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RESUMEN

El Trabajo de Fin de Grado lleva a cabo un estsdiare el comportamiento de dos
contrastes de Normalidad de Jarque-Bera y Lillefa través de experimentos de
Monte Carlo. Tras definir el contexto de nuestrab&jo, esto es, un modelo
econométrico lineal (Modelo Lineal General), y bltaer las hipotesis basicas cuyo
cumplimiento suele suponerse, en este documengresentan los problemas derivados
de la falta de normalidad del término de pertudra@&@n un modelo econométrico, asi
como la forma de detectarla. Nuestro objetivo ésdésr los dos contrastes propuestos
de normalidad de forma comparada, y analizar suactd@gd para detectar este
problema. En las simulaciones realizadas consideamodelos en los que la
perturbacion aleatoria ijusigue una distribucion diferente a la normal,apasi poder
observar si los resultados que muestran un commp@éo adecuado de los contrastes,
esto es, si detectan esta ausencia de normalidaghotencia y el tamafio de los
contrastes son utilizados para analizar la adegénacie los contrastes, e intentar

establecer una comparacion entre ellos.

Palabras clave: econometria, experimentos de Moatk, Normalidad, Jarque-Bera,

Lilliefors.



STUDY OF THE BEHAVIOUR OF TWO NORMALITY TESTS THROGH
MONTE CARLO EXPERIMENTS.

ABSTRACT

The final project studies the behaviour of two Nality tests by Jarque-Bera and
Lilliefors, through Monte Carlo experiments. Onbe ttontext of our work is defined,
that is, a linear econometric model (General Lindadel), and the basic hypothesis,
whose compliance is usually supposed, are estehlistnis documents presents the
problems deriving from the lack of normality of thisturbance term in an econometric
model, as well as the way to detect it. Our ainbi€omparatively study both of the
suggested normality tests and to analyze theiritalib detect this issue. In our
simulations we considered models in which the algatlisturbance () follows a
different distribution as the usual one, in orderabserve the results that show a
suitable behaviour of the tests, that is, if theyedt this absence of normality. The
power and the size of the tests are used to an#igreadequacy and to try to establish

a comparison between them.

Key words: econometrics, Monte Carlo experiment;m\aity, Jarque-Bera, Lilliefors.



INDICE:

1. INTRODUCCION ..o e e e e e e, 5
2. LA ECONOMETRIA: CONCEPTO, ETAPAS Y ESPECIFICACION D EL
MODELO LINEAL GENERAL......ovite et e e et et 6

2.1Concepto de la Econometria ..........cccooiviiiiiiie i i i i B
2.2Etapas de la econometria ........ccovieviiiiiie i e e B
2.3 Hipotesis Basicas del Modelo Lineal General ..............c.ccceeevvinnnn.n. 7
2.4Propiedades de los estimadores MCO .........ccoviiiiiiiiiiiiiiici e e 9
3. NORMALIDAD DE LOS MODELOS ... e, 11
3.1Causas, consecuencias y SOlUCIONesS ..........c.cccevvvevveineenee 1100
3.2Contrastes de Normalidad .............ccooiii i e 13
3.2.1 Contraste de Jarque-Bera .............ccceeevviiiviiiiiiiieiiiine e 13

3.2.1.1Contraste de asimetria .......cccoeeeeiiiiiiiiiiiiie14

3.2.1.2Contraste de apuntamiento ...........ccoceviiiiiiiiiiiieiiienensn 14
3.2.2 Contraste de Kolmogorov — Smirnov — Lilliefors ................. 15
3.2.3 Contraste de Shapiro —=Wilk ..........ccooiiiiiiiiii e 17
3.2.4 Contraste de Doornik — HanSen ...........ccvoeviiiiiiiiiiie e 17
4. EXPERIMENTO DE MONTE CARLO ...t e, 18
4.1 Explicacion del EXperimento .........ccooviiviiiiiiiie i i nenieneen. . 18
4.2 Nuestro estudio de Monte Carlo. .......c.ocoieiiiiii i 9.1
5. RESULTADOS DEL EXPERIMENTO ....iiiiiiiii i i e 22
6. CONCLUSIONES ... ottt e e e e e e e e e 35
7. BIBLIOGRAFIA ... e, 37



1. INTRODUCCION

Este trabajo de fin de grado esta enmarcado énda tle simulacion y experimentos en

econometria.

El objetivo general sera mostrar la forma de trabapn experimentos de Monte Carlo

para analizar determinado instrumento econométrico.

Nuestro objetivo especifico es comparar el compudato de los contrastes de
normalidad utilizando para ello experimentos de ddDarlo. En concreto comparamos
el contraste de Jarque-Bera, que es el contragteutiidzado en econometria, con otro
de los clasicos de los libros de estadistica, Kgmav — Smirnov — Lilliefors. Se
justificara la comparacion realizada por el usditianal de ambos, y porque aparecen,
junto a otros dos, en el programa Gretl, que es miijzado en aplicaciones

economeétricas. Con este objetivo, el trabajo sedsta de la siguiente forma.

En el segundo apartado se recuerda el concepapgsetie la Econometria, asi como las
hipotesis basicas que consideramos en un ModelealLiGeneral. Se recuerdan los
procedimientos de estimacién que suelen utilizardas propiedades que cumplen los
estimadores correspondientes. En el tercer apartexdocentramos en el supuesto de
normalidad, analizando las consecuencias de smplaniento y los mecanismos para

su deteccion.

En el cuarto apartado, disefiamos un experimentMalge Carlo para estudiar el
comportamiento de los dos contrastes de normaligad hemos seleccionado.
Posteriormente se obtienen resultados en el apagaidto, y se interpretan con el fin

de obtener las conclusiones, que son presentaddsitimo apartado.



2. LA ECONOMETRIA: CONCEPTO, ETAPAS Y
ESPECIFICACION DEL MODELO LINEAL GENERAL

2.1. CONCEPTO DE ECONOMETRIA

El concepto de Econometria proviene de dos palapri@gas: oikonomia (economia) y
metron (medida)Trivez, 2004). Por lo tanto, etimolégicamente remuetria significa

mediciéon de la economia.

Hay que tener en cuenta que el concepto de estiplitia ha ido desarrollandose y

evolucionando a lo largo del tiempo, pero hay ogedspectos que la definen.

Una definicion que englobe todos esos aspextda deDtero (1978)quien establecid
gue“La econometria se ocupa de la cuantificacién de fendmenos econémicos y de
la verificacion de las teorias econdmicas, haciendo para ello de las estadisticas

econdmicas y aplicando a tal fin métodos especidenferencia estadistica”.
2.2. ETAPAS DE LA ECONOMETRIA

La metodologia de la econometria se puede verjagfiea través de cuatro fases

fundamentales:

1. Especificacién. Consiste en la construccion de uodeio en términos
probabilisticos, el cual creemos que subyace aldss observados. Esta fase
acapara tres aspectos generales. En primer lugdicacuales son las variables
elegidas paraer explicadas (que en ciertas ocasiones séloasariable) o la
delimitacion de la realidad que se desea estuHrmarisegundo lugar, determina
las variables que participan en el modelo. Difel@nos entre la parte
sistematica, donde aparecen las variables fundateenty la parte aleatoria o
perturbacion aleatoria. Finalmente, establece fadofuncional, que relaciona
las variables, esto es, las que explican a la exrdg

2. Estimacién. Consiste en la cuantificacion de losupetros que aparecen en el
modelo. Para ello, es necesario tener informacidménica sobre todas las
variables que aparecen en el modelo, lo que nasitgr obtener el modelo
estimado. Los métodos de estimacion mas habitsales el de los Minimos
Cuadrados Ordinarios (MCO) y el de la Maxima Verokiud (MV). Para un

modelo lineal, ambos coinciden.



3.

4.

Validacién La validaciéon de un modelo nos permite conocercsptamos o
rechazamos la teoria inicialmente considerada, wh@y que tener en cuenta
gue esta conclusion no es definitiva, ya que cuadcaceptaciéon puede acabar
en rechazo si cambian las condiciones. Es una etagaamplia. En cualquier
aplicacion es crucial analizar la significatividéahto individual como conjunta,
de las variables, asi como, analizar las medidabodelad de ajusterf...).
También se incluiria en esta etapa toda una baleri@ontrastes que tratan de
asegurar el cumplimiento de las hipétesis basioakjidas aquellas relativas a

la perturbacion aleatoria.

Explotacion. Cuando en la fase anterior, validacg&establece que el modelo

es adecuado y coherente con los datos, se puede @da Ultima fase de la
econometria, la explotacién. Esta etapa puede teeerfinalidades, pudiendo
abarcar una o varias de ellas:

» El andlisis estructural se encarga de analizaigabsy magnitud de los
parametros, y por tanto estudia la relacion erdie Mariables. Nos
permite analizar la sensibilidad de la variableGggeha antes cambios en
las variables explicativas (Xy puede servir para la toma de decisiones
de tipo econdémico.

» La prediccién consiste en, dados los valores dedeables explicativas,
determinar valores extramuestrales de las variatiygstivo. Si mas de
un modelo ha superado la etapa de validacionzamitio la prediccion
podemos seleccionar el modelo que nos parece nesjor es, el que de
predicciones mas exactas.

» La simulaciéon intenta originar la trayectoria de lariables objetivo a

través de cambios en las variables explicativas.

2.3. HIPOTESIS BASICAS DEL MODELO LINEAL GENERAL

Para poder explicar las condiciones ideales queladian un modelo econométrico, hay
gue partir del modelo clasico de regresion linBaldo un modelo general, su expresion

matricial es:

y=Xp+u



Donde y es el vector T x 1 de observaciones defiable enddgena, X es una matriz T
X k que recoge las T observaciones de las k vasabkplicativasp el vector de

coeficientes de orden k x 1, y u el vector Tdelperturbaciones aleatorias:

Y 1 X1 0 Xia B1 uy

- Y, ¥ = 1 X, = Xea B = Bz u= <u2>
s s s oo oo Bk uT
Yr 1 Xor - Xier

La relacion que siguen las variables y parameteopaicion puede escribirse también

como:
Yi=PB1+PXai +... +PXui +u, (1=1,2,..., T)

donde la variable endogena (Y) y las variables erag (%, Xs,... Xx) son magnitudes
numeéricas. Y sus conjuntos de valores, (3,... Y7), (X21, X22,... X27),.., (Xk1,... XkT)

son el resultado de la observacion de una mudstitoda de tamario T.

En la anterior relacién cabe destacar que la g&tematica eB; + B2Xai +... + BXki, Y

la parte aleatoria es.u

Una especificacion correcta de un modelo econooeétno esta completa sin la
especificacion de la distribucién de probabilidasl ld perturbacion asi como, una
indicacion sobre la forma en que se han obtenido Malores de las variables
explicativas. Este conjunto de informacion congttlas llamadas hipotesis basicas o

clasicas.

A continuacion, sintetizamos los supuestos de gmrjue habitualmente se realizan
para aplicar las etapas de la econometria, queersemdnan las hipotesis basicas del

Modelo Lineal General:

1) La relacion entre la variable enddgena y las vletalexdgenas es lineal. La
perturbacion aleatoria se distribuye idéntica espathdientemente como una

normal:
u; -iiN(0, a?)
Se cumple por tanto:

= Eu=0

» Homoscedasticidad: Variju= g2 , Vi



= No autocorrelacion: Cov (uy) = E(uy) =0,Vi#]j

2) No hay ninguna restriccion sobre los parametrosnudelo Bi, B2.... Pk, 6°).
Cov (X, u)= 0, que implica independencia entredde sistematica y aleatoria.
Pero si hacemos mas restrictivo este supuesto gid@yamos las X no
estocasticas, ello ya garantiza la comentada imdkgpeia.

3) Grados de libertad positivos: El nUmero de obséownas debe de ser superior al
namero de parametros: T>k. Esta hipotesis verlicexistencia de un numero

suficiente de grados de libertad en la estimacion.

4) La ausencia de multicolinealidad establece questtata variables explicativas
son linealmente independientes, y la hipotesis aevergencia garantiza la
estabilidad a las X (oscilan alrededor de una emtst y su variabilidad también

es constante).
2.4. PROPIEDADES DE LOS ESTIMADORES MCO

A la hora de estimar los parametros de posicion aperecen en el Modelo Lineal
General se pueden utilizar dos métodos: Minimodaams Ordinarios (MCO) y el de
la Maxima Verosimilitud (MV). En nuestro caso, dadoe vamos a analizar la
normalidad, conocemos que cuando esta hipétesisuswmle, ambos métodos de

estimacion serian iguales.
La estimaciéon MCO de los parametros de posicioningedada por:
B=(xXx) XV.
El parametro de dispersion vendra determinado por:
~2
gt=2l

Bajo el cumplimiento de las hip6tesis basicas, &rin de varianzas y covarianzasgle
serd: Var Q) =&* (X'X) L.

Las principales propiedades de los estimadores tara muestras pequefias como para

muestras grandes 0 asintéticas se sintetizan aganion.



Para muestras pequefias o finitasse cumple que los estimadores MCO de los

parametros de posicién son:

1) Lineales.

2) Insesgados. E3) = B

3) ELIO (Estimadores Lineales Insesgados Optimos). cBasidera que un
estimador §) es ELIO deg, si es el estimador con menor varianza entre todos
los estimadores de@ que sean lineales e insesgados.

4) Eficiente. Se considera que un estimagirds eficiente dg cuando tenga la
menor varianza de entre todos los estimadoresgades des. Para obtener la
eficiencia de un estimador, debemos basarnos @¢aonema conocido como el
Teorema de Cramer-Rao. Dicho teorema estableceslglimite inferior de la
varianza de los estimadores insesgados viene dal@odeagonal principal de la
inversa de la matriz de informacion.

-1
9%l
—E :
96000

siendot, la funcién logaritmica de verosimilitud de unaesua determinada, y

teniendo en cuenta g@encluyep y ¢2.

En cuanto al parametro de dispersion, éste cumyaeeq insesgado: E?) =02, pero

no es ELIO ya que este parametro no es lineal.

Las propiedades de los estimadores para muestras grargled propiedades
asintoticas son las que se limitan Unicamente a las distrdnegs muestrales que

proceden de muestras con tamafio que crecen sia.limi

Se nombraran las dos propiedades mas utilizadas lparestimadores MCO de los

parametros de posicion:

1) Insesgadez asintética. Se establece que un estimado insesgado
asintoticamente si se transforma en insesgado ouanthmafo de la muestra
tiende a infinito. Es decir:

lim E(f) = B
Ademas, hay que tener en cuenta, que si un estireadnsesgado, también sera

asintoticamente insesgado, pero no a la inversa.

10



2) Consistencia. La consistencia es el minimo requigite se exige a cualquier
estimador para poder considerarlo adecubddcestimadol sera consistente si,
a medida que T tiende a infinito, la distribucioa elste estimador se concentra
en el punto correspondiente al verdadero valor mglametro.(Trivez, 2004).
Hablar de queB es consistente es equivalente a decir que converge

probabilidad al verdadero valor del parametro.

En cuanto al parametro de dispersion, hay que deeircumple que es asintéticamente

insesgado debido a su insesgadez, y cumple lagulaghide consistencia.

3. NORMALIDAD DE LOS MODELOS

Las propiedades de los estimadores MCO se cumplerids supuestos de las hipétesis
basicas. Analizaremos ahora la normalidad. ¢Quéreo@i no se cumple? ¢Como
podemos saber si se cumple? Si no se cumple, ¢pedeasolver los problemas de

algiin modo?.

En este trabajo se va a analizar la no normaligathdperturbacion aleatoria de los
modelos. Para ello es conveniente explicar en imeprmomento cuales son las causas
que provocan que no haya normalidad en la pertiinbaen los modelos, las
consecuencias que esto conlleva, y las posiblesisaks a los problemas encontrados.
Y en segundo lugar se explicardn los instrumentora pletectar su incumplimiento.
Concretamente, los contrastes mas importantesrdeatidad y los que se utilizaran en

el Experimento de Monte Carlo.
3.1. CAUSAS, CONSECUENCIAS Y SOLUCIONES

Existen varias causas que provocan la no normatidald perturbacion en un Modelo
Lineal General. Por un lado se encuentra la foramibnal incorrecta del modelo
especifico. Por otro lado, puede ser causado pexitdaencia de datos atipicos, lo que
quiere decir que algunas observaciones de lasegulisponen son muy dispares, es
decir, 0 muy grandes o muy pequefias, con respéctst@ de observaciones de la

muestra.
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En cuanto a las consecuencias que presenta lamalitad, podemos distinguir:

1) La inferencia estadistica no es valida. Si la \deiaaleatoria u, sigue una
distribucion normal, la variable endoégena (Y) tadémbseguira esa distribucion
segun las hipotesis basicas nombradas anteriorméote parametros de
posicién estimados son:

F=XX)1XY (1)

por tanto seguiran una distribucion normal. Lanmaidad de B} permite
utilizar la distribucién
=B

9g,

~ t1k (2)

para hacer contrastes de hipétesis. Uno de los mab#tuales es el de
significatividad individual de los parametros. Sino sigue una normal, la
distribucion (2) no se cumple, por lo que no podefiernos de los t-ratios para
contrastar. Lo mismo ocurre con cualquier otro @sté que utilice el
estadistico t, y también con los contrastes deiceisines lineales, u otros, que

usan la F de Snedecor, que también se basa emialitad dep.

2) Los estimadores MCO dejan de coincidir con losnestiores por maxima
verosimilitud. Lo que ocurre es que, si maximizammosiendot el logaritmo de

la funcién de densidad conjunta de la variable gada y, cuando la funcion de

1/x—n

2
. . 1 = .
densidad es normal, es decir, f(x)ﬁ—ﬁ e () , ambos estimadores son

iguales. Pero si la funcion de densidad no es Hotanfuncion a maximizar sera
diferente, y los estimadores MV obtenidos no caiinén con los MCO.

3) Los estimadores minimo-cuadraticos no son eficgerta eficiencia nos la da la
cota de Crammer Rao, que dependetdg ahoratl cambia, por lo que no
podemos asegurar que sean eficientes.

4) La estimaciéon por intervalo no seria valida. Siguenisma explicacion que la
inferencia estadistica, ya que la construccion deintervalo de confianza

consiste es: ICE + te;, Gp

Como _soluciones al problema existente de la no alad, es decir, cuando la

perturbacion no sigue una distribucion normalosioziéramos la distribucion correcta,
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estimariamos por MV, pero si no la conocemos podaementar paliar el problema de

alguna de las formas siguientes:

1) Realizar una mejor especificacion del modelo, i eolucién que se toma de
manera general, y lo que se hace en esta situasomtroducir variables
ficticias, tomar logaritmos,.. entre otros.

2) Como soluciones mas completas que no estan a oualsince, se puede
mencionar, tal y como establece Pefia en su libtadistica Modelos y
Métodos, quesi la distribucion es bimodal, para solucionar etoplema

podemos segmentar la poblacién en subpoblacionemgéneas
3.2. CONTRASTES DE NORMALIDAD

Una vez analizadas las causas y las solucionesastncia de normalidad, nos queda
saber como podemos detectar su incumplimientoize@mos contrastes de hipotesis,
y en este apartado explicamos los contrastes mgsrtamtes y los habituales en la
literatura estadistica y econométrica.

3.2.1. Contraste de Jarque-Bera

El contraste de Jarque- Bera (1987) es el magadib en la metodologia econométrica.
Es un contraste de grandes muestras (asintétidohgamentado en los residuos MCO.
Esta prueba evalla la asimetria y la kurtosis (a@pmiento) de los residuos MCO
(Gujarati, 2003).

Las distribuciones normales se caracterizan a gradeélos momentos hasta el cuarto
orden. El primer y segundo momento son la medeawalianza, el momento de tercer
orden es asimetria, y el momento de cuarto ordekudssis, los cuales son 0 y 3

respectivamente.
La hipotesis nula y la alternativa del contraste so

Ho : u ~Normalidad (los residuos estan normalmente distids). Con g=0
y o =3.

H : u~ No normalidad (los residuos no estan normalmeistebuidos)

M]

2
El estadistico de contraste es de la ford= T[% + =

siendo: T el tamafio de la muestraefjcoeficiente de asimetria y gl coeficiente de
kurtosis.
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Dicho estadistico asintéticamente sigue siempredistabucion chi-cuadrado con dos

grados de libertad(z

Tras haber explicado el Contraste de Jarque-Bsxda conveniente explicar dos
contrastes, cuya combinacion entre ambos, da lagirque-Bera: los contrastes de

asimetria y de apuntamiento (6 kurtosis).
3.2.1.1. El contraste de asimetria

Tal y como establece Cao Abad y otros (2088)el caso de ser normal la distribucion,

el coeficiente de asimetria sigue una distribucagntotica N(O, 6/T ), Y para un

tamafio de muestra grande (50 o mas datq)si,ngj6 sigue una distribucion asintética
N(0,1), que es la que se utiliza para contras¢argd= 0

El contraste de asimetria establece que si seleumpipotesis de normalidad, dicho
contraste estima un parametro poblacional de asangue es cero. Por ello, el

estadistico de contraste de una normal es el csmtiicde asimetria muestral:

St w

i

53

g1:

donde g es el momento muestral de tercer ordeesua perturbacion aleatoria (o los

residuos del modelo), ¢ es la varianza por estimacién de Maxima Verosiouli

3.2.1.2. El contraste de apuntamiento 6 kurtosis

En el caso de ser normal la distribucién, el coefite de apuntamiento toma el valor

3, y sigue una distribucion asintética N ,24/T). (Cao Abad y otros, 2008). Pero

para tamafios muestrales grandes;3jg T/24 sigue una distribucion asintética
N(0,1), que es la que se utiliza para contrasthipétesis nula como,g- 3 = 0.

El contraste de apuntamiento considera, tal y coouoria en el contraste de asimetria,
que el coeficiente de apuntamiento de la distribuanormal es cero. Por ello, el
estadistico de contraste para la bondad de ajestend normal es el coeficiente de

apuntamiento muestral.
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donde g es el momento muestral de cuarto ordeesua perturbacion aleatoria (o los

residuos del modelo), ¢ es la varianza por estimaciéon de maxima verogindili

3.2.2. El contraste de Kolmogorov — Smirnov - Lilkfors

El contraste de Kolmogorov- Smirnov-Lilliefors esaumodificacién del contraste de
Kolmogorov-Smirnov. Y por ello es conveniente exati primero el contraste

Kolmogorov-Smirnov, y mas tarde su modificacion.

El contraste KS esta disefiado para el contrasggudée a distribuciones continuas, el
cual esta basado en la distribucion del estadidbigoque compara la distribucion
muestral y la poblacional supuesta:

D=k [ Fa () = F (X) |

~ X€R

donde:F, (x) es una funcion de distribucion empirica muwgsty F (x) es la funcién

tedrica normal de la poblacién que queremos cdatras nuestro caso.

El contraste de Kolmogorov — Smirnov — Lillieforst&blece que se debe estimar la
media poblacional mediante la media muestral yaldanza poblacional a través de la

varianza muestral. De este modo, construir el sigaiestadistico:

Dn =3 | By () - (55))]

~ X€R

donde: :F, (x) es una funcion de distribucion empirica muwsts es la desviacion

tipica mediaX es la media.
La hipétesis nula y la alternativa seran las sigpeis

- H: u~Normalidad (los residuos estan normalmente distiis)

- H: u~ No Normalidad (los residuos no estan normalmeistibuidos)
La distribucion de este estadistico fue tabuladalpbiefors, y sera respecto a dicha
tabulacion como debemos juzgar la significacion d&elor obtenido para este
estadistico(Cao Abad y otros, 2008)

Podemos entender mejor este contraste mediantgeraple que aparece en Pefa
(1991).

Contrastar la hip6tesis de que los datos siguieptesienen de una distribucion
normal: (20, 22, 24, 30, 31, 32, 38).
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En primer lugar calculamos la media y varianza nmaks para obtener las
probabilidades tedricas. La media de los sietesda®s x = 28,14, y la

*=X)°

desviacion tipica corregida por grados de libe$adZ ——— = 6,39.
Para efectuar el contraste construimos la siguiabia:
N° de X | E, (X) F(x) D1 D2 Dn

Obs.

1 20| 0,1429 0,1020 | 0,1020, 0,0409 0,1020

2 22| 0,2857 0,1685| 0,0256| 0,1172 0,1172

3 24 | 0,428 0,2578| 0,0279] 0,1718 0,1718

4 30| 0,5714 0,6141| 0,1855 0,0427 0,1855

5 31| 0,7143 0,6736 | 0,1018 0,0407 0,1018

6 32| 0,857Y} 0,7258 | 0,1115 0,0313 0,1115

7 38 | 1,000 0,9382| 0,0811 0,0618 0,0811

Los valores dé;, (x) se han obtenido simplemente mediaR{ex) = i/T

donde i representa el indice ordinal de la obsé&wuay los valores F(x) se han
calculado tipificando los siete datos y mirandotaias de la normal estandar.

Para ello se calcula; = %x y se obtiene en tablas el valor de;}=(En la tabla,

Direpresenta el valor: 3= |  (Xi-1) — F(x)|. Mientras que b= | i (xi) — F(%)|.

La tabla de Lilliefors, indica que el valor de Ditico para un nivel de
significacion del 5% y un tamafio muestral de mes= (0,05;7) = 0,300

Y como la méxima distancia obtenida en nuestro®sdas [ = 0,1855,
concluimos que no hay evidencia suficiente en latogl para rechazar la

hipdtesis de normalidad.
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3.2.3. El contraste de Shapiro — Wilk

El contraste se construye a partir de un estadigtie tiene en cuenta la distancia entre
la mayor y menor observacion muestral, entre laursgg y la pendltima, y asi
sucesivamente. Es un estadistico mucho menosivotajtie el anterior. El estadistico
es el siguiente:
T
i zl

A . >
w = T2 siendo A =Z].2=1 ajr (x(T—j+1) - X(j))

donde:T S%= Y(X; — X)?, los coeficientes de; estan tabulados y;, es el valor

ordenado en la muestra con lugar |.

Shapiro y Wilk han tabulado los valores de estasstantes, asi como la distribucion
del estadistico w(Cao Abad y otros, 2008)

Cabria destacar que el estadistico bajo la hipdtsinormalidad se rechazara para
valores pequefios del estadistico.

3.2.4 El contraste de Doornik - Hansen

Este es un contraste general, en el sentido decopsidera tanto el coeficiente de
asimetria como el coeficiente de kurtosis, igua bace el contraste de normalidad de
Jarque-Bera. Puede considerarse una modificacidardgee-Bera.

Doornik y Hansen (2008) establecen que si los ciesfies de asimetria y kurtosis se
estiman a partir de sus correspondientes contrdpannuestrales, tales coeficientes no
estan independientemente distribuidos en muesinéast el coeficiente de kurtosis
especialmente se aproxima a la normalidad muyreemée y el uso de la distribucién

asintotica conduce a un sobre rechazo de la hipagtak de normalidad.

Su planteamiento se basa en calcular tales cagfsiax partir de una transformacion de
los datos originales, lo que da lugar al coefigem asimetria transformado)(z al
coeficiente de kurtosis transformadae)(zjue estan mas préximos a la distribucién

Normal.
El estadistico que proponen viene dado por:
DH =z,% + 2,2

el cual bajo la hipétesis nula de normalidad stilis/e asintéticamente como uka

con 2 grados de libertad.
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4. EXPERIMENTO DE MONTE CARLO

4.1 EXPLICACION DEL EXPERIMENTO

Los experimentos de Monte Carlo se pueden utilzam diversos objetivos. En
ocasiones se utilizan para entender problemas atms deales y medir la influencia de

todos los factores que se hayan considerado copariamtes.
Habitualmente, un experimento de Monte Carlo sigugguiente estructura:
1) Especificar un PGD (Proceso Generador de las@latmodelo verdadero.
Y=P1+P2Xai + ... +PXki + U i=1,...T

siendo la variable dependientei)Ylos coeficientes g, PB2,..., Bx), la

perturbacion aleatoriaifwy las variables explicativas £X..., X«i).

En el caso de que el modelo verdadero sea el Magieéal General (MLG)
gue cumple las hipétesis basicas, generamos larpacion como una
normal N (0,62), y establecemos las variables explicativas, ledicentes

y el tamafio muestral.

2) Generar un conjunto de datos deu¥ando el PGD anterior. Esto es, una
muestra de Ya partir de lo anterior.

3) Estimar el modelo para obtener el estimadortadéstico de contraste objeto
de estudio, con la finalidad de analizarlo con estaestra generada

artificialmente.

4) Repetir las etapas 2 y 3 un elevado niumero desve&Cada una de ellas se
denomina réplica, iteracién o simulaciéon. Por taetwdremos R muestras de Y
a partir de R muestras generadas de u, mantenigaddas muestras de las

variables explicativas y también los parametros.
5) Evaluar los resultados obtenidos.

Como nuestro objetivo es analizar el funcionamiaetgoun contraste, necesitamos de
algunos conceptos e instrumentos sobre inferestaistica. En el caso de que nuestro

objetivo fuera analizar el posible sesgo de losnestores, no seria necesario.

Un contraste de hipotesis se puede definir commedka de decision a través de la cual
optamos creer en una o en otras hipotesis. Emra tie decisiones para cada uno de los

contrastes realizados utilizaremos dos tipos deesr
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= Error de tipo I: es el error que se comete al remhéa hipotesis nula cuando

realmente es cierta.

= Error de tipo II: es el error que se produce aptarela hipotesis nula cuando

realmente es falsa.

Puesto que en un contraste de hipétesis se puedestar estos dos tipos de errores, se
tienen que cuantificar de alguna forma. Para skgpueden calcular las probabilidades
de que ocurran (son probabilidades condicionadasstpuque no se conoce la

autenticidad de las hipotesis). Estas probabilisdads las que se denominan “tamafio

del error” tipo | y tipo 1l respectivamente.
Tamario error tipo | = P { Rechazas HH, es cierta } =
Tamaiio error tipo 1l = P { AceptarH H, es falsa } =5

Se denominara al nivel de significacion o tamafo del contragte; £ al nivel de
confianza, 1 -5 a la potencia del contraste, esto es, la proloailide rechazar H

cuando H es falsa.

Para realizar un contraste de hipotesis, el inyagdtr fija de antemane, por lo tanto,

la probabilidad del error del tipo | es conocida.

A partir de aqui, podemos llevar a cabo experingegte nos ayuden a determinar el
comportamiento de un estadistico de contrastezanitio para ello la proporcion de

rechazos de la hipotesis nula (tanto si es cienaocsi es falsa).

Como fijamosg, si el contraste funciona bien es de esperar gaedo la hipodtesis nula
sea cierta, el porcentaje de veces, de las R ib@ex que se rechace una tle es

cierta se aproxima a*100)%.

Otro concepto muy importante es el de potenciainidef como la probabilidad de
rechazar la hipotesis nula cuando realmente ea.f8ishemos generado el PGD de
forma que H es falsa, el contraste sera adecuado si capta titdedad un porcentaje

de veces muy elevado, que tienden al 100% (p@kenci
4.2 NUESTRO ESTUDIO DE MONTE CARLO

Supongamos que nuestro modelo verdadero o PGDe§wagenerador de los datos o

modelo verdadero) es:

Yi =P1+ P2 Xai +PB3Xzi + U
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donde la Y es la variable dependiente; ks variables explicativas y la es la

perturbacion aleatoria del modelo.
Para comenzar:

1) Generamos las variablesy Xy Xszi para mantenerlas fijjas en las diferentes
réplicas, siendo Xuna chi-cuadrado con 5 grados de libertadiyuKa u (0,11).
Estos valores suponen una variabilidad similar feg@os variables, aunque los

intervalos de valores que pueden tomar sean dissen

2) Damos valor a los parametrdis; B2 y 3. Concretamente cada uno de ellos tiene

valor igual a la unidad.

A partir de aqui, generaremos 1000 muestras dertarpacion y es decir, hacemos
1000 reéplicas, y en cada una de ellas, la muestfasdvariables Xy X3 es la misma,
esto es, son variables fijas para muestras regetitida muestra de u da lugar auna Y.

Estimaremos el modelo 1000 veces.

En nuestro caso, el objetivo es generar el modatodiferentes distribuciones para la
perturbacion (t de student, Normal, Gamma,...), ycaplcontrastes de normalidad. El
interés se centra en dos contrastes de normalidachabitual de la literatura
econométrica, Jarque-Bera, y el ampliamente utiizen la literatura estadistica,
contraste de Lilliefors. Llevaremos a cabo variogpegimentos en los que la

distribucion de la perturbacion sea diferente.

Se presenta en la tabla 1 las caracteristicas d#s tas distribuciones que vamos a

considerar, para asi poder ver la similitud o difeia con la Normal.

En la tabla 1 se han expuesto las principales tafsiicas de las distribuciones que se
van a utilizar como perturbacion aleatoria en rroeskperimento de Monte Carlo.
Vamos a explicar los resultados del experimentayripos de distribuciones. En el
primer grupo se encuentran las distribuciones gtddent y logistica, dado que son las
gue tienen el mismo rango que la Normal, ademasidgmetria. En el segundo grupo,
se encuentran las distribuciones F de Snedecor-queldrado, dado que son aquellas
que se construyen a partir de la Normal, pero tieramgo soOlo positivo y no son
simétricas. Otro grupo sera el formado por la idbstion gamma, y su caso particular,
exponencial, dado que es una distribucion muy elifier de la Normal. Y apareceran
dos distribuciones solas debido a las caractaagstioe tienen: log-normal y bimodal.
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Tabla 1. Caracteristicas de distribuciones.

Rango de o
' Otras  caracteristicas
la Esperanza y varianza
_ relevantes
variable
Normal (<00, +0) |E(X) =0 Simetria
(No,2) Var (X) =2
E(X) =0 Simetria
tde Student g | (-0, +o0) Var(X) = n>30 se parece a |a
ar(X) = —
Normal.
E(X)=0
Logistica (e0, +00) , Simetria
Var(X) :%
E(X) __m_ Se construye a partir ge
F de Snedecor m-2
(0, +0) la Normal.
(Fn,m) :m
var(x) n(m-4)(m-2)2 No es simétrica.
Se construye a partir ge
Chi-cuadrado E(X) =n
(0, +0) la Normal.
(X7) Var(X) = 2n o
No es simétrica
0.2
Log-normal 0, ) E(X) =e"*z El logaritmo de la
k) -'m -
[log(x)~N(H o2)] Var(X) = e2h(e27°— %) variable es Normal.
. Si a=1, y p cualquier
E(X) ==
P valor, tenemos la
Gamma (Gp | (0, o) distribucié e
_a istribucion exponencia
Var(X) = P )
(E3), 6 Gamma(1l).
Combina 2 normales
E(X) = 41 (50%). Consideramas
Bimodal (0, +0) esperanzas de magnitud
Var (X) =o?

igual y signo contrario,

mismas varianzas.
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Las preguntas que nos planteamos a la hora decaxfs resultados son, entre otras:
¢, Captan los dos contrastes la no normalidad seéaeada distribucién de u, o por el
contrario, depende del tipo de distribucion quelesita perturbacion aleatoria? ¢ Puedo

fiarme del contraste en muestras pequefas? ¢ Peeidagude uno de ellos es mejor?.

En el siguiente apartado trataremos de dar resp@esstas preguntas a partir de los

resultados de los experimentos.

5. RESULTADOS DEL EXPERIMENTO DE MONTE CARLO

En este apartado, se van a mostrar los resultabi@nidos en el experimento de
Montecarlo. En cada una de las tablas presentadasemos en la parte superior el
tamafo muestral utilizado (T=50, 100 y 500), ashacel nivel de significacion que

hemos fijado previamente (0.01, 0.05 y 0.1). Emakgen izquierdo de la tabla se
explica la distribucion de la que tenemos los tadols, y los contrastes que hemos

utilizado. El contenido de cada celda nos da lgpg@oén (tanto por uno) de rechazos

nerechazos

de H, sobre el total de réplicg 300 ).

La tabla 2 presenta los resultados obtenidos culangle- N(0,2).

Tabla 2.Proporcion de rechazos de i u ~ N (0,2)

. T=50 T=100 T=500
Estadistico

contraste 1% 5% 10% 1% 5% 10% 1% 5% 10%

JB 0,018 | 0,045 | 0,066 | 0,018 | 0,038 | 0,068 | 0,011 | 0,034 | 0,084

LI 0,006 | 0,046 | 0,098 | 0,007 | 0,052 | 0,1 | 0,008 | 0,049 | 0,102

Teniendo en cuenta que siempre la hipétesis nut@mesalidad, esta tabla, a diferencia
de las demas, no nos muestra la potencia, sirarelfto del error de tipo I. Nosotros
gueremos gque dicho error se aproxime al fijadoipregnte (0.01, 0.05 6 0.1) para asi
poder decir que capta la normalidad. Es decirposifijamos en la tabla, lo ideal que
buscamos es que los valores de las celdas seirmaproa 0.01, 0.05 6 0.1 (segén
Esto ocurre para un tamafio muestral de 100 y 5@fhdoe es 5% y 10% para el

contraste de Lilliefors. Vemos que para los tresai@dos muestrales analizados, ambos
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contrastes detectan la normalidad (no rechazanplero es el contraste de Lilliefors el

gue mejor la capta en comparacion con Jarque-Bera.

Grafico 1. Funcion de densidad Normal cuando u ~NR)

0,50

easmwdenNormal

El grafico 1 muestra como es la funcién de densidaduna Normal. Asi, vemos

graficamente cual es la estructura que toma, yeposiente, podemos compararla con

otras distribuciones.

En la tabla 3 se muestran la proporcion de rechdeota hipotesis nula siendo la

perturbacion aleatoria una t de Student o una tiogjs conociendo que estas

distribuciones son similares a la normal.

Tabla 3. Proporcion de rechazos de ki u ~ t de Student () y logistica.

Distribucién =50 T=100 =500
y estadistico| 1%| 5%]| 10%| 1%| 5%]| 10%| 1%| 5%| 10%
JB| 0,983 0,988| 0,991 0,999 1 1 1 1 1
t1
LI | 0,961| 0,984| 0,991} 0,999 1 1 1 1 1
JB| 0,07/ 0,112 0,147} 0,106| 0,185| 0,222 0,311 0,436/ 0,527
t1s
LI | 0,008 0,057, 0,116] 0,005 0,068 0,139 0,022 0,123| 0,228
JB| 0,031| 0,058 0,088] 0,042 0,082 0,116] 0,056/ 0,127| 0,197
ta0
LI | 0,008| 0,048 0,092 0,008 0,05| 0,114 0,011/ 0,052| 0,118
JB| 0,145| 0,204| 0,248{ 0,286 0,384| 0,445 0,804| 0,889 0,911
Logistica
LI | 0,015| 0,086| 0,168] 0,031 0,153 0,251] 0,204| 0,483| 0,652
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Sabemos que aquellas distribuciones t de Studermgremlos de libertad superiores a 30,
se aproximaran a una N (0,1). En la tabla 3 podeveossémo conforme aumentan
estos grados de libertad, la potencia es cada &wmlo que quiere decir que no
rechaza la normalidad dada la similitud entre am@iz$ribuciones. Es decir, la

similitud entre ambas distribuciones hace que etraste no discrimine entre ellas.

Si comparamos graficamente la distribucion Nornah ¢a t de Student, podemos
observar como, a medida que los grados de la t amela diferencia entre la
distribucion de probabilidad de ambas se hace mé&sbo lo podemos observar en los
graficos 2, 3 y 4 presentados a continuacion. Bastas que la diferencia cuando toma
grado de libertad 15 y 40, es muy pequefia, tantatdas como graficamente.

Grafico 2. Funcion de densidad u ~t  Grafico 3. Funcion de densidad u

0,50 0,50
0,40 0,40
0,30 0,30
0,20 0,20
0,10 0,10 \
-20 -10 _0'10 10 20 -20 -10 ;;0 (P 10 20
== denNormal == dent-student(1) == denNormal == dent-student(15)

Grafico 4. Funcion de densidad u =g

0,50

;00

-20 -10 (P 10 20
-0,10

== denNormal === dent-student(40)
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En la tabla 3 vemos que cuando u sigue una distGhuogistica, las potencias no son

tan bajas como en las distribuciongsytiso.

El grafico 5 muestra la funcién de densidad dedis@ibucion logistica comparada con

una distribucion Normal.

Gréfico 5. Funcién de densidad de la distribuciéodistica.

0,6

-15 -10 -5 (I) 5 10 15
-0,1

denNormal

denlLogistica

A pesar de que la distribucion logistica es simdlaia normal, el grafico 5 muestra
diferencias que justifican las proporciones de aeob que hemos obtenido. En
muestras grandes el contraste capta la no norrdald@ando la perturbaciéon es
logistica. No obstante, Lilliefors sigue mostrand@ potencia mas baja. Por tanto, en

este caso el estadistico Jarque-Bera se compodaonmejor que Lilliefors.

Observamos en la tabla 3 que para ambas distrieiel contraste mas potente es el
de Jarque-Bera. Cabria destacar que en la funaénstudent, a pesar de que Jarque-
Bera es mas potente, para niveles de significage®,1, vemos que las diferencias

entre éste contraste y Lilliefors son muy pequefas.

La tabla 4 presenta los resultados obtenidos cukngerturbacion aleatoria sigue una
distribucion F de Snedecor o Chi-cuadrado.

Por lo explicado anteriormente sobre la toma désaees de como hemos dividido las
variables en tablas, conocemos que estas dosbdistnes, F y X se forman a partir
de la normal. Sin embargo, el rango de valorespgigelen tomar las variables es muy
diferente al de la Normal, ya que solo adopta esl@ositivos.
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Tabla 4. Proporcion de rechazos de ki u ~ F de Snedecor (Fm) y Chi-cuadrado

(X%n)
Distribucion T=50 T=100 T=500
y estadistico 1% | 5% |10% | 1% | 5% [10% | 1% | 5% | 10%
JB 10,987(0,997/0,999| 1 1 1 1 1 1
Fos
LI ]0,957|0,995/0,997| 1 1 1 1 1 1
JB 10,943| 0,98 | 0,99 1 1 1 1 1 1
F2,12
LI ]0,842| 0,96 | 0,984 0,998/ 0,999 1 1 1 1
JB 10,938(0,978/0,987| 1 1 1 1 1 1
Fss
LI ]0,824|0,952/0,978| 1 1 1 1 1 1
JB | 0,97 0,9910,999 1 1 1 1 1 1
X3
LI ]0,943/0,992/0,998 1 1 1 1 1 1
JB 10,505/0,632/0,718/ 0,872/ 0,949/ 0,982| 1 1 1
Xz
LI ]0,215|0,499|0,636| 0,57 | 0,8290,899, 1 1 1
JB 10,178/ 0,284/ 0,367/ 0,407/ 0,577/ 0,672] 1 1 1
X3s
LI ]|0,037|0,209| 0,325/ 0,141/ 0,392/ 0,571| 0,914/ 0,987| 0,996

La distribucion F de Snedecor destaca por sus @dasvaotencias aun con tamarnos

muestrales y niveles de significacion pequefiogjue quiere decir que captan la no

normalidad de las variables. Pero en el caso distabucion chi-cuadrado, para grados

de libertad pequefios tiene potencias muy elevaadasando asi la no normalidad), pero

conforme aumenta los grados de libertad, la paderecidisminuyendo.

El grafico 6 muestra la funcion de densidad de vadable que sigue una F de

Snedecor, comparando diferentes grados de libdbmdsta forma comprobamos que

son funciones muy diferentes a la Normal. No olistar observa que para lggFaun

tomando soélo valores positivos, es la que mas aoi$s decir que se parece a la

Normal, aun siendo bastante diferente.
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Grafico 6. Funcion de densidad de la distribucionde Snedecor

1,2
1
0,8
0,6
0,4
0,2
0 —— = —
0 2 4 6 8 10 12
denFdeSnedecor(2,5) denFdeSnedecor(2,12) denFdeSnedecor(3,8)
Estas grandes diferencias justifican los resultaéds tabla 4.
En el grafico 7 se muestran la evolucion de lagidigiones chi-cuadrado conforme

aumentan los grados de libertad.
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Gréafico 7. Funcién de densidad de la distribuciérhzcuadrado.t
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t»denCh1”, “denCh5” y “denCh15” son las densidadesistribuciones(?, X2, y X respectivamente.

Sabemos que la distribucién chi-cuadrado se foripartr de la Normal, pero aun con

eso, es muy diferente a la Normal, caracteristiga Iqs graficos muestran. Con ello

podriamos decir que, aunque para tamafios muespatpsgefios (50), y cuando la
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distribucion tiene 15 grados de libertad, tantguesBera como Lilliefors no capten la
falta de normalidad, los graficos muestran la glié@rencia con respecto a la Normal.
El gréfico podria justificar en parte este resutagh que muestra (linea verde) que
dicha distribucion sigue una forma parecida a lanlNd s6lo que no esta centrada en el

cero.

En la tabla 4 se observa que Jarque-Bera se canpejbr, porque tiene una potencia
mas alta que Lilliefors. Es importante tenerlo eernta en muestras pequefas, porque

cuando aumenta el tamafio muestral, ambos son ntetes, no habria diferencia.

Por ultimo, respecto a este grupo de distribuciooaisria destacar que para T=500, la
potencia es muy alta en todos los casos.

La tabla 5 nos muestra la proporcién de rechazda dipoétesis nula cuando la sigue
una distribucion log-normal. Una variable aleatotiaigue una distribucion log-normal
si su logaritmo sigue una normal, y en este cagoiesuna normal con media 3 y

varianza 0.5.

Tabla 5. Proporcién de rechazos de ki u ~ Log-Normal [ log (x) ~ N (1 62) ]

Distribucién T=50 T=100 T=500

y estadistico 1% | 5% | 10%| 1% | 5% |10% | 1% | 5% | 10%

JB|0,626|0,744| 0,81 | 0,949 0,987/ 0,993 1 1 1

log (x) ~ Ns, 05| LI | 0,358| 0,646| 0,755/ 0,735 0,93 | 0,97| 1 1 1

Observamos que es mas potente Jarque-Bera quefdrdli aunque cabe destacar que
conforme aumentamos el tamafio muestral y el nieesignificacion las diferencias

entre ambos contrastes desaparecen.

Es importante mencionar, que a pesar de ser urmdbdon que proviene de la
Normal, las potencias son bastante elevadas, lajgieee decir que ambos contrastes
detectan la no normalidad de la distribucion.

En la tabla 6 presentamos los resultados cuanddsamma (Gp) y Su caso particular,

exponencial (B).
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Tabla 6. Proporcion de rechazos de ki u ~ Gamma (G,p) y Exponencial (E)

Distribucion T=50 T=100 T=500
y estadistico 1% | 5% | 10% | 1% | 5% | 10% | 1% | 5% |10%
Go.a,1 JB 1 1 1 1 1 1 1 1 1
LI 1 1 1 1 1 1 1 1 1
G1,160E |JB]0,827|0,926| 0,965| 0,997| 1 1 1 1 1

LI | 0,664 | 0,889| 0,939| 0,986| 0,998 1 1 1 1

Gs, 1 JB| 0,401 0,558| 0,651| 0,813 0,92 | 0,961 1 1 1

LI| 0,18 | 0,466/ 0,605 0,47 | 0,782 0,873 1 1 1

Ga,1 JB|0,345| 0,474| 0,568| 0,671| 0,841| 0,912 1 1 1

LI |1 0,128 0,365| 0,477| 0,327| 0,647| 0,765|0,999] 1 1

Se trata de dos distribuciones muy diferentesNolanal, de ahi que las potencias sean
muy altas aun cuando miramos tamafos muestralages, y cuando aumentamos
los parametros que las componen. Se puede regaéan la distribucion Gamma cuyo
parametro a es 0,1 y cuyo parametro p es 1, ambi@slisticos detectan la no
normalidad para cualquier tamafio muestral. En génem tamafios muestrales grandes
se detecta la no normalidad sea cual sean los pasnpero en tamafios muestrales

pequefios la potencia es mas baja cuando mayopasaghetro a.

Conforme el parémetro a aumenta, ambos contrastenenos potentes. Esto ocurre en

T=50yT=100, noes T=500, donde la poteasigiempre la maxima.

El contraste de Jarque-Bera es mas potente que Eilligfors, aspecto que se nota
sobre todo para tamafios muestrales pequefios yaongfi@me éstos aumentan, las

diferencias disminuyen.
El grafico 8 muestra las distribuciones Gamma aqgrads analizado en la tabla 6.

Vemos que tanto la Gamma (3,1) como la Gamma(#rign una forma algo parecida a
una “campana”’ como la Normal, tal y como mostrabgabla 6. Asimismo, las otras
dos distribuciones Gamma analizadas, vemos graéiceanque toman un forma

diferente a la Normal.

29



Gréfico 8. Funcion de densidad de la distribuciéra@ma.?
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27denG011”, “denG11”, “denG31” y “denG41” son lasnd@lades de distribuciones G, Gi1, Gs1y
Gs,1 respectivamente.

La tabla 7 muestra el caso en el que la distribud#u es bimodal. Hemos generado las

distribuciones bimodales 50-50 [N@f), N(1 o2)].

Tabla 7. Proporcion de rechazos de ki u ~ Bimodal

Distribucién T=50 T=100 T=500

y estadistico 1% | 5% |10% | 1% | 5% |[10% | 1% | 5% | 10%
N(-1,1), [JB| O [0,001/0,006) O |0,003 0,019|0,128|0,479| 0,687
N(1,1) [Li [0,006|0,049] 0,109 0,01 | 0,084 0,154 0,118 0,425| 0,604
N(-3,1), [9B| O |0017/ 0,780,822 1 1 1 1 1
N(3.1) [LI[0,937/0,999] 1 1 1 1 1 1 1
NGL5), |UB 0,014/ 0,038] 0,053| 0,022| 0,038| 0,061 0,008| 0,038 0,082
N(1,5) [LI [0,005]0,051]0,101 0,01 | 0,05 0,0890,006| 0,047| 0,104
N(:3.5). JB|0,009| 0,02 | 0,038 0,009| 0,021| 0,035/ 0,002| 0,024| 0,068
N(3,5) [LI |0,005|0,048| 0,093| 0,007 0,056/ 0,104|0,012| 0,062| 0,113
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Notar que hemos mantenido siempre +u, y la mismanza. Esto podria haber sido de
otro modo, pero la logica nos lleva a hacerlo pafa que al menos exista cierta

similitud con la normal, en cuanto a “simetria” yaianza constante.

En la tabla 7, se observa que cuando la varianzpegseiia (en nuestro caso, 1),
conforme se aumenta la media, la potencia aumentppr tanto captan la no
normalidad. Sin embargo, cuando aumentamos la nzaigen nuestro caso, 5),
conforme aumenta la media, vemos que la potencradsspequeiia. A nivel general,

con varianza 5, ambos contrastes no captan lamoeatidad.

Los graficos 9 y 10 muestran las distribucionesduoiates con varianza igual a la
unidad y con distinta media (en el caso del grédices con media igual a £ 1, y en el

caso del grafico 10, es con media igual a + 3).

Gréfico 9. Funcion de densidad Bimodal con p=xlgy = 1.3
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3*fdnorm” y “fdenbm1” son las densidades de distdiomes N y Bimodal (50%) N(-1,1),N(1,1).

Vemos que cuando la media es 3, graficamente ehanmé@s diferente (tal y como
vemos en la tabla 7 con las potencias tan elevagas)tanto, detectan la falta de
normalidad, en cambio, cuando toma media 1, loapugre es que no discrima por la

cercania de las funciones de densidad.
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Gréfico 10. Funcién de densidad Bimodal con p=+%y = 1.4
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4"fdnorm” y “fdenbm3” son las densidades de distdimmes N ; y Bimodal (50%) N(-3,1),N(3,1).

Por otro lado, cuando aumentamos la varianza (estrmucaso a 5), lo que ocurre es

gue ambos contrastes detectan la normalidad sread@otente Lilliefors.

Los graficos 11 y 12 muestran las distribucionesdoiales con varianza igual a la cinco
y con distinta media (en el caso del grafico 1Iméalia es igual a = 1, y para el grafico

12, la media es igual a + 3).

0,25

0,05

Gréfico 11. Funcién de densidad Bimodal con p=+ 1lof = 5.°
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S*fdnorm5” y “fdenbm15” son las densidades de disttiones Nsy Bimodal (50%) N(-1,5),N(1,5).
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Gréfico 12. Funcion de densidad Bimodal con p=+ 3of = 5.6
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5*fdnorm5” y “fdenbm35” son las densidades de distdiones Nsy Bimodal (50%) N(-3,5),N(3,5).

Vemos que ambos graficos muestran lo que los eskdtde la tabla 7 exponian, y es la
similitud que comparten las distribuciones bimodaten varianza grande (5), con la
funcién de distribucion Normal. Normalidad en epexto de que a pesar de ser dos
subpoblaciones, las probabilidades que toman ecidrde la perturbacion aleatoria

son muy parecidas.

Como resumen general, hemos realizado una tabla @ en la que, de mayor a menor

potencia de los contrastes, se ordenan las disinibes sefialando en cada caso qué
contraste (Jarque-Bera O Lilliefors) es mas poteHwmos establecido las potencias

para cada tamafio muestral al 5% de nivel de stguithin, asi como que las hemos

ordenado, resaltando que las cuatro Ultimas digtidmes, cambian de orden cuando el

tamafio muestral pasa de 50 a 100, pero se manganglmmismo orden cuando se pasa
de tamafio muestral 100 a 500.
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Tabla 8. Cuadro resumen de los resultados de Expento de Monte Carld.

T=50 T=100 T=500
Distrib Pot | CMA Distrib Pot | CMP Distrib Pot| CMR
JBy JBy JBYy
Go1,1 1 LI Goi,1 1 LI Goi,1 1 LI
N 3nE| 0,999 LI | Ne3 e 1 LI N (-3,1)3,1) 1 LI
Fos 0,997 JB ks 1 JB Fos 1 JB
X2 0,991| JB X2 1 JB X2 1 JB
F212 0,98 JB B2 1 JB F212 1 JB
F3gs 0,978 JB ks 1 JB Fs,s 1 JB
t1 0,988| JB ] 1 JB ta1 1 JB
G111 0,926| JB G.1 1 JB G11 1 JB
log- log-
normal | 0,744/ JB| normal | 0,987 JB | log-normal 1 JB
X2 0,632| JB X2 0,949/ JB X2 1 JB
Ga1 0,558 | JB &1 0,92 JB G,1 1 JB
Gt 0,474 JB G 0,841 JB Ga1 1 JB
X% 0284 JB| X% |o577] B X2 1 JB
Logistica| 0,204 JB| Logistica 0,384 JB Logistica| 0,889 JB
tis 0,112| JB fis 0,185, JB tis 0,436 JB
t 40 0,058 JB| Napwy|0084] LI | Ncinay | 0,425 LI
N (15@s5 | 0,051 LI ta0 0,082 JB tao 0,127 JB
N ciney| 0,049 LI | Nezses | 0,056] LI | N as@s | 0,062] LI
N (35@35 | 0,048 LI | Neisas | 0,05 LI N¢15@5 | 0,047 LI

™Distrib”, “Pot” y “CMP” son la distribucién de la; en el PGD, la potencia para cada distribucién y el
contraste de mayor potencia.
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A través de la tabla 8, vemos claramente, que ¢xaego en las distribuciones
bimodales, en el resto de distribuciones es manotlarque-Bera que Lilliefors. Se
puede afiadir que, las distribuciones que mejoracalat falta de normalidad son muy
distintas entre si, es decir, no son todas lasiluisiones iguales pero con distintos
grados de libertad. También resalta que, las bistibnes que no discriminan la
normalidad, son la distribucion logistica, la disicion t de student (con 15 y 40 grados
de libertad), y finalmente las distribuciones biraled analizadas excepto la que tiene
media 3 y varianza 1. Para entender esta excepgmdemos observar los cuatro
graficos de las bimodales. Claramente, el corredipate a la bimodal N(-3,1),N(3,1),
al tener medias muy distanciadas y dispersién gegueoncentra las probabilidades
altas en valores mas extremos que en la normataHBrbio, si las medias estan mas
proximas las probabilidades altas se daran pamesbkimilares de la variable, y mas

todavia si la dispersion es mayor (varianza 5).

6. CONCLUSIONES

El objetivo de este trabajo ha consistido en mps&rdorma en la que se trabaja con
experimentos de Monte Carlo a la hora de analizdos contrastes captan o no la falta
de normalidad dependiendo de las distribucionessguestudian. Teniendo en cuenta
que en el software econométrico que usamos haitimaé Gretl aparecen varios

estadisticos de contraste, de ellos en este trdigagws comparado Jarque-Bera con
Lilliefors.

A la vista de los resultados se pueden obtenemnagygonclusiones. En primer lugar,
cuando la distribucion que establecemos como etion aleatoria es Normal, el
contraste que mejor se comporta es Lilliefors, tjgrde a aceptar la hipotesis de
normalidad una proporcién de veces muy préoximaialrde significacion. Por otro
lado, cuando analizamos distribuciones muy sinslaada normal (simétricas y que
toman valores entreo-y +), que en nuestro caso han sido la logistica yskailoucion

t de Student, el contraste mas adecuado es Jaemae-Bn tercer lugar, hemos
observado que, para todas aquellas distribucionesgn muy diferentes a la Normal,
es mucho mas potente Jarque-Bera que el contradtdlidfors, salvo en el caso de la

Bimodal, ya que en este caso es mas potente biiefue Jarque-Bera.
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Aunque en nuestro trabajo hemos generado la pedidrib en cada caso con
distribuciones diferentes a la Normal, en realidada practica el hecho de queno
siga una Normal puede deberse a un error en lxiéspeion de la parte sistematica.
La diferencia entre la parte sistematica espedéicala verdadera, se supone que ira a
la perturbacién que puede dejar de ser Normal.dlac®n que mas aparece en los
libros para corregir la falta de normalidad comsieh aplicar logaritmos, y hemos
comprobado en los casos de nuestros experimentesnqusiempre resuelve el
problema. Unicamente si el error es que estimamosiadelo lineal pero el PGD es
logaritmico o semilogaritmico, la no normalidad gquagtan los contrastes se resolveria

aplicando logaritmos en la variable dependienteew/as explicativas.

Es decir, la solucion de aplicar logaritmos panaegr la no normalidad seria efectiva

en situaciones en las que hemos especificado uelmtdeal:
Yi =P1+ P2X2i + BaXai

y sin embargo, el modelo verdadero es uno semitagao, o doblemente logaritmico,

es decir:

INYi =B1 + B2Xoi + P3Xai

(@}

INYi =P1 + B2aInXai + PalnXa;
6 incluso una mezcla de ambos.

Hemos comprobado mediante simulaciones que so&stencaso, aplicar logaritmos a
la Y, y/o a las X, puede resolver el problema, ya gemos como los contrastes pasan
de potencias altas a bajas. Pero en una situaciéngemeral, como cualquiera de los
experimentos recogidos en el apartado anteriorstke teabajo, aplicar logaritmos no
resuelve el problema. No obstante, el error queoseete no deberia ser importante

cuando las distribuciones son similares.

Para terminar las conclusiones, se intentaran siamtea las preguntas formuladas
anteriormente (véase pagina 22). En primer lugardestacable que Jarque-Bera es
mucho mas potente en casi todas las distribuciexespto en las Bimodales, en las que
resalta Lilliefors. En segundo lugar, se ha corrado que son mas fiables los
resultados contemplados en tamafios muestrales raasleg. Esto es, siempre se

cumple el hecho de que conforme aumenta el tamaf®stnal, la potencia es mas
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grande. Ademdas, hemos podido comprobar que cuardggormes el nivel de

significacidbn mayor es la potencia.
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