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RESUMEN 

El aroma del vino es una de las características que más influye en la aceptabilidad o 

preferencia de los consumidores. Hay muchos compuestos volátiles en el vino que 

generan el aroma característico de cada variedad. Por lo tanto estudiar su origen y 

formación, puede  ayudar a mejorar las cualidades organolépticas de los vinos y con 

ello, la calidad de los mismos. 

Algunos aromas se generan durante la fermentación alcohólica de los vinos a partir de 

precursores inodoros. Este trabajo se centra en los precursores cisteínicos y de glutatión, 

que van a dar lugar a un tipo de aromas, denominados mercaptanos polifuncionales. 

Este grupo de compuestos se caracterizan por tener la presencia de un grupo tiol (-SH) 

en su estructura molecular y un perfil aromático con notas a frutas tropicales, boj o piel 

de pomelo. Estos compuestos son muy importantes debido a que se encuentran por 

encima de su umbral de olfacción, lo cual hace que sean percibidos con claridad.  

El objetivo de este trabajo es determinar el efecto de compuestos con grupo azufre 

(glutatión y metionina) sobre la liberación de los mercaptanos polifuncionales, así como 

sobre el consumo de sus precursores. Para ello, se preparan 5 fermentaciones de mosto 

sintético que contiene cantidades conocidas de precursores de mercaptanos 

polifuncionales, así como los elementos necesarios para el metabolismo de la levadura. 

Cada fermentación se prepara por triplicado. En unas muestras se  adiciona metionina a 

dos concentraciones distintas, en otras se adiciona glutatión también a dos 

concentraciones distintas, y en la última muestra no se añade nada. Al final de la 

fermentación alcohólica se realizan los análisis clásicos de los vinos, se analizan los 

mercaptanos polifuncionales, así como sus precursores, y se lleva a cabo un análisis 

sensorial. 

Los distintos análisis realizados en cada muestra han dado lugar a resultados muy 

variables con diferencias significativas, que de alguna manera ayudan a dar un paso más 

en este tema tan complejo. 
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ABSTRACT 

The aroma of wine is one of the features that influences the most with the highest 

influence on the acceptability or preference of the consumers. There are many volatile 

compounds in the wine that generate the typical aroma of each variety. Therefore to 

study the study of their origin and formation can help us to improve the organoleptic 

qualities of the wines and also the quality of themselves. 

Some aromas are generated during alcoholic fermentation of wines from odorless 

precursors. This work is focused on the cysteinylated and glutathionylated precursors, 

which will result in a specific type of aromas, called polyfunctional mercaptans. This 

group of compounds is characterized by the presence of a thiol (-SH) group in its 

molecular structure and an aromatic profile with notes of tropical fruits, boxwood or 

grapefruit skin. These compounds are very important because they are found above their 

olfactory perception thresholds, which makes them been perceived clearly. 

The aim of this work is to determine the effect of compounds with sulfur group 

(glutathione and methionine) on the release of polyfunctional mercaptans as well as on 

the consumption of their precursors. In order to do that, 5 fermentations of synthetic 

must that contain known amounts of polyfunctional mercaptan precursors as well as the 

necessary elements for the yeast metabolism are prepared. Each fermentation is 

prepared in triplicate. In some samples methionine is added at two different 

concentrations, in others glutathione is also added at two different concentrations, and 

in the last sample nothing is added. At the end of the alcoholic fermentation the 

traditional analyzes of the wines are done, the polyfunctional mercaptans, as well as 

their precursors are analyzed, and a sensorial analysis is also carried out. 

The different analysis performed in each sample has result to variable results with 

significant differences, which in some way can help to take a step further in this 

complex subject. 
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JUSTIFICACIÓN Y OBJETIVOS  

El motivo por el que he elegido este trabajo parte de mi interés por conocer un poco más 

el mundo de la enología. El vino es un producto muy interesante desde el punto de vista 

gustativo, y en un país como España donde hay una gran producción, apenas es 

consumido por sus habitantes. Por ello estudiar este tema relacionado con uno de los 

principales factores más apreciados del vino, me servirá para valorarlo aún  más. Los 

objetivos que se han fijado son: 

- Obtener vino a partir de la fermentación de mosto de uva sintético adicionado con 

precursores cisteínicos y glutatiónicos. 

- Comprobar el efecto de la adición de metionina y glutatión en el aroma del vino tanto 

a nivel químico como sensorial. 

- Caracterizar químicamente los vinos obtenidos. 

INTRODUCCIÓN 

La uva es el fruto obtenido de la vid, Vitis vinífera, utilizada para la elaboración del vino 

a través de la fermentación. Las partes de las que se compone son el hollejo o piel, la 

pulpa, las semillas y el raspón. En la pulpa se encuentran la mayoría de los nutrientes de 

la uva. Los más importantes son los azúcares como glucosa y fructosa, que aumentan 

durante la maduración, así como, los ácidos orgánicos, destacando el ácido málico, cuya  

concentración va disminuyendo y el ácido tartárico, cuya concentración permanece más 

o menos constante (Conde et al., 2007). En el hollejo destacan los compuestos fenólicos 

solubles (flavonoides y no flavonoides) que van a contribuir al color. Los taninos 

(flavonoides) proporcionan la astringencia o sabor amargo a vinos jóvenes, pero aportan 

cuerpo y estructura a vinos envejecidos (crianza). Los antocianos son los responsables 

principales del color rojo. Las características finales del vino van a depender de muchos 

factores, sobre todo, del tipo y estado de la uva, de los tratamientos culturales realizados 

en los viñedos y del momento de la vendimia. Cuando aproximadamente la mitad de los 

granos han cambiado de color (envero) se realizan varios muestreos para seguir la 

maduración del grano, y decidir el momento de la vendimia. Se mide el azúcar, la 

acidez, los polifenoles, el estado sanitario, etc. 
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La fermentación es el proceso mediante el cual el azúcar del mosto es transformado por 

las levaduras en etanol, de forma que el grado alcohólico final del vino vendrá 

determinado por el contenido en azúcares de la uva. Asimismo, este proceso es clave en 

la generación de las diferentes propiedades organolépticas del vino final. La cantidad de 

azúcar que tenga el vino obtenido nos dirá si es un vino seco (<4 g/L azúcar residual) o  

dulce (12-45 g/L azúcar). Los ácidos málico y tartárico, determinan la acidez del vino 

(Ruffner, 1982). Un pH bajo y una acidez moderada son características muy importantes 

en los vinos de calidad (Conde et al., 2007). Por otro lado, una de las características más 

importantes de los vinos, dado que es uno de los principales criterios de calidad de los 

mismos es el aroma. Por lo tanto, estudiar los factores que influyen en la composición 

aromática podría ayudar a mejorarla.  

En el vino han sido identificados aproximadamente 800 compuestos volátiles, la 

mayoría de los cuales contribuyen al aroma (Bayonove C., Baumes R., Cruzet J., & Z., 

2000), y cuyas concentraciones van desde varios mg/L hasta unos pocos ng/ L e incluso 

menos.  

Se distinguen tres tipos de aromas, según las fuentes de los diferentes compuestos que 

contribuyen (Schreier & Jennings, 1979): i) el aroma primario o varietal que lo 

componen los aromas propios de la uva, ii) aroma secundario o fermentativo que lo 

componen los aromas generados por las levaduras y bacterias durante las 

fermentaciones alcohólica y maloláctica, y iii) aroma terciario o post-fermentativo que 

es el aroma adquirido por el vino durante el envejecimiento tanto en barrica como en 

botella. 

Los metabolitos volátiles provienen del azúcar, de aminoácidos, compuestos azufrados, 

etc. Sin embargo, los compuestos derivados de las uvas son los que juegan un papel más 

decisivo en las notas aromáticas características de la variedad. En algunos casos, varios 

compuestos contribuyen a la percepción de un aroma en particular, como es el caso de 

los aromas afrutados (San-Juan, Ferreira, Cacho, & Escudero, 2011). En otros, un único 

compuesto es responsable del aroma propio de la variedad, como el linalol en los vinos 

Moscatel (Ribereau-Gayon, Boidron, & Terrier, 1975) o el 4-etilfenol en el carácter 

Brett del vino (Suárez, Suárez-Lepe, Morata, & Calderón, 2007). 

En la uva los compuestos aromáticos pueden estar en forma libre o unidos a 

precursores. Los precursores son unos compuestos de la uva no volátiles e inodoros que 
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durante la vinificación van a dar lugar a sustancias aromáticas (Ugliano, 2009). 

Mientras que los compuestos libres son odoríferos inicialmente, los precursores dan 

lugar a compuestos aromáticos tras la acción del medio ácido, así como, enzimas y/o 

levaduras a través de reacciones bioquímicas complejas. 

Algunos de estos precursores son los denominados precursores glicosídicos, un grupo 

diverso de compuestos inodoros inicialmente identificados en las uvas (Cordonni.R & 

Bayonove, 1974). Se caracterizan por contener azúcar, normalmente  glucosa, unida a 

un compuesto volátil por enlace β-glicosídico (Martínez-Gil et al., 2013). Los 

compuestos volátiles son denominados agliconas, existiendo más de 100 agliconas que 

se agrupan dentro de las categorías de los shikimatos, terpenoides y norisoprenoides 

(Loscos, Hernandez-Orte, Cacho, & Ferreira, 2007). La liberación de estos compuestos 

volátiles es debida a la hidrólisis, tanto ácida como enzimática, de sus precursores, lo 

cual produce un incremento de las características aromáticas del vino (Ugliano, 2009). 

Otros precursores son los S-conjugados que tienen una gran importancia para algunas 

variedades de uva como la Sauvignon blanc (SB). Estos precursores son inodoros pero 

durante la fermentación alcohólica (FA), las levaduras mediante la acción de la enzima 

β-liasa rompen el enlace carbono-azufre (C-S) que une el tiol con el resto del compuesto 

liberando los aromas (Tominaga, des Gachons, & Dubourdieu, 1998). Dentro de estos 

precursores hay dos tipos: i) los precursores S-cisteína conjugados, S-3-(hexan-1-ol)-

cisteína (CYSMH) y S-3-(4-mercapto-4-metil-2-ona)-cisteína (CYSMP) (Tominaga, 

des Gachons, et al., 1998); y ii) los precursores S-glutatión conjugados, S-3-(hexano-1-

ol)-glutatión (GLUMH) y S-3-(4-mercapto-4-metil-2-ona)-glutatión (GLUMP) (des 

Gachons, Tominaga, & Dubourdieu, 2002; Fedrizzi, Pardon, Sefton, Elsey, & Jeffery, 

2009). Además, el precursor CYSMH en parte se podría derivar del precursor GLUMH 

mediante la conversión enzimática (des Gachons et al., 2002). 

Estos precursores dan lugar a un tipo de compuestos denominados mercaptanos 

polifuncionales, también conocidos como tioles volátiles (grupo -SH). Estos 

compuestos son responsables de las notas típicas de la variedad Sauvignon Blanc (SB) y 

contribuyen positivamente a las notas frutales de los vinos jóvenes. Los principales 

mercaptanos polifuncionales son la 4-mercapto-4-metilpentan-2-ona (4MMP) 

identificado como un olor agradable a boj y grosella negra, el 3-mercaptohexan-1-ol 

(3MH) y el acetato de 3-mercaptohexilo (3MHA) asociados a aromas a pomelo, 
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guayaba y fruta de la pasión (Lund et al., 2009). La 4MMP y el 3MH se liberan a partir 

tanto de sus precursores cisteínicos (CYSMH y CYSMP) como glutatiónicos (GLUMH 

y GLUMP). El acetato de 3-mercatohexilo se produce mediante la acetilación del 3-

mercaptohexanol por la acción de la alcohol acetil transferasa (AAT) de las levaduras 

(Swiegers & Pretorius, 2007). En la figura 1 se puede ver el proceso de formación de 

estos compuestos. 

Figura 1. Liberación de los mercaptanos polifuncionales a partir de sus precursores cisteínicos y 

glutatiónicos. Modificada de (Roland, Schneider, Razungles, Le Guerneve, & Cavelier, 2010). 

Los mercaptanos polifuncionales son clave en el vino debido a que se suelen encontrar 

por encima de su umbral de olfacción (tabla 1). Sin embargo, altas concentraciones de 

estos compuestos pueden conducir a aromas desagradables como sudor, cebolla u orina 

(Swiegers, Francis, Herderich, & Pretorius, 2006). En la uva y en el mosto los 

precursores se encuentran en concentraciones que pueden ser del orden de µg/L, 

mientras que los mercaptanos polifuncionales en el vino tienen concentraciones de ng/L, 

es decir,  1000 veces más bajas. Estudios previos han demostrado que una parte de los 

precursores está directamente relacionada con el aroma generado, pero solo una 

pequeña parte de estos liberan el tiol aromático durante la fermentación, existiendo un 

factor de conversión de los precursores en los mercaptanos polifuncionales menor del 5 
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% (des Gachons, Tominaga, & Dubourdieu, 2000; Roland, Schneider, Le Guerneve, 

Razungles, & Cavelier, 2010; Roland, Schneider, Razungles, et al., 2010).  

Tabla 1.Mercaptanos polifuncionales identificados en vinos de Sauvignon Blanc. Descripción de las 

notas aromáticas de cada compuesto, umbral de detección olfativa y rangos de concentración a los que se 

suelen encontrar en los vinos. 

Compuesto 
Umbral de 

olfacción (ng/L)a 
Descripción aromática 

Rangos encontrados en 

vinos (ng/L)b 

4MMP 0,8 Boj, grosella negra 4-40 

3MH 60,4 
Piel de pomelo, guayaba, 

fruta de la pasión 
26-18000 

3MHA 4 Fruta de la pasión 0-2500 

a(Tominaga, Murat, & Dubourdieu, 1998) 
b(Lund et al., 2009; Mateo-Vivaracho, Zapata, Cacho, & Ferreira, 2010; Tominaga, Furrer, Henry, & 

Dubourdieu, 1998). 

 

Hay otros mercaptanos polifuncionales, como el 2-furfuritiol (FFT), que imparte un olor 

a café tostado (Tominaga, Blanchard, Darriet, & Dubourdieu, 2000), el bencil 

mercaptano (BM) que aporta notas empireumáticas (Tominaga, Guimbertau, & 

Dubourdieu, 2003) y el 2-metil-3-furanthiol (2M3F) con aroma a maíz y carne asada 

(Withycombe & Mussinan, 1988). Al igual que los mercaptanos polifuncionales 

descritos anteriormente, estos compuestos tienen bajos umbrales, 0,4 ng/L, 0,3 ng/L y 1 

ng/L, respectivamente (Tominaga et al., 2000; Tominaga et al., 2003; Withycombe & 

Mussinan, 1988). Los derivados del furantiol, como el FFT y 2M3F, son aromas que se 

forman principalmente durante el envejecimiento en barricas de roble (Blanchard, 

Tominaga, & Dubourdieu, 2001). Sin embargo, Schieberle encontró el FFT en vinos 

jóvenes, y lo definió como el producto de la reacción entre azúcares o derivados de 

azúcares y cisteína o sulfuro de hidrógeno (Schieberle, 1993). Por otro lado, la 

formación de BM nunca ha sido identificada. 

Hay muchos factores que van a influir en la liberación de estos compuestos como las 

operaciones pre-fermentativas y las condiciones de vinificación (Masneuf-Pomarede, 

Mansour, Murat, Tominaga, & Dubourdieu, 2006). Hoy en día se sabe que la cantidad 

de precursores que pueda tener la uva está estrechamente relacionada con la cantidad de 

materia nitrogenada (Bell & Henschke, 2005; Subileau, Schneider, Salmon, & Degryse, 

2008). El nitrógeno es un nutriente necesario para las levaduras, y se encuentra en forma 

de aminoácidos e iones de amonio. Cuando en el medio hay cantidades muy bajas del 

nitrógeno fácilmente asimilable (NFA, yeast assimilable nitrogen (YAN)), las levaduras 
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crecen lentamente, por lo tanto no fermentan adecuadamente y en consecuencia se 

generan menos aromas. El FAN  tiene un efecto importante sobre el metabolismo de las 

levaduras, afectando a la formación de compuestos volátiles y no volátiles (Bell & 

Henschke, 2005). Normalmente en las bodegas, al inicio de la fermentación se suelen 

completar los mostos de uva con fosfato de diamonio para garantizar una población 

adecuada de levaduras.   

Además de la cantidad de nitrógeno, también es importante el azufre. El azufre no se 

encuentra como tal en el mosto sino que forma parte de aminoácidos como la cisteína, la 

metionina y el péptido glutatión. El azufre, al igual que el nitrógeno, también lo utilizan 

las levaduras como otra fuente de nutrición. 

Hasta ahora, no hay explicación del por qué se genera tan pocos mercaptanos 

polifuncionales en el vino, si en la uva la cantidad de precursores es mucho más alta. 

Por eso, en este trabajo se va a estudiar el efecto de la adición de diferentes 

concentraciones de dos compuestos azufrados al mosto, el glutatión y la metionina, 

sobre la liberación de los mercaptanos polifuncionales, así como sobre el consumo de 

sus precursores. También, se estudiará de qué manera influye en los parámetros básicos 

del vino, así como en el aroma final del vino. 

MATERIALES Y MÉTODOS 

Mostos sintéticos 

Preparación de un mosto sintético 

Se elabora un mosto a partir de distintas disoluciones ya preparadas (en stocks) y 

conservadas en el congelador. El mosto utilizado para este trabajo es adaptado de Bely 

et al., (Bely, Sablayrolles, & Barre, 1990). Este medio está formado por los siguientes 

componentes: glucosa (105 g/L), fructosa (105 g/L), ácido málico (0,3 g/L), ácido 

tartárico (5 g/L), ácido cítrico (0,3 g/L); oligoelementos expresados en mg/L: 4,7 

MnCL2 4H2O, 0,49 Co(NO3)2 6H2O, 0,19 NaMoO4 2H2O, 0,54 CuCl2, 1,29 KlO3, 1 

H3BO3, 2 Cl2Zn; macroelementos expresados en g/L: 0,2 MgSO4 7H2O, 2 KH2PO4, 

0,155 CaCl2 2H2O; vitaminas en mg/L: 1 piridoxinaClH, 1 ácido nicotínio,1 pantotenato 

de calcio, 1 tiamina ClH, 1 ácido p-aminobenzoico, 0,2 rivoflavina, 0,2 ácido fólico, 

0,04 biotina, myo-inositol (0,3 g/L); factores de crecimiento anaeróbico: ergoesterol 
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(0,015 g/L), Tween 80 (0,05% v/v); nitrógeno: fosfato de diamonio (NH4)2HPO4 

(0,2199 g/L), aminoácidos que simulan el perfil encontrado en mostos de la variedad 

Chardonnay en mg/L: 49,19 ASP, 143,79 GLU, 105,95 GLN, 108,47 SER, 3,78 GLY, 

49,73 HIS, 82,61 THR, 200,9 ARG, 528,11 PRO, 13,50 MET, 35,73 PHE, 12,27 LYS, 

60,07 GABA, 60 ALA, 20 TYR, 20 VAL, 20 ILE, 20 LEU, 5 CYS; precursores de los 

mercaptanos polifuncionales en µg/L: 100 CYSMH, 50 CYSMP, 1000 GLUMH, 50 

GLUMP. 

El mosto se ajusta a pH 3,5. En una campana de extracción (flujo laminar) con aire en 

convección para impedir la entrada de contaminantes del exterior, se filtra el mosto 

sintético con un filtro amicróbico para retener los microorganismos (bacterias y 

levaduras). Seguidamente el mosto filtrado se recoge en recipientes previamente 

esterilizados en el autoclave a una temperatura de 140 ºC durante 20 minutos. 

Adición de glutatión y metionina 

El mosto inicial (3,5 L) se reparte en 5 recipientes de 600 mL para cada uno de los 

compuestos a adicionar. Se realizan 5 experimentos: i) Control, mosto sintético sin 

adicionar; ii) MET30, mosto sintético con adición de 30 mg/L de metionina; iii) 

MET50, mosto sintético al que se añade 50 mg/L de metionina; iv) GSH50, adición de 

50 mg/L de glutatión (GSH); v) GSH70, adicción de 70 mg/L de glutatión. Cada uno de 

estos recipientes se divide en tres recipientes más pequeños de 200 mL, en los que 

posteriormente se lleva a cabo la fermentación (figura 2). 

 

Figura 2. Esquema de la preparación de los mostos sintéticos por tripicado con las adiciones de 

metionina (30 mg/L y 50 mg/L) y glutatión (50 mg/L y 70 mg/L). 
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Inoculación 

Se preparan las levaduras Saccharomyces cerevisiae Zymaflore X5, primero 

hidratándolas con agua a 37 ºC durante 20 minutos y luego nutriéndolas con mosto 

sintético previamente filtrado a la misma temperatura durante 10 minutos. Esta levadura 

es elegida debido a que previos estudios mostraron su buena capacidad en la liberación 

de mercaptanos polifuncionales (Masneuf-Pomarede et al., 2006). Seguidamente se 

inoculan 106 cel/mL en cada uno de los fermentadores previamente mencionados.  

Fermentación 

Las muestras de mosto ya inoculadas se pesan por separado antes de meterlas a incubar 

y seguidamente se ponen a fermentar a 21 ºC. 

Durante las 3-4 semanas siguientes, cada día se pesan todas las muestras. Se lleva a 

cabo un seguimiento de la fermentación mediante pesada. El peso es cada vez menor 

debido a la transformación por las levaduras del azúcar (glucosa, fructosa) en etanol y a 

su consecuente producción de CO2 que al ser un gas se desprende.  

A medida que las fermentaciones van acabando (el peso se mantiene constante durante 

2-3 días), se centrifuga el vino a 4500 rpm durante 20 minutos. Las muestras ya 

centrifugadas se guardaran refrigeradas a 4 ºC hasta la posterior realización de los 

análisis. 

Análisis químicos del vino 

Se realizan análisis clásicos, análisis de precursores cys/glu y de  mercaptanos 

polifuncionales para caracterizar los distintos vinos y comparar posibles diferencias 

entre ellos.  

Análisis clásicos 

En los análisis clásicos se realizan las determinaciones de azúcares reductores, acidez 

volátil, acidez total, y pH. Estos métodos se realizan según la Organización 

Internacional de la Viña y el Vino (OIV). Además se determina el grado alcohólico 

mediante cromatografía de gases. 
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Azúcares reductores 

Todo vino contiene monosacáridos o azúcares reductores. Hay varios métodos para 

determinarlos, frecuentemente llevan como base la oxidación de los azúcares por cobre 

divalente, en medio alcalino y en caliente, a ebullición. Se evita la insolubilización del 

cobre en medio alcalino acomplejándolo. En un erlenmeyer de 100 mL se vierten 10 ml 

de una disolución de sulfato de cobre II (CuSO4) pentahidratado y se añaden 5 mL de 

disolución de Seignette (625 g/L de tartrato de sodio y potasio + 200 g/L de NaOH). A 

continuación se añade el vino, o en el caso del blanco, se añade agua. Se lleva a 

ebullición durante 2 minutos sobre una placa calefactora y se deja enfriar. Seguidamente 

se añaden: 10 mL de disolución  de ioduro de potasio (KI) (150 g de KI/L + 50 ml/L de 

NaOH 1N), 10 mL de disolución de ácido sulfúrico al 16 % (H2SO4), y 10 mL de 

indicador de almidón (10 g/L). A continuación se valora con tiosulfato sódico 

(Na2S2O3) (13,7 g de tiosulfato sódico pentahidratado/L + 50ml de NaOH/L). La 

diferencia en mL entre el gasto de tiosulfato de la muestra de vino y del blanco 

representa el contenido en azúcares reductores expresado en g/L.  

Acidez volátil 

La acidez volátil está constituida por los ácidos pertenecientes a la serie del ácido 

acético. La determinación se efectúa mediante la separación de los ácidos volátiles con 

arrastre de vapor de agua y rectificación de los vapores. Posteriormente estos ácidos se 

valoran con NaOH en presencia de fenoftaleína como indicador. 

Acidez total y pH 

La acidez total es la suma de las acideces valorables cuando se lleva el vino a pH 7 por 

adición de una solución alcalina valorada. Así, el vino se valora con la solución de 

NaOH utilizando el pHmetro para localizar el punto final de la valoración a pH 7. 

Grado alcohólico 

El grado alcohólico de las muestras se determina mediante cromatografía de gases con 

detector (FID) de llama ionizante. Para cada muestra se añaden en un matraz aforado 

0,125 mL de vino, 4 µL de patrón interno 2-butanol en una concentración de 323 mg/L 

y se enrasa con agua hasta los 10 mL. El análisis se realiza con un cromatógrafo GC 

8000 de Fisons Instruments (Ipswich, Reino Unido) usando una columna capilar DB-
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cera (30 m x 53 mm i.d. x 2 μm) de J & W Scientific (Agilent Technologies, Santa 

Clara, CA, EE.UU.). El inyector se mantiene a 250 °C y la relación de división es de 

1:4. Se utiliza hidrógeno como gas portador y la presión se mantiene a 27,5 kPa. La 

temperatura del FID es de 250 °C y los caudales de los gases del detector son 95 kPa 

para el gas de preparación, 35 kPa para el hidrógeno y 60 kPa para el aire. El programa 

de separación se realiza en modo isotérmico establecido a 70 ºC. Se inyectan 0,5  µL de 

muestra.  La relación entre el área de los picos del etanol del vino y del estándar interno 

nos permite determinar el valor del grado alcohólico de las distintas muestras. El tiempo 

de adquisición es de 5 minutos. Para hallar el grado alcohólico exacto de cada vino se 

hace una recta de calibrado, a partir de patrones con distintas concentraciones de etanol 

conocidas y sus respectivas normalidades (la normalidad es la relación entre el área del 

etanol y el área del patrón interno). Con la ecuación de la recta se interpolan las 

normalidades de las diferentes muestras y así se obtienen los datos. 

Precursores cisteínicos y de glutatión 

Los precursores CYSMP, CYSMH, GLUMP y GLUMP se cuantifican en la 

Universidad de la Rioja. Para ello, se toma 1 ml de muestra, se centrifuga a 4500 rpm 

durante 20 minutos, se filtra con dos filtros en tándem de 0,45 µm y 0,20 µm y se 

inyecta en un cromatógrafo de líquidos UPLC acoplado a espectometría de masas 

siguiendo el método validado por Concejero et al. (Concejero, Pena-Gallego, 

Fernandez-Zurbano, Hernandez-Orte, & Ferreira, 2014). 

Mercaptanos polifuncionales 

La cuantificación del 2M3F, FFT, 4MMP, 3MHA, 3MH y BM se lleva a cabo usando el 

método propuesto y validado por Mateo-Vivaracho et al., (Mateo-Vivaracho et al., 

2010). 

Análisis sensorial 

Panel: El análisis sensorial del vino se lleva a cabo por un panel de 17 catadores 

expertos del departamento de química analítica de la facultad de ciencias de la 

Universidad de Zaragoza. 

Procedimiento: La prueba de agrupación o sorting task es un método de análisis 

sensorial que consiste en la agrupación de los distintos vinos de acuerdo a la similitud 
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del aroma entre ellos. En este estudio se les pide a los panelistas que agrupen los vinos 

sobre la mesa como se muestra en la figura 3. Pueden  hacer tantos grupos como quieran 

y en cada grupo pueden meter el número de vinos que ellos crean conveniente. Una vez 

los grupos están hechos sobre la mesa, se les da un papel y un bolígrafo para que 

escriban sus respuestas. Seguidamente, se les pide que describan cada grupo de vinos 

con entre 1 y  3 atributos. 

 

Figura 3.Preparación de los puestos de cata. Realización de los diferentes grupos en función de la 

semejanza del aroma. 

Muestras: 17 muestras de vino son analizadas mediante sorting task: 15 muestras 

procedentes de las fermentaciones y 2 muestras replicadas como control de 

reproducibilidad del panel. Una hora antes de realizar este análisis las muestras se 

retiran del frigorífico y se sirven 10 mL de cada una en copas de vino oscuras  (ISO 

3591, 1977) etiquetadas con números de tres dígitos aleatorios y cubiertas por placas 

plásticas de Petri. 

Tratamiento de datos 

Las copas se sirven en la misma sala, en puestos individuales, a la misma hora y en un 

orden aleatorio para cada catador. No se les informa a los panelistas sobre la naturaleza 

de los vinos a evaluar. 

Análisis estadístico 

Con todos los datos se ha realizado un estudio ANOVA de un factor mediante el SPSS 

19.0 system (SPSS Ine., Chicago. iL. USA) para determinar si existen diferencias 

significativas entre los distintos tratamientos de los vinos obtenidos. El nivel de 

significatividad al que se trabaja es del 95 %.  
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Tratamiento de los datos obtenidos con el sorting task 

Los resultados se recopilan en una matriz de coocurrencia, que representa la cantidad de 

veces que cada par de vinos se han agrupado juntos. De forma que números mayores 

indican una mayor similitud entre las muestras. Esta matriz se somete a un análisis 

estadístico denominado escalado multidimensional (MDS). Se trata de una técnica de 

representación espacial, con la que se visualiza sobre un mapa de 2 o 3 dimensiones un 

conjunto de vinos.  

Para la realización del clúster, las coordenadas obtenidas del MDS se someten a un 

análisis de agrupamiento jerárquico (HCA). Los análisis MDS y HCA se realizan 

utilizando el software XLSTAT (versión 2014.2.02). El HCA permite identificar los 

vinos que pertenecen al mismo clúster. 

En el caso del tratamiento de los descriptores dados por los panelistas, se asume que 

todas las muestras pertenecientes a un mismo grupo están asociadas con los mismos 

atributos. De esta forma, se calcula la frecuencia de citación de cada descriptor y solo 

son considerados aquellos descriptores dichos, por al menos el 20 % del panel. 

RESULTADOS Y DISCUSIÓN 

Con el fin de estudiar el efecto de las adiciones de glutatión y metionina sobre los 

diferentes parámetros clásicos de los vinos, así como sobre los mercaptanos 

polifuncionales, se realizan 5 fermentaciones (por triplicado) de mostos sintéticos a las 

que se han adicionado diferentes concentraciones de GSH y metionina. En esta parte del 

trabajo se muestran los distintos resultados que se obtienen de los análisis de los vinos. 

Primero se presenta el seguimiento de todas las fermentaciones, observando las 

diferencias entre ellas. Después se reflejan los resultados de los análisis clásicos, así 

como los análisis de los mercaptanos polifuncionales, y de sus precursores. Finalmente 

se explican los resultados obtenidos tras el análisis sensorial. 
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Efecto de las adiciones de GSH y metionina sobre la velocidad de la 

fermentación alcohólica 

Efecto de la adición de GSH 

En la figura 4 se representa la pérdida de peso acumulada frente al tiempo total de 

fermentación, de las muestras control y las muestras con adición de glutatión, con el fin 

de determinar si dichas adiciones provocan cambios en la evolución de la FA. La 

fermentación alcohólica se lleva a cabo por las levaduras, las cuales utilizan los 

azúcares del mosto convirtiéndolos en etanol y liberando CO2  (que se libera a la 

atmósfera), por lo que el peso al final de la fermentación siempre será menor que al 

comienzo. 

 De manera general, se observa que todas siguen una trayectoria similar desde el 

comienzo hasta el final de la fermentación. Durante las primeras horas (0-30 h), apenas 

se modifica el peso inicial del mosto, puesto que las levaduras se encuentran en la fase 

de latencia. En esta fase se están adaptando a las condiciones del medio y tienen que 

preparar su metabolismo para comenzar a fermentar con mayor actividad. En las horas 

siguientes, se ve claramente una gran pérdida de peso, ya que las levaduras están en 

condiciones óptimas, crecen muy rápido y fermentan con mayor velocidad 

encontrándose en la fase exponencial. Alcanzadas las 200 horas de fermentación, la 

velocidad de fermentación cada vez es menor y la pérdida de peso va variando poco a 

poco hasta que permanece constante, indicando que se encuentran en la fase 

estacionaria de la FA. 
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Figura  4: Pérdida de peso acumulada durante la fermentación alcohólica de las muestras control,  y de 

las muestras con adición de glutatión (GSH 50 y GSH 70). 

Centrándonos en los tipos de muestras, al principio de la fermentación las muestras con 

adición de glutatión pierden más peso que las muestras control, siendo la muestra 

GSH50_2 la que pierde más peso durante la fase exponencial. Al final de la FA, el peso 

perdido total es similar para todas las muestras, salvo para la muestra GSH70_2 que 

pierde más peso. 

Efecto de la adición de metionina 

Por otro lado en la figura 5 se representa la pérdida de peso acumulada frente al tiempo 

total de fermentación para las muestras control y las muestras con adición de metionina, 

con el fin de estudiar el efecto de la metionina sobre la velocidad de la FA. Se puede 

destacar que las muestras con MET han acabado la fermentación antes que las control.  
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Figura 5: Pérdida de peso acumulada durante la fermentación alcohólica de las muestras control, y de las 

muestras con adición de metionina (MET 30 y MET 50). 

Al igual que se ve en la figura 4, en la figura 5 se observa que todas siguen una 

trayectoria similar. Asimismo, en la figura 5 se observa que la pérdida de peso al 

comienzo es mayor para las réplicas de MET30, y es menor para las muestras MET50, 

mientras que las muestras control van a una velocidad intermedia. Por otro lado, al 

finalizar la fermentación las muestras control han perdido más peso que las muestras 

MET30. Las muestras MET50 se han mantenido con una pérdida menor  durante toda la 

fermentación en comparación con las muestras control y MET30. Además, 

curiosamente las muestras a las que se ha adicionado metionina (a ambas 

concentraciones) han acabado la fermentación antes que las muestras control.  

La mayor pérdida de peso en las muestras con adición de GSH en comparación con las 

muestras control puede deberse a que las levaduras utilizan ese compuesto como un 

nutriente más y por tanto tienen una mayor actividad. En cambio, la adición de 

metionina provoca cambios en función de la concentración, observándose que en las 

muestras MET30 se favorece el metabolismo de las levaduras, y en las muestras 

MET50 se dificulta su actividad fermentativa. Esto podría deberse a que a 
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concentraciones bajas la metionina podría actuar como un nutriente de la levadura pero 

a concentraciones superiores podrían ejercer un efecto inhibitorio sobre ellas. 

Efecto de las adiciones de GSH y metionina sobre los parámetros 

clásicos de los vinos obtenidos 

En la tabla 2 se muestran los resultados  del análisis de los parámetros clásicos de los 

vinos obtenidos. 

Tabla 2. Parámetros clásicos (media ± s) de  los vinos obtenidos tras la fermentación alcohólica de los 

mostos sintéticos con y sin adición de metionina y glutatión. 

 
Acidez 

volátil (g/L 

ácido acético) 

Acidez total 

(g/L ácido 

tartárico) 

pH (20ºC) 

Azúcares 

reductores 

(g/L) 

Grado 

alcohólico  

(% etanol) 

Control 1,10ab ± 0,11 5,17a ± 0,07 3,54 ± 0,04 5,57b ± 0,60 11,0 ± 1,90 

MET30 1,01b ± 0,03 4,88b ± 0,13 3,52  ± 0,03 4,90b ± 0,26 10,7 ± 0,63 

MET50 1,17a ± 0,04 4,93b ± 0,04 3,57  ± 0,12 9,60a ± 0,70 11,2 ± 0,94 

GSH50 1,14a ± 0,04 4,93b ± 0,04 3,50  ± 0,05 3,70c ± 0,17 10,3 ± 0,51 

GSH70 1,17a ± 0,06 5,03ab ± 0,15 3,53  ± 0,02 2,90c ± 0,17 10,4 ± 0,30 

p(<0,05) 0,056 0,027 0,708 0,000 0,798 
a, b, c Letras diferentes indican diferencias significativas (nivel de significatividad del 95 %). 

La acidez volátil la forman los ácidos pertenecientes a la serie del ácido acético. El 

rango de acidez normal de un vino comprende entre 0,2 - 1,2 g/L de ácido acético. Por 

lo que las muestras analizadas en este estudio mostraron una acidez volátil bastante alta 

(tabla 2). Según Moreno-Arribas et al., la acidez volátil alta es debida a un alto 

crecimiento de microorganismos por un nivel de oxigeno alto, las altas concentraciones 

de azúcar hacen que las levaduras generen más ácido acético o simplemente debido a su 

conservación en barrica o botella (Moreno-Arribas & Polo, 2008). Todos los vinos 

analizados en este estudio muestran valores altos de acidez volátil, que podría ser 

debido a que son vinos obtenidos a partir de mostos sintéticos, a la cantidad de azúcar o 

bien a las condiciones de anaerobiosis. Asimismo, todas las muestras muestran valores 

similares (sin diferencias significativas al 95 %), por lo que la adición de metionina y 

glutatión no influye este parámetro. 

La acidez total de un vino se suele encontrar entre 4 y 7 g/L de ácido tartárico 

(Zoecklein, Fugelsang, Gump, & Nury, 1995), por lo que estos vinos presentan una 

acidez total normal. Sin embargo, las adiciones de glutatión y metionina producen una 
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disminución significativa de la acidez total con respecto al control, aunque siguen 

siendo unos valores que se encuentran dentro del rango. Por lo tanto, los vinos 

adicionados con MET o GSH tienen menor acidez total. 

El pH observado en los vinos analizados muestra unos valores normales para un vino 

(3,5-3,7). No se observan diferencias significativas en las muestras adicionadas con 

respecto al control. 

En cuanto a los azúcares reductores, si un vino tiene menos de 5 g/L de azúcares 

reductores será un vino seco, mientras que valores superiores indican que los vinos son 

semisecos, semidulces o dulces. Los vinos analizados en este trabajo muestran que la 

adición de GSH a ambas concentraciones produce una disminución significativa del 

azúcar residual (obteniendo vinos secos) con respecto al control. Por el contrario, en el 

caso de la adición de metionina, la adición a menor concentración no produce cambios 

con respecto al control, mientras que, a mayor concentración, MET50, genera un 

aumento significativo del azúcar residual dando lugar a vinos abocados. Por lo tanto se 

puede deducir que la adición de glutatión en ambos casos, puede provocar que las 

levaduras utilicen más azúcar durante la fermentación y como consecuencia los vinos 

tengan menos azúcar residual. Y que al tener concentraciones elevadas de metionina se 

inhiba parte del metabolismo de las levaduras en el consumo de azúcar. Este resultado 

esta en concordancia con las curvas de fermentación. Las fermentaciones con metionina 

se pararon antes de perder todo el azúcar 

El grado alcohólico también presenta valores normales. Teóricamente se parte de un 

mosto con una concentración de azúcar de 210 g/L, por lo que el grado alcohólico 

teórico sería de 12,3º. Sin embargo, el grado alcohólico de los vinos es inferior al 

teórico y por lo tanto el etanol producido es menor.  Además, las diferentes adiciones no 

provocan diferencias significativas con respecto al control. El rendimiento alcohólico de 

las levaduras respecto a la conversión de etanol es inferior al estándar de 18 g/L de 

azúcar por grado obtenido 

Efecto del glutatión y la metionina sobre el consumo de los precursores 

de mercaptanos polifuncionales 

Los mostos sintéticos se preparan adicionando concentraciones fijas de precursores de 

mercaptanos polifuncionales. Al acabar la FA se miden los precursores que no han sido 
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metabolizados durante el proceso. En la tabla 3 se muestran los resultados del análisis 

de los precursores de los mercaptanos polifuncionales que quedan tras finalizar la FA. 

En el caso del precursor CYSMP las adiciones de MET50 y GSH50  no producen 

diferencias significativas en la concentración de este precursor con respecto al control. 

En cambio los vinos adicionados con MET30 tienen concentraciones significativamente 

más bajas que el control y  con GSH70 significativamente más altas que el control. En 

el caso del precursor CYSMH, las concentraciones son significativamente menores que 

las control. Podemos ver en la tabla 3 que el consumo de precursores es superior cuando 

las concentraciones de MET o GSH son más bajas. Es interesante ver que la 

concentración de este precursor encontrada en los vinos control, MET50 y GSH70 es 

superior a la concentración inicial adicionada al mosto. Esto es debido a que a partir del 

precursor GLUMH se genera CYSMH (des Gachons et al., 2002). Los valores de 

GLUMP son muy parecidos en todos los vinos. Cuando se añade MET50 se obtienen 

vinos con concentraciones significativamente mayores que el control, mientras que con  

MET30  los precursores no son significativamente diferentes a los encontrados en el 

control. La concentración del precursor GLUMH es significativamente más alta en los 

vinos adicionados con MET y GSH70. En el caso de la adición de GSH50 no se 

observan diferencias significativas con respecto al control.  

Tabla 3.Concentraciones  y desviaciones ST de los precursores cisteínicos y de glutatión (µg/L) que 

quedan al final de la fermentación alcohólica de los vinos con y sin adiciones de glutatión y metionina.  

 
CYSMP CYSMH GLUMP GLUMH 

Control 47,4b ± 2,18 138a ± 3,83 16,4b ± 0,15 240c ± 26,7 

MET30 41,6c ± 1,87 81,8d ± 8,26 17,2b ± 0,46 868a ± 200, 

MET50 46,1b ± 2,15 115c ± 3,23 18,6a ± 0,97 897a ± 98,7 

GSH50 44,6bc ± 2,56 86,1d ± 4,81 17,4ab ± 0,16 371c ± 13,7 

GSH70 52,0a ± 2,51 127b ± 4,60 17,5ab ± 1,08 567b ± 67,2 

p(<0,05) 0,003 0,000 0,033 0,000 
a, b, c, d Letras diferentes indican diferencias significativas (nivel de significatividad del 95 %). 

Hay que destacar que en los vinos adicionados  con MET, la concentración de GLUMH 

es casi cuatro veces superior a la encontrada en los vinos control y casi dos veces 

superior a los vinos obtenidos con GSH70. 

Estos resultados nos indican que las levaduras usan este precursor como fuente de 

azufre cuando no se adiciona nada (control) ya que la concentración de GLUMH es 

cuatro veces inferior a la adicionada. Si comparamos los dos precursores de la 4MMP 
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vemos que las levaduras consumen preferentemente el GLUMP, ya que disminuye más 

del 65 % su concentración durante la FA. Todavía no se ha descrito la transformación 

de GLUMP en CYSMP, pero podría ser posible. 

Efecto de las adiciones de GSH y metionina sobre la liberación de los 

mercaptanos polifuncionales 

En la figura 6 se representan los resultados de los mercaptanos polifuncionales liberados 

durante la fermentación alcohólica. En el caso de la 4MMP, las muestras con adición de 

metionina y GSH muestran una concentración significativamente mayor que el control, 

salvo la muestra GSH70, cuya concentración es significativamente menor que el 

control. Por otro lado, las adiciones de GSH y metionina producen un descenso 

significativo en la liberación del 3MH, a excepción de la muestra MET50 cuya 

concentración es superior a la encontrada en el  control. La formación de 3MHA solo se 

produce en la muestra MET50 (1,6 ng/L). 

Figura 6. Concentración y desviación ST de mercaptanos polifuncionales (ng/L) en los vinos con y sin 

adiciones de glutatión y metionina.. 
a, b, c, d Letras diferentes indican diferencias significativas (nivel de significatividad del 95 %). 
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Por lo tanto, está claro que la adición de 50 mg/L de metionina en el mosto aumenta el 

nivel de mercaptanos polifuncionales en el vino final, potenciando más los aromas. En 

general MET y GSH hacen que se libere más 4MMP, en comparación  con un vino al 

que no se le ha adicionado nada, pero disminuyen los niveles de 3MH.  

Asimismo en el caso de los vinos con adición de metionina, hay más concentración de 

4MMP que en los control, observándose también un mayor consumo de CYSMP en 

MET30. Para esta muestra se observa también un menor consumo de GLUMH (4 veces 

menor en comparación con el control) con la consecuente disminución en la liberación 

de 3MH. Por otro lado, en el caso de los vinos adicionados con glutatión, se observa un 

menor consumo del precursor CYSMP en la muestra GSH70 observándose también una 

disminución en la liberación de 4MMP. En el caso del 3MH, para esta misma muestra 

se observa una disminución en su liberación que podría ser debida a un menor consumo 

del precursor GLUMH. Esto coincide con lo encontrado en otros estudios (des Gachons 

et al., 2000; Roland, Schneider, Le Guerneve, et al., 2010; Roland, Schneider, 

Razungles, et al., 2010). Hay que destacar que la concentración de precursores está en 

µg/L. 

Por ello, se demuestra no solo que glutatión y metionina afectan de manera diferente en 

la cantidad de mercaptanos polifuncionales liberados, sino que las diferentes 

concentraciones adicionadas de los mismos en el mosto inicial también dan lugar a 

resultados diferentes. La concentración de mercaptanos polifuncionales se expresa en 

ng/L. Si vemos las concentraciones obtenidas de mercaptanos polifuncionales, podemos 

decir que el rendimiento de transformación es mínimo (inferior al 1 %) y que no existe 

una correlación clara entre la cantidad de precursores consumidos y la de mercaptanos 

polifuncionales liberados. 

Efecto del GSH y la metionina sobre el aroma de los vinos finales 

Se ha realizado un análisis sensorial (sorting task) para determinar si los vinos obtenidos 

con las distintas adiciones generan modificaciones organolépticas. En la figura 7 se 

observan los resultados del test de agrupación (sorting task) de los vinos con y sin 

adición de GSH y metionina. Los diferentes vinos se han englobado en tres grupos con 

diferentes descriptores. El vino control así como las muestras MET30 (agrupados en el 

clúster 3) se caracterizan por notas predominantes a fruta tropical y verde. Por lo que la 

adición de 30 mg/L de metionina prácticamente no genera cambios con respecto al 
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control, dado que se agrupan junto al control y ambas son descritas por los mismos 

atributos. Por otro lado, las adiciones de GSH generan cambios a ambas 

concentraciones (50 y 70 mg/L), aunque no hay diferencias entre ellas. En ambos casos 

predominan notas a reducción, manteniendo las notas a fruta tropical y verdes. 

Finalmente, la adición de 50 mg/L de metionina provoca cambios tanto en comparación 

con el control como con MET30, aportando aromas a reducción,  así como notas a fruta 

madura, aparte de mantener las notas a fruta tropical. Asimismo, también se puede ver 

que las muestras duplicadas (control_1 y control_1R) se encuentran ubicadas juntas en 

el diagrama, a excepción de las muestras (GSH70_2 y GSH70_2R) que se encuentran 

en grupos diferentes cuya única diferencia es el aroma a reducción que podría perderse 

con el tiempo.  Esto sugiere que el panel es reproducible. 

 

Figura 7. Dendrograma obtenido a partir del análisis sensorial consistente en el test de agrupamiento de 

los vinos obtenidos a partir de la fermentación alcohólica de mostos sintéticos a los que se habían 

adicionado o no diferentes concentraciones de GSH y metionina. 
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Los resultados del análisis sensorial nos indican que bajas concentraciones adicionadas 

de metionina no generan cambios en el aroma con respecto al control. Sin embargo, 

concentraciones suficientemente altas de este compuesto pueden dar lugar a olores 

desagradables (azufrados, a reducción), así como generar notas a fruta madura. Estas 

notas a fruta madura pueden deberse al metional que se forma a partir de la metionina 

por la ruta Ehrlich (Hazelwood, Daran, van Maris, Pronk, & Dickinson, 2008), y es uno 

de los compuestos presentes en las frutas maduras o pasas. Por otro lado, el glutatión 

también da lugar a notas a reducción manteniendo los aromas verdes y a fruta tropical 

presentes en el control.  Estos aromas a reducción podrían ser debidos a que tanto la 

metionina como el GSH son compuestos azufrados que pueden dar lugar a la formación 

de H2S (Henschke & Jiranek, 1993; Swiegers & Pretorius, 2007).  

CONCLUSIÓN 

En el aroma del vino influyen multitud de factores, siendo uno de ellos los nutrientes 

que utilizan las levaduras para llevar a cabo su metabolismo.  

En la FA se ha visto que en los vinos en los cuales se ha adicionado glutatión (GSH), las 

levaduras han fermentado con mayor intensidad, deduciendo así, que ese compuesto 

sirve como nutriente para las mismas. En cambio, en los vinos en los que se ha 

adicionado metionina, solo aumenta la actividad fermentativa al adicionar 30 mg/L, ya 

que la adición de 50 mg/L la ralentiza.  

Por ello tiene sentido que las muestras GSH tengan menos azúcar residual, ya que se ha 

fermentado más y consecuentemente se ha consumido también más azúcar. Y lo mismo 

pero en sentido contrario los vinos con MET50, tienen más azúcar residual.  Podría ser 

que concentraciones elevadas de metionina fueran tóxicas para la levadura. 

La adición de compuestos azufrados produce diferencias significativas en el consumo 

de precursores durante la fermentación alcohólica. Además la concentración y la forma 

del compuesto azufrado influye en la metabolización de los mismos. 

En cuanto a los mercaptanos polifuncionales, la 4MMP se libera más en las muestras 

adicionadas que en las control, salvo en las GSH70. Al contrario, el 3MH se libera 

menos que en las control, a excepción de MET50. El 3MHA solo se encuentra en 

concentración cuantificable en las muestras MET50. Es decir, la adición de sustancias 
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azufradas influye significativamente en la liberación de los mercapatanos 

polifuncionales. 

Finalmente, a nivel sensorial la adición de metionina y glutatión se traduce en la 

generación de notas a reducción consecuencia de la generación de H2S, pero en todos 

los casos se mantienen las notas a fruta tropical. 

Con toda esta información finalmente concluimos que las levaduras rompen el enlace 

que une el mercaptano polifuncional con el resto de precursor, por lo que si no ocurriera 

nada más, la cantidad de mercaptanos polifuncionales en el vino final sería similar a la 

de sus respectivos precursores. El problema es que se liberan concentraciones de 

mercaptanos polifuncionales aproximadamente 1000 veces inferiores con respecto a sus 

precursores. Esto puede deberse a que podría haber alguna ruta química, que influya en 

esta liberación, o que las levaduras utilicen parte de esos aromas como nutrientes (por 

su contenido en azufre y nitrógeno). Aún no se conocen las rutas posibles, pero es 

evidente que el azufre y el nitrógeno son elementos clave en el proceso. 

CONCLUSION 

A lot of factors influence the aroma of wine, being one of them the nutrients that yeasts 

use to carry out their metabolism. 

In the alcoholic fermentation (AF) it has been seen that in the wines in which 

glutathione (GSH) has been added, the yeasts have fermented with greater intensity, this 

could mean that this compound acts as nutrient for them. In contrast, in wines in which 

methionine has been added, fermentation activity only increases through the addition of 

30 mg/L, since the addition of 50 mg/L slows it down. 

Therefore it makes sense that the GSH samples have less residual sugar, since it has 

been fermented more and consequently more sugar has also been consumed. And the 

same but in the opposite sense the wines with MET50, which have more residual sugar. 

It could be that high concentrations of methionine were toxic to yeast. 

The addition of sulfur compounds produces significant differences in the consumption 

of precursors during AF. In addition, the concentration and the form of the sulfur 

compound influences the metabolization of them. 



26 
 

As for the polyfunctional mercaptans, the 4MMP is released more in the added samples 

than in the control, except in the GSH70 samples. On the contrary, the 3MH is released 

less than in the control, except for MET50 samples. The 3MHA is only in a quantifiable 

concentration in the MET50 samples. That is, the addition of sulfur substances 

significantly influences the release of the polyfunctional mercapatans. 

Finally, at the sensory level the addition of methionine and glutathione results in the 

generation of notes to reduction resulting from the generation of H2S, but in all cases 

the tropical fruit notes are maintained. 

With all this information we finally conclude that the yeast breaks the bond that unites 

the polyfunctional mercaptan with the precursor, so that if nothing else happened, the 

amount of polyfunctional mercaptans in the final wine would be similar to that of their 

respective precursors. The problem is that concentrations of polyfunctional mercaptans 

are released approximately 1000-fold lower than their precursors. This may be due to 

the fact that there may be some chemical pathway that influences this release, or that the 

yeasts use part of those aromas as nutrients (because of their sulfur and nitrogen 

content). The possible pathways are not yet known, but it is clear that sulfur and 

nitrogen are key elements in the process. 

OPINIÓN PERSONAL Y APORTACIONES 

Con este trabajo de investigación, aparte de estudiar el tema elegido en relación con el 

vino, he aprendido a saber manejarme de manera independiente en un laboratorio, por lo 

que de cara al futuro se resume en más experiencia y más preparación. También he 

aprendido a trabajar con equipos como un cromatógrafo de gases con detector de llama 

ionizante (FID), para detectar pequeñas cantidades de analitos de manera precisa. 

También he podido entrenar mi olfato en diferentes análisis sensoriales realizados, y así, 

poder conocer y distinguir diferentes tipos de aromas en un vino.  

Pero además de esto me ha impresionado las ganas y la dedicación de todo el grupo con 

el que he convivido estos meses, el buen ambiente y la confianza que me daban en todo 

momento. 
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