000062981 001__ 62981
000062981 005__ 20210310171107.0
000062981 0247_ $$2doi$$a10.2174/1381612822666161226151011
000062981 0248_ $$2sideral$$a101084
000062981 037__ $$aART-2017-101084
000062981 041__ $$aeng
000062981 100__ $$0(orcid)0000-0003-0702-8260$$aMartín-Rapún, R.
000062981 245__ $$aTargeted nanoparticles for the treatment of Alzheimer’s disease
000062981 260__ $$c2017
000062981 5060_ $$aAccess copy available to the general public$$fUnrestricted
000062981 5203_ $$aBackground: Alzheimer’s disease (AD) has a dramatic impact on society. The therapeutic targets are located in the central nervous system (CNS), which limits the efficacy of drugs systemically administered: the blood-brain barrier (BBB) selectively allows the permeation of just a few kinds of molecules from the systemic circulation to the CNS. On the other hand, local administration routes to CNS are highly invasive. Methods: In this article, we have reviewed therapeutic approaches against AD, which are based on nanoparticles targeted to the brain and to the pathological hallmarks of the disease. The existing literature has been classified according to the AD feature that is addressed. Results: Nanoparticles have been used for the targeted delivery of drugs aiming to reduce the AD symptoms or to reverse the course of the disease. For this task the multivalency of nanoparticles has allowed their functionalization with several kinds of targeting groups, to cross the BBB and to target the place of treatment. With this approach an increased drug bioavailability has been achieved in the CNS using intravenous administration in place of more invasive administration routes. Additionally, nanoparticles have also been used in the development of vaccines and therapeutic formulations for intranasal administration. Conclusion: Targeted nanoparticles have been proved useful to enhance the performance of therapies against AD in animal models. A better understanding of AD mechanisms will help the successful application of targeted nanoparticles for combined therapies.
000062981 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/RYC-2014-15512$$9info:eu-repo/grantAgreement/ES/MINECO/RYC-2013-12570$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 657566-CONFINES$$9info:eu-repo/grantAgreement/EC/H2020/657566/EU/Controlling Cell Fate through Smart Nanoheaters/CONFINES$$9info:eu-repo/grantAgreement/ES/DGA/E93
000062981 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000062981 590__ $$a2.757$$b2017
000062981 591__ $$aPHARMACOLOGY & PHARMACY$$b114 / 261 = 0.437$$c2017$$dQ2$$eT2
000062981 592__ $$a0.883$$b2017
000062981 593__ $$aPharmacology$$c2017$$dQ2
000062981 593__ $$aDrug Discovery$$c2017$$dQ2
000062981 655_4 $$ainfo:eu-repo/semantics/review$$vinfo:eu-repo/semantics/acceptedVersion
000062981 700__ $$0(orcid)0000-0001-6995-4302$$ade Matteis, L.
000062981 700__ $$0(orcid)0000-0002-1897-4028$$aAmbrosone, A.
000062981 700__ $$0(orcid)0000-0002-7407-6177$$aGarcía-Embid, S.
000062981 700__ $$0(orcid)0000-0003-2366-3598$$aGutiérrez, L.$$uUniversidad de Zaragoza
000062981 700__ $$0(orcid)0000-0003-1081-8482$$ade la Fuente, J.M.$$uUniversidad de Zaragoza
000062981 7102_ $$12009$$2750$$aUniversidad de Zaragoza$$bDpto. Química Analítica$$cÁrea Química Analítica
000062981 7102_ $$12013$$2765$$aUniversidad de Zaragoza$$bDpto. Química Orgánica$$cÁrea Química Orgánica
000062981 773__ $$g23, 13 (2017), 1927-1952$$pCurr. pharm. des.$$tCurrent pharmaceutical design$$x1381-6128
000062981 8564_ $$s2957841$$uhttps://zaguan.unizar.es/record/62981/files/texto_completo.pdf$$yPostprint
000062981 8564_ $$s110063$$uhttps://zaguan.unizar.es/record/62981/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000062981 909CO $$ooai:zaguan.unizar.es:62981$$particulos$$pdriver
000062981 951__ $$a2021-03-10-17:00:50
000062981 980__ $$aARTICLE