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RESUMEN 

 

El Trabajo de Fin de Grado lleva a cabo un estudio sobre el comportamiento de dos 

contrastes de Normalidad de Jarque-Bera y Lilliefors, a través de experimentos de 

Monte Carlo. Tras definir el contexto de nuestro trabajo, esto es, un modelo 

econométrico lineal (Modelo Lineal General), y establecer las hipótesis básicas  cuyo 

cumplimiento suele suponerse, en este documento se presentan los problemas derivados 

de la falta de normalidad del término de perturbación en un modelo econométrico, así 

como la forma de detectarla. Nuestro objetivo es estudiar los dos contrastes propuestos 

de normalidad de forma comparada, y analizar su capacidad para detectar este 

problema. En las simulaciones realizadas consideramos modelos en los que la 

perturbación aleatoria (ui) sigue una distribución diferente a la normal, para así poder 

observar si los resultados que muestran un comportamiento adecuado de los contrastes, 

esto es,  si detectan esta ausencia de normalidad. La potencia y el tamaño de los 

contrastes son utilizados para analizar la adecuación  de los contrastes,  e intentar 

establecer una comparación entre ellos. 

 

 

Palabras clave: econometría, experimentos de Monte Carlo, Normalidad, Jarque-Bera, 

Lilliefors. 
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STUDY OF THE BEHAVIOUR OF TWO NORMALITY TESTS THROUGH 

MONTE CARLO EXPERIMENTS.  

 

 

 

ABSTRACT 

 

 

The final project studies the behaviour of two Normality tests by Jarque-Bera and 

Lilliefors, through Monte Carlo experiments. Once the context of our work is defined, 

that is, a linear econometric model (General Linear Model), and the basic hypothesis, 

whose compliance is usually supposed, are established, this documents presents the 

problems deriving from the lack of normality of the disturbance term in an econometric 

model, as well as the way to detect it. Our aim is to comparatively study both of the 

suggested normality tests and to analyze their ability to detect this issue. In our 

simulations we considered models in which the aleatory disturbance (ui) follows a 

different distribution as the usual one, in order to observe the results that show a 

suitable behaviour of the tests, that is, if they detect this absence of normality. The 

power and the size of the tests are used to analyze their adequacy and to try to establish 

a comparison between them. 

 

 

Key words: econometrics, Monte Carlo experiment, Normality, Jarque-Bera, Lilliefors. 
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1. INTRODUCCIÓN 

Este trabajo de fin de grado está enmarcado en la línea de simulación y experimentos en 

econometría.  

El objetivo general será mostrar la forma de trabajar con experimentos de Monte Carlo 

para analizar determinado instrumento econométrico. 

Nuestro objetivo específico es comparar el comportamiento de los contrastes de 

normalidad utilizando para ello experimentos de Monte Carlo. En concreto comparamos 

el contraste de Jarque-Bera, que es el contraste más utilizado en econometría, con otro 

de los clásicos de los libros de estadística, Kolmogorov – Smirnov – Lilliefors. Se 

justificará la comparación realizada por el uso tradicional de ambos, y porque aparecen, 

junto a otros dos, en el programa Gretl, que es muy utilizado en aplicaciones 

econométricas. Con este objetivo, el trabajo se estructura de la siguiente forma. 

En el segundo apartado se recuerda el concepto y etapas de la Econometría, así como las 

hipótesis básicas que consideramos en un Modelo Lineal General. Se recuerdan los 

procedimientos de estimación que suelen utilizarse, y las propiedades que cumplen los 

estimadores correspondientes. En el tercer apartado, nos centramos en el supuesto de 

normalidad, analizando las consecuencias de su incumplimiento y los mecanismos para 

su detección. 

 En el cuarto apartado, diseñamos un experimento de Monte Carlo para estudiar el 

comportamiento de los dos contrastes de normalidad que hemos seleccionado. 

Posteriormente se obtienen resultados en el apartado quinto, y se interpretan con el fin 

de obtener las conclusiones, que son presentadas en el último apartado. 
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2. LA ECONOMETRÍA: CONCEPTO, ETAPAS Y 

ESPECIFICACIÓN DEL MODELO LINEAL GENERAL 

2.1. CONCEPTO DE ECONOMETRÍA 

El concepto de Econometría proviene de dos palabras griegas: oikonomía (economía) y 

metron (medida) (Trivez, 2004). Por lo tanto, etimológicamente econometría significa 

medición de la economía.  

Hay que tener en cuenta que el concepto de esta disciplina ha ido desarrollándose y 

evolucionando a lo largo del tiempo, pero hay ciertos aspectos que la definen.  

Una definición que englobe todos esos aspectos es la de Otero (1978), quien estableció 

que “La econometría se ocupa de la cuantificación de los fenómenos económicos y de 

la verificación de las teorías económicas, haciendo uso para ello de las estadísticas 

económicas y aplicando a tal fin métodos especiales de inferencia estadística”.  

2.2. ETAPAS DE LA ECONOMETRÍA 

La metodología de la econometría se puede ver reflejada a través de cuatro fases 

fundamentales: 

1. Especificación. Consiste en la construcción de un modelo en términos 

probabilísticos, el cual creemos que subyace a los datos observados. Esta fase 

acapara tres aspectos generales. En primer lugar, explica cuáles son las variables 

elegidas para ser explicadas (que en ciertas ocasiones sólo es una variable) o la 

delimitación de la realidad que se desea estudiar. En segundo lugar, determina 

las variables que participan en el modelo. Diferenciamos entre la parte 

sistemática, donde aparecen las variables fundamentales, y la parte aleatoria o 

perturbación aleatoria. Finalmente, establece la forma funcional, que relaciona 

las variables, esto es, las que explican a la endógena. 

2. Estimación. Consiste en la cuantificación de los parámetros que aparecen en el 

modelo. Para ello, es necesario tener información numérica sobre todas las 

variables que aparecen en el modelo, lo que nos permitirá obtener el modelo 

estimado. Los métodos de estimación más habituales son: el de los Mínimos 

Cuadrados Ordinarios (MCO) y el de la Máxima Verosimilitud (MV). Para un 

modelo lineal, ambos coinciden. 
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3. Validación. La validación de un modelo nos permite conocer si aceptamos o 

rechazamos la teoría inicialmente considerada, aunque hay que tener en cuenta 

que esta conclusión no es definitiva, ya que cualquier aceptación puede acabar 

en rechazo si cambian las condiciones. Es una etapa muy amplia. En cualquier 

aplicación es crucial analizar la significatividad, tanto individual como conjunta, 

de las variables, así como, analizar las medidas de bondad de ajuste (��…). 

También se incluiría en esta etapa toda una batería de contrastes que tratan de 

asegurar el cumplimiento de las hipótesis básicas, incluidas aquellas relativas a 

la perturbación aleatoria. 

4. Explotación. Cuando en la fase anterior, validación, se establece que el modelo 

es adecuado y coherente con los datos, se puede pasar a la última fase de la 

econometría, la explotación. Esta etapa puede tener tres finalidades, pudiendo 

abarcar una o varias de ellas: 

� El análisis estructural se encarga de analizar el signo y magnitud de los 

parámetros, y por tanto estudia la relación entre las variables. Nos 

permite analizar la sensibilidad de la variable endógena antes cambios en 

las variables explicativas (Xi), y puede servir para la toma de decisiones 

de tipo económico. 

� La predicción consiste en, dados los valores de las variables explicativas, 

determinar valores extramuestrales de las variables objetivo. Si más de 

un modelo ha superado la etapa de validación, utilizando la predicción 

podemos seleccionar el modelo que nos parece mejor, esto es, el que de 

predicciones más exactas. 

� La simulación intenta originar la trayectoria de las variables objetivo a 

través de cambios en las variables explicativas.  

2.3. HIPÓTESIS BÁSICAS DEL MODELO LINEAL GENERAL 

Para poder explicar las condiciones ideales que completan un modelo econométrico, hay 

que partir del modelo clásico de regresión lineal. Dado un modelo general, su expresión 

matricial es: 

y = Xβ + u 
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Donde y es el vector T x 1 de observaciones de la variable endógena, X es una matriz T 

x k que recoge las T observaciones de las k variables explicativas, β el vector de 

coeficientes de orden   k x 1, y u el vector T x 1 de perturbaciones aleatorias: 

y = �����⋯��
�            X = � 1 
�� ⋯ 
��1 
�� ⋯ 
��⋯ ⋯ ⋯ ⋯1 
�� ⋯ 
��

�          β = �
�
�⋯
��           u = �����⋯��� 

 

La relación que siguen las variables y parámetros de posición puede escribirse también 

como: 

Y i = β1 + β2X2i +… + βkXki + ui, (i =1,2,…, T) 

donde la variable endógena (Y) y las variables exógenas (X2, X3,… Xk) son magnitudes 

numéricas. Y sus conjuntos de valores (Y2, Y3,… YT), (X21, X22,… X2T),.., (Xk1,… XkT) 

son el resultado de la observación de una muestra aleatoria de tamaño T. 

En la anterior relación cabe destacar que la parte sistemática es β1 + β2X2i +… + βkXki, y 

la parte aleatoria es ui. 

Una especificación correcta de un modelo econométrico no está completa sin la 

especificación de la distribución de probabilidad de la perturbación así como, una 

indicación sobre la forma en que se han obtenido los valores de las variables 

explicativas. Este conjunto de información constituye las llamadas hipótesis básicas o 

clásicas. 

A continuación, sintetizamos los supuestos de partida que habitualmente se realizan 

para aplicar las etapas de la econometría, que se denominan las hipótesis básicas del 

Modelo Lineal General: 

1) La relación entre la variable endógena y las variables exógenas es lineal. La 

perturbación aleatoria se distribuye idéntica e independientemente como una 

normal: 

                                                                                                    ��  ~ iiN(0, ��) 

Se cumple por tanto: 

� E(ui) = 0 

� Homoscedasticidad: Var (ui) = �� ,  Ɐi    
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� No autocorrelación: Cov (ui , uj) =  E(ui uj) = 0 , Ɐi ≠ j    

 

2) No hay ninguna restricción sobre los parámetros del modelo (β1, β2,…, βk, σ
2). 

Cov (X, u)= 0, que implica independencia entre la parte sistemática y aleatoria. 

Pero si hacemos más restrictivo este supuesto y consideramos las X no 

estocásticas, ello ya garantiza la comentada independencia. 

3) Grados de libertad positivos: El número de observaciones debe de ser superior al 

número de parámetros: T>k. Esta hipótesis verifica la existencia de un número 

suficiente de grados de libertad en la estimación. 

4) La ausencia de multicolinealidad establece que todas las variables explicativas 

son linealmente independientes, y la hipótesis de convergencia garantiza la 

estabilidad a las X (oscilan alrededor de una constante, y su variabilidad también 

es constante). 

2.4. PROPIEDADES DE LOS ESTIMADORES MCO 

A la hora de estimar los parámetros de posición que aparecen en el Modelo Lineal 

General se pueden utilizar dos métodos: Mínimos Cuadrados Ordinarios (MCO) y el de 

la Máxima Verosimilitud (MV). En nuestro caso, dado que vamos a analizar la 

normalidad, conocemos que cuando esta hipótesis se cumple, ambos métodos de 

estimación serían iguales. 

La estimación MCO de los parámetros de posición vendrá dada por:  

�� = (
´
)−1
 
´Y.  

El parámetro de dispersión vendrá determinado por:  

��2= 
∑ �"� 2#−2 .  

Bajo el cumplimiento de las hipótesis básicas, la matriz de varianzas y covarianzas de �$ 
será: Var (�$) = ��2  (
´X) '�. 

Las principales propiedades de los estimadores tanto para muestras pequeñas como para 

muestras grandes ó asintóticas se sintetizan a continuación.  
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Para muestras pequeñas o finitas se cumple que los estimadores MCO de los 

parámetros de posición son: 

1) Lineales.  

2) Insesgados.  E (�$) =  � 

3) ELIO (Estimadores Lineales Insesgados Óptimos). Se considera que un 

estimador (�$) es ELIO de �, si es el estimador con menor varianza entre todos 

los estimadores de � que sean lineales e insesgados. 

4) Eficiente. Se considera que un estimador (�$) es eficiente de � cuando tenga la 

menor varianza de entre todos los estimadores insesgados de �. Para obtener la 

eficiencia de un estimador, debemos basarnos en un teorema conocido como el 

Teorema de Cramer-Rao. Dicho teorema establece que el límite inferior de la 

varianza de los estimadores insesgados viene dado en la diagonal principal de la 

inversa de la matriz de información.  

�−) � *2+*,*,´��−1
 

siendo ℓ, la función logarítmica de verosimilitud de una muestra determinada, y 

teniendo en cuenta que θ incluye β y σ2. 

En cuanto al parámetro de dispersión, éste cumple que es insesgado: E(�-�) = ��, pero 

no es ELIO ya que este parámetro no es lineal. 

Las propiedades de los estimadores para muestras grandes ó propiedades 

asintóticas son las que se limitan únicamente a las distribuciones muestrales que 

proceden de muestras con tamaño que crecen sin límite.  

Se nombraran las dos propiedades más utilizadas para los estimadores MCO de los 

parámetros de posición: 

1) Insesgadez asintótica. Se establece que un estimador es insesgado 

asintóticamente si se transforma en insesgado cuando el tamaño de la muestra 

tiende a infinito. Es decir: lim�→∞

)( �$) =  � 

Además, hay que tener en cuenta, que si un estimador es insesgado, también será 

asintóticamente insesgado, pero no a la inversa. 
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2) Consistencia. La consistencia es el mínimo requisito que se exige a cualquier 

estimador para poder considerarlo adecuado. Un estimador �$ será consistente si, 

a medida que T tiende a infinito, la distribución de este estimador se concentra 

en el punto correspondiente al verdadero valor del parámetro. (Trivez, 2004). 

Hablar de que �� es consistente es equivalente a decir que converge en 

probabilidad al verdadero valor del parámetro. 

En cuanto al parámetro de dispersión, hay que decir que cumple que es asintóticamente 

insesgado debido a su insesgadez, y cumple la propiedad de consistencia.  

 

3. NORMALIDAD DE LOS MODELOS 

Las propiedades de los estimadores MCO se cumplen bajo los supuestos de las hipótesis 

básicas. Analizaremos ahora la normalidad. ¿Qué ocurre si no se cumple? ¿Cómo 

podemos saber si se cumple? Si no se cumple, ¿podemos resolver los problemas de 

algún modo?. 

En este trabajo se va a analizar la no normalidad de la perturbación aleatoria de los 

modelos. Para ello es conveniente explicar en un primer momento cuales son las causas 

que provocan que no haya normalidad en la perturbación en los modelos, las 

consecuencias que esto conlleva, y las posibles soluciones a los problemas encontrados.  

Y en segundo lugar se explicarán los instrumentos para detectar su incumplimiento. 

Concretamente, los contrastes más importantes de normalidad y los que se utilizarán en 

el Experimento de Monte Carlo. 

3.1.  CAUSAS, CONSECUENCIAS Y SOLUCIONES 

Existen varias causas que provocan la no normalidad de la perturbación en un Modelo 

Lineal General. Por un lado se encuentra la forma funcional incorrecta del modelo 

específico. Por otro lado, puede ser causado por la existencia de datos atípicos, lo que 

quiere decir  que algunas observaciones de las que se disponen son muy dispares, es 

decir, o muy grandes o muy pequeñas, con respecto al resto de observaciones de la 

muestra.  
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En cuanto a las consecuencias que presenta la no normalidad, podemos distinguir: 

1) La inferencia estadística no es válida. Si la variable aleatoria u, sigue una 

distribución normal, la variable endógena (Y) también seguirá esa distribución 

según las hipótesis básicas nombradas anteriormente. Los parámetros de 

posición estimados son:  �$ = (
´
)'� 
´Y             (1) 

por tanto seguirán una distribución normal.  La normalidad de  �2� , permite 

utilizar la distribución  


34' 
3456347  ~ tT-k                 (2) 

para hacer contrastes de hipótesis. Uno de los más habituales es el de 

significatividad individual de los parámetros. Si u no sigue una normal, la 

distribución (2) no se cumple, por lo que no podemos fiarnos de los t-ratios para 

contrastar. Lo mismo ocurre con cualquier otro contraste que utilice el 

estadístico t, y también con los contrastes de restricciones lineales, u otros, que 

usan la F de Snedecor, que también se basa en la normalidad de  ��. 

2) Los estimadores MCO dejan de coincidir con los estimadores por máxima 

verosimilitud. Lo que ocurre es que, si maximizamos ℓ, siendo ℓ el logaritmo de 

la función de densidad conjunta de la variable endógena y, cuando la función de 

densidad es normal, es decir, f(x) = �5√�9 :'��;<=> ? @�
, ambos estimadores son 

iguales. Pero si la función de densidad no es normal, la función a maximizar será 

diferente, y los estimadores MV obtenidos no coincidirán con los MCO.  

3) Los estimadores mínimo-cuadráticos no son eficientes. La eficiencia nos la da la 

cota de Crammer Rao, que depende de ℓ, y ahora ℓ cambia, por lo que no 

podemos asegurar que sean eficientes. 

4) La estimación por intervalo no sería válida. Sigue la misma explicación que la 

inferencia estadística, ya que la construcción de un intervalo de confianza 

consiste es: IC= �$  ± AB �C �-
�  

Como soluciones al problema existente de la no normalidad, es decir, cuando la 

perturbación no sigue una distribución normal, si conociéramos la distribución correcta, 
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estimaríamos por MV, pero si no la conocemos podemos intentar paliar el problema de 

alguna de las formas siguientes: 

1) Realizar una mejor especificación del modelo, que es la solución que se toma de 

manera general, y lo que se hace en esta situación es introducir variables 

ficticias, tomar logaritmos,.. entre otros. 

2) Como soluciones más completas que no están a nuestro alcance, se puede 

mencionar, tal y como establece Peña en su libro Estadística Modelos y 

Métodos, que si la distribución es bimodal, para solucionar el problema 

podemos segmentar la población en subpoblaciones homogéneas. 

3.2. CONTRASTES DE NORMALIDAD 

Una vez analizadas las causas y las soluciones a la ausencia de normalidad, nos queda 

saber cómo podemos detectar su incumplimiento. Utilizaremos contrastes de hipótesis, 

y en este apartado explicamos los contrastes más importantes y los habituales en la 

literatura estadística y econométrica. 

3.2.1. Contraste de Jarque-Bera 

El contraste de Jarque- Bera (1987) es el más utilizado en la metodología econométrica. 

Es un contraste de grandes muestras (asintótico) y fundamentado en los residuos MCO. 

Esta prueba evalúa la asimetría y la kurtosis (o apuntamiento) de los residuos MCO.  

(Gujarati, 2003). 

Las distribuciones normales se caracterizan a través de los momentos hasta el cuarto 

orden. El primer y segundo momento son la media y la varianza, el momento de tercer 

orden es asimetría, y el momento de cuarto orden es kurtosis, los cuales son 0 y 3 

respectivamente. 

La hipótesis nula y la alternativa del contraste son: 

Ho : u  ̴ Normalidad (los residuos están normalmente distribuidos). Con g1=0      

y g2 = 3. 

            HA : u ̴  No normalidad (los residuos no están normalmente distribuidos) 

El estadístico de contraste es de la forma: JB = TDE��F + (E�'H)��I J 
siendo: T el tamaño de la muestra, g1 el coeficiente de asimetría y g2 el coeficiente de 

kurtosis. 
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Dicho estadístico asintóticamente sigue siempre una distribución chi-cuadrado con dos 

grados de libertad: 
�� 

Tras haber explicado el Contraste de Jarque-Bera, sería conveniente explicar dos 

contrastes, cuya combinación entre ambos, da lugar a Jarque-Bera: los contrastes de 

asimetría y de apuntamiento (ó kurtosis). 

3.2.1.1. El contraste de asimetría 

Tal y como establece Cao Abad y otros (2008), en el caso de ser normal la distribución, 

el coeficiente de asimetría sigue una distribución asintótica N(0, K6 #C  ), y para un 

tamaño de muestra grande (50 o más datos), g1 K# 6C  sigue una distribución asintótica 

N(0,1), que es la que se utiliza para contrastar Ho : g1 = 0 

 El contraste de asimetría establece que si se cumple la hipótesis de normalidad, dicho 

contraste estima un parámetro poblacional de asimetría que es cero. Por ello, el 

estadístico de contraste de una normal es el coeficiente de asimetría muestral: 

  g1 =  
∑ ��MN5ON  

donde g1 es el momento muestral de tercer orden, ut es la perturbación aleatoria (o los 

residuos del modelo), y  �P es la varianza por estimación de Máxima Verosimilitud. 

3.2.1.2. El contraste de apuntamiento ó kurtosis 

En el caso de ser normal la distribución,  el coeficiente de apuntamiento toma el valor 

3, y sigue una distribución asintótica  N(0, K24 #C ). (Cao Abad y otros, 2008). Pero 

para tamaños muestrales grandes, (g2-3) K# 24C  sigue una distribución asintótica 

N(0,1), que es la que se utiliza para contrastar la hipótesis nula como g2 – 3 = 0. 

El contraste de apuntamiento considera, tal y como ocurría en el contraste de asimetría, 

que el coeficiente de apuntamiento de la distribución normal es cero. Por ello, el 

estadístico de contraste para la bondad de ajuste de una normal es el coeficiente de 

apuntamiento muestral. 

              g2 = 
∑ ��MR5OR  -3 
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donde g2 es el momento muestral de cuarto orden, ut es la perturbación aleatoria (o los 

residuos del modelo), y  �P es la varianza por estimación de máxima verosimilitud. 

3.2.2. El contraste de Kolmogorov – Smirnov - Lilliefors 

El contraste de Kolmogorov- Smirnov-Lilliefors es una modificación del contraste de 

Kolmogorov-Smirnov. Y por ello es conveniente explicar primero el contraste 

Kolmogorov-Smirnov, y más tarde su modificación.  

El contraste KS está diseñado para el contraste de ajuste a distribuciones continuas, el 

cual está basado en la distribución del estadístico Dn, que compara la distribución 

muestral y la poblacional supuesta: 

  Dn = S�TU∈W | XY (x) – F (x) | 

donde: XY (x) es una función de distribución empírica muestral, y F (x) es la función 

teórica normal de la población que queremos contrastar en nuestro caso. 

El contraste de Kolmogorov – Smirnov – Lilliefors establece que se debe estimar la 

media poblacional mediante la media muestral y la varianza poblacional a través de la 

varianza muestral. De este modo, construir el siguiente estadístico: 

Dn = S�TU∈W | XY (x) – Ф ( 
U' Z[\  )| 

donde: : XY (x) es una función de distribución empírica muestral, S es la desviación 

típica media, 
 ] es la media. 

La hipótesis nula y la alternativa serán las siguientes: 

          · Ho: u  ̴ Normalidad (los residuos están normalmente distribuidos) 

          · HA: u  ̴  No Normalidad (los residuos no están normalmente distribuidos)  

La distribución de este estadístico fue tabulada por Lilliefors, y será respecto a dicha 

tabulación como debemos juzgar la significación del valor obtenido para este 

estadístico. (Cao Abad y otros, 2008) 

Podemos entender mejor este contraste mediante el ejemplo que aparece en Peña 

(1991). 

Contrastar la hipótesis de que los datos siguientes provienen de una distribución 

normal: (20, 22, 24, 30, 31, 32, 38). 
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En primer lugar calculamos la media y varianza muestrales para obtener las 

probabilidades teóricas. La media de los siete datos es: ]̂ = 28,14, y la 

desviación típica corregida por grados de libertad: _� = 
∑(
"−
])2#−1  = 6,39. 

Para efectuar el contraste construimos la siguiente tabla: 

Nº de 

Obs. 

X XY (x) F(x) D1 D2 Dn 

1 20 0,1429 0,1020 0,1020 0,0409 0,1020 

2 22 0,2857 0,1685 0,0256 0,1172 0,1172 

3 24 0,4286 0,2578 0,0279 0,1718 0,1718 

4 30 0,5714 0,6141 0,1855 0,0427 0,1855 

5 31 0,7143 0,6736 0,1018 0,0407 0,1018 

6 32 0,8571 0,7258 0,1115 0,0313 0,1115 

7 38 1,0000 0,9382 0,0811 0,0618 0,0811 

 

 Los valores de XY (x) se han obtenido simplemente mediante: XY (x) = i/T 

donde i representa el índice ordinal de la observación, y los valores F(x) se han 

calculado tipificando los siete datos y mirando en tablas de la normal estándar. 

Para ello se calcula: `� = 
Ua'U̅\$   y se obtiene en tablas el valor de F(`�). En la tabla, 

D1 representa el valor: D1 = | Fn (xi-1) – F(xi)|. Mientras que D2 = | Fn (xi) – F(xi)|. 

La tabla de Lilliefors, indica que el valor de D crítico para un nivel de 

significación del 5% y un tamaño muestral de 7 es: DC = (0,05;7) = 0,300 

Y como la máxima distancia obtenida en nuestros datos es Dn = 0,1855, 

concluimos que no hay evidencia suficiente en los datos para rechazar la 

hipótesis de normalidad. 
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3.2.3. El contraste de Shapiro – Wilk  

El contraste se construye a partir de un estadístico que tiene en cuenta la distancia entre 

la mayor y menor observación muestral, entre la segunda y la penúltima, y así 

sucesivamente. Es un estadístico mucho menos intuitivo que el anterior. El estadístico 

es el siguiente: 

w =  
c�� \�    siendo A = ∑ de,�g��hei� (^(�'ej�) − ^(e)) 

donde: # _�= ∑(
� − 
[)�, los coeficientes de de,� están tabulados y ^(e) es el valor 

ordenado en la muestra con lugar j. 

Shapiro y Wilk han tabulado los valores de estas constantes, asi como la distribución 

del estadístico w. (Cao Abad y otros, 2008) 

Cabría destacar que el estadístico bajo la hipótesis de normalidad se rechazará para 

valores pequeños del estadístico. 

3.2.4 El contraste de Doornik - Hansen  

Este es un contraste general, en el sentido de que considera tanto el coeficiente de 

asimetría como el coeficiente de kurtosis, igual que hace el contraste de normalidad de 

Jarque-Bera. Puede considerarse una modificación de Jarque-Bera. 

Doornik y Hansen (2008) establecen que si los coeficientes de asimetría y kurtosis se 

estiman a partir de sus correspondientes contrapartidas muestrales, tales coeficientes no 

están independientemente distribuidos en muestras finitas; el coeficiente de kurtosis 

especialmente se aproxima a la normalidad muy lentamente y el uso de la distribución 

asintótica conduce a un sobre rechazo de la hipótesis nula de normalidad. 

Su planteamiento se basa en calcular tales coeficientes a partir de una transformación de 

los datos originales, lo que da lugar al coeficiente de asimetría transformado (z1) y al 

coeficiente de kurtosis transformado (z2) que están más próximos a la distribución 

Normal. 

El estadístico que proponen viene dado por: 

         DH =  ̀�� + ̀ �� 

el cual bajo la hipótesis nula de normalidad se distribuye asintóticamente como una 
� 

con 2 grados de libertad. 
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4. EXPERIMENTO DE MONTE CARLO 

4.1 EXPLICACIÓN DEL EXPERIMENTO  

Los experimentos de Monte Carlo se pueden utilizar con diversos objetivos. En 

ocasiones se utilizan para entender problemas con datos reales y medir la influencia de 

todos los factores que se hayan considerado como importantes. 

Habitualmente, un experimento de Monte Carlo sigue la siguiente estructura: 

1) Especificar un PGD (Proceso Generador de los datos) o modelo verdadero. 

                      Yi = β1 + β2X2i + … + βkXki + ui                            i = 1,… T 

siendo la variable dependiente (Yi), los coeficientes (β1, β2,…, βk), la                     

perturbación aleatoria (ui) y las variables explicativas (X2i, …, Xki). 

En el caso de que el modelo verdadero sea el Modelo Lineal General (MLG) 

que cumple las hipótesis básicas, generamos la perturbación como una 

normal N (0, ��), y establecemos las variables explicativas, los coeficientes 

y el tamaño muestral.  

2)  Generar un conjunto de datos de Yi usando el PGD anterior. Esto es, una 

muestra de Yi a partir de lo anterior. 

3) Estimar el modelo para obtener el estimador o estadístico de contraste objeto 

de estudio, con la finalidad de analizarlo con esta muestra generada 

artificialmente. 

4) Repetir las etapas 2 y 3 un elevado número de veces. Cada una de ellas se 

denomina réplica, iteración o simulación. Por tanto tendremos R muestras de Y 

a partir de R muestras generadas de u, manteniendo fijas las muestras de las 

variables explicativas y también los parámetros. 

5) Evaluar los resultados obtenidos. 

Como nuestro objetivo es analizar el funcionamiento de un contraste, necesitamos de 

algunos conceptos e instrumentos sobre inferencia estadística. En el caso de que nuestro 

objetivo fuera analizar el posible sesgo de los estimadores, no sería necesario. 

Un contraste de hipótesis se puede definir como la regla de decisión a través de la cual 

optamos creer en una o en otras hipótesis. En la toma de decisiones para cada uno de los 

contrastes realizados utilizaremos dos tipos de errores:  
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� Error de tipo I: es el error que se comete al rechazar la hipótesis nula cuando 

realmente es cierta. 

� Error de tipo II: es el error que se produce al aceptar la hipótesis nula cuando 

realmente es falsa. 

Puesto que en un contraste de hipótesis se pueden cometer estos dos tipos de errores, se 

tienen que cuantificar de alguna forma. Para ello, se pueden calcular las probabilidades 

de que ocurran (son probabilidades condicionadas puesto que no se conoce la 

autenticidad de las hipótesis). Estas probabilidades son las que se denominan “tamaño 

del error” tipo I y tipo II respectivamente.  

Tamaño error tipo I = P { Rechazar Ho | Ho es cierta } = ε 

Tamaño error tipo II = P { Aceptar Ho | Ho es falsa } = δ 

Se denominará ε al nivel de significación o tamaño del contraste, 1 – ε al nivel de 

confianza, 1 – δ a la potencia del contraste, esto es, la probabilidad de rechazar Ho 

cuando Ho es falsa. 

Para realizar un contraste de hipótesis, el investigador fija de antemano  ε, por lo tanto, 

la probabilidad del error del tipo I es conocida. 

A partir de aquí, podemos llevar a cabo experimentos que nos ayuden a determinar el 

comportamiento de un estadístico de contraste utilizando para ello la proporción de 

rechazos de la hipótesis nula (tanto si es cierta como si es falsa). 

Como fijamos ε, si el contraste funciona bien es de esperar que cuando la hipótesis nula 

sea cierta, el porcentaje de veces, de las R iteraciones que se rechace una Ho que es 

cierta se aproxima a (ε*100)%.  

Otro concepto muy importante es el de potencia, definido como la probabilidad de 

rechazar la hipótesis nula cuando realmente es falsa. Si hemos generado el PGD de 

forma que Ho es falsa, el contraste será adecuado si capta dicha falsedad un porcentaje 

de veces muy elevado, que tienden al 100%  (potencia). 

4.2 NUESTRO ESTUDIO DE MONTE CARLO 

Supongamos que nuestro modelo verdadero o PGD (proceso generador de los datos o 

modelo verdadero) es: 

 Yi = β1 + β2 X2i + β3X3i + ui 
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donde la Yi es la variable dependiente, Xi las variables explicativas y la ui es la 

perturbación aleatoria del modelo. 

Para comenzar: 

1) Generamos las variables X2i y X3i para mantenerlas fijas en las diferentes 

réplicas, siendo X2i una chi-cuadrado con 5 grados de libertad y X3i una u (0,11). 

Estos valores suponen una variabilidad similar para las dos variables, aunque los 

intervalos de valores que pueden tomar sean diferentes. 

2) Damos valor a los parámetros: β1, β2 y β3. Concretamente cada uno de ellos tiene 

valor igual a la unidad. 

A partir de aquí, generaremos 1000 muestras de la perturbación ui, es decir, hacemos 

1000 réplicas, y en cada una de ellas, la muestra de las variables X2 y X3 es la misma, 

esto es, son variables fijas para muestras repetidas. Cada muestra de u da lugar a una Y. 

Estimaremos el modelo 1000 veces. 

En nuestro caso, el objetivo es generar el modelo con diferentes distribuciones para la 

perturbación (t de student, Normal, Gamma,…), y aplicar contrastes de normalidad.  El 

interés se centra en dos contrastes de normalidad: el habitual de la literatura 

econométrica, Jarque-Bera, y el ampliamente utilizado en la literatura estadística, 

contraste de Lilliefors. Llevaremos a cabo varios experimentos en los que la 

distribución de la perturbación sea diferente. 

Se presenta en la tabla 1 las características de todas las distribuciones que vamos a 

considerar, para así poder ver la similitud o diferencia con la Normal. 

En la tabla 1 se han expuesto las principales características de las distribuciones que se 

van a utilizar como perturbación aleatoria en nuestro experimento de Monte Carlo. 

Vamos a explicar los resultados del experimento en grupos de distribuciones. En el 

primer grupo se encuentran las distribuciones t de student y logística, dado que son las 

que tienen el mismo rango que la Normal, además de su simetría. En el segundo grupo, 

se encuentran las distribuciones F de Snedecor y chi-cuadrado, dado que son aquellas 

que se construyen a partir de la Normal, pero tienen rango sólo positivo y no son 

simétricas. Otro grupo será el formado por la distribución gamma, y su caso particular, 

exponencial, dado que es una distribución muy diferente de la Normal. Y aparecerán 

dos distribuciones solas debido a las características que tienen: log-normal y bimodal. 
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Tabla 1. Características de distribuciones. 

 

Rango de 

la 

variable 

Esperanza y varianza 
Otras características 

relevantes 

Normal 

(N0,2) 

(-∞, +∞) 

 

E(X) = 0 

Var (X) = 2 

Simetría 

 

t de Student (tn) (-∞, +∞) 

E(X) = 0 

Var(X) = 
Y(Y'�) 

Simetría 

n>30 se parece a la 

Normal. 

Logística (-∞, +∞) 

E(X) = 0 

Var(X) = 
9�H  

Simetría 

F de Snedecor 

(Fn,m) 
(0, +∞) 

E(X) = 
kk'� 

Var(X) = 
�k�(Yjk'�)Y(k'I)(k'�)� 

Se construye a partir de 

la Normal. 

No es simétrica. 

Chi-cuadrado 

(
Y�) 
(0, +∞) 

E(X) = n 

Var(X) = 2n 

Se construye a partir de 

la Normal. 

No es simétrica 

Log-normal 

[log(x)~N(µ,��)] 
(0, +∞) 

E(X) = :lj?��  

Var(X) = :�l(:�5�−:5�) 

El logaritmo de la 

variable es Normal. 

Gamma (Ga,p) (0, +∞) 

E(X) = 
mT 

Var(X) = 
mT� 

Si a=1, y p cualquier 

valor, tenemos la 

distribución exponencial 

()n), ó Gamma(1, λ). 

Bimodal (-∞, +∞) 
E(X) = ±µ 

Var (X) = �� 

Combina 2 normales 

(50%). Consideramos 

esperanzas de magnitud 

igual y signo contrario, y 

mismas varianzas. 
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Las preguntas que nos planteamos a la hora de explicar los resultados son, entre otras: 

¿Captan los dos contrastes la no normalidad sea cual sea la distribución de u, o por el 

contrario, depende del tipo de distribución que sigue la perturbación aleatoria? ¿Puedo 

fiarme del contraste en muestras pequeñas? ¿Puedo decir que uno de ellos es mejor?. 

En el siguiente apartado trataremos de dar respuesta a estas preguntas a partir de los 

resultados de los experimentos. 

 

5. RESULTADOS DEL EXPERIMENTO DE MONTE CARLO 

En este apartado, se van a mostrar los resultados obtenidos en el experimento de 

Montecarlo. En cada una de las tablas presentadas tendremos en la parte superior el 

tamaño muestral utilizado (T=50, 100 y 500), así como el nivel de significación que 

hemos fijado previamente (0.01, 0.05  y 0.1). En el margen izquierdo de la tabla se 

explica la distribución de la que tenemos los resultados, y los contrastes que hemos 

utilizado. El contenido de cada celda nos da la proporción (tanto por uno) de rechazos 

de Ho sobre el total de réplicas (Yº pqrsmtuS�vvv ). 

La tabla 2 presenta los resultados obtenidos cuando la ui ~ N(0,2). 

Tabla 2.Proporción de rechazos de Ho si ui ~ N (0,2) 

Estadístico  

contraste 

T=50 T=100 T=500 

1% 5% 10% 1% 5% 10% 1% 5% 10% 

JB 0,018 0,045 0,066 0,018 0,038 0,068 0,011 0,034 0,084 

  LI 0,006 0,046 0,098 0,007 0,052 0,1 0,008 0,049 0,102 

Teniendo en cuenta que siempre la hipótesis nula es normalidad, esta tabla, a diferencia 

de las demás, no nos muestra la potencia, sino el tamaño del error de tipo I. Nosotros 

queremos que dicho error se aproxime al fijado previamente (0.01, 0.05 ó 0.1) para así 

poder decir que capta la normalidad. Es decir, si nos fijamos en la tabla, lo ideal que 

buscamos es  que los valores de las celdas se aproximen a 0.01, 0.05 ó 0.1 (según ε). 

Esto ocurre para un tamaño muestral de 100 y 500, cuando ε es 5% y 10% para el 

contraste de Lilliefors. Vemos que para los tres tamaños muestrales analizados, ambos 
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contrastes detectan la normalidad  (no rechazan Ho), pero es el contraste de Lilliefors el 

que mejor la capta en comparación con Jarque-Bera. 

Gráfico 1. Función de densidad Normal cuando u ~ N(0,2) 

 

El gráfico 1 muestra cómo es la función de densidad de una Normal. Así, vemos 

gráficamente cuál es la estructura que toma, y posteriormente, podemos compararla con 

otras distribuciones.  

En la tabla 3 se muestran la proporción de rechazos de la hipótesis nula siendo la 

perturbación aleatoria una t de Student o una logística, conociendo que estas 

distribuciones son similares a la normal. 

Tabla 3. Proporción de rechazos de Ho si ui ~ t de Student (tn) y logística. 
                  

Distribución 

y estadístico 

T=50 T=100 T=500 

1% 5% 10% 1% 5% 10% 1% 5% 10% 

  t1 
JB 0,983 0,988 0,991 0,999 1 1 1 1 1 

  
LI  0,961 0,984 0,991 0,999 1 1 1 1 1 

  t15 
JB 0,07 0,112 0,147 0,106 0,185 0,222 0,311 0,436 0,527 

  
LI  0,008 0,057 0,116 0,005 0,068 0,139 0,022 0,123 0,228 

  t40 
JB 0,031 0,058 0,088 0,042 0,082 0,116 0,056 0,127 0,197 

  
LI  0,008 0,048 0,092 0,008 0,05 0,114 0,011 0,052 0,118 

  Logística 
JB 0,145 0,204 0,248 0,286 0,384 0,445 0,804 0,889 0,911 

  
LI  0,015 0,086 0,168 0,031 0,153 0,251 0,204 0,483 0,652 
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Sabemos que aquellas distribuciones t de Student con grados de libertad superiores a 30, 

se aproximarán a una N (0,1). En la tabla 3 podemos ver cómo conforme aumentan 

estos grados de libertad, la potencia es cada vez menor, lo que quiere decir que no 

rechaza la normalidad dada la similitud entre ambas distribuciones. Es decir, la 

similitud entre ambas distribuciones hace que el contraste no discrimine entre ellas. 

Si comparamos gráficamente la distribución Normal con la t de Student, podemos 

observar cómo, a medida que los grados de la t aumentan, la diferencia entre la 

distribución de probabilidad de ambas se hace menor. Esto lo podemos observar en los 

gráficos 2, 3 y 4 presentados a continuación. Destacamos que la diferencia cuando toma 

grado de libertad 15 y 40, es muy pequeña, tanto en tablas como gráficamente. 

  

Gráfico 2. Función de densidad u ~ t1             Gráfico 3. Función de densidad u ~ t15 

 

 

Gráfico 4. Función de densidad u ~ t40 
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En la tabla 3 vemos que cuando u sigue una distribución logística, las potencias no son 

tan bajas como en las distribuciones t15 y t40. 

El gráfico 5 muestra la función de densidad de una distribución logística comparada con 

una distribución Normal. 

 Gráfico 5. Función de densidad de la distribución logística. 

 

A pesar de que la distribución logística es similar a la normal, el gráfico 5 muestra 

diferencias que justifican las proporciones de rechazos que hemos obtenido. En 

muestras grandes el contraste capta la no normalidad cuando la perturbación es 

logística. No obstante, Lilliefors sigue mostrando una potencia más baja. Por tanto, en 

este caso el estadístico Jarque-Bera se comporta mucho mejor que Lilliefors. 

Observamos en la tabla 3 que para ambas distribuciones el contraste más potente es el 

de Jarque-Bera. Cabría destacar que en la función t de student, a pesar de que Jarque-

Bera es más potente, para niveles de significación de 0,1, vemos que las diferencias 

entre éste contraste y Lilliefors son muy pequeñas. 

La tabla 4 presenta los resultados obtenidos cuando la perturbación aleatoria sigue una 

distribución F de Snedecor o Chi-cuadrado. 

Por lo explicado anteriormente sobre la toma de decisiones de cómo hemos dividido las 

variables en tablas, conocemos que estas dos distribuciones, F y X2, se forman a partir 

de la normal. Sin embargo, el rango de valores que pueden tomar las variables es muy 

diferente al de la Normal, ya que sólo adopta valores positivos. 
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Tabla 4. Proporción de rechazos de Ho si ui ~ F de Snedecor (Fn,m) y Chi-cuadrado 

(X2
n) 

Distribución T=50 T=100 T=500 

y estadístico 1% 5% 10% 1% 5% 10% 1% 5% 10% 

F2,5 

JB 0,987 0,997 0,999 1 1 1 1 1 1 

LI 0,957 0,995 0,997 1 1 1 1 1 1 

F2,12 

JB 0,943 0,98 0,99 1 1 1 1 1 1 

LI 0,842 0,96 0,984 0,998 0,999 1 1 1 1 

F3,8 

JB 0,938 0,978 0,987 1 1 1 1 1 1 

LI 0,824 0,952 0,978 1 1 1 1 1 1 

wxy 
JB 0,97 0,991 0,999 1 1 1 1 1 1 

LI 0,943 0,992 0,998 1 1 1 1 1 1 

wzy 
JB 0,505 0,632 0,718 0,872 0,949 0,982 1 1 1 

LI 0,215 0,499 0,636 0,57 0,829 0,899 1 1 1 

wxzy  
JB 0,178 0,284 0,367 0,407 0,577 0,672 1 1 1 

LI 0,037 0,209 0,325 0,141 0,392 0,571 0,914 0,987 0,996 

La distribución F de Snedecor destaca por sus elevadas potencias aun con tamaños 

muestrales y niveles de significación pequeños, lo que quiere decir que captan la no 

normalidad de las variables. Pero en el caso de la distribución chi-cuadrado, para grados 

de libertad pequeños tiene potencias muy elevadas (captando así la no normalidad), pero 

conforme aumenta los grados de libertad, la potencia va disminuyendo. 

El gráfico 6 muestra la función de densidad de una variable que sigue una F de 

Snedecor, comparando diferentes grados de libertad. De esta forma comprobamos que 

son funciones muy diferentes a la Normal. No obstante se observa que para la F3,8, aun 

tomando sólo valores positivos, es la que más podríamos decir que se parece a la 

Normal, aún siendo bastante diferente. 
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Gráfico 6. Función de densidad de la distribución F de Snedecor 

 

Estas grandes diferencias justifican los resultados de la tabla 4. 

En el gráfico 7 se muestran la evolución de las distribuciones chi-cuadrado conforme 

aumentan los grados de libertad. 

Gráfico 7. Función de densidad de la distribución Chi-cuadrado. 1 

 
1 ”denCh1”, “denCh5” y “denCh15” son las densidades de distribuciones 
��, 
{�, y 
�{�  respectivamente. 
 

Sabemos que la distribución chi-cuadrado se forma a partir de la Normal, pero aun con 

eso, es muy diferente a la Normal, característica que los gráficos muestran. Con ello 

podríamos decir que, aunque para tamaños muestrales pequeños (50), y cuando la 
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distribución tiene 15 grados de libertad, tanto Jarque-Bera como Lilliefors no capten la 

falta de normalidad, los gráficos muestran la gran diferencia con respecto a la Normal. 

El gráfico podría justificar en parte este resultado, ya que muestra (línea verde) que 

dicha distribución sigue una forma parecida a la Normal sólo que no está centrada en el 

cero. 

En la tabla 4 se observa que Jarque-Bera se comporta mejor, porque tiene una potencia 

más alta que Lilliefors. Es importante tenerlo en cuenta en muestras pequeñas, porque 

cuando aumenta el tamaño muestral, ambos son muy potentes, no habría diferencia. 

Por último, respecto a este grupo de distribuciones, cabría destacar que para T=500, la 

potencia es muy alta en todos los casos. 

La tabla 5 nos muestra la proporción de rechazos de la hipótesis nula cuando la ui  sigue 

una distribución log-normal. Una variable aleatoria X sigue una distribución log-normal 

si su logaritmo sigue una normal, y en este caso, sigue una normal con media 3 y 

varianza 0.5.  

Tabla 5. Proporción de rechazos de Ho si ui ~ Log-Normal [ log (x) ~ N (µ , σ2) ] 

Distribución T=50 T=100 T=500 

y estadístico 1% 5% 10% 1% 5% 10% 1% 5% 10% 

log (x) ~ N3, 0.5 

JB 0,626 0,744 0,81 0,949 0,987 0,993 1 1 1 

LI  0,358 0,646 0,755 0,735 0,93 0,97 1 1 1 

Observamos que es más potente Jarque-Bera que Lilliefors, aunque cabe destacar que 

conforme aumentamos el tamaño muestral y el nivel de significación las diferencias 

entre ambos contrastes desaparecen. 

Es importante mencionar, que a pesar de ser una distribución que proviene de la 

Normal, las potencias son bastante elevadas, lo que quiere decir que ambos contrastes 

detectan la no normalidad de la distribución. 

En la tabla 6 presentamos los resultados cuando ui ~ Gamma (Ga,p) y su caso particular, 

exponencial (Eλ).  

 

 



29 
 

Tabla 6. Proporción de rechazos de Ho si ui ~ Gamma (Ga,p) y Exponencial (Eλ) 

Distribución T=50 T=100 T=500 

y estadístico 1% 5% 10% 1% 5% 10% 1% 5% 10% 

G0.1 , 1 JB 1 1 1 1 1 1 1 1 1 

 
LI  1 1 1 1 1 1 1 1 1 

G1 , 1 ó E1 JB 0,827 0,926 0,965 0,997 1 1 1 1 1 

 
LI  0,664 0,889 0,939 0,986 0,998 1 1 1 1 

G3 ,  1 JB 0,401 0,558 0,651 0,813 0,92 0,961 1 1 1 

 
LI  0,18 0,466 0,605 0,47 0,782 0,873 1 1 1 

G4 , 1 JB 0,345 0,474 0,568 0,671 0,841 0,912 1 1 1 

 
LI  0,128 0,365 0,477 0,327 0,647 0,765 0,999 1 1 

Se trata de dos distribuciones muy diferentes a la Normal, de ahí que las potencias sean 

muy altas aun cuando miramos tamaños muestrales pequeños, y cuando aumentamos 

los parámetros que las componen. Se puede resaltar que en la distribución Gamma cuyo 

parámetro a es 0,1 y cuyo parámetro p es 1, ambos estadísticos detectan la no 

normalidad para cualquier tamaño muestral. En general, en tamaños muestrales grandes 

se detecta la no normalidad sea cual sean los parámetros, pero en tamaños muestrales 

pequeños la potencia es más baja cuando mayor es el parámetro a. 

Conforme el parámetro a aumenta, ambos contrastes son menos potentes. Esto ocurre en 

T = 50 y T = 100, no es T = 500, donde la potencia es siempre la máxima.  

El contraste de Jarque-Bera es más potente que el de Lilliefors, aspecto que se nota 

sobre todo para tamaños muestrales pequeños ya que conforme éstos aumentan, las 

diferencias disminuyen.  

El gráfico 8 muestra las distribuciones Gamma que hemos analizado en la tabla 6. 

Vemos que tanto la Gamma (3,1) como la Gamma(4,1) tienen una forma algo parecida a 

una “campana” como la Normal, tal y como mostraba la tabla 6. Asimismo, las otras 

dos distribuciones Gamma analizadas, vemos gráficamente que toman un forma 

diferente a la Normal.  
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Gráfico 8. Función de densidad de la distribución Gamma. 2 

 
2 ”denG011”, “denG11”, “denG31” y “denG41” son las densidades de distribuciones G0.1,1, G1,1, G3,1 y 
G4,1  respectivamente. 
 

La tabla 7 muestra el caso en el que la distribución de u es bimodal. Hemos generado las 

distribuciones bimodales 50-50 [N(µ,��), N(µ,��)].  

Tabla 7. Proporción de rechazos de Ho si ui ~ Bimodal 

Distribución T=50 T=100 T=500 

y estadístico 1% 5% 10% 1% 5% 10% 1% 5% 10% 

N(-1,1),       

N(1,1) 

JB 0 0,001 0,006 0 0,003 0,019 0,128 0,479 0,687 

LI  0,006 0,049 0,109 0,01 0,084 0,154 0,118 0,425 0,604 

N(-3,1), 

N(3,1) 

JB 0 0,017 0,78 0,822 1 1 1 1 1 

LI  0,937 0,999 1 1 1 1 1 1 1 

N(-1,5), 

N(1,5) 

JB 0,014 0,038 0,053 0,022 0,038 0,061 0,008 0,038 0,082 

LI  0,005 0,051 0,101 0,01 0,05 0,089 0,006 0,047 0,104 

N(-3,5), 

N(3,5) 

JB 0,009 0,02 0,038 0,009 0,021 0,035 0,002 0,024 0,068 

LI  0,005 0,048 0,093 0,007 0,056 0,104 0,012 0,062 0,113 
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Notar que hemos mantenido siempre ±µ, y la misma varianza. Esto podría haber sido de 

otro modo, pero la lógica nos lleva a hacerlo así, para que al menos exista cierta 

similitud con la normal, en cuanto a “simetría” y a varianza constante. 

En la tabla 7, se observa que cuando la varianza es pequeña (en nuestro caso, 1), 

conforme se aumenta la media, la potencia aumenta, y por tanto captan la no 

normalidad. Sin embargo, cuando aumentamos la varianza (en nuestro caso, 5), 

conforme aumenta la media, vemos que la potencia es más pequeña. A nivel general, 

con varianza 5, ambos contrastes no captan la no normalidad. 

Los gráficos 9 y 10 muestran las distribuciones bimodales con varianza igual a la 

unidad y con distinta media (en el caso del gráfico 9, es con media igual a ± 1, y en el 

caso del gráfico 10, es con media igual a ± 3). 

Gráfico 9. Función de densidad Bimodal con µ=±1 y |y = x. 3 

 
3 ”fdnorm” y “fdenbm1” son las densidades de distribuciones N0,1 y Bimodal (50%) N(-1,1),N(1,1). 
 

Vemos que cuando la media es 3, gráficamente es mucho más diferente (tal y como 

vemos en la tabla 7 con las potencias tan elevadas), por tanto, detectan la falta de 

normalidad, en cambio, cuando toma media 1, lo que ocurre es que no discrima por la 

cercanía de las funciones de densidad. 
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Gráfico 10. Función de densidad Bimodal con µ=±3 y |y = x. 4 

 
4 ”fdnorm” y “fdenbm3” son las densidades de distribuciones N0,1 y Bimodal (50%) N(-3,1),N(3,1). 
 

Por otro lado, cuando aumentamos la varianza (en nuestro caso a 5), lo que ocurre es 

que ambos contrastes detectan la normalidad siendo más potente Lilliefors. 

Los gráficos 11 y 12 muestran las distribuciones bimodales con varianza igual a la cinco 

y con distinta media (en el caso del gráfico 11, la media es igual a ± 1, y para el gráfico 

12, la media es igual a ± 3). 

Gráfico 11. Función de densidad Bimodal con µ=± 1 y  |y = z. 5 

 
5 ”fdnorm5” y “fdenbm15” son las densidades de distribuciones N0,5 y Bimodal (50%) N(-1,5),N(1,5). 
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Gráfico 12. Función de densidad Bimodal con µ=± 3 y  |y = z. 6 

 
6 ”fdnorm5” y “fdenbm35” son las densidades de distribuciones N0,5 y Bimodal (50%) N(-3,5),N(3,5). 
 

Vemos que ambos gráficos muestran lo que los resultados de la tabla 7 exponían, y es la 

similitud que comparten las distribuciones bimodales con varianza grande (5), con la 

función de distribución Normal. Normalidad en el aspecto de que a pesar de ser dos 

subpoblaciones, las probabilidades que toman en función de la perturbación aleatoria 

son muy parecidas. 

Como resumen general, hemos realizado una tabla (tabla 8) en la que, de mayor a menor 

potencia de los contrastes, se ordenan las distribuciones señalando en cada caso qué 

contraste (Jarque-Bera ó Lilliefors) es más potente. Hemos establecido las potencias 

para cada tamaño muestral al 5% de nivel de significación, así como que las hemos 

ordenado, resaltando que las cuatro últimas distribuciones, cambian de orden cuando el 

tamaño muestral pasa de 50 a 100, pero se mantienen en el mismo orden cuando se pasa 

de tamaño muestral 100 a 500. 
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Tabla 8. Cuadro resumen de los resultados de Experimento de Monte Carlo.7 

T=50 T=100 T=500 

Distrib Pot CMP Distrib Pot CMP Distrib Pot CMP 

G 0.1 , 1 1 

JB y 

LI G 0.1 , 1 1 

JB y 

LI G 0.1 , 1 1 

JB y 

LI 

N (-3,1)(3,1) 0,999 LI N (-3,1)(3,1) 1 LI N (-3,1)(3,1) 1 LI 

F 2,5 0,997 JB F 2,5 1 JB F 2,5 1 JB 


�� 0,991 JB 
�� 1 JB 
�� 1 JB 

F 2,12 0,98 JB F 2,12 1 JB F 2,12 1 JB 

F 3,8 0,978 JB F 3,8 1 JB F 3,8 1 JB 

t 1 0,988 JB t 1 1 JB t 1 1 JB 

G 1,1 0,926 JB G 1,1 1 JB G 1,1 1 JB 

log-

normal 0,744 JB 

log-

normal 0,987 JB log-normal 1 JB 


{� 0,632 JB 
{� 0,949 JB 
{� 1 JB 

G 3,1 0,558 JB G 3,1 0,92 JB G 3,1 1 JB 

G 4,1 0,474 JB G 4,1 0,841 JB G 4,1 1 JB 


�{�  0,284 JB 
�{�  0,577 JB 
�{�  1 JB 

Logística 0,204 JB Logística 0,384 JB Logística 0,889 JB 

t 15 0,112 JB t 15 0,185 JB t 15 0,436 JB 

t 40 0,058 JB N (-1,1)(1,1) 0,084 LI N (-1,1)(1,1) 0,425 LI 

N (-1,5)(1,5) 0,051 LI t 40 0,082 JB t 40 0,127 JB 

N (-1,1)(1,1) 0,049 LI N (-3,5)(3,5) 0,056 LI N (-3,5)(3,5) 0,062 LI 

N (-3,5)(3,5) 0,048 LI N (-1,5)(1,5) 0,05 LI N (-1,5)(1,5) 0,047 LI 

7”Distrib”, “Pot” y “CMP” son la distribución de la ui en el PGD, la potencia para cada distribución y el 
contraste de mayor potencia. 



35 
 

A través de la tabla 8, vemos claramente, que exceptuando en las distribuciones 

bimodales, en el resto de distribuciones es más potente Jarque-Bera que Lilliefors. Se 

puede añadir que, las distribuciones que mejor captan la falta de normalidad son muy 

distintas entre sí, es decir, no son todas las distribuciones iguales pero con distintos 

grados de libertad. También resalta que, las distribuciones que no discriminan la 

normalidad, son la distribución logística, la distribucion t de student (con 15 y 40 grados 

de libertad), y finalmente las distribuciones bimodales analizadas excepto la que tiene 

media 3 y varianza 1. Para entender esta excepción podemos observar los cuatro 

gráficos de las bimodales. Claramente, el correspondiente a la bimodal N(-3,1),N(3,1), 

al tener medias muy distanciadas y dispersión pequeña, concentra las probabilidades 

altas en valores más extremos que en la normal. En cambio, si las medias están más 

próximas las probabilidades altas se darán para valores similares de la variable, y más 

todavía si la dispersión es mayor (varianza 5). 

 

6. CONCLUSIONES 

El objetivo de este trabajo ha consistido en mostrar la forma en la que se trabaja con 

experimentos de Monte Carlo a la hora de analizar si dos contrastes captan o no la falta 

de normalidad dependiendo de las distribuciones que se estudian. Teniendo en cuenta 

que en el software econométrico que usamos habitualmente Gretl aparecen varios 

estadísticos de contraste, de ellos en este trabajo hemos comparado Jarque-Bera con 

Lilliefors. 

A la vista de los resultados se pueden obtener algunas conclusiones. En primer lugar, 

cuando la distribución que establecemos como perturbación aleatoria es Normal, el 

contraste que mejor se comporta es Lilliefors, que tiende a aceptar la hipótesis de 

normalidad una proporción de veces muy próxima al nivel de significación. Por otro 

lado, cuando analizamos distribuciones muy similares a la normal (simétricas y que 

toman valores entre -∞ y +∞), que en nuestro caso han sido la logística y la distribución 

t de Student, el contraste más adecuado es Jarque-Bera. En tercer lugar, hemos 

observado que, para todas aquellas distribuciones que son muy diferentes a la Normal, 

es mucho más potente Jarque-Bera que el contraste de Lilliefors, salvo en el caso de la 

Bimodal, ya que en este caso es más potente Lilliefors que Jarque-Bera. 
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Aunque en nuestro trabajo hemos generado la perturbación en cada caso con 

distribuciones diferentes a la Normal, en realidad en la práctica el hecho de que ui no 

siga una Normal puede deberse a un error en la especificación de la parte sistemática. 

La diferencia entre la parte sistemática especificada y la verdadera, se supone que irá a 

la perturbación que puede dejar de ser Normal. La solución que más aparece en los 

libros para corregir la falta de normalidad consiste en aplicar logaritmos, y hemos 

comprobado en los casos de nuestros experimentos que no siempre resuelve el 

problema. Únicamente si el error es que estimamos un modelo lineal pero el PGD es 

logarítmico o semilogaritmico, la no normalidad que captan los contrastes se resolvería 

aplicando logaritmos en la variable dependiente y/ó en las explicativas. 

Es decir, la solución de aplicar logaritmos para corregir la no normalidad sería efectiva 

en situaciones en las que hemos especificado un modelo lineal: 

Y i = β1 + β2X2i + β3X3i  

y sin embargo, el modelo verdadero es uno semilogaritmico, o doblemente logarítmico, 

es decir: 

lnY i = β1 + β2X2i + β3X3i   ó 

lnY i = β1 + β2lnX2i + β3lnX3i  

ó incluso una mezcla de ambos. 

Hemos comprobado mediante simulaciones que sólo en este caso, aplicar logaritmos a 

la Y, y/o a las X, puede resolver el problema, ya que vemos como los contrastes pasan 

de potencias altas a bajas. Pero en una situación más general, como cualquiera de los 

experimentos recogidos en el apartado anterior de este trabajo, aplicar logaritmos no 

resuelve el problema. No obstante, el error que se comete no debería ser importante 

cuando las distribuciones son similares. 

Para terminar las conclusiones, se intentarán contestar a las preguntas formuladas 

anteriormente (véase página 22). En primer lugar, es destacable que Jarque-Bera es 

mucho más potente en casi todas las distribuciones excepto en las Bimodales, en las que 

resalta Lilliefors. En segundo lugar, se ha corroborado que son más fiables los 

resultados contemplados en tamaños muestrales más grandes. Esto es, siempre se 

cumple el hecho de que conforme aumenta el tamaño muestral, la potencia es más 
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grande. Además, hemos podido comprobar que cuanto mayor es el nivel de 

significación mayor es la potencia. 
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