chapter 3).

This perspective will be specially useful in Chapter 3 in order to study the connection between the

timing and some behavioral properties. For that, a classification of the eigenvalues will be adopted.

• Fixed eigenvalues of CΛΠi are those that do not depend on λ, i.e., they are timing independent.
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• Variable eigenvalues of CΛΠi are those that depend on λ.

In particular, zero valued eigenvalues related to P-flows are fixed (independently of λ, every P-flow y

fulfills yTCΛΠi = 0). Similarly, a distinction will be made between fixed (timing independent) and

variable poles.

1.6 Basic concepts on continuous-state dynamic systems

TCPN models are continuous-state systems, which are commonly studied in the Control Theory frame-

work. In fact, TCPNs belong to a particular class of systems, called piecewise affine (in particular,

piecewise linear without guard functions). Even more, if the net model exhibits a Join-Free structure,

then the TCPN is a linear system, a class widely studied in the literature. In this way, through this

dissertation, TCPNs will be frequently studied by adopting a Control Theory approach, in order to take

advantage of the numerous results and techniques developed for these systems. In this section, a few of

concepts, that will be used in the following chapters, are recalled from the literature.

The so called modern Control Theory is based on the concept of state, which is defined as the

information required (together with the input applied to the system) to uniquely determine the future

evolution of the system (see, for instance, [Chen, 1984]). Otherwise stated, the state represents the

memory that the dynamical system has of its past [Levine, 1996]. This information is codified into a real

valued vector, commonly denoted as x, whose entries are called state variables.

In this way, the vector space Rn, where n is the number of state variables (thus, the length of x), is

called state space, since any value that the state can take belongs to Rn. The evolution of the state is

described by its state equation
•
x = f(x,u, τ)

y = h(x, τ)
(1.10)

where u and y represent the control actions (inputs) and the available observations (outputs), respec-

tively, f(·) and g(·) are properly defined mappings and τ denotes the time. For the study of continuous-

state systems, f(·) and g(·) are restricted to particular structures. For instance, if they do not dependent

on τ , they are called time invariant. A more particular case occurs when f(·) and g(·) are linear operators,
i.e.,

•
x = A · x+B · u

y = O · x
(1.11)

In this case, the system is called linear and time invariant (denoted as LTI ) [Chen, 1984].

The dynamic evolution of a continuous-state system can be studied through the function f(x,u, τ),

called field vector. If no control action is being applied (or such control is a fixed function of the state)

and the system is time invariant, then it is said autonomous, since the evolution of its state only depends

on this, i.e.,
•
x = f(x) (1.12)

A solution x′ for f(x′) = 0 is called equilibrium point. In the case of LTI systems, the study of the

mapping f(·) becomes into the analysis of A, which is commonly addressed by using the Theory of Linear

Algebra.
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Among different properties, some that are classically studied are controllability, observability and

stability.

1.6.1 Basic stability concepts

Stability is a central concept in the study of dynamical systems. This is defined in different ways. In this

work, the concept of stability refers to equilibrium points. An intuitive, and rough, definition is that,

given an equilibrium point of a dynamic system, it is stable if all the trajectories of the system, starting

in a neighborhood of the equilibrium point, stay nearby. Let us recalled a more formal definition from

[Levine, 1996], about the Lyapunov stability

Definition 1.21. Given a continuous-state system (1.12) and an equilibrium point x′, this is

• stable, if for each ε > 0, there is δ = δ(ε) > 0 such that

||x(0)− x′||2 < δ =⇒ ||x(τ)− x′||2 < ε, ∀τ ≥ 0.

• unstable if it is not stable.

• asymptotically stable if it is stable and δ can be chosen such that

||x(0)− x′||2 < δ =⇒ limτ→x(τ) = x′

One of the main results in the study of stability is the so-called Lyapunov’s stability theorem, which

provides a sufficient condition for stability.

Theorem 1.22. Let x = 0 be an equilibrium point for (1.12) and D ⊂ Rn be a domain containing

x = 0. Let V : D → R be a continuous differentiable function (commonly named Lyapunov function)

such that: V (0) = 0, V (x) > 0 in D − {0} and V̇ (x) ≤ 0 in D. Then x = 0 is stable. Moreover, if

V̇ (x) < 0 in D − {0} then x = 0 is asymptotically stable.

In linear systems, the stability can be decided from the eigenstructure of its sate matrix A.

Theorem 1.23. The equilibrium point x = 0 of ẋ = Ax is stable iff all the eigenvalues of A satisfy

Real{si} ≤ 0 and for every eigenvalue with Real{si} = 0 and algebraic multiplicity ri ≥ 2, rank(A −
siI) = n − ri, where n is the dimension of x. The equilibrium point x = 0 is (globally) asymptotically

stable iff all eigenvalues satisfy Real{si} < 0 (in such case, A is called Hurwitz).

Even if previous theorems consider x′ = 0 as the equilibrium point under study, these results can be

applied when x′ ̸= 0, just by defining the shifted variable xaux = x−x′ that evolves as ẋaux = g(xaux) =

f(xaux + x′).

1.6.2 Basic controllability concepts

Controllability is a basic concept in dynamic systems related to the capability of these for being driven in

a certain desirable way. In DEDS, the concept of controllability is related to the possibility of inducing

an invariant set of trajectories, describing a safe behavior. Nevertheless, from a continuous-state systems

perspective, the controllability concept is related to the capability for reaching state-points in the sate

space. This topic will be studied in Chapter 4 for TCPNs by adopting a continuous-state systems

approach, for this reason, here some basic concepts are recalled (see, for example, [Chen, 1984]).
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Definition 1.24. A state equation is fully controllable if there exists an input such that for any two

states x1 and x2 of the state space, it is possible to transfer the state from x1 to x2 in finite time.

Restricted to LTI systems, the controllability can be decided in a simple way. The fundamental idea

is that the reachability set (from the origin) is determined by the span of eAτB. This reachability set

covers the complete state space (which in continuous-time LTI systems is equivalent to controllability)

iff there do not exist state invariants (under any control action, i.e., @w ̸= 0 s.t. wT eAτB = 0), which

can be stated in different ways (for more details, the reader may consult [Chen, 1984]):

Theorem 1.25. Given an n-dimensional LTI system (1.11), it is controllable iff any of the following

equivalent conditions is satisfied.

I. all rows of eAτB are linearly independent on [0,∞) over C, the field of complex numbers.

II. all rows of (sI−A)−1B are linearly independent over C.

III. the controllability matrix Contr(A,B) = [B,AB, ...,An−1B] has rank n.

IV. for every eigenvalue s of A, the complex matrix [sI−A,B] has rank n.

In the previous theorem, there is no restriction on the control actions that can be applied to the

system. Regarding that issue, Brammer [Brammer, 1972] addressed the null-controllability problem for

LTI systems where the input is restricted to a convex set Ω. Let us firstly recall the null-controllability

concept:

Definition 1.26. ([Brammer, 1972]) A linear state equation
•
x = Ax+Bu is null-controllable if there

exists a small enough neighborhood N(0) about the origin from which x = 0 is reachable in finite time.

Furthermore, given a set S containing the origin, it is said that the system is null-controllable over

S if there exists a small neighborhood N(0) about the origin s.t. x = 0 is reachable from any state in

N(0) ∩ S.

The basic results of Brammer are recalled next:

Theorem 1.27 ((Brammer, 1972) ). Consider a LTI system (1.11) with the input constraint u ∈ Ω.

I. If u = 0 is an interior point of Ω (meaning that all the inputs can be settled as either positive or

negative), the system is null-controllable iff the controllability matrix Contr(A,B) has full rank.

II. If ∃u ∈ Ω s.t. Bu = 0 and the convex hull of Ω has nonempty interior (useful if some inputs can

only be positive or can only be negative), the system is null-controllable iff Contr(A,B) has full

rank and there is no real eigenvector v of AT satisfying vTBu ≤ 0 ∀u ∈ Ω.

The first case amounts to the classical condition for linear unconstrained systems (because u = 0 is

in the interior of Ω). In the second case, the input constraints may disable some directions, which is

captured by the additional condition (directions disabled have a positive projection on a vector v, being

a real eigenvector of AT s.t. vTBu ≤ 0 ∀u ∈ Ω).

In this way, a few basic concepts regarding Petri nets and state-continuous systems have been re-

called through this chapter. This quick overview provides a ground material for the the analysis and
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concepts that will be introduced in the following chapters. For more details, the reader may consult

[Murata, 1989, Silva, 1993] for discrete, [Marsan et al., 1995] for stochastic, and [David and Alla, 2010,

Silva and Recalde, 2004] for continuous PNs. Similarly, useful concepts and results for state-continuous

systems can be found in [Chen, 1984, Khalil, 2002].



Chapter 2

Fluidization

2.1 Continuous PNs as relaxations of Markovian models

Timed continuous Petri nets, under infinite server semantics, were proposed [Recalde and Silva, 2001]

by using the Markovian interpretation of discrete Petri nets as the reference (equivalent to the variable

speed fluid model introduced by Alla and David [Alla and David, 1998]). The reasons for this choice

are that Markovian (discrete) Petri nets (MPN, as defined in Subsection 1.3.1) enjoy the time memo-

ryless property and the current marking represents all the information required for the future evolution

of the system. MPN are widely used for the analysis of performance evaluation [Marsan et al., 1995,

Balbo and Silva, 1998]. Furthermore, the exact analysis of MPNs, via the isomorphous Markov Chain

[Molloy, 1982], frequently leads to an untractable computational complexity, because of the state explo-

sion problem.

In this way, given a continuous net model, it is expected that this approximates the behavior of the

corresponding original discrete PN. Nevertheless, such approximation does not always hold. Despite

the relevance of this problem, there are just a few works in the literature addressing this. In particular,

Zerhouni & Alla [Zerhouni and Alla, 1990] considered the approximation of deterministically timed Petri

nets by variable speed continuous PN’s. They proposed a criterion for validating the continuous model

through simulations, but no formal analysis was achieved. Mahulea et al. [Mahulea et al., 2009] proved

that for mono-T-semiflow nets (conservative and consistent nets with a unique minimal T-semiflow),

a TCPN under infinite server semantics (ISS) provides a better approximation of the throughput of a

stochastic PN than under finite server semantics, but this does not imply that the ISS actually pro-

vides a “good enough” approximation. Lefebvre et al. [Lefebvre et al., 2009] studied the throughput

approximation of a subclass of stochastic PN’s by fluid PN models, for which different semantics are

introduced in order to provide a good steady state approximation. Nevertheless, there is still a lack of

results regarding this problem. In particular, no formal analysis has been achieved for explaining when

and why the approximation provided by a TCPN holds (or not).

In this framework, the approximation of MPNs by TCPN’s is studied through this chapter. In some

sense, here we deal with the legitimization of the so called infinite server semantics. According to the

results obtained, under liveness and stability assumptions the marking of the TCPN approximates the

average marking of the MPN if the system mainly evolves inside one region of the reachability set (a

perfect match is obtain for ordinary Join Free nets). The approximation becomes better when the number
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of active servers is large. Later, in order to improve the approximation when the system evolves through

several regions, white gaussian noise is added to the transitions’ flow, leading to a new stochastic model

(denoted as TnCPN). The approximation provided by this model is also analyzed.

In a third step, a hybrid Petri net model MHPN is introduced as a partial relaxation of a MPN.

It is shown that the approximation provided by such hybrid systems is not always better than that

provided by full relaxations (given by fully continuous Petri nets). For this reason, different results are

introduced, which may lead to provided sufficient conditions for an effective approximation. Finally, a

couple of preliminarily ideas are advanced for the improvement of the approximation, by means of the

modification of the structure and the semantics for particular transitions of the TCPN model.

2.2 On the approximation of MPNs by TCPNs: deterministic

approximation

Through this section, it will be shown that the expected value of the marking of a MPN system can

be approximated by the marking of the corresponding TCPN, under some particular assumptions. Let

us remark that it is desirable to approximate not only the throughput, but also the complete marking

during the transient behavior, because the marking represents the complete state of the system. Let us

introduce first some useful definitions and notation.

Given a temporal variable, e.g. Mk, the term Mk,j will denote the j-th entry of the vector Mk.

Definition 2.1. Given a MPN system and the corresponding TCPN one, the marking approximation

error is defined as εk = mk − E{Mk}. Similarly, the relative approximation error of the marking is

defined, for each pi ∈ P , as ϵi = (mk,i − E{Mk,i})/E{Mk,i} (assuming E{Mk,i} > 0).

2.2.1 Join-Free models

Proposition 2.2. Consider an ergodic MPN = ⟨N ,λ,M0⟩, where N is Join-Free. Consider the cor-

responding TCPN = ⟨N ,λ,m0⟩, where M0 = m0.

1) If N is ordinary then the marking of the TCPN is equal to the average value of the marking of the

MPN, i.e., εk = 0.

2) In non ordinary nets, approximation errors may appear. If the TCPN has a unique asymptotically

stable equilibrium point in Class(m0) then the approximation errors are ultimately bounded. The larger

the average enabling degrees the lower the relative errors (ϵk → 0), and thus, the better the approximation.

Proof. Assume that N is Join-Free, i.e., there are not synchronizations (rendez-vous). Then, the

configuration matrix is constant Π. According to this, the state equation of the TCPN (1.5) can be

expressed as

mk+1 ≃ [I+CΛΠ∆τ ]mk (2.1)

Now, let us derive an expression for the expected value of the marking of the MPN system. According

to (1.2), the expected value (average) of the marking at time step k + 1 (denoted as E{Mk+1}) can be
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approximated by

E{Mk+1} = E{Mk}+C · E{∆σ(Fk∆τ)} (2.2)

By using the definitions of ∆σ(Fk∆τ) and Fk, and the fact that the average value of a Poisson

distributed r.v. is equal to its parameter, it can be proved that E{∆σ(Fk∆τ)} = E{Fk∆τ} = Λ ·
E{Enab(Mk)}∆τ , where Enab(Mk) = ⌊Π(Mk)Mk⌋. Defining bk = Π(Mk)Mk − ⌊Π(Mk)Mk⌋, it can
be seen that E{∆σ(Fk∆τ)} = Λ · E{Π(Mk)Mk}∆τ − Λ · E{bk}∆τ . Substituting this into (2.2) we

obtain:

E{Mk+1} = E{Mk}+CΛ · E{Π(Mk)Mk}∆τ −CΛ · E{bk}∆τ (2.3)

Note that bk represents the difference between the function Π(Mk)Mk and the enabling degree.

This variable is null for ordinary nets (because Π(Mk)Mk = ⌊Π(Mk)Mk⌋ in those), but in general

0 ≤ bk ≤ 1, where 1 denotes a vector whose entries are 1’s.

Now, since the configuration matrix is constant in Join-Free nets, (2.3) can be expressed as

E{Mk+1} = [I+CΛΠ∆τ ]E{Mk} −CΛ · E{bk}∆τ (2.4)

Comparing (2.4) with (2.1), it can be seen that both coincide if E{bk} = 0, which holds if N is

ordinary. In such case, the marking trajectory of the TCPN system is equal to the trajectory described

by the expected value of the marking of the corresponding MPN, thus statement 1 is proved.

For non ordinary nets the evolution of E{Mk} and mk is not exactly the same, due to the term

CΛ ·E{bk}∆τ that appears in (2.4) but not in (2.1). Nevertheless, it holds that 0 ≤ bk ≤ 1. Therefore,

the effect that the variable bk introduces in the evolution of E{Mk} can be analyzed as a perturbation

in the model without such term. Let us detail this idea:

Consider the approximation error εk = mk − E{Mk}. Then, according to (2.1) and (2.4), it is

obtained:

εk+1 = [I+CΛΠ∆τ ] εk +CΛ · E{bk}∆τ (2.5)

In the sequel, the term CΛ · E{bk}∆τ will be called perturbation. In this way, the evolution of

the error can be seen as a nominal system, described by εk+1 = [I+CΛΠ∆τ ] εk, under non-vanishing

(it exists even if εk = 0) but bounded perturbation. Now, let us assume that the origin (ε = 0)

is asymptotically stable in the nominal system, i.e., the TCPN system reaches the same steady state

marking starting from any initial one inside Class(m0) (equivalently, the eigenvalues of [I+CΛΠ∆τ ],

non related to P-flows, are inside the unity circle [Phillips and Nagle, 1984]). According to a well-known

stability results (see, for example, [Khalil, 2002], Lemma 9.2, page 347), the asymptotic stability in the

nominal error system implies that the error εk is ultimately bounded, i.e., there exists a bound β s.t.

∥εk∥ ≤ β for all k ≥ η, with τ0 + η∆τ being a finite time. Actually, it can be proved that such bound β

depends on the structure and timing, but not on the initial marking. The computation of such bound is

shown in Appendix B.

Finally, consider the relative approximation error (ϵi = εk,i/E{Mk,i}, ∀pi ∈ P ). Since εk,i is upper

bounded by a constant value, then the larger E{Mk,i}, the lower ϵi. This can be seen directly in (2.4), by

noting that if Π ·E{M} >> 1 then (2.4) is well approximated by (2.1), because in such case |E{bk}| ≤ 1

is less significant; moreover, the errors are not accumulated because the nominal system is asymptotically
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Tab. 2.1: Marking approximation of p2 for the JF MPN in fig. 2.1(a), where M0 = m0 = q · [1, 1, 1]T
q MPN TCPN error

1 0.600 0.75 25.0%

3 2.126 2.25 5.81%

4 2.878 3.00 4.25%

6 4.370 4.50 2.98%

10 7.422 7.50 1.04%

15 11.911 12.00 0.75%

stable. Roughly speaking, the larger the number of active servers (which is related to Π · E{Mk}), the
better the approximation.

Example 2.1. Consider the Join-Free MPN of fig. 2.1(a) with firing rates λ1 = λ2 = λ3 = 1. The

TCPN system has been simulated, by using MatLab, and the steady-state results have been compared

with those obtained for the MPN using TimeNET [Zimmermann and Knoke, 2007]. Table 2.1 resumes

the results thus obtained. The first column represents the initial marking, given by M0 = m0 =

q · [1, 1, 1]T . Second and third columns are the average marking of the MPN at the steady state, and the

final value of the TCPN, respectively, for place p2. The last column is the relative marking error.

This is a non ordinary Join-Free PN. Furthermore, in the TCPN model there exists only one equilib-

rium point (the steady state) which is asymptotically stable. Therefore, according to Proposition 2, it

can be expected that, the larger the marking the lower the relative error, which is ultimately bounded.

Note in table 2.1 that the relative error becomes lower as the average marking increases, which occurs

for large values of q (this is a monotonic net, i.e., if the initial marking is increased, then the average

marking at the steady state is also increased). Fig. 2.1(b) shows the evolution of both the marking of

the TPCN and the expected value of the marking of the MPN, at place p2, for M0 = 10 · [1, 1, 1]T . As it

can be seen, not only the steady state but also the transient behavior of the MPN is well approximated

by the TCPN.

2.2.2 Approximation in one region

In the previous subsection, the approximation of a MPN provided by the corresponding TCPN was

analyzed for Join-Free nets. In general subclasses, the approximation may not hold even if the enabling

degree of all the transitions is large. This is due to the change of marking regions during the evolution

of the system, since this issue is not well captured by the flow definition in PNs. Let us illustrate this:

Example 2.2. Consider the MPN system of fig. 2.2, and its corresponding TCPN one, with initial

marking M0 = m0 = [5, 5, 55, 5, 6, 4]T and timing rates λ1 = λ2 = λ3 = 1 for the first three transitions.

Both the MPN and TCPN systems are simulated with different values for λ4. The results are shown

in Table 2.2. The values of the second and third columns correspond to the steady state marking of

place p3. The column denoted as E{Enab(t4)} is the average enabling degree of t4 at the steady state.

In all the experiments achieved, the average enabling degree of t4 at the steady state was lower than

those of the other transitions, thus, the larger this value, the larger the average enabling degrees of all

the transitions. The value at the last column (P.M ∈ ℜss) is the probability that the marking is inside
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Fig. 2.1: (a) A JF, but non ordinary, net system. (b) For the initial marking M0 = [10, 10, 10]T , the evolution
of the average marking at p2 is shown in solid line. In dashed line, the corresponding marking of the
TCPN.

Tab. 2.2: Marking approximation of p3 for the MPN of fig. 2.2
λ4 MPN TCPN error E{Enab(t4)} P. M ∈ ℜss

2 54.62 55 0.7% 2.53 0.8433

1.5 53.87 55 2.1% 3.22 0.661

1.2 51.16 55 7.5% 3.88 0.413

1.1 46.65 55 17.9% 4.32 0.232

1.05 40.72 55 35.0% 4.56 0.115

1 29.97 55 83.5% 4.93 0.036

the region ℜss, which is the region associated to the steady state marking of the TCPN system, i.e.,

mss ∈ ℜss. It can be observed that the lower the probability that Mk belongs to ℜss, the larger the

relative error, even if the average enabling degrees increase.

Let us provide an intuitive explanation for this lack of approximation. If we consider the continuous

model with λ4 = 1 (when the approximation is worst), it can be proved that there exist infinite equilibrium

markings in the configuration where t2 is constrained by p2 and t3 is constrained by p5, in fact, those

equilibrium markings are characterized as {m ∈ Class(m0)|m = [5, 5, 5 + α, 55− α, 5, 5]T , 0 ≤ α ≤ 50}.
Then, the continuous system will reach one of those equilibrium markings, depending on the particular

initial one (different steady states are reachable from different initial markings). On the contrary, the

discrete net system is ergodic, then, independently of the initial marking (but belonging to Class(m0)),

the steady state will be [5, 5, 30, 30, 5, 5]T .

In the following, the approximation analysis is slightly extended, from the case of Join-Free nets, to

systems in which the marking evolves inside a unique region with probability near to 1.

Proposition 2.3. Consider a bounded in average and ergodicMPN = ⟨N ,λ,M0⟩ and the corresponding

relaxation TCPN = ⟨N ,λ,m0⟩, with M0 = m0. If, for a given region ℜj, Prob(Mk ∈ ℜj) ∼ 1,

mk ∈ ℜj during the time interval (τ0, τ0 + k∆τ), and the TCPN system has a unique asymptotically
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Fig. 2.2: Marked graph whose marking mainly evolves in two different regions.

stable equilibrium point in ℜj, then the marking approximation error εk is ultimately bounded. The larger

Prob(Mk ∈ ℜj) and the average enabling degrees, the lower the relative approximation error ϵk.

Proof. Consider the equation (2.3) that appears in the proof of Proposition 2.2. This equation describes

the dynamic evolution of the average marking of the MPN. Contrary to the previous case, in this one the

system is not linear. Furthermore, (2.3) cannot be considered as a state equation of the average marking,

since E{Mk+1} is not an explicit function of E{Mk}, due to the term E{Π(Mk)Mk} (be aware that this

is not equivalent to Π(E{Mk})E{Mk}). Then, it is important to obtain an alternative representation

of this term that leads to a proper state equation for E{Mk}. By using conditional expected-value

properties, it can be obtained

E{Π(Mk)Mk} =
∑
∀ℜi

Πi · E{Mk|Mk ∈ ℜi}Prob(Mk ∈ ℜi)

Assuming that the probability that Mk ∈ ℜj is almost 1, for a particular ℜj , then the previous

equation can be substituted into (2.3), obtaining thus:

E{Mk+1} = E{Mk}+CΛΠj · E{Mk}∆τ +CΛ
[
ζj
k − E{bk}

]
∆τ (2.6)

where

ζj
k =

∑
∀ℜi ̸=ℜj

ΠiE{Mk|Mk ∈ ℜi}Prob(Mk ∈ ℜi) +Πj · [E{Mk|Mk ∈ ℜj}Prob(Mk ∈ ℜj)− E{Mk}]

(2.7)

Note that (2.6) is a state equation representation for E{Mk}, so it can be used for analyzing the

approximation provided by the corresponding TCPN system, as in the proof of Proposition 2.2. Before

that, let us obtain a bound for ζj
k.

By hypothesis, Prob(Mk ∈ ℜj) ∼ 1, then, let us assume that E{Mk|Mk ∈ ℜj} ≃ E{Mk}. Note that

this assumption is much weaker than Mk ∈ ℜj , because even if the system does not evolve always inside

ℜj , for the most probable trajectories the marking belongs to ℜj (or at least close to the border of this

region). In such case, [E{Mk|Mk ∈ ℜj}Prob(Mk ∈ ℜj)− E{Mk}] ≃ E{Mk|Mk ∈ ℜj}(Prob(Mk ∈
ℜj)−1). Now, assume that the system is bounded in average, then, denoting as Mmax the vector whose

entries are the bounds for the average marking at the corresponding places, (2.7) can be relaxed as:

| ζj
k | ≤ |

∑
∀ℜi ̸=ℜj

ΠiMmax(1− Prob(Mk ∈ ℜj)) +ΠjMmax(Prob(Mk ∈ ℜj)− 1) |
≤
∑

∀ℜi
ΠiMmax(1− Prob(Mk ∈ ℜj))

(2.8)
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Therefore, given a lower bound for Prob(Mk ∈ ℜj), the term |ζj
k −E{bk}| in (2.6) is upper bounded

by a constant value. Then, the approximation analysis in this case can be reduced to that used in the

proof of Proposition 2.2. In detail, assuming that the TCPN evolves inside ℜj , the evolution of the

approximation error εk = mk − E{Mk} is given by:

εk+1 = [I+CΛΠj∆τ ] εk +CΛ ·
[
ζj
k − E{bk}

]
∆τ (2.9)

where
∣∣∣ζj

k − E{bk}
∣∣∣ can be seen as a perturbation whose magnitude is upper bounded by a function

of Prob(Mk ∈ ℜj). In this way, following an analysis similar to that used in the proof of Proposition

2.2 and assuming asymptotical stability of the the nominal system (in ℜj), it can be proved that the

approximation error is ultimately bounded by a function of Prob(Mk ̸∈ ℜj), thus, the larger Prob(Mk ∈
ℜj) and the average marking, the lower the relative approximation error.

Proposition 2.3 states that, in order to obtain an approximation by the TCPN system, the following

two conditions are sufficient:

• Condition 1. The enabling degree at the most probable markings of the MPN is large, i.e.,

E{Enab(t,Mk)} >> 1, ∀t ∈ T, ∀k.

• Condition 2. The probability that the marking is inside the region ℜj , where the TCPN evolves

and has a unique asymptotically stable equilibrium point, is near to one, i.e., Prob(Mk ∈ ℜj) ∼ 1,

∀k.

Remark 2.4. Even if the quality of the approximation decreases when the system changes of region

(condition 2 does not hold temporarily) and/or the transitions are not enabled during certain period of

time (condition 1), the approximation could be good enough for analysis and control purposes. Then,

both conditions should be consider just as sufficient for the approximation.

Example 2.3. Consider again the MPN and the corresponding TCPN of fig. 2.2, and the results

obtained from the simulations of these, shown in table 2.2. In this, it can be seen that, when the

conditions of Proposition 2.3 are fulfilled, i.e., when the probability that the discrete marking is inside

the region ℜss is high like in the case λ4 = 2, the approximation is good. This example shows the

importance of the evolution inside a unique region.

2.3 Continuous models with noise: improving the

approximation

In the previous section, it has been proved that the TCPN model can approximate the average marking

of the corresponding MPN, if the probability that the MPN evolves inside a unique region (in which the

TCPN also evolves) is near 1, i.e., condition 2. On the other hand, it was also shown through an example

that if the MPN system evolves in different regions, the approximation may not be good. Through this

section, a modification to the TCPN model is proposed in order to improve the approximation in such

case. The modification consists in the addition of white noise to the transitions’ flow of the TCPN model,

obtaining thus a continuous stochastic system (TnCPN).
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Definition 2.5. A stochastic continuous PN system, denoted as TnCPN, is defined as a TCPN

⟨N ,λ,m0⟩ in which the transitions’ flow is stochastic, describing the following evolution (in discrete-

time):

mk+1 = mk +CΛΠ(mk)mk∆τ +Cvk

= mk +C ·∆wk

(2.10)

where ∆wk = ΛΠ(mk)mk∆τ + vk = fk∆τ + vk and vk is a noise column vector, of length |T |, whose
elements are independent normally distributed r.v.’s with average value and covariance matrix:

E{vk} = 0

Σvk
= diag[ΛΠ(mk)mk∆τ ] = diag[fk∆τ ]

(2.11)

It may occur the case that by simulating the difference equation (2.10), negative markings are ob-

tained. For this reason, for simulation purposes, the noise vk is added only if mk+1 ≥ 0. This means

that very close to boundaries the system may be kept as deterministic. In fact, if the system is crowded,

i.e., m0 is large, the probability of getting mk+1 � 0 is very low. On the other hand, in the forthcoming

analysis it is always assumed that the system remains crowed, consequently, it will be assumed that the

marking in (2.10) remains nonnegative.

In the sequel, it will be assumed that the MPN system is live an ergodic. Moreover, it will also

assumed that there do not exist non-live equilibrium markings in Class(m0) of the continuous Petri nets

system (thus it is live).

2.3.1 Approximation of the expected value and covariance

The white noise added to the TCPN was defined in such a way that the expressions of the expected

value and covariance of the MPN, and the resulting TnCPN, coincide. This will be shown through this

section. First, let us obtain expressions for the moments of the marking of the MPN.

Proposition 2.6. The expected value and covariance matrix of the marking of the MPN at time step

k + 1, denoted as E{Mk+1} and
∑∑∑

Mk+1
, can be expressed as functions of the moments of Mk and

Fk∆τ = Λ⌊Π(Mk)Mk⌋∆τ as:

E{Mk+1} =
[
I C

] [ E{Mk}
E{Fk∆τ}

]
(2.12)

ΣMk+1
=[

I C
] [ ΣMk

ΣMk,∆σk

Σ∆σk,Mk
Σ∆σ(Fk∆τ)

][
I

CT

]
(2.13)

where the covariance matrix Σ∆σ(∆Fk) is given by:

Σ∆σ(Fk∆τ) = ΣFk∆τ + diag [E{Fk∆τ}] (2.14)
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and the cross covariance matrices ΣMk,∆σk
and Σ∆σk,Mk

can be computed by elements with:

∀i, j ∈ {1, .., |P |} ΣMk,∆σk
[i, j] = cov{Mk,i,∆σj(Fk,j∆τ)} = cov{Mk,i, Fk,j∆τ}

Σ∆σk,Mk
[i, j] = cov{∆σi(Fk,i∆τ),Mk,j} = cov{Fk,i∆τ,Mk,j}

(2.15)

Proof. First, by using the fact that E{∆σ(Fk∆τ)} = E{Fk∆τ} (proved in [Papoulis, 1984] and

already used in the proof of Proposition 2.2), then (2.2) can be written as (2.12).

Now, according to (1.2), in order to compute the covariance matrix ofMk+1 it is necessary to estimate

the moments of ∆σ(Fk∆τ). By definition, the firing count ∆σ(Fk∆τ) is a vector of Poisson distributed

r.v.’s whose parameters are the corresponding elements of Fk∆τ . However, these parameters are also

r.v.’s, since they are function of Mk+1 (also a vector of r.v.’s). Nevertheless, the covariance matrix of

the firing count can be expressed in terms of the moments of its parameters. According to Poisson pdf

properties (see, for instance, [Papoulis, 1984]), it can be proved that for any transition ti,

var{∆σi(Fk,i∆τ)} = var{Fk,i∆τ}+ E{Fk,i∆τ} (2.16)

Furthermore, using the total probability theorem and some properties of the conditional expected

value, it can be demonstrated that, for any other transition tj or place pj it holds

cov{∆σi(Fk,i∆τ),∆σj(Fk,j∆τ)} = cov{Fk,i∆τ, Fk,j∆τ} (2.17)

cov{∆σi(Fk,i∆τ),Mk,j} = cov{Fk,i∆τ,Mk,j}

Then, denoting the covariance matrices of Fk∆τ and ∆σ(Fk∆τ) as ΣFk∆τ and Σ∆σ(Fk∆τ), respec-

tively, by using (2.16) and (2.17) it is obtained Σ∆σ(Fk∆τ) = ΣFk∆τ + diag [E{Fk∆τ}]. Finally, by

combining these equations, (2.13) is obtained.

Now, let us obtain similar expressions for the moments of the marking of the TnCPN.

Proposition 2.7. The expected value and covariance matrix of the marking of the TnCPN at time

step k + 1, denoted as E{mk+1} and
∑∑∑

mk+1
, can be expressed as functions of the moments of mk and

fk∆τ = ΛΠ(mk)mk∆τ as:

E{mk+1} =
[
I C

] [ E{mk}
E{fk∆τ}

]
(2.18)

Σmk+1
=[

I C
] [ Σmk

Σmk,∆wk

Σ∆wk,mk
Σ∆wk

][
I

CT

]
(2.19)

where

Σ∆wk
= Σfk∆τ + diag [E{fk∆τ}] (2.20)

and the cross covariance matrices can be computed, by elements, with:

∀i, j ∈ {1, .., |P |} Σmk,∆wk
[i, j] = cov{mk,i,∆wk,j} = cov{mk,i, fk,j∆τ}

Σ∆wk,mk
[i, j] = cov{∆wk,i,mk,j} = cov{fk,i∆τ,mk,j}
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Proof. First, since ∆wk = fk∆τ + vk and E{vk} = 0 then E{∆wk} = E{fk∆τ}. Substituting this

into (2.10), it is obtained (2.18).

Now, for any transition ti, tj and place pj , equalities analogous to (2.15-2.17) are obtained as:

var{∆wk,i} = var{fk,i∆τ}+ E{fk,i∆τ}
cov{∆wk,i,∆wk,j} = cov{fk,i∆τ, fk,j∆τ}
cov{∆wk,i,mk,j} = cov{fk,i∆τ,mk,j}

Therefore, denoting the covariance matrices of fk∆τ and wk as Σfk∆τ and Σ∆wk
, respectively, it is

obtained Σ∆wk
= Σfk∆τ + diag [E{fk∆τ}]. Combining these equations, (2.19) is obtained.

Remark 2.8. The moments of mk+1 as functions of mk and fk∆τ , are equal to those of Mk+1 as

functions of Mk and Fk∆τ . Furthermore, Fk = Λ⌊Π(Mk)Mk⌋ is a function of Mk almost equivalent

to fk = ΛΠ(mk)mk for mk (it is equal for ordinary nets, while for non-ordinary nets the difference is

not relevant for large values of the enabling degree, i.e., ⌊Π(Mk)Mk⌋ ≃ Π(Mk)Mk). This likelihood

is intentional, since the noise vk added to the TCPN model was defined in order to obtain similar

expressions for the moments.

Previous propositions lead to think about the possibility of moments approximation. Roughly speak-

ing, if at some time step k, the moments of the marking Mk of the MPN are similar to those of the

marking mk of the TnCPN model, then the moments of the markings of both systems will be similar for

the next time step k + 1. Thus, following an inductive reasoning, it can be expected that the moments

of the marking of the TnCPN approximates those of the MPN in the future time. Instead of formally

proving such approximation, in the following subsection a stronger result will be introduced, according

to which, assuming ergodicity and boundedness, if the enabling degree for the most probable values of

Mk is large enough, then the pdf (not only the moments) of Mk is approximated by the pdf of mk.

2.3.2 Approximation of the marking’s pdf by a TnCPN

Let us precise first the concept of approximation of the pdf For this, given the marking mk of the TnCPN

at time step k, the following function is defined:

Probc(mk = a) =

∫ a|P |+1/2

a|P |−1/2

...

∫ a1+1/2

a1−1/2

ϕmk
(η|P |, ..., η1)∂η1...∂η|P |

where ϕmk
(·) is the joint pdf of the entries of mk. Note that Probc(mk = a) is actually the probability

that a − (1/2) · 1 ≤ mk ≤ a + (1/2) · 1. In the sequel, it will be said that the pdf of the marking of

the MPN is well approximated by that of the TnCPN, at time step k, if ∀a ∈ [N∪ {0}]|P | the difference

Probc(mk = a) − Prob(Mk = a) is small enough (or at least, it is small for the values of a for which

Prob(Mk = a) is meaningful). The lower the difference, the better the approximation.

In order to study the relation between the magnitude of the marking and the approximation provided

by the TnCPN system, in the sequel, the initial marking of both the MPN and the TnCPN systems will

be represented in parametric form as M0 = q ·Mr
0 and m0 = q ·mr

0, where q ∈ R+ and Mr
0 = mr

0 > 0

are deterministic values. For the evolution of both systems, it will be considered the use of a suitable
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sampling ∆τ = ∆τ r/q. It can be demonstrated that, if the sampling ∆rτ is small enough for the initial

marking Mr
0, then the sampling ∆τ = ∆rτ/q will be suitable for the scaled initial marking M0 = q ·Mr

0,

with q > 1 (this follows from the computation of the error introduced by ∆τ , provided in Appendix B).

The same holds for the continuous system.

The following lemma introduces sufficient conditions leading to the approximation of the pdf after a

finite number of time steps n. In order to follow the proof of this lemma, the reader must consider Lemmas

B.2 and B.3 provided in Appendix B, which state that, the larger the initial marking, the better the

approximation of
∑k−1

i=0 ∆σ(Fk∆τ) to Poisson(n ·Fr
0∆

rτ) and
∑k−1

i=0 wk to Normal(n · f0∆τ, n · f0∆τ),
respectively (given an large enough number of time steps n). Later, the forthcoming Theorem 2.10

generalizes the approximation for future time, i.e., for τ > τ0 +n∆τ . For both Lemma 2.9 and Theorem

2.10, it will be assumed that the MPN system is live an ergodic, and that there do not exist non-live

equilibrium markings in Class(m0) of the continuous system (thus it is live).

Lemma 2.9. Consider a MPN and the corresponding TnCPN. Consider the initial markings in para-

metric form M0 = q ·Mr
0 and m0 = q ·mr

0, with q ∈ R+ and Mr
0 = mr

0 > 0 deterministic. Consider the

evolution of both systems with the sampling ∆τ = ∆τ r/q during a fix number of time steps n.

1) For a large enough n, the probability distribution of mn converges to that of Mn when q → ∞.

The larger q, the closer the pdf’s of Mk+n and mk+n.

2) Assume that at some time step k the distribution of mk approximates that of Mk. Then, the larger

the enabling degree for the most probable values of Mk, the closer the pdf’s of Mk+n and mk+n.

Proof. According to (2.10), the marking of the TnCPN at time step n, can be represented as:

mn = m0 +C
n−1∑
k=0

∆wk (2.21)

Similarly, according to (1.2), the marking of the MPN at time step n can be represented as:

Mn = M0 +C
n−1∑
k=0

∆σ(Fk∆τ) (2.22)

Comparing this equation with (2.21), it can be seen that the distribution of mn approximates that

of Mn if the pdf of
∑n−1

k=0 ∆wk approximates that of
∑n−1

k=0 ∆σ(Fk∆τ).

According to the Lemmas B.2 and B.3 provided in Appendix B, the larger q (equivalently, the

larger the initial marking) the better the approximation of
∑k−1

i=0 ∆σ(Fk∆τ) to Poisson(n · Fr
0∆

rτ)

and
∑k−1

i=0 ∆wk to Normal(n · f0∆τ, n · f0∆τ), respectively. Note that n · Fr
0∆

rτ = n · f0∆τ , since

Fr
0∆

rτ = ΛΠ(Mr
0)M

r
0∆

rτ = ΛΠ(M0)M0∆τ and M0 = m0. Furthermore, it is well know that a

normal distribution approximates a Poisson one (see, for instance, [Papoulis, 1984]), i.e., Normal(η, η) ≃
Poiss(η) for η large enough. The larger the parameter η the better the approximation (a typical value

for this is η = 10, but it depends on the desired accuracy). In this way, if n is large enough s.t.

n · f0∆τ >> 10 then the approximation of
∑n−1

k=0 ∆σ(Fk∆τ) by
∑n−1

k=0 ∆wk follows. Thus, according to

(2.21) and (2.22), the distribution of the continuous marking approximates that of the discrete marking

at time step n. The first statement is thus proven.
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Now, the second statement is a generalization of the first one, in which Mk is taken as the starting

marking, i.e., it is analogous to M0. The difference appears in the fact that Mk is a vector of r.v.’s,

while M0 is deterministic. Let us prove this statement in the following:

Suppose that at time step k the pdf ofMk is well approximated by that ofmk. Thus, ∀a ∈ [N∪{0}]|P |

it holds Probc(mk = a) ≃ Prob(Mk = a). Then, by the total probability theorem it can be obtained:

Prob(Mk+n = a)− Probc(mk+n = a) =∑
∀b∈[N∪{0}]|P | [Prob(Mk+n = a|Mk = b)− Probc(mk+n = a|mk = b)] · Prob(Mk = b)

(2.23)

Note that [Prob(Mk+n = a|Mk = b) − Probc(mk+n = a|mk = b)] is the probability error after

n time steps obtained by assuming that Mk = mk is deterministic an equal to b. Thus, according to

the first statement of this lemma (already proved), the larger b the smaller [Prob(Mk+n = a|Mk =

b) − Probc(mk+n = a|mk = b)]. In this way, by using (2.23) it can be concluded that the larger

the enabling degree for the most probable values of Mk (i.e., the larger the values of b for which

Prob(Mk = b) is relevant), the smaller the probability error Prob(Mk+n = a) − Probc(mk+n = a).

Finally, the second statement follows since previous reasoning is valid for each probable value a.

According to the previous lemma, if at some time step n the pdf of Mn is well approximated by that

of mn, then the approximation holds at time step 2 · n. By following an inductive reasoning, it may be

expected that the approximation will hold during the future evolution of both systems. Approximation

errors do not accumulate if the stochastic processes are ergodic (which is analogous to asymptotic stability

in the case of Join-Free models, used in the proof of Proposition 2.2). This is formalized in the following

theorem.

Theorem 2.10. Consider a MPN and the corresponding TnCPN, with large initial markings M0 =

m0 > 0. Consider the evolution of both the MPN and the TnCPN systems during a large number of

time steps n. Then, the probability approximation errors [Prob(Mk = a) − Probc(mk = a)], for the

most probable values of Mk, are ultimately bounded. The larger the enabling degree for the most probable

trajectories of the MPN system, the lower the bound for the approximation errors, thus, the better the

approximation of the marking’s pdf.

Proof. Consider the underlying Markov chain of the MPN system [Molloy, 1982], whose evolution is

given by π̇ = Qπ, where π is the probability vector and Q is the transitions rate matrix. The discrete-

time version of this model is given by πk+1 = QDπk (which can be obtained in a similar way that (1.5)

for the TPCN model). Thus, after n time steps the probability vector is given by πk+n = [QD]nπk.

Now, by definition, for each a ∈ [N ∪ {0}]|P | in the reachability set of the autonomous discrete PN,

the variable Prob(Mk = a) corresponds to an entry of πk. It is possible to define a probability vector πc
k,

whose entries correspond to the values Probc(mk = a) for each a ∈ [N∪{0}]|P |. Thus, if the distribution

of mk approximates that of Mk then πc
k ≃ πk.

Let us define the probability error vector as επk
= πk − πc

k. Suppose that the approximation holds

at time step k, i.e., πc
k ≃ πk. This implies [QD]nπc

k ≃ [QD]nπk = πk+n = πc
k+n + επk+n

. Thus,

πc
k+n ≃ [QD]nπc

k − επk+n
.
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By using the previous expression, the evolution of the probability error can be represented as:

επk+n
≃ [QD]nεπk

+ εkπk+n
(2.24)

where εkπk+n
is the approximation error introduced during the time interval (k, k + n]. Now, consider

a lower bound for the enabling degree at the time step k (for the most probable values of Mk) and an

upper bound for εkπk+n
. According to Lemma 2.9, the larger the lower bound for the enabling degree,

the smaller the upper-bound for εkπk+n
.

On the other hand, by hypothesis the MPN system is ergodic, meaning that there is only one solution

for πss = [QD]πss s.t. 1 · πss = 1, and for any initial probability vector π0 the system will converge to

πss. This implies that, given επ0 s.t. 1·επ0 = 0, the nominal probability error system επk+n
= [QD]nεπk

will converge to 0, i.e., the origin is asymptotically stable on the (invariant) subspace 1 · επk
= 0.

Therefore, (2.24) can be seen as the nominal linear system επk+n
= [QD]nεπk

, with the non-vanishing

upper bounded perturbation εkπk+n
. Thus, by following a similar analysis as in the case for Join-Free

models (proof of Proposition 2.2), it can be concluded that, since the origin is the unique equilibrium

point and it is asymptotically stable in the nominal error system, then επk+n
is ultimately bounded, i.e.,

the probability errors are ultimately bounded. Furthermore, the larger the enabling degree for the most

probable trajectories of the system, the lower the upper bound for the non-vanishing perturbation, and

so, the lower the ultimate bounded for the probability error.

Example 2.4. Consider again the MPN of fig. 2.2. Simulations of the corresponding TnCPN were

achieved, for the same values of initial marking and timing rates. The average markings at the steady

state are shown in Table 2.3. Comparing the relative errors thus obtained (fourth column), with those

of the TCPN (without noise, showed in table 2.2), it can be seen that the approximation provided by

the TnCPN system is much better. The difference in both approximations is larger when the probability

that the discrete system evolves inside a unique region is low (which occurs when λ4 → 1).

Furthermore, for timing rates λ1 = λ2 = λ3 = 1, λ4 = 2 and initial marking M0 = [1, 9, 1, 59, 1, 9]T ,

the expected value of the marking of the MPN system was computed by using TimeNET. Also, the

corresponding TnCPN was simulated with MatLab. Fig. 2.3 shows the average evolution of the marking

of p3. The smooth curves correspond to the expected value of the MPN (denoted as E{M}) and

the original TCPN system. The other curve corresponds to the average trajectory obtained from 50

simulations of the TnCPN system. Vertical lines represent changes of regions. It can be seen that the

average marking of the TnCPN system is close to the expected value of the marking of the MPN one

(E{M}). On the other hand, the marking of the TCPN system shows a more significant error (of 8.8%

at time τ = 32), when the second change of region occurs. As expected, the addition of noise to the

continuous model improves the approximation around this change of region.

Example 2.5. Consider now the MPN of fig. 2.4(a), with timing rates λ1 = 3, λ2 = λ3 = λ4 = 1

and initial marking M0 = [0, 13, 20, 7, 8]T . The marking at the steady state was computed by using

TimeNET, for different values of the initial marking at place p5. Similarly, several simulations of the

corresponding TnCPN systems were done in MatLab.
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Fig. 2.3: Approximation of the transient behavior of the MPN of fig. 2.2 for λ1 = λ2 = λ3 = 1 and λ4 = 2.

Tab. 2.3: Marking approximation of p3 for the MPN of fig. 2.2 by the corresponding TnCPN
λ4 MPN TnCPN error

2 54.62 54.63 0.26%

1.5 53.87 53.88 0.22%

1.2 51.16 51.17 0.49%

1.1 46.65 46.66 1.52%

1.05 40.72 40.73 1.78%

1 29.97 30.73 2.54%

The average marking of the MPN, for place p5 at the steady state, and the corresponding average

values of the TnCPN are shown in table 2.4. The first column corresponds to the value ofM0(p4)+M0(p5)

at the initial marking. The fourth column corresponds to the relative error and the last one (E{t1}) is
the average enabling degree of t1 at the steady state (the average enabling degree of t1 at the steady

state is lower than those of the other transitions).

For this model, the corresponding TCPN (without noise) does not provide a good approximation of the

MPN system. In this, the relation between the initial marking and the corresponding throughput is non

monotonic. Nevertheless, in table 2.4 it can be seen that the TnCPN does provide a good approximation

when the initial conditions for M0(p4) +M0(p5) ranges from 15 to 30. As it is expected, the larger the

enabling degree at the transitions (which can be seen from E{t1}), the better the approximation.

Note that, the approximation does not improve when the initial marking, at only some places, is

increased. Actually, the approximation does improve when the enabling degree of all the transitions, at

the steady state, increases, since the data shown in table 2.4 correspond to the steady state. This example

shows the role of the magnitude of the enabling degree in the approximation, as stated in Theorem 2.10,

i.e., the larger the enabling degree, at the most probable values of Mk, the better the approximation.

Furthermore, the transient behavior is also well approximated. Fig. 2.4(b) shows the average evolu-

tion of the marking of place p1 during the first 3.5 seconds, for the initial marking M0 = [0, 13, 20, 7, 8]T .

The expected value of the MPN, obtained by several simulations using MatLab, is denoted by E{M}.
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Tab. 2.4: Approximation of p5 in steady state for the MPN of fig. 2.4(a)

M0(p4) MPN TnCPN error E{t1}
+M0(p5)

15 3.71 3.68 0.7% 3.43

20 4.41 4.22 4.2% 3.49

30 4.24 3.96 6.7% 2.80

40 3.65 3.21 11.9% 1.91

50 3.34 2.62 21.5% 1.25

The average trajectory of the TnCPN, obtained after 100 simulations, is also shown in fig. 2.4(b) (de-

noted as TnCPN). Note that the curve TnCPN is always close to the curve E{M}, furthermore, the

TnCPN provides a better approximation than the TCPN (the approximation by the TCPN is not so

good because there are several changes of regions). Finally, fig. 2.4(c) shows the steady state probability

distributions (obtained from several simulations) of the marking at p1 of both, the MPN (square bars)

and the TnCPN (solid curve, actually, this curve is the interpolation of the points Probc(mss(p1) = a)

for a ∈ {0, 1, ..., 40}). It can be seen that the marking probability distribution is also well approximated

by the TnCPN.

2.4 Approximation by partially relaxed models: Markovian

hybrid Petri nets

According to the results presented in Section 2.2, regarding the approximation of the average marking

of a MPN by the marking of the corresponding TCPN, if the enabling degree of some transitions is not

large enough then significant approximation errors may appear. In such case, it makes sense to fluidify

only those transitions exhibiting large enabling degrees, obtaining thus a hybrid Petri net model.

2.4.1 Markovian hybrid Petri net model

Hybrid Petri nets were introduced by [Alla and David, 1998]. There, the discrete part of the hybrid PN

model was defined as a timed PN (i.e., with constant delays at the transitions), while the continuous

part is a continuous PN with constant speed (finite server semantics). In order to be consistent with

the MPN model, the hybrid PN system considered in this section must include the random behavior of

the MPN at the discrete transitions, and the infinite server semantics in the continuous part. Therefore,

the following hybrid model is proposed as a Markovian timing for the autonomous hybrid PN already

introduced in ([Silva and Recalde, 2004]).

Definition 2.11. A Markovian hybrid Petri net (MHPN), under infinite server semantics, is a tuple

⟨N ,λ,Mh
0 ⟩. N is the structure of the PN, in which the set of places P (transitions T ) is partitioned into

the set of continuous P c (T c) and discrete P d (T d) ones (i.e., P = P c∪P d, P c∩P d = ∅ and T = T c∪T d,

T c ∩ T d = ∅). Since the fluidification is introduced through transitions then the fluid places are those

neighboring fluid transitions, i.e., P c =• T c ∪ T c• (note that it is possible to make all the places fluid by

fluidifying only some transitions). Mh
0 ∈ N|P | represents the initial marking, and λ ∈ R|T |

>0 represents the
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Fig. 2.4: (a) Non-monotonic MPN system. (b) Approximation of the transient behavior of the marking of place
p1. Region commutations in the TCPN occur at times 0.253, 0.715, 0.718 and 1.137. (c) Steady state
probability distributions of the marking at p1 of the MPN (bars) and TnCPN (solid line).

transition rates. Each discrete transition ti ∈ T d fires in discrete amounts with exponentially distributed

random time delays, with parameter λi ·Enab(ti,Mh), as in the MPN model. Each continuous transition

ti ∈ T c fires according to the flow fi(M
h) = λi · enab(ti,Mh), as in the TCPN model.

Under this definition, the difference equation (1.2) can be used for representing the behavior of the

discrete part of the system (the firing of discrete transitions), while (1.5) can be used for describing the

behavior of the continuous part. Without loss of generality, let us suppose that the first columns of

matrix C are related to the discrete transitions, while the last columns correspond to fluid ones. Then
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the MHPN can be represented as:

Mh
k+1 ≃ Mh

k +C ·

[
∆σ(Fd

k(M
h
k)∆τ)

f(Mh
k)∆τ

]

where Mh
k represents the whole marking. The firing vector ∆σ(Fd

k(M
h
k)∆τ) ∼ Poisson(Fd

k(M
h
k)∆τ) is

defined just for the discrete transitions, while the flow function f(Mh
k) is defined only for the continuous

transitions.

Suppose that the first rows of the incidence matrix correspond to the discrete places, while the last

rows to fluid ones. Let us divide the marking and the incidence, firing rate and configuration matrices

according to the classification of places and transitions. Then, the marking is given byMh
k = [µT

k mT
k ]

T ,

where µk and mk correspond to the marking of the discrete and fluid places, respectively. The incidence

matrices is divided into dCd = C[P d, T d], dCc = C[P d, T c], cCd = C[P c, T d] and cCc = C[P c, T c]. The

firing rate matrix is divided into Λd = Λ[T d, T d] and Λd = Λ[T c, T c]. Similarly, for the configuration

matrix, Πd(Mh
k) = Π(Mh

k)[T
d, P ] and Πc(Mh

k) = Π(Mh
k)[T

c, P ].

Since P d ∩ (•T c ∪ T c•) = ∅ then dCc = 0. Therefore, the MHPN can be rewritten as two different

but connected systems:

µk+1 ≃ µk +d Cd ·∆σ(Fd
k(M

h
k)∆τ)

mk+1 ≃ mk +c Cc ·ΛcΠc(mk)mk∆τ +
c Cd ·∆σ(Fd

k(M
h
k)∆τ)

(2.25)

The flow of the fluid transitions only depends on the marking at the fluid places. On the contrary, the

firing of discrete transitions depends on the marking of both discrete and fluid places, because discrete

transitions can have input fluid places.

In this hybrid system, discrete transitions fire with random delays, while the continuous ones are

deterministic w.r.t. the fluid marking. It is possible to add uncorrelated gaussian noise to the continuous

transitions in order to improve the approximation of the flow at these (as done in the TCPN model).

Definition 2.12. A Markovian hybrid Petri net system with noise (MnHPN) is the tuple ⟨N ,λ,Mh
0 ⟩,

defined in discrete-time as a MHPN system in which gaussian noise is added to the flow of the continuous

transitions. Thus, each tj ∈ T c fires according to ∆wj = fj(M
h
k)∆τ + vj , where the noise vj is defined

as vj ∼ Normal(0, fj(M
h
k)∆τ), i.e., like in TnCPNs.

The evolution of the MnHPN is given by:

Mh
k+1 ≃ Mh

k +C ·

[
∆σ(Fd

k(M
h
k)∆τ)

∆wk

]
(2.26)

An alternative representation, in which the marking at fluid and discrete places is separated, is given

by:

µk+1 ≃ µk +d Cd ·∆σ(Fd
k(M

h
k)∆τ)

mk+1 ≃ mk +c Cc ·∆wk +c Cd ·∆σ(Fd
k(M

h
k)∆τ)

= mk +c Cc ·ΛcΠc(mk)mk∆τ +
c Cc · vk +c Cd ·∆σ(Fd

k(M
h
k)∆τ)

(2.27)
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Fig. 2.5: a) A PN system with λ = [1, 3, 1, 2]T . b) Average marking trajectories obtained from 1000 simulations
for the MPN and the different relaxations. As a hybrid model, nodes t1, t2, p4 and p5 are discrete.

2.4.2 Approximation of the MPN model by a MHPN

The MHPN model is defined as a partial relaxation of the MPN, so, one could think that the approxi-

mation provided by the hybrid system to the original discrete one should be better than that provided

by the totally relaxed continuous model. However, that is not always the case.

Example 2.6. Consider the MPN system of fig. 2.5(a) with rates λ = [1, 3, 1, 2]T . This PN model

was simulated 1000 times as a discrete, fluid and hybrid system, in order to obtain average trajectories

of the marking at p1. As a hybrid model, nodes {t1, t2, p4, p5} are discrete, while others are continuous.

Fig. 2.5(b) shows the resulting average trajectories for the marking at p1. It can be seen that fluid

models TCPN (1.5) and TnCPN (2.10) provide a better approximation to the MPN than hybrid models

MHPN (2.25) and MnHPN (2.27), i.e., a partial relaxation is not necessarily better than a full relaxation!

Through this subsection, it will be shown that the expected value of the marking of a MPN system

can be approximated by that of a MHPN, having the same structure, rates and initial markings, but

under some particular conditions.

Let us introduce a structural condition for the net of the MHPN:

• Condition 3. Discrete transitions have only discrete input places, i.e., ∀ti ∈ T d •ti ⊆ P d.

Assuming this condition, the following proposition describes two particular cases in which the ap-

proximation of the average marking of a MPN is achieved.

Proposition 2.13. Consider an ergodic MPN = ⟨N ,λ,M0⟩ and a MHPN = ⟨N ,λ,Mh
0 ⟩, with Mh

0 =

M0. Assume that the MHPN fulfills the condition 3 and the continuous transitions are constrained by

only one place, i.e., continuous transitions do not represent rendez-vous (synchronizations).
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1. If the continuous subnet (the subnet ⟨P c, T c,Pre[P c, T c],Post[P c, T c]⟩) in the MHPN is ordinary

then the approximation is achieved. In fact, εk = 0.

2. If there exists a unique asymptotically stable equilibrium point in the system described by the con-

tinuous subnet, then εk is ultimately bounded. Moreover, the larger the average enabling degree of

the continuous transitions, the lower ϵk.

Proof. The evolution of the MHPN system is represented by (2.25), where the marking is splitted into

the marking of discrete places P d (µk) and continuous places P c (mk). The same distinction can be

applied to the marking of the MPN, i.e., we represent as Md (Mc) the marking of the MPN at the places

that are kept as discrete (are fluidified) in the hybrid version, i.e., those in P d (P c). Similarly, we use

the notation Fd
k(·) = Fk(·)[T d] and Fc

k(·) = Fk(·)[T c]. By doing this and using (1.2), the evolution of

the MPN system can be described as:

Md
k+1 = Md

k +d Cd ·∆σ(Fd
k(Mk)∆τ)

Mc
k+1 = Mc

k +c Cd ·∆σ(Fd
k(Mk)∆τ) +

c Cc ·∆σ(Fc
k(Mk)∆τ)

(2.28)

Since condition 3 holds, the firing of discrete transitions in the MHPN depends only on the mark-

ing at discrete places, i.e., ∆σ(Fd
k(M

h
k)∆τ) in (2.25) can be expressed as ∆σ(Fd

k(M
h
k)∆τ) = ∆σ(Λd ·

Enab(µk)∆τ). Similarly, the firing of transitions of the MPN, that are kept as discrete in the hybrid ver-

sion, depends only on the marking Md, i.e., ∆σ(Fd
k(Mk)∆τ) in (2.28) is equal to ∆σ(Λd ·Enab(Md

k)∆τ).

Substituting this into (2.28) and (2.25), it can be obtained, for the marking of places P d:

Md
k+1 = Md

k +d Cd ·∆σ(Λd · Enab(Md
k)∆τ) for the MPN, and

µk+1 = µk +d Cd ·∆σ(Λd · Enab(µk)∆τ) for the MHPN
(2.29)

Thus, the evolution of both Md and µ are ruled by similar equations. Furthermore, since Mh
0 = M0

then E{Md
k} = E{µk}, equivalently, εk[P d] = 0.

Now, let us analyze the approximation at the places that are fluidified. The average marking of Mc, of

the MPN (2.28), and the marking m, of the MHPN (2.25), can be expressed as:

E{Mc
k+1} = E{Mc

k}+c Cd · E{∆σ(Fd
k(Mk)∆τ)}+c Cc · E{∆σ(Fc

k(Mk)∆τ)}
E{mk+1} = E{mk}+c Cd · E{∆σ(Fd

k(M
h
k)∆τ)}+c Cc · E{ΛcΠc(mk)mk∆τ}

These equations can be used for representing the average approximation error at the continuous tran-

sitions, denoted as εck = εk[P
c] = E{Mc

k} − E{mk}, as a linear system. Let us detail this. First, it

has been shown that ∆σ(Fd
k(Mk)∆τ) = ∆σ(Λd ·Enab(Md)∆τ) in the MPN, while ∆σ(Fd

k(M
h
k)∆τ) =

∆σ(Λd·Enab(µ)∆τ) in the MHPN. Since µ evolves likeMd (they behave according to the same difference

equation (2.29)) then E{∆σ(Fd
k(Mk)∆τ)} = E{∆σ(Fd

k(M
h
k)∆τ}. On the other hand, let us define the

vector bc
k = Πc(Mc

k)M
c
k−⌊Πc(Mc

k)M
c
k⌋, that represents the difference by rounding the enabling degree

to the nearest lower integer. Thus, for the MPN, the average firing count of the transitions in T c can be

expressed as E{∆σ(Fc
k(Mk)∆τ)} = ΛcE{⌊Πc(Mc

k)M
c
k}⌋∆τ = ΛcE{Πc(Mc

k)M
c
k}∆τ + Λc∆τE{bc

k},
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Tab. 2.5: Average steady state markings at p7 for the MPN and MHPN of fig. 2.6(a)

q MPN MHPN ϵss
1 1.17 0.69 0.410

2 1.83 1.34 0.268

4 2.63 3.09 0.175

10 6.85 6.35 0.073

50 32.73 32.09 0.020

where 0 ≤ bc
k ≤ 1. Furthermore, since each transition in T c is constrained by only one place then

Πc(Mc
k) = Πc. Substituting these expressions into the previous equation, it is obtained:

E{Mc
k+1} − E{mk+1} = εck+1 = [I+c Cc · ΛcΠc∆τ ] εck +c CcΛc∆τbc

k (2.30)

If the continuous subnet of the MHPN is ordinary then bc
k = 0. Furthermore, since M0 = Mh

0 then

εc0 = 0. Thus, according to (2.30), εck = 0 for all future time k, i.e., the approximation is achieved.

Statement 1 is thus proved.

Let us consider now the case in which the continuous subnet is non ordinary. The evolution of the error

(2.30) can be seen as a nominal system, described by εck+1 = [I+c Cc · ΛcΠc∆τ ] εck, under non-vanishing

but bounded perturbation cCcΛc∆τbc
k. Now, by hypothesis, the origin (εck = 0) is asymptotically stable

in the nominal system (equivalently, the eigenvalues of [I +c CcΛcΠc∆τ ], non related to P-flows, are

inside the unity circle). By following the same reasoning used in the proof of Proposition 2.2, it can be

proved that the asymptotic stability in the nominal error system implies that the error εck is ultimately

bounded. In fact, the larger E{Mk} and the number of active servers, the lower the relative error ϵk

(because ϵk = εk./E{Mk}), thus, the better the approximation.

Example 2.7. Consider the PN system of fig. 2.6(a) with λ = [1, 1, 1, 1, 1, 1, 1, 1, 1]T . This PN

was simulated 1000 times as a discrete and a hybrid system, for different initial markings M0 = Mh
0 =

q · [1, 0, 1, 0, 0, 0, 0, 0]T . As a hybrid model, nodes t6, t7, t8, t9, p6, p7 and p8 are continuous, while others

are kept as discrete. Table 2.5 shows the average steady state markings at place p7. As it is expected,

according to Proposition 2.13 (statement 2), the larger the average enabling degrees (which occurs for

large average markings) the lower the relative approximation error ϵss, which occurs for large values of

q. Fig. 2.6(b) shows the average marking trajectories at the places p1 and p7, for the case q = 50. It can

be seen that, not only the steady state but also the transient behavior is well approximated in this case.

Remark 2.14. Condition 3 implies that the marking at discrete places behave exactly in the same

way in the MPN and the MHPN systems. This condition can be relaxed when the enabling degree of the

discrete transitions is large, but it is critical in the case that the discrete transitions are barely enabled

(like in the Example 2.6 of fig. 2.5, where the continuous place p1 barely enables discrete transition t1).

In the following proposition, the results of Proposition 2.13 are extended in two different senses:

condition 3 is no longer required, and the continuous subnet of the MHPN is not assumed to be Join-

Free. In this way, no restriction is assumed in the structure of the net, and the selection of discrete and
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Fig. 2.6: a) A MPN system in which •{T d} ⊆ T d. As a hybrid model, nodes t6, t7, t8, t9, p6, p7 and p8 are
continuous, fulfilling condition 3.b) Average marking trajectories at places p1 and p7 for the case q = 50,
obtained from 200 simulations. Solid curves correspond to MPN while dashed curves represent MHPN.

continuous transitions in the MHPN can be done freely (condition 3 constrains the selection of discrete

and fluid transitions during the fluidization). Nevertheless, it is required that the enabling degrees of all

the transitions in both systems be large, and that both systems evolve mainly in one region. This result

can be seen as a generalization of Proposition 2.3 to hybrid systems.

Proposition 2.15. Consider a bounded in average and ergodic MPN = ⟨N ,λ,M0⟩ and a MHPN =

⟨N ,λ,Mh
0 ⟩, with Mh

0 = M0. Assume that each transition in both systems is constrained by one place

with a high probability, thus Prob(Mk ∈ ℜj) ≃ 1 and Prob(Mh
k ∈ ℜj) ≃ 1, for some region ℜj.

If the eigenvalues of [I + CΛΠj∆τ ] (non-related to P-flows) are inside the unity circle, the marking

approximation error εk is ultimately bounded. The larger Prob(Mk ∈ ℜj), Prob(M
h
k ∈ ℜj) and the

enabling degrees (for the most probable trajectories), the lower the relative approximation error ϵk.

Proof. In the proof of Proposition 2.13, the approximation error was described as the state of a linear

system under a bounded perturbation. The same idea will be used in this proof. First, as shown in the

proof of Proposition 2.3, by using the variable ζj
k defined in (2.7), the enabling of the transitions of the

MPN can be expressed as E{⌊Π(Mk)Mk⌋} = ΠjE{Mk} + ζj
k − E{bk}. Now, the system is bounded

in average, then, denoting as Mmax the vector whose entries are the bounds for the average marking

at the corresponding places, ζj
k (2.7) is upperbounded as in (2.8). Accordingly, the firing count can be

expressed as E{∆σ(Fk(Mk)∆τ)} = Λ ·ΠjE{Mk}∆τ + Λ · (ζj
k − E{bk})∆τ , where |E{bk}| ≤ 1 and

|ζj
k| is upper-bounded by a linear function of (1− Prob(Mk ∈ ℜj) (the larger Prob(Mk ∈ ℜj) the lower

the upper-bound for ζj
k (2.8)).

Now, by using the difference equation (1.2) and the expression obtained for E{∆σ(Fk(Mk)∆τ)}, the
expected value of the marking of the MPN can be expressed as:

E{Mk+1} = [I+CΛΠj∆τ ]E{Mk}+CΛ · (ζj
k − E{bk})∆τ (2.31)



46 2.4. Approximation by partially relaxed models: Markovian hybrid Petri nets

Tab. 2.6: Average steady state markings at p1 for the MPN and MHPN of fig. 2.5(a). ∗ In the first experiment,
Mss belongs to different regions with low probability.

M0[p1] MPN MHPN ϵss Prob(Mss ∈ ℜj)

2 2.02 2.51 0.241 0.033∗

4 3.29 3.86 0.173 0.442

6 4.81 1.35 0.123 0.734

8 6.70 7.05 0.052 0.894

10 8.54 8.68 0.016 0.966

Similarly, the expected value for the marking of the MHPN can be expressed as:

E{Mh
k+1} = [I+CΛΠj∆τ ]E{Mh

k}+CΛ · (ζj,h
k − E{bh

k})∆τ (2.32)

where ζj,h
k and E{bh

k} are analogous to ζj
k and E{bk} for the MHPN, and their absolute values are also

upper bounded. Moreover, E{bh
k}[T c] = 0, because ∆σ(·) is defined only for the discrete transitions in

the MHPN. Combining (2.31) and (2.32) it is obtained:

εk+1 = [I+CΛΠj∆τ ] εk +CΛ · (ζj,h
k − ζj

k − E{bh
k}+ E{bk})∆τ (2.33)

Given lower bounds for Prob(Mk ∈ ℜj) and Prob(Mh
k ∈ ℜj), the term |ζj,h

k − ζj
k − E{bh

k} + E{bk|
is upper bounded by a constant value. Then, the approximation analysis in this case can be reduced

to that of the proof of Proposition 2.3, i.e., the error system (2.33) can be seen as a nominal system

εk+1 = [I+CΛΠj∆τ ] εk under non-vanishing bounded perturbationCΛ·(ζj,h
k −ζj

k−E{bh
k}+E{bk})∆τ .

Thus, assuming asymptotical stability of the the nominal system in ℜj (equivalently, the eigenvalues of

[I+CΛΠj∆τ ], non-related to P-flows, are inside the unity circle), it can be proved that the approximation

error εk is ultimately bounded by a function of Prob(Mk ̸∈ ℜj) and Prob(M
h
k ̸∈ ℜj). Thus, the larger

Prob(Mk ∈ ℜj), Prob(M
h
k ∈ ℜj) and the enabling degrees, the lower the relative approximation error

ϵk.

Example 2.8. Consider again the system of figure 2.5(a) with the same firing rates. The MPN and

MHPN systems have been simulated 1000 times for different initial markings at p1, while the initial

markings for the other places remain as in fig. 2.5(a). Table 2.6 resumes the results thus obtained.

The last column is the probability that Mk belongs to region ℜj , in which t1 and t2 are constrained by

p5 and p4, respectively. As expected, according to Proposition 2.15, the relative error is low when the

probability that the marking belongs to an unique region is large, i.e., when Prob(Mss ∈ ℜj) is large.

Fig. 2.7 shows the average marking trajectories at the places p1 and p2, for the case M0[p1] = 10. It can

be seen that, not only the steady state but also the transient behavior is well approximated.
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Fig. 2.7: Average marking trajectories of places p1 and p2 of the net model of fig. 2.5(a) with M0[p1] = 10,
obtained from 1000 simulations. Solid curves correspond to the MPN while dashed curves represent the
MHPN.

2.4.3 Approximation of the pdf by a MnHPN

In the Subsection 2.3.2 it has been proved that the TnCPN system can approximate the pdf of the

marking of the MPN when the expected enabling degree of all the transitions is large (Theorem 2.10).

An analogous analysis is presented in this section, by proving that the pdf of the marking of the MPN

can be approximated by that of a MnHPN.

The analysis in this section follows the same structure than that done for proving the TnCPN

approximation. First, consider the Lemma B.4 that appears in the Appendix B. This Lemma is the

analogous result of Lemmas B.2 and B.3, but for MnHPNs. According to this, the larger the initial

markingMh
0 , the better the approximation of

∑n
k=0 ∆σ(Fd

k∆τ) and
∑n

k=0 ∆wk by Poisson(nFd
0∆τ) and

Normal(nf0∆τ), respectively, i.e., the sum of the firing counts of the discrete transitions is approximated

by a Poisson r.v., while the sum of the flow at the continuous transitions with noise is approximated by

a Normal r.v. By using this, the following result can be derived:

Lemma 2.16. Consider a MPN and a MnHPN live and ergodics, having the same structure, rates

and initial marking M0 = Mh
0 = q · Mr

0. Consider the evolution of both systems with the sampling

∆τ = ∆rτ/q during a fix number of time steps n.

1. For a large enough n, the probability distribution of Mh
n converges to that of Mn when q → ∞.

The larger q, the closer the pdf’s of Mn and Mh
n.

2. Assume that at some time step k the distribution of Mh
k approximates that of Mk. Then, the larger

the enabling degree for the most probable values of Mk, the closer the pdf’s of Mh
k+n and Mk+n.

Proof. According to (1.2), the marking of the MPN at time step n, is given by:

Mn = M0 +C
n−1∑
k=0

∆σ(Fk∆τ) = M0 +C

[ ∑n−1
k=0 ∆σ(Fk[T

d]∆τ)∑n−1
k=0 ∆σ(Fk[T

c]∆τ)

]
(2.34)



48 2.4. Approximation by partially relaxed models: Markovian hybrid Petri nets

Similarly, according to (2.26), the marking of the MnHPN at time step n can be represented as:

Mh
n = Mh

0 +C

[ ∑n−1
k=0 ∆σ(Fd

k∆τ)∑n−1
k=0 ∆wk

]
(2.35)

Comparing these equations it can be seen that the pdf of Mh
n approximates that of Mn if the pdfs of∑n−1

k=0 ∆σ(Fd
k∆τ) and

∑n−1
k=0 ∆wk approximate those of

∑n−1
k=0 ∆σ(Fk[T

d]∆τ) and
∑n−1

k=0 ∆σ(Fk[T
c]∆τ),

respectively.

According to the Lemmas B.2 and B.4, the larger the initial marking the better the approximation of∑k−1
i=0 ∆σ(Fk∆τ) by Poisson(n ·Fr

0∆
rτ) in the MPN, and

∑n−1
k=0 ∆σ(Fd

k∆τ) by Poisson(nF
d,r
0 ∆rτ) in

the MnHPN. Thus, since Fr
0[T

d]∆rτ = Fd,r
0 ∆rτ then

∑n−1
k=0 ∆σ(Fk[T

d]∆τ) and
∑n−1

k=0 ∆σ(Fd
k∆τ) have

similar pdfs for large initial markings.

On the other hand, note that n · Fr
0[T

c]∆rτ = n · f0∆τ , because Fr
0[T

c]∆rτ = ΛcΠc(Mr
0)M

r
0∆

rτ =

ΛcΠc(M0)M0∆τ = f0∆τ and M0 = Mh
0 . Furthermore, by Lemma B.4,

∑n−1
k=0 ∆wk is approximated

by Normal(nf0∆τ) for large initial markings. Analogously,
∑k−1

i=0 ∆σ(Fk[T
c]∆τ) is approximated by

Poisson(n ·Fr
0[T

c]∆rτ) according to Lemma B.2. Moreover, as mentioned in the proof of Lemma 2.9, a

normal distribution approximates a Poisson one, i.e., Normal(η, η) ≃ Poiss(η) for η large enough. The

larger the parameter η the better the approximation. Then, if n is large enough (let us say, n·f0∆τ >> 10)

then the approximation of
∑n−1

k=0 ∆σ(Fk[T
c]∆τ) by

∑n−1
k=0 ∆wk follows. Thus, according to (2.34) and

(2.35), the distribution of the marking of the MnHPN approximates that of the marking of the MPN at

time step n. The first statement is thus proven.

The second statement can be demonstrated by following the same reasoning used for proving the state-

ment 2 of Lemma 2.9.

According to the previous lemma, if at some time step n the pdf of Mn is well approximated by that

of Mh
n, then the approximation holds at time step 2 · n. By following an inductive reasoning, it may be

expected that the approximation will hold during the future evolution of both systems. This reasoning

is formalized in the following theorem:

Theorem 2.17. Consider a MPN and a MnHPN, having the same structure, rates and initial markings

M0 = Mh
0 >> 0. Consider the evolution of both the MPN and the MnHPN systems during a large

number of time steps n. Then, the probability approximation errors [Prob(Mk = a)− Probc(Mh
k = a)],

for the most probable values of Mk, are ultimately bounded. The larger the enabling degree for the most

probable trajectories of the MPN system, the lower the bound for the approximation errors, thus, the

better the approximation of the marking’s pdf.

Proof. This theorem can be proved by following the same structure that for the proof of Theorem 2.10.

We consider the underlying Markov chain of the MPN system in discrete-time πk+1 = QDπk. After

n time steps, the probability vector is given by πk+n = [QD]nπk. On the other hand, for the hybrid

model we define the probability vector πh
k , whose entries correspond to the values Probc(Mh

k = a) for

each a ∈ [N ∪ {0}]|P |. Suppose that the approximation holds at time step k, i.e., πh
k ≃ πk. Then, the

probability error επk
= πk − πh

k can be expressed as in (2.24), where εkπk+n is the approximation error
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Tab. 2.7: Average steady state markings at p4 for the MPN and MnHPN of fig. 2.8(a).

M0[p5] = M0[p7] MPN MHPN ϵss
1 1.48 1.26 0.143

2 1.88 2.05 0.089

3 2.52 2.36 0.064

4 2.61 2.74 0.051

6 4.07 3.89 0.043

introduced during the time interval (k, k + n]. Consider a lower (resp. upper) bound for the enabling

degree (reps. for εkπk+n) at the time step k. According to Lemma 2.16, the larger the lower-bound for

the enabling degree, the smaller the upper-bound for εkπk+n.

On the other hand, ergodicity of the MPN implies that, given επ0 s.t. 1 · επ0 = 0, the nominal error

system επk+n
= [QD]nεπk

will converge to 0, i.e., the origin is asymptotically stable on the (invariant)

subspace 1·επk
= 0. The error system (2.24) can be seen as the nominal linear system επk+n

= [QD]nεπk
,

with the non-vanishing upper bounded perturbation εkπk+n. Since the origin is the only equilibrium point

and it is asymptotically stable, then επk+n
is ultimately bounded. The larger the enabling degree, the

lower the upper-bound for the non-vanishing perturbation, and so, the lower the ultimate bounded for

the probability error.

Remark 2.18. Theorem 2.17 states that the pdf of the marking of a MnHPN can approximate

that of the corresponding MPN, if the enabling degrees are large enough with a high probability. In

practice, we have found that the approximation holds even for small enabling degrees (condition 1 barely

fulfilled, e.g., with E{Enab(T )} ∼ 2 · 1). Thus, Theorem 2.17 only provides sufficient conditions for

the approximation. The critical transitions, in which the enabling is strongly related to the accuracy of

the approximation, are those representing synchronizations (rendez-vous) and constrained by continuous

places, especially, discrete transitions barely enabled by continuous places.

Example 2.9. Consider the system of fig. 2.8(a) with rates λ = [30, 2, 30, 30, 30, 3.5, 10]T . The net

system was simulated 1000 times as discrete and hybrid for different initial markings at places p5 and

p7, while the initial marking at the other places are constant and equal to those shown in fig. 2.8(a).

As hybrid, transitions t6, t7 and places p4, p5, p6, p7, p8 and p9 are continuous, while other transitions

and places are discrete. In table 2.7, it is shown the average steady state marking at p4. As expected,

the larger the enabling degrees (corresponding to large markings at the steady state), the better the

approximation (the lower the relative error). Fig. 2.8(b) shows the trajectories described by the average

and variance of the marking at p9, for both the MPN and the MnHPN for the case M0[p5] = M0[p7] = 4.

It can be seen that not only the average, but also the variance of the marking is well approximated in

this case.

2.5 Improving by modifying the structure and semantics

Since the approximation provided until now by a fluid or hybrid PN is not always accurate (even with

the addition of noise), a question that may arise is the possibility of improving such approximation by
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Fig. 2.8: a) MPN system. As a hybrid PN, nodes t6, t7,p4, p5, p6, p7, p8, p9 are continuous while others are
discrete. (b) Average and variance of the marking at p9, for the MPN and the MnHPN, obtained from
1000 simulations.

means of modifying the continuous Petri net definition. Through this section, a couple of approaches,

for such improvement, will be presented. Let us mention that these are just preliminarily ideas, that

may lead to more developed techniques in the future.

2.5.1 Removing spurious solutions

In the field of discrete Petri nets, it is well known that the fundamental equation does not characterize

the set of reachable markings, since it provides only a necessary condition for reachability, i.e., there

may exist a marking M′ = M0 +C ·σ with M′ ∈ N|P | and σ ∈ N|P |, but M′ being unreachable (in the

discrete PN). These markings are known as spurious solutions of the fundamental equation.

During the fluidization, spurious solutions become reachable markings in the autonomous continuous

model, affecting the quality of the fluidization. This is specially undesirable when the spurious solutions

represent deadlocks in the continuous PN, while the discrete system is live. The existence of such deadlock

markings affects no only the steady state but also the dynamic behavior of the TCPN, even in the case

that the spurious deadlock is not reachable in the timed model (i.e., it is reachable in the autonomous

continuous PN, but not in the timed continuous).

Spurious deadlocks are related to traps. It is well known that initially marked traps cannot be

completely emptied in discrete nets. Nevertheless, they can be emptied in continuous nets (in infinite

time). Spurious deadlock markings can be computed in the following way:

Algorithm 2.1. Computation of spurious deadlocks.

Define PreΘ and PostΘ as |P | × |T | sized matrices such that:

I. PreΘ[p, t] = 1 if Pre[p, t] > 0, PreΘ[p, t] = 0 otherwise.
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Fig. 2.9: a) A PN that integrates a spurious deadlock M = [0, 1, 10]T . b) Throughput for the MPN and its
corresponding continuous relaxations, for λ1 ∈ [0.4, 4], λ2 = 1 and initial marking M0 = [10, 11, 0]T . c)
Net model with weighted arcs.

II. PostΘ[p, t] = | •t| if Post[p, t] > 0, PostΘ[p, t] = 0 otherwise.

III. CΘ = PostΘ −PreΘ.

Compute a solution for the following linear inequalities system:

m = m0 +C · σ, m,σ ≥ 0, {state equation}
vT ·CΘ = 0, v ≥ 0, {trap generator}
vT ·m0 ≥ 1, {initially marked trap}
vT ·m = 0, {trap empty at m}

If there exists a solution then m is a spurious deadlock marking (w.r.t. the discrete net).

In this procedure, introduced in [Ezpeleta et al., 1993, Silva et al., 1998], equations vT ·CΘ = 0 and

v ≥ 0 define a generator of traps (Θ is a trap iff ∃v ≥ 0 such that Θ = ||v|| and vT · CΘ = 0).

Thus, the above inequalities system directly imply that ||v|| is an initially marked trap that is empty at

m ∈ Class(m0).

The approximation of the continuous model can be improved if the spurious solutions are cut from the

state equation, by using the techniques introduced in [Colom and Silva, 1991]. In continuous systems,

deadlock markings are always in the borders of the convex set of reachable markings and hence, spurious

deadlocks can be cut by the addition of cutting implicit places (a place is said to be implicit if it is never

the unique place that forbids the firing of its output transitions), increasing the number of P-semiflows

and traps. Note that such an addition creates more traps that might be treated similarly (if they are the

cause of spurious solutions). In any case, removing spurious solutions always represents an improvement

of the fluidization, being specially important when those are deadlocks or represent non-live steady states.

Example 2.10. Consider the MPN given by the net of fig. 2.9(a) with initial markingM0 = [10, 11, 0]T
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and rates λ = [0.4, 1]. This PN has a spurious deadlock m = [0, 1, 10]T , which can be cut by adding an

implicit place. Since p1 is an initially marked trap, its marking must satisfy m[p1] ≥ 1. This equation

together with the conservation law m[p1] + m[p3] = 10 leads to m[p3] ≤ 9. This last inequality can

be enforced in the state equation by adding a slack variable, i.e., a cutting implicit place q3, such that

m[p3] + m[q3] = 9. Thus q3 is a place having t2 as input transition, t1 as output transition and 9 as

initial marking. In the resulting net p2 is implicit (structurally identical but with a higher marking)

and therefore p2 can be removed without affecting the system behavior. This is equivalent to consider

M′
0 = [10, 9, 0]T as the initial marking in the original net system of fig. 2.9(a). The MPN and the

corresponding fluid model TCPN have been simulated for both initial markings M0 (with spurious

deadlocks) and M′
0, for different rates at t1 ranging in λ1 ∈ [0.4, 4]. The throughput at t1, for both

models, is shown if fig. 2.9(b). It can be seen that the MPN is live for any λ1 ∈ [0.4, 4], furthermore,

the throughput seems as a smooth function of λ1. On the other hand, the continuous model with the

original M0 reaches the (spurious) deadlock for any λ1 ∈ (2, 4]. Note the discontinuity at λ1 = 2 for

the TCPN model with both initial markings, i.e., the continuous model is neither monotonic nor smooth

w.r.t the timing. Finally, it can be appreciated that the TCPN provides a much better approximation

when the spurious deadlock is removed (with M′
0), for any λ1 > 2 (for λ1 ≤ 2 there is no change in

the TCPN). Similarly, the continuous relaxation with noise TnCPN provides a better approximation

when the spurious deadlock is removed. In fact, note in fig. 2.9(b) that the best fluid approximation is

obtained with the combination of both improvements: removing spurious deadlocks and adding noise to

the transitions.

2.5.2 Modification of the semantics

A semantics-modification approach has been proposed in [Lefebvre et al., 2009, Lefebvre et al., 2010].

There, in order to make the steady state of the continuous PN (mss) to coincide with that of the MPN

(Mss), the authors proposed a modification of the firing rates λ of the transitions in the continuous

model. Two techniques are introduced: first, the firing rates are defined as piecewise-constant, i.e.,

λ ∈ {λ1, ...,λr}, depending on the configuration at which m(τ) belongs, in the second approach (called

adaptive) the firing rates are adjusted according to the instantaneous approximation error (in particular,

λ̇ = η ·diag(βCT (Mss−m(τ))+(1−β)(χss−f(τ)), with η > 0 and β ∈ [0, 1] being decision parameters).

A different approach is considered here, consisting in the modification of the semantics but just for

particular continuous transitions, which have weighted input arcs. In detail, as already mentioned, the

existence of arc weights (a kind of synchronizations) affects the quality of the fluidization. A critical

case occurs when there exists a transition tj with a q-bounded input place pi ∈ •tj and the weight

of the arc connecting them is q as well (in any case, since liveness is assumed, the weight of the arcs

cannot be larger than the bound of the corresponding input places). Consequently, the marking at pi

must be equal to its upper bound in order to enable tj (the most basic example of this case is given in

fig. 2.9(c) for k = 1, where the TCPN fails in approximating the throughput of t1 when q >> 1). In

this situation, transition tj is enabled only at a few specific markings of the autonomous reachability

set (in the example of fig. 2.9(c), the worst case is found because t1 is enabled at only one marking).

This enabling property is not captured by the continuous relaxation, where tj is enabled whenever the

places in •tj are marked, leading to significant approximation errors, i.e., Enab(tj) = ⌊M[pi]/q⌋ = 0 for
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almost all the markings, while in the TCPN enab(tj) = m[pi]/q > 0 whenever m[pi] > 0. In order to

improve the continuous approximation (for hybrid approximation other reasoning must be considered),

the server semantics of the TCPN must be modified for tj . A heuristic way for doing this, assuming

{pi} = •tj , consists in the following expression: f [tj ] = λi(m[pi]/q)
q (this is obtained from a probabilistic

relaxed view, in which the probability of a token to be in pi is assumed as E{M[pi]}/q). This equation
is equivalent to f [tj ] = λim[pi] · (m[pi]

q−1/qq), which can be seen as the original ISS but multiplied by

the marking-dependent function (m[pi]
q−1/qq). This modification may provide a better approximation.

For instance, in the net of fig. 2.9(c) with k = 1 and q = 4, the throughput of t1 obtained with this

new semantic is 0.275, which is closer to the throughput of the MPN (0.32) than that obtained with

the ISS (0.5). Nevertheless, further investigation is required in order to understand how and when the

improvement is achieved.

2.6 Conclusions on fluidization

The approximation of the dynamical behavior of continuous PNs to that of the corresponding MPNs,

has been studied in this paper. In order to improve the approximation, a new stochastic continuous

model TCPN and two hybrid Petri net models, MHPN and MnHPN, are introduced and studied. The

results obtained are listed in the following:

• The marking of a Join-Free TCPN model provides a good approximation of the average marking

of the corresponding MPN, assuming asymptotic stability (Proposition 2.2). Errors may appear in

non ordinary nets, but they are ultimately bounded. The larger the enabling degree, the better the

approximation (condition 1). Those results are extended to non Join-Free nets, under the assumption

that the system evolves inside one region with a high probability (condition 2, Proposition 2.3).

• In order to improve the approximation when the system evolves in several regions, a new stochastic

continuous Petri net (TnCPN) is defined, by adding white gaussian noise to the transitions’ flow of the

TCPN model. Assuming liveness and ergodicity, it is formally demonstrated that the pdf (not only the

expected value) of the marking of the TnCPN may approximate that of the MPN. The larger the enabling

degrees during the most probable trajectories, the better the approximation (condition 1, Theorem 2.10).

• A hybrid Petri net model MHPN is introduced as a partial relaxation of a MPN. Such hybrid

model is enriched by adding gaussian noise to the continuous transitions, leading to another hybrid

system MnHPN. Nevertheless, the approximation provided by such hybrid systems is not always better

than that provided by full relaxations (Example 2.6), in particular, when continuous places barely enable

discrete transitions (thus condition 3 is not fulfilled). Proposition 2.15 states that the average marking of

a MPN can be approximated by that of a MHPN if both systems mainly evolve inside a unique “stable”

region (condition 2) and the enabling degrees are large enough (condition 1). Theorem 2.17 provides

a stronger result: the pdf of the marking of the MPN can be approximated by that of the MnHPN if

the enabling degree of the continuous transitions is large for the most probable trajectories of the MPN

system (condition 1).

• Finally, a couple of preliminary ideas, for the improvement of the approximation of a continuous

model by means of the modification of the structure and the semantics, are advanced.
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Chapter 3

Timing-dependent properties

An interesting approach, when qualitative properties of discrete Petri nets are analyzed, is the so called

structural theory. According to this, important information about the behavior of the system is obtained

from the structure of the net, considering the initial marking as a parameter. For general models,

structural techniques may give conditions, usually in one way (sufficient or necessary), for the properties

under study. Obviously, if the analysis is restricted to particular subclasses, stronger results can be

obtained. In the literature, a lot of results related to the computation of structural components can be

found (e.g., [Brams, 1983], [Silva et al., 1998]). Among components that are important for the system’s

behavior are traps, siphons and (semi)flows. In some cases, these allow the verification of behavioral

properties, like boundedness and liveness (see, for instance, [Silva et al., 1998]).

In this way, it seems interesting to extend the structural analysis to fluid Petri nets, in order to obtain

information about its behavior. From this approach, in [Recalde et al., 1999] some results are provided

for the autonomous model obtained from structural analysis. In [Júlvez et al., 2006], this kind of studies

is advanced for the timed continuous system (under ISS). Since the integrality constraints are removed in

the continuous nets, structural properties have a stronger meaning. Moreover, regarding TCPNs, timing

rates can be also considered with the structural analysis, since it is characterized in a matricial form (Λ).

Among the different structural (str.) properties, in this chapter str. boundedness and str. repetitive-

ness will be analyzed for timed continuous Petri nets. These properties are relevant for boundedness and

liveness. In fact, by including the matricial characterization of the timing to this str. analysis, interesting

results can be obtained concerning the relation between liveness (a behavioral property) and the timing.

Let us see this in more detail. It is in the folklore of the field that, for stochastic discrete models,

liveness and non-liveness are preserved when the support of the stochastic functions associated to the

firing of transitions is infinite. In particular, if a Markovian timing interpretation is considered, then

the Markov chain and the reachability graph are isomorphous [Molloy, 1982]. Thus, any autonomous

discrete net, and the result of timing it with arbitrary positive rates, are both simultaneously live or

both equally non-live. On the other hand, it is well known that the addition of a deterministic timing to

the firing of transitions (T-timed) in discrete Petri nets may not preserve liveness or non-liveness. Let

us illustrate this with a couple of examples:

Example 3.1. The (discrete) net system in fig. 3.1(a), seen as autonomous (i.e., with no timing), is

obviously live. On the opposite, the net system in fig. 3.1(b) is non-live as autonomous. If we consider a

Markovian timing interpretation for both systems, the resulting stochastic discrete model of fig. 3.1(a)
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Fig. 3.1: (a) Live as autonomous discrete net system but non-live under certain deterministic timing: θ1 > θ3.
(b) Non live as autonomous, but live as timed if θ1 = θ2.

is live and that of fig. 3.1(b) is non-live, for any positive exponential timing, i.e., liveness is preserved.

Nevertheless, for the net of fig. 3.1(a), if we associate a deterministic timing θ1 and θ3 to transitions

t1 and t3, respectively (i.e., t1 (resp. t3) fires after θ1 (resp. θ3) time units of being enabled), with θ3

smaller (thus faster) than θ1, t2 will never be enabled, thus cannot be fired, and non liveness follows.

On the other hand, for the net of fig. 3.1(b), if t1 and t2 are deterministically timed with θ1 = θ2,

the system becomes live. Therefore, liveness of the discrete autonomous model is neither necessary nor

sufficient for liveness of the (at least partially) deterministically-timed interpreted model. Regarding

deadlock-freeness, things are a bit simpler: if a (discrete) system is deadlock-free as autonomous it will

be deadlock-free if it is T-timed.

In this way, several questions may arise concerning continuous models, for instance, how the timing

can affect the liveness property in continuous PN systems? what is the precise connection between str.

boundedness and str. repetitiveness (structural properties) w.r.t. boundedness and liveness (behavioral

properties) in the continuous model?

In this framework, through this chapter we will study the boundedness and repetitiveness properties

for TCPN models, by following a structural approach but including the timing information. This will

lead us to understand the connection between liveness and the timing of the continuous system. As a

result of the analysis achieved, a couple of algorithms will be provided for computing timings that lead

to bounded and live TCPN models, where the autonomous continuous net systems do not exhibit such

properties.

3.1 Structural boundedness and repetitiveness in untimed

Petri nets: discrete vs continuous

Some classical results related to boundedness, repetitiveness and liveness in untimed discrete and con-

tinuous Petri net models are here recalled. As it may be expected, by structural analysis stronger results

can be obtained for continuous models .

The study of boundedness and repetitiveness in discrete Petri nets includes very well known results

based on structural analysis. For instance, recalling from [Teruel et al., 1997]:
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Property 3.1. Given a P/T net N , the following three statements are equivalent:

1) N is structurally bounded, i.e., every place is bounded for every M0.

2) There exists y > 0 s.t. yTC ≤ 0.

3) There does not exist x ≥ 0 s.t. Cx 
 0.

Structural boundedness is sufficient but not necessary for boundedness. The dual concept of bound-

edness is repetitiveness. In [Teruel et al., 1997] a result is presented, analogous to Property 3.1, for

repetitiveness.

Property 3.2. Given a P/T (discrete or continuous) net N , the following three statements are

equivalent:

1) N is structurally repetitive, i.e., every transition is repetitive for some M0.

2) There does not exist y > 0 s.t. yTC � 0.

3) There exists x > 0 s.t. Cx ≥ 0.

Properties 3.1 and 3.2 are also valid for continuous Petri net models. Moreover, stronger results can

be obtained for these. This is stated in the following proposition, introduced in [Recalde et al., 1999].

Let us provide here an intuition for such result that will be useful in the following sections:

Proposition 3.3. Consider a continuous PN system ⟨N ,m0⟩. If all the transitions are fireable from m0

(otherwise stated, there are not empty siphons), then str. boundedness (str. repetitiveness) is sufficient

and necessary for boundedness (repetitiveness) in the continuous model.

Proof. In the proof of Properties 3.1 and 3.2 ([Teruel et al., 1997]), str. boundedness and str. repet-

itiveness are characterized with the following necessary reachability condition: if M′ is reachable then

M′ ≥ 0 and ∃σ ≥ 0 s.t. M′ = M + Cσ. This reachability condition also holds for the continuous

PNs, thus Properties 3.1 and 3.2 are still valid in these systems. Moreover, in continuous PNs, if all

the transitions are fireable from m0, then m′ is reachable iff ∃σ ≥ 0 s.t. m′ = m + Cσ ≥ 0, i.e.,

the necessary condition for reachability used in the structural analysis becomes also sufficient for the

continuous net.

In a similar way, liveness in continuous systems may purely depend on structural components:

Proposition 3.4. Consider a continuous PN system ⟨N ,m0⟩ in which m0 > 0 (thus all transitions are

fireable). The system is non-live iff there exists a siphon Σ and ∃mf ,σ ≥ 0 s.t. ∀p ∈ Σ,mf (p) = 0 and

mf = m0 +Cσ.

Proof. It is known that a continuous PN system fall into non-liveness iff a marking, in which a siphon

is empty, is reached. On the other hand, it is known that if all the transitions are fireable from m0,

it holds that m′ is reachable iff ∃σ ≥ 0 s.t. m′ = m + Cσ ≥ 0. Thus, the proposition follows by

combining these two properties.

In the general case, i.e., m0 ≯ 0, this condition is still necessary for non-liveness, as proved in

[Recalde et al., 1999] (Theorem 9).
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3.2 Timing-dependent boundedness and repetitiveness in

timed continuous PNs

Contrary to the case of autonomous models, for TCPN systems there is not available any algebraic char-

acterization of the reachability property, due to the technical complexity involved. Thus, str. properties

provide information only in one sense (necessity or sufficiency), just like in the discrete case.

Nevertheless, considering an analysis by regions (in which the system behaves linearly), more infor-

mation can be obtained from an algebraic approach.

Proposition 3.5. Given a TCPN system ⟨N ,λ,m0⟩, while it evolves inside a region ℜi, the following

three statements are equivalent:

I.1) The system behaves as structurally bounded, i.e., every place is bounded for every m0 ∈ ℜi.

I.2) There exists w > 0 s.t. wTCΛΠi ≤ 0.

I.3) There does not exist v ≥ 0 s.t. CΛΠiv 
 0.

Similarly, while the system evolves inside a region ℜi the following three statements are equivalent:

II.1) The system behaves as structurally repetitive, i.e., every transition is repetitive for some m0 ∈ ℜi.

II.2) There does not exist w > 0 s.t. wTCΛΠi � 0.

II.3) There exists v > 0 s.t. CΛΠiv ≥ 0.

Proof. First, a necessary condition for reachability inside a region is obtained: If m′ ≥ 0 is reachable

trough a trajectory inside ℜi, then there exists σ ≥ 0 s.t. m′ = m0 + CΛΠiσ. This condition is

trivially obtained by integrating the state equation (1.4), thus: m(τ) = m0 +CΛΠi

∫ τ

0
m(η)dη, where∫ τ

0
m(η)dη ≥ 0, and substituting

∫ τ

0
m(η)dη = σ. Note that this necessary reachability condition is

similar to that of discrete nets (but in this CΛΠi appears instead of C). Thus, the proof can be

completed by proceeding in a way similar to the structural analysis for discrete nets (Properties 3.1 and

3.2, whose proofs are in [Teruel et al., 1997]).

In this case, repetitive means that the structure and timing allow the existence of a non-smaller

marking, i.e., m(τ)−m0 = CΛΠi

∫ τ

0
m(η)dη ≥ 0. Furthermore, as in the discrete case, given a TCPN

system that reaches a steady state mss in a region ℜi, condition II.3 is necessary for timed-liveness.

Remark 3.6. It is often required that a system behaves as bounded and live. Therefore, it is

desirable that Properties I.2 and II.3 be fulfilled for any reachable configuration, since one is sufficient

for boundedness while the other is necessary for timed-liveness.

It is not difficult to prove that, given a configuration Πi, if I.2 and II.3 are simultaneously fulfilled

then

wTCΛΠi = 0 (3.1)

CΛΠiv = 0 (3.2)

Definition 3.7. If there exist w > 0 and v > 0 solutions for (3.1) and (3.2), it will be said that the

timed model ⟨N ,λ⟩ is λ-conservative (λ-Cv) and λ-consistent (λ-Ct) at Πi, respectively.
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Fig. 3.2: (a) λ-Cv but not λ-Ct TCPN. (b) λ-Ct but not λ-Cv TCPN

Remark 3.8. The Property λ-Cv implies that the system is bounded while evolves in the corresponding

region.

These two properties are important, since a TCPN system with m0 ∈ ℜi ∩ R|P |
>0 behaves as bounded

and timed-live (this will be proved in Subsection 3.5.1) if the timed model is λ-Cv and λ-Ct at Πi, while

it evolves inside ℜi. Note that these properties depend not only on the structure (including the particular

configuration matrix), but also on the timing. Then, several questions may arise, e.g.,: How must be the

timing in order to fulfill with these conditions? If these hold for one configuration, are they also fulfilled

for the others, or at least, for configurations related to stationary states? Are there net subclasses for

which λ-Cv or λ-Ct always hold for any timing, or any configuration? This will be investigated in the

forthcoming sections.

3.3 Existence of w and v for boundedness and repetitiveness

In untimed models, a net is conservative (consistent) iff the dual net (the net obtained by interchanging

places and transitions) is consistent (conservative), since the incidence matrix of the dual net is the

transpose of that of the primal one (times −1). This dual equivalence does not hold for λ-conservativeness

and λ-consistency, at least for general cases (it holds for FA models), because the timing is also involved.

Nevertheless, since CΛΠi is a square matrix, the dimension of its right and left annulers (nullity) is the

same, then, there exists a bijection between vectors w ̸= 0 and v ̸= 0 in (3.1) and (3.2). In particular,

∃w ̸= 0 s.t. wTCΛΠi = 0 iff ∃v ̸= 0 s.t. CΛΠiv = 0. Nevertheless, ∃w > 0 (i.e., λ-Cv) is neither

sufficient nor necessary for ∃v > 0 (i.e., λ-Ct).

Example 3.2. The timed model of fig. 3.2(a) is conservative, thus λ-Cv for any timing and configu-

ration, but @λ s.t. it is λ-Ct at any configuration (a deadlock can be reached while t2 is constrained by

p3). On the contrary, the model of fig. 3.2(b) is λ-Ct but not λ-Cv, ∀λ at the configuration in which t3

is constrained by place p3. Nevertheless, with λ = [1, 1, 2, 1]T the system is both λ-Cv and λ-Ct at the

configuration in which t3 is constrained by p1.

3.3.1 Existence of w

Proposition 3.9. Consider a timed net ⟨N ,λ⟩.
1) If N is conservative, then ⟨N ,λ⟩ is λ-Cv for any timing and configuration.
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2) If ⟨N ,λ⟩ is λ-Cv at a configuration Πi and ∃w > 0 s.t. wTCΛΠi = 0 but wTC ̸= 0, then Πi has

left annulers.

Proof. For the first statement, note that any positive P-semiflow (y > 0 s.t. yT ·C = 0) fulfills (3.1),

thus, conservativeness is a sufficient condition for λ-conservativeness. In such case, the timed net is λ-Cv

for any timing and configuration.

Now let us prove the second statement. Denote as Bi
z a basis for the left annuler of Πi, i.e., ∀z s.t.

zΠi = 0, ∃η s.t. z = ηTBi
z. In this way, a solution w for (3.1) s.t. wTC ̸= 0 implies

∃η ̸= 0 s.t. wTCΛ = ηTBi
z (3.3)

By hypothesis, wTCΛ ̸= 0 because Λ is always a full rank matrix. Therefore, if there exists such w

then Πi has left annulers.

Property 3.10. A configuration matrix Πi has left annulers (it is not full row rank) iff there are

places constraining more than one transition (thus there are choices) at Πi.

Note that vectors w > 0 that fulfill (3.3) are not P-flows. Nevertheless, such vectors also define

marking conservation laws like P-flows, i.e., given an initial marking m0 ∈ ℜi, for any marking m

reached while the system evolves inside ℜi, it holds wTm = wTm0. Positiveness of w will depend on

the structure and the particular timing. Thus, the timed model may be λ-Cv, but just for particular

timings at such particular configuration.

Example 3.3. Consider the configuration matrices for the PN of fig. 3.2(b):

Π1 =


0 1 0 0

1 0 0 0

1/2 0 0 0

0 0 0 1

 , Π2 =


0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1


Matrix Π2 has full row rank. It means that there is not left annuler B2

z for Π2, then, there is not

a solution for (3.3). Thus, ∀λ, ∀w ̸= 0, wTCΛΠ2 ̸= 0, meaning that the model is λ-Cv at Π2 only

if the net is conservative (but it is not). On the other hand, Π1 has not full row rank. Rows 2 and

3 are linearly dependent. Those rows mean that t2 and t3 are both constrained by p1 at Π1. In this

case, a basis for the left annuler of Π1 can be computed as B1
z = [0,−1, 2, 0]. Then, if λ is s.t. ∃w > 0

that fulfills (3.3), then the timed model is λ-Cv. This occurs for λ = [1, 1, 2, 1]T with w = [1, 1, 1, 1]T .

Actually, the model is not λ-Cv for any possible timing, but positive solutions for (3.1) exist whenever

[λ2,λ3]
T = β · [1, 2]T with β ∈ R+.

Note in previous example that only the rates of transitions in conflict are meaningful for fulfilling

(3.3). In order to generalize this, let us introduce a new concept:

Definition 3.11. A transition tk is said exclusively constrained (exc) by pj at Πi, iff pj constrains tk

and only tk at this configuration.
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Structurally persistent transitions, i.e., that are not in conflict, are always exc for any configuration.

The rows of Πi related to exc transitions are linearly independent of the other rows. Then, the columns

of Bi
z related to these transitions are null. This leads to the following proposition:

Proposition 3.12. Consider a TCPN system that is λ-Cv at a given configuration Πi. Suppose that

there exists w > 0 solution for (3.1) s.t. wTC ̸= 0. Then, the timing of the exc transitions does not

affect the λ-conservativeness property, i.e., if the rate of tj exc is changed then w will continue being a

solution and so the system remains as λ-Cv. Furthermore, for each tj exc, wT [C]j is zero.

Example 3.4. In the model of fig. 3.2(b), t2 and t3, which are in conflict, are exc at Π2 by p1 and

p3, respectively. Nevertheless, both transitions are constrained by the same place (p1) at Π1, i.e., they

are not exc at this configuration.

3.3.2 Existence of v

Proposition 3.13. Consider a timed net ⟨N ,λ⟩.
1) If ⟨N ,λ⟩ is λ-Ct at a configuration Πi, then N is consistent.

2) If N is consistent and all the transitions are exc at a configuration Πi, i.e., it does not have left

annulers, then ⟨N ,λ⟩ is λ-Ct at Πi.

Proof. First statement: condition (3.2) can be rewritten as

∃η ̸= 0,∃v > 0 s.t. Bxη = ΛΠiv (3.4)

where Bx is a basis for the T-flows. Thus, the timed model is λ-Ct at Πi iff ∃v > 0 that fulfills (3.4).

Note that v > 0 implies that ΛΠiv is a positive T-semiflow. Therefore, consistency is a necessary

condition for (3.4), and thus for λ-Ct at any Πi.

For the second statement: if all the transitions are exc at Πi, then Πi is a full row rank matrix. In such

case, for any x > 0 there always exists a vector v > 0 s.t. ΛΠiv = x. Therefore, if the net is consistent

and all the transitions are exc, there exists a solution for (3.4), and thus the model is λ-Ct at Πi.

Statement 2 of Proposition 3.13 establishes a sufficient (but not necessary) condition for λ-Ct. In

this way, if the net is consistent and there are transitions not exc (Πi is not full row rank) then λ may

(or may not) lead to the existence of a solution v > 0 for (3.4), i.e., to λ-consistency. In such case, it can

be proved that the timing of the exc transitions does not affect the λ-consistency property, as happens

for the λ-Cv property.

Example 3.5. For Π1 in fig. 3.2(b), with λ = [1, 1, 2, 1]T , v = [1, 3, 1, 1]T is a solution for (3.2).

Nevertheless, for λ = [1, 1, 1, 1]T , @v > 0. Note that only the rate at t3, which is in conflict and not exc

at Π1, has been changed.

Remark 3.14. There is a relevant asymmetry between the annulers related to λ-Ct and λ-Cv: when

the rank of CΛΠi is lower than that of C, new place invariants (related to annulers w) appear w.r.t. to

the autonomous net, while the transition invariants (related to annulers x = ΛΠiv) remain unchanged,

i.e., additional T-flows are not created.
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Tab. 3.1: Conditions for λ-Cv and λ-Ct, where ρ(Πi) denotes the rank of Πi (Πi is has full row rank iff ρ(Πi) =
|T |).

I Cv =⇒ ∀λ,Πi, ⟨N ,λ⟩ is λ-Cv
II Ct ⇐= ∃λ,Πi s.t. ⟨N ,λ⟩ is λ-Ct
III Not Cv, ρ(Πi) = |T | =⇒⟨N ,λ⟩ is not λ-Cv at Πi

IV Ct, ρ(Πi) = |T | =⇒ ∀λ, ⟨N ,λ⟩ is λ-Ct at Πi

V Cv, Ct, ρ(Πi) = |T | =⇒ ∀λ, ⟨N ,λ⟩ is λ-Ct, λ-Cv at Πi

VI ρ(Πi) = |T | =⇒ ∀w solution of (3.1), wTC = 0
VII Ct =⇒ ∀Πi ∃λ s.t. ⟨N ,λ⟩ is λ-Ct
VIII If ρ(Πi) < |T | then it may exist w > 0 solution for (3.1)

s.t. wTC ̸= 0 for particular λ at the transitions not exc
IX If Ct & ρ(Πi) < |T | then it may exist v > 0 solution

for (3.2) for particular λ at the transitions not exc

Proposition 3.15. Consider a timed net ⟨N ,λ⟩. If the net is consistent then for any Πi there exists λ

s.t. ⟨N ,λ⟩ is λ-Ct.

Proof. If the net is consistent then ∃η s.t. Bxη > 0. Next, consider an arbitrary vector v ∈ R|T |
>0, so,

for an arbitrary Πi, Πiv > 0. In this way, it is always possible to find a timing λ s.t. (3.4) is fulfilled,

i.e., that leads to λ-Ct.

Finally, Table 3.1 resumes the existence conditions shown through the previous subsections: Propo-

sition 3.9 proves statements I, III and VI; Proposition 3.13 proves statements II and IV; and Proposition

3.15 provides the proof of statement VII.

Through the following subsections, conditions for λ-Cv and λ-Ct are analyzed for particular subclasses

of PNs: Fork-Attribution, Choice-Free, Join-Free and Topologically Equal-Conflict nets; obtaining thus

stronger results.

3.3.3 Choice-Free and Fork-Attribution nets

Proposition 3.16. Consider a Choice-Free timed net ⟨N ,λ⟩. The model is λ-Cv, ∀λ,Πi, iff the net is

conservative. Similarly, the model is λ-Ct, ∀λ,Πi, iff the net is consistent.

If additionally there are not synchronizations in the net (thus, it is Fork-Attribution) and it is strongly

connected, then, ∀λ, it is λ-Ct iff it is λ-Cv.

Proof. CF nets allow attributions, forks and synchronizations but not choices. Then, each configuration

matrix Πi has full row rank (all transitions are exc). Therefore, according to Table 3.1, ∀λ,Πi the

model is λ-Cv iff the net is conservative (statements I and III), and ∀λ,Πi the model is λ-Ct iff the net

is consistent (statements IV and II).

A Fork-Attribution net is a Choice-Free without synchronizations (there is only one configuration).

Furthermore, a strongly connected FA net is consistent iff it is conservative ([Teruel et al., 1997]), thus,

∀λ it is λ-Ct iff it is λ-Cv.
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For FA nets, closed-form expressions can be obtained for basis of P- and T-semiflows (these basis

have dimension 1). For this, define a matrix Πe1 as equal to Π, excepting the first row which is null.

Then, basis for P- and T-semiflows for a conservative and consistent FA net are given by:

x =

|T |∑
k=0

[
Πe1 ·Post

]k · e1 (3.5)

yT = eTj ·
|T |∑
k=0

[
Post ·Πe1

]k
(3.6)

where e1 (resp. ej) denotes the first column (resp. j-th column) vector of the unity matrix of order |T |,
and pj ∈• t1. A basis for the solutions v for (3.2) can be computed as:

v = [ΛΠ]
−1 · x (3.7)

Previous equations can be used for computing right annulers v for CF nets as follows:

Procedure 3.1. Computation of right annulers v for CF nets.

Define the P-subnet NP with the places that are constraining transitions at Πi (denoted as PP ). Thus,

NP is a FA model.

Use (3.5), (3.6) and (3.7) for computingwP > 0 and vP > 0 s.t. (wP )TCPΛΠP
i = 0 and CPΛΠP

i v
P =

0, where CP (resp. ΠP
i ) are the restrictions of C (resp. Πi) to the rows (resp. columns) related to the

places in PP .

Let us suppose, without loss of generality, that the first columns of Πi are related to the places in PP ,

i.e., Πi = [ΠP
i ,0]. Then, a general solution v > 0 for (3.2) is given by:

v =

[
vP 0

0 I

]
· η ∀η > 0 (3.8)

where I is the unity matrix of order |P | − |PP |.

If the original CF net is consistent then the subnet NP is consistent too. On the other hand,

conservativeness of CP is not necessary for conservativeness of C. Therefore, even if there does not exist

wP > 0 s.t. (wP )TCPΛΠP
i = 0, it may exist w > 0 solution for (3.1).

Example 3.6. Consider the CF model of fig. 3.3. Let Π1 be the configuration matrix in which t4

is constrained by p4. The subnet NP obtained by removing p5 with its input and output arcs is FA.

Although the original model is conservative (e.g., y = [2, 1, 1, 1, 1]T is a P-semiflow), and thus λ-Cv (I

in Table 3.1), CP is not. On the other hand, since the original net is consistent (thus λ-Ct, since it is a

CF model and IV in Table 3.1 applies) then CP is consistent too. By using (3.5) and (3.7), the vector

vP = [1/λ1, 1/λ2, 1/λ3, 1/λ4]
T that fulfills CPΛΠP

i v
P = 0 is computed. Therefore, according to (3.8),
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t1p1

p3 p5

p2 p4

t3

t4

t2

Fig. 3.3: A Choice-Free (marked graph) PN that is conservative and consistent.

a general solution v > 0 for (3.2) is given by

v =

[
1/λ1 1/λ2 1/λ3 1/λ4 0

0 0 0 0 1

]T
η ∀η > 0

Note that v5 = η2 can be freely settled, since p5 is not constraining any transition at Π1. On the other

hand, the other entries of v must be settled according to certain proportions in such a way that ΛΠ1v

be a T-semiflow.

3.3.4 Join-Free and Equal-Conflict nets

The next proposition resumes the statements of Table 3.1 that can be applied to Join-Free nets.

Proposition 3.17. Consider a Join-Free timed net ⟨N ,λ⟩. If the net is conservative then ∀λ it is λ-Cv

(statement I). Independently of the conservativeness of the net, for particular rates λ at the transitions

in conflict, it may exist w > 0 solution for (3.1) s.t. wTC ̸= 0 (statement VIII). On the other hand,

if the net is consistent, it may exist v > 0 solution for (3.2) for particular rates λ at the transitions in

conflict (statement IX).

Given a firing rate vector λ, it is possible to merge the transitions in conflict of a JF model, obtaining

thus a FA one ⟨NR,λR⟩, whose marking describes the same trajectory, i.e., CRΛRΠR = CΛΠ, where

CR is the incidence matrix of NR. For this:

Procedure 3.2. Transformation of a JF TCPN to a FA one, given a timing λ.

For each place pj that is constraining more than one transition, compute its output flow when its

marking is 1, i.e., f j = [1, .., 1] · [ΛΠ]j .

Compute the column of CR related to the new transition, obtained by merging those in p•j , as

cj = 1
fj [CΛΠ]j .

Build CR with the columns of C related to the transitions that are exc and the column vectors cj

defined for each place that is constraining more than one transition.

Define ΛR by keeping the same rates at the transitions that are exc, while the new merged transitions

have a rate equal to the corresponding f j .
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Fig. 3.4: (a) A conservative and consistent TEC net, and (b) its transformation.

According to this procedure, the corresponding ΠR has the rows of Π related to the transitions exc,

while the others are elementary and linearly independent, thus ΠR has full rank. In this way, it is not

difficult to see that CRΛRΠR = CΛΠ, i.e., the resulting FA system evolves exactly as the original JF

one. Be aware that the net model thus obtained depends on λ.

Remark 3.18. Since the resulting net CR is FA then (3.5), (3.6) and (3.7) can be used for computing

wR > 0 and vR > 0 s.t. (wR)TCRΛRΠR = 0 and CRΛRΠRvR = 0. Furthermore, since CRΛRΠR =

CΛΠ, the original model is λ-Cv (resp. λ-Ct) iff CR is conservative (resp. consistent).

This transformation can be applied to TEC nets, obtaining a CF model ⟨NR,λR⟩ (choices are

eliminated, but synchronizations remain), so the results obtained in the previous subsection also hold for

this. In the following proposition, it is shown that λ-Cv and λ-Ct are independent of the configurations

for TEC nets.

Proposition 3.19. Given a Topological Equal Conflict TCPN system, for any two different configu-

rations Πi and Πj, the timed model is λ-Cv (resp. λ-Ct) at Πi iff it is λ-Cv (resp. λ-Ct) at Πj.

Furthermore, w is a solution for (3.1) at Πi iff it is also a solution at Πj. Similarly, v is a solution for

(3.2) at Πi iff Pj
iv is a solution at Πj, where Pi

j is a matrix s.t. Πi = ΠjP
j
i .

Proof. In TEC nets, given two different configurations Πi and Πj , there exists a square full rank

matrix Pi
j ≥ 0 s.t. Πi = ΠjP

j
i (since ∀tj , tk in conflict Pre[P, tj ] = γPre[P, tk], each configuration

matrix is a scaled column permutation of any other, which is equivalent to the product of elementary

matrices, i.e., Pi
j).

Example 3.7. Consider the TECmodel of fig. 3.4(a). Transitions t1 and t2 are in TEC relation. Denote

as Π1 (resp. Π2) the configuration in which p1 (resp. p2) constrains both. By previous proposition,

⟨N ,λ⟩ is λ-Cv and λ-Ct at Π2 iff it is λ-Cv and λ-Ct at Π1. Let us focus on Π1. Given a timing

λ, t1 and t2 can be merged, obtaining thus a Choice-Free model. For that, the output flow of p1 is

computed when it has a marking equal to one, i.e., f1 = [1, 1, 1, 1, 1] · [ΛΠ]1 = λ1 + λ2. Then, the new

transition, resulting from merging t1 and t2, is defined. Its corresponding column at CR is computed as

c1 = 1
f1 [CΛΠ]1, obtaining thus the model (fig. 3.4(b)):
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CR =

p1

p2

p3

p4

t1 ∧ t2 t3 t4
−1 2 0

−2 0 4
λ1

λ1+λ2
−1 0

λ2

λ1+λ2
0 −1

 , ΛR =

t1 ∧ t2 t3 t4 λ1 + λ2 0 0

0 λ3 0

0 0 λ4


Note that CR is consistent, and then λ-Ct (IV in Table 3.1 applies), iff λ1 = λ2. Assuming this,

⟨N ,λ⟩ is λ-Ct at Π1 and thus, at Π2. It is already λ-Cv in both configurations since C is conservative

(statement I).

Tab. 3.2: Conditions for λ-conservativeness and λ-consistency for subclasses.

CF Cv ⇐⇒ ∀λ ⟨N ,λ⟩ is λ-Cv
Ct ⇐⇒ ∀λ ⟨N ,λ⟩ is λ-Ct
If the net is strongly connected and FA:

⟨N ,λ⟩ is λ-Cv ⇐⇒ it is λ-Ct
and (3.5) and (3.7) provide a basis for v > 0.
If N is Cv FA, (3.6) provide a basis for w > 0.

TEC Cv =⇒ ∀λ ⟨N ,λ⟩ is λ-Cv
Ct =⇒ ∃λ s.t. ⟨N ,λ⟩ is λ-Ct
Given λ, it may exist w > 0 solution for (3.1)

s.t. wTC ̸= 0.
Given λ, the model can be transformed into CF,

if the net is JF the resulting model is FA.
λ-Ct (λ-Cv) at Πi ⇐⇒ λ-Ct (λ-Cv) at Πj .

Siphons ⟨N ,λ⟩ λ-Ct at Πi =⇒ each minimal siphon
that may be emptied at Πi is λ-Cv.

Table 3.2 summarizes the results found in this section, concerning λ-Cv and λ-Ct in net subclasses.

3.4 Timing-dependent liveness: setting the problem

Let us concentrate now in the liveness property. Regarding autonomous (untimed) continuous net

systems, it has been proved that deadlock-freeness and liveness are decidable [Recalde et al., 2010]. If a

system reaches a deadlock as timed, it also deadlocks as untimed (already stated for a subclass of nets in

[Júlvez et al., 2006]). This clearly holds also for liveness since the evolution of a timed system just gives

a particular trajectory of the untimed model.

Proposition 3.20. If the contPN system ⟨N ,m0⟩ is live, then for any λ > 0, ⟨N , λ,m0⟩ is live.

On the contrary, a contPN that deadlocks as autonomous can be live as timed for particular timings.

The next example shows a simple case.

Example 3.8. The system of fig. 3.1(b) deadlocks as untimed, but the timed system is live if λ1 = λ2.

It may seem that the set of rates for which this kind of things occurs has to be of null measure, i.e., a

smaller dimension manifold, but it is not so. For instance, the contPN system in fig. 3.5(a) deadlocks
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Fig. 3.5: (a) Deadlock system as autonomous, but deadlock-free as timed if λ3 > λ1. (b) Minimal siphon of the
net. (c) Autonomous reachability set of the net system of fig. 3.1(b) with its equilibrium markings.

as autonomous. The deadlock occurs because the siphon ΣD = {p4, p5, p6} empties. Nevertheless, the

timed system is deadlock-free if λ3 > λ1. Let us prove this by showing that under such timing ΣD will

never empty. First, the deadlock belongs to a configuration in which m[p6] ≤ m[p3], because m[p6] = 0

at the deadlock. Nevertheless, inside this configuration, the marking of the siphon is always increasing,

since m[p4] + m[p5] + m[p6] = m0[p4] + m0[p5] + m0[p6] +
∫
(f [t3] − f [t1])dτ , and

∫
(f [t3] − f [t1])dτ =∫

(λ3 − λ1) ·m[p6] · dτ > 0. Clearly, if λ3 ≥ λ1 the siphon never empties and the system is deadlock-free

(sooner or later the deadlock configuration is left). In particular, if λ1 = λ3 the total marking of the

siphon will remain constant. In any case, no deadlock occurs if the initial marking at p1 is 3 instead of

5. That is, deadlock-freeness is non monotonic with respect to the marking: increasing the number of

resources (m0[p1] > 3) can kill the system!

Nevertheless, for some nets there do not exist rates that make the system deadlock-free.

Example 3.9. Consider the system in fig. 3.1(b) but with a weight of 1 at arc (t3, p1). Here the

reasoning is purely structural: the net is structurally bounded but not consistent so it is non live for any

timing.

In the following subsections, it will be investigated the existence of a timing that makes a non-live

contPN system to be live as timed. If it is assumed that the timed system reaches a steady state marking,

liveness can be studied from the flow at such marking. In the sequel, consider the definitions of deadlock,

live and non-live markings introduced in Subsection 3.5.1.

Since deadlock markings are particular cases of non-live ones, only non-live markings will be studied

in the sequel. In this way, liveness can be studied by using the following approach:

1) Given a TCPN system ⟨N , λ,m0⟩, compute non-live equilibrium markings in Class(m0).

2) For a particular initial marking or a set of them, solve the reachability of the non-live markings.
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The advantage of this approach is that the first problem can be solved by adopting an algebraic

perspective, which will be done through the next subsection. The second problem can be studied by

using results from the Control Theory, which will be investigated in forthcoming subsections.

3.4.1 Live and non-live equilibrium markings

Let us present in this subsection some basic results about the existence of live and non-live equilibrium

markings in a given region ℜD. Non-live markings can be easily computed by using the following LPP.

Algorithm 3.3. Computation of non-live markings.

Let ΠD be a given configuration matrix, and let TD be a set of transitions. The following LPP

computes an equilibrium marking mD ∈ ℜD, if it exists, at which all the transitions in TD are dead.

max [1, ..., 1] ·mD subject to

mD ≥ 0

BT
y (mD −m0) = 0 {in Class(m0)}

CΛΠDmD = 0 {equilibrium marking}
ΠDmD ≤ ΠjmD ∀Πj {belongs to ℜD}
[ΠD]i mD = 0 ∀ti ∈ TD {non-live}

Proof. Since mD ≥ 0 and BT
y (mD − m0) = 0 then, by definition, mD ∈ Class(m0). Further-

more, ΠDmD ≤ ΠjmD ∀Πj implies that mD ∈ ℜD. The marking mD is an equilibrium one because

CΛΠDmD = 0. Finally, sinceΛ is a diagonal matrix, [ΠD]imD = 0 implies [f(mD)]i = [ΛΠDmD]i = 0.

Then, ∀ti ∈ TD [f(mD)]i = 0. Therefore, mD is a non-live equilibrium marking in ℜD in which all the

transitions in TD are dead.

Non-live markings can appear in different regions. In general, when more than one non-live marking

appear, they can be isolated or connected in Class(m0), but even in this case they may not describe a

convex set. Nevertheless, if in a given region there exist two non-live equilibrium markings m1 and m2,

at which transition ti is dead, then all markings in the linear segment defined by m1 and m2 are also

non-live equilibrium markings with ti dead. This is proven in the following:

Proposition 3.21. Given a TCPN system, consider a marking region ℜD ⊆ Class(m0) with an equi-

librium marking mD ∈ ℜD. If there exists η ≥ 0 s.t.[
ΠD

BT
y

]
η = 0 (3.9)

then all the markings in S = {m ∈ ℜD|(m−mD) = η · α, α ∈ R} are also equilibrium markings having

the same flow, i.e., ∀m ∈ S it holds f(m) = f(mD). If mD is in the int{ℜD} then {S/mD} ̸= ∅. In

this way, if mD is a non-live marking in which all the transitions in TD are dead, then ∀m ∈ S, mD is

non-live and all the transitions in TD are dead at this marking.
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Proof. Consider a marking m ∈ S. Then, f(m) − f(mD) = ΛΠDm − ΛΠDmD = ΛΠD(m −mD).

Since m ∈ S then ∃α s.t. (m−mD) = ηα. According to (3.9), ΠD(m−mD) = ΠDηα = 0. Therefore,

f(m) − f(mD) = ΛΠD(m −mD) = 0, meaning that f(m) = f(mD). In this way, since both markings

have the same flow, if mD is an equilibrium marking at which all the transitions in TD are dead then m

is also an equilibrium marking in which all the transitions in TD are dead.

Now, assume that mD is in int{ℜD}. Then mD > 0, which implies that for a small enough α ∈ R
the marking m′ = mD + ηα > 0. Furthermore, BT

y η = 0 implies that BT
y m

′ = BT
y mD, thus m′ ∈

Class(m0). Moreover, since mD is in int{ℜD} then, for a small enough α, m′ ∈ ℜD, thus {S/mD} ≠ ∅.

Live markings may exist in non-live regions. This is interesting since, if the timing is s.t. a live marking

is attractive, i.e., it is asymptotically stable, then the system will avoid the non-live markings, and thus

liveness follows. Conditions for the existence of such live markings, in function of the eigenvectors

associated to null eigenvalues, are introduced next:

Proposition 3.22. Let ⟨N ,λ,m0⟩ be a TCPN system. Let mD be a non-live marking and let ΠD and

ℜD be its associated configuration matrix and region, respectively.

1) If all the eigenvalues of CΛΠD non associated to P-flows are not null then ∀v s.t. CΛΠDv = 0

and BT
y v = 0, v = 0 is fulfilled. As a consequence, mD is the only equilibrium marking in ℜD.

2) If there exists an eigenvector v, associated to a variable zero valued eigenvalue, s.t. ΛΠDv is a

T-semiflow, BT
y v = 0, dim(ℜD) = rank(C), and mD is associated to only one configuration, then

there exist infinite non deadlock equilibrium markings in ℜD, at which the transitions related to

positive entries of ΛΠDv are live.

Proof. First, in order to separate the null eigenvalues related to P-flows from the others, let us define

a similarity transformation [ZT ,By]
T , where BT

y is a basis for P-flows and Z is a suitable matrix for

completing the rank. Denoting by [A,B] the inverse transformation, the transformed state matrix is

described by [
Z

BT
y

]
CΛΠD

[
A B

]
=

[
ZCΛΠDA ZCΛΠDB

0 0

]
since BT

y C = 0. According to this transformation, the eigenvalues of ZCΛΠDA are those of CΛΠD

non associated to P-flows.

Statement 1). By hypothesis, all the eigenvalues, non associated to the P-flows, are not null. Then, all

the eigenvalues of ZCΛΠDA are not null, which implies that it has full rank. Let v be a vector s.t

CΛΠDv = 0 and BT
y v = 0. Applying the similarity transformation:[

ZCΛΠDA ZCΛΠDB

0 0

][
Zv

BT
y v

]
= 0

Now, since BT
y v = 0 and ZCΛΠDA has full rank then v = 0. Finally, since every equilibrium marking

m1 ∈ ℜD must satisfy CΛΠD(m1 − mD) = 0 and BT
y (m1 − mD) = 0, then (m1 − mD) is null, so

m1 = mD.
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Statement 2). By hypothesis, there exists v ̸= 0 such that CΛΠDv = 0, BT
y v = 0 and ΛΠDv is a

T-semiflow. Now, consider a vector m1 = mD+vα, note that it is nonnegative for a small enough α ≥ 0

(∀pj s.t. mD[pj ] = 0 it fulfills that vj ≥ 0, because pj is constraining a transition and ΛΠDv ≥ 0).

Furthermore, since BT
y m1 = BT

y mD, dim(ℜD) = rank(C) and mD is related to only one configuration,

there always exists a small enough α ≥ 0 s.t. m1 ∈ ℜD. Moreover, CΛΠDm1 = 0 andΛΠDv ̸= 0 (which

implies that ΛΠDm1 ̸= ΛΠDmD = 0), i.e., m1 is a non deadlock marking in which the transitions

related to positive entries of ΛΠDv are live. Finally, by linearity, every marking in the convex described

by m1 and mD is also a non deadlock equilibrium marking, and the flow at those markings is positive

at those transitions related to positive entries of ΛΠDv, i.e., they are live.

Remark 3.23. A particular case of statement 2 of previous proposition occurs when the eigenvector

v is s.t. ΛΠDv > 0. In such case there exist infinite live equilibrium markings in ℜD. Note that this

occurs if the system is λ-Ct in ℜD (such v fulfills (3.2)), then, this property is a sufficient condition for

the existence of live equilibrium markings in non-live regions.

Example 3.10. Consider the net system of fig. 3.1(b). Fig. 3.5(c) shows the projection of the

autonomous reachability set Class(m0) (since m[p1] +m[p2] +m[p3] = 2 due to the P-semiflow yT =

[1, 1, 1], the markings at p2 and p3 are sufficient to univocally describe every reachable marking). As

mentioned in the Example 3.8, this system deadlocks as untimed, but it is timed-live if λ1 = λ2. In

fact, this continuous model has two deadlock markings, m1
D = [0, 2, 0]T and m1

D = [0, 0, 2]T , belonging

to two different configurations: Π1 for that in which p2 constraints t3, and Π2 when p3 constraints t3.

By setting λ = [1, 1, 2]T , the vector v = [1, 0.5, 0.5]T fulfills with CΛΠ1v = CΛΠ2v = 0 and BT
y v = 0

(in this case, such v implies λ-Ct in both configurations). Then, according to the second statement of

Proposition 3.22, there exist infinite live equilibrium markings in both regions. These are depicted in fig.

3.5(c) as a bold line that connects m1
D and m2

D, i.e., all these markings excepting m1
D and m2

D are live.

Note the existence of a live equilibrium marking belonging to both configurations mL = [1, 0.5, 0.5]T (in

this case, mL = v because BT
y v = 0, but in general, v fulfilling (3.2) is not an equilibrium marking).

3.5 Timing to avoid non-live markings

In this section, a sufficient condition for avoiding non-live markings, by suitably choosing the timing λ,

will be provided.

3.5.1 λ-Ct as a sufficient condition for liveness

Firstly, let us show the connection between non-live markings and siphons.

Proposition 3.24. Let ⟨N ,λ,m0⟩ be a TCPN system. Consider an equilibrium marking mD ∈ Class(m0).

There are empty siphons at mD iff it is a non-live marking.

Proof. Suppose that the system is at an equilibrium marking mD at which there are empty siphons.

Since empty siphons never gain marks, then the places belonging to supports of those empty siphons

remain unmarked, so, their output transitions never become enabled and thus they are dead. For the

other implication, suppose that the system is at a non-live equilibrium marking mD. Then, at least
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one input place of each dead transition is empty at mD, and they remain empty for future time (it is

an equilibrium marking). If there exists a place pi that always remains unmarked, then for each input

transition tj to this place, it must exist an input place pk to tj , which remains also unmarked for all

time. Repeating this reasoning, it can be seen that pi should belong to an unmarked siphon.

Let us start the analysis from a dynamic systems’ perspective. Recalling from Subsection 1.5.2, P-

flows are related to null eigenvalues that do not depend on the timing λ (equivalently, P-flows are related

to fixed null poles [Mahulea et al., 2008b]). Nevertheless, not all the null poles are related to P-flows.

Definition 3.25. Null poles can be:

1) Fixed and related to P-flows, i.e., ∃w ̸= 0 s.t. wTC = 0, then ∀λ, ∀Πi, w
TCΛΠi = 0.

2) Fixed but not related to P-flows, i.e., ∀λ ∃w ̸= 0 s.t. wTCΛΠi = 0 but wTC ̸= 0. These null

poles appear in particular configurations, when rank(Πi) < rank(C).

3) Variable, i.e., ∃λ ∃w ̸= 0 s.t. wTCΛΠi = 0 with wTC ̸= 0. These null poles appear even

if rank(Πi) = rank(C), but in this case, the span of ΛΠi includes T-flows, i.e., span(ΛΠi) ∩
span(Bx) ̸= ∅, where Bx is a basis of T-flows (right annuller of C).

Remark 3.26. A particular case of null poles of the kind 2) and 3) occurs when w > 0, making

the system to be λ-Cv at Πi. These zero valued poles are related to marking conservation laws that

are not P-flows, i.e., w s.t. wT ṁ = wTCΛΠi = 0 but wTC ̸= 0. From a dynamic systems’ point of

view, this marking conservation laws are state invariants, i.e., the evolution of the system is restricted to

the manifold where wTm = wTm0 (until a change of configuration occurs). In this way, this property

can affect the reachability of non-live markings in TCPNs: if the marking conservation law involves the

support of a siphon, this will never empty, thus the non-live markings at which this siphon is empty are

not reachable.

Proposition 3.27. Consider a non-live marking mD ∈ ℜD, in which a minimal siphon ΣD is empty.

If the timing λ is s.t. there exists an eigenvector w ≥ 0, related to a variable zero valued pole of CΛΠD,

whose support is equal to ΣD (i.e., ∀j, wj > 0 iff pj ∈ ΣD), then the siphon ΣD cannot be emptied

(assuming it is initially marked) while the system evolves inside ℜD. Consequently, mD is not reachable

from any m0 ∈ ℜD s.t. wTm0 > 0 (i.e., that marks ΣD), through a trajectory inside ℜD.

Proof. First, since w ≥ 0 is s.t. wTCΛΠD = 0, then, premultiplying the state equation, wT ṁ =

wTCΛΠD = 0. Denote as m(τ) the marking reached after τ time units (assuming that the system

evolves inside ℜD). By integrating previous equation, it is obtained
∫ τ

0
wT ṁdτ = wT (m(τ)−m0) = 0,

equivalently wTm(τ) = wTm0. Next, assume that the siphon is initially marked, i.e., ∃j s.t. [m0]j > 0

and pj ∈ ΣD. Thus, according to the definition of w, pj ∈ ΣD implies wj > 0, then wTm0 > 0. In

this way, wTm(τ) > 0. Furthermore, since w ≥ 0 and m(τ) ≥ 0 then ∃k s.t. wk > 0 and [m(τ)]k > 0.

Finally, wk > 0 implies that pk ∈ ΣD, thus, the siphon is not empty at m(τ) (at least pk is marked).

Since this reasoning holds for any marking m(τ) reached through a trajectory inside ℜD, the proof is

completed.
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The existence of w ̸= 0 involving a siphon, as mentioned in the Proposition 3.27, can be understood

as the λ-Cv property for such siphon. In the proof of the following theorem, it will be shown that the

property λ-Ct in the net ensures λ-Ct in each minimal siphon, and for these, both λ-Cv and λ-Ct are

equivalent. In this way, λ-Ct implies that every minimal siphon is λ-Cv, and so, for each of these ∃w as

in Proposition 3.27, leading to a sufficient condition for liveness as a generalization of the Proposition

3.27.

Theorem 3.28. Consider a TCPN system. If the timed net is λ-Ct at a given Πi, and the initial

marking m0 ∈ ℜi marks all the minimal siphons, then the system is timed-live while evolves in ℜi.

Proof. Assume that the system is λ-Ct at Πi. Let Σ be a minimal siphon that may be emptied at

Πi, i.e., ∃m′ ∈ ℜi s.t. m′[Σ] = 0. If m′ does not belong to any other region, then every place in Σ is

constraining its output transitions at Πi (otherwise, if each m′ s.t. m′[Σ] = 0 belongs to another region,

it can be proved that there exists a minimal siphon Σ′ whose places constrain their output transitions at

Πi and that empties iff Σ empties). In this way, the P-subnet ⟨NΣ,λΣ⟩, defined by keeping the places

in Σ and the transitions in Σ•, is a JF model. Let us suppose, without loss of generality, that the first

rows of C correspond to places of Σ. In such case, CΛΠi can be written by blocks as:

CΛΠi =

[
CΣΛΣΠΣ

i 0

[CΛΠi]2,1 [CΛΠi]2,2

]

Thus, since ∃v > 0 annuler of CΛΠi, i.e., the timed net is λ-Ct, the restriction of v to the places in Σ,

denoted as vΣ, fulfills with vΣ > 0 and CΣΛΣΠΣ
i v

Σ = 0. Therefore, ⟨NΣ,λΣ⟩ is λ-Ct.
On the other hand, as shown in Subsection 3.3.4, it is possible to transform ⟨NΣ,λΣ⟩ into an equivalent

FA model ⟨NR,λR⟩. Furthermore, since Σ is minimal then it is P-strongly connected, thus the trans-

formed netNR is a FA strongly connected net. In this way, ⟨NR,λR⟩ is λ-Ct iff it is λ-Cv. Since the same

properties hold for ⟨NΣ,λΣ⟩ and this is λ-Ct, then it is λ-Cv. Thus, ∃wΣ > 0 s.t. wΣ ·CΣΛΣΠΣ
i = 0.

This implies that ∃w ≥ 0 that fulfills wTCΛΠi = 0 and wj > 0 iff pj ∈ Σ. The existence of such w ≥ 0

means that the siphon Σ is conservative (wTm = wTm0), then, it never empties while the system evolves

in ℜi. Finally, since this holds for each minimal siphon, then the system is timed-live while evolves in

ℜi (assuming that minimal siphons are initially marked).

Example 3.11. Consider the model of fig. 3.5(a). This PN is non-live as autonomous. Places Σ =

{p4, p5, p6} describe the minimal siphon, shown in fig. 3.5(b), that can be emptied at the configuration

Πi in which t1 and t3 are constrained by p6 and t2 is constrained by p5. Denote the P-subnet defined

by the siphon as NΣ. This is a JF model, in which transitions in conflict (t1 and t3) can be merged,

obtaining thus the following FA timed model ⟨NR,λR⟩:

CR =
p4

p5

p6

t2 t1 ∧ t3 t4 0 λ3

λ1+λ3
−1

−1 λ3

λ1+λ3
0

1 −1 1

 , ΛR =

t2 t1 ∧ t3 t4 λ2 0 0

0 λ1 + λ3 0

0 0 λ4


Note that CR becomes consistent (and thus conservative, since it is a strongly connected FA net) iff

λ1 = λ3. In such case, wR = [1, 1, 1]T is a basis for the left annuler of CRΛRΠR = CΣΛΣΠΣ. By using
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Fig. 3.6: (a) TCPN system with deadlock markings in two different regions. (b) TCPN system with two inde-
pendent T-semiflows.

wR, a left annuler of the original model is computed as w = [0, 0, 0, 1, 1, 1]T ≥ 0. This vector implies

that the total marking in the siphon wTm = m[p4] +m[p5] +m[p6] remains constant, while the system

evolves in this configuration (Proposition 3.27). Finally, since Σ is the unique minimal siphon and it can

be emptied only at this configuration, the timed system is timed-live. According to Theorem 3.28, the

same conclusion can be obtained just by proving that the timed model is λ-Ct with λ1 = λ3.

Remark 3.29. If the net system is consistent, it is possible to compute a timing s.t. the system

is λ-Ct at a given configuration ℜD (Proposition 3.15), inducing thus liveness in the considered region

(Theorem 3.28). Nevertheless, consistency is no longer sufficient to guarantee the existence of a timing

λ for simultaneously avoiding non-live markings in several regions (but consistency is still necessary).

Example 3.12. Consider the net system of fig. 3.6(a) that has two deadlocks, m1
D = [0, 6, 0, 0]T and

m2
D = [6, 0, 0, 0]T . The corresponding deadlock configurations are C1

D = {(t1, p1), (t2, p1), (t3, p3), (t4, p4)}
and C2

D = {(t1, p2), (t2, p2), (t3, p3), (t4, p4)}, respectively. Since this net is consistent, according to Propo-
sition 3.15, for each configuration it is possible to find a timing for avoiding the corresponding deadlock

marking. Nevertheless, for this net it does not exist a timing that simultaneously induces the λ-Ct prop-

erty in both regions. In order to prove this, note that a basis for T-flows is given by x = [1, 1, 1, 1]T , then,

if there exist a positive vector v1 and v2 for each configuration they must fulfill ΛΠ1
Dv1 = βΛΠ2

Dv2

for some β > 0. This equality can be written by elements as [0.5λ1v
1
1 , λ2v

1
1 , λ3v

1
3 , λ4v

1
4 ]

T = β[λ1v
2
2 , λ2v

2
2 ,

λ3v
2
3 , λ4v

2
4 ]

T (where vij means the j − th entry of vi). Therefore 0.5v11 = βv22 and v11 = βv22 , but such

equalities do not have positive simultaneous solutions, so, there does not exist a timing λ that induces

live equilibrium markings in all deadlock regions. Nevertheless, it does not mean that the timed system is

dead for all timing (e.g., with λ = [1, 2, 1, 1]T the timed system converges to m1 = [0.75, 1.5, 2.25, 1.5]T ,

which is live).
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3.5.2 Stability of non-live equilibrium markings

From a control theory perspective, non-live equilibrium markings are equilibrium points, so, the knowl-

edge of the value of the poles (in each non-live configuration) is useful to decide if, given a particular

timing, a non-live marking will be reached or will not. This idea is captured in the following propositions.

Proposition 3.30. Let ⟨N ,λ,m0⟩ be a TCPN system. Given a non-live marking mD that belongs to a

unique region ℜD, then

1) If the real parts of the poles of CΛΠD, non associated to the P-flows, are negative, then mD

is locally asymptotically stable, i.e., there exists a neighborhood of mD, named N(mD), s.t. if

m0 ∈ N(mD) then the system inevitably reaches mD.

2) If CΛΠD has a zero valued pole, non associated to the P-flows, and the real parts of the others

are negative, then mD is stable (nevertheless mD could be reached or not).

3) If there exists a variable null eigenvalue of CΛΠD, with an associated eigenvector v s.t. BT
y v = 0

and ΛΠDv is a T-flow with positive entries at those transitions that are dead at mD (particularly,

if the system is λ-Ct), then mD is not reachable from a positive marking m0 ∈ ℜD, through a

trajectory in ℜD.

4) If there exists a pole of CΛΠD having a positive real part, then mD is unstable, so it is not reachable

from another marking, through a trajectory in ℜD.

Proof. By using the similarity transformation introduced in the proof of Proposition 3.22, the dynam-

ical behavior of the TCPN in ℜD can be described by a reduced order system µ̇ = Arµ + br, where

Ar = ZCΛΠDA, br = ZCΛΠDBBT
y m0 and m = Aµ + BBT

y m0. In this reduced system, only the

poles of CΛΠD non associated to P-flows are present. Now, if the condition of statement 1) is fulfilled,

then, according to Proposition 3.22, mD is the only equilibrium marking in ℜD. Thus, statements 1),

2) and 4) are immediate from Theorem 1.23.

If the hypothesis of Statement 3) is fulfilled, then it is possible to define a vector v′ = mD + βv that

is positive for a small enough β. Furthermore, CΛΠDv′ = 0, then the system is λ-Ct at ΠD, thus,

according to Theorem 3.28, mD is not reachable through a trajectory in ℜD.

The stability analysis of a non-live marking mD, which is related to more than one configuration, is

more complex, since it is a stability problem of a piecewise linear system. Nevertheless, it is possible to

know what could happen for particular cases.

Proposition 3.31. Let ⟨N ,λ,m0⟩ be a TCPN system. Given a non-live marking mD that belongs to

different regions ℜ1
D,...,ℜk

D, then

1) If for every region ℜi
D, to which mD belongs, the poles of CΛΠi

D are real and negative, then mD

is locally asymptotically stable, i.e., there exists a neighborhood of mD, named N(mD), s.t. if

m0 ∈ N(mD) then the system inevitably reaches mD.
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2) If for all regions ℜi
D, there exists an eigenvector vi, associated to a variable zero eigenvalue of

CΛΠi
D, s.t. BT

y v
i = 0 and ΛΠi

Dvi > 0, then mD is not reachable from m0 > 0 through a

trajectory in
∪
ℜi

D.

Proof. As in the proof of previous proposition, for every configuration Ci
D related to mD, there exists

a reduced order system that describes the dynamical behavior of the system in ℜi
D. If the condition of

statement 1) is fulfilled, then every linear subsystem has real and negative poles. It is well known in

the Control Theory (see for instance [Chen, 1984]) that in such case the state is decreasing for all time.

Then, the marking, and thus the flow, is decreasing while the system stay in ℜi
D. Since that happens

for every system associated to mD, then for a small enough neighborhood of mD, named N(mD), the

flow is decreasing, consequently, the system inevitably will reach mD. Statement 2) is an immediate

generalization of the statement 3) of Proposition 3.30, i.e., the condition of Statement 2) implies that

the system cannot approximate to mD in any of the configurations at which mD belongs.

The first statement of previous proposition can be extended by using the classical Common Lyapunov

Function (CLF) criterion (see, for instance, [Liberzon, 2004]), i.e., there exists a neighborhood of mD

from where the system inevitably reaches mD if there exist symmetric positive definite matrices P and

Qi s.t. (ZCΛΠi
DA)TP+P(ZCΛΠi

DA) = −Qi for each ℜi
D to which mD belongs, where Z and A are

the matrices introduced in the proof of Proposition 3.22.

3.5.3 Examples: towards a dynamic interpretation of liveness

Through this section, a few examples will be analyzed in order to illustrate the potential application of

the results introduced through this section.

In the sequel, given a non-live configuration CD, the possibility of choosing λ s.t. variable zero valued

poles are induced will firstly be analyzed through the characteristic polynomial of CΛΠD.

Property 3.32. Consider the characteristic polynomial of CΛΠD, where Λ is in parametric form.

The order of the lowest order term is equal to the number of fixed zero valued poles, and a particular Λ

that makes this lowest order term to be zero leads to a variable zero valued pole. In such case, statement

3 of Proposition 3.30 may follow.

Example 3.13. Consider the TCPN system of fig. 3.5(a). In this case, there exists a unique deadlock

mD = [1, 1, 3, 0, 0, 0]T , belonging to a unique configuration ℜD. The lowest order term of the character-

istic polynomial of CΛΠD is s3(λ4λ1λ2 − λ4λ2λ3). It means that there exist 3 fixed zero valued poles

(related to 3 P-semiflows), and that a timing λ s.t λ2λ4(λ1 − λ3) = 0 creates an additional zero valued

pole. Then, a timing λ s.t. λ1 = λ3 fulfills that condition, in which case, according to Proposition 3.30,

mD is not reachable from any m0 > 0 through a trajectory in ℜD. Moreover, since mD belongs only

to ℜD, then the TCPN system is deadlock-free. Such λ establishes an “equilibrium” between the flow

going into the siphon Σ = {p4, p5, p6} and the flow going out of it, as it was shown in the Example 3.8.

Furthermore, if λ3 > λ1, then the coefficient of this term becomes negative and it can be demonstrated,

through the Routh-Hurwitz criterion (see, for instance, [Chen, 1984]), that mD is unstable (at leats one

pole becomes positive), then the system is deadlock-free (Proposition 3.30). Since this system has only
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one elementary T-semiflow, deadlock-freeness implies liveness (equivalently, mD is the unique non-live

equilibrium marking).

Example 3.14. Now, consider the system of fig. 3.6(b). It has 16 configurations but only three with

deadlocks:

C1 = {(t3, p5) , (t4, p6) , (t5, p8) , (t6, p5)}

C2 = {(t3, p5) , (t4, p2) , (t5, p8) , (t6, p5)}

C3 = {(t3, p5) , (t4, p2) , (t5, p4) , (t6, p5)}

(the arcs that constrain transitions t1, t2, t7 and t8 are not written because they are the same for all the

configurations). Configuration C2 has infinite deadlocks (∃η ̸= 0 satisfying (3.9)). All deadlocks in the

system are connected. Computing the lowest order terms of the characteristic polynomial for the three

cases we obtain

C1 : s3λ1λ2λ7λ4(λ3λ8 − λ5λ6)

C2 : s4 [λ1λ2λ7(λ3λ8 − λ5λ6) + λ2λ7λ8(λ1λ6 − λ3λ4)]

C3 : s3λ2λ7λ8λ5(λ1λ6 − λ3λ4)

For any timing λ s.t. λ3λ8 = λ5λ6 and λ1λ6 = λ3λ4, a variable zero valued pole is added to every

deadlock configuration. In this system, every possible non-live equilibrium marking mD is actually a

deadlock one, i.e., Σ•
D = T . Nevertheless, if a variable zero valued eigenvalue is added then there exists

an eigenvector v ̸= 0 s.t. [ΛΠDv]i > 0 for some ti, so, according to Proposition 3.31, non live markings

in which ti is dead are not reachable from a positive initial marking. Finally, since every non-live marking

is a deadlock one, then the system is live.

Example 3.15. The system of fig. 3.7(a) has two different minimal T-semiflows, whose supports are

covered, independently, by siphons Σ1 = {p4, p5, p6} and Σ2 = {p9, p10, p11}. That means that there

exist non-live equilibrium markings that are not deadlocks. Now, if the timing λ is s.t. λ1 = λ3, the

siphon Σ1 conserves its total marking (as in the system of figure 3.5(a)). But, if λ5 > λ7 then the siphon

Σ2 will empty, so, the system does not reach a deadlock, but it becomes non live. Nevertheless, if λ is

s.t. λ1 = λ3 and λ5 = λ7, both siphons remain marked, for all time, i.e., the timed system is live.

3.6 Computing a timing for λ-Ct and λ-Cv

In this section, it will be computed a timing in order to enforce λ-Ct (thus timed-liveness) in the

corresponding region (λ-Ct is sufficient for this, assumingm0 > 0, according to Theorem 3.28). Similarly,

an algorithm for computing a timing that leads to λ-Cv, thus boundedness, will be provided.

In order to cope with different constraints, given some nominal rates λN the transitions are classified

as:

1) Uncontrollable, whose set is denoted as Tnc. The rates of these must be equal to the nominal ones.

2) Weakly controllable, whose set is denoted as Twc. The rates of these can be decreased (but not
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Fig. 3.7: (a) TCPN system with two independent siphons. (b) EQ unbounded TCPN model.

increased) with respect to their nominal values.

3) Freely controllable (Tfc). The rates of these can be modified freely, but they must be positive.

Note that controllable and uncontrollable transitions were defined in Subsection 1.4.5 in a different

way. Nevertheless, the use of the same terms for the classification introduced above obeys to the con-

trol interpretation that will be introduced in the following subsection, where the equivalence of these

definitions will be explained.

Without loss of generality, let us suppose that the first columns of C correspond to transitions in Tfc,

the following columns are related to transitions in Twc, while the last columns are related to transitions

in Tnc. In this way, matrices C, Λ and Πi have the following structure:

C =
[
Cfc Cwc Cnc

]

Λ =

 Λfc 0 0

0 Λwc 0

0 0 Λnc

 , Πi =

 Πfc
i

Πwc
i

Πnc
i


where Cfc (resp. Πfc, Λfc), Cwc (resp. Πwc, Λwc) and Cnc (resp. Πnc, Λnc) correspond to the columns

(resp. rows, columns & rows) of C (resp. Π, Λ) related to transitions in Tfc (resp. Twc, Tnc). Similarly,

matrix Bx can be written as [(Bfc
x )T , (Bwc

x )T , (Bnc
x )T ]T .

The following algorithm computes a timing (if it exists) that enforces λ-consistency at a configuration

Πi, fulfilling the constraints imposed to the transitions.

Algorithm 3.4. Computation of a timing for inducing λ-Ct.
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Compute vectors v and η that fulfill the following linear constraints:

[
ΛncΠnc

i , −Bnc
x

]
·

[
v

η

]
= 0 I 0

0 Bfc
x

Λwc
N Πwc

i , −Bwc
x

 ·

[
v

η

]
≥

 1

1

0

 ϵ with ϵ ∈ R+

Define the rates of the transitions in Tfc ∪ Twc as: λj = [Bxη]j/[Πiv]j .

Proof. Consider (3.4) which is equivalent to λ-Ct. This can be expressed as three simultaneous equal-

ities: ΛfcΠfc
i v = Bfc

x η, ΛwcΠwc
i v = Bwc

x η and ΛncΠnc
i v = Bnc

x η.

Since Λnc is fixed, the third equality is equivalent to [ΛncΠnc
i ,−Bnc

x ]·[v,η]T = 0. Since Λfc can be freely

defined, then, given [v,η] with v > 0, Λfc can always be computed by elements: λj = [Bxη]j/[Πiv]j

∀tj ∈ Tfc. By using these expressions, the timing for transitions in Tfc ∪ Tnc can be computed. Now,

the rates of the transitions in Twc must fulfill λj ≤ λN,j . This is equivalent to ΛwcΠwc
i v ≤ Λwc

N Πwc
i v

(where Λwc
N denotes the firing rate matrix of λN restricted to Twc), since Πwc

i v > 0. Therefore, given

[v,η] s.t. Λwc
N Πwc

i v ≥ Bwc
x η, the rates of Λwc can be always computed by elements: λj = [Bxη]j/[Πiv]j

∀tj ∈ Twc. These conditions can be combined in order to obtain the given algorithm.

Example 3.16. Consider the TCPN system of fig. 3.6(a) with nominal rates λN = [2, 1, 3, 3]T ,

Tnc = {t1, t2} and Twc = {t3, t4}. This net is not TEC, but it is consistent. There are two minimal

siphons (Σ1 = {p1, p3} and Σ2 = {p2, p4}) that can be emptied in the untimed model. This occurs at

m1
D = [0, 6, 0, 0]T and m2

D = [6, 0, 0, 0]T , which are related to configurations Π1 in which p1 constraints

t1 and t2, and Π2 in which p2 constraints both, respectively. Since this net is not live as untimed, the

goal is to compute a timing s.t. the timed system is timed-live.

Let us compute, for each configuration, a timing that enforces λ-consistency, by using the previous

algorithm (as shown in Example 3.12, there do not exist a timing that simultaneously enforce λ-Ct at

both configurations). For Π1, since Tnc = {t1, t2}, the first and second rows of Π1 and B1
x correspond

to Πnc
1 and Bnc

x , respectively. The third and fourth rows of Π1 and B1
x correspond to Πwc

1 and Bwc
x . In

this case, vectors vT = [1.12, 1, 0.84, 1] and ηT = [0.56] were obtained (with ϵ = 0.1). Now, λ1 and λ2

are fixed since t1, t2 ∈ Tnc, then, only t3 and t4 are computed in the second step of the algorithm. In

this way, firing rates λ1
A = [2, 1, 0.5, 1.12]T were obtained. Similarly, firing rates λ2

A = [2, 1, 1, 1.5384]T

were obtained for Π2. Thus, according to Theorem 3.28, the net system with the timing λ1
A is timed-live

while evolves inside ℜ1. On the other hand, the net system with the timing λ2
A is timed-live while evolves

inside ℜ2.

The problem of finding λ for enforcing λ-Cv is more difficult. This can be reduced by assuming

Tfc = ∅ (for this, consider each t ∈ Tfc as weakly controllable with a large nominal rate). Thus,

Bi
z = [Bi,wc

z ,Bi,nc
z ]. Denote as T i

nec the set of transitions that are not exc at Πi. A timing (if it exists)

that enforces λ-Cv atΠi, fulfilling the constraints imposed to the transitions, can be computed as follows:
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Algorithm 3.5. Computation of a timing for inducing λ-Cv.

Compute vectors v and η that fulfill the following bilinear constraints:

[
wTηT

]
·

[
CncΛnc

−Bi,nc
z

]
= 0

[
wT ηT

]
·

[
I

0

]
≥ 1 · ϵ with ϵ ∈ R+

∀tj ∈ Twc ∩ T i
nec : ηT

[
Bi

z

]j (
[C]

j
)T

w ≥ 0

∀tj ∈ Twc ∩ T i
nec : wT [CΛN ]

j
(
[CΛN ]

j
)T

w ≥ ηT
[
Bi

z

]j ([
Bi

z

]j)T
η

∀tj ∈ Twc/T
i
nec : wT [C]

j
= 0

Define the rates of the transitions in Twc ∩ T i
nec as: λwc

j =
[
ηTBz

]
j
/
[
wTC

]
j
.

Define the rates of transitions in Twc/T
i
nec can be defined arbitrarily but fulfilling λN,j ≥ λj ≥ 0.

Proof. Condition (3.3) can be expressed as: wTCwcΛwc = ηTBi,wc
z and wTCncΛnc = ηTBi,nc

z .

Given [wT ,ηT ], Λwc can be computed by elements as: λj = [ηTBi
z]j/[w

TC]j , whenever [wTC]j ̸= 0,

∀tj ∈ Twc. Nevertheless, in order to obtain nonnegative rates, it is required either [ηTBi
z]j > 0 ∧

[wTC]j > 0, or [ηTBi
z]j < 0 ∧ [wTC]j < 0, or [ηTBi

z]
j = 0, for all tj ∈ Twc. These constraints can be

expressed as ηT [Bi
z]

j([C]j)Tw ≥ 0 and wT [C]j = 0 → ηT [Bi
z]

j = 0. Moreover, in order to fulfill with

λj ≤ λN,j ∀tj ∈ Twc, it is required that |[wTCΛN ]j | ≥ |[ηTBi
z]j | for all tj ∈ Twc. This last condition

can be expressed as: wT [CΛN ]j([CΛN ]j)Tw ≥ ηT [Bi
z]

j([Bi
z]

j)Tη. Note that this last inequality also

implies wT [C]j = 0 → ηT [Bi
z]

j = 0. Furthermore, if tj is a exc transition, then [Bi
z]

j = 0, thus, all

the previous conditions are fulfilled at this. Nevertheless, it is required that wT [C]j = 0 for each exc tj .

Combining these conditions, the current algorithm is obtained.

Example 3.17. Consider the TEC model of fig. 3.7(b), with Tnc = {t1, t5} and Twc = {t2, t3, t4, t6}.
Denote as Π1 the configuration in which p1 constraints both t1 and t2, and Π2 the other. Consider

the nominal rates as λN = [1, 3, 5, 5, 1, 3]. This net model is consistent but not bounded, thus, the goal

in this example is to obtain a timing for enforcing λ-conservativeness, and thus boundedness. Consider

first the model at Π1. By using previous algorithm, a timing for making the system λ-Cv at Π1 can be

computed. For this, a basis for the left annuler of Π1 is given by:

B1
z =

[
1 −1 0 0 0 0

0 0 0 0 1 −1

]

Since Tnc = {t1, t5}, the first and fifth columns of C and B1
z correspond to Cnc and B1,nc

z . In this

way, vectors wT = [1, 1, 1, 1, 1] and ηT = [1, 0] were obtained (with ϵ = 0.1). Now, λ1 and λ5 are fixed
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since Tnc = {t1, t5}, while t3 and t4 are exc, so, λ3 and λ4 are settled with the nominal values. Only t2

and t6 are computed in the second step of the algorithm. In this way, the following rates, with which

the model is λ-Cv at Π1, were obtained λA = [1, 0.5, 5, 5, 2.741]T . Furthermore, since the net is TEC,

then the model with the same timing is also λ-Cv at Π2 (Proposition 3.19). Therefore, the TCPN with

the rates λA is bounded.

These algorithms can also be used for enforcing λ-Ct and λ-Cv in more than one configuration with

the same timing, just by adding the corresponding constraints at step 1. Nevertheless, it may occur the

case that a single timing cannot enforce λ-Ct or λ-Cv in more than one region, as shown in the Example

3.12.

3.6.1 Control interpretation

A timing that makes a TCPN model bounded and/or live can be interpreted as a control action applied

to a TCPN with different nominal rates. This will be explained through this subsection.

As introduced in Subsection 1.4.5, given a TCPN system having (nominal) rates λN , a control

action is defined as a modification of the flow through the controllable transitions. In this subsection a

distinction between two kind of controllable transitions, named weekly and freely controllable, is made.

The flow of a weakly controllable transition can only be reduced from its nominal value, while the flow

of a freely controllable transition can be either increased or decreased with respect to this value. In this

way, the control vector u ∈ R|T | must fulfill (uj = 0 if tj ∈ Tnc), (uj ≥ 0 if tj is weakly controllable),

and, in any case, (λj · enabj(τ) ≥ uj), so the effective flow is nonnegative. The results introduced in this

chapter can be interpreted as the solution of the following control problems:

Definition 3.33. Consider a TCPN system ⟨N ,λN ,m0⟩.

P.I Suppose that the system is unbounded as untimed. Then, compute a control law u(m) s.t. the

controlled timed system is bounded.

P.II Suppose that there exists a marking mD ∈ Class(m0) reachable in the autonomous model, at

which some transitions are dead. Then, compute a control law u(m) s.t. the marking mD is

avoided in the controlled timed system.

Furthermore, the control action must fulfill the required constraints:

- The effective flow must be non negative, i.e., ∀tj [ΛNΠ(m)m]j ≥ uj .

- The effective flow of weakly controllable transitions can only be reduced from its nominal value,

i.e., uj ≥ 0 ∀tj ∈ Twc.

- Control action cannot be applied to uncontrollable transitions, thus uj = 0 ∀tj ∈ Tnc.

Proposition 3.34. Given a TCPN with nominal rates λN and the problem P.I. (resp. P.II), consider

a timing λA s.t. the system ⟨N ,λA,m0⟩ is bounded (resp. mD is avoided), at a given configuration,

fulfilling λA,j ≥ 0 ∀tj, λA,j = λN,j ∀tj ∈ Tnc and λA,j ≤ λN,j ∀tj ∈ Twc.

Then, the nominal system ⟨N ,λN ,m0⟩ will be bounded (resp. mD will be avoided) under the control

law:

uA = [ΛN −ΛA]Π(m)m (3.10)
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Proof. The flow of the system with the timing λA is equivalent to the flow of the system with the

original nominal rates λN but under a control action uA, i.e., ΛAΠ(m)m = ΛNΠ(m)m− uA. On the

other hand, note that, ∀tj ∈ Tnc, since λA,j = λN,j then uA,j = 0. Similarly, ∀tj ∈ Twc, uA,j ≥ 0 because

λN,j ≥ λA,j . Furthermore, since λA,j ≥ 0 ∀tj then [ΛNΠ(m)m]j ≥ uA,j . Therefore, all the required

constraints are fulfilled.

Example 3.18. Consider the TCPN system of fig. 3.6(a) with the parameters described in Example

3.16. In that example, two firing rates, λ1
A = [2, 1, 0.5, 1.12]T and λ2

A = [2, 1, 1, 1.5384]T , were obtained

in order to induce λ-Ct in two deadlock configurations, Π2 and Π2. Thus, the original TCPN with the

nominal rates is timed-live while the control law (3.10) is being applied, where λA = λ1
A while the system

is in Π1, λA = λ2
A while the system is in Π2 and λA = λN in other configurations.

Consider now the TEC model of fig. 3.7(b) with the parameters described in Example 3.17. There,

the timing λA = [1, 0.5, 5, 5, 2.741]T was computed in such a way that the system ⟨N ,λA,m0⟩ is bounded
in all the configurations. Therefore, according to Proposition 3.34, the TCPN with the nominal rates

λN is bounded while the control law (3.10) is being applied.

3.7 Conclusions on timing-dependent properties

The concepts of λ-Cv and λ-Ct were introduced in this chapter, in order to analyze the case where

the timing λ allows a TCPN system to behave as conservative and/or consistent when the autonomous

contPN do not exhibit these properties. The existence of a timing for enforcing such properties was

analyzed first for the general case (Table 3.1) and later for particular net subclasses (Table 3.2).

Liveness of TCPN was studied in more detail, by splitting the problem into two different ones:

the existence of non-live equilibrium markings, and the reachability of them. The first problem is an

algebraic one that can be easily solved in polynomial time (LPP in Subsection 3.4.1). It was shown that

non-live markings are strongly related to unmarked siphons (Proposition 3.24). Later, it was proved

that λ-Ct is sufficient for timed-liveness (Theorem 3.28, assuming m0 > 0), while the system evolves

inside the corresponding region. From a dynamic systems’ perspective, λ-Ct implies that each minimal

siphon in the net is λ-Cv, while this property means the existence of proper state invariants, i.e., the

system evolves on a manifold on which the minimal siphons cannot be emptied, thus liveness follows

(Subsection 3.5.1). By using some classical results on stability in linear systems, a couple of sufficient

conditions for avoiding non-live equilibrium markings, and sufficient conditions for reaching them, have

been introduced (Propositions 3.30 and 3.31). Some illustrative examples were presented in order to

interpret the obtained results at the net level.

Finally, algorithms, devoted to compute λ s.t. the TCPN is λ-Ct or λ-Cv, enforcing thus liveness

and boundedness, respectively, were provided.
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Chapter 4

Controllability

4.1 Introduction

Timed continuous Petri nets are essentially continuous-state systems (in fact, they are piecewise-linear

hybrid systems, but the discrete state or mode is implicit on the continuous state). In this way, re-

garding control, it seems natural to consider two different approaches: 1) the extension of control tech-

niques used in discrete PN’s, as the supervisory-control theory (for instance, [Holloway et al., 1997b,

Iordache and Antsaklis, 2006]); and 2) the application of control techniques developed in the Control

Theory for continuous-state systems. Most frequently, the control objective in the first approach is to

meet some safety specifications, like avoiding forbidden states (deadlocks, mutual exclusions or imposing

boundedness), by means of disabling transitions (events) at particular discrete states. A particular ob-

jective of the second approach consists in driving the system, by means of a (usually) continuous control

action, towards a desired steady state (stabilization at a set-point), or state trajectory (tracking, see for

instance [Chen, 1984]).

Through this dissertation, the second approach is considered. In particular, the control objective

consists in driving a TCPN system towards a desired target marking (the marking of the TCPN repre-

sents the state of the system and approximates the average marking in the original discrete PN), most

frequently a potential steady state. As already explained in Subsection 1.4.5, the only control action

that is allowed in continuous Petri nets is the reduction of the flow or instantaneous throughput at cer-

tain transitions, named controllable (equivalently, a reduction of the average frequency of occurrence of

certain events in the original PN). Increasing such flow (frequency of occurrence) is not allowed since the

systems that are frequently modeled evolve according to a consumption/production logic (e.g., manufac-

turing systems, supply chains, traffic systems) in which the events (machines for instance) have nominal

speeds that cannot be increased. This control problem has been addressed by different authors in the

field of TCPNs, proposing control techniques ranging from fuzzy logic control [Hennequin et al., 1999],

gradient-based controllers [Lefebvre et al., 2007], model predictive control [Mahulea et al., 2008a], feed-

back control synthesis based on linear matrix inequalities [Kara et al., 2009], etc. A discussion on control

techniques for TCPNs is provided in Chapter 5.

Assuming that the continuous model approximates the discrete one, enforcing a desired target marking

in the continuous PN is analogous to enforcing an average marking in the original discrete model,

which may be interesting in several kinds of systems. For instance, this idea has been illustrated for
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Fig. 4.1: (a) Manufacturing cell, and (b) its Petri net model.

deterministically timed models of manufacturing lines [Amrah et al., 1997] and for the stock-level control

of a stochastically timed automotive assembly line model [Vázquez and Silva, 2009b] (explained in detail

in Chapter 6).

In TCPNs it is frequently assumed that the target marking is reachable, however, this may be difficult

to verify. In fact, it is known that TCPN systems are most frequently not controllable in the classical

continuous-state sense, i.e., not any marking can be reached from any other [Mahulea et al., 2008b]. For

this reason, a deeper understanding on the controllability of TCPNs is required.

Let us illustrate, with an example, the controllability notion that will be studied through this chapter.

Example 4.1. Consider the manufacturing cell of fig. 4.1(a) and its PN model depicted on fig.

4.1(b). This is composed of two process machines M1 and M2, a robot R that loads and unloads both

machines, and two conveyors, one intermediate for transferring partially processed material from M1

to M2 (denoted as C1), and the other (C2) for taking back the empty pallets from M2 to M1. Let us

consider the corresponding TCPN model with certain rates for the transitions (the average frequency

with which the events naturally occur if they are enabled). Let us assume that the only allowed control

action consists in reducing the speed (frequency) with which the robot unload the material from M2,

i.e., transition t4 is the only controllable one. Observe that the speed of unloading material cannot be

increased w.r.t. its nominal value. Suppose that the most efficient operation is obtained if C1 has an

average number of pieces of 1.8 (equivalently, if m[p3] = 1.8 in the TCPN). Such stationary operating

point (a forced equilibrium point in the state space) corresponds to a particular target marking, which
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can be reached from the initial state by delaying the unloading of M2 (i.e., by reducing the firing speed

of t4 in a certain degree). Now, suppose that, after some time, it is decided to set the operating point

in such a way that the average number of pieces in C1 is one, i.e., m[p3] = 1 in the TCPN. It can be

proved that, by reducing the speed at t4, it is not possible to drive the system towards such a steady

state from the current one (from the marking in which m[p3] = 1.8). In this way, this system exhibits a

lack of controllability in the classical continuous-state sense.

From a continuous-state systems perspective, a TCPN system is a piecewise-linear one, in which the

control actions must be nonnegative (because it is allowed to reduce, but not to increase, the activity of

some of the events in the system) and upper bounded by a piecewise-linear function of the state (because

the maximum amount of reduction is limited by the amount of existing activity), i.e., the state equation

has the form:

•
m = Aim+Bu

where u is subject to 0 ≤ u ≤ Lim and i ∈ {1, ..., r} depends on the value of m, the state

The reachability and controllability problems for such kind of continuous-state systems is not trivial

(for instance, as pointed out by [Bemporad et al., 1999]). Despite the fact that a lot of works can be

found in the literature addressing the controllability problem for hybrid systems, they mostly focus

on very particular classes, due to the complexity involved in the analysis. For instance, for particular

cases of switching systems [Ezzine and Haddad, 1989, Sun and Zheng, 2001, Xie and Wang, 2002], for

linear complementarity systems [Camlibel, 2007], for planar (bi-dimensional) bimodal piecewise linear

systems [Xu and Xie, 2005] and for general piecewise-affine systems [Habets and van Schuppen, 2001].

A more detailed discussion is provided in Section 4.3. Nevertheless, in the general case (when there are

transitions-events that cannot be controlled), TCPN systems are frequently not controllable. Moreover,

the non negativeness of the input, required by TCPNs, adds complexity to the controllability analysis

(e.g., for linear systems, the controllability with nonnegative inputs depends on the eigen-structure of

the state matrix [Brammer, 1972]). Furthermore, the existence of marking conservation laws in these

systems (e.g., yTm = constant) leads to the existence of state invariants (under any control action),

destroying in this way the controllability property even for the case in which all the transitions-events

can be controlled [Mahulea et al., 2008b].

By taking advantage of the particular structure of TCPN systems, in [Jiménez et al., 2005] it was

proved that for the particular subclass of Join-Free TCPNs there exists an interesting set of markings in

which the system exhibits the controllability property, i.e., a TCPN can be “locally” controllable. Such

idea will be extended here in order to consider any TCPN, by studying the controllability over sets of

interesting markings (in particular, over equilibrium markings, i.e., “potential steady states” where the

system can be stabilized).

The reachability and controllability properties are studied through this chapter for general TCPN

systems. Firstly, the notion of controllability used in this work is provided and compared with other

controllability definitions introduced in the literature for related hybrid systems. Later, the controlla-

bility is analyzed for the case in which all the transitions are controllable, providing a polynomial time

characterization. Finally, the controllability is studied for systems with uncontrollable transitions.
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4.2 State invariant and equilibrium sets

In this section, a few useful concepts will be introduced regarding equilibrium markings.

Given a P-flow y, for any reachable marking m, yTm = yTm0. Then, whenever a TCPN system

has P-flows, linear dependencies between marking variables appear, introducing state invariants (so,

under any control action, the evolution of the system is restricted to the manifold where yTm = yTm0).

Therefore, systems with P-flows are not controllable in the classical sense [Mahulea et al., 2008b]. Nev-

ertheless, we are interested in the study of controllability “over” this invariant, which happens to be the

set Class(m0) defined in Subsection 1.4.3.

Equilibrium markings represent the “stationary operating points” of the modeled system. For this

reason, the study of controllability over sets of these markings is particularly interesting, since controllers

are frequently designed in order to drive the system towards a desired stationary operating point. The

following definitions will be useful for the study of controllability for systems with uncontrollable tran-

sitions.

Definition 4.1. The set of equilibrium markings is defined as:

E = {m ∈ Class(m0)|∃u s.t. ΛΠ(m)m ≥ u ≥ 0, u[Tnc] = 0 and C(ΛΠ(m)m− u) = 0}

The set of equilibrium markings in the i-th region is defined as:

Ei = {m|m ∈ E ∩ ℜi}

Note that, if all the transitions are controllable then E = Class(m0) (by defining u = ΛΠ(m)m).

By definition, sets Ei are convex. A useful matricial representation of a given set Ei is introduced next:

Definition 4.2. A full column rank matrix Gi is called Generator of Ei ̸= ∅ if it fulfills:

a) ∀m1,m2 ∈ Ei, the vector (m1−m2) is in the range of Gi (it is a linear combination of the columns

of Gi).

b) Gi is minimal (if one of its columns is removed then a is false).

A generator Gi is a kind of basis of Ei ̸= ∅ (formally speaking, it is not a basis because Ei is not a

vector space). Observe that, by definition, the columns of Gi are linear combinations of those of C, the

incidence matrix, since the span of Gi is a subset of the span of C. In the following, an algorithm for

computing this matrix, whose proof is given in the Appendix C, is provided.

Algorithm 4.1. Computation of a generator Gi.

For each tj ∈ Tc = {tc1 , ..., tc|Tc|
} do

Compute a solution dj for: [
CΛΠi

BT
y

]
dj =

[
[C]j

0

]
(4.1)
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Fig. 4.2: A TCPN system with λ = [1, 1, 1]T and Tc = {t1, t2}. Since there are two P-semiflows, which impose
the marking invariants m[p1]+m[p3] = 1 and m[p2]+m[p3] = 2, the markings at p1 and p2 are enough
to represent Class(m0). There are two different regions. The equilibrium set is the shadowed area.

If there exists such a solution dj then add it as a column of Gi

end for

Compute a basis D for the right annuler of[
CΛΠi

BT
y

]
D = 0 (4.2)

If D ̸= 0 then add the columns of D to Gi (i.e., Gi has the form [dc1 , ...,dc|Tc| ,D]).

If Gi does not have full column rank, then remove linearly dependent columns until obtaining a full

column rank matrix.

If the only solution for (4.2) is D = 0 then [(CΛΠi)
T ,By]

T has full column rank. In such case, for

each tj ∈ Tc there exists dj solution for (4.1). This algebraic property is interesting for controllability,

as will be shown in Subsection 4.5.3.

The following example illustrates some definitions given in this section.

Example 4.2. Consider the system of fig. 4.2 with Λ = I and Tc = {t1, t2}. Fig. 4.2 shows

the projection of Class(m0) on the plane defined by the marking at places p1 and p2. There are two

configurations in this system: C1 = {(p1, t1), (p3, t2), (p4, t3)} and C2 = {(p2, t1), (p3, t2), (p4, t3)}. ℜ1

and ℜ2 are the regions related to C1 and C2, respectively. The shadowed triangle with all its edges and

vertices corresponds to E1. Actually, in this example E1 = E and E2 = ∅. A generator of E1 is computed

by using Algorithm 4.1 as (in this case, a right annuler D in (4.2) does not exist):

G1 =
[
d1 d2

]
=

[
0.5, 0.5, −0.5, −0.5

−0.5, 0.5, 0.5, −0.5

]T

The restriction of vectors d1 and d2 to the places p1 and p2 is also drawn in fig. 4.2.
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4.3 Controllability definition

The classical linear systems controllability definition (recalled in Subsection 1.6.2) cannot be applied

to TCPN systems because the set of reachable markings never compose a vector space (all reachable

markings are nonnegative and belong to Class(m0)). Moreover, in TCPN systems the input must be

s.b., i.e., 0 ≤ u ≤ ΛΠ(m)m, ui = 0 ∀ti ∈ Tnc. Therefore, the following reformulation of the classical

controllability definition is proposed.

Definition 4.3. The TCPN system ⟨N ,λ,m0⟩ is controllable with bounded input (BIC) over S ⊆
Class(m0) if for any two markings m1,m2 ∈ S there exists an input u that transfers the system from

m1 to m2 in finite or infinite time, and it is suitably bounded, i.e., 0 ≤ u ≤ ΛΠ(m)m, and ∀ti ∈ Tnc

ui = 0 along the marking trajectory.

It is important to remark that controllability depends on the structure and timing of the system,

independently of the particular initial marking.

From the control theory perspective, the TCPN model under ISS is a hybrid system. In particular,

it is a piecewise linear system with nonnegative and dynamically upper bounded (constrained) input.

In the literature, a lot of results can be found on the controllability analysis for particular classes of

hybrid systems. Nevertheless, the peculiarities of TCPN systems, like the particular constraints on the

input and the state invariants, are not usually considered. For instance, in [Sun and Zheng, 2001] and

[Xie and Wang, 2002] sufficient and necessary conditions for controllability of 3-dimensional switched

linear systems and single switching sequence systems were provided, respectively, but always under the

assumption of unconstrained inputs. In [Ezzine and Haddad, 1989] it was studied the controllability for

switching linear systems with a deterministic sequence. The classical work of Brammer [Brammer, 1972],

regarding to controllability in linear systems with bounded inputs, has been extended in [Camlibel, 2007]

to a particular class of piecewise linear systems known as linear complementarity systems (dynamical

extensions of the linear complementarity problem that can model interesting physical systems), but they

are not close to general TCPNs.

Authors in [Bemporad et al., 1999] and [Habets and van Schuppen, 2001] studied the controllability

for Piecewise Affine Systems (PWA), which is a more general class of hybrid system that includes the

TCPNs under ISS. The controllability of planar (bi-dimensional) bimodal piecewise linear systems was

studied in [Xu and Xie, 2005]. This last work is very particular and the analysis is based on the study of

the entries of the matrices of the system, which is an approach difficult to generalize for TCPNs having

more than two places. In [Bemporad et al., 1999] the controllability for PWA systems was addressed as

the capability of the system for reaching any state of the final-set from any initial state contained in the

initial-set. There, it was shown that observability and controllability properties for these systems can

be very complex and counterintuitive. Furthermore, controllability tests, based on Mixed-Integer Linear

Programming, were provided. Nevertheless, they exhibit an exponential complexity in the reachability-

time, then, its application becomes particularly prohibitive for TCPNs, where it is frequent to find

systems with a significant number of state variables.

In [Habets and van Schuppen, 2001] a sufficient condition for “reachability”(that is also extended to

controllability) was provided for PWA systems. There, it is considered that the continuous subsystem
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evolves inside polytopes (convex sets of states), each one related to a discrete state. Recalling from there,

any continuous state and any discrete state can be reached if: 1) for each polytope, any continuous state is

reachable from any other through a trajectory inside the polytope; and 2) any discrete state is reachable.

In TCPNs those conditions would mean: 1) for each region, any marking is reachable from any other

through a trajectory inside the region, and 2) a marking inside each region is reachable. Nevertheless, this

notion of “reachability”is too strong for TCPNs. In fact, TCPN systems with uncontrollable transitions

are frequently not controllable over full regions, and subsets of these must be considered. Even in such

case, considering convex subsets of regions as the polytopes, while in [Habets and van Schuppen, 2001]

it is required that the system must remain inside the given subset (polytope), that is not required in our

controllability notion, allowing thus more trajectories.

Regarding continuous Petri nets, controllability was firstly studied in [Amer-Yahia et al., 1996] for

Join-Free nets, pointing out that the classical rank condition is not sufficient for controllability (which

will be explained in Subsection 4.5.1). From a different perspective, in [Jiménez et al., 2005] the con-

trollability for Join-Free TCPNs under ISS with uncontrollable transitions was studied. There it was

characterized an interesting invariant set, named Controllability Space (CS), in which the system ex-

hibits the controllability property. Nevertheless, since this CS set is marking dependent, the results

of [Jiménez et al., 2005] become difficult to extend to general subclasses of nets, where the existence of

several regions makes the general reachability problem untractable.

In this way, the introduction of the controllability definition provided here is motivated by the need

of a precise notion of controllability that considers the peculiarities of TCPNs and a set-point control

objective. Let us remark that the forthcoming analysis is not restricted to particular subclasses of PN’s

and it is based on a blend of the classical techniques from state-continuous control theory and the general

Petri nets one.

4.4 Controllability if all the transitions are controllable

In this section, the reachability and controllability properties are studied assuming that all the tran-

sitions are controllable. The results introduce necessary and sufficient conditions for reachability and

controllability over Class(m0).

Proposition 4.4. Let ⟨N ,λ,m0⟩ be a TCPN system in which Tc = T . A marking m1 ∈ Class(m0) is

reachable from m0 ∈ int{Class(m0)} iff ∃σ ≥ 0 such that Cσ = (m1 −m0).

Proof. Let us prove first the sufficiency. Consider σ ≥ 0 such that Cσ = (m1 − m0) with m1 ∈
Class(m0). If m ∈ int{Class(m0)} then ΛΠ(m)m > 0. In this case, since all the transitions are

controllable, it is always possible to compute the input u = (ΛΠ(m)m − ασ), where α > 0 is a small

enough scalar. This input is s.b. since ασ ≥ 0 implies u ≤ ΛΠ(m)m, moreover, u ≥ 0 for a small

enough α. Substituting ασ = (ΛΠ(m)m − u) into the state equation (1.6) we obtain
•
m = Cασ.

Thus, according to the hypothesis,
•
m = α(m1 −m0). Therefore, it is always possible to direct the field

vector in all m ∈ int{Class(m0)}, including the line connecting m0 with m1 denoted as L = {m|m =

βm0 + (1− β)m1}, to the direction (m1 −m0), and thus to reach m1 through a trajectory in L.

For the necessity, suppose that m1 is reachable, at time τ1, from m0 by means of a s.b. input u(τ).
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Then, integrating the state equation, it is obtained:∫ τ1

0

•
m(τ)dτ = (m1 −m0) = C ·

∫ τ1

0

(ΛΠ(m(τ))m(τ)− u(τ))dτ

Now, since u(τ) is s.b., then (ΛΠ(m(τ))m(τ) − u(τ)) ≥ 0 for all τ . Thus, defining σ =
∫ τ1
0

(ΛΠ

(m(τ))m(τ)− u(τ)), it is obtained that (m1 −m0) = Cσ and σ ≥ 0.

Lemma 4.5. Let ⟨N ,λ,m0⟩ be a TCPN system in which all the transitions are controllable. The system

⟨N ,λ,m0⟩ is BIC over int{Class(m0)} iff the net is consistent.

Proof. Consider two markings m1 ∈ int{Class(m0)} and m2 ∈ Class(m0). Since both markings

belong to Class(m0), then there exists v s.t. Cv = (m2−m1). Furthermore, since the net is consistent,

then ∃x > 0 s.t. Cx = 0. In this way, for a large enough scalar β > 0, the vector σ = v + βx fulfills

σ > 0. Then, according to Proposition 4.4, m2 is reachable from m1. Therefore, if the net is consistent

then any marking in Class(m0) is reachable from any other in int{Class(m0)}.
Now, for the other implication, consider any vector d ∈ span(C) and a markingm1 ∈ int{Class(m0)}.

Then, there exists a scalar β > 0 such that m1 + βd ≥ 0. Let m2 = m1 + βd, then m2 ∈ Class(m0).

Since the system is BIC over the interior of Class(m0), m2 is a particular solution of the fundamental

equation, so (m2 − m1) = βd = Cσ, where σ ≥ 0. Therefore, ∀d ∈ span(C),∃σ such that Cσ = d.

Finally, it can be proved that this property implies that ∃x > 0 such that Cx = 0, i.e., the net is

consistent.

Remark 4.6. The reachability and controllability over int{Class(m0)}, when all the transitions are

controllable, depends only on the structure of the net and can be verified in polynomial time. The timing

λ only affects the time required for reaching the desired markings.

Next, the previous result regarding the controllability over int{Class(m0)} is extended to the com-

plete Class(m0), by including the border markings of this set in the analysis.

Theorem 4.7. Let ⟨N ,λ,m0⟩ be a TCPN system in which all the transitions are controllable. The

system ⟨N ,λ,m0⟩ is BIC over Class(m0) iff the net is consistent and there do not exist empty siphons

at any marking in Class(m0).

Proof. First, according to lemma 4.5, consistency is sufficient and necessary for controllability in

the interior of Class(m0). Furthermore, consistency also implies that any marking at the border of

Class(m0) is reachable from any other in the interior. Then, the proof is completed if we demonstrate

that, a marking mf ∈ int{Class(m0)} is reachable from a marking m0 at the border iff there are not

empty siphons at m0.

If there exists an empty siphon at m0 then @u that transfers the system to some mf > 0, because

empty siphons can never gain marks. For the other implication, consider an input u such that for any

enabled transition tj , uj < [ΛΠ(m)m]j . Suppose that such input is being applied from m0. If there

exists a place pi that remains unmarked for all time, then for each input transition tj to this place, there

exists an input place pk to tj , which remains unmarked for all time. Repeating this reasoning, it can

be seen that pi remains unmarked for all time iff it belongs to an unmarked siphon, so, if there are not
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empty siphons at m0 then pi will eventually get marked, and the same applies for all empty places (i.e.,

such input transfers the system to some mf > 0).

Remark 4.8. The controllability of a TCPN over Class(m0), when all the transitions are controllable,

depends on the structure of the net, but it is independent of the timing and initial marking (this property

does not depend on the particular value of m0, since it holds for any marking inside Class(m0)).

Furthermore, the BIC property can be verified in polynomial time by using the following algorithm:

Algorithm 4.2. Controllability when all the transitions are controllable.

Solve C · x = 0, s.t. x > 0

If there is not solution for x then the system is not BIC over Class(m0)

else

Solve the following inequalities for m and y :

m ≥ 0

BT
y m = BT

y m0 {m belongs to Class{m0}}
y ≥ 0

yTC′ ≤ 0 {||y||is a siphon}
yTm = 0 {the siphon is empty at m}

(4.3)

where C′ = Post−Pre′ with Pre′ defined by elements as:

∀t ∈ T, ∀p ∈• tPre′(p, t) ≥ Pre(p, t) ·
∑

p′∈t• Post(p′, t).

If there is a solution then the system is not BIC over Class(m0),

else the system is BIC over Class(m0).

Proof of Algorithm 4.2: First, consistency, which is necessary for BIC (Theorem 4.7), is equivalent

to ∃x > 0 s.t. Cx = 0, i.e., the first part of Algorithm 4.2. Next, according to the results introduced

in [Ezpeleta et al., 1993] (Proposition 3.4 and Subsection 3.2), given a vector y, ||y|| is a siphon iff

y ≥ 0 and yTC′ ≤ 0, where C′ = Post − Pre′ with Pre′ defined by elements as: ∀t ∈ T , ∀p ∈•t

Pre′(p, t) ≥ Pre(p, t)·
∑

p′∈t• Post(p′, t). Thus the condition of the Theorem 4.7: ∃m ∈ Class(m0) and a

siphon Σ s.t. m(Σ) = 0, is equivalent to ∃m,y that fulfill m ≥ 0, BT
y m = BT

y m0 (i.e., m ∈ Class(m0)),

y ≥ 0, yTC′ ≤ 0 (i.e., ||y|| is a siphon) and yTm = 0 (i.e., the siphon is empty at m), i.e., the

inequalities (4.3). Note that, the existence of solutions m and y can be decided in polynomial time.

The following example illustrates the application of previous results.

Example 4.3. Consider the TCPN systems of fig. 4.3, where m0 = [2, 3, 1, 1]
T
, m1 = [1, 3, 2, 1]

T
and

m2 = [2, 1, 1, 3]
T
. For the system in fig. 4.3(a), ∃σ ≥ 0 such that Cσ = (m1 −m0), but @σ ≥ 0 such

that Cσ = (m2 −m0), then, according to Proposition 4.4, m1 is reachable but m2 is not. Therefore it

is not BIC over Class(m0). The same conclusion can be obtained by using Theorem 4.7. The shadowed

area in fig. 4.3(a) corresponds to the set of reachable markings. Note that it is the intersection of

Class(m0) and the convex cone (originated from m0) defined by vectors c′1 and c′2, which represent

the columns of C restricted to p1 and p2. Now, consider the system of fig. 4.3(b). In this, the convex
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Fig. 4.3: Two TCPN systems with identical P-flows. The shadowed areas correspond to the sets of reachable
markings. Only the system (b) is consistent and controllable over Class(m0).

cone defined by the vectors c′1, c
′
2 and c′3 covers all Class(m0), thus, according to Proposition 4.4, any

marking in Class(m0) can be reached from any other in int{Class(m0)}. The property that the convex

cone of c′1, c
′
2 and c′3 covers Class(m0) is equivalent to consistency. Thus, according to Lemma 4.5,

the same result can be obtained, i.e., the system is BIC over the interior of Class(m0). Moreover, since

at the border markings of Class(m0) there are not unmarked siphons (what can be verify by using the

Algorithm 4.2) then, according to Theorem 4.7, the system is BIC over Class(m0).

4.5 Controllability with uncontrollable transitions

In general, systems with uncontrollable transitions are not controllable over int{Class(m0)}, even if their

nets are consistent. In this case, a smaller set of markings need to be considered. For practical reasons,

the controllability will be studied here over sets of equilibrium markings. These sets are particularly

interesting, since controllers are frequently designed in order to drive the system towards a desired

stationary operating point, which corresponds to a point in the state space where the system can be

stabilized. Furthermore, since the system is linear inside each region, the controllability will be first

investigated over each Ei (equilibrium markings in ℜi).

In the following subsection, it will be shown that the BIC property is related to the concept of

null-controllability (Definition 1.26). Based on this, the main result, regarding the controllability in a

single region, will be presented in Subsection 4.5.2. Later, in Subsection 4.5.3, a few of particular but

interesting results will be derived, whose application will be illustrated through some examples. Finally,

in Subsection 4.5.4 those results are extended in order to consider several regions.

4.5.1 BIC and null controllability

Inside a given region ℜi, a TCPN model is linear and time-invariant (LTI). Accordingly, the analysis

developed in this subsection is inspired by the work of Brammer [Brammer, 1972], who first addressed
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Fig. 4.4: a) BIC around a neighborhood as a null-controllability problem. b) Case in which ∃v s.t. vT∆m(τ) ≤ 0
but vTG = 0, the system is not null-controllable but still BIC. c) Case in which ∃v s.t. vT∆m(τ) ≤ 0
and vTG ̸= 0, the system is not null-controllable and not BIC.

the null-controllability problem for LTI systems where the input is restricted to a convex set Ω. The main

Brammer’s result has been recalled as Theorem 1.27 in Subsection 1.6.2. According to that result, the

controllability with input constraints cannot be decided (in general) from the rank of the controllability

matrix.

The BIC property in TCPNs (Definition 4.3) can be reformulated as a null-controllability problem

(around equilibrium markings) as follows:

Property 4.9. Consider an equilibrium marking mq ∈ int{ℜi}. The evolution of the marking

increment ∆m = m−mq is described by the state equation:

•
∆m = Ai∆m− [C]Tc∆u (4.4)

where Ai = CΛΠi, and [C]Tc (resp. ∆u) results by eliminating from C its columns (resp. eliminating

from (u − uq) its entries) related to uncontrollable transitions, thus C(u − uq) = [C]Tc∆u. Then, mq

is reachable from any equilibrium marking in a small enough neighborhood iff the incremental system

(4.4) is null-controllable over the subspace generated by the columns of Gi, the generator of Ei (see, for

instance, fig. 4.4(a)).

Remark 4.10. Since the set Ei is convex, the TCPN is BIC over Ei ∩ int{ℜi} if the incremental

system (4.4) is null-controllable over the span of Gi, for any mq in Ei ∩ int{ℜi}.

The restriction of controllability over span(Gi) is required in our case, since it may happen that

mq ∈ Ei is reachable from all of the equilibrium markings, but not from all of the non-equilibrium ones,

in any neighborhood. In such case, the TCPN would be still BIC over Ei but not null-controllable (see

for instance fig. 4.4(b), where the set from which ∆m = 0 is reachable is denoted as Re(τ), which does

not include any neighborhood about ∆m = 0 but it does include all the equilibrium markings).

Now, let us analyze the constraints imposed to the incremental input ∆u (i.e., the corresponding
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Ω). Remember the constraint 0 ≤ u ≤ ΛΠim. In the sequel, in order to simplify the analysis, the

controllability analysis will be focused on the equilibrium markings having a positive equilibrium flow,

i.e., 0 < ΛΠim
q − uq. Those markings represent the most interesting equilibrium markings, since all

the transitions have activity at them. This leads to two possibilities for each controllable transition:

• If for a given tj ∈ Tc the entry uqj fulfills 0 = uqj < [ΛΠim
q]j then the corresponding entry in ∆u,

which is equal to (uj − uqj), can only be settled as nonnegative (because uj ≥ 0), leading to the

controllability issues pointed out by Brammer.

• If 0 < uqj < [ΛΠim
q]j then the corresponding entry in ∆u can be settled as either positive or

negative (by making uj greater or lower than uqj), at least in a small neighborhood of mq. If this

occurs for all the controllable transitions, then the controllability can be decided by a rank criterion

as in the first statement of the Theorem 1.27.

In this way, it becomes useful to characterize the set of markings and transitions at which the input

can be “arbitrarily” controlled, i.e., where the entries of ∆u can be settled as positive or negative.

Definition 4.11. A transition tj ∈ Tc is said to be fully controllable at Ei if there exists an equilibrium

marking mq ∈ Ei with an equilibrium input uq such that 0 < uqj < [ΛΠim
q]j (so, the corresponding

entry in ∆u can be settled as either positive or negative in a neighborhood of mq). Otherwise, tj is said

to be partially controllable (since the corresponding entry in ∆u can only be settled as nonnegative).

The set of fully (partially) controllable transitions at Ei is denoted as T i
cf (T i

cp).

Definition 4.12. Sets E+
i and E∗

i are defined as follows:

• E+
i = {mq ∈ Ei|∃uq s.t. uq < ΛΠim

q} is the set of equilibrium markings mq ∈ ℜi with a positive

equilibrium flow 0 < ΛΠim
q − uq.

• The subset E∗
i = {mq ∈ E+

i |∃uq s.t. 0 < uqj , ∀tj ∈ T i
cf} is defined as the set of equilibrium

markings at which all the inputs related to the transitions in T i
cf can be arbitrarily controlled, i.e.,

where 0 < uqj < [ΛΠim
q]j .

Accordingly, given a marking mq ∈ E∗
i , there exists a small enough neighborhood of mq where the

input of the incremental system ∆u can be settled as positive or negative, for those entries related to

the transitions in T i
cf . On the other hand, the entries of ∆u related to the transitions in T i

cp can only

be settled as nonnegative.

Remark 4.13. In general, E∗
i ⊆ E+

i ⊆ Ei. The sets E∗
i , E

+
i and Ei are convex. Furthermore, every

m ∈ {E+
i − E∗

i } is on one “border”of E+
i . By definition, if T i

cf = ∅ then E∗
i = E+

i .

Example 4.4. Consider for instance the system of fig. 4.2. In this, the interior of the triangle

corresponds to E∗
1 , while the union of E∗

1 and the edges e1 and e2 (without the circled points) corresponds

to E+
1 . Furthermore, T 1

cf = Tc and T 1
cp = ∅. In this way, for any marking m in the interior of E1 its

equilibrium input fulfills 0 < uj < [ΛΠ1m]j for any tj ∈ T 1
cf = Tc. On the other hand, for mq in fig. 4.2

its associated input uq = 0 and ΛΠ1m
q − uq > 0, then mq ∈ {E+

1 − E∗
1}.

In the sequel, let us denote as Cc, C
i
cf and Ci

cp the matrices built with the columns of C related to

transitions in Tc, T
i
cf and T i

cp, respectively. This notation helps to rewrite, in a more convenient way,

the incremental system (4.4).
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Property 4.14. Consider an equilibrium marking mq ∈ E∗
i . The incremental system (4.4), with

m ∈ ℜi being in a small enough neighborhood about mq, can be reformulated as
•

∆m = Ai∆m+Bi∆u∗, subject to ∆u∗ ∈ Ω

where Ai = CΛΠi, Bi = [−Ci
cf ,C

i
cf ,−Ci

cp], and Ω = {∆u∗ ≥ 0|∆u∗ ≤ ∆umax},
for some ∆umax > 0 (meaning that the interior set of Ω is not empty).

(4.5)

The null-controllability of system (4.5) is equivalent to that of system (4.4) because, on one hand,

for any input u that is s.b. at a neighbor marking m, ∃∆u∗ ≥ 0 s.t. C(u−uq) = [Ci
cf ,−Ci

cf ,C
i
cp]∆u∗.

On the other hand, given any ∆u∗ ≥ 0, ∃α > 0 small enough s.t. an input u, fulfilling C(u − uq) =

[Ci
cf ,−Ci

cf ,C
i
cp] ·α∆u∗, is s.b. at any marking in a small enough neighborhood about mq. In this way,

no additional distinction between partially and fully controllable transitions is required.

4.5.2 Controllability in one region

The following lemma, which is a slight extension of the Lemma 3.1 introduced in [Brammer, 1972],

provides a geometric interpretation for non null-controllability over the subspace of Gi (Brammer did

not consider the controllability problem over subspaces). This lemma will be used in Theorem 4.16,

which is the central result of this section, providing sufficient and necessary conditions for controllability

over a set E∗
i .

Lemma 4.15. Consider a given equilibrium marking mq ∈ E∗
i ∩int{ℜi}. The incremental system

•
∆m =

Ai∆m + Bi∆u∗ (described in (4.5)) is null-controllable over the subspace generated by Gi (otherwise

stated, mq is reachable from every equilibrium marking in a small enough neighborhood) iff the columns

of Gi belong to the span of the controllability matrix Contr(Ai,Bi) = [Bi, AiBi, ..., A
n−1
i Bi] and @v

s.t. vTGi ̸= 0 and vTeAiτBi∆u∗ ≤ 0 ∀τ ≥ 0 and for all admissible input ∆u∗ ∈ Ω.

Proof. The proof follows the same structure as the Lemma 3.1 of [Brammer, 1972]. First, the incre-

mental system (4.5) is null-controllable iff the reachable set from the origin at time step τ , denoted

as Re(τ), contains an open set about the origin for some τ . In our case, we only require that Re(τ)

contains all the states over the intersection of a small enough neighborhood and the subspace gener-

ated by Gi (otherwise stated, every equilibrium marking in a small enough neighborhood is reachable

from mq). For this it is required that the columns of Gi belong to the span of the controllability

matrix Contr(Ai,Bi) (remember that the analysis is restricted to equilibrium markings, the rest of

markings are not interesting). In order to show this, consider the solution of the incremental system

∆m(τ) =
∫ τ

0
eAi(τ−ς)Bi∆u∗(ς)dς, where it is assumed that the initial condition is ∆m(τ) = 0. By

expanding eAi(τ−ς) in Taylor series, it can be obtained ∆m(τ) =
∑∞

j=0 A
j
iBi

∫ τ

0
(τ − ς)j/j!∆u∗(ς)dς,

which can be rewritten as ∆m(τ) =
∑∞

j=0 A
j
iBi ·αj(τ,∆u∗), for some proper vectors αj(τ,∆u∗). Next,

according to the Cayley-Hamilton Theorem, for any (τ,∆u∗) the vector
∑τ

j=0 A
j
iBiαj(τ,∆u∗) is in the

span of Contr(Ai,Bi) = [Bi, AiBi, ..., A
n−1
i Bi], thus any reachable incremental state ∆m(τ) is in the

span of the controllability matrix. Now let us consider a vector d that does not belong to the span of

the controllability matrix. Then, ∀β ̸= 0, βd is not reachable in the incremental system, equivalently,

∀β ̸= 0, mq+βd is not reachable from mq. If d were a column of Gi then the set {mq+βd|β ̸= 0} would
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include equilibrium markings in any neighborhood of mq, in such case, these would not be reachable.

Therefore, a necessary condition for controllability over equilibrium markings is that the columns of Gi

are in the span of Contr(Ai,Bi).

Additionally, under the hypothesis that the admissible input’s set Ω is compact and contains the

origin, the reachable set Re(τ) is convex (Lemma 2.6 of [Brammer, 1972]). Therefore, assuming that Gi

belongs to the span of Contr(Ai,Bi), if the system is not null-controllable then there exists a hyperplane

through the origin, normal to a vector v, satisfying vT∆m(τ,∆u∗) ≤ 0 ∀τ and for all admissible ∆u∗,

i.e., the complete reachable set is on one half of the space divided by the hyperplane (see, for instance, fig.

4.4(b) and 4.4(c)). In our case, since we are interested in the states that lie on the subspace generated

by Gi, an additional condition for non null-controllability is required: such hyperplane must transverse

such subspace, i.e., vTGi ̸= 0. Now, by taking mq as the initial marking, the solution of the incremental

system is given by ∆m(τ) =
∫ τ

0
eAi(τ−s)Bi∆u∗(s)ds. Finally, by continuity and special choices of the

input, it follows that vT∆m(τ,∆u∗) ≤ 0 is fulfilled iff vTeAiτBi∆u∗ ≤ 0 ∀τ and admissible ∆u∗ (for

instance, by choosing impulse functions ∆u∗(τ) = δ(τ − τ ′)[0, .., 0, 1, 0, .., 0], for each input variable ∆ui

and τ ′ ≥ 0).

Previous lemma introduces an algebraic characterization for null-controllability for a given equilibrium

marking mq. This result is extended in the following theorem, leading to the BIC property in one region.

Furthermore, the condition vTeAiτBi∆u∗ ≤ 0 ∀∆u∗ ∈ Ω is relaxed by assuming that Ω has non-empty

interior and ∆u∗ ≥ 0, ∀∆u∗ ∈ Ω.

Theorem 4.16. Let ⟨N ,λ,m0⟩ be a TCPN system. Consider E∗
i such that E∗

i ∩ int{ℜi} ̸= ∅ and let

Gi be a generator of it. The system is BIC over E∗
i , considering all marking trajectories in ℜi, iff Gi in

the span of Contr(Ai,Bi) = [Bi, AiBi, ..., A
n−1
i Bi] and @v s.t. vTGi ̸= 0 and vTeAiτBi ≤ 0 ∀τ ≥ 0.

Proof. First, Gi ∈ span{Contr(Ai,Bi)} is a necessary condition for null controlability, as shown in

Lemma 4.15. Therefore, in the sequel it is assumed that Gi ∈ span{Contr(Ai,Bi)}.
Part 1. Let us firstly prove that conditions: Gi belongs to the span of Contr(Ai,Bi) and @v s.t.

vTGi ̸= 0 and vTeAiτBi ≤ 0 ∀τ ≥ 0 are sufficient and necessary for BIC over E∗
i ∩ int{ℜi}.

Since we are dealing with controllability around a neighborhood, the exact value of the upper bound

for ∆u∗ is not relevant, but just the restriction that it must be nonnegative and the property that

the interior of Ω is not empty (as pointed out by Brammer). Thus, the inequality constraint of the

controllability condition of Lemma 4.15, i.e., vTeAiτBi∆u∗ ≤ 0 ∀τ ∀∆u∗ ∈ Ω = {∆u∗ ≥ 0|∆u∗ <

∆umax}, is relaxed to vTeAiτBi ≤ 0 ∀τ . Note that this inequality does not depend on the particular

value of the equilibrium marking. Thus, if @v s.t. vTGi ̸= 0 and vTeAiτBi ≤ 0 ∀τ then every

equilibrium marking in E∗
i ∩ int{ℜi} is reachable from any other equilibrium marking in a small-enough

neighborhood. Accordingly, if such v does not exists, since the set E∗
i ∩ int{ℜi} is convex, then any

equilibrium marking in E∗
i ∩ int{ℜi} is reachable from any other equilibrium marking in E∗

i ∩ int{ℜi},
thus the system is BIC over this set.

On the other hand, suppose that it exists such v. So, for any mq ∈ E∗
i ∩ int{ℜi} the corresponding

incremental system is not null-controllable over the subspace of Gi. Otherwise stated, given a particular

mq ∈ E∗
i ∩ int{ℜi}, any neighborhood of it contains equilibrium markings from which it is not reachable.

Thus, the system is not BIC (considering all the trajectories inside ℜi).
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Part 2. Let us demonstrate that the system is controllable over E∗
i iff it is controllable over E∗

i ∩
int{ℜi}, considering all the trajectories inside ℜi.

Suppose that the system is controllable over E∗
i ∩ int{ℜi}. Consider any marking mr ∈ E∗

i − (E∗
i ∩

int{ℜi}) and the markings mq,mr′,mq′ ∈ E∗
i ∩ int{ℜi}, such that (mr − mq) = α(mr′ − mq′) with

α > 0. Since the system is BIC over E∗
i ∩ int{ℜi}, then ∃u′ that transfers the state from mr′ to mq′. So,

by linearity, an input u such that (u − uq) = α(u′ − uq′) transfers the state from mr to mq. Actually,

(m(τ)−mq) = α(m′(τ)−mq′), where m(τ) (resp. m′(τ)) is the marking at time τ if m0 = mq (resp.

m0 = mq′) and u (resp. u′) is applied. Then, by choosing a suitable trajectory for m′(τ), we can make

m(τ) to stay always inside ℜi (such trajectory exists, otherwise, if all the trajectories from mr leave the

region, then the reachability set is on one half of the space divided by the hyperplane that separates

region ℜi from another one, so the system is not BIC).

In the sequel, it must be proved that such input is s.b. Since 0 ≤ u′ ≤ ΛΠim
′ then −αuq′ ≤

α (u′ − uq′) ≤ α(ΛΠim
′ − uq′). Now, substituting u′ and m′ and arranging the terms, we obtain:

(uq − αuq′) ≤ u ≤ ΛΠim − (wq − αwq′). Since wq > 0 and (uq′
j > 0 ⇒ uq

j > 0), then ∃α > 0 small

enough such that uq ≥ αuq′ and wq ≥ αwq′, so, 0 ≤ u ≤ ΛΠim, i.e., u is s.b.. Therefore, for any

mr ∈ E∗
i − (E∗

i ∩ int{ℜi}) there exists mq ∈ E∗
i ∩ int{ℜi} reachable from mr. Furthermore, since the

points of E∗
i −(E∗

i ∩ int{ℜi}) are limit points of E∗
i ∩ int{ℜi}, then every marking in E∗

i −(E∗
i ∩ int{ℜi})

can be reached (in finite time, since the flow in a neighborhood of such marking is positive) from any

marking in E∗
i ∩ int{ℜi}. Therefore, the system is BIC over E∗

i if it is BIC over E∗
i ∩ int{ℜi}. Finally,

by definition, if the system is not controllable over E∗
i ∩ int{ℜi}, considering all marking trajectories in

ℜi, then it is not BIC over E∗
i .

The inequality vTeAiτBi ≤ 0 ∀τ ≥ 0, presented in the previous theorem, seems difficult to verify due

to the exponential matrix eAiτ . Brammer [Brammer, 1972] introduced an equivalent condition in terms

of the eigenvectors of AT . Nevertheless, Brammer’s condition does not provide the specific value of such

v, but just information about its existence. This represents a problem in our case since, in order to

apply the Theorem 4.16, we require more information about the value of every v fulfilling vTeAiτBi ≤ 0

∀τ ≥ 0, in order to verify if one of them fulfills vTG ̸= 0. Therefore, a complete analysis for evaluating

the full condition of Theorem 4.16 has been achieved. This is provided in detail in Appendix C. The

results of such analysis are resumed in the following polynomial-time algorithm:

Algorithm 4.3. Controllability over a region.

Solve Gi = Contr(Ai,Bi) · Z
If there is not solution for Z then the system is not BIC over E∗

i

else

Consider the following inequalities system:
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SQT · v = diag([1,−1]) · v′′ {auxiliary variable}
v′′ ≥ 0 {condition for auxiliary variable}
vT ·Bi ≤ 0 {for vTeAiτBi ≤ 0 at τ = 0}

∀jth column of Bi

H(Q, [Bi]
j) · v′′ ≤ 0 {for vTeAiτBi ≤ 0 at τ → ∞}

where Q, S and H(Q, [Bi]
j) are constant matrices defined in Appendix C

(4.6)

If vTGi = 0 is a redundant constraint in (4.6) then the system is BIC over E∗
i ,

else the system is not BIC over E∗
i , considering all the trajectories in ℜi.

Proof of Algorithm 4.3: Let us provide first a sketch of the analysis reported in the Appendix C,

that leads to Proposition C.3, that states the equivalence of vTeAiτB ≤ 0 ∀τ ≥ 0 with the set of

inequalities (4.6). The property ∃v s.t. vTeAiτBi ≤ 0 ∀τ ≥ 0 can be reduced to ∃v s.t. vTeAiτBi ≤ 0

for τ = 0 and in the limit τ → ∞. For τ = 0, the inequality vTeAiτBi ≤ 0 is equivalent to vTBi ≤ 0,

which is included in (4.6). Later, by transforming Ai into a Jordan block form, it is possible to represent

limτ→∞vTeAiτ [Bi]
j ≤ 0 as a linear inequality, for each column [Bi]

j of matrix Bi. This is possible

since any v can be expressed as a linear combination of the generalized eigenvectors of Ai, while the

projection of eAiτ [Bi]
j on each of these eigenvectors is a particular weighted sum of exponential terms

(of the kind ciτ
mjesjτ if real or ciτ

mjesjτsin(τ − hi) if complex). In detail, for an eigenvector related

to a real eigenvalue, the projection of eAiτ [Bi]
j on it keeps a constant sign during the evolution of the

system (the sign of ciτ
mjesjτ only depends on ci, so this can be determined from Ai and [Bi]

j). On

the other hand, if the eigenvector is related to a complex eigenvalue, the projection periodically becomes

positive and negative (the sign of ciτ
mjesjτsin(τ − hi) is periodically positive and negative, due to the

sin function). Thus, limτ→∞vTeAiτ [Bi]
j < 0 holds iff the projection associated to the largest of those

exponential functions, when τ → ∞ (the term ciτ
mjesjτ with the largest exponents), is related to a

real eigenvector, is negative (resp. positive) and the corresponding component in v is positive (resp.

negative). This is represented by the inequality H(Q, [Bi]
j) · v′′ ≤ 0, where the auxiliary variable v′′ is

used, being nonnegative and equivalent (in certain way) to v. This leads to the inequalities (4.6).

Now let us prove the algorithm. If there does not exist a solution for Gi = Contr(Ai,Bi) · Z then

Gi is not in the span of the controllability matrix, thus, according to Theorem 4.16, the system is not

BIC over E∗
i considering all the trajectories in ℜi.

Now, assume that there exists a solution for Gi = Contr(Ai,Bi) · Z, thus Gi is in the span of the

controllability matrix. If vTGi = 0 is redundant in (4.6) then, according to Proposition C.3, @v s.t.

vTGi ̸= 0 and vTeAiτBi ≤ 0 ∀τ ≥ 0, thus, by Theorem 4.16, the system is BIC over E∗
i . On the

contrary, if vTGi = 0 is not redundant then, by Proposition C.3, ∃v s.t. vTGi ̸= 0 and vTeAiτBi ≤ 0

∀τ ≥ 0, thus, according to Theorem 4.16, the system is not BIC over E∗
i considering all the trajectories

in ℜi.

Remark 4.17. The controllability inside a region with uncontrollable transitions depends not only on

the structure of the net but also on the timing λ of the system. On the contrary, it is independent of the

initial marking (the particular value of m0 is irrelevant, since the controllability property is equivalent
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Fig. 4.5: a) A TCPN system. Transition t4 is the only controllable one. b) The set Class(m0) and its E

for any system having the same net, timing and any initial marking in Class(m0)). Previous algorithm

provides a polynomial-time procedure for the verification of the BIC property, since redundancy of a

constraint in a set of inequalities can be decided in polynomial time (for computation methods see, for

instance, [Paulraj and Sumathi, 2010]).

Example 4.5. Consider the system of fig. 4.5 with Tc = {t4} and λ1 = λ2 = λ3 = λ4 = 1.

The four configurations are characterized by: C1 = {(p2, t2), (p4, t3)}, C2 = {(p3, t2), (p4, t3)}, C3 =

{(p2, t2), (p5, t3)} and C4 = {(p3, t2), (p5, t3)}. The arcs (p1, t1) and (p6, t4) are also present in all the

configurations. Nevertheless, given the initial marking of this system, C2 cannot occur because p3 and

p4 cannot constrain t2 and t3 at the same time (for this, it would be necessary that m[p3] ≤ m[p2] ≤ 1

and m[p4] ≤ m[p5] ≤ 1, which implies m[p3] + m[p4] ≤ 2 but, according to the P-semiflows and the

initial marking, m[p3] + m[p4] = 3). The polytope shown in fig. 4.5 corresponds to the projection of

Class(m0) on the markings at p1, p3 and p5 (markings of p2, p4 and p6 are redundant because of the

invariants m[p1] +m[p2] = 1, m[p3] +m[p4] = 3 and m[p5] +m[p6] = 1). The markings in the segments

[m2,m3] and [m3,m4) correspond to E∗
3 and E∗

4 , respectively. The marking m2 also belongs to E∗
1 (the

segment (m1,m2] shown in fig. 4.5 corresponds to E∗
1 for the system with another timing, which will be

explained in a forthcoming example). Let us focus on E∗
3 . In this case, T 3

cf = ∅, T 3
cp = {t4}, and

G3 = [ 0, 0, −1, 1, 0, 0 ]T
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The matrices of the incremental system (as in (4.5)) are given by:

A3 = CΛΠ3 =



−1 1 0 0 0 0

1 −1 0 0 0 0

0 −1 0 0 1 0

0 1 0 0 −1 0

0 0 0 0 −1 1

0 0 0 0 1 −1


, B3 = −C3

cp =



0

0

0

0

−1

1



Let us investigate the controllability over E∗
3 . First, it is easy to verify that G3 is in the span of

Contr(A3,B3). Then, let us compute the matrices required by the Algorithm 4.3 (defined in Appendix

C). The transformation of A3 into the Jordan block form leads to:

Q =



0 1 0.5 0 0 −0.5

0 1 0.5 0 0 0.5

−0.5 0.25 0 0 −0.25 0

0.5 0.75 1 −1 0.25 0

0 0.5 0.5 0 0.5 0.5

0 0.5 0.5 0 −0.5 −0.5


, J =



[
0 1

0 0

]
0

0

0

0

0

0

0

0

0 0 [0] 0 0 0

0 0 0 [0] 0 0

0 0 0 0 [−2] 0

0 0 0 0 0 [−2]



B′ = Q−1B3 =



1

0

0

0

−2

0


There are five different blocks in J : three blocks related to eigenvalue 0, the first of them associated

to two generalized eigenvectors, and two other (1-dimension) blocks associated to eigenvalues −2. This

leads to the following matrices bj :

b1 =

[
0 0

1 0

]
, b2 = b3 = [0], b4 = [−2], b5 = [0]

Since there are blocks associated to repetitive eigenvalues, a matrix S, as described in Appendix C, is

required to be computed:

α(τ) = [ τ 1 1 1 e−2τ e−2τ ]

α̂(τ) = [ τ 1 e−2τ ]
−→ S =

 1 0 0 0 0 0

0 1 1 1 0 0

0 0 0 0 1 1


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leading to the following vectors:

S · diag[b1, ..,b5] · ST =

 0 0 0

1 0 0

0 0 −2


a =

[
1 0 −2

]
, â =

[
1 −1 0 0 −2 2

]
Finally, we obtain the matrix required by Algorithm 4.3:

H(Q,B3) =

[
1 0 0 0 0 0

0 −∞ 0 0 0 1

]

It is easy to see that v′′ = [0, 1, 0, 0, 0, 0]T ≥ 0 fulfills with the inequality H(Q,B3)v
′′ ≤ 0 of

Algorithm 4.3. Furthermore, vector vT = [0,−1, 2, 0, 1, 0] fulfills with SQT · v = (diag([1,−1])v′′ and

the inequality vTB3 ≤ 0, thus, such v′′ and v are a solution of (4.6). Finally, vTG3 = 2 ̸= 0, i.e.,

vTG3 = 0 is not redundant in (4.6). Then, according to Proposition C.3, v is s.t. vTG3 ̸= 0 and

vT eA3τB3 ≤ 0 ∀τ , thus, according to Theorem 4.16, the system is not BIC over E∗
3 . Vector v and the

corresponding normal hyperplane are represented in fig. 4.6(a). This divides ℜ3 in two parts. Then,

vT eA3τB3 ≤ 0 ∀τ implies that the system cannot reach, from m0, any marking in the half of ℜ3 being

pointed out by v (for instance, m2 is not reachable from m0).

4.5.3 Other derived results for one region

In this subsection, a few of interesting controllability results will be introduced. They provide simple

tools for checking controllability in special cases. Moreover, a few examples will be presented in order to

illustrate their application.

The next corollary splits the condition of Theorem 4.16 into a necessary and a sufficient one.

Corollary 4.18. Let ⟨N ,λ,m0⟩ be a TCPN system. Consider some E∗
i such that E∗

i ∩ int{ℜi} ̸= ∅, as
previously defined, and let Gi be a generator of it. Then:

1. If Gi is in the span of Contr(Ai,C
i
cf ) then the system is controllable over E∗

i . Furthermore,

if T i
cf = Tc then it is also a necessary condition for controllability over E∗

i , considering all the

marking trajectories in ℜi.

2. If Gi is not in the span of Contr(Ai,Cc) then the system is not controllable over E∗
i , considering

all the marking trajectories in ℜi.

Proof. Statement 1). Suppose that Gi is in the span of Contr(Ai,C
i
cf ). In this case, since Bi =

[−Ci
cf ,C

i
cf ,−Ci

cp], Gi is in the span of Contr(Ai,Bi). Then, according to Theorem 4.16, the system

would be BIC iff @v s.t. vTGi ̸= 0 and vT eAiτBi ≤ 0 ∀τ . Let us consider now just the inputs related

to the transition in T i
cf , i.e., as if Bi = [−Ci

cf ,C
i
cf ]. Then, v

T eAiτBi = [−vT eAiτCi
cf ,v

T eAiτCi
cf ] ≤ 0

∀τ iff vT eAiτBi = 0, i.e., v is orthogonal to eAiτBi, ∀τ . Furthermore, the space defined by eAiτBi ∀τ is

equal to the span of Contr(Ai,C
i
cf ) (easy to show by expanding eAiτBi in Taylor series and applying the

Cayley-Hamilton Theorem). Thus, if vT · Contr(Ai,C
i
cf ) = 0 and Gi is in the span of Contr(Ai,C

i
cf )
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then vTGi = 0. Therefore, according to Theorem 4.16, the system is BIC over E∗
i .

On the other hand, suppose that Tc = T i
cf , so Ccf = Cc. If Gi is not in the span of Contr(Ai,C

i
cf )

then it is not in the span of Contr(Ai,Cc). This condition is equal to that of statement 2.

Statement 2). Since Bi = [−Ci
cf ,C

i
cf ,−Ci

cp] then the columns of Bi are the columns of Cc but with

different signs. Then, ifGi is not in the span of Contr(Ai,Cc) then it is not in the span of Contr(Ai,Bi),

thus, according to Theorem 4.16, the system is not BIC over E∗
i .

Previous corollary provides controllability conditions that are simple and useful in particular cases.

In our experience, those are very frequent. Nevertheless, by using this, the controllability of the system

cannot be decided if Gi is in the range of Contr(Ai,Cc) but not in the range of Contr(Ai,C
i
cf ). In

such case, Algorithm 4.3 must be used in order to decide the controllability over E∗
i (like in example

4.5), still in polynomial time.

The next corollary provides a controllability rank-condition, according to which a system is BIC for

any set of controllable transitions, over the corresponding E∗
i . Roughly speaking, such rank condition

(4.7) means the existence of a bijection between the markings in ℜi and their field vectors (ṁ). Such

bijection implies that each column of Gi is associated to one controllable transition (see the Algorithm

4.1 for the computation of Gi) and this is included in the range of the controllability matrix. Thus, since

Tc = T i
cf (a consequence of the encountered bijection), according to the first statement of Corollary 4.18

the system is controllable.

Corollary 4.19. Let ⟨N ,λ,m0⟩ be a TCPN system. Consider a given region ℜi, If

rank

([
CΛΠi

BT
y

])
= |P | (4.7)

then, for any set of controllable transitions Tc s.t. E∗
i ∩ int{ℜi} ̸= ∅, the system is BIC over E∗

i .

Proof. For this proof consider the Algorithm 4.1 for the computation of Gi. Note that CΛΠi = Ai,

according to the definition of the incremental system (4.5). First, let us prove that condition (4.7) implies

that ∀tj ∈ Tc there exists a solution dj for (4.1), i.e., Aidj = Cj and BT
y dj = 0. This implies that,

according to the procedures for the computation of Gi and T
i
cf (Algorithm C.1 provided in the Appendix

C), Gi is composed of such vectors dj and T i
cf = Tc.

For that, consider a particular tj ∈ Tc. Define a matrix K|P |×m as a basis of the right annuller of

BT
y , then ∀dj s.t. B

T
y dj = 0, ∃δj s.t dj = Kδj . Therefore, ∃dj that fulfills (4.1) iff ∃δj s.t. AiKδj = Cj .

Now, condition (4.7) implies that AiK has full column rank, i.e., rank(AiK) = m. Consider the matrix

P s.t. PK = I, then, the matrix [ PT , By ]T is non singular. Premultiplying the transpose of this

matrix to AiK and considering BT
y C = 0, it is easy to see that rank(AiK) = rank(PAiK) = m, i.e.,

PAiK is non singular. In the same way, premultiplying the transpose of the same matrix to the equality

AiKδj = Cj and considering BT
y C = 0 and BT

y C
j = 0, it is easy to see that ∃δj s.t. AiKδj = Cj iff

∃δj s.t. PAiKδj = PCj , moreover, since PAiK is non singular, then such δj exists, which implies that

∃dj that fulfills (4.1), and this reasoning is valid ∀tj ∈ Tc.

Now, let us demonstrate that Gi belongs to the span of Contr(Ai,C
i
cf ). Since ∀tj ∈ Tc ∃dj that

fulfills (4.1), according to the Algorithm 4.1 for the computation of Gi, Gi = [d1, ...,d|Tc|] (if Gi has

not full column rank, the linearly dependent columns are eliminated, but the present proof is still valid),
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and according to the Algorithm C.1 for computing T i
cf , T

i
cf = Tc. Then, consider a particular column of

Gi, i.e., a particular dj . According to the Cayley-Hamilton Theorem, there exist coefficients α1, ..., α|P |

s.t. I+Aiα1 + ...+ (Ai)
|P |α|P | = 0. Postmultiplying dj to this equation, substituting Aidj = [C]j and

rearranging the terms, we obtain [[C]j , ..., (Ai)
|P |−1[C]j ] · [α1, ..., α|P |]

T = −dj , i.e., dj is in the span

of Contr(Ai, [C]j). Moreover, since this reasoning can be applied ∀dj of Gi, then Gi is in the span of

Contr(Ai,C
i
cf ), and according to Corollary 4.18, the system is BIC over E∗

i .

Finally, from Theorem 4.16, a necessary condition for reachability can also be derived.

Corollary 4.20. Let ⟨N ,λ,m0⟩ be a TCPN system. If the marking m1 ∈ ℜi is reachable from another

m0 ∈ ℜi, through a trajectory in ℜi, then ∃b s.t. Contr(Ai,Cc) · b = (mq −m0).

Proof. First, for the incremental system defined from m0, i.e., ∆m = (m −m0), the reachability set

is a subset of the span of Contr(Ai,Bi) (as explained in the proof of Lemma 4.15). Now, let us proceed

by contradiction. Suppose that @b such that Contr(Ai,Cc) · b = (mq −m0), thus (m
q −m0) is not in

the span of Contr(Ai,Cc), which is equal to the span of Contr(Ai,Bi). Therefore, (mq −m0) is not

reachable in the incremental system, thus mq is not reachable from m0.

Example 4.6. Consider again the system of fig. 4.5 with Tc = {t4}, but with a different timing:

λ1 = λ2 = λ3 = 1 and λ4 = 2. In this case, the sets E∗
3 and E∗

4 remain unchanged (w.r.t. the

Example 4.5), but E∗
1 becomes the segment (m1,m2] shown in fig. 4.5. Moreover, for this system

T 1
cf = T 3

cf = T 4
cf = {t4}, and

G1 = [ 0, 0, 0, 0, −1/2, 1/2 ]T

G3 = [ 0, 0, −1, 1, 0, 0 ]T

G4 = [ −1/3, 1/3, −1/3, 1/3, −1/3, 1/3 ]T

Since T i
cf = Tc for the three configurations, the first statement of Corollary 4.18 provides sufficient and

necessary conditions for controllability over each E∗
i . In this case the system fulfills that condition for

the three E∗
i , so, it is BIC over each one.

Note that the system is controllable over E∗
3 with λ = [1, 1, 1, 2]T but not with λ = [1, 1, 1, 1]T (as

shown in Example 4.5), i.e., the controllability depends not only in the structure but also on the timing.

Example 4.7. There is an easy alternative for verifying the controllability over E∗
1 and E∗

4 in the

system of fig. 4.5 with Tc = {t4} and λ = [1, 1, 1, 2]T . By verifying

rank

([
CΛΠ1

BT
y

])
= rank

([
CΛΠ4

BT
y

])
= |P |

it can be concluded, according to Corollary 4.19, that for any set of controllable transitions Tc, the

system is BIC over the corresponding sets E∗
1 and E∗

4 , whenever E
∗
1 ∩ int{ℜ1} ≠ ∅ and E∗

4 ∩ int{ℜ4} ≠ ∅,
respectively.

Example 4.8. Now, let us investigate the reachability of this system in ℜ3. Consider the markings

m5 = [1, 0, 2, 1, 0.5, 0.5]T and m3 = [0.5, 0.5, 0.5, 2.5, 0.5, 0.5]T (they are drawn in fig. 4.6(b)). A
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Fig. 4.6: Region ℜ3 and set E∗
3 for the system of fig. 4.5. a) With λ = [1, 1, 1, 1]T , the shadowed area represents

the hyperplane that divides ℜ3. Vector v, normal to the hyperplane, is pointing upwards. b) The shad-
owed area represents the span of the controllability matrix for the system with timing λ = [1, 1, 1, 2]T .

basis for the range of the controllability matrix of ℜ3, i.e., Contr(CΛΠ3,Cc), is given by

[
0 0 0 0 −1 1

0 0 1 −1 0 0

]T

Since (m5−m3) = [0.5,−0.5, 1.5,−1.5, 0, 0]T is not in the range of Contr(CΛΠ3,Cc) then, according to

Corollary 4.20, m1 is not reachable from m3, through a trajectory inside ℜ3. From a geometrical point

of view, the shadowed surface in fig. 4.6 represents the range of Contr(CΛΠ3,Cc) from m3, therefore,

every marking reachable from m3, through a trajectory inside ℜ3, must belong to this, but it does not

mean that all markings in the shadowed surface are reachable.

4.5.4 Controllability over several regions

In our experience, we have always found (but it has not been proved) that the equilibrium set E is con-

nected. In such case, the following proposition, which introduces a sufficient condition for controllability

over the union of connected equilibrium sets, would be the generalization of the results introduced in the

previous subsection in order to consider several regions.

Proposition 4.21. Let ⟨N ,λ,m0⟩ be a TCPN system. Consider some equilibrium sets E∗
1 , E

∗
2 ,..., E

∗
j

related to different regions ℜ1, ℜ2,..., ℜj. If the system is BIC over each E∗
1 and their union (i.e.,∪j

i=1E
∗
i ) is connected, then the system is BIC over the union.

Proof. Consider two of those sets E∗
1 , E

∗
2 such that E∗

1 ∩ E∗
2 ̸= ∅. Let mq be a marking such that

mq ∈ E∗
1 ∩ E∗

2 . Since the system is controllable over E∗
1 and E∗

2 , there exists a marking m2 ∈ E∗
2 − E∗

1



4. CONTROLLABILITY 105

that is reachable, in finite time, from another marking in m1 ∈ E+
1 −E+

2 , due to the fact that both are

reachable from mq, in finite time, and to the continuity and positiveness of the flow function (and thus

the field vector) in a neighborhood of mq. Then, any marking of E∗
2 is reachable from any marking of

E∗
1 , via m1 and m2. Following a similar reasoning, it can be concluded that the system is controllable

over
∪j

i=1E
∗
i .

Algorithm C.2 (introduced in Appendix C) can be used to compute an equilibrium marking that

belongs to two given equilibrium sets E∗
1 and E∗

2 , if it exists. In this way, it can be investigated wether

E∗
1 and E∗

2 are connected.

Example 4.9. Consider the system of fig. 4.5, where Tc = {t4}, λ1 = λ2 = λ3 = 1 and λ4 = 2. It

has been previously shown that the system is controllable over each E∗
i . Now, since the union of E∗

1 ,

E∗
3 and E∗

4 is connected, then, according to Proposition 4.21, the system is BIC over E∗
1 ∪E∗

3 ∪E∗
4 . For

instance, it is possible to transfer the system from m3 to a marking arbitrarily close to m1 (m1 ̸∈ E∗
1 ,

but any marking m′
1 in the open interval (m1,m2] belongs to E∗

1 ) and in the opposite direction. Note

that, in this case, the union of those sets is almost the entire E. Actually, E∗
1 ∪E∗

3 ∪E∗
4 = E−{m1,m4}

(m4 ̸∈ E∗
4 because at this marking the flow at transitions {t1, t2, t3} is null).

4.6 Conclusions on controllability

A local controllability concept has been introduced in this chapter as a reformulation of the classical

one defined for linear systems. Accordingly, controllability over a subset S implies reachability of S,

assuming m0 ∈ S. For models in which control actions can be applied to all transitions, sufficient and

necessary conditions for reachability and controllability has been provided. In this case the controlla-

bility over int{Class(m0)} is guaranteed iff the system is consistent, obtaining thus a purely structural

characterization of controllable models.

For systems with uncontrollable transitions, sufficient and necessary conditions for controllability,

over subsets of equilibrium markings that belong to a given region, have been introduced. Moreover,

a sufficient condition for controllability over the union of those subsets has been derived. It has been

shown that the controllability with uncontrollable transitions depends not only on the structure of the

net but also on the timing.
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Chapter 5

Control synthesis

Continuous Petri nets are relaxations of discrete Petri nets, but at the same time, they are continuous-

state systems (in fact, they are technically hybrid). In this way, it seems natural to consider two

different approaches for the control concept: 1) at the discrete level, the extension of control tech-

niques used in discrete PN ’s, as the supervisory-control theory (for instance, [Holloway et al., 1997b,

Iordache and Antsaklis, 2006]) and 2) at the fluidized level, the application of control techniques devel-

oped for continuous-state systems. Usually, the control objective in the first approach is to meet some

safety specifications, like avoiding forbidden states (e.g., deadlocks or markings that unavoidable lead to

a deadlock, markings that violate mutual exclusion specifications, etc.), by means of disabling transitions

at particular states. The objective of the second approach consists in driving the system, by means of a

(usually) continuous control action, towards a desired steady state, or state trajectory (see, for instance,

[Chen, 1984]). Regarding control on continuous Petri nets, most of the specific works that can be found

in the literature deals with the second control approach applied to the infinite server semantics model.

Accordingly, the same approach will be considered in this Chapter, as already adopted in Chapter 5 for

the controllability analysis.

Enforcing a desired steady state or target marking in a continuous PN is analogous to reaching an

average marking in the original discrete model (assuming that the continuous model approximates the

discrete one), which may be interesting in several kinds of systems. This idea has been illustrated by

different authors and will be discussed in detail in Chapter 6.

Through this chapter, three techniques will be proposed for the control of TCPNs, under infinite

server semantics, in order to reach a desired target marking. In the first one (Section 5.2), a centralized

affine control strategy is introduced, assuming that all the transitions are controllable. An extension

of this will be introduced in Section 5.3, by decomposing the net system into an interconnected set

of subsystems leading to a decentralized control strategy, reducing thus the complexity involved in the

synthesis procedure. Finally, a centralized pole-assignment control technique will be presented in Section

5.4, in which the existence of uncontrollable transitions is considered. Before that, in the following

subsections a few of control techniques will be recalled from the literature, in order to provide a wider

perspective of the control problem in TCPN systems.
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5.1 Preliminarily discussion of control methods found in the

literature

Through the following paragraphs, a few of control techniques, proposed in the literature for continuous

Petri nets, will be recalled. Similar to the set-point control problem in state-continuous systems, the

control objective here consists in driving the system towards a desired target marking (a steady state, here

denoted as md). This desired marking can be selected, in a preliminarily planning stage, according to

some optimality criterion [Silva and Recalde, 2004], e.g., maximizing the flow. Most of the work done on

this issue is devoted to centralized dynamic control assuming that all the transitions are controllable. It

will be firstly presented those control techniques that require to control all the transitions, while a couple

of techniques (gradient-base and pole assignment), where uncontrollable transitions are considered, will

be presented at the end of this subsection.

Fuzzy control [Hennequin et al., 1999]- The authors showed that the flow of a fluid transition, under

infinite server semantics with an implicit self-loop, can be represented as the output of two fuzzy rules

under the Sugeno model. It was proved that if the integral of the output of each fuzzy rule converges

to a finite value then the resulting global fuzzy system (that represents the controlled flow) converges

as well. Moreover, upper and lower bounds of this convergence were derived. Based on that, it was

proposed a proportional fuzzy control, proving convergence of the system to the desired output (the

marking of a place pj ∈ P , i.e., md[pj ]), assuming that this is smaller than the initial upstream marking,

i.e., md[pj ] ≤ m0[pi],∀pi ∈ •pj , which is not the general case.

Control for a piecewise-straight marking trajectory - Dealing with the tracking control problem of

a mixed ramp-step reference signal, this approach was firstly explored in [Jing et al., 2008a] for Join-

Free nets and extended to general PNs in [Jing et al., 2008b]. There, a high & low gain proportional

controller is synthesized, while a polygonal trajectory, as a sort of path-planning problem at a higher

level, is computed. Let us detail a related synthesis procedure introduced in [Apaydin-Ozkan et al., 2009].

Consider the line l connecting m0 and md, and the markings in the intersection of l with the region’s

borders, denoted as m1
c , m

2
c , ...., m

n
c . Define m0

c = m0 and mn+1
c = md. Then, ∀k ∈ {0, n} compute τk

by solving the linear programming problem (LPP):

min τk

s.t. : mi+1
c = mi

c +C · x
0 ≤ xj ≤ λj [Π

z
j ]imin{mi

c,m
i+1
c }τk

∀j ∈ {1, ..., |T |} where i satisfies [Πz
j ]i ̸= 0

(5.1)

The control law to be applied is thus w = x/τk (the model is represented as ẋ = Cw, where

w = ΛΠ(m)m − u), when the system is between the markings mk
c and mk+1

c . The time required for

reaching the desired marking is given by τf =
∑n

k=0 τk. Feasibility and convergence to mf were proved

in [Apaydin-Ozkan et al., 2009].

In order to obtain faster trajectories, intermediate states, not necessarily on the line connecting the

initial and the target marking, can be computed by means of a bilinear programming problem (BPP).

The idea is to currently compute the intermediate markings mk
c , on the borders of the regions, that

minimizes the total time τf =
∑n

k=0 τk with some additional monotonicity constraints. Finally, the same
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algorithm can be adapted in order to recursively compute intermediate markings in the interior of the

regions, obtaining thus faster trajectories.

Model predictive control (MPC) [Mahulea et al., 2008a] - Here, two solutions were considered based

on the implicit and explicit methods (see, for instance, [Bemporad et al., 2002]). The evolution of the

timed continuous Petri net model, in discrete-time, is represent by the difference equation: mk+1 =

mk +∆τ ·C ·wk, subject to the constraints 0 ≤ wk ≤ fk with fk being the flow without control, which

is equivalent to P · [wT
k ,m

T
k ]

T ≤ 0, for a particular matrix P. The sampling ∆τ must be chosen small

enough in order to avoid spurious markings, in particular, for ensuring the positiveness of the markings.

For that, the following condition is required to be fulfilled ∀ p ∈ P :
∑

tj∈p• λj∆τ < 1.

The goal of the MPC control scheme introduced in [Mahulea et al., 2008a] is to drive the system

towards a desired marking md, while minimizing the quadratic performance index J(mk, N) = (mk+N −
md)

TZ(mk+N −md) +
∑N−1

j=0 [(mk+j −md)
TQ(mk+j −md) + (wk+j −wd)

TR(wk+j −wd)], where Z,

Q and R are positive definite matrices and N is a given time horizon. This leads to the following

optimization problem that needs to be solved in each time step:

min J(mk, N)

s.t. : ∀j ∈ {0, ..., N − 1}, mk+j+1 = mk+j +∆τ ·C ·wk+j

P ·

[
wk+j

mk+j

]
≤ 0

wk+j ≥ 0

(5.2)

In [Mahulea et al., 2008a] it was shown that the standard techniques used for ensuring converge in

linear/hybrid systems, i.e., terminal constraints or terminal cost, cannot be applied in continuous nets.

Nevertheless, a particular control law, guaranteeing asymptotic stability for all possible initial and final

states, was proposed. Simulations showed that the horizon N is not required to be too large (actually,

it is well known in classical systems’ theory that ∃N̄ s.t. ∀m0 and ∀N ≥ N̄ , the finite and the infinite

horizon controllers are equal). Nevertheless, sometimes N is such that the computational time needed

to solve the optimization problem becomes larger than the sampling period, making the implementation

unfeasible.

An alternative MPC approach for this problem is the explicit solution [Bemporad et al., 2002], where

the set of all states that are controllable is split into polytopes. In each polytope the control command

is defined as a piecewise affine function of the state. The closed-loop stability is guaranteed with this

approach. On the contrary, when either the order of the system or the length of the prediction horizon

are not small, the complexity of the explicit controller becomes quickly prohibitive. Furthermore, the

computation of the polytopes sometimes is unfeasible.

Proportional control synthesis with LMI [Kara et al., 2009]- The proposed control scheme consists of

a set of proportional (affine) control laws, one for each region. In detail, the controlled flow is represented,

in discrete time, by wk = Fr(mk −md) +R, where R is a vector and Fr is a gain matrix computed for

each region (the superindex r denotes the r − th region). In each region, the control and the marking

are required to fulfill:

1. the input constraints: 0 ≤ wk ≤ fk, where fk represents the flow without control,
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2. the region membership: mk ∈ P(Sr,gr), where P(Sr,gr) = {m|Srm ≤ gr} is the inequality

representation of the r-th region (a polyhedral),

3. the existence of a contractive invariant set (in order to prove closed-loop stability), which is stated

as: xk ∈ P(Q,µ) → xk+1 ∈ P(Q, αµ), where xk = (mk − md) is the current error, α < 1 and

P(Q, αµ) = {x|Qx ≤ αµ} is the contractive set (so, the absolute error is monotonic decreasing).

The methodology consists in expressing the previous conditions as sets of linear matrix inequalities

(LMI), one set for each region. The solution of a LMI can be achieved in polynomial time. Furthermore,

converge to the desired marking md is guaranteed. The main drawback of this approach is that a LMI

must be solved for each region, but the number of these increases exponentially w.r.t. the number of

synchronizations (joins).

ON-OFF (minimum-time) control for persistent nets [Wang et al., 2010] - Stronger results may be

obtained when the problem is restricted to particular net subclasses. Accordingly, the minimum-time

control problem was solved in this work for persistent continuous Petri nets (i.e., net systems where

the enabling of any transition tj cannot decrease by the firing of any other transition ti ̸= tj). First, a

minimal firing count vector σ s.t. md = m0 +Cσ is computed (σ is minimal if for any T-semiflow x,

||x|| * ||σ||, where || · || stands for the support of a vector). Later, the control law is defined, for each

transition tj , as:

u[tj ] =

{
0 if

∫ τ−

0
w[tj ]dτ < σ[tj ]

f [tj ] if
∫ τ−

0
w[tj ]dτ = σ[tj ]

This means that if tj has not been fired an amount of σ[tj ], then tj is completely ON. Otherwise, tj is

completely OFF (it is blocked). It is proved that this ON-OFF control policy drives the system towards

md in minimum time. An intuitive reason for this is that, for persistent nets, the firing order is irrelevant

for reaching a marking. Thus, what only matters is the amount of firings required, which is provided by

σ.

Gradient-base control with uncontrollable transitions [Lefebvre et al., 2007]- Here, the input control

actions consist in reducing the rates of the controllable transitions from their nominal maximum values,

which is equivalent to reduce the flow, as considered along this dissertation. Nevertheless, the goal of

the control problem is slightly different, since it is no longer required to drive the whole marking of the

system to a desired value, but only the marking of a subset of places (the output of the system). The

analysis is achieved in discrete time. Let us provide the basic idea for the case of a single-output system.

Firstly, a cost function is defined as vk = 1/2ϵ2k, where ϵk denotes the output error. The control proposed

has an structure like: uk = uk−1 − (sks
T
k +αI)−1skϵk, where the input uk is the rate of the controllable

transitions and sk is the output sensitivity function vector with respect to the input (the gradient vector

∇u y). The factor α > 0 is a small term added to avoid ill conditioned matrix computations. The gradient

is computed by using a first order approximation method. One of the advantages of this approach is that

the change of regions (or configurations) is not explicitly taken into account during the computation of

the gradient. Furthermore, a sufficient condition for stability is provided.

Pole assignment control with uncontrollable transitions [Vázquez and Silva, 2009b] - This control

technique will be discussed in detail in Section 5.4. In a first step, it is assumed that the initial and

desired markings are equilibrium ones and belong to the same region. The control approach considered
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Tab. 5.1: Qualitative characteristics of control laws. The following abbreviations are used: conf. (configuration),
min. (minimize), func. (function), exp. (exponential), comp. (complexity) and pol. (polynomial).

Technique Computational Optimality Subclass Tnc Stability
issues criterion

PW-straight a LPP for heuristic for all no yes
trajectory each conf. min. time

MPC exp. comp. min. quadratic or all no under suf.
on |T |, N linear func. of m,u conditions

LMI a LMI for none all no yes
each conf.

ON-OFF linear comp. minimum structurally no yes
on |T | time persistent

Gradient-based pol. comp. min. quadratic all yes under a suf.
on # outputs error condition

Pole-assignment a pole-assignment none all yes yes
for each conf.

has the following structure: u = u′
d+K(m−m′

d), where (m
′
d, u

′
d) is a suitable intermediate equilibrium

marking. The gain matrix K is computed, by using any pole-assignment technique, in such a way

that the controllable poles are settled as distinct, real and negative. Intermediate markings m′
d, with

their corresponding input u′
d, are computed during the application of the control law (either at each

sampling period or just at an arbitrary number of them) by using a given LPP with linear complexity

that guarantees that the required input constraints are fulfilled. Later, those results are extended in

order to consider several regions. For this, it is required that the initial and desired markings belong to

a connected union of equilibrium sets, i.e., m0 ∈ E∗
1 , md ∈ E∗

n and ∪n
i=1E

∗
i is connected. Thus, there

exist equilibrium markings mq
1, ...,m

q
n−1 on the borders of consecutive regions, i.e., mq

j ∈ E∗
j ∩ E∗

j+1,

∀j ∈ {1, .., j−1}. A gain matrix Kj , satisfying the previously mentioned conditions, is computed for each

region. Then, inside each jth region, the control action u = u′
d +Kj(m −m′

d) is applied, where m′
d is

computed, belonging to the segment [mq
j ,m

q
j+1], by using a similar LPP. It was proved that this control

law can always be computed and applied (feasibility). Furthermore, convergence to the desired md was

also demonstrated, whenever the conditions for controllability are fulfilled and ∪n
i=1E

∗
i is connected (see

Chapter 4). The main drawback of this technique is that a gain matrix and a LPP have to be derived

for each region in the marking path.

5.1.1 Preliminary comparison of control methods under infinite server

semantics

Having several control methods available for timed continuous PNs, a question that may arise concerns

the selection of the most appropriate technique for a given particular system and purpose, and the

necessity for deriving more of them. There are several properties that may be taken into account, like

feasibility, closed-loop stability, robustness, computational complexity (for the synthesis and during the

application), etc.
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Table 5.1 resumes a few qualitative properties of some of the control methods described above.

Accordingly, provided a structurally persistent PN, the natural choice will be an ON − OFF control

law, since it does not exhibit computational problems, ensures convergence an provides the minimum-

time transient behavior. For no-persistent nets, MPC ensures converge and minimizes a quadratic

criterion. Nevertheless, when the number of transitions grows, the complexity may become untractable.

In such case, control synthesis based on LMI or enforcing piecewise-straight trajectories would be more

appropriated. Finally, control laws based on gradient-descendent and pole assignment methods are

developed in order to deal with uncontrollable transitions. The synthesis of this last technique becomes

tedious (but automatizable) when several configurations appear in the system, since a pole assignment is

required for each configuration. This problem does not appear for the gradient based controller; on the

contrary, this technique does not guarantee convergence for the general case, while the pole assignment

does it.

Given a system with just a few configurations and transitions, all of them being controllable, most

of the described control laws could be synthesized and applied to it, ensuring convergence. In such case,

the criterion for selecting one of them may be a quantitative one, like minimizing either a quadratic

optimization criterion or the time spent for reaching the desired marking. At the present moment, such

quantitative comparison has not systematically been made, but it is our intuition that the transient

response of the mentioned techniques should be comparable (of the same order of magnitude), i.e., one

technique could be the best for a TCPN system, while another technique could be better for a slightly

different model.

In general, there does not exist a control technique that can deal with general net subclasses having

large net structures, ensuring stability and, at the same time, minimizing an optimization criterion. This

lack of techniques is specially remarkable when uncontrollable transitions are considered. For this reason,

through this chapter a couple of control law structures will be derived, in order to deal with systems

with a large net structure 5.3 and systems with uncontrollable transitions 5.4.

5.1.2 Towards decentralized control

In the literature, there is lack of techniques for the efficient synthesis of controllers for systems with

large net structures (with many places and transitions). For this topic, it seems natural to consider

decentralized and distributed control strategies.

In a completely distributed approach, the model can be considered as composed of several subsystems

that share information through communication channels, modeled by places. For each subsystem, a

controller is designed. The mission of each local controller is to drive its corresponding subsystem from

its initial marking to a required one, taking into account the interaction with the other subsystems.

For this, it is required that neighboring local controllers share information. This problem has been

addressed in [Apaydin-Ozkan et al., 2010] for a system composed of two MTS subsystems asynchronously

connected (through places: channels or buffers). The key point is related to the coordination among

local controllers and the possibility of concurrently reaching the target marking in every subsystem.

A consensus algorithm is proposed in order to coordinate the local controllers, sharing information

about the tokens sent and required by each subsystem. Feasibility and concurrent convergence are

demonstrated.



5. CONTROL SYNTHESIS 113

A second approach will be discussed in detail in Section 5.3, in which the existence of an upper-level

controller, named coordinator, is allowed [Vázquez et al., 2011]. This coordinator may receive and send

information to the local controllers, but it cannot apply control actions directly to the TCPN system.

The existence of such coordinator increases the capability of the local controllers, allowing to consider

wider classes for the net subsystems. Subsystems are assumed to be (separately) live and consistent, but

they are not restricted to particular net subclasses. Each local controller is defined as a properly-scaled

affine control law, while the coordinator is an agent that receives, processes (with a linear-complexity

algorithm) and sends information to the local controllers. Feasibility and concurrent convergence to the

required markings are proved.

5.2 Affine control laws for TCPNs

Through this section, an affine control strategy will be derived for TCPN systems, assuming that all

the transitions are controllable and the net system is consistent, thus controllable over the interior of

Class(m0) (Lemma 4.5).

The control scheme proposed here is based on the work reported in [Habets and van Schuppen, 2004],

[Habets et al., 2006], regarding the control synthesis for piecewise-affine hybrid systems, which can be

seen as a wider hybrid class that includes TCPNs. Nevertheless, TCPNs represent a complex case when

using the techniques developed in [Habets et al., 2006], because of the existence of state-dependent input

constraints (that are not considered in [Habets and van Schuppen, 2004, Habets et al., 2006]), and the

fact that TCPN systems mainly evolve in high dimension polytopes (which significantly increases the

complexity during the control synthesis). In this way, the techniques introduced there will be slightly

extended here in order to synthesize affine controllers for TCPN models in a different way. For this

purpose, let us recall a few results through the following subsection.

5.2.1 Affine control laws for simplices in affine systems

Let us start with a few definitions. A polyhedral set is a subset of Rm, described by a finite number

of linear inequalities. A bounded polyhedral set is called a polytope. Alternatively, a polytope can be

characterized as the convex hull of a finite number of points: the vertices of the polytope. A face of a

polyhedral set is the intersection of the set with one of its supporting hyperplanes. If a polyhedral set P
has dimension m, the faces of P of dimension m− 1 are called facets. A description of several problems

encountered during the synthesis and analysis in polyhedrals and several algorithms for their resolution,

including the computation of the vertices, are provided by [Fukuda, 2000]. An m-dimensional polytope

with exactly m+1 vertices is called a simplex. The number of facets in a simplex is equal to the number

of its vertices, i.e., m+ 1.

Definition 5.1. An affine system in a polytope X is:

ẋ = Ax+Bu+ a (5.3)

with the restrictions x ∈ X and u ∈ U , where U is a polytope of admissible inputs.

An admissible affine control law is an affine function u : X → U characterized by u(x) = Fx+ g.
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Let S denote a closed full-dimensional simplex in Rm with vertices v1, ...,vm+1. Let F1, ..., Fm+1

denote the facets of S, and assume that the facets are numbered in such a way that for i = 1, ..,m+1, vi

is the only vertex not belonging to facet Fi. For i = 1, ..,m+ 1, let ni denote the outward unit normal

vector of facet Fi. Considering an affine control law u(x) = Fx+g, the evaluation of this at the vertices

of S will be denoted as uj = u(vj), ∀j ∈ {1, ...,m+ 1}.
Due to the linearity of both the system and the control law inside S, the evaluation of the control

law, at the vertices of S, must fulfill

[F,g] ·

[
v1 ... vm+1

1 ... 1

]
= [u1, ...,um+1] (5.4)

Since S is a full-dimensional simplex then the matrix

[
v1 ... vm+1

1 ... 1

]
is square and has full rank.

Therefore, there is a bijection between (F,g) and the set of values uj (with j ∈ {1, ...,m + 1}). In the

sequel, for the synthesis of a control law, the values of the input uj at the vertices are first computed.

Once these are obtained, the pair (F,g) can be computed by using (5.4).

Consider the following conditions for the values uj :

Condition 1. From Theorem 4.12 in [Habets et al., 2006], a facet Fi is disabled by the control action

u(m) = Fx+ g, whose valuation at vertices v1, ...,vm+1 is given by u1, ...,um+1, iff

∀j ∈ {1, ...,m+ 1}\{i} nT
i (Avj +Buj + a) ≤ 0 (5.5)

Condition 2. Let xf ∈ S, and (µ1, ..., µm+1) be s.t.
∑m+1

j=1 µjvj = xf . According to Theorem 4.19

in [Habets et al., 2006], xf is the unique equilibrium point in S (in closed loop) iff

i)B
m+1∑
j=1

µjuj = −Axf − a {i.e., ẋf = 0} (5.6)

ii) span({Avj +Buj |j = 1, ...,m+ 1}) = Rm (5.7)

According to Theorems 4.18-4.19 in [Habets et al., 2006], conditions (5.5-5.7) can be combined in

order to compute a control law that fulfills different requirements. Here, we are interested in two

particular problems:

Problem 1.a) Find an admissible affine control law such that for every initial state x0 ∈ S, the

corresponding state trajectory x(t,x0) of the closed-loop system satisfies ∀t ≥ 0, x(t,x0) ∈ S, i.e., the

system remains inside S.
Problem 1.b) Additionally, it holds limt→∞x(t,x0) = xf .

Solution: Problem 1.a is solved by computing values for the control law at the vertices uj in such

a way that (5.5) is fulfilled for all the facets of S. Problem 1.b is solved if additionally condition 2 is

fulfilled, i.e., (5.6) and (5.7). Note that (5.5) and (5.6) are linear inequalities (only the values of uj are

unknown, while other vectors and parameters are known) then the computation of values uj satisfying

(5.5) and (5.6) can be done in polynomial time. Once these are computed, it must be checked wether

(5.7) holds or not, in a negative case, uj should be computed again (the set of solutions uj that do not

fulfill (5.7) is on a smaller dimension manifold, so, it is improbable to obtain such values during the
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computation). Finally, the control law, i.e., the pair (F,g), can be obtained by solving (5.4).

Through the next subsection, the results previously recalled will be extended to polytopes, which are

mostly encountered during the synthesis of controllers for TCPN systems (Class(m0) is, in general, a

polytope).

5.2.2 Affine control on polytopes

A possible solution for the synthesis of affine controllers in polytopes consists in decomposing the polytope

into simplices and synthesizing an affine control law for each of them [Habets and van Schuppen, 2004].

In this subsection, a different approach will be introduced, by synthesizing a unique (global) affine

control law for the complete polytope. The resulting control scheme is more conservative, but it will be

demonstrated that such control law can always be computed for TCPN systems.

In polytopes, the matrix

[
v1 ... vm+1

1 ... 1

]
in (5.4) has, in general, more columns than rows, i.e.,

the number of vertices is larger than the dimension of the polytope plus 1. Therefore, computing the

values uj that fulfill the required conditions may not be sufficient for obtaining a control law, since the

existence of a pair (F,g) that satisfies (5.4), for the obtained values uj , is not guaranteed. In this case,

it is additionally required that the same linear dependencies that involve the vertices vj be also effective

for the values uj .

Proposition 5.2. Consider a polytope of dimension k − 1 with m vertices, and the values for the

input at those (uj, j ∈ {1, ...,m}). Assume, without loss of generality, that the first k vertices define a

simplex of dimension k − 1. Thus, for each vertex vj ̸= v1 there exists a unique column vector γi s.t.

vj − v1 = [v2 − v1,v3 − v1, ...,vk − v1]γj.

There exists a pair (F,g) that fulfills (5.4) iff:

∀j ∈ {k + 1, ...,m}, (uj − u1) = [(u2 − u1), (u3 − u1), ..., (uk − u1)]γj (5.8)

Proof. By hypothesis, the first k vertices define a simplex of dimension k − 1, the same dimension of

the whole polytope. Therefore, all the vertices belong to the hyperplane defined by the first k vertices

(see fig. 5.1). Then, for each vj ̸= v1 it must exist a vector γj s.t. (vj−v1) = [(v2−v1), ..., (vk−v1)]γj .

Furthermore, the matrix [(v2 − v1), ..., (vk − v1)] has full column rank, which implies that γj is unique.

Now, (5.4) is equivalent to ∀j uj = Fvj + g. Since the first k vertices define a full-dimensional simplex

then there always exists a unique pair (F,g) that fulfills uj = Fvj + g, ∀j ∈ {1, .., k}. Such pair also

fulfills uj = Fvj + g, ∀j ∈ {k + 1, ..,m}, iff (uj − u1) = F(vj − v1), ∀j ∈ {k + 1, ..,m}. Substituting

(vj − v1) by the expression previously obtained, it results (uj − u1) = F[(v2 − v1), ..., (vk − v1)]γj .

Finally, this equation is equivalent to (uj − u1) = [(u2 − u1), ..., (uk − u1)]γj .

For polytopes, the indices of the vertices in (5.5) need to be reconsidered. If Fi is a facet that must

be disabled (condition 1 ) then, denoting as IFi the indices of the vertices related to Fi, (5.5) is rewritten

as

∀j ∈ IFi nT
i (Avj +Buj + a) ≤ 0 (5.9)

Similarly, (5.6) can be rewritten, by describing xf as a linear combination of linearly independent
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vertices. Assume, without loss of generality, that the first k vertices define a simplex having the same di-

mension of the polytope. Then, define (µ1, ..., µk) such that
∑k

j=1 µjvj = xf . Thus, (5.6) is transformed

into

B

k∑
j=1

µjuj = −Axf − a (5.10)

In this way, the results recalled in Subsection 5.2.1, regarding the control problems 1.a and 1.b, are

extended to polytopes.

H
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v
4

v
3

v
5

Fig. 5.1: Figure for the proof of Proposition 5.2. Vertices belong to the hyperplane H. Dashed lines represent
vectors (vj-v1).

5.2.3 Affine control laws for TCPN systems

Consider a TCPN system, controllable over the interior of Class(m0) (thus, according to Lemma 4.5,

the net is consistent). Define the set intϵ{Class(m0)} = {m ∈ Class(m0)|m ≥ 1 · ϵ}, for an arbitrarily

small ϵ > 0.

This subsection is devoted to the following control problem:

Problem 2. Find a s.b. control law for driving the TCPN system towards the desired marking mf ,

assuming mf ,m0 ∈ intϵ{Class(m0)}.

Procedure 5.1. Synthesis of a s.b. centralized control law for driving the system towards mf .

Synthesis of the control law (off-line):

I . Compute the vertices {v1, ...,vm} of intϵ{Class(m0)} and enumerate them s.t. the first k define

a simplex having the same dimension of the polytope.

II . Compute the vectors ni normal to the corresponding facets of Class(m0) and pointing outwards

this.

III. For the system ṁ = Cw where w is the control input, compute some values wj for the input at

the vertices (i.e., with wj instead uj) simultaneously fulfilling:
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• wj ≥ 0,

• equation (5.8),

• equation (5.9) for all the facets,

• equation (5.10) with xf = mf .

IV. Compute F and g that fulfill (5.4).

V . Verify thatmf is the unique equilibrium point in the closed-loop system that belongs to Class(m0),

by using (5.7) ( the condition (5.6) is already fulfilled, since it was transformed into (5.10)). Oth-

erwise, compute another values uj and (F,g).

Application of the control law (on-line):

I . Define η(m) = min(f(m)./(Fm+ g)), where ./ denotes the element-wise division operator.

II. Apply the control law:

u(m) = f(m)− η(m) · (Fm+ g) (5.11)

Step I of the synthesis procedure corresponds to the vertex enumeration problem. A description of

this problem and algorithms for its resolution are provided by [Fukuda, 2000]. Vectors ni computed in

step II are also normal to the facets of intϵ{Class(m0)}. The computation of these as stated in step

II has the advantage that it depends only on the original polytope Class(m0). All the constraints for

the values wj in step III are linear. Then, step III can be achieved in polynomial time. In particular,

consider the quadratic problem: min
∑

(f(vj) − wj)
T (f(vj) − wj), subject to the constraints in step

III. This will usually lead to a fast control law, since the values wj thus computed will be close to their

upper bounds f(vj), i.e., values that allow the maximum flow. In any case, the scalar function η(m)

ensures that the control action is always s.b.

Proposition 5.3. It is always possible to synthesize a control law (5.11) by using Procedure 5.1.

Proof. Let us construct a particular control law. Consider the polytope intϵ{Class(m0)}. Enumerate

its vertices s.t. the first k define a simplex S, having the same dimension of the polytope, that includes

mf .

First, for the vertices of such simplex (i.e., {v1, ...,vk}), define the vectors dj = mf − vj . Since the

net is consistent then, for each dj there exists wj s.t. dj = C · wj and wj ≥ 0. These wj define an

affine control law (F,g) according to (5.4). Note that, considering the system as ṁ = Cw, such values

wj fulfill with (5.9), since the field vector at the vertices {v1, ...,vk} points towards mf , i.e., inside the

simplex, thus the polytope. Furthermore, by linearity of the model (ṁ = Cw), the field vector at mf

is null, so, the condition (5.10) holds. Moreover, (5.7) also holds since the field vector at the vertices of

the simplex constitutes a basis (by definition, span{d1, ...,dk} = span{v1, ...,vk}).
Given such wj for j ∈ {1, ..., k}, the values of wj for j ∈ {k+1, ..., N} are uniquely determined according

to (5.8). Let us show that these also fulfill (5.9).
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For each vertex vj ∈ {vk+1, ...,vm}, define v′
j as the intersection of the segment (mf ,vj) with the frontier

of the simplex S. In this way, there must exist γ ≥ 0 s.t. [v1, ...,vk]γ = v′
j and 1 · γ = 1. According

to this, by linearity, d′
j = mf − v′

j = [d1, ...,dk]γ. Similarly, by linearity, the value of the input at v′
j ,

denoted as w′
j , is s.t. w

′
j = [w1, ...,wk]γ ≥ 0 and d′

j = C ·w′
j , i.e., the field vector at v′

j points towards

mf . Finally, since v′
j is in the segment (mf ,vj) and the field vector at mf is null, then the field vector

at vj is also pointing towards mf and the input at this fulfills wj ≥ 0. Thus, the input at this vertex

also fulfills (5.9). Therefore, all the constraints enumerated in steps I-V in Procedure 5.1 are fulfilled.

Proposition 5.4. Control law (5.11) drives the system towards the required marking mf while the

control action is s.b. along the trajectory.

Proof. Consider the state equation of the TCPN system as ṁ = Cw, where w = ΛΠ(m)m − u.

This model is linear, then the current control problem is similar to the problem 1.b of Subsection 5.2.2

with xf = mf , but in a polytope instead a simplex, and with the input constraint 0 ≤ w ≤ f(m)

instead u ∈ U . Therefore, according to the results shown in the previous subsections, the control law

w(m) = Fm+g (equivalently, u = f(m)−(Fm+g)), where (F,g) are obtained through the steps I-V of

the previous procedure, would drive the system towardsmf through a trajectory inside intϵ{Class(m0)}.
Since the closed-loop system is affine, then convergence to mf means asymptotic stability.

The closed-loop system with such input is equivalent to the closed-loop system with (5.11) and η = 1.

In such case, since mf is asymptotically stable, there exists a quadratic Lyapunov function V (m) =

(m−mf )
TP(m−mf ) whose derivative is negative, i.e., V̇ (m) = −(m−mf )

TQ(m−mf ) < 0, where

the matrix Q = −[(CF)TP + P(CF)] is positive definite (xTQx > 0 ∀x ̸= 0). By using the same

Lyapunov function for the closed-loop system under (5.11) (thus η ̸= 1), its derivative can be computed

as V̇ (m) = −η(m)(m − mf )
TQ(m − mf ). This is negative (meaning that the system will be driven

towards mf ) whenever η(m) > 0. This holds since f(m) > 0 (because the close-loop system remains

inside int{Class(m0)}) and Fm+ g ≥ 0 (due to the constraint wj ≥ 0).

Finally, since η(m) · (Fm + g) ≥ 0 (so f(m) ≥ u(m)) and η(m) = min(f(m)./(Fm + g)) implies

η(m)(̇Fm+ g) ≤ f(m) (so u(m) ≥ 0), then the input is s.b.

Example 5.1. Consider the TCPN system depicted in fig. 5.2(a), with initial marking m0 =

[0.1, 1.8, 0.1, 0.1, 0.8, 0.1, 0.1, 2.8, 0.1]T and timing λ = [1, 1, 1, 1, 1, 1, 1, 1]T . It is desired to drive this

system towards mf = [0.3, 0.3, 1.4, 0.2, 0.6, 0.2, 1.4, 1.1, 0.5]T . This TCPN can be seen as a piecewise-

linear system with 16 distinct modes (configurations), according to its state equation. Nevertheless, by

following Procedure 5.1, a unique affine control was obtained (5.11), by computing a gain matrix F, of

order 9 × 8, and a vector g = 0. This control law was applied to the system. Fig. 5.2(b) shows the

resulting marking trajectories. It can be observed that the control law successfully drives the system

towards the desired marking.

5.3 Coordinated control

In the previous section, an affine control structure was proposed for the control of TCPN systems in which

all the transitions are controllable. The main drawback of this technique is the complexity involved in
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Fig. 5.2: (a) A consistent TCPN system, and (b) its evolution when an affine control law is being applied.

N

Coordinator

Fig. 5.3: Modular-coordinated control scheme.

the vertex and facets computation. Even if there exist efficient tools for such computations (for instance,

[Fukuda, 2000]), for systems having a large structure the synthesis of a controller may be untractable.

In such case, one way for dealing with such complexity consists in decomposing the system into a set of

interconnected subsystems, i.e., a modular view of the model. In this way, a controller can be computed

for each subsystem, reducing thus the complexity involved in the synthesis procedure. Though this

section, a particular proposal for such a control strategy will be considered, as an extension of the affine

control laws introduced before.

Definition 5.5. Given a PN N = ⟨P, T,Pre, Post⟩, a modular view of this is a set of n PNs, named

modules, denoted as N i = ⟨P i, T i,Prei, Posti,mi
0⟩, where mi

0 = m0[P
i], Prei = Pre[P i, T i] and

Posti = Post[P i, T i], for each i ∈ {1, ..., n}. These modules are interconnected by places, called buffers

B, so P is the disjoint union of P 1, ..., Pn and B, and T is the disjoint union of T 1, ..., Tn. We assume

that the following conditions hold:
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1. For every i, j ∈ {1, ..., n}, if i ̸= j then Pre[P i, T j ] = Post[P i, T j ] = 0.

2. For each buffer b ∈ B, |b•| ≥ 1.

3. For every i ∈ {1, ..., n}, the module N i is consistent.

4. The net model N is consistent.

In the sequel, it will be assumed, without loss of generality, that the incidence matrix of the modular

net model has a structure like:

C =



C1 0 ... 0

0 C2 ... 0
...

... ...
...

0 0 ... Cn

C1
B C2

B ... Cn
B


where Ci = C[P i, T i] and Ci

B = C[B, T i]. In this way, the marking is represented as m = [(m1)T , ..,

(mn)T , (mB)T ]T , where (mi)T is the transpose of mi = m[P i], and similarly mB = m[B]. Furthermore,

Bi
x ≥ 0 represents a basis for the T-semiflows of Ci. In this section, we are interested in the following

control problem:

Problem 3. Given a TCPN system ⟨N ,λ,m0⟩, where N is a modular PN, find a coordinated-control

scheme for driving concurrently each module N i of N towards a desired marking mi
f ∈ Class(mi

0) by

means of s.b. control actions, assuming they are concurrently reachable while the buffers remain marked.

Fig. 5.3 shows the structure of a coordinated-control scheme. This consists of a set of local controllers

and an upper-level controller, named coordinator. A local controller is synthesized for each module, re-

ceiving information from the coordinator and having local information: the marking of the corresponding

module and the neighboring buffers. The coordinator receives and sends minimum information from and

to the local controllers, but it does not apply control actions into the system. Furthermore, the coordi-

nator can observe the marking of the buffers.

5.3.1 The need for coordination

By hypothesis, a modular TCPN system is consistent, thus controllable over int{Class(m0)}. The same

holds for each of the modules N i. Thus, if the initial marking of the buffers were large enough, i.e., if

mB
0 >> 0, each module could be driven towards its corresponding desired marking mi

f ∈ Class(mi
0) by

means of a local control law like (5.11), using only local information, i.e., mi. In such case, it would be

obtained a completely decentralized control scheme with neither communication between local controllers

nor with the coordinator.

Example 5.2. Consider the modular TCPN system depicted in fig. 5.4, consisting of three modules

interconnected by four buffers. The rates for the transitions are λ1 = [4, 1, 1, 1] for N 1, λ2 = [1, 1, 1]

for N 2 and λ3 = [1, 1, 1, 1] for N 3. The initial markings are m1
0 = [9.7, 0.1, 0.1, 0.1]T for N 1, m2

0 =

[0.1, 0.1, 4.8]T for N 2 and m3
0 = [4.8, 0.1, 0.1]T for N 3. The initial marking at the buffers is mB

0 =

[0.1, 0.1, 2.5, 4]T . Consider the control problem of transferring the modules towards m1
f = [1, 1, 1, 7],

m2
f = [0.5, 3, 1.5] and m3

f = [1.5, 0.5, 3], respectively. For each module, gain matrices Fi and vectors
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Fig. 5.5: (a) Marking of Module 1 in closed-loop. (b) Marking in the buffers.

gi were computed, by using Procedure 5.1. Later, the resulting control laws (5.11) were simultaneously

applied to the corresponding modules. Fig. 5.5(a) shows the obtained trajectories for the marking of

N 1. It can be observed that the module got stuck at a marking different than the desired one. The

same has occurred to the other modules, because the buffers b1 and b2 were emptied, as shown in fig.

5.5(b) (N 3 requires marking from b1 while N 1 and N 2 require marking from b2). Thus, although the

net system is live (without control), the applied control scheme stops the activity in all the modules.

In general, the marking at the buffers is limited (frequently, they are part of a P-component), and

so, they impose constraints to the control actions that are not taken into account during the synthesis

of the local controllers, e.g., a module N i has the constraint wi ≤ f i(mi,mB), where mB represents the

marking at the buffers, but the control law obtained with Procedure 5.1 is synthesized only for fulfilling

wi ≤ f i(mi). In the worst case, a set of buffers may empty, consequently, the local controllers will



122 5.3. Coordinated control

stop the activity of the modules that require tokens from them. This does not mean that the system

is actually in a deadlock, on the contrary, it might be possible to recover the system. Nevertheless, the

local controllers are not synthesized in order to increase the marking at the buffers. Therefore, it is

important to have a certain coordination between the local controllers, in order to make the modules to

evolve with a suitable speed so that the buffers do not empty, i.e., imposing a fairness relation between

modules. This will be the task of the coordinator.

5.3.2 Modular-coordinated control

In this Subsection, a modular-coordinated control strategy will be introduced. In general, different kinds

of control techniques can be considered for the local controllers. Nevertheless, PWA control laws will be

used in this case, as a generalization of the control strategy introduced in Section 5.2.

In sequel, it will be assumed that both the initial and the final markings belong to intϵ{Class(m0)}
for a given small ϵ > 0. Similarly, it will be assumed that the operation of each local controller and

the coordinator are ruled by a global clock and they always receive and send the required information

without loss or delays.

As shown in the previous subsection, certain coordination is required in order to make the buffers to

remain marked. This can be achieved by applying a modular control scheme, like the one shown in fig.

5.3, that drives the system through a linear (straight) trajectory (due to the convexity of Class(m0), it

is always possible to drive the system to any reachable marking, through a straight trajectory). Let us

describe this in an informal way. Compute firstly a proper final marking for the buffers mB
f > 1ϵ such

that mf = [(m1
f )

T , ..., (mn
f )

T , (mB
f )

T ]T is reachable (such marking exists by hypothesis). Next, compute

for each module (task for the local controllers) a vector di > 0 s.t. (mi
f −mi) = Cidi. Furthermore,

compute (task for the coordinator) a vector γ > 0 s.t. (mB
f −mB) =

∑
Ci

Bd
i + [C1

BB
1
x, ...,C

n
BB

n
x ]γ.

In this way, if each local controller applies wi = di + Bi
xγ[T

i] then the closed-loop behavior of each

module will be ṁi = Cidi + CiBi
xγ[T

i] = (mi
f − mi), i.e., each field vector will be pointing towards

the corresponding mi
f , consequently, the modules will be concurrently driven towards their final states

describing linear trajectories. Moreover, the closed-loop behavior of the marking of the buffers will be

ṁB =
∑

Ci
Bd

i + [C1
BB

1
x, ...,C

n
BB

n
x ]γ = (mB

f −mB), thus, the marking of the buffers will converge to

mB
f describing a linear trajectory, so, the buffers will remain marked.

This control scheme can be extended by adding an affine control element to the local control laws.

This is formalized in the forthcoming Procedure 5.2, nevertheless, let us provide here an intuition for such

control procedure. First, define w′i = Fimi + gi, where (Fi,gi) is a proper affine control law computed

(for each module) by using Procedure 5.1. Defining a linearizing factor ψ ∈ [0, 1], the following local

control law is proposed for each module: wi = diψ +w′i(1 − ψ) +Bi
xγ

i. Note that, if ψ = 1 then the

local controllers will drive their modules toward the corresponding mi
f describing linear trajectories (it

is actually the control scheme described in the previous paragraph). On the other hand, with ψ = 0

the control laws obtained are the evaluations of the affine control laws w′i, which corresponds to the

decentralized scheme with local affine controllers used in Example 5.2. In order to make the buffers

to remain marked, the linearizing factor must be properly computed. One possibility is to impose the

constraint ṁB =
∑

Ci
B [d

iψ+w′i(1−ψ)+Bi
xγ

i] > 1ϵ−mB . In this way, the field vector of the marking

of the buffers is always pointing towards a positive marking > 1ϵ (given the definition of γ, previous
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constraint is equivalent to
∑

Ci
B(w

′i − di)(1− ψ) > 1ϵ−mB
f ).

Finally, in order to make the control laws to be s.b., i.e., wi ≤ f i(mi,mB), a proper global scale factor

η may be applied to the control actions, i.e., each local controller would apply wi = [diψ+w′i(1−ψ) +

Bi
xγ

i]η, where η > 0 is the maximum scalar s.t. wi ≤ f i(mi,mB) for all the modules. The factor must

be the same for all the local controllers, so the direction of the global field vector is not modified. Then,

η must be computed by the coordinator by using information from the local controllers, regarding the

maximum control action allowed with respect to each of the three components di, B
i
x and w′i (these are

codified in three factors ηid, η
i
xj

and ηiw, respectively). Combining all these issues, the following control

scheme is proposed:

Procedure 5.2. Synthesis of a coordinated control scheme.

Synthesis of local control laws (planing step):

• Coordinator: Compute a suitable desired marking for the buffers s.t. all of them are marked

mB
f > 1ϵ and mf = [(m1

f )
T , ..., (mn

f )
T , (mB

f )
T ]T is reachable. Compute a T-semiflow 0 ≤ x ≤

f(mf ).

• Each local controller: Compute an affine control law (Fi,gi), by using Procedure 5.1, for driving

the module N i to the corresponding mi
f , with the additional constraint w(mi

f ) = x[T i].

Dynamic control (on-line, in discrete time):

Coordinator:

• Receive from the local controllers the values ηixj
, ηid, η

i
w, C

i
Bd

i and Ci
B · (w′i − di).

I . Compute a vector γ > 0 solution for

(mB
f −mB)−

∑
Ci

Bd
i = [C1

BB
1
x, ...,C

n
BB

n
x ]γ (5.12)

II . Compute ψ = min α s.t. α ∈ [0, 1] and
∑

Ci
B(w

′i − di)(1− α) > 1ϵ−mB
f .

III. Define, for each module, γi = γ[T i] and ηi = 1/((1− ψ)/ηiw + ψ/ηid +
∑

γi[j]/ηixj
).

IV. Evaluate η = min(η1, ..., ηn).

• Send, to each local controller, the values η, ψ and γi.

For each local controller:
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• Receive from the coordinator the new values for ψ, η and γi.

I . Compute a vector di > 0 s.t. (mi
f −mi) = Cidi.

II . Evaluate the affine control action: w′i = Fimi + gi.

III. Apply the control action:

ui = f i(mi,mB)−
[
w′i(1− ψ) + diψ +Bi

xγ
i
]
η (5.13)

IV. Compute the values:

• ηid = maxα s.t. diα ≤ f i(mi,mB),

• ηiw = maxα s.t. w′iα ≤ f i(mi,mB),

• ηixj
= maxα s.t. xjα ≤ f i(mi,mB), for each column (T-semiflow) xj of Bi

x.

• Send the values ηixj
, ηid, η

i
w, C

i
B · di and Ci

B · (w′i − di) to the coordinator.

In Section C.3 in the appendix, a simple algorithm for the computation of mB
f is provided. The

computation of di, achieved by each local controller at step I at each sampling, and γ achieved by the

coordinator at step I, can be done with Algorithm C.3 (in Section C.3), having a linear complexity.

Similarly, an efficient algorithm for the computation of values ηixj
, ηiw, η

i
d, η

i
T and ψ is also provided in

Section C.3.

Proposition 5.6. Procedure 5.2 is well defined, i.e., all the required information is available and all the

conditions for the computation are satisfied.

Proof. Since the net N is consistent and mf is assumed reachable, then ∃σ > 0 s.t. (mi
f − mi) =

Ciσ[T i], for each module, and (mB
f −mB) =

∑
Ci

Bσ[T
i]. Consider a moduleN i. Since this is consistent,

then there always exists a particular solution di > 0 for (mi
f −mi) = Cidi. Furthermore, the general

solution for σ[T i] is given by σ[T i] = di +Bi
xγ

i, with γi > 0. Then, given particular solutions di for

each module, there always exists γ s.t. (mB
f −mB) =

∑
Ci

Bd
i +

∑
Ci

Bγ[T
i], i.e., solution for (5.12).

Therefore, it is always possible to compute vectors di and γ according to the control procedure.

On the other hand, note that ψ = 1 is a trivial solution for
∑

Ci
B(w

′i−di)(1−ψ) > 1ϵ−mB
f . Moreover,

the step III for the operation of the local controllers implies that the buffers remain marked (this is

proven in detail in the proof of Proposition 5.7). Thus, f i(mi,mB) > 0 for each module. Since di > 0

and γ > 0, then scalars ηiw, η
i
d, η

i
xj
, ηi and η can always be computed and they are positive.

Finally, η is computed in such a way that each local control action is s.b., so it can be applied. Let us prove

this by showing that η is computed in such a way that wi = [w′i(1− ψ) + diψ +Bi
xγ

i]η ≤ f i(mi,mB)

(wi ≥ 0 already since w′i > 0, di > 0, Bi
x ≥ 0 and γi > 0). By using the definitions of ηid, η

i
w

and ηixj
, computed by the local controllers, and ηi computed by the coordinator, it can be proved that

[w′i(1 − ψ) + diψ +Bi
xγ

i]ηi ≤ f i(mi,mB). Later, since 0 < η ≤ ηi, then wi ≤ f i(mi,mB) for all the

modules.
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Proposition 5.7. If the coordinated control scheme of Procedure 5.2 is applied, each module will be

driven towards the corresponding mi
f .

Proof. For the sake of simplicity, the analysis is achieved in continuous-time, but an analogous reason-

ing can be used for the discrete-time case. Firstly let us show that the buffers remain marked. Consider

a module N i. By definition of ψ,
∑

Ci
B(w

′i − di)(1 − ψ) > 1ϵ − mf
B . Combining this equation with

(5.12), it is obtained mB +
∑

Ci
B [w

′i(1 − ψ) + diψ + Bi
xγ

i] > 1ϵ. Substituting (5.13) it is obtained

mB + (1/η)
∑

Ci
B [f

i(mi,mB) − ui] > 1ϵ. Furthermore, substituting ṁB =
∑

Ci
B [f

i(mi,mB) − ui]

(given by definition) into the previous equation, it is obtained (1/η)ṁB > 1ϵ−mB . This means that, in

case mB
j ≤ ϵ for some buffer bj , the field vector of the marking of bj points towards a marking m[bj ] > ϵ,

i.e., ψ is computed in such a way that the buffers remain marked (the analysis can also be achieved in

discrete-time, obtaining the analogous expression (1/η)(mB
τ+1 −mB

τ )/∆τ > 1ϵ−mB
τ , having the same

interpretation).

Now, suppose that ψ = 0. Then, as shown for the centralized affine control scheme, there exists a

quadratic Lyapunov function V (mi) = (mi − mi
f )

TP(mi − mi
f ) whose derivative is negative, i.e., the

matrix Q = −[(CF)TP+P(CF)] is positive definite and so V̇ (mi) = −η(mi −mi
f )

TQ(mi −mi
f ) < 0,

∀mi ̸= mi
f . In general, independently of the values received from the coordinator, the derivative of

the same Lyapunov function with ψ ̸= 0 can be computed as V̇ (mi) = −η(1 − ψ)(mi −mi
f )

TQ(mi −
mi

f )− ηψ(mi −mi
f )

TP(mi −mi
f ). Since P and Q are definite positive and η > 0, then the derivative

of the Lyapunov function is negative for ψ ∈ [0, 1], and so the module will asymptotically converge

to mi
f (a similar result can be obtained for the discrete-time case, by using the Lyapunov function

∆V (mi
τ ) = (mi

τ+1 −mi
f )

TP(mi
τ+1 −mi

f )− (mi
τ −mi

f )
TP(mi

τ −mi
f ) and assuming ∆τ << 1).

Example 5.3. Consider again the TCPN system depicted in fig. 5.4 with the same rates and initial

marking. The desired markings for the modules are given by m1
f = [1, 1, 1, 7], m2

f = [0.5, 3, 1.5] and

m3
f = [1.5, 0.5, 3], respectively. Consider a desired marking for the buffers mB

f = [0.5, 0.5, 0.5, 0.5]T .

For each module, gain matrices Fi and vectors gi were computed according to Procedure 5.1. Later,

the coordinated control strategy of Procedure 5.2 was applied. Fig. 5.6(a) shows the trajectories for

the marking of N 1. It can be observed that the module was successfully driven to the desired marking

m1
f . Similarly, modules N 2 and N 3 were driven towards m2

f and m3
f , respectively. Fig. 5.6(b) shows

the marking evolution of the buffers. Note that the control makes the buffers to remain marked by

converging to mB
f > 1ϵ. Later, the control scheme was slightly modified and applied by forcing ψ = 1

during all the time. As expected, the control was successful in this case as well. Fig. 5.6(c) shows

the marking at place p13 vs. p14 (a projection of the phase portrait). The solid curve corresponds to

the system with the coordinated control as defined in Procedure 5.2 (ψ(m)), while the dashed curve

represents the closed-loop system but with ψ = 1 for all the time. Note that in this second case, the

trajectory described is linear, showing thus the meaning of ψ.
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Fig. 5.6: a) Marking of Module 1 of the system of fig. 5.4 in closed-loop behavior, under the coordinated control
of Procedure 5.2. b) Marking in the buffers. c) Phase portrait. Solid curve corresponds to the original
coordinated control strategy. Dashed curve is obtained by forcing ψ = 1.

5.4 Pole-assignment centralized control for systems with

uncontrollable transitions

In this section, a centralized control law structure is proposed for the case in which the system has

uncontrollable transitions. As explained in Chapter 4, the controllability is much more complex in this

case. There, a few of results regarding the controllability over sets of equilibrium markings (Ei = {m ∈
ℜi|∃u s.b. at m s.t. C(ΛΠ(m)m − u) = 0}) were provided. Remmeber that equilibrium markings

represent ”stationary operating points” in the original discrete system, then, the resulting control law

will transfer the system from one operating point to another required one. For this, the controllable

transitions were classified, in each region ℜi, as fully controllable T i
cf and partially controllable T i

cp.

The analysis achieved though this section is made under the assumption that the system is controllable

under the corresponding sets E∗
i by means of the fully controllable transitions, i.e., the system fulfills

the first statement of Corollary 4.18 in the corresponding configurations.
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5.4.1 Controlling inside one region

In this subsection, a control law structure is proposed for the case in which the initial and desired

markings, denoted as m0 and md respectively, belong to a common region ℜi and both are equilibrium

markings.

In the sequel it is assumed that the system fulfills the sufficient condition for controllability of Corol-

lary 4.18, so the system is controllable over E∗
i using only fully controllable transitions T i

cf . According

to this, control will be applied by means of these transitions, while other controllable ones (those in T i
cp)

will be considered as uncontrollable.

Now, the classical feedback control law (for instance see [Chen, 1984]) is given by

u = ud +K · e (5.14)

where K is a gain matrix, ud is the input related to the desired marking md and e = m − md is the

marking error.

Under these assumptions, if a negative and unbounded input could be applied to the system then

md would be reachable by means of a control law like (5.14), but this is not the case because the input

must be suitably bounded. Nevertheless, as it will be proved next, given a stabilizing feedback gain

matrix K it is possible to compute an intermediate desired marking m′
d, in the segment defined by m0

and md but close enough to m0, s.t. the input thus defined is suitably bounded along the trajectory,

which remains in ℜi. Computing several of these intermediate markings, md can be reached by jumping

through them. Based on this idea, a control procedure is proposed, whose effectiveness and feasibility

are formally proved through this section.

Now, let us introduce some useful notation. Let u0 and ud (w0 and wd) be the equilibrium inputs

(equilibrium flows) of m0 and md, respectively (m0 and md are equilibrium markings). Define the

constant vectors e0 = m0−md and ∆u = u0−ud, and consider the error e = m−md. Consider a given

intermediate target marking m′
d in the segment defined by m0 and md. This marking can be expressed

as m′
d = md +βe0, where β is a scalar that belongs to [0, 1]. By linearity, m′

d is an equilibrium marking

and one of its equilibrium inputs is given by u′
d = ud + β∆u. The equilibrium flow of m′

d and the error

defined from it are given by e′ = m − m′
d = e − βe0 and w′

d = wd + β(w0 − wd) = ΛΠim
′
d − u′

d,

respectively.

Procedure 5.3. Synthesis of a centralized pole-assignment control law for systems with uncontrollable

transitions.

Synthesis of control law (planing step)

I . Compute a stabilizing feedback gain matrix K s.t. the controllable eigenvalues of the closed-loop

state matrix (CΛΠi − CK) are distinct, real and negative, and the rows of K, non related with

transitions in T i
cf , are null.
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II . Given m0 compute a intermediate desired marking m′
d, which belongs to the segment defined by

m0 and md, as follows

m′
d = md + βe0 (5.15)

where β is obtained by solving the following LPP

β = min γ subject to

c1 + neg(A)T−1
i e+ γ

(
c2 − neg(A)T−1

i e0
)
≥ 0

γ ≥ 0

(5.16)

Ti is a similarity transformation matrix s.t. the transformed error T−1
i e is nonnegative and de-

creasing in the closed-loop system, i.e., ė = (CΛΠi − CK)e, the function neg(A) is defined by

elements as

neg(A)i,j =

{
Aij if Aij < 0

0 otherwise
(5.17)

and the constants are defined as

A =



K

ΛΠi −K

Π1
j −Πi

...

Πr
j −Πi


Ti, c1 =



ud

wd(
Π1

j −Πi

)
md

...(
Πr

j −Πi

)
md


, c2 =



∆u

w0 −wd(
Π1

j −Πi

)
e0

...(
Πr

j −Πi

)
e0


(5.18)

considering all the configurations Π1
j ,..., Πr

j whose corresponding regions ℜ1
j ,...,ℜr

j are neighbors

of ℜi. Roughly speaking, first constant terms (K, ud and ∆u) ensure that u > 0, second terms

ensure that w > 0 and last terms guarantee that the trajectory lies in ℜi.

Dynamic control (on-line)

III. Apply the following control law, which will transfer the system towards m′
d describing a trajectory

in ℜi with a s.b. control action,

u = u′
d +K (m−m′

d) (5.19)

IV. At any time, compute a new intermediate marking m′
d, closer to md than the previous one, by

solving again the LPP (5.16). Iterate this step, while the control law (5.19) is being applied, until

the intermediate desired marking be computed as md, i.e., m
′
d = md.

In order to prove the effectiveness of this control approach, we proceed as follows: in Proposition 5.8

the existence of K and Ti, as they were previously defined, is proved. In Proposition 5.9 it is proved that
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the LPP (5.16) actually provides the next intermediate target marking, i.e., m′
d is reached by means of

(5.19) and this input is s.b.. Finally, in Proposition 5.10 it is proved that this LPP has always a solution,

and this converges to β = 0, i.e., m′
d = md.

Proposition 5.8. Consider a given m′
d ∈ int(ℜi). The controllable poles of the closed-loop system can

be arbitrarily assigned by means of a proper gain matrix K, whose rows non related to transitions of T i
cf

are null. If such poles are real, distinct and negative then the system converges asymptotically to the

marking m′
d. Moreover, there exists a similarity transformation Ti s.t. the transformed error T−1

i e′ is

nonnegative and decreasing.

Proof. Assume Tc = T i
cf . Denoting asKi

cf the matrix built with the rows ofK related to the transitions

in T i
cf , then CK = Ci

cfK
i
cf and Ki

cf fully determines K (other rows of K are null). Applying the control

law expressed in (5.19), the following closed-loop state equation is obtained

•
e′ =

•
(m−m′

d) = (CΛΠi −Ci
cfK

i
cf )e

′ (5.20)

Consider the Kalman decomposition Tkal (see, for instance, [Chen, 1984]), so

T−1
kalCΛΠiTkal =

[
A11 A12

0 A22

]
T−1

kalC
i
cf =

[
B

0

]

and the pair (A11,B) is controllable in the classical sense. Then, the eigenvalues of (A11 − BKkal)

can be arbitrarily assigned by a proper choice of a gain matrix Kkal. Assume that Kkal places those

eigenvalues as real, distinct and negative. Consider the gain matrix of the original system s.t. Ki
cf =[

Kkal, 0
]
T−1

kal, so the controllable eigenvalues of (CΛΠi−CK) are equal to those assigned by Kkal.

The transformed closed-loop system is given by

•
ϵ′ = T−1

kal

•
e′ =

[
(A11 −BKkal) A12

0 A22

]
ϵ′ ϵ′0 =

[
ϵ′10

ϵ′20

]

where ϵ′0 = T−1
kale

′
0. Now, by controllability hypothesis Gi ∈ Span{Contr(CΛΠi,C

i
cf )}, so T−1

kalGi ∈
Span{Contr(T−1

kalCΛΠiTkal,T
−1
kalC

i
cf )}, which is equivalent to

T−1
kalGi ∈ Span

{[
B A11B , ..., A

|P |−1
11 B

0 0 , ..., 0

]}

Since T−1
kale

′
0 ∈ Span{T−1

kalGi} then ϵ′20 = 0, i.e., the transformed initial error is null at the un-

controllable part. Now, consider a modal decomposition of (A11 −BKkal), i.e., a modal matrix V s.t.

V−1(A11 −BKkal)V = D where D is diagonal, and compute a diagonal matrix S whose elements are

in {−1, 1} (so S = S−1) in such a way that SV−1ϵ′10 ≥ 0. Then, defining the similarity transformation

Ti = Tkal

[
VS 0

0 I

]
(5.21)
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the original closed-loop system (5.20) can be transformed as

T−1
i

•
e′ =

•[
ε′1

ε′2

]
=

[
D (VS)−1A12

0 A22

][
ε′1

ε′2

]

T−1
i e′0 = ε′0 =

[
ε′10

ε′20

]
≥ 0

(5.22)

Since ε′20 = ϵ′20 = 0, the solution of such equation is

ε′1(τ) = eDτε′10

ε′2(τ) = ε′20 = 0

Finally, since D is a diagonal matrix with negative diagonal entries (which correspond to the eigen-

values of the closed-loop system), then ε′0 ≥ ε′(τ) ≥ 0 ∀τ , and the error converges to zero.

In the sequel, let us assume that K is s.t. the controllable poles of the closed-loop system are real,

distinct and negative.

Proposition 5.9. Consider the initial and desired markings m0,md ∈ int{ℜi}. Suppose that at some

time τ1, m(τ1) ∈ int{ℜi} and a solution β for the LPP (5.16) is computed. Consider the intermediate

desired marking as in (5.15). If the input (5.19) is being applied then m′
d will be reached through a

trajectory inside ℜi. Moreover, such input will be suitable bounded along the marking trajectory.

Proof. According to (5.16) and denoting e′(τ1) = e(τ1)− βe0

c1 + βc2 + neg(A)T−1
i e′(τ1) ≥ 0 (5.23)

Now, since the control law (5.19) is being applied, according to Proposition 5.8 the error of the closed-

loop system fulfills T−1
i e′(τ1) ≥ T−1

i e′(τ) ≥ 0 for τ ≥ τ1, so, neg(A)T−1
i e′(τ1) ≤ neg(A)T−1

i e′(τ) (be-

cause neg(A) ≤ 0 by definition). Furthermore, since T−1
i e′(τ) ≥ 0 then neg(A)T−1

i e′(τ) ≤ AT−1
i e′(τ).

Therefore neg(A)T−1
i e′(τ1) ≤ AT−1

i e′(τ), so, substituting this into (5.23) we obtain

c1 + βc2 +AT−1
i e′(τ) ≥ 0, ∀τ ≥ τ1

Substituting the constants (5.18) and using the definitions of e′, w′
d and m′

d, the previous inequality

is transformed into
u(τ) ≥ 0

ΛΠim(τ)− u(τ) ≥ 0(
Π1

j −Πi

)
m(τ) ≥ 0
...(

Πr
j −Πi

)
m(τ) ≥ 0

∀τ ≥ τ1

Then, u(τ) is s.b. for all time and the system lies in ℜi.
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The LPP (5.16) can be solved very efficiently on-line, because it can be reduced to the problem of

finding the minimum entry of a properly computed vector (illustrated for a similar problem in Section

C.3). Furthermore, some of the inequalities are always fulfilled and can be eliminated (those involving

uncontrollable transitions and null constants).

Proposition 5.10. Suppose that the initial and desired markings (m0 and md) belong to int(ℜi) ∩E∗
i ,

and that the entries of u0 and ud are positive for all the fully controllable transitions. Then, there exists

solution β for the LPP (5.16) at m0. Moreover, if the control Procedure 5.3 is being applied then there

will exist solution β at all future markings. Furthermore, the closer the marking is to md, the lower is

this solution, until obtaining a value of 0.

Proof. Consider the inequality of (5.16) but reorder it as

c1 + γc2 + neg(A)T−1
i (e− γe0) ≥ 0 (5.24)

First consider a given γ ∈ [0, 1]. In this way, the marking m′
d = md + γe0 is in the segment defined

by m0 and md, so, it belongs to int(ℜi) and the vector

c1 + γc2 =



u′
d

w′
d(

Π1
j −Πi

)
m′

d
...(

Πr
j −Πi

)
m′

d


is positive at the relevant entries (those that correspond to non null rows of A). Therefore, for a small

enough value of (e − γe0) = e′, i.e., for m close enough to m′
d, the corresponding γ is a solution for

(5.24). A particular case occurs at m0, in which (e − γe0) = (1 − γ)e0 = e′ (i.e., a value of γ close

enough to 1 makes e′ be small enough, and then such γ is a solution for (5.24) and the LPP).

Now, suppose that at time τ1 a solution β1 is computed. Substituting γ = β1 −∆γ into (5.24) and

reordering the terms

c1 + β1c2 + neg(A)T−1
i (e− β1e0)−∆γ(c2 − neg(A)T−1

i e0) ≥ 0 (5.25)

Consider a future time τ2 > τ1. If the control law (5.19) is being applied (with β = β1) then

T−1
i e′(τ2) ≤ T−1

i e′(τ1), which implies that neg(A)T−1
i e′(τ2) ≥ neg(A)T−1

i e′(τ1), so, at τ2 there will

exist ∆γ > 0 that fulfills (5.25), i.e., as m approximates to m′
d a lower solution can be obtained.

Finally, note that a lower solution β2 cannot be obtained only if either the current one is null

or c1 + β1c2 has null elements at the relevant entries. Nevertheless, this last condition implies that

m′
d = md+β1e0 belongs to the frontier of ℜi and/or there is a null entry of u′

d related to a transition in

T i
cf , but this never occurs under the hypothesis assumed. Therefore, the solution β = 0 will be eventually

obtained.

The computation of β can be done at every sampling or just at some of them. Any pole assignment

technique can be used for computing K. It can be proved that, in some cases, this control approach can
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also be applied even if md or m0 belongs to the frontier of the region, and/or ud or u0 have null entries

related to fully controllable transitions.
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Fig. 5.7: a) TCPN system. b), c) Projections of Class(m0) on the planes [m(p5),m(p3)] and [m(p1),m(p3)],
the dashed line is E∗

2 while the solid one is the trajectory of the closed-loop system (both coincide in
the second projection). d) Computed value for β, e) input signal u and flow (ΛΠ2m) of t4 during the
closed-loop evolution.

Example 5.4. Consider the system of fig. 5.7(a) with λ1 = λ2 = λ3 = 1 and λ4 = 2. Let Tc = {t4}.
This system has two synchronizations and only 3 feasible regions. Projections of Class(m0) on the planes

[m(p5),m(p3)] and [m(p1),m(p3)] are shown in figs. 5.7(b) and 5.7(c) (the marking of only three places is

required to defined a reachable marking, then two projections are sufficient for representing Class(m0)).

The initial marking is m0 = [5, 5, 5, 55, 5, 5]T while the desired one is md = [5, 5, 55, 5, 5, 5]T . Both

markings belong to the same region ℜ2.

The set of equilibrium markings in ℜ2, i.e., E
∗
2 , is shown in figs. 5.7(b) and 5.7(c) as a dashed line.

A generator for it is given by G2 = [0, 0, 1, −1, 0, 0]T . For this case, Tc = T 2
cf and the system is

controllable over E∗
2 (already proven in the Example 4.6). The proposed control procedure was applied

to this system. A gain matrix K, that places the controllable poles of the closed-loop system at −1
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and −2, was computed. Also, we computed the required similarity transformation matrix T2. The LPP

was continuously solved (at each simulation time step). Fig. 5.7(d) shows the evolution of the value

computed for β. The closed-loop trajectory is drawn in figs. 5.7(b) and 5.7(c) (solid line). It can be

seen that this control law successfully transfered the state from m0 to md through a trajectory in ℜ2,

moreover, it can be seen in fig. 5.7(e) that the input is s.b..

5.4.2 Controlling between neighbor regions

This section is devoted to advance the ideas leading to the generalization of the previously introduced

control law structure. In particular, it is considered the problem of transferring the system from an

equilibrium marking m01 ∈ ℜ1 to another one md2 ∈ ℜ2, where ℜ1 and ℜ2 are neighbor regions. It is

assumed that the system fulfills the sufficient conditions for controllability over E∗
1 and E∗

2 of Corollary

4.18. Also, it is assumed that there exists an equilibrium marking mint that belongs to E
∗
1 ∩E∗

2 but not

to another region.

Under these hypothesis, a control law for each region can be computed by using the control scheme

introduced in Procedure 5.3. Then, a first idea is to compute and apply a control law that transfers the

marking from m01 ∈ ℜ1 to mint, through a trajectory in ℜ1, and another control law that transfers the

marking from mint to md2 ∈ ℜ2. Nevertheless, the first control law will transfer the marking towards

mint in infinite time, so the second control law will never be applied. Then, the problem can be reduced

to the computation of a control law that transfers the marking from any m ∈ ℜ1 in a neighborhood of

mint, to an equilibrium marking m′
d2 ∈ ℜ2 −ℜ1. Such control law exists because the system fulfills the

conditions of Proposition 4.21.

In order to solve this problem, consider the LPP (5.16) for ℜ1 with mint as the desired marking,

∆u = u01 − uint and without the inequalities γ ≥ 0 and that which involves Π2 −Π1. Then, this new

LPP is obtained
β = min γ subject to

c1 + neg(A)T−1
1 e+ γ

(
c2 − neg(A)T−1

1 e0
)
≥ 0

(5.26)

where c1, c2 and A are defined like in (5.18) with i = 1, md = mint, ud = uint, wd = wint and

Π1
j ,...,Π

r
j are related to all the neighbor regions of ℜ1 excepting Π2.

If at a given marking m(τ1), close enough to mint, a value of β < 0 were computed, then the target

markingm′
d = βm01+(1−β)mint would belong to ℜ2. In such case, the control law (5.19) would transfer

the system from m(τ1) ∈ ℜ1 to some m(τ2) ∈ ℜ2 ∩ ℜ1, and once the marking would reach the frontier,

a control law could be applied in order to finally reach md2 ∈ ℜ2. It is easy to prove that a value β < 0

can be computed if the entries of uint, related to transition of T 1
cf , are positive, i.e., mint ∈ E∗

1 ∩ E∗
2 .

Denote the solution for the modified LPP (5.26) as β1 and the solution for the LPP (5.16) defined

for ℜ2 as β2. A simple way to guarantee that a solution β2 < 1 will be computed once the system

reach the common frontier, consists in computing both, β1 and β2, simultaneously when the marking is

approximating to the frontier, and adding a new rule:

if β1 < 0 but β2 ≥ 1 then consider β1 as zero for the computation of m′
d.

In this way, an input for crossing the border is computed (i.e., β1 < 0 is considered) only if β2 <

1, otherwise, the system will be transferred towards mint and it will remain in ℜ1, until reaching a

neighborhood of mint in which such values can be computed (such neighborhood exists because β2 < 1
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and β1 < 0 can be obtained at mint). Finally, the system will probably cross the frontier at a non

equilibrium marking, then the error of the uncontrollable part (for the system at ℜ2) may not be null,

in such case, we have to ask for the non controllable poles (non related to P-flows) to have real negative

parts (thus the uncontrollable dynamics are asymptotically stable).
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Fig. 5.8: a) TCPN system controllable over E+
1 ∪ E+

2 . b) Marking of places for the trajectory described by the
closed-loop system.

Example 5.5. Consider the system of fig. 5.8(a) with Λ = I. Let Tc = {t1}. This system has

one synchronization, which leads to two regions that are denoted as ℜ1 (in which p5 is constraining t5)

and ℜ2. The initial marking is m0 = [12, 4, 4, 4, 26, 4, 8]T which belongs to ℜ2. Consider a desired

markingmd = [56, 2, 2, 2, 8, 12, 4]T , which belongs to ℜ1. There exists an interface equilibrium marking

mint = [22, 4, 4, 4, 16, 4, 8]T s.t. mint ∈ E∗
1 ∩ E∗

2 . This system fulfills the conditions of Proposition

4.21 for the controllability over E∗
1 ∪ E∗

2 . In this way, stabilizing gain matrices were computed for each

region. The equilibrium input of mint is given by uint = [5, 0, 0, 0, 0, 0]T , i.e., it is positive at the

entry related to t1 (the only controllable transition), so, it is possible to transfer the system through the

region’s frontier. Applying the proposed scheme, the system is successfully transferred from m0 to md

through a trajectory in which the input is s.b.. The marking trajectories are shown in fig. 5.8(b), where

the vertical line denotes the change of region.

Finally, let us point out that, in our experience, it always has been found (but still not proved) that

the union of sets E∗
i is connected. In such case, the synthesis of a control law for several regions is

reduced to the problem of transferring the system between neighbor regions, which was studied in this

subsection.
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5.5 Conclusions on control laws

Different control laws, for TCPNs under infinite server semantics, have been proposed in the litera-

ture. This chapter starts with a quick overview of some representative techniques, and a preliminarily

comparison between them. Nevertheless, there is a lack of control methods that can be used when the

systems exhibit a large net structure of uncontrollable transitions are considered. Motivated by this,

three different control structures are proposed through this chapter:

• First, an affine control law is considered in order to provide a simple synthesis procedure for systems

in which all the transitions are controllable, ensuring asymptotic stability and feasibility. The complexity

of the control synthesis does not depend on the number of configurations (like in other control laws) but

on the number of vertices of the polytope (thus, the number of places).

• A modular-coordinated control strategy was proposed in order to reduce the complexity involved

in the synthesis procedure. The resulting scheme consists of a set of affine local controllers and a

coordinator that receives and sends information to the local controllers. Feasibility and convergence to

the required markings have been proved. The application of the control scheme is achieved in polynomial

time. Furthermore, the combined complexity involved in the synthesis of the local controllers (off-line)

is lower than in the centralized case. It is left for a future research, to investigate the performance of the

proposed control scheme under lost or delayed information conditions.

• Finally, a control law structure, for TCPN systems having uncontrollable transitions, has been

proposed, by adapting the classical pole-assignment technique used in LTI systems [Chen, 1984]. The

implementation of this control law consists of the computation of a suitable gain matrix for each region,

and the resolution of a LPP during its application for computing suitable intermediate markings that

guarantees the boundedness of the input. It is proved that such control law can always be computed and

transfers the marking towards the desired one, whenever the conditions for controllability are fulfilled

and there exist suitable interface markings between the regions. The main drawback of this control

technique is that one controller has to be synthesized for each configuration. In this way, more efforts

are required in order to investigate efficient synthesis techniques for systems having a large number of

synchronizations.
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Chapter 6

Towards control applications in

discrete systems

In the literature, several works can be found providing different control strategies for (discrete) Petri

nets. These can be classified into two different classes [Holloway et al., 1997a]: the state feedback control,

which has been mainly studied by means of a particular model called controlled Petri nets, and the event

feedback control that has been mainly considered in a formal language setting and the corresponding

models are called labeled Petri nets. Extensions to timed systems can also be found in the literature.

Most control strategies are defined for the same control objective: disabling transitions for avoiding

forbidden markings, in accordance with the Supervisory-Control Theory.

From another perspective, the existence of fluid models that can approximate the behavior of discrete

Petri nets leads to consider another kind of control goals, i.e., problems frequently addressed in the

Control Theory for continuous-state systems, like the stabilization of the system, the tracking of a

reference signal or the regulation of the output in order to follow another dynamic system [Chen, 1984,

Khalil, 2002]. One of those control problems (a classical one) is the stabilization of the system at a

desired/required steady state (set-point), which has been addressed in Chapter 5 for TCPNs.

Enforcing a desired target marking in a continuous PN is analogous to reaching an average marking

in the original discrete model (assuming that the continuous model approximates the discrete one),

which may be interesting in several kinds of systems. This idea has been considered by some authors.

For instance, in [Amrah et al., 1998] it was proposed a methodology for the control of open and closed

manufacturing lines. There, the control actions consist in the modification of the maximal firing speeds of

the controllable transitions of the continuous model. It was illustrated how the control law can be applied

to the original discrete Petri net model (a T-timed model with constant firing delays). This approach

has been used in [Lefebvre, 1999] and [Kara et al., 2006] as well, in the same context of manufacturing

lines.

In this framework, the results introduced in Chapters 3, 5 and 6, regarding the fluidization of Marko-

vian PNs, the controllability analysis and the control synthesis for TCPNs, will be combined in this

chapter in order to propose a control scheme for MPNs via its continuous relaxation. If in the TCPN

system, the designed control law drives the marking towards a desired equilibrium one by means of a

reduction of the flow of the controllable transitions, in the MPN the adaptation of the same control law
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will drive the average marking towards a desired value, just by applying additional delays to the con-

trollable transitions. This control approach is different to the control techniques that can be frequently

found in the literature for DES. Furthermore, there are important differences w.r.t. the works reported

in [Amrah et al., 1998, Lefebvre, 1999, Kara et al., 2006], these are : 1) here MPNs are considered as the

original discrete model (instead of deterministically T-timed PNs), 2) the proposed structure is based on

the results obtained by a formal analysis of the fluid approximation, controllability and control synthesis,

introduced in chapters 3, 5 and 6, 3) general kinds of net structures and control techniques are considered.

Here we are dealing with the interpretation of the control results, obtained for the continuous model,

into the original discrete one, making a contribution to the bridge between continuous-state systems and

DES ones. In other words, we are closing the loop of the control synthesis for DES by using fluid models

(illustrated in fig. 0.2).

This control structure will be described in Section 6.1. Later, a stock-level control problem of

an automotive assembly line system, originally modeled as a stochastically timed discrete Petri net

[Dub et al., 2002], will be considered in Section 6.2. The resulting scheme will allow to control the av-

erage value of the marking at the places that represent the stock-level, by means of applying additional

delays to a controllable transition, representing the action of sending a material request to the supplier.

Finally, in Section 6.3 a different control application for DES via fluidization is introduced: the

coordination of the traffic signals in an urban traffic network. For this, a hybrid model for the traffic

behavior at an intersection is obtained by relaxing a discrete PN model, capturing important aspects of

the flow dynamics in urban networks. It is shown that this model can be used in order to obtain control

policies that can improve the traffic flow at intersections, leading to the possibility of controlling several

connected intersections in a distributed way.

6.1 Implementation of control laws for MPNs via TCPNs

In this section, the implementation of a control law designed for a TCPN system, into the corresponding

MPN, will be described. This can be seen as the last step of a general procedure for the analysis and

synthesis of DES through fluid models, which was depicted in fig. 0.2 and is described in the following

steps:

Procedure 6.1. Synthesis and implementation of a controller for a MPN via its corresponding TCPN.

I. Consider a live and ergodic MPN.

II. Obtain the corresponding TCPN, verifying that it approximates the behavior of the MPN (as

analyzed in Chapter 2).

IV. Compute, if it is not provided, the required steady state (for instance, by minimizing an optimiza-

tion criterion, [Mahulea et al., 2008b]).

V. Verify the controllability of the TCPN system (as discussed in Chapter 4).
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VI. Verify the observability of the TCPN system (this is discussed, in detail, in [Júlvez et al., 2008,

Mahulea et al., 2010]).

VII. Synthesize a suitable controller (as discussed in Chapter 5).

VIII. Implement the controller into the MPN (the topic of this chapter)

In order to implement such a controller, it is required an interpretation, in one hand, for the “contin-

uous” control input in terms of the MPN, and in the other hand, for the marking of the MPN in terms

of the TCPN. Let us provide a preliminarily idea for these.

The control actions in the TCPN are defined as a reduction to the transition’s flow. The flow

represents the speed at which the transitions fire, which in the discrete PN can be understood as the

firing frequency. In this way, the control actions will be interpreted in the MPN as a reduction of the

firing frequency, which is equivalent to the addition of external (and controllable) delays. On the other

hand, the results obtained in Chapter 3, regarding the fluidization of MPNs, provide an answer for the

interpretation of the marking of the MPN into that of the TCPN, i.e., the expected marking of the

discrete model can be approximated by that of the continuous one.

In fact, a better approximation is provided by the TnCPN model. Remember that the TnCPN is

actually defined as the TCPN with the addition of gaussian white noise vk (see, Section 2.3). In this way,

the TnCPN model can be seen, from a Control Theory perspective (see, for instance, [Khalil, 2002]), as

the nominal system TCPN (i.e., mk+1 = mk + CΛΠ(mk)mk∆τ) under the state perturbation Cvk.

The stabilization of this kind of systems is typically addressed in the control synthesis in continuous-state

systems. For this, a control law is synthesized for the nominal system (in this case, the TCPN), while

an estimation of the average state is obtained by using a filter. Such estimation is then used for the

evaluation of the control law, obtaining thus a proper control implementation for the system with noise.

This approach will be detailed in the following subsection.

6.1.1 Control architecture

A control structure for the application of a control law to a MPN, via its corresponding TCPN, is

described in the Block Diagram of fig. 6.1. This is a typical structure of a closed-loop system under an

estimation-based control.

Blocks in the upper dashed box (Plant) represent the original system (modeled by a MPN). In the

Block diagram of fig. 6.1, it is considered a linear output function, i.e., the information that we have

about the state of the MPN is:

Yk = H ·Mk (6.1)

In order to ensure observability, it is assumed that the output has enough information to determine

the current configuration and reconstruct the marking.

The lower dashed box (TCPN+Control) represents the corresponding TCPN system under a control

law. The synthesis of controllers was discussed in detail in the Chapter 5. Here, it is assumed that

the control law, designed for the TCPN, is properly “soft” (this and its derivatives do not exhibit
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Fig. 6.1: Block diagram of a MPN under control.

discontinuities or stiffness) and suitably bounded. The same output function, considered for the MPN, is

also applied to the continuous system. It is assumed that the TCPN is observable (a detailed discussion

of observability in TCPNs can be found in [Júlvez et al., 2008, Mahulea et al., 2010]). Then, the output

of the TCPN is:

ŷk = H · m̂k (6.2)

Blocks C2D and EKF play the role of interfaces between the MPN and the TCPN systems. C2D

transfers the information, about the control actions, from the TCPN system to the MPN one, while

EKF do the same in the opposite direction, with the information of the outputs. The function of these

blocks will be explained in detail in the following subsections. Let us point out that, if C2D and EKF

were eliminated, only the MPN and the TCPN blocks would be present, i.e., blocks in dashed boxes

Discrete system and TCPN+Control. In such case, two independent systems would be obtained, whose

outputs would be linear functions on particular realizations (marking trajectories) of both systems, but

no interaction between them would occur.

6.1.2 Interface block C2D

First, let us consider the Block Diagram in fig. 6.1 without the block EKF. As it was pointed out in

Chapter 2, the expected value of the marking of the MPN may be approximated by the average marking

of corresponding TnCPN, which can be seen as the nominal system TCPN under the state perturbation
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Cvk. Then, let us suppose, at this moment, that such approximation holds.

Assume that a s.b. control law is being applied to the TCPN system. Consider the state equation

of the continuous model. Given a controllable transition tj , the controlled flow is equal to wj = λj ·
enab(tj ,m)− uj . Nevertheless, since the input is s.b., there exists a function α(uj ,m) that takes values

in the interval [0, 1] such that uj = α(uj ,m) ·λj · enab(tj ,m), then wj = (1−α(uj ,m)) ·λj · enab(tj ,m).

This last equality means that each active server of tj fires with an average delay of ((1−α(uj ,m)) ·λj)−1

in the controlled TCPN system, instead of the average delay of λ−1
j that would have without control.

Then, the control law imposes to each active server of tj an additional delay of:

delay[tj ] =
1

(1− α(uj ,m))λj
− 1

λj
(6.3)

If additional delays are defined for all the controllable transitions in the same way, and these are added

to the corresponding average delays of the MPN system, then its average marking will be approximated

by that of the TCPN in the closed-loop behavior as well. Block C2D computes such additional delays,

so, according to (6.3) and substituting α, the output of C2D is defined as:

delayk[tj ] =
enab(tj ,mk)

λj · enab(tj ,mk)− uk[tj ]
− 1

λj
(6.4)

Note that it is only required to compute the additional delays for the controllable transitions Tc. In

order to exemplify the application of these additional delays into the MPN system, suppose that at some

time step k the controllable transition tj in the MPN is newly enabled, then the firing delay of tj in

the open-loop system would be given by a random variable having an exponential pdf with parameter

(1/λj) · (1/Enab(tj ,Mk)), but, in order to apply the control law the parameter of the exponential

pdf is considered as (1/λj + delayk[tj ]) · (1/Enab(tj ,Mk)). In this way, tj will fire with the required

average delay, in agreement with the input applied to the TCPN system. This control interpretation is

a particular one of many that can be defined, nevertheless, this is used for simplicity and because it has

shown positive results.

6.1.3 Interface block EKF

Block C2D may be enough for applying the control law into the MPN, if the approximation holds and

the MPN exhibits its expected behavior (otherwise stated, if each transition of the MPN fires at the

expected delay). Nevertheless, note that the MPN does not receive any feedback in this way (remember

that at this point, block EKF is not considered). Then, in order to improve the accuracy, an Extended

Kalman Filter (EKF) is added in the Block Diagram of fig. 6.1 (for a detailed introduction to Kalman

Filter see, for instance, [Grewal and Andrews, 2001]).

In order to analyze block EKF, suppose that no control law is being applied to both systems. Now,

as it was pointed out in Subsection 2.3, the MPN can be approximated by the corresponding TnCPN.

Then, by using the approximation error εk = Mk −mk, the evolution of the output of the MPN (the
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evolution of the signal Yk in fig. 6.1) can be described as:

mk+1 = [I+CΛΠ(mk)∆τ ]mk +Cvk

Yk+1 = H ·Mk+1 = H ·mk+1 +H · εk+1

(6.5)

Note that E{εk} ≃ 0 by the approximation hypothesis. Previous system is actually the corresponding

TCPN one plus white gaussian noise at the state (Cvk, which is also uncorrelated in time) and the output

(Hεk+1). In this way, it seems obvious to use an EKF in order to obtain a noise-free estimation of the

marking of the underlying TCPN model, i.e., an estimation of E{mk} ≃ E{Mk}. Then, such an

estimator can be defined as as:

m̂k+1 = [I+CΛΠ(m̂k)∆τ ] m̂k +Kkek

ŷk+1 = H · m̂k+1

(6.6)

where Kk is the Kalman estimation gain matrix and ek = Yk − ŷk is the output estimation error. In

order to ensure convergence, it is assumed that the output Yk has enough information to determine

the current configuration, and the pair (H,CΛΠi) is observable for all the visited configurations Πi (a

detailed discussion of observability in TCPNs can be found in [Júlvez et al., 2008, Mahulea et al., 2010]).

The gain introduced by the Kalman Filter (Kkek) is computed in the block EKF as (see, for instance,

[Grewal and Andrews, 2001] pages 121 and 180):

P′
k+1 = [I+CΛΠ(m̂k)∆τ ] ·Pk · [I+CΛΠ(m̂k)∆τ ]

T
+Qk

Kk = P′
k+1 ·HT ·

[
H ·P′

k+1 ·HT +Rk

]−1

Pk+1 = [I−Kk ·H]P′
k+1

Kkek = Kk · (Yk − ŷk)

(6.7)

Matrix Qk represents the covariance of the state perturbation, which according to the TnCPN ap-

proximation and the definition of vk, it should be close to C · diag[ΛΠ(m̂k)m̂k∆τ ] · CT . Matrix Rk

represents the covariance of the output perturbation, i.e., the covariance of εk. A reasonable estimation

for such covariance is given by Rk = 0.5 · I (assuming that the discrete marking follows a normal-

multivariate distribution, such value for R means that the error between markings is less that 1.5 with

probability close to 0.95). Since the covariance matrix of the error (Pk+1) is used for the next time step,

a feedback-loop with the unit delay z−1 is added in the Block Diagram.

Then, block EKF computes the gain Kkek, which is required in order to obtain the state estimation

for the next time step m̂k+1, according to (6.6). In this way, with the output of the MPN system and

the block EKF, it is possible to obtain an estimation for the average state as if it were a TCPN system,

i.e., it is obtained m̂ that evolves like the TCPN system but approximates the average marking of the

MPN in agreement to its output values Y.

Finally, consider the case that the net system is Join-Free, thus the TCPN is a linear system and

the block EKF becomes a Kalman Filter. In such case, according to the Separation Principle (see, for

instance, [Levine, 1996] part B, Subsection 37.5), a perfect interaction between the controller and the

estimator can be expected (according to this principle, the optimal controller for the nominal system,

together with a Kalman filter, will provide the optimal control for the system under perturbations). In
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the general case, the evolution of the continuous system is not linear, but linear by regions (while the

flow is continuous across them) and time invariant. In this way, it is still reasonable to integrate the EKF

and the control law obtained in separated ways, leading to the control structure of fig. 6.1. Nevertheless,

further research is required in order to provide sufficient conditions for close-loop stability (a related

problem has been addressed for PWA systems in [Heemels et al., 2008]).

6.2 A stock level-control example

In this section, the control scheme introduced in Section 6.1 will be applied to a Kanban-based automotive

assembly line (introduced in [Dub et al., 2002]) in order to control the stocks level.

6.2.1 The model

Authors in [Dub et al., 2002] proposed an stochastic Petri net model for an existing assembly line that

produces cars. The production is based on a Kanban process. The assembly line is a self-moving

transporter, which carries the car bodies through a number of quite similar production cells. The time

that the car body spends in every production cell is equal for all productions cells and is given by the

line rhythm, which is constant. Each production cell has some small stores (racks) where palettes with

all parts, specific to the particular production cell, are to be found. In every cell there is a space to

accommodate at maximum two palettes of each part type used there. One palette contains only the

same kind of parts.

Fig. 6.2 shows the model proposed for describing the assembly of one part. Tokens in p1 represents

the Kanban-tickets in the local store. Tokens in p2 represents the Ktickets in the space close to the

production cell. Such number is limited by a conservative law imposed by p3 (M[p2]+M[p3] = 2). Place

p4 represents the number of parts available in the palette that is being used for production. The number

of parts in one palette is 60 (arc (t3, p4)), while the number of parts of the same kind required for one

car production is 2 (arc (p4, t4)). Transition t5 represents the assembly operation. Its delay is equal to

the time interval between the production of two consecutive cars (given by the production speed or line

rhythm). Place p5 enables t3 when the marking in p4 is null, i.e., when no more parts are available in the

palette that is being used. The container withdraw is described by the subnet defined by {p9, p10, p11},
which works in the following way: transition t8 models the waiting time before an order (orders are

done just at some hours), after its firing p10 enables t6 and t7. A Kanban-ticket in p8 means that an

order must be done, in such case t6 fires (its delay is considerably lower than that of t7) and a token is

transferred from p8 to p12, meaning that a supply order is ready to be sent. On the other hand, if there

is a token in p10 but not in p8 then t7 fires, meaning that the Kanban container is withdrawn. Transition

t11 represents the time from the moment of ordering to the moment of delivery, while a token in p14

represents the truck arrival. Transition t10 does not appear in the original model in [Dub et al., 2002].

In this work it is added for control purposes: its delay will be controlled meaning that orders (tokens in

p12) can be delayed before being sent.

Only some of the transitions’ average delays are reported in [Dub et al., 2002]. Nevertheless, only

three transitions exhibit significant, and almost constant, delays: t5, t8 and t11. Furthermore, t6 must

fire faster than t7 whenever both are enabled. For our purpose, average delays are defined as in fig.
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Fig. 6.2: Petri net model of one-part assembly in an automotive production system [Dub et al., 2002].

6.2. Transitions t5, t8 and t11 fire according to an Erlang-3 pdf (in order to reduce their coefficients of

variation), transitions t6 and t7 fire with constant delays, while the other transitions fire with exponential

pdf and infinite server semantics.

Fig. 6.3 shows the proposed TCPN model, in which some modifications w.r.t the original PN are

introduced in order to obtain a better fluid approximation. In this model, the component representing

the parts in the palette that is being used is substituted by the component of places {p15, ..., p45}, a token

in p45 means that the palette in use is empty. The container withdraw is modeled in a similar way,

the difference is that, in order to reduce the coefficient of variation, t8 of fig. 6.2 is now split in three

transitions {t18, t28, t38} (classical simulation of an Erlang-3 by 3 exponentials). In a similar way, t11 of

fig. 6.2 is split into {t111, t211, t311}. Note that places {p1, p2, p3, p8, p10, p12, p14} keep the same meaning,

in the same way that their corresponding output transitions do. All transitions fire according to an

exponential pdf and infinite server semantics (t6 and t7 fire with constant delays in the original model,

but their delays are very small w.r.t. the others so they can be well approximated by exponential delays).

Average delays are defined as in fig. 6.3. Note that the delays of {t15, t25, t35} sum the total time required

for emptying the palette that is being used, i.e., the sum of the delays for t4 and t5 of the original model

(fig. 6.2) multiplied by 30. In the same way, the sum of delays of {t18, t28, t38} and {t111, t211, t311} of the

TCPN are equal to the delays of t8 and t11 of the original model, respectively.
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Fig. 6.3: Timed continuous Petri net relaxation of the model of fig. 6.2

6.2.2 Application of the control scheme

The goal in [Dub et al., 2002] is to propose a methodology for the optimization of the stock reserves,

i.e., to control the sum of (M[p1]+M[p2]) in fig. 6.2. Having a large number of Kanbans in the store

M[p1] implies unnecessary costs, on the contrary, missing Kanbans might stop the whole production.

Such Kanban missing can occur for unexpected delays in truck arrivals or lost orders. In that paper, the

optimum number of K-Tickets (the optimum value for M[p1]+M[p2]) is computed based on simulation

data. Nevertheless, during the operation, the level of the stock reserves can be far from its desired value,

since the optimization is made in such a way that the stock reserves are in its optimal level in average,

but not for all the time. This may lead to undesired problems, specially under unexpected perturbations

(that were not considered during the optimization).

In the sequel, the control scheme introduced in the previous section will be applied to the system of

fig. 6.2, in order to make this to keep a desired stock level. The PN of fig. 6.2 represents the original

model or Plant, i.e., the upper dashed box MPN in the block diagram of fig. 6.1, while fig. 6.3 represents

the model for the TCPN system (TCPN+Control in the block diagram), for which the control law is

designed. Output functions are defined as Y = [M[p8],M[p12],M[p14],M[p1],M[p2],M[p10], M[p5]/30]

for the original system and ŷ = [m[p8], m[p12], m[p14], m[p1], m[p2], m[p10], m[p45]] for the estimator.

Note that these expressions are equal, excepting the last output, which is required in order to know the
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Fig. 6.4: Number of Kanban-Tickets in the local store and racks (M[p1]+M[p2]) in the closed-loop systems, and
firing signals of the controllable transition t10 (an impulse means a firing). The control law is applied
after time 2000 min.

arc that is constraining t3. Now, following [Dub et al., 2002], let us suppose that the optimum value for

the sum M[p1] + M[p2] is computed as 10, then, our control law must impose additional delays in t10

such that the sum in the original system be as close to 10 as possible.

By using the techniques introduced in Section 5.4, a control law was designed for the TCPN system

(fig. 6.3). Later, this was interpreted and applied to the original discrete PN model, according to the

control scheme described in the previous section (fig. 6.1). The results are shown in fig. 6.4. Control law

is applied after 2000 min. The continuous curve in fig. 6.4 corresponds to the estimator (m̂k), while the

other one (square) represents the discrete original system. As it can be seen, the control law successfully

drives the discrete system for obtaining the desired average marking at the local store and racks. Fig.

6.4 also shows the firing signals for the unique controllable transition t10 in the closed-loop system. A

unit impulse means that t10 is fired, i.e., that an order is released and sent to the parts supplier.

For the estimator implementation it was required to adjust the values for the covariance matrices

Qk and Rk of the Kalman filter, in order to obtain a good closed-loop performance (final adjustments

are commonly required when using Kalman filters). If the theoretical values provided in the previous

section for Qk and Rk are used, the estimated marking m̂k will be close to the state of the MPN

(Mk). Therefore the control input uk will be computed by using the noisy signal m̂k. Nevertheless,

the control law was designed for the TCPN without noise, so, such input signal may result in a bad

close-loop performance. On the other hand, by decreasing Qk, the trajectory of m̂k will become soft

enough, leading to a suitable (and expected) behavior of the closed-loop TCPN system. Nevertheless, a

very low value for Qk will make the estimator to obtain a poor estimation, in such case, the behavior

of the continuous system could be different from that of the MPN. The best performance is obtained by
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Fig. 6.5: Number of Kanbans in the local store and racks (M[p1] +M[p2]) with the GMEC control.

decreasing Qk from its theoretical value (obtaining thus a soft estimated trajectory) but, at the same

time, decreasing the entries of Rk corresponding to the outputs whose approximation must be improved.

6.2.3 Comparing with GMECs

Finally, for comparison purposes, let us show the results obtained by using a control feedback with

Generalized Mutual Exclusion Constraints (GMEC), introduced in [Giua et al., 1992]. Such approach

is defined for safety specifications, according to which a weighted sum of markings must be limited.

In our case, the specification could be defined with the following GMEC: M[p1] + M[p2] ≤ 10. The

controller that enforces the GMEC consists in the addition of a new place, called Monitor, having as

input transition t3 and output one t1. Nevertheless, t1 is not controllable, then t10 is taken as the

Monitor’s output transition, fulfilling in this way the GMEC. For the initial marking, p1 should have 8

tokens (i.e., 10−M0[p2]) and the new place, the Monitor, must have 5 tokens (i.e., total K-Tickets 15,

minus M0[p1] +M0[p2]), while the other places remain marked as in fig. 6.2. The results are shown in

fig. 6.5. As it can be seen, the GMEC control approach guarantees that the sum M[p1] +M[p2] is not

larger than 10. Nevertheless, this sum is not always close to the desired value, because the GMEC is

defined for imposing upper bounds to the marking but not for enforcing a desired marking.

In this example, the performance provided by the GMEC control for M[p1] + M[p2] may still be

considered as good enough (an average value of 9.46 was obtained), but it is not always the case. For

instance, consider the same system (fig. 6.2) but with M[p1] = 4 at the initial marking. Suppose that

a value of 4 is desired for the sum of M[p1] + M[p2]. After simulating 30, 000 minutes, by using a

GMEC M[p1] + M[p2] ≤ 5 an average value (for the sum) of 4.59 was obtained, while a value of 3.60

resulted with GMEC M[p1] +M[p2] ≤ 4. They represent 14.75 and 9.9 percent error, respectively. On

the other hand, the control strategy introduced through this chapter provides an average value of 4.02.

Therefore, if a good accuracy for the average value is required, the method proposed in this chapter is

more suitable. On the other hand, if a safety specification must be fulfilled, the GMEC control approach

is a better choice. In any case, both methods can be combined obtaining the best properties of each one,

for instance, if we would like that M[p1] +M[p2] ≤ 5 but having an average value of 4.
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6.3 Modeling and control of urban traffic systems

In this section, a new example, about the use of relaxed models for the control synthesis of DES, will be

considered. In this case, the problem under study consists in the design of a control policy for the traffic

lights at the intersections of an urban traffic network. For this, a T-timed PN, whose transitions have

stochastic or deterministic delays, will be proposed for the traffic intersections, and later, this model will

be partially relaxed obtaining thus a hybrid PN model. Next, a control law will be derived.

Let us provide first an overview of the problem. The objective is to obtain a coordinated control

policy for the traffic lights in an urban network in order to reduce the total travel time of the vehicles,

by selecting the red-to-green switching times of the traffic signals. There are several authors that have

addressed this problem from different perspectives. For instance, by using heuristic optimization algo-

rithms ([Bazzan, 2005], [Toshihiko, 2003]), or considering a formal model-based optimization approach

[Porche et al., 1996], or dealing with the scalability problem, resulted from the complex behavior and the

combinatorial nature of traffic networks, by adopting macroscopic models and distributed control and

optimization techniques [Camponagara and Kraus, 2003, van den Berg et al., 2004]. In general, switch-

ing strategies for traffic lights [USDOT, 2005] can be classified according to how fast they respond to

on-line traffic measurements.

Pre-timed controllers select a fixed period, called the cycle time, for all traffic lights in a given area,

and select the fraction of green for each direction in each intersection. Moreover the relative time offsets

(the phase shifts between the switching times at consecutive intersections) is selected so as to guarantee

as much as possible a green wave of vehicles that do not have to stop. These pre-timed controllers may

be adjusted during the day to adapt to different traffic patterns, but they only use the average traffic

flow data, not the on-line measurements of queue sizes or of current traffic flows.

A different approach is adopted by allowing the actuated traffic signals to react to local measurements

of queues of waiting vehicles (or detected oncoming traffic) by switching to green, if at all possible. This

may reduce the local average delays significantly, but this strategy can destroy any advantage of a green

wave. Traffic responsive systems therefore must try to adapt to instantaneous information on the local

traffic intensity by a coordinated action for the different traffic lights in a given area. Examples of

such strategies have been developed since the 1980s (for example the SCATS [Lowrie, 1982] and the

SCOOT systems [Hunt et al., 1982]). These systems adjust from time to time the green fraction at each

intersection, and/or the phase shifts, according to some heuristically developed rules.

Recently, the availability of on-line measured traffic data and the capabilities of road side control

agents, have improved so much that it makes sense to develop model based on-line optimization algo-

rithms for coordinated traffic responsive control systems. The first part of this section will consist in

providing a model that can serve this purpose. As a result of a partial fluidization, a hybrid Petri net is

obtained, representing the queueing behavior of vehicles at intersections. This model will allow to locally

optimize the green-red periods of the corresponding traffic lights, but considering the control policies that

are applied at upstream intersections. Moreover, by adding models that represent the traffic flow along

the links connecting intersections, the behavior of a complete urban traffic network can be described.

This idea is advanced in the last subsection.

Regarding traffic intersections, different Petri net models can be found in the literature. Among

them, the model introduced in [Dotoli et al., 2006] is the closest to the one introduced in this section.
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Fig. 6.6: PN model of an intersection of two one-way streets.

In that paper, the heavily populated discrete timed Petri net is aggregated into sets of piecewise linear

equations. The model introduced here is different in that the heavily populated discrete event model is

relaxed, while keeping the Petri net structure intact as much as possible.

It is important to mention that, the abstracted model introduced here and the results obtained in

this section can be extended in order to obtain distributed control strategies for networks with more

complicated signalized intersections. Nevertheless, such strategies are left for future research.

6.3.1 Fluidization of an intersection model

Consider the discrete timed PN system of fig. 6.6. This model represents the intersection of two one-

way streets controlled by a traffic light, under free-flow condition (without congestion, the traffic flux is

proportional to the traffic density). The subnet {p1, p2, p3, p4} corresponds to the physical intersection:

tokens in places p1 and p2 represent the cars at the queues waiting to enter the intersection while

tokens at p3 and p4 are the servers at the input transitions (lanes upstream of the queues in p1 and p2,

respectively). The subnet {p5, p6, p7, p8} represents the traffic light. According to this model, the first

queue (p1) is served (t2 is enabled) only if in the model of the traffic light there is a token at p5. In a

similar way, the second queue (p2) is served only if in the model of the traffic light there is a token at p7.

A token at either place p6 or p8 represents a yellow period (yellow for one queue but red for the other),

so, no queue is being served when there is a token in these places. Transitions {t5, t6, t7, t8}, representing
the switching of the traffic light, are defined as having deterministic time delays. On the other hand,

transitions {t1, t2, t3, t4}, corresponding to car arrivals and departures (services) at the intersection, are

defined as having exponentially distributed random time delays.

The PN system of fig. 6.6 is relaxed into a hybrid PN model, in which transitions {t1, t2, t3, t4},
corresponding to car arrivals and departures (services), are relaxed into fluid, while other transitions

remain discrete (traffic light). Average delays of transitions {t1, t2, t3, t4, t5, t6, t7, t8} are defined as

(1, 1/3, 1, 1/3, 20, 5, 20, 5). Note that the hybrid model thus obtained is deterministic, since all the

stochastic transitions have been fluidified. The marking trajectories of places p1 and p2 are shown in fig.

6.7 (solid curves). On the other hand, after 20 simulations of the original stochastic discrete model, the
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Fig. 6.7: Marking trajectories of the PN system of fig. 6.6. Dashed curves correspond to the average trajectory
of the stochastic PN, while the continuous ones correspond to the hybrid PN. a) Curves of p1, b) curves
of p2.

average trajectories for the same places were computed, and are also shown in fig. 6.7 (dashed curves).

Note that the trajectories of both the hybrid PN and the average of the discrete PN models coincide

almost perfectly. Hence, the hybrid PN can be used for a quantitative analysis of the original discrete

system, with the advantage that this model is deterministic and that the state explosion problem does

not appear in this.

Lefeber & Rooda [Lefeber and Rooda, 2006] studied a mathematical model similar to the hybrid

version of fig. 6.6. The results of [Lefeber and Rooda, 2006] characterize the optimal steady state

periodic orbit that minimizes the cost

J =
1

Tss

∫ Tss

0

[x1(τ) + x2(τ)] · dτ (6.8)

where x1 and x2 denote the queues (markings at {p1, p2} in fig. 6.6) and Tss denotes the period of the

orbit. Furthermore, they also provide a feedback control law that guarantees the convergence of the

system to that orbit.
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Fig. 6.8: PN model of an intersection of two one-way streets, the arrivals to the first queue occur in bursts.

An important assumption made in the model of fig. 6.6 (and in [Lefeber and Rooda, 2006]) is that the

arrival rates are constant. Nevertheless, in an urban traffic network, the cars departing one intersection

are the arrivals to the neighboring ones. Since each intersection is being controlled by a traffic light, the

departures do not have constant flow rates, and so the arrivals to downstream intersections do not occur

with a constant flow rate but in bursts (the intensity of the traffic flow is higher during short periods,

like batches of cars moving closely together). In order to consider those burst arrivals, the PN of fig. 6.6

is modified, leading to the system of fig. 6.8.

In this new model, the arrivals to the first queue occur in bursts. A token in place pe enables t1,

meaning cars arriving with a rate λ1. After some given delay θ9, transition t9 fires (which is discrete

and deterministically timed) removing the token at pe and putting it in pne, in this way, t1 is no longer

enabled meaning that no cars can arrive. After a given delay θ10, transition t10 fires and the token

returns to pe, enabling again t1. In this way, the time during which a burst is arriving at the first

queue is θ9, the number of cars that arrive during that time is θ9 · λ1, the time between the arrival of

two consecutive bursts (between the car leading a burst and the car leading the next burst) is θ9 + θ10.

Therefore, transitions t9, t10 and places pe and pne characterize the bursts that arrive to the first queue.

In this model, the arrivals to the second queue still occur with a constant rate. Those arrivals can also

be generalized in order to consider bursts. Nevertheless, for the sake of simplicity, they will be kept as

constant in this report.

The results obtained in [Lefeber and Rooda, 2006] do not provide the optimal behavior for the system

of fig. 6.8, since the arrivals to the first queue do not occur with a constant rate. Furthermore, in the

case studied in this work, the discrete subnet (the subnet described by transitions {t5, t6, t7, t8, t9, t10})
does not describe a sequential process but a concurrent one, i.e., there are many possible trajectories

in the untimed subnet. For instance, in the PN model of fig. 6.6, the discrete subnet always evolves

with the sequence t5, t6, t7, t8, t5, ...; but in the model of fig. 6.8 the discrete subnet can evolve as

t5, t9, t6, t7, t8, t10, .. or t5, t9, t6, t10, t7, t8, .. etc.; the trajectory or sequence that occurs in the timed

model depends on the delays of t5 and t7, i.e., the parameters to optimize. For this reason, the optimal

periodic orbit for this new model is difficult to characterize, because it is not possible to obtain an
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analytical expression (as a function of the delays t5 and t7) of the cost J (6.8).

6.3.2 Optimization for one intersection

In this subsection, a parameter optimization problem is introduced and solved for the 1-intersection

model of fig. 6.8, obtaining thus the optimal switching delays for the traffic light. Note that, since the

yellow periods are fixed a priori for safety reasons, by defining the switching delays for the green signals

(a green signal for one queue means red for the other), the timing of the traffic light is completely defined.

Given minimum and maximum possible integer values for the time delays of t5 and t7 (the green

periods), denoted as θmin
5 , θmin

7 , θmax
5 and θmax

7 respectively, a finite set of possible control values is

defined:

CS = {(θ5, θ7) ∈ N× N|θmin
5 ≤ θ5 ≤ θmax

5 , θmin
7 ≤ θ7 ≤ θmax

7 } (6.9)

Next, given the initial queue lengths (m0[p1] and m0[p2]) and a fixed time horizon T , for each pair

(θ5, θ7) ∈ CS, the following cost function is computed:

J(T , θ5, θ7) =
1

T

∫ T

0

w ·

[
m[p1]

m[p2]

]
· dτ (6.10)

where w is a positive row vector representing some optimization weights. Finally, the cost values thus

obtained are compared, and so, the minimum of them determines the optimal control policy (θopt5 , θopt7 )

to be applied.

Note that (θopt5 , θopt7 ) may not be the optimal values at the steady state. Nevertheless, given the

current estimates of the state (m0[p1] and m0[p2]), (θ
opt
5 , θopt7 ) minimizes the average vehicle delay over

an interval of time starting at the present time and looking T time units into the future (like in model

predictive controllers). Furthermore, note that the cycle time is not fixed a priori, since it depends on

the values obtained for (θopt5 , θopt7 ).

The main drawback of the previous approach is the high computational cost, since the cost function

is evaluated for each possible combination for the values of (θ5, θ7), rather than optimizing by using

programming techniques. Nevertheless, the computation of J (6.10) can be achieved very efficiently by

computing in parametric form (but off-line) the incremental cost J(τ+∆τ)−J(τ), during a time interval

∆τ that the system remains in the same discrete state, for each possible discrete state.

For instance, consider the system as in fig. 6.8. Given the rates {λ1, λ2, λ3, λ4} for {t1, t2, t3, t4},
time delays (θ5, θ6, θ7, θ8) = (20, 5, 40, 5) seconds for {t5, t6, t7, t8}, and delays (θ9, θ10) = (10, 30) seconds

for {t9, t10}, the system will remain at the same discrete state during ∆τ = min(θ5, θ9) = 10 seconds

(i.e., the minimum time delay of those discrete transitions that are enabled at the current discrete state).

During such time ∆τ , the queues will change, i.e., the marking at p1 and p2, but this evolution is

deterministic and can be computed in parametric form.

In particular, it is easy to prove that, given initial values m0[p1] and m0[p2], after ∆τ time units
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during which the discrete state remains at m[pe] = 1 and m[p5] = 1, the variables are:

m[p1](∆τ) =

{
(λ1 − λ2) ·∆τ +m0[p1] if ∆τ ≤ τc
λ1

λ2
+
[
1− λ1

λ2

]
e−λ2(τ−τc) if ∆τ > τc

m[p2](∆τ) = λ3 ·∆τ +m0[p2]

(6.11)

where τc = (1−m0[p1])/(λ1−λ2) is the time needed for the first queue to reach the value of 1 (according

to the ISS, if the first queue m[p1] is larger than 1 then transition t2 is constrained by p5, so this queue

decreases according to a constant speed, but if the queue is lower than 1 then t2 is constrained by p1

and so, in this case, it decreases with a speed that depends on the queue’s current value). Furthermore,

the increment of the cost function defined as

∆J =

∫ ∆τ

0

w ·

[
m[p1]

m[p2]

]
· dτ = w1

∫ ∆τ

0

m[p1]dτ + w2

∫ ∆τ

0

m[p2]dτ (6.12)

can be easily computed by using, for this discrete state, the following expressions:∫ ∆τ

0

m[p1]dτ =
(λ1 − λ2)

2
∆τ2 +m0[p1]∆τ (6.13)

if ∆τ ≤ τc. For the case in which ∆τ > τc then∫ ∆τ

0

m[p1]dτ =
(λ1 − λ2)

2
∆τ2 +m0[p1]∆τ +

λ1
λ2

(∆τ − τc) +

[
λ1
λ22

− 1

λ2

] [
eλ2(τc−∆τ) − 1

]
(6.14)

and in both cases ∫ ∆τ

0

m[p2]dτ =
λ3
2
∆τ2 +m0[p2]∆τ (6.15)

By following a similar reasoning, expressions for m[p1](∆τ), m[p2](∆τ) and ∆J can be obtained for

all the different discrete states. Therefore, the computation of the cost function for a given pair (θ5, θ7)

can be quickly achieved by following a discrete-event simulation algorithm:

Algorithm 6.2. Computation of the optimization cost for a traffic light policy for the model of fig. 6.8.

Initialize τ = 0, Jac = 0

While τ ≤ T (time horizon) do

Compute the remaining time at the current discrete state: ∆τ.

Compute the queues at τ +∆τ, i.e., m[p1](τ +∆τ) and m[p2](τ +∆τ),

by using the expressions obtained off-line (6.11).

Compute ∆J, by usingthe expressions obtained off-line (6.12).

Add the incremental cost: Jac = Jac +∆J.

Update the time: τ = τ +∆τ.

Fire the enabled discrete transition.

end While

Compute the total cost as: J(τ) = 1
τ · Jac
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Fig. 6.9: Computation of optimal switching delays: (θopt5 , θopt7 ) = (4, 27) sec. with J = 7.18.

In this way, denoting as #events the number of discrete events that occur during the horizon T (i.e.,

changes in the traffic light signal and in the incoming flow condition), the complexity of this algorithm is

linear on the product #events · (θmax
5 − θmin

5 ) · (θmax
7 − θmin

7 ). Note that the complexity does not depend

on the number of cars crossing the intersection neither on the magnitude of the flow.

For instance, fig. 6.9 shows the results obtained for the system of fig. 6.8 with rates [1, 3, 1, 3] for

{t1, t2, t3, t4}, delays [10, 30] seconds for {t9, t10} and [5, 5] seconds for {t6, t8}, weights w = [1, 1] and

a time horizon T = 1200 seconds. Note that the minimum value for this, i.e., the optimal switching

delays, is unique (the dashed square: (θopt5 , θopt7 ) = (4, 27) with J = 7.18). Note also in fig. 6.9 that the

cost function is not convex, then, a gradient-based optimization may not compute the optimal value.

Nevertheless, the algorithm introduced before does compute the optimal, since it evaluates the cost

function for each possible combination (θ5, θ7). For this experiment, a CPU with a Intel Core 2 Duo at

2GHz has spent 84 seconds for computing the optimal value, which is considerably lower than the time

horizon T = 1200 seconds.

6.3.3 Controlling 1-intersection in a traffic network

This subsection is devoted to advance some ideas leading to a control strategy for urban traffic networks.

The goal here is to use the optimization algorithm previously introduced in a MPC scheme. Then,

the green periods of one intersection will be computed on-line, reducing thus its average queue lengths.

This strategy can be extended in order to simultaneously control several interconnected intersection in

a distributed way, nevertheless, that is beyond the scope of this work.

The proposed example is shown in fig. 6.10. This system consists of 2 intersections connected by a

link (one-way street). The first intersection is modeled as in fig. 6.6, i.e., the incoming flows occur with
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Fig. 6.10: PN model of 2 intersections connected by a link.

constant rates. The output flow of one direction is connected to a second intersection by a link, which

introduces a pure delay. The subnet {p9, p10, p11, p12, p13, p14, t9, t10, t11, t12} defines such link, in which

transitions {t11, t12} are discrete and {t9, t10} are continuous. This link model works as follows: when a

burst is departing from Intersection 1, whose output transition is t12, tokens flow to p9 and then through

t9 into place p11, where they are accumulated, enabling at the same time t11. After θ11 time units, t11

is fired (θ11 is the time needed by the leading vehicle of the burst leaving p11 to reach the downstream

intersection), marking p12, and enabling t10, so that the burst is free to follow its way towards the

Intersection 2 (i.e., from p11 to place p14 and then to p21, which is the queue at the second intersection).

After the last token has left p11 (the last car has left the link), t12 is enabled and then it is fired, resetting

the initial condition of this part of the model.

The dynamic behavior of the second intersection can be represented by means of the model of fig.

6.8, since the incoming flow through t21 occurs in bursts, while the incoming flow through t23 occurs with

a constant rate. In this way, transitions {t21, t22, t23, t24} and places {p21, p22, p24} of fig. 6.10 correspond to

{t1, t2, t3, t4} and {p1, p2, p4} of fig. 6.8, respectively (in the same order). In a similar way, the nodes

modeling the traffic light of the second intersection in fig. 6.10 {p25, t25, p26, t26, p27, t27, p28, t28} correspond

to nodes {p5, t5, p6, t6, p7, t7, p8, t8} in fig. 6.8. The information about arriving bursts (i.e., delays of

{t9, t10} and marking of {pe, pne} in fig. 6.8) is not directly available from the 2-intersections model,

thus it must be obtained by off-line computation or on-line estimation.

It is assumed that the switching delays of the traffic light for the first intersection are fixed. The goal

in this example is to compute on-line the switching delays of the second traffic light, showing that the

model for 1-intersection of fig. 6.8 can capture the interactions with neighbor intersections in a urban

network. A model predictive controller is implemented for this, by using the optimization algorithm
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Fig. 6.11: Marking of queues at the second intersection (fig. 6.10) under control, and signals of the green period
(dashed line) and arriving bursts (solid line).

introduced in the previous subsection. Let us describe this:

I. The parameters of the arriving bursts from Intersection 1 are estimated. These parameters are

incorporated into the 1-intersection model of fig. 6.8 (that represents Intersection 2). The other

rates and markings are given by the corresponding ones of Intersection 2.

II. The optimization algorithm introduced in the previous section is used for computing on-line the

optimal switching delays for the local traffic light, using a fixed finite horizon T .

III. Those switching delays are applied to the system.

IV. After a fixed time Tupd (updating time), lower than the horizon T , return to the step 1, i.e., estimate

again the parameters of incoming bursts and compute and apply again the corresponding optimal

switching delays. While the time horizon T can be large enough to consider a few traffic-light

cycles, the updating time Tupd must be small enough in order to update the estimation of the

incoming bursts, and thus, to compute again the optimal switching delays with the most accurate

available information.

Since the rates of the transitions of Intersection 1 are assumed to be fixed and known, then the

bursty arrival stream to Intersection 2 is periodic, meaning that its parameters are constant and can be

computed off-line. Nevertheless, in a general urban traffic network where the switching delays of several

traffic lights are being adjusted, the bursts’ parameters are variable and it is required to estimate them

in real time. The synthesis of such an estimator is left for a future work. In order to consider the general

case, step 4 in the previous control procedure states that the estimation, optimization and modification

of the traffic light periods have to be iterated periodically.

This control strategy was applied to the hybrid model of fig. 6.10. Delays for the first traffic

light {t15, t16, t17, t18} are (20, 5, 20, 4) (in the same order). Delays for the Intersection 1 {t11, t12, t13, t14} were

(1, 1/3, 1/3, 1/5) seconds, for the second intersection {t21, t22, t23, t24} were (1/3, 1/5, 1, 1/3) seconds, while

delays for the link {t9, t10, t11, t12} were (1/10, 1/3, 30, 1/3) seconds (the link delay is θ11 = 30 seconds).
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The initial queues were given by (10, 20) for {p11, p12} and {p21, p22}, respectively. During the experiment,

the control law was applied to Intersection 2, while the periods for the traffic light of Intersection 1

remained fixed. The optimal control law was computed and applied each 5 seconds (the computation of

the control law takes 3.62 seconds on a CPU with Intel Core 2 Duo at 2.00GHz each time it is computed),

with an horizon of 110 seconds. The parameters of arriving bursts were obtained from an estimation

procedure (not described in this work, but these can be easily computed off-line for this example). The

results are shown in fig. 6.11. The marking at p21 corresponds to the queue with bursty incoming flow.

The square signals in the lower part of fig. 6.11 correspond to the green period (dashed line) of the

traffic light for that queue and the arriving bursts (solid line, cars are added to the queue when this

signal is 1). As it can be seen, the controller synchronized the green period with the incoming bursts in

order to induce a green wave, reducing thus the queue at p21 as much as possible. The value obtained

for the cost function (defined as in (6.10) with w = [1, 1] and T = 600 seconds) was 11.59, which is

considerably lower than the value for the system with fixed switching times 16.59 (without control, those

fixed switching times were computed by minimizing (6.8) assuming constant arrival rates).

6.4 Conclusions on control implementation

In this chapter, a control structure has been provided for the interpretation of a control law, designed for

a TCPN system, into the corresponding MPN one. The resulting scheme constitutes a tool for controlling

the average marking of a MPN system by means of applying additional delays to the controllable transi-

tions, rejecting unexpected perturbations, i.e., for controlling the performance of the original stochastic

Petri net.

Firstly, this control strategy has been applied for the stock level control of a Kanban-based automotive

assembly line. The results obtained are positive, showing the feasibility of the control scheme proposed.

Nevertheless, it is required that the control law designed for the TCPN system be robust enough, since

the MPN system is interpreted as a TCPN with state and output perturbations. Furthermore, the

covariance matrices of the EKF need to be suitably adjusted in order to obtain a good closed-loop

performance. It is left for future research a formal analysis on the close-loop stability of the proposed

approach.

Secondly, a different control problem was considered, introducing a hybrid PN model for intersections

in an urban traffic network. Large urban traffic systems can be modeled by interconnecting several of

these intersection models with delay lines modeling the roads linking them. It was shown that, the

simplicity of the intersection model leads to simulation runs that are so fast that it is possible to compare

the effect of different scenarios for the switching times of the traffic light. Accordingly, a model predictive

feedback control law, that selects the best future scenario after each update of the (estimated) state, leads

to a significant improvement in the performance (w.r.t. an open-loop strategy) of a traffic intersection

in an urban network, since the model captures the information required for creating green waves. It is

left for a future research, the extension of the introduced control law in order to simultaneously control,

in a distributed way, several traffic lights of interconnected intersections.
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General conclusions

A timed continuous Petri net under infinite server semantics can be considered as a relaxed version of

the corresponding Markovian (discrete) Petri net.

By using TCPNs for the analysis of MPNs, an interesting advantage is found: the possibility of the

application of techniques and concepts developed in the Control Theory for continuous-sate systems, like

the synthesis of performance controllers and observers, the analysis of stability, etc. In this way, the

fluidization represents a bridge between particular classes of continuous-state systems and discrete event

ones.

Through this dissertation, a theoretical framework has been provided for the use of TCPNs for the

synthesis of performance controllers for MPNs. In a first step, the approximation between a MPN and

its corresponding TCPN has been studied. Later, it has been analyzed some qualitative properties of

the TCPN model: the connection between timing, liveness and boundedness; and controllability. In a

third step, three control law structures have been proposed for TCPNs, considering a set-point control

problem. Finally, it has been illustrated how a control law derived for the TCPN can be applied to the

original MPN, leading to a performance controller for the discrete event system. The obtained results

are described with more detail in the following:

• Approximation between TCPNs and MPNs (Chapter 2). Approximation errors appear due

to synchronizations: rendez-vous and weighted arcs (in non-ordinary nets). In fact, a perfect match is

obtained for ordinary Join-free nets. For non-ordinary Join free models, assuming liveness and asymptotic

stability, approximation errors are ultimately bounded. That result is extended to non Join-free nets,

under the assumption that the system evolves inside one region with a high probability. In order to

improve the approximation when the system evolves in several regions, the TCPN model is enriched

by adding white gaussian noise to the transitions’ flow, obtaining a new stochastic continuous model

TnCPN. Assuming liveness and ergodicity, the pdf of the marking of the TnCPN may approximate that

of the MPN. The larger the MPN’s enabling degrees during the most probable trajectories, the better

the approximation. This result has been extended to partially relaxed models, i.e., hybrid Petri nets.

Nevertheless, the approximation provided by hybrid systems is not always better than that provided

by continuous systems, particularly when continuous places barely enable discrete transitions. For this

reason, having a large number of enabled servers in the transitions is desirable for a good approximation

(specially for continuous transitions having output weighted arcs and discrete transitions being enabled

by continuous places).

• Connection between the timing, liveness and boundedness in TCPNs (Chapter 3). In

continuous models, the timing constraints may enforce the system to (eventually) behave as conservative

and/or consistent when the autonomous continuous PN does not exhibit these properties. The existence

of a timing that induces such behavior has been studied for general nets and for particular subclasses

as well. This has been approached by defining two algebraic timing-dependent properties: λ-consistency

and λ-conservativeness. It has been proved that, if the system is λ-consistent and all the minimal
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siphons are initially marked, then the TCPN becomes live. This represents a connection between an

algebraic property and a behavioral one. At a dynamical level, such timing dependent property can be

interpreted as the existence of invariants where the system is live. Based on this, a couple of sufficient

conditions for avoiding non-live equilibrium markings, and sufficient conditions for reaching them, have

been introduced. Furthermore, algorithms, devoted to compute a timing s.t. the TCPN is live and

bounded, have been provided.

• Controllability for TCPNs (Chapter 4). TCPNs are not controllable under the classical control-

lability concept used for linear continuous-state systems, since the marking is restricted to an invariant

set (denoted as Class(m0)) determined by the P-flows. Furthermore, in TCPNs the only allowed control

action is the reduction of the flow of certain controllable transitions (i.e., a local reduction of the activity

in the system), leading to relevant input constraints. For these reasons, a local controllability concept

has been proposed, taking into account the input constraints. For models in which control actions can

be applied to all transitions, the controllability over the relative interior set of Class(m0) is guaranteed

iff the system is consistent, obtaining thus a purely structural characterization of controllable models.

Moreover, the system is controllable over the complete Class(m0) iff additionally no siphon is empty in

this set. The controllability analysis for systems with uncontrollable transitions is much more complex.

In this case, TCPNs are frequently not controllable over Class(m0). Thus, the controllability analysis is

restricted to subsets of potential equilibrium markings (where the system can be stabilized). For a single

marking region (or configuration, where the system behaves linearly), a sufficient and necessary condi-

tion for controllability over equilibrium markings have been obtained. Furthermore, given a connected

union of sets of equilibrium markings belonging to different regions, the system is controllable over the

complete union if it is controllable over each of the component-subsets. In this case, the controllability

depends not only on the structure of the net but also on the timing.

• Synthesis of controllers for TCPNs (Chapter 5). The goal of the control problem considered

here consists in driving the system towards a desired target marking. It has been firstly addressed the

control problem for systems in which all the transitions are controllable. Regarding this, an affine cen-

tralized control law has been derived for TCPNs. The application of the control scheme is achieved in

polynomial time. Nevertheless, the complexity appears during the synthesis, since the required com-

putation of the vertices of the polytope (Class(m0)) is not polynomial. In order to deal with such

complexity, specially for systems having a large net structure, those results have been extended in order

to provide a modular-coordinated control strategy. The resulting scheme consists of a set of affine local

controllers and a coordinator that receives and sends information to the local controllers. Next, the

control problem for system with uncontrollable transitions has been considered for the centralized case,

by adopting a more classical approach: a linear state-feedback control law based on pole-assignment

techniques. The implementation of the resulting control law consists of the computation of a suitable

gain matrix for each region, and the resolution of a LPP during its application for computing suitable

intermediate markings that guarantee the boundedness of the input, obtaining thus a piecewise-linear

constrained control structure. For the three control structures introduced in this work, feasibility and

convergence have been demonstrated.

• Implementation of controllers designed for TCPNs into the corresponding MPNs

(Chapter 5). A control law designed for a TCPN system can be applied into the corresponding MPN

one. An estimator-based control structure has been provided for this purpose. The continuous control
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law is thus transformed into the application of additional delays to the controllable transitions in order to

enforce a desired performance in the original stochastic Petri net. This control strategy was applied for

the stock level control of a Kanban-based automotive assembly line. As a second application example,

the optimization problem of traffic lights in urban traffic systems has been addressed by using hybrid PN

models for the intersections, and a model predictive control strategy for an on-line optimization. Further

research is required for the evaluation of the performance of this approach in large traffic networks.

Despite the broad results that can be found in the literature for continuous Petri nets, and the analysis

introduced in this dissertation, there are several interesting questions that remain open. Let us mention

a few of them:

• The approximation analysis may be extended to wider classes of time interpreted discrete PNs, for

instance, to deterministically T-timed Petri nets with single server semantics. Another interesting issue

is the modification of the semantics in order to improve the approximation, as mentioned in Subsection

2.5.2.

• Regarding controllability, there are some questions concerning the case of uncontrollable transitions.

For instance, the connexity of the set of equilibrium marking is still unknown for the general case,

which is important for the controllability analysis over the union of different regions. Furthermore, an

efficient technique for the analysis of reachability between regions is required, since the number of these

increases exponentially w.r.t. the number of synchronizations (rendez-vous). Moreover, the connection

between the controllability property and the net structure is not completely understood for systems with

uncontrollable transitions.

• There is still a lack of control synthesis procedures for systems with uncontrollable transitions. In

particular, the problem of transferring the system through regions (configurations) is difficult to address.

According to the control scheme proposed in Chapter 5, the control law derived for the continuous PN

can be finally applied to the corresponding MPN, which is seen as the continuous model under state and

output perturbations. In this sense, it becomes particularly relevant the development of robust control

structures for TCPNs with noise.

• For the synthesis of performance controllers for MPNs via TCPNs, a closed-loop stability analysis

is still missing. In Chapter 2 it was proved that the marking’s pdf of the MPN can be approximated

by that of the TCPN with white noise, what leads to the use of an extended Kalman filter in order

to obtain an estimation of the average behavior of the MPN. Nevertheless, such approximation is, in

general, not perfect. Furthermore, the control laws to be applied are derived for the TCPN without

noise, assuming a perfect knowledge of the state. In this way, it should be desirable to enjoy of a sort

of Separation Principle (providing sufficient conditions for closed-loop stability, when the controller and

the observer/estimator are independently synthesized) for TCPNs, in order to formalize the application

of TCPN controllers into the original MPN system.

From a more general perspective, it seems interesting to extend the results obtained in this work

to hybrid Petri nets, since these models exhibit an interesting expressiveness power. An example of

this was shown in Chapter 6, by modeling intersections in urban traffic networks, allowing the on-line

optimization of the traffic lights.

This dissertation has illustrated a particular potential application for fluid relaxations in the analysis
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and synthesis in PNs. In this way, the fluidization seems a promising approach and opens wide possibili-

ties for addressing different problems, like state-estimation, performance evaluation, on-line optimization,

etc., from a powerful perspective.
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control method for timed distributed continuous Petri nets. In American Control Conference 2010,

Baltimore, Maryland, USA. IEEE Press.

[Balbo and Silva, 1998] Balbo, G. and Silva, M. (1998). Performance Models for Discrete Event Systems

with Synchronizations: Formalisms and Analysis Techniques. KRONOS.

[Balduzzi et al., 2001] Balduzzi, F., Giua, A., and Seatzu, C. (2001). Modelling manufacturing systems

with first-order hybrid Petri nets. International Journal of Production Research, Special Issue on

Modeling, Specification and Analysis of Manufacturing Systems, 39(2):225–282.

[Balduzzi et al., 2000] Balduzzi, F., Menga, G., and Giua, A. (2000). First-order hybrid Petri nets: a

model for optimization and control. IEEE Transactions on Robotics and Automation, 16(4):382–399.

[Bazzan, 2005] Bazzan, A. (2005). A distributed approach for coordination of traffic signals. Autonomous

Agents and Multi-Agent Systems, 10(1):131–164.



164 Bibliography

[Bemporad et al., 1999] Bemporad, A., Ferrari-Trecate, G., and Morari, M. (1999). Observability and

controllability of piecewise affine and hybrid systems. In 38th IEEE Conference on Decision and

Control.

[Bemporad et al., 2002] Bemporad, A., Morari, M., Dua, V., and Pistikopoulos, E. N. (2002). The

explicit linear quadratic regulator for constrained systems. Automatica, 38(1):3–20.

[Brammer, 1972] Brammer, R. (1972). Controllability in linear autonomous systems with positive con-

trollers. SIAM Journal Control, 10(2):329–353.
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AppendixA

ISS hybrid Petri nets simulator

The approximation of the marking of Markovian PN’s, provided by the corresponding TCPN, was studied

in Chapter 2. Accordingly, the existence of syncronizations: rendez-vous and weighted arcs, introduce

approximation errors, nevertheless, assuming liveness and stability, such errors are ultimately bounded.

Later, in order to improve the approximation when the system evolves through several regions, a

new stochastic continuous model TnCPN was defined. The approximation provided by this model was

also analyzed, obtaining a similar kind of results, i.e., under certain liveness and stability assumptions,

the approximation errors are ultimately bounded. In such case, the approximation holds not only for

the average marking, but also for the probability distribution. In a third step, a partial relaxation of

a MPN leads to a hybrid Petri net model MHPN. It was shown that the approximation provided by

such hybrid systems is not always better than those provided by fully continuous net models. For this

reason, different results were introduced, which may lead to provided sufficient conditions for an effective

approximation.

Despite the formal results obtained in Chapter 2, from a practical point of view, there are interesting

remaining questions. For instance, given a particular MPN system and its corresponding relaxations

(TCPN, TnCPN, MHPN), how accurate is the approximation provided? is it possible to compute

bounds for the errors? does the approximation holds for a different timing?

These are difficult questions, and unfortunately, no general answers have been found until now.

Nevertheless, under the assumption of liveness and ergodicity (stability), valid information can be

obtained from several simulations, obtaining thus a practical way for deciding if, given a particular

MPN, its relaxation provide a good approximation. For this reason, a simulator was developed in or-

der to compare the steady and transient behavior of either discrete, continuous or hybrid Petri nets

under infinite server semantics. This appendix will present such a simulator, which is available in

http://webdiis.unizar.es/∼cvazquez/ together with a user’s manual [Vázquez, 2010].

A.1 Simulation algorithm

In this section, a basic algorithm for simulating a Markovian hybrid Petri net is introduced. In a general

timing interpretation of a discrete PN, the marking does not provide all the information required for

determining the future evolution of the system, i.e., it is not the full state of the system. It is also

required some information about the time at which each active server will be fired, which in this work
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is called clock. In a MPN (here under infinite server semantics), one clock variable per transition is

enough (because the minimum of n exponentially distributed r.v.’s with a parameter λi is equal to an

exponentially distributed r.v. with parameter n · λi), meaning the time at which the following firing

occurs. By using these variables and the marking, it is possible to simulate a MPN by using either

an event-driven simulation or a time-driven one. Even if the event-driven approach is more efficient

(because the marking and clocks are updated at only few time instants, when a firing occurs), in this

work a time-driven one will be adopted with a fixed sampling (time increments). The reason for this

is the continuous dynamics in hybrid models, which are difficult to simulate in an event-driven scheme,

but easy to handle in a time-driven one (just by using its discrete-time state equation), specially when

gaussian noise is added to the transitions, since this is defined based on a discrete-time evolution.

Algorithm A.1. Simulating a MHPN.

τ := τ0

M := M0

clocks := 0

while τ ≤ total simulation time

τ := τ +∆τ

% Firing the discrete transitions %

for all tj ∈ T d to be fired (i.e, ∀tj ∈ T d s.t. clocksj ≤ τ) do

define ∆σ ∈ N|T | with null entries, excepting ∆σj := 1

M := M+C ·∆σ

for all ti ∈ T d

compute Enab(ti,M)

if ti is not enabled then clocksi := ∞
elseif ti is enabled and either ti = tj or it is newly enabled then

get θ ∈ R>0 from an exponential p.d.f with parameter:

λi · Enab(ti,M)

clocksi := τ + θ

end if

end for

end for

% Firing the continuous transitions%

∆w := 0

for all ti ∈ T do

if ti ∈ T d then ∆wi := 0

elseif ti ∈ T c,d then ∆wi := λi · enabi(M)∆τ

elseif ti ∈ T c,n then

get noise ∈ R>0 from a normal pdf with zero mean and variance:

λi · enabi(M)∆τ

∆wi := λi · enabi(M)∆τ + noise

end if
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end for

M = M+C ·∆w

% Actualize the clocks of the discrete transitions %

for all ti ∈ T d

compute Enab(ti,M)

if ti is not enabled then clocksi := ∞
elseif ti is enabled and either ti = tj or it is newly enabled then

get θ ∈ R>0 from an exponential p.d.f with parameter:

λi · Enab(ti,M)

clocksi := τ + θ

end if

end for

end while

The previous algorithm simulates a MHPN in which white noise can be added to the continuous

transitions. These are classified as discrete (T d, with exponential delays and ISSS), continuous (T c,d,

deterministic under ISS) and continuous with white noise added to the flow (T c,n).

Note that, the firing of the continuous transitions is achieved after the firing of the discrete ones. The

reason for this is that, in the continuous-time model, the firing of the discrete transitions do not consume

time (is instantaneous), thus, if there is a conflict between a continuous and a discrete transition (that

has to be fired), the discrete transition is always fired. Furthermore, after the firing of the continuous

transitions it is required to update again the clocks, since the firing of the continuous transitions can

change the enabling degree of the discrete ones. Previous algorithm can be extended for simulating

different kind of timings at the discrete transitions. For instance, suppose that ti ∈ T d fires with a

constant delay θi (with 1-server semantics), then, when the corresponding clock (clocki) is updated, the

value τ + θi is assigned instead of obtaining a value from an exponential pdf (nevertheless, in this case

a conflict resolution policy must be implemented).

A.2 Simulator and interface

The algorithm described in the previous section (with the option of defining discrete transitions with

constant delays) is implemented in the m-file fSimRoutine.m, in order to use it in MatLab. A graphical

Interface is also implemented with the name ISS HybPN. In this section, the use of the Interface for the

hybrid simulator is described.

First, in order to use the Interface, call it from the Command Window in MatLab by typing

ISS HybPN.

A.2.1 Introducing the parameters of the PN

The parameters of the PN required for the Simulator are (see fig. A.1): the incidence matrix C, the

precondition matrix Pre, the initial marking M0 and the mean time delays, which is a vector having as
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Fig. A.1: Introducing the parameters of the PN.

entries the inverse of the values of λ (it can be computed in MatLab as delaym = ones(nt, 1)./λ, where

nt is the number of transitions and λ is a column vector). These values can be typed directly on the

Interface, following the standard matrix format in MatLab (for instance, [1,−1;−1, 1]). Furthermore,

if those matrices have been defined previously in the current Workspace, they can be called on the

Interface by typing the name of the variables. For instance, if the matrix C was previously defined in

the Workspace as the variable C = [1,−1;−1, 1], then it is only required to type C on the Interface (it

is case sensitive).

It is also possible to load the values of a net from the files generated by Softwares PMEdit (graphical

editor of PN) and TimeNet [Zimmermann and Knoke, 2007]. In order to do this, just click the button

Read (fig. A.1) on the Interface and select the desired file. It is also possible to load the values from a

*.mat file, which is the format used by MatLab for saving the data of the workspace.

Once the incidence matrix is properly defined, the Interface allows to select the kind of PN. Three

options are allowed in a first glance: Continuous ISS (i.e., a TCPN), Discrete ISS exp (i.e, a MPN)

and Hybrid. When the Hybrid option is selected, each transition can be defined independently as either

discrete or continuous, by selecting the desired transitions in the pop-up menu (fig. A.2(a)). Actually,

there are 5 different options:

1. Discrete 1-server constant, it fires with a constant delay equal to the corresponding mean delay

(fig. A.2(a)).

2. Discrete ISS expected delay, it fires with a deterministic delay θ = (λ ·Enab(t,m))−1, which is the

expected value of the stochastic delay under ISS.

3. Discrete ISS Exponential, as in a MPN.

4. Continuous ISS, as in a TCPN.

5. Continuous ISS with noise, as in a TnCPN.

After introducing the Incidence matrix, it is possible to compute the T- P-semiflows, by pressing the

corresponding button. The results will appear on the command window.
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(a) (b)

Fig. A.2: (a) Selecting the kind of PN, and defining the timing of each transition. (b) Introducing the Simulation
Parameters.

A.2.2 Introducing the simulation parameters and simulating

The following step is to introduce the simulation parameters. Let us remark that the simulation is

achieved in discrete time with a fixed sampling time, independently of the kind of Petri net. Then, the

parameters required for the simulation are (see fig. A.2(b)):

1. Simulations, the number of simulations required. This value is meaningless for deterministic sys-

tems (for instance, a TCPN). Nevertheless, for stochastic systems, like a MPN, the Simulator will

simulate the system several times (the number specified at this entry), and only the average and

variances information of all the realizations thus obtained will be available. If only one realization

is required then set this entry as 1.

2. Simulation time, the total simulation time.

3. Simulation sampling, the fixed sampling time ∆τ .

4. Data sampling, the sampling time for recording data, for instance, if a value of 1 is defined it means

that only each 1 second the data is recorded and it will be available for plotting it. The simulation

is faster when this number is large.

5. Time window, this is the time window (interval) used for computing the throughputs of discrete

transitions, for instance, if a value of 5 is defined, the throughput of ti at time instant 10 is

computed as the number of firings of ti during the last 5 seconds (in the interval (5, 10]) divided

by 5.

After defining all the system and simulation parameters, the button Simulate (fig. A.2(b)) have to

be pressed for simulating. If an error is produced due to some bad definition of the PN parameters, a

message pointing out the error will appear on the Interface and the command window, otherwise, the

message SIMULATION IN PROGRESS.. will appear until finishing the simulation. During the process,

the number of simulations done will appear on the command window, and at the end, the final values

for the average markings and throughputs will also appear on this.
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A.2.3 Plotting results

After obtaining a successful simulation, the average marking, throughputs and marking variances tra-

jectories can be plotted. In order to do that, first define the information to plot and after that push

the button Plot. For instance, in fig. A.3 it appears the average marking trajectories of places p1 and

p2 (denoted as M(P1) and M(P2)). This information is indicated on the Interface at the entry Marking

Averages to Plot having a value of [1 2], meaning p1 and p2. In the same figure it is also plotted the

Throughput of t1 (in this case the flow, since the system simulated is a TCPN), which is denoted as

Thr(T1). This information is indicated at the entry Throughputs to Plot with a value of [1]. Entry

Marking Variances to Plot is used for indicating the places whose marking variances are required to

be plotted (instantaneous variance of the marking of the corresponding places, computed with the data

obtained from several simulations indicated at the entry Simulations in fig. A.2(b)). After pressing Plot,

the final values of the curves plotted can be seen on the Interface, for instance, in fig. A.3 it appears the

Final value of M(P1), which is 3.666.

If other curves are desired to be plotted, it is not required to simulate again the system (unless a

new system or realization is desired). In such case just define the required curves at the entries Marking

Averages to Plot, Throughputs to Plot and Marking Variances to Plot, and push the button Plot again.

The check box Hold on can be used for plotting curves without erasing the previous ones. This option

is particularly useful for comparing data of different systems, for instance, for comparing the average

marking of a MPN with the corresponding TCPN.

All the figure tools are also available on the Interface, in order to modify the appearance of the curves.

By saving the current figure (at the menu, file/save as..) the data and curves are saved, and so they can

be loaded in the next session just by opening the corresponding figure file (at the menu, file/open). It

is advised to save the figure using always a different name. Moreover, by pressing Plot==>Figure, the

current curves are plotted in a new window.

By pressing Data==>WS, the data of the curves currently plotted and the system and simulation

parameters are stored in the current workspace. This function is useful in order to manipulate the data

on the command window, or to save the data in a *.mat file.

A.2.4 Example

Consider the MPN system of fig. 5.7(a) with M = [10, 0, 30, 0, 10, 0]T and λ = [1, 1, 1, 2]. Suppose that it

is required to know if this system accepts a reasonable fluidization. One way for doing that is to simulate

the MPN several times and also the corresponding TCPN and then to compare the average trajectories

of both systems.

In this case, the system parameters to be introduced on the Interface are:

1. Incidence Matrix:

[−1, 1, 0, 0; 1,−1, 0, 0; 0,−1, 1, 0; 0, 1,−1, 0; 0, 0,−1, 1; 0, 0, 1,−1].

2. Precondition Matrix: [1, 0, 0, 0; 0, 1, 0, 0; 0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 1, 0; 0, 0, 0, 1].

3. Initial Marking M0: [10; 0; 30; 0; 10; 0].

4. Mean time delays: [1; 1; 1; 1/2] (remember that these values are the inverse of those of λ).
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Fig. A.3: Plotting results after a simulation.

First, let us simulate the MPN. Then, select the kind of PN as Discrete ISS exp. The simulation

parameters are defined as: Simulations 100 (for simulating the MPN a hundred of times and plotting the

average trajectory), Simulation time 10, Simulation sampling 0.1, Data sampling 0.1 and Time window

1. After setting these parameters, push the button Simulate. A text SIMULATION IN PROGRESS...

should appear on the Interface, while on the command window the progress of the simulation is indicated

(it should appear: Simulation 10 of 100, Simulation 20 of 100, etc). When the simulations have been

done, the text Simulation done substitutes the previous one.

Now, since the system has 3 P-semiflows, the markings of only 3 places is required for determining

the whole marking of the system. Let us take p1, p3 and p5. Then, in order to plot the average markings

at those places, set the value [1 3 5] at the entry Marking Averages to Plot, and push the button Plot.

The average marking trajectories of the MPN system are now shown on the Interface.

In order to simulate the corresponding TCPN system, just change the entry at kind of PN as Con-

tinuous ISS and push the button Simulate again. In this case, the simulator will simulate the PN only

once, since a TCPN is deterministic. Then, after a short time, the text Simulation done will appear

on the Interface. Since it is desired to plot the marking trajectories but without erasing the previous

ones, first check the box Hold on. After that, push the button Plot. Fig. A.4 shows the results thus

obtained. Labels M(P1), M(P3) and M(P5) correspond to the first plotting, i.e., the MPN, while labels

2-M(P1),2-M(P3) and 2-M(P5) correspond to the second one, i.e., the TCPN. As it can be seen, the

continuous marking approximates well the average marking of the MPN, then, it can be concluded that

the system of fig. 5.7(a) accepts a reasonable fluidization.
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Fig. A.4: Results obtained after simulating the system of fig. 5.7(a) as both MPN and TCPN.

A.2.5 Simulation script

The core of the simulation is the algorithm previously described. Even if the Interface allows certain

flexibility, it could be desired to elaborate more complex simulation routines, for instance, for simulating

a system with different timings λ and after that, plotting the steady state values thus obtained. In such

case, the Interface may not be useful enough, and an algorithm that uses the core of the simulator has

to be implemented.

For such case, it is only required to use the file fSimRoutine.m, which is actually the simulator

routine. In order to learn how this file can be called from other m-file, an script is also included in the

package: Script Simulator.m. This script shows how to call the fSimRoutine.m. It also calls the plotting

routine fPlotRoutine.m, which could be interesting for understanding the structure of the output of the

Simulator.

A.3 HybNet block for Simulink

In the Simulator package, the folder Simulink files contains the file Simulink HybPN.mdl, which is a

model file for Simulink. This model may be useful for designing and implementing different functions

and systems that interact with a hybrid Petri net. For instance, in order to implement a control law for

a TCPN system.

Fig. A.5 shows the model of Simulink HybPN.mdl. The upper part is actually the model. The

signals in this part of the system are the instantaneous marking of the PN. Block Hybrid PN is the

subsystem shown in the lower dashed square. The simulation model was designed in order to work in

discrete time with a fixed time step, then, make sure that the correct settings are defined (at the menu,

Simulation/Configuration Parameters, Type: Fixed-step).
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Fig. A.5: Simulink HybPN model.

In order to load the parameters of the net, it is required to open the m-file HybNet.m, which is

called by the function-block HybNet in the subsystem Hybrid PN. The code of this file is similar to the

algorithm described in Section A.1 (for simulating a MHPN), but without the while loop. In HybNet.m,

the data required is the Incidence matrix C, the Precondition Matrix Pre, the Mean time delays delaym

(a column vector), the vector type, the sampling time dt and the total simulation time tsim. These

variables are the same required for the Interface (described in the previous section), excepting the vector

type, which is a column vector that specifies the type of each transition. There are 5 kind of transitions,

that were described in the previous section. The corresponding entries in the type vector are:

1. Discrete 1-server constant, ’d0’.

2. Discrete ISS expected delay, ’d1’.

3. Discrete ISS Exponential, ’d2’.

4. Continuous ISS, ’c1’.

5. Continuous ISS with noise, ’c2’.

For instance, for a MPN system with 3 transitions, the type vector should be type=[’d2’;’d2’;’d2’].

The initial condition is defined at the unit delay block of the main system (block 1
z at the upper part of

fig. A.5).

It is important to make sure that the sampling time be the same than that specified in the Configu-

ration Parameters (at the menu, Simulation/Configuration Parameters, Fixed-step size). Furthermore,

it is required to open the Properties window of the Demux Block of the lower subsystem (the bar acting

as a demultiplexor in the lower dashed square in fig. A.5), and to set the number of outputs as [np nt],

where np is the number of places and nt is the number of inputs.
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After modifying the required elements, the model is ready to be simulated.



AppendixB

Complementary results on

fluidization

B.1 Error introduced by ∆τ

In Proposition 1.6, a difference equation that approximates the behavior of the MPN model was in-

troduced. There, the number of firings during a time step ∆τ was approximated by a vector of r.v.’s

∆σ(Fk∆τ) having Poisson pdfs with parameters Fk∆τ . In this section, it is proved that the errors

introduced by such approximation can be arbitrarily bounded, by choosing a small enough sampling ∆τ .

Proposition B.1. Consider a bounded MPN. For a given transition ti, denote as #σi a r.v. that

represents the number of firings of ti during [τ0, τ0 + ∆τ). Define a r.v. ∆σi having a Poisson pdf

with parameter λiEnab(ti, τ0)∆τ . Then, the absolute error |Prob(#σi = a) − Prob(∆σi = a)|, for an

arbitrary value a ∈ N, is upper bounded by a monotonic function of ∆τ , i.e., the smaller ∆τ the lower

the upper bound for the error. Furthermore, at the limit ∆τ → 0 such error is null.

Proof. Let us denote with Enab(ti, τ) = Enab(ti, τ0) (resp. Enab(ti, τ) ̸= Enab(ti, τ0)), the event: ti

has a constant (resp. has not a constant) enabling degree during [τ0, τ0 + ∆τ). Then, by conditional

probabilities:

Prob(#σi = a) =

Prob(#σi = a|Enab(ti, τ) = Enab(ti, τ0)) · Prob(Enab(ti, τ) = Enab(ti, τ0))+

Prob(#σi = a|Enab(ti, τ) ̸= Enab(ti, τ0)) · Prob(Enab(ti, τ) ̸= Enab(ti, τ0))

Denoting as ∆σi a r.v. having a Poisson pdf with parameter λiEnab(ti, τ0)∆τ , then Prob(#σi =

a|Enab(ti, τ) = Enab(ti, τ0)) = Prob(∆σi = a), ∀a ∈ N, as it was explained in the proof of Proposition

1.6. The error in the probability computation due to assuming the number of active servers of ti as

constant during ∆τ is defined, for each probable value a, as ϵi(a) = Prob(#σi = a) − Prob(∆σi = a).

Then, by using previous equations, it can be obtained:

|ϵi(a)| = |Prob(#σi = a|Enab(ti, τ) ̸= Enab(ti, τ0))− Prob(∆σi = a)|
·Prob(Enab(ti, τ) ̸= Enab(ti, τ0))

≤ Prob(Enab(ti, τ) ̸= Enab(ti, τ0))

(B.1)



184 B.2. Computation of the ultimate bound of the approximation error in Join-Free nets

The enabling degree of ti remains constant during [τ0, τ0 + ∆τ) if none transition fires during such

time interval.

Let us analyze a particular transition tj . Suppose that tj is enabled at τ0 and denote as τ0 + θ(tj)

the time instant of the next firing of tj , starting form τ0. Then tj does not fire during [τ0, τ0 + ∆τ) if

θ(tj) ≥ ∆τ . Since θ(tj) is exponentially distributed with parameter λjEnab(tj , τ0), then Prob(θ(tj) ≥
∆τ) = 1−Prob(θ(tj) < ∆τ) = e−λjEnab(tj ,τ0)∆τ . Moreover, the assumption of boundedness implies that

∀tj ∈ T, ∃Enabj s.t. Enabj ≥ Enab(tj , τ). In this way, denoting as [λEnab]max the maximum value in

the set {λjEnabj |tj ∈ T}, then e−λjEnab(tj ,τ0)∆τ ≥ e−[λEnab]max∆τ . Therefore, the probability that tj

does not fire during [τ0, τ0 +∆τ) is given by Prob(θ(tj) ≥ ∆τ) ≥ e−[λEnab]max∆τ . This expression holds

for any transition tj .

Now, Prob(Enab(ti, τ) = Enab(ti, τ0)) is equal or larger than the probability that none transition

fires during [τ0, τ0 +∆τ), given by
∏

∀tj∈T Prob(θ(tj) ≥ ∆τ) ≥
∏

∀tj∈T e
−[λEnab]max∆τ = e−α∆τ , where

α = |T |[λEnab]max. Then, Prob(Enab(ti, τ) ̸= Enab(ti, τ0)) ≤ 1− e−α∆τ . Finally, according to (B.1):

|ϵi(a)| ≤ 1− e−α∆τ (B.2)

Previous equality means that the error of using ∆σi as an approximation of #σi is upper bounded

by a monotonic function of ∆τ . Then, the lower the value of ∆τ , the lower the error. Furthermore,

it is not difficult to see from (B.2) that lim∆τ→0 |ϵi(a)| = 0. Moreover, given a desired bound ϵB , a

sampling ∆τ ≤ ln
[
(1− ϵB)−α

]
guarantees |ϵi(a)| ≤ ϵB , ∀a ∈ N. This means that the error bound can

be arbitrarily reduced by suitably choosing ∆τ . In our experience, considering [λEnab]max the maximum

value in the set {λjEnabj |tj ∈ T}, a sampling obtained by ∆τ = 0.1/(|T |[λEnab]max) is small enough

to provide a good approximation (so, the probability that the enabling degree remains constant during

∆τ is larger than e−0.1 = 0.90).

B.2 Computation of the ultimate bound of the approximation

error in Join-Free nets

Let us recall a result related to stability with non-vanishing perturbations [Khalil, 2002] (page 347):

Lemma 9.2 Consider a nonlinear system under perturbations:

ẋ = f(τ,x) + g(τ,x) (B.3)

where ẋ = f(τ,x) denotes the nominal behavior and g(τ,x) is the system’s perturbation.

Let x = 0 be an exponentially stable equilibrium point of the nominal system. Let V (τ,x) be a Lyapunov

function of the nominal system that satisfies

c1∥x∥2 ≤ V (τ,x) ≤ c2∥x∥2
δV
δτ + δV

δx f(τ,x) ≤ −c3∥x∥2

∥ δV
δx ∥ ≤ c4∥x∥2
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in [0, inf) × D, where D = {x ∈ Rn|∥x∥ < r} (here || · || denotes the euclidian norm). Suppose the

perturbation term g(τ,x) satisfies ∥g(τ,x)∥ ≤ δ < (c3/c4)(c1/c2)
1/2θr, for all τ ≥ 0, x ∈ D, and some

positive constant θ < 1. Then, for all ∥x(τ0)∥ < (c1/c2)
1/2r, the solution x(τ) of the perturbed system

satisfies

∥x(τ)∥ ≤ se−γ(τ−τ0)∥x(τ0)∥, ∀τ0 ≤ τ ≤ τ0 + T

and ∥x(τ)∥ ≤ β, ∀τ ≥ τ0 + T , for some finite T , where

s =

√
c2
c1
, γ =

(1− θ)c3
2c2

, β =
c4
c3

√
c2
c1

δ

θ

Let us compute then the ultimate bounded for the approximation error in a Join-Free net.

The approximation error is given by (2.5), where the nominal system is (in discrete-time) εk+1 =

[I+CΛΠ∆τ ] εk and the perturbation is CΛ · E{bk}∆τ .

It is known that in PN’s, P-flows induce conservative marking laws, what leads to state invariants and

zero-valued poles. Nevertheless, since M0 = m0 then BT
y εk = 0 (because BT

y Mk = BT
y M0 = BT

y m0 =

BT
y m0), then the projection of εk in the modes associated to those zero-valued poles is null. This implies

that there exists a reduced-order model that describes the dynamic behavior of the approximation error,

in which those zero-valued poles are removed (see, for instance, the proof of Proposition 3.22). Such

model can be expressed as:

ε′k+1 = Z [I+CΛΠ∆τ ]Aε′k + ZCΛ · E{bk}∆τ (B.4)

where ε′k = Zεk with Z a matrix s.t.
[
ZT ,BT

y

]T
has full rank, while A is a matrix s.t.

[
ZT ,BT

y

]T
A =

[I,0]
T
. Furthermore, ε′k = 0 iff εk = 0. This model can be represented in continuous time as:

ε̇′ = ZCΛΠAε′ + ZCΛ · E{bc(τ)} (B.5)

where bc(τ) = bk during k∆τ + τ0 ≤ τ < (k + 1)∆τ + τ0.

In this way, if the steady state reached in the PN model is unique for any initial marking in Class(m0),

then ε′ = 0 in (B.5) is asymptotically stable. Now, let us apply Lemma 9.2 to this error model.

Assume that ε′ = 0 in (B.5) is asymptotically stable. Then, since this model is linear and time

invariant there exists a Lyapunov function V = ε′
T

Pε′, s.t. P [ZCΛΠA] + [ZCΛΠA]
T
P = −Q, where

P and Q are positive definite matrices. In such case, it can be proved that (see, for instance, example

9.1, page 342 in [Khalil, 2002])

λmin(P)∥ε′∥2 ≤ V (ε′) ≤ λmax(P)∥ε′∥2
δV
δt + δV

δε′ f(ε
′) ≤ −λmin(Q)∥ε′∥2

∥ δV
δε′ ∥ ≤ 2λmax(P)∥ε′∥2

for all ε′ ∈ Rn, where λmax(·) and λmin(·) denote the minimum and maximum eigenvalues of the

corresponding matrix. Furthermore, the perturbation fulfills ∥ZCΛ ·E{bc(τ)}∥ ≤ ∥ZCΛ∥∥E{bc(τ)}∥ ≤
∥ZCΛ∥

√
|T | (where |T | is the number of transitions), which is a constant value (given a vector 1 of length
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|T | whose elements are 1’s, then ||T || =
√
|T |, furthermore, since E{bc(τ)} ≤ 1 then ||E{bc(τ)}|| ≤√

|T |). Therefore, all the conditions of Lemma 9.2 are fulfilled, with constants

c1 = λmin(P), c2 = λmax(P), c3 = λmin(Q)

c4 = 2λmax(P), δ = ∥ZCΛ∥
√
|T |

Furthermore, defining r large enough, θ can be settled as any value in (0, 1). Then, according to this

lemma, the ultimate bound for the transformed error ε′(τ) can be computed as: β = 2λmax(P)
λmin(Q)

√
λmax(P)
λmin(P) ·

∥ZCΛ∥
√

|T |
θ , with θ ∈ (0, 1) (a value close to 1 leads a smaller bound). Finally, it can be shown that

Aε′k = εk, which implies ∥A∥∥ε′k∥ ≥ ∥Aε′k∥ = ∥εk∥. Combining this equation with the value for β

obtained before, it can be concluded that there exists some time instant T = τ0 + η∆τ s.t.

∥εk∥ ≤ ∥A∥2λmax(P)

λmin(Q)

√
λmax(P)

λmin(P)

∥ZCΛ∥
√
|T |

θ

for all k ≥ η. Note that the bound for ∥εk∥ depends on the timed net ⟨C,λ⟩, but not in the initial

marking M0 = µ0.

B.3 Lemmas for the approximation analysis

Lemma B.2. Consider a live and ergodic MPN system with an initial deterministic marking M0 =

q ·Mr
0. Consider the evolution of the system with a sampling ∆τ = ∆τ r/q during a fix number of time

steps n. Assume that, for the most probable evolutions of the system, all the transitions are enabled.

Then, the larger the parameter q, the closer is
∑n−1

k=0 ∆σ(Fk∆τ) to Poisson(n ·Fr
0∆

rτ), where Fr
0∆

rτ =

ΛΠ(Mr
0)M

r
0∆

rτ .

Proof. This lemma is a particular case of Lemma B.4, defined for hybrid Petri nets. In this way, that

lemma proves this one, just considering T = T d, i.e., ignoring the parts concerning variables mk, fk and

∆wk.

Lemma B.3. Consider a TnCPN system with an initial deterministic marking m0 = q ·mr. Assume

that there are not non-live equilibrium markings in Class(m0). Consider the evolution of the system in

discrete time with a sampling ∆τ = ∆τ r/q during a fix number of time steps n. Assume that, for the

most probable evolutions of the system, all the transitions are enabled. Then, the larger the parameter q,

the closer is
∑n−1

i=0 ∆wk+i to Normal(n · f0∆τ, n · f0∆τ).

Proof. This lemma is a particular case of Lemma B.4, defined for hybrid Petri nets. Then, for this

proof consider that of B.4 with T = T c, ignoring the parts concerning variables Mk, Fk and ∆σ(·)k.

Lemma B.4. Consider a live and ergodic MnHPN system with an initial deterministic marking Mh
0 =

q ·Mh,r
0 . Consider the evolution of the system with a sampling ∆τ = ∆τ r/q during a fix number of time

steps n. Assume that, for the most probable evolutions of the system, all the transitions are enabled.

Then, the larger the parameter q, the closer is
∑n−1

k=0 ∆σ(Fd
k∆τ) and

∑n−1
k=0 ∆wk to Poisson(nFd,r

0 ∆rτ)

and Normal(n f0∆τ), respectively, where Fd,r
0 ∆rτ = ΛdΠd(Mr

0)M
r
0∆

rτ .
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Proof. This proof is split in two different parts. In the first one, it will be demonstrated, by following

an inductive reasoning, that for any time step k ∈ {1, 2, .., n} it holds:

a) Fd
k∆τ and fk∆τ monotonically converge to constant values Fr

0∆
rτ and f0∆τ , respectively, when

q → ∞ (intuitively, Fd
k and fk increase when q → ∞, but ∆τ decreases in a similar proportion).

b) |Mh
k+1−Mh

k |/q is upper bounded by a monotonically decreasing function that converges to 0 when

q → ∞.

According to this, for a large enough q, it is reasonable to assume Fd
k∆τ ≃ Fd,r

0 ∆rτ and fk∆τ ≃ f0∆τ ,

∀k ∈ {1, 2, ..., n}.
In the second part, by using the previous result and the fact that Fd,r

0 ∆rτ and f0∆τ are constant, it will

be proved that
∑n−1

k=0 ∆σ(Fd
k∆τ) ∼ Poisson{n · Fd,r

0 ∆rτ} and
∑n−1

k=0 ∆wk ∼ Normal{n · f0∆τ}.
Before starting the proof, let us introduce the vector function ∆σmax(v): R|T |

≥0 → N|T |; which is

defined by elements as: ∆σmax
j (v) = min(a) s.t. e−vj

∑a
i=0 v

i
j/i! ≥ 0.99. In this way, ∆σmax(v) ≥

Poisson(v) with a probability larger than 0.99. It can be demonstrated (by checking that the partial

derivative of e−vj
∑a

i=0 v
i
j/i! is negative) that ∆σmax(v) is a monotonically increasing function. Sim-

ilarly, the following function is defined ∆wmax(v) = v + 3
√
∆τv in such a way that ∆wmax(v) ≥

Normal(v) (where the square root operator is interpreted as componentwise) with a probability larger

that 0.997.

Part 1. Let us start with the inductive part of the proof:

I) For the initial time step. Substituting ∆τ = ∆rτ/q andMh
0 = q·Mh,r

0 in Fd
0∆τ = Λd⌊Πd(Mh

0 )M
h
0⌋∆τ ,

it is obtained Fd
0(q)∆τ = ΛdΠd(Mh,r

0 )Mh,r
0 ∆rτ +ΛdΠd(Mh,r

0 )∆rτb0/q. Note that Fd(·) has been de-

noted as a function of q, in order to make explicit the influence of this variable. According to this,

Fd
0(q)∆τ monotonically converges to the constant value Fd,r

0 ∆rτ = ΛdΠd(Mh,r
0 )Mh,r

0 ∆rτ when q → ∞.

Thus, statement (a) is proved for k = 0. Now, by definition ∆σmax(Fd
0(q)∆τ) ≥ ∆σ(Fd

0∆τ) with prob-

ability “almost 1” .

Similarly, ∆wmax(f0) ≥ ∆w0 with probability almost 1. Then, defining δ1o = Mh
1 −Mh

0 , from (2.26) it

is obtained |δ10 | ≤ |C|[(∆σmax(∆Fd
0(q)))

T , (∆wmax(f0))
T ]T . Moreover, since Fd

0(q)∆τ monotonically

converges to the constant value Fd,r
0 ∆rτ then ∆σmax(Fd

0(q)∆τ) monotonically converges to a constant

value ∆σmax(Fd,r
0 ∆rτ). On the other hand, ∆wmax(f0) is already constant. Thus, the upper bound for

|Mh
1 −Mh

0 |/q monotonically converges to 0 when q → ∞, i.e., statement (b).

II) For the time step k, assume that the function Fd
k(q)∆τ is upper (resp. lower) bounded by a monoton-

ically decreasing (resp. increasing) function of q, denoted as ∆Fmax
k (q) (resp. ∆Fmin

k (q)) that converges

to Fd,r
0 ∆rτ .

Similarly, assume that fk(q)∆τ is upper (resp. lower) bounded by a monotonically decreasing (resp.

increasing) function of q, denoted as ∆fmax
k (q) (resp. ∆fmin

k (q)) that converges to f0∆τ , i.e., statement

(a).

Assume that |δk+1
k |/q = |Mh

k+1 −Mh
k |/q is upper bounded by

|C|[(∆σmax(∆Fmax
k (q)))T , (∆wmax(∆fmax

k ))T ]T /q that monotonically converges to 0, i.e., statement

(b).
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III) Proving properties for the time step k + 1. By definition of Fd(·) and using the property ∀Πd
j ,

Πd(Mh
k)M

h
k ≤ Πd

jM
h
k , it can be obtained: [Fd

k+1∆τ − Fd
k∆τ ] ≤ ΛdΠd(Mh

k)[M
h
k+1 −Mh

k ]∆τ+

ΛdΠd(Mh
k)∆τ1 (where 1 denotes a vector whose elements are 1’s). Similarly, ΛdΠd(Mh

k+1)[M
h
k+1 −

Mh
k ]∆τ −ΛdΠd(Mh

k+1)∆τ1 ≤ [Fd
k+1∆τ −Fd

k∆τ ]. By using previous expressions, it can be proved that

∆Fmax
k+1 (q) = ∆Fmax

k (q) + [ΛdΠd(Mh
k)δ

k+1
k ∆rτ +ΛdΠd(Mh

k)∆
rτ1]/q is an upper bound for

Fd
k+1(q)∆τ . By the induction hypothesis related to ∆Fmax

k (q) and δk+1
k , it can be proved that ∆Fmax

k+1 (q)

is a monotonically decreasing function of q that converges to ∆Fmax
k (q), which by hypothesis converges to

Fd,r
0 ∆rτ . In a similar way, it can be proved that ∆minFd

k+1(q) = ∆Fmin
k (q)− [ΛdΠd(Mh

k+1)δ
k+1
k ∆rτ +

ΛdΠd(Mh
k+1)∆

rτ1]/q is a lower bound for Fd
k+1(q)∆τ , and this is a monotonically increasing function

of q that converges to Fd,r
0 ∆rτ .

A similar reasoning holds for the continuous transitions, proving that ∆fmax
k+1 (q) = ∆fmax

k (q)+

[ΛcΠc(mk)δ
k+1
k ∆rτ ]/q is an upper bound for ∆fk+1, and that ∆fmax

k+1 (q) is a monotonically decreasing

function of q that converges to ∆τ f0. Thus, statement (a) is proved.

Next, since ∆σmax(·) is a monotonically increasing function, then ∆σmax(∆Fmax
k+1 (q)) is a monotonically

decreasing function of q that converges to ∆σmax(Fd,r
0 ∆rτ). Furthermore, by definition ∆σ(Fd

k+1(q)∆τ)

≤ ∆σmax(Fd
k+1(q)∆τ) with probability “almost 1” .

Similarly, for the continuous transitions, |∆wk| ≤ ∆wmax(∆fmax
k+1 (q)), where ∆wmax(∆fmax

k+1 (q)) is a

monotonically decreasing function of q that converges to ∆wmax(∆τ f0) = ∆wmax
0 .

Then, by using (2.26), the difference δk+2
k+1 = Mh

k+2 −Mh
k+1 fulfills

|δk+2
k+1 | ≤ |C|[(∆σmax(∆Fmax

k+1 (q)))T , (∆wmax(∆fmax
k+1 (q)))

T ]T

Moreover, vectors ∆σmax(∆Fmax
k+1 (q)) and ∆wmax(∆fmax

k+1 (q)) monotonically converges to the constant

values ∆σmax(Fd,r
0 ∆rτ) and ∆wmax

0 , respectively. Therefore, the upper bound for |Mh
k+2 −Mh

k+1|/q =
|δk+2

k+1 |/q monotonically converges to 0 when q → ∞, thus statement (b) is proved.

According to this inductive reasoning, the difference between Fd
k∆τ and Fd,r

0 ∆rτ and between fk∆τ

and f0∆τ , for each time step k ∈ {1, 2, ..., n}, is lower and upper bounded by functions that monotonically

converge to 0 when q → ∞. Roughly speaking, there always exists a large enough q s.t. it is reasonable

to assume Fd
k∆τ ≃ Fd,r

0 ∆rτ and fk∆τ ≃ f0∆τ , ∀k ∈ {1, 2, ..., n}.

Part 2. Consider a particular discrete transition tj ∈ T d. In terms of conditional probabilities, the

probability that ∆σj(F
d
k,j∆τ) = a, for a fix natural number a, can be expressed as:

Prob{∆σj(F d
k,j∆τ) = a} = Prob{∆σj(F d,r

0,j ∆
rτ) = a}+∑

b∈S

[
Prob{∆σj(b) = a} − Prob{∆σj(F d,r

0,j ∆
rτ) = a}

]
· Prob{F d

k,j∆τ = b}
(B.6)

where S denotes the set of possible values for F d
k,j∆τ different than F d,r

0,j ∆
rτ . According to the inductive

reasoning previously introduced, with probability “almost 1” , F d
k,j∆τ − F d,r

0,j ∆
rτ is upper and lower

bounded by monotonic functions that converge to 0 when q → ∞. This means that for the most probable

values b that F d
k,j∆τ can take, the difference b − F d,r

0,j ∆
rτ is lower and upper bounded by monotonic
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functions of q that converges to 0. Then, by using the fact that Prob{∆σj(b) = a} = bae−b/a! is a

continuous function of b, it follows that the difference Prob{∆σj(b) = a} − Prob{∆σj(F d,r
0,j ∆

rτ) = a}
can be lower and upper bounded by functions of q that converges to 0 when q → ∞. Therefore, according

to (B.6) and generalizing to all the discrete transitions, it can be concluded that ∆σ(Fd
k∆τ) converges

to ∆σ(Fd,r
0 ∆rτ) ∼ Poisson(Fd,r

0 ∆rτ) when q → ∞.

A similar reasoning holds for the continuous transitions. Proving that, for each continuous transition

tj ∈ T c, Prob{∆wk,j ≤ a} converges to Prob{∆w0,j ≤ a} when q → 0. Generalizing this to all the

continuous transitions, it can be concluded that the larger q, the closer is the distribution of ∆wk to

that of ∆w0 ∼ Normal(∆w0).

Finally, since ∆σ(Fd
k∆τ) ∼ ∆σ(Fd

k+1∆τ) ∼ Poisson(Fd,r
0 ∆rτ) for large values of q, and Fd,r

0 ∆rτ is

a constant value, then ∆σ(Fd
k∆τ) is stochastically independent of ∆σ(Fd

k+1∆τ). Therefore, since the

previous reasoning is valid for any time step k ∈ {0, 1, ..., n}, and the sum of independent Poisson

distributed r.v.’s is also a Poisson distributed r.v. whose parameter is the sum of the parameters of the

summands, then
∑n−1

k=0 ∆σ(Fd
k∆τ) ∼ Poisson{n · Fd,r

0 ∆rτ}. Similarly for the continuous transitions,

∆wk is stochastically independent of ∆wk+1. Since the sum of independent normally distributed r.v.’s

is also a normally distributed r.v. whose parameter (mean and variance) is the sum of the parameters

of the summands, then
∑n−1

k=0 ∆wk ∼ Normal{nf0∆τ, nf0∆τ}.
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AppendixC

Complementary results on

controllability and control

C.1 Algorithms for controllability analysis

Algorithm 4.1. Computation of a generator Gi.

For each tj ∈ Tc = {tc1 , ..., tc|Tc|
} do

Compute a solution dj for: [
CΛΠi

BT
y

]
dj =

[
[C]j

0

]

If there exists such a solution dj then add it as a column of Gi

end for

Compute a basis D for the right annuler of[
CΛΠi

BT
y

]
D = 0

If D ̸= 0 then add the columns of D to Gi (i.e., Gi has the form [dc1 , ...,dc|Tc| ,D]).

If Gi does not have full column rank then remove linearly dependent columns until obtaining a full

column rank matrix.

Proof. Consider two equilibrium markings (m1,u1) and (m2,u2) that belong to Ei. Then, by defini-

tion, CΛΠim1 − Cu1 = 0 and CΛΠim2 − Cu2 = 0. Combining these two equations with BT
y m1 =

BT
y m2 it is obtained: [

CΛΠi

BT
y

]
(m1 −m2) =

[
C

0

]
(u1 − u2) (C.1)

Without loss of generality assume that the first k columns of C are related to the controllable
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transitions. In this way, ∃α s.t. C(u1 − u2) = C[e1, ..., ek]α where ej is the j-th column of the unity

matrix of dimension |T |. Furthermore, assume that these k columns are linearly independent (otherwise

it is always possible to remove the linearly dependent columns, i.e., ∀α, ∃α′ s.t. C[e1, ..., ek]α =

C[e′1, ..., e
′
r]α

′, where C[e′1, ..., e
′
r] are the r linearly independent columns of C[e1, ..., ek]). Let us prove

by contradiction that, given C(u1 − u2) = C[e1, ..., ek]α then ∀j s.t. αj ̸= 0 ∃dj ̸= 0 that fulfills (4.1).

In this way, suppose that ∃j s.t. αj ̸= 0 and [[C]j T ,0T ]T ̸∈ span

{[
(CΛΠi)

T
,By

]T}
. Then, since the

columns of C[e1, ..., ek] are linearly independent, for any (m1 −m2) and {α1, .., αk} it fulfills

[
CΛΠi

BT
y

]
(m1 −m2)−

[
[C]1 ... [C]j−1 [C]j+1 ... [C]k

0 ... 0 0 ... 0

]


α1

...

αj−1

αj+1

...

αk


̸=

[
Cj

0

]
αj

which is equivalent to
[
(CΛΠi)

T ,By

]T
(m1 −m2) ̸=

[
CT ,0T

]T
(u1 − u2), but this is a contradiction.

Therefore, given C(u1 − u2) = C[e1, ..., ek]α then ∀j s.t. αj ̸= 0 ∃dj ̸= 0 that fulfills (4.1). In this way,[
C

0

]
(u1 − u2) =

[
C

0

] [
e1 ... ek

]
α =

[
CΛΠi

BT
y

] [
d1 ... dk

]
α (C.2)

Now, it is very classical the fact that ∀x s.t. Ax = b, it exists γ s.t. x = xp +KA · γ, where xp is

a particular solution and KA is a basis for the kernel of A. Using this idea, (m1 − m2) in (C.1) and[
d1 ... dk

]
α in (C.2) are particular solutions of the same algebraic problem, while D is a basis

for the kernel of
[
(CΛΠi)

T ,By

]T
. Then, ∃γ s.t. (m1 − m2) =

[
d1 ... dk

]
α + Dγ. Therefore,

(m1 − m2) is in the span of Gi =
[
d1 ... dk D

]
. Finally, Gi is minimal because of the fourth

step of the algorithm. Therefore, Gi thus computed is a generator.

Algorithm C.1. Computation of T i
cf providing that int{ℜi} ∩ E+

i ̸= ∅.

Compute a suitable equilibrium marking mq ∈ int{ℜi} ∩ E+
i and its equilibrium input uq, by solving

the following LPP:

max ε subject to

mq ≥ 0, uq ≥ 0, ε ≥ 0

BT
y (m

q −m0) = 0 {mq ∈ Class(m0)}
CΛΠim

q = Cuq {Equilibriummarking}
uqj = 0 ∀tj ∈ Tnc {Uncontrollable transitions}
ΛΠim

q − uq ≥ ε · 1 {Nonnegative flow}
[Πj −Πi]m

q ≥ 0 and {mq ∈ ℜi}
[1, ..., 1][Πj −Πi]m

q ≥ ε, ∀Πj ̸= Πi {Interior of ℜi}
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if ε ≤ 0 then int{ℜi} ∩ E+
i = ∅ and the algorithm ends

else

initialize T i
cf = ∅

for each tj ∈ Tc

if uqj > 0 then include tj in T i
cf

else

if there exists solution dj in (4.1) then include tj in T i
cf , end if

end if

end for

set T i
cp = T − T i

cf

end if

Proof. First, let us show that the first LPP computes an equilibrium marking in int{ℜ}∩E+
i . In this

way, mq ≥ 0 and BT
y (m

q −m0) = 0 are fulfilled iff mq ∈ Class(m0). Moreover, mq ∈ ℜi is equivalent

to ∀j (Πj −Πi)m
q ≥ 0. Furthermore, mq is an equilibrium marking iff CΛΠim

q = Cuq, where uq is

s.b., which is defined as ΛΠim
q ≥ uq ≥ 0 and ∀tj ∈ Tnc u

q
j = 0. Moreover, by definition, mq belongs to

Ei iff it is an equilibrium marking in ℜi. Therefore, if ∃ε ≥ 0 fulfilling all the constraints then mq ∈ Ei,

otherwise Ei = ∅. Furthermore, mq ∈ E+
i iff ΛΠim

q − uq ≥ ε · 1 and ε > 0. While conditions ∀j
[1, ..., 1](Πj − Πi)m

q ≥ ε with ε > 0 and (Πj − Πi)m
q ≥ 0 are equivalent to ∀j (Πj − Πi)m

q 
 0,

meaning that mq ∈ int{ℜi} (the equality holds only on the borders between regions). Therefore, if the

LPP computes a ε > 0 then mq ∈ int{ℜ} ∩E+
i . Otherwise, such equilibrium marking does not exist, so

int{ℜ} ∩ E+
i = ∅.

Next, assume that an equilibrium marking mq ∈ int{ℜi}∩E+
i has been computed. According to the

definition of T i
cf , tj ∈ T i

cf iff ∃mq′ ∈ Ei s.t. u
q′
j > 0. Thus, if uqj > 0 then tj ∈ T i

cf (second step of the

algorithm). Now, if ∃tj s.t. uqj = 0 and ∃dj solution of (4.1), then ∃α > 0 small enough s.t. the marking

mq′ = mq +αdj will belong to Ei (because mq ∈ int{ℜi}) and its equilibrium input uq′ = uq +αej will

fulfill uq′j > 0. In such case tj also belongs to T i
cf (third step of the algorithm).

Finally, let us show that if uqj = 0 and @dj solution of (4.1) then tj ̸∈ T i
cf . For this, consider any

mq′ ∈ Ei. Then, ∃γ s.t. (mq′ − mq) = Giγ. Assume that the first k transitions correspond to the

controllable ones. Let us define the matrix G′
i, of dimension |P |×k, s.t. the j-th column of this matrix is

dj (the solution of (4.1)) if it exists, otherwise it is 0. In this way, since all the columns of Gi are included

in [G′
i,D], then ∃γ′, η s.t. (mq′ −mq) = Giγ = [G′

i,D][(γ′)T , (η)T ]T . Furthermore, by definition[
CΛΠi

BT
y

]
·
[
G′

i D
]
=

[
C

0

]
·
[
e′1 ... e′k

]
where e′j is the j-th vector of the unity matrix of dimension |T | if ∃dj , otherwise e′j = 0. Thus, since

(mq′ −mq) = [G′
i,D][(γ′)T , (η)T ]T , by using (C.1) (with (mq′ −mq) instead of (m1 −m2)) it can be

obtained (uq′ − uq) = [e′1, .., e
′
k] γ

′. Therefore, if for some tj ∈ Tc it does not exist solution for dj , then

e′j = 0, meaning that (uq′j − uqj) = 0. If additionally uqj = 0 then uq′j = 0. Finally, since this occurs for

any mq′ ∈ Ei then tj ̸∈ T i
cf .
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Algorithm C.2. Computation of an equilibrium marking mq ∈ E∗
1 ∩ E∗

2 .

Solve the following LPP:

max ε subject to

mq ≥ 0, uq ≥ 0, ε ≥ 0

BT
y (m

q −m0) = 0 {mq ∈ Class{m0}}
CΛΠ1m

q = Cuq {Equilibriummarking}
ΛΠ1m

q − uq ≥ ε · 1 {Nonnegative flow}
uqj ≥ ε ∀tj ∈ T i

cf {Positive fully controllable inputs}
uqj = 0 ∀tj ∈ Tnc {Uncontrollable transitions}
Π1m

q = Π2m
q {Border marking}

Π1m
q ≤ Πjm

q ∀j {mq ∈ ℜ1}

if ε > 0 then mq ∈ E∗
1 ∩E∗

2

else E∗
1 ∩E∗

2 = ∅ (in the case ε = 0 it means that mq ∈ E1 ∩E2 but still E∗
1 ∩ E∗

2 = ∅).

Proof. First, mq ≥ 0 and BT
y (m

q − m0) = 0 are fulfilled iff mq ∈ Class(m0). Moreover, mq ∈ ℜ1

is equivalent to ∀j Π1m
q ≤ Πjm

q. Furthermore, mq is an equilibrium marking iff CΛΠ1m
q = Cuq,

where uq is s.b., which is defined as ΛΠ1m
q ≥ uq ≥ 0 and ∀tj ∈ Tnc, uj = 0. Moreover, by definition,

mq belongs to E1 iff it is an equilibrium marking in ℜ1. Therefore, if ∃ε ≥ 0 fulfilling all the constraints

then mq ∈ E1, otherwise E1 = ∅. Additionally, given mq ∈ E1, m
q ∈ E1 ∩ E2 iff Π1m

q = Π2m
q.

Furthermore, mq ∈ E∗
1 iff ΛΠ1m

q − uq ≥ ε · 1, uqj ≥ ε ∀tj ∈ T i
cf and ε > 0. This condition also

implies mq ∈ E∗
2 , providing Π1m

q = Π2m
q. Therefore, if the LPP computes ε > 0 then mq ∈ E∗

1 ∩E∗
2 .

Otherwise, such equilibrium marking does not exist, so E∗
1 ∩ E∗

2 = ∅.

C.2 On the product vTeAτb

In this appendix, a couple of propositions will be provided regarding the sign of the product vTeAτb.

For this, some basic concepts about the Jordan block form of a square matrix A, and some matrices and

vectors, will be firstly introduced.

Jordan block form: Given a real-valued square matrix A, there exists a real-valued transformation

matrix Q s.t. J = diag(J1,J2, ..,Jr) = Q−1AiQ is in the so called Jordan block form, where each block

is associated to either a real eigenvalue or to a pair of conjugated complex eigenvalues (see, for instance,

[Chen, 1984]), having the form:

if si ∈ R, Ji =


si 1 0 ... 0

0 si 1 ... 0
...

...
...

...

0 0 0 ... si

 , if si = α± iβ ∈ C, Ji =


D I 0 ... 0

0 D I ... 0
...

...
...

...

0 0 0 ... D


where D =

[
α −β
β α

] (C.3)



C. COMPLEMENTARY RESULTS ON CONTROLLABILITY AND CONTROL 195

In this work, it will be assumed that the blocks are ordered according to the real part of its eigenvalues,

i.e., Real(s1) ≥ Real(s2) ≥ ... ≥ Real(sr).

Property C.1. Given a Jordan block Jj , the exponential matrix eJjτ is given by

if sj ∈ R, eJjτ = esjτ


1 τ ... τmj−1

(mj−1)!

0 1 ... τmj−2

(mj−2)!

...
...

...

0 0 ... 1

 ,

if sj ∈ C, eJjτ = eατdiag(W(τ))


I Iτ ... I τmj−1

(mj−1)!

0 I ... I τmj−2

(mj−2)!

...
...

...

0 0 ... I

 ,

where sj = α± iβ and W(τ) =

[
cos(βτ) −sin(βτ)
sin(βτ) cos(βτ)

]

(C.4)

Additional definitions:

• Let b′
j be the restriction of b′ = Q−1b to the corresponding elements of Jj , so b′T = [b′T

1 , ...,b
′T
r ].

The components of b′
j are denoted as follows: for sj ∈ R, b′T

j = [bj1, ..., b
j
mj

] with bjl being scalars; for

sj ∈ C, b′T
j = [bj

1, ..,b
j
mj

] with bj
l being two-element row vectors. Then, for each block, consider the

matrix bj and vector αj(τ) defined as:

∀sj ∈ R : bj =


bjmj

0 ... 0

bjmj−1 bjmj
... 0

...
...

...

bj1 bj2 ... bjmj

 ,

αj(τ) = esjτ [ τmj−1 τmj−2 ... 1 ],

∀sj ∈ C : bj =


|bj

mj
| 0 ... 0

|bj
mj−1| |bj

mj
| ... 0

...
...

...

|bj
1| |bj

2| ... |bj
mj

|

 diag
([

1 1

1 1

])
,

αj(τ) = eReal(sj)τ [ τmj−1 τmj−2 ... 1 ]

• Define a matrix S as follows:

If all the entries in α(τ) = [α1(τ), ...,αr(τ)], related to real eigenvalues, are different then S = I.

Otherwise, consider α̂(τ), defined as the vector resulting from eliminating the repetitive entries in α(τ)

related to real eigenvalues. Matrix S is then defined by merging, in the unity matrix I, the rows that

correspond to repetitive entries in α(τ) associated to real eigenvalues (for instance, if α1(τ) = α2(τ) are
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associated to a real eigenvalue, then the row vector [1, 1, 0, .., 0] appears in S).

• Vector a = first(S · diag([b1,b2, ..,br]) ·ST ) is defined as a row vector where each kth component

[a]k is equal to the first non-null entry of the kth column of the argument matrix S·diag([b1,b2, ..,br])·ST .

• Vector â is a row vector of length 2n defined by pairs of components as follows:

∀l ∈ {1, ..., n}, [[â]2l−1, [â]2l] =

{
[[a]l,−[a]l] if [Q−1]l is associated to a real eigenvalue

[[a]l, [a]l] if [Q−1]l is associated to a complex eigenvalue

• H(Q,b) is a matrix built with row vectors hk, defined for each positive entry of â (i.e, for each

[â]k > 0) as follows: ∀l ∈ {1, .., 2n},

[
hk
]
l
=


1 if l = k

−∞ if [â]l < 0 and either (k is odd and l < k) or (k is even and l < k − 1)

0 otherwise

Example 4.5 in Chapter 4 illustrates the definitions of the matrices and vectors previously introduced.

Proposition C.2. Let v and b be arbitrary column vectors of length n. Then, limτ→∞vTeAτb ≤ 0 iff

∃v′′ s.t.
SQT · v = diag([1,−1]) · v′′

v′′ ≥ 0

H(Q,b)v′′ ≤ 0

(C.5)

Proof. The proof is split eAτ it will be proven that limτ→∞vTeAτb ≤ 0 iff the first non-null product

[a]l[Q
Tv]l is negative and [QT ]l is associated to a real-eigenvalue. In the second part, this condition will

be expressed as the linear inequality H(Q,b)v′′ ≤ 0 s.t. v′′ ≥ 0 and SQT · v = diag([1,−1]) · v′′.

Part 1. By definition vTeAτb = v′TeJτb′, where v′T = vTQ. Furthermore, since the Jordan form

is diagonal by blocks then v′TeJτb′ =
∑r

j=1 v
′T
j eJjτb′

j , where v′
j denotes the restriction of v′ to the

elements corresponding to Jj . Let us consider now a block associated to a real eigenvalue sj . By using

(C.4) and denoting v′T
j = [v′j1 , .., v

′j
mj

] and b′T
j = [bj1, ..., b

j
mj

], the product v′T
j e

Jjτb′
j can be expressed as

v′T
j eJjτb′

j = esjτ
[

τmj−1

(mj−1)! ,
τmj−2

(mj−2)! , ..., 1
]

·


bjmj

0 ... 0

bjmj−1 bjmj
... 0

...
...

...

bj1 bj2 ... bjmj

 ·


v′j1
v′j2
...

v′jmj


= αj(τ) · bj · v′

j

(C.6)

Note that the terms in (C.6) are ordered in such a way that the first of them are dominant (of larger

magnitude) when τ → ∞. For instance, if bjmj
v′j1 < 0 (or bjmj

v′j1 > 0) then, independently of the other

values of v′
j and b′

j , limτ→∞v′T
j e

Jjτb′
j < 0 (or > 0, respectively). In fact, it is not difficult to see

from (C.6) that the sign of limτ→∞v′T
j e

Jjτb′T
j is equal to the sign of [bj ]m,k[v

′
j ]k, where [v

′
j ]k is the first

non-null element of v′
j and [bj ]m,k is the first non-null element of the kth column of bj . This information

is resumed by the vector aj = first(bj), by keeping the first non-null entries of the columns of bj .
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Let us consider now a block Jj associated to a complex eigenvalue. By using (C.4), the product

v′T
j e

Jjτb′
j can be expressed as

v′T
j eJjτb′

j = eαjτ
[

τmj−1

(mj−1)! , ..., 1
]

·


bj
mj

0 ... 0

bj
mj−1 bj

mj
... 0

...
...

...

bj
1 bj

2 ... bj
mj

 · diag(W(τ)T ) ·


v′j1
...

v′jmj−1

v′jmj


= αj(τ) · bw

j (τ) · v′
j

(C.7)

where bj
l are two-element row vectors s.t. b′T

j = [bj
1, ..,b

j
mj

]. Note that the terms in (C.7) are oscillatory

(W(τ) is defined in (C.4), being clearly oscillatory), meaning that, if the product vT
j e

Jjτ1b′
j < 0 (or > 0)

at some time τ1, then there exists τ2 > τ1 s.t. vT
j e

Jjτ2bT
j > 0 (< 0, respectively). In this sense, for blocks

associated to complex eigenvalues, the relevant information for deciding the contribution of v′T
j eJjτb′

j ,

to the sign of limτ→∞v′TeJτb′, is which of the entries of bw
j (τ)v

′
j are non-null (at some time). Since

bw
j (τ) is time-dependent, let us consider the following upper bound:

v′T
j eJjτb′

j ≤ eαjτ
[

τmj−1

(mj−1)! , ..., 1
]

·


|bj

mj
| 0 ... 0

|bj
mj−1| |bj

mj
| ... 0

...
...

...

|bj
1| |bj

2| ... |bj
mj

|

 · diag

([
1 1

1 1

])
· |v′

j |

= αj(τ) · bj · |v′
j |

(C.8)

This expression provides a properly thin upper-bound. In fact, ∀τ ≥ 0, v′T
j eJjτb′

j = 0 iff [1, .., 1]·bj ·|v′
j | =

0. Then, the vectors aj = first(bj) and |v′
j | provide the information of what entries of bw

j (τ)v
′
j are null

for all time, i.e., ∀τ ≥ 0, v′T
j eJjτb′

j = 0 iff aj · |v′
j | = 0.

Now, let us consider all the Jordan blocks. Combining them we obtain:

v′TeJτb′ =
r∑

j=1

v′T
j eJjτb′

j = [α1(τ),α2(τ), ...,αr(τ)] ·


b∗
1 0 ... 0

0 b∗
2 ... 0

...
...

...

0 0 ... b∗
r

 ·


v′
1

v′
2

...

v′
r

 (C.9)

where b∗
j = bj if sj ∈ R while b∗

j = bw
j (τ) if sj ∈ C.

The vector a⃗ = [a1, ..,ar] keeps the first non-null entries of the columns of diag([b1, ..,br]), i.e., the

key information of this matrix for deciding the sign of v′T
j eJjτb′ in the limit τ → ∞. On the other hand,

since the Jordan blocks are ordered according to the real part of their corresponding eigenvalues (from

the largest to the lowest), then the entries of α(τ) = [α1(τ),α2(τ), ...,αr(τ)] are also ordered from the

largest to the lowest when τ → ∞. Remember that in complex-eigenvalue blocks the non-null entries of

the product [b∗
j ]

l[vj ]l oscillate, being negative and positive at different times; while for real-eigenvalue

blocks the sign of the entries of [b∗
j ]

l[vj ]l remain constant, so, these are required in order to make the
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sign of v′T
j eJjτb′

j to be constant at the limit τ → ∞.

Let us suppose that the entries of α(τ), related to real eigenvalues, are different. In this way, denoting

as l the first index s.t. a⃗lv
′
l ̸= 0, limτ→∞v′T

j eJjτb′
j ≤ 0 iff a⃗lv

′
l < 0 and v′l is associated to a real-eigenvalue

block (otherwise stated, [QT ]l is associated to a real-eigenvalue since v′l = [QT ]lv).

Nevertheless, it may occur the case that the entry of α(τ) that corresponds to a⃗l, let us say αk(τ), is

not unique, e.g., if αk(τ) = αk+1(τ) (this may occur, for instance, if there are repetitive eigenvalues but

associated to the same number of different eigenvectors). In such case, there could be more entries in a⃗

with the same importance than a⃗l (in our exemple, the sign of limτ→∞v′T
j eJjτb′

j would be negative if

a⃗lv
′
l+a⃗l+1v

′
l+1 < 0, because a⃗l and a⃗l+1 are associated with αk(τ) and αk+1(τ), which are equal). In order

to overcome this situation, the vector α̂(τ) is defined by eliminating from α(τ) the repetitive undesired

entries. Similarly, the matrix S is defined in such a way that the entries in diag([b1, ..,br]), corresponding

to the repetitive elements in α(τ), appear summed in the product S · diag([b1, ..,br]) · ST . Thus, a as

defined above overcomes this situation. Accordingly, the vector v̂ = Sv′ resumes the information of v′

that corresponds to those entries in a.

Part 2. Previous condition can be rephrased as follows:

Condition 1. - ∀m s.t. either (amv̂m > 0 and v̂m is associated to a real-eigenvalue) or (amv̂m ̸= 0 and

v̂m is associated to a complex-eigenvalue), ∃k < m s.t. akv̂k < 0 and v̂k is associated to a real-eigenvalue.

Now, let us consider the auxiliary variable v′′ ≥ 0 s.t. v̂ = diag([1,−1])v′′ (note that ∀v̂ ∃v′′ that

fulfills this equality, but this is not unique). Let us also consider the vector a∗ = [a∗1, ...,a
∗
r ], where

a∗j = −aj if the jth block is associated to a real eigenvalue, and a∗j = aj if the jth block is associated

to a complex eigenvalue. Note that the entries of v̂ are associated to pairs in v′′, i.e., v̂j = v′′2j−1 − v′′2j .

In this way, the vector â is equivalent to â = [a1, a
∗
1, a2, a

∗
2, .., an, a

∗
n], where each pair â2j−1 = aj and

â2j = a∗j is associated to each entry aj . Accordingly, Condition 1 is equivalent to

Condition 2. - ∃v′′ ≥ 0 with v̂ = diag([1,−1])v′′ fulfilling: ∀m s.t. either (âmv
′′
m > 0 and v′′m is

associated to a real-eigenvalue) or (âmv
′′
m ̸= 0 and v′′m is associated to a complex-eigenvalue), ∃k s.t.

âkv
′′
k < 0 and v′′k is associated to a real-eigenvalue and either (m is odd and k < m) or (m is even and

k < m− 1).

Note that k < m is not enough in case m is even because v′′m−1 and v′′m are associated to the same

v̂(m/2), a(m/2) and αm/2(τ) (thus the sign of âm−1v
′′
m−1 is not predominant over the sign of âmv

′′
m when

τ → ∞). Moreover, â and v′′ have very useful properties: v′′ ≥ 0 and âmv
′′
m ≥ 0 for all v′′m associated

to a complex-eigenvalue. Therefore, Condition 2 is simplified as:

Condition 3. - ∃v′′ ≥ 0 with v̂ = diag([1,−1])v′′ fulfilling: ∀m s.t. âm > 0 and v′′m > 0, ∃k s.t. âk < 0

and v′′k > 0 and either (m is odd and k < m) or (m is even and k < m− 1).

Finally, consider the matrix H(Q,b), built with all the row vectors hm as defined above. Given a

particular entry âm > 0, there exists an associated row hm in H. In this, the entry âm > 0 is represented

in hm as 1, being its unique positive entry. The negative entries âk < 0 represented in [hm]k, as −∞, are

those associated with a α(k/2)(τ) larger than α(m/2)(τ) when τ → ∞ (or α(k−1)/2(τ) if k is odd and/or

α(m−1)/2(τ) if m is odd, but still α(k−1)/2(τ) < α(m−1)/2(τ) when τ → ∞). Then, assuming v′′m > 0,

the inequality hmv′′ ≤ 0 holds iff ∃k s.t. âk < 0 and v′′k > 0 and either (m is odd and k < m) or (m is

even and k < m − 1). Since this reasoning holds for each âm > 0, defined for each positive entry of â,

Condition 3 is satisfied (equivalently Condition 1 and thus limτ→∞v′TeJτb′ ≤ 0) iff H(Q,b)v′′ ≤ 0.
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Proposition C.3. Given a matrix B of dimension n× q, there exists a row vector w s.t. wTeAτB ≤ 0,

∀τ , and wTG ̸= 0 iff ∃v′′ ̸= 0 s.t.

vTG ̸= 0

v′′ ≥ 0

vTB ≤ 0

SQT · v = diag([1,−1]) · v′′

∀j ∈ {1, .., q}, H(Q, [B]j)v′′ ≤ 0

(C.10)

Proof. Firstly, according to Proposition C.2, conditions v′′ ≥ 0, SQT · v = diag([1,−1]) · v′′ and

H(Q, [B]j)v′′ ≤ 0 are fulfilled iff vTeAτ [B]j ≤ 0 in the limit τ → ∞. Since this condition is required

∀j ∈ {1, .., t}, then it is equivalent to vTeAτB ≤ 0 in the limit τ → ∞. Moreover, vTB ≤ 0 holds iff

vTeAτB ≤ 0 for τ = 0. Let us demonstrate in the sequel that ∃v s.t. vTeAτB ≤ 0 for τ = 0 and in the

limit τ → ∞ iff ∃w s.t. wTeAτB ≤ 0 ∀τ .

(Necessity) If @v that fulfills vTeAτB ≤ 0 for τ = 0 and in the limit τ → ∞ then clearly @w s.t.

wTeAτB ≤ 0 ∀τ ≥ 0.

(Sufficiency) For the other implication, let us firstly consider a column b of matrix B. Assume that

∃v s.t. vTeAτb ≤ 0 for τ = 0 and in the limit τ → ∞. According to (C.9), (C.6) and (C.7), the product

vTeAτb can be expressed as

vTeAτb =
∑r

j=1 v
′T
j eJjτb′

j =
∑

∀j|sj∈R v′T
j eJjτb′

j +
∑

∀j|sj∈C v′T
j eJjτb′

j

≤
∑

∀j|sj∈R αj(τ)bjv
′
j +

∑
∀j|sj∈C αj(τ)bjv

′
j

(C.11)

where α(τ) = [α1(τ), ..,αr(τ)] is a vector whose entries are time-functions of the kind αl(τ) = τmlesjτ

(thus they are positive and monotonic). By definition, the entries of α(τ) are ordered s.t. the first

of them become larger than the others when τ → ∞ (let us assume, without loss of generality, that

S = I), then, ∀j > s ∃αmax > 0 s.t.
αj(τ)
αs(τ)

≤ αmax
j ∀τ . On the other hand, for Proposition C.2 it has

been demonstrated that, if vTeAτb ≤ 0 in the limit τ → ∞ then the first block j, s.t. bjv
′
j ̸= 0, is

related to a real eigenvalue and the first entry of bjv
′
j is negative (let us denote the corresponding global

index of such entry of v′ as f , and let d be the index of the corresponding entry in α(τ)). In this way,

α(τ) ·bf v
′
f = αd(τ)[b]d,fv

′
f +
∑

∀i∈{d+1,..,n} αi(τ)[b]i,fv
′
f . Defining a slightly different v′′ s.t. bj ·v′′

j ≤ 0

and v′′f = v′f (which can always be defined according to (C.6)), then α(τ) · bf v
′′
f ≤ αd(τ)[b]d,fv

′′
f .

Then, defining w′ = v′ + βv′′ and using (C.11) it can be obtained

w′TeJτb′ = v′TeJτb′ + βv′′TeJτb′ ≤ αd(τ)[b]d,fv
′
f

+
∑

∀j∈{f,..,n}
∑

∀i∈{d+1,..,n} αi(τ)[b]i,jv
′
j + βαd(τ)[b]d,fv

′′
f

≤ αs(τ)
(
−(β + 1)|[b]d,fv′f |+

∑
∀j∈{f,..,n}

∑
∀i∈{d+1,..,n} α

max
s |[b]i,jv′j |

)
Note that, by chosing a large enough β∗ > 0, the previous inequality can be made negative ∀τ > 0. In

that case, the vector w = (QT )−1w′ fulfills wTeAτb = w′TeJτb′ ≤ 0 ∀τ > 0.

This reasoning can be generalized to several vectors [b1, ..,bq] = B. In this case, for each vector bi

it is possible to have a different dominant component v′fi and αdi(τ) associated to a different Jordan
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block ji. In any case, for each bi it is possible to define a vector v′′i as defined before (whose non-

null components are those related to the block ji), and add them to the premilinarily solution v′,

so w′ = v′ +
∑

∀i∈1,..,t β
∗
i v

′′i. In order to show that there always exist proper values for βi, let us

assume, without loss of generality, that j1 > j2 > ... > jt. In this way, a component β∗
i+1v

′′i+1 is s.t.

α(τ) · bi · v′′i+1 = 0 (equivalently, (v′′i+1)TeJτbi′ = 0), because the rows of bi related to blocks lower

than ji are null (remember that ji is the dominant block, i.e., the first for which bi
ji · v′

ji
is not null)

while the vector v′′i+1 is defined in such a way that its non-null components are related to some of

those indexes (ji+1 < ji). Therefore, by following a procedure of t steps, each β∗
i can be computed s.t.

w′ = v′ +
∑

∀p∈1,..,i β
∗
pv

′′p fulfills w′eJτb′
i ≤ 0 ∀τ > 0, starting from i = 1 until i = t.

Finally, vTG ̸= 0 is equivalent to v′TQ−1G ̸= 0. In such case, by thinking in a t-steps procedure

as above, ∀i it is always possible to find βi ≥ β∗
i s.t. w′TQ−1G = v′TQ−1G + (

∑
p∈{1,..,i} βp(v

′′p)T ) ·
Q−1G ̸= 0. Therefore, defining w = (QT )−1w′ it follows wTG ̸= 0 and wTeAτB ≤ 0 ∀τ .

C.3 Additional algorithms for coordinated control

The computation of mB
f , achieved during the control synthesis stage in Procedure 5.2 (Section 5.3), can

be done by setting any mB
f fulfilling two linear constraints (so it can be computed in polynomial time):

i) mB
f > 1ϵ, ii) BT

y [B]mB
f = BT

y [B]mB
0 +

∑
BT

y [P
i](mi

0 −mi
f ). This equality constraint is equivalent to

BT
y mf = BT

y m0, where mf is the global final marking. In this way, mf ∈ Classϵ(m0). Thus, since the

net is consistent, mf is reachable.

On the other hand, the computation of ηixj
, ηiw, η

i
d, η

i
T and ψ in Procedure 5.2 is equivalent to solve:

maximum α s.t. aα ≤ b, with a,b ≥ 0. For computing this, define the set of indices S = {i|[a]i > 0}.
Next, if there exists a solution, this is given by α = min{[b]i/[a]i|i ∈ S}.

The computation of di and γ in Procedure 5.2 is equivalent to the problem of solving x > 0 s.t.

Ax = b, assuming that there exists a solution and ∃a > 0 s.t. Aa = 0. For the computation of di

and γ, the matrices that are represented by A are fixed. On the contrary, the vectors represented by b

change during the evolution of the system.

Algorithm C.3. Computation of x > 0 s.t. Ax = b.

Computation off-line:

Compute permutation matrices P1 and P2 so

P1AP2 =

[
A11 A12

A21 A22

]
,

A11 is invertible and has the same rank, ρ, that A.

Operation on-line:

I . Define b′ = P−1
1 b and b′

1 as the vector built with the first ρ elements of b′.
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II . Compute xp = P2 · [(A−1
11 b

′
1)

T ,0T ]T .

III. Take any scalar α > |min(x′./a)| (where the division of vectors is element-wise), then x =

xp + αa > 0 and it is a solution for Ax = b.

Proof. Since ∃xp s.t. Axp = b, then ∃x′ = P−1
2 xp s.t. P1AP2x

′ = b′, where b′ = P1b. On the other

hand, the rows of [A21,A22] are linear combinations of those of [A11,A12]. Combining these two facts,

x′ that fulfills [A11,A12]x
′ = b′

1 is also a solution for P1AP2x
′ = b′. Then, x′ = [(A−1

11 b
′
1)

T ,0T ]T is a

particular solution of P1AP2x
′ = b′, and so, xp = P2x

′ is a particular solution for Axp = b. Finally,

given α s.t. αa > |x′| and Aa = 0, then x = xp + αa is a positive solution for Axp = b.

Note that b′ and xp are just evaluations, while for α it is only required to find the minimum element

of a vector, so the complexity is linear in the number of elements of x.


