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Abstract

Research related to the fit evaluation at the item level involving cognitive diagnosis models
(CDMs) has been scarce. According to the parsimony principle, balancing goodness of fit against
model complexity is necessary. General CDMs require a larger sample size to be estimated reli-
ably, and can lead to worse attribute classification accuracy than the appropriate reduced mod-
els when the sample size is small and the item quality is poor, which is typically the case in many
empirical applications. The main purpose of this study was to systematically examine the statis-
tical properties of four inferential item-fit statistics: S � X 2, the likelihood ratio (LR) test, the
Wald (W) test, and the Lagrange multiplier (LM) test. To evaluate the performance of the statis-
tics, a comprehensive set of factors, namely, sample size, correlational structure, test length,
item quality, and generating model, is systematically manipulated using Monte Carlo methods.
Results show that the S � X 2 statistic has unacceptable power. Type I error and power compar-
isons favor LR and W tests over the LM test. However, all the statistics are highly affected by
the item quality. With a few exceptions, their performance is only acceptable when the item
quality is high. In some cases, this effect can be ameliorated by an increase in sample size and
test length. This implies that using the above statistics to assess item fit in practical settings
when the item quality is low remains a challenge.
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Cognitive diagnosis models (CDMs) have been actively researched in the recent measurement lit-

erature. CDMs are multidimensional, and confirmatory models specifically developed to identify

the presence or absence of multiple attributes involved in the assessment items (for an overview

of these models, see, for example, DiBello, Roussos, & Stout, 2007; Rupp & Templin, 2008).

Although originally developed in the field of education, these models have been used in measuring
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other types of constructs, such as psychological disorders (e.g., de la Torre, van der Ark, & Rossi,

2015; Templin & Henson, 2006) and situation-based competencies (Sorrel et al., 2016).

There are currently no studies comparing item characteristics (e.g., discrimination, diffi-

culty) as a function of the kind of the constructs being assessed. However, some data suggest

that important differences can be found. Specifically, notable differences are found for item dis-

crimination, which is one of the most common indices used to assess item quality. Item dis-

crimination relates to how well an item can accurately distinguish between respondents who

differ on the constructs being measured. Although it does not account for the attribute complex-

ity of the items, a simple measure of discrimination is defined as the difference between the

probabilities of correct response for those respondents mastering all and none of the required

attributes. This index is bounded by 0 and 1. In empirical applications, such as the fraction sub-

traction data described and used by Tatsuoka (1990) and by de la Torre (2011), one of the most

widely used datasets in CDM in the educational context, the mean discrimination power of the

items was 0.80. In contrast, when CDMs have been applied in applications outside educational

measurement, the resulting discrimination estimates were found to be in the 0.40 range (de la

Torre et al., 2015; H.-Y. Liu, You, Wang, Ding, & Chang, 2013; Sorrel et al., 2016; Templin &

Henson, 2006). In these empirical applications, researchers typically used a sample size that

varies approximately from 500 (e.g., de la Torre, 2011; Templin & Henson, 2006) to 1,000 (de

la Torre et al., 2015), with an average number of items equal to 30, 12 being the minimum (de

la Torre, 2011). Different CDMs were considered, including the deterministic inputs, noisy

‘‘and’’ gate (DINA; Haertel, 1989) model; the deterministic inputs, noisy ‘‘or’’ gate (DINO)

model (Templin & Henson, 2006); the additive CDM (A-CDM; de la Torre, 2011); and the gen-

eralized deterministic inputs, noisy ‘‘and’’ gate (G-DINA; de la Torre, 2011) model.

Given the large number of different models, one of the critical concerns in CDM is selecting

the most appropriate model from the available CDMs. Each CDM assumes a specified form of

item response function (IRF). In the CDM context, the IRF denotes the probability that an item

j is answered correctly as a function of the latent class. This study focused on methods asses-

sing this assumption. Model fit evaluated at the test level simultaneously takes all the items into

consideration. However, when there is model–data misfit at the test level, the misfit may be

due to a (possibly small) subset of the items. Item-level model fit assessment allows us to iden-

tify these misfitting items. The research focused on item fit is important because such analysis

can provide guidelines to practitioners on how to refine a measurement instrument. This is a

very important topic because current empirical applications reveal that no one single model can

be used for all the test items (see, for example, de la Torre & Lee, 2013; de la Torre et al.,

2015; Ravand, 2016). Consequently, in this scenario, item-fit statistics are a useful tool for

selecting the most appropriate model for each item. The main purpose of this study was to sys-

tematically examine the Type I error and power of four-item-fit statistics, and provide informa-

tion about the usefulness of these indexes across different plausible scenarios. Only goodness-

of-fit measures with a significance test associated with them (i.e., inferential statistical evalua-

tion) were considered in this article. The rest of the article is structured as follows: First is a

brief introduction of the generalized DINA model framework. This is followed by a review of

item-fit evaluation in CDM, and for a presentation of the simulation study designed to evaluate

the performance of the different item-fit statistics. Finally, the results of the simulation study

and the implications and future studies are discussed.

The Generalized DINA Model Framework

In many situations, the primary objective of CDM was to classify examinees into 2K latent

classes for an assessment diagnosing K attributes. Each latent class is represented by an
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attribute vector denoted by al = (al1, al2, . . . , alK), where l = 1,., 2K. All CDMs can be

expressed as P(Xj = 1=al) = Pj(al), the probability of success on item j conditional on the attri-

bute vector l. For diagnostic purposes, the main CDM output of interest is the estimate of exam-

inee i’s ai = faikg.
Several general models that encompass reduced (i.e., specific) CDMs have been proposed,

which include the above-mentioned G-DINA model, the general diagnostic model (GDM; von

Davier, 2005), and the log-linear CDM (LCDM; Henson, Templin, & Willse, 2009). In this arti-

cle, the G-DINA model, which is a generalization of the DINA model, is used. The G-DINA

model describes the probability of success on item j in terms of the sum of the effects of the

attributes involved and their corresponding interactions. This model partitions the latent classes

into 2K�
j latent groups, where K�j is the number of required attributes for item j. Each latent

group represents one reduced attribute vector, a�lj, that has its own associated probability of suc-

cess, written as

P(a�lj) = dj0 +
XK�j
k = 1

djkalk +
XK�j

k0 = k + 1

XK�j �1

k = 1

djkk0alkalk0 + � � � + dj12.K�
j

YK�j
k = 1

alk , ð1Þ

where dj0 is the intercept for item j, djk is the main effect due to ak , djkk0 is the interaction effect

due to ak , and ak0 and dj12.K�
j

are the interaction effects due to a1, . . . , aK�
j
: Thus, without con-

straints on the parameter values, there are 2K�
j parameters to be estimated for item j.

The G-DINA model is a saturated model that subsumes several widely used reduced CDMs,

including the DINA model, the DINO model, the A-CDM, the linear logistic model (LLM;

Maris, 1999), and the reduced reparametrized unified model (R-RUM; Hartz, 2002). Although

based on different link functions, A-CDM, LLM, and R-RUM are all additive models, where

the incremental probability of success associated with one attribute is not affected by those of

other attributes. Ma, Iaconangelo, and de la Torre (2016) found that, in some cases, one additive

model can closely recreate the IRF of other additive models. Thus, in this work, only three of

these reduced models corresponding to the three types of condensation rules are considered:

DINA model (i.e., conjunctive), DINO model (i.e., disjunctive), and the A-CDM (i.e., additive).

If several attributes are required to correctly answer the items, the DINA model is deduced from

the G-DINA model by setting all terms except for dj0 and dj12.K�
j

to 0. As such, the DINA

model has two parameters per item. Likewise, the DINO model has two parameters per item,

and can be obtained from the G-DINA model by setting djk = � djkk0 = � � � = (� 1)K�
j

+ 1dj12.K�
j
.

When all the interaction terms are dropped, the G-DINA model under the identity link reduces

to the A-CDM, which has K�j + 1 parameters per item. Each of these models assumes a different

cognitive process in solving a problem (for a detailed description, see de la Torre, 2011).

Item-Fit Evaluation

The process of model selection involves checking the model–data fit, which can be examined

at test, item, or person level. Extensive studies have been conducted to evaluate the perfor-

mance of various fit statistics at the test level (e.g., Chen, de la Torre, & Zhang, 2013; Y. Liu,

Tian, & Xin, 2016) and at the person level (e.g., Cui & Leighton, 2009; Y. Liu, Douglas, &

Henson, 2009). At the item level, some item-fit statistics have also been recently proposed to

evaluate absolute fit (i.e., the discrepancy between a statistical model and the data) and relative

fit (i.e., the discrepancy between two statistical models). The parsimony principle dictates that

from a group of models that fit equally well, the simplest model should be chosen. The lack of

parsimony, or overfitting, may result in a poor generalization performance of the results to new
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data because some residual variation of the calibration data is captured by the model. With this

in mind, general CDMs should not be always the preferred model. In addition, as pointed out

by de la Torre and Lee (2013), there are several reasons that make reduced models preferable

to general models: First, general CDMs are more complex, thus requiring a larger sample size

to be estimated reliably. Second, reduced models have parameters with a more straightforward

interpretation. Third, appropriate reduced models lead to better attribute classification accuracy

than the saturated model, particularly when the sample size is small and the item quality is poor

(Rojas, de la Torre, & Olea, 2012). In this line, Ma et al. (2016) found that a combination of

different appropriate reduced models determined by the Wald test always produced a more

accurate classification accuracy than the unrestricted model (i.e., the G-DINA model). In the

following, some of the statistics that may be computed in this context will be described.

Absolute Fit

Absolute item fit is typically assessed by comparing the item performance on various groups

with the performance levels predicted by the fitted model. A x2-like statistic is used to make this

comparison. Different statistics have emanated from traditional item response theory (IRT), and

the main difference among them is how the groups are formed. There are two main approaches:

In the first one, respondents are grouped based on their latent trait estimates, and observed fre-

quencies of correct/incorrect responses for these groups are obtained. Yen’s (1981) Q1 statistic

is computed using this approach and has been adapted to CDM (Sinharay & Almond, 2007; C.

Wang, Shu, Shang, & Xu, 2015). Its performance has been compared with that of the posterior

predictive model checking method (Levy, Mislevy, & Sinharay, 2009). Q1 Type I error was gen-

erally well kept below .05 and was preferred to the posterior predictive model checking method.

The main problem with this approach is that observed frequencies are not truly observed

because they cannot be obtained without first fitting a certain model. This will lead to a model-

dependent statistic that makes it difficult to determine the degrees of freedom (Orlando &

Thissen, 2000; Stone & Zhang, 2003). In the second approach, the statistic is formulated based

on the observed and expected frequencies of correct/incorrect responses for each summed score

(Orlando & Thissen, 2000). The main advantage of this approach is that the observed frequen-

cies are solely a function of observed data. Thus, the expected frequencies can be compared

directly with observed frequencies in the data. A x2-like statistic, referred to as S � X 2 (Orlando

& Thissen, 2000), is then computed as

S � X 2
j =
XJ�1

s = 1

Ns

Ojs � Ejs

� �2

Ejs 1� Ejs

� �;x2 J � 1� mð Þ, ð2Þ

where s is the score group, J is the number of items, Ns is the number of examinees in group s,

and Ojs and Ejs are the observed and predicted proportions of correct responses for item j for

group s, respectively. The model-predicted probability of correctly responding item j for exami-

nees with sum score s is defined as

P(xij = 1 Si = s) =j

P2K

l = 1

P xij = 1 alj
� �

P S
j
i = s� 1 alj

� �
p alð Þ

P2K

l = 1

P Si = s aljð Þp alð Þ
, ð3Þ
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where P Si = s aljð Þ is the probability of obtaining the sum score s� 1 in the test composed of

all the items except item j, and p(al) defines the probability for each of the latent classes.

Model-predicted joint-likelihood distributions for each sum score are computed using the recur-

sive algorithm developed by Lord and Wingersky (1984), and detailed in Orlando and Thissen

(2000). The statistic is assumed to be asymptotically x2 distributed with J – 1 – m degrees of

freedom, where m is the number of item parameters.

Relative Fit

When comparing different nested models, there are three common tests that can be used (Buse,

1982): likelihood ratio (LR), Wald (W), and Lagrange multiplier (LM) tests. In the CDM con-

text, the null hypothesis (H0) for these tests assumes that the reduced model (e.g., A-CDM) is

the ‘‘true’’ model, whereas the alternative hypothesis (H1) states that the general model (i.e., G-

DINA) is the ‘‘true’’ model. As such, H0 defines a restricted parameter space. For example, for

an item j measuring two attributes in the A-CDM model, the interaction term is restricted to be

equal to 0, whereas this parameter is freely estimated in the G-DINA model. It should be noted

that the three procedures are asymptotically equivalent (Engle, 1983). In all the three cases, the

statistic is assumed to be asymptotically x2 distributed with 2K�
j � p degrees of freedom, where

p is the number of parameters of the reduced model.

Let ~u and û denote the maximum-likelihood estimates of the item parameters under H0 and

H1, respectively (i.e., restricted and unrestricted estimates of the population parameter).

Although all three tests answer the same basic question, their approaches to answering the ques-

tion differ slightly. For instance, the LR test requires estimating the models under H0 and H1;

in contrast, the W test requires estimating only the model under H1, whereas the LM test

requires estimating only the model under H0.

Before describing in greater detail these three statistical tests, it is necessary to mention a

few points about the estimation procedure in CDM. The parameters of the G-DINA model can

be estimated using the marginalized maximum-likelihood estimation (MMLE) algorithm as

described in de la Torre (2011). By taking the derivative of the log-marginalized likelihood of

the response data, l Xð Þ, with respect to the item parameters, Pj(a
�
lj), the estimating function is

obtained:

∂l Xð Þ
∂Pj a�lj

� � =
1

Pj a�lj

� �
1� Pj a�lj

� �� �
2
4

3
5 Ra�

lj
� Pj a�lj

� �
Ia�

lj

h i
, ð4Þ

where Ia�
lj

is the number of respondents expected to be in the latent group a�lj, and Ra�
lj

is the

number of respondents in the latent group a�lj expected to answer item j correctly. Thus, the

MMLE estimate of Pj(a
�
lj) is given by P̂j(a

�
lj) = Ra�

lj

.
Ia�

lj
. Estimating functions are also known

as score functions in the LM context. The second derivative of the log-marginalized likelihood

with respect to Pj(a
�
lj) and Pj(a

�
l
0
j
) can be shown to be (de la Torre, 2011)

�
XI

i = 1

p a�ljjXi

� � Xij � Pj a�lj

� �

Pj a�lj

� �
1� Pj a�lj

� �h i
8<
:

9=
; p a�l0jjXi

� � Xij � Pj a�l0j

� �

Pj a�l0j

� �
1� Pj a�l0j

� �h i
8<
:

9=
;, ð5Þ

where p(a�lj=Xi) represents the posterior probability that examinee i is in latent group a�lj. Using

P̂j(a
�
lj) and the observed X to evaluate Equation 4, the information matrix is obtained for the
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parameters of item j, I(P̂
�
j ), and its inverse corresponds to the variance–covariance matrix,

Var(P̂
�
j ), where P̂

�
j = fP̂j(a

�
lj)g denotes the probability estimates.

LR test. As previously noted, the LR test requires the estimation of both unrestricted and

restricted models. The likelihood function is defined as the probability of observing X given the

hypothesis. It is defined as L(~u) for the null hypothesis and L(û) for the alternative hypothesis.

The LR statistic is computed as twice the difference between the logs of the two likelihoods:

LR = 2 log L û
� �
� log L ~u

� �h i
;x2 2K�

j � p
� �

, ð6Þ

where log L uð Þ = log
QI

i = 1

PL
l = 1 L(Xi alj )p(al) and L(Xi alj ) =

QJ
j = 1 P(alj)

Xij ½1� P(alj)
1�Xij �.

Having a test composed of J items, the application of the LR test at the item level implies that

JK�
j
.1 comparisons will be made, where JK�

j
.1 is the number of items measuring at least K = 2

attributes. For each of the JK�
j
.1 comparisons, a reduced model is fitted to a target item, whereas

the general model is fitted to the rest of the items. This model is said to be a restricted model

because it has less parameters than an unrestricted model where the G-DINA is fitted to all the

items. The LR test can be conducted to determine if the unrestricted model fits the data signifi-

cantly better than the restricted model comparing the likelihoods of both the unrestricted and

restricted models (i.e., L(û) and L(~u), respectively). Note that the likelihoods here are computed

at the test level.

W test. The W test takes into account the curvature of the log-likelihood function, which is

denoted by C(û), and defined by the absolute value of ∂2 log L=∂u2
evaluated at u = û. In CDM

research, de la Torre (2011) originally proposed the use of the W test to compare general and

specific models at the item level under the G-DINA framework. For item j and a reduced model

with p parameters, this test requires setting up Rj, a (2K�j � p)32K�j restriction matrix with spe-

cific constraints that make the saturated model to be equivalent to the reduced model of inter-

est. The W statistic is computed as

Wj = Rj3P̂
�
j

h i0
Rj3 Var P̂

�
j

� �
3 Rj

0
h i�1

Rj 3 P̂
�
j

h i
;x2 2K�j � p

� �
, ð7Þ

where P̂
�
j are the unrestricted estimates of the item parameters.

LM test. The LM test is based on the slope of the log-marginalized likelihood S uð Þ= ∂ log L=∂u,

which is called the score function. By definition, S(u) is equal to 0 when evaluated at the unrest-

ricted estimates of u (i.e., û), but not necessarily when evaluated at the restricted estimates (i.e.,
~u). The score function is weighted by the information matrix to derive the LM statistics.

Following the parameter estimation under the G-DINA framework, the score function can be

assumed to be as indicated in Equation 4. The LM statistic for item j is defined as

LMj = Sj(~P
�
j )0Var(~P

�
j )Sj(~P

�
j );x2 2K�j � p

� �
, ð8Þ

where ~P
�
j are the restricted estimates of the item parameters. It should be noted that all item

parameters are estimated under the restricted model.

Before these statistics can be used with real data, it must be ensured that they have good sta-

tistical properties. This is even more crucial for S � X 2, LR, and LM tests because they have

not been examined before in the CDM context. There have been, however, noteworthy studies

on S � X 2 in the IRT framework by Orlando and Thissen (2000, 2003) and Kang and Chen

(2008). Its Type I error was generally found to be close to the nominal level. The LM test has

also been applied within the IRT framework. It has been shown to be a useful tool for
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evaluating the assumption of the form of the item characteristic curves in the two- and three-

parameter logistic models (Glas, 1999; Glas & Suárez-Falcón, 2003). However, item quality

was not manipulated in these previous studies, and its effect is yet to be determined. This factor

has been found to be very relevant in many different contexts using the relative item-fit indices,

as is the case of the evaluation of differential item functioning (DIF). For example, previous

research using the LR test in DIF has found that the statistical power of the LR test to detect

DIF increases with increases in item discrimination (W. C. Wang & Yeh, 2003).

The W test is the only one that has been used before in the CDM context for assessing fit at

the item level. However, only two simulation studies examining their statistical properties were

found. Although these works have contributed to our state of knowledge in this field, many

questions related to the usefulness of these statistics with empirical data remained open. de la

Torre and Lee (2013) studied the W test in terms of Type I error and power, and they found that

it had a relative accurate Type I error and high power, particularly with large samples and items

measuring a small number of attributes. In their case, the number of items was fixed to 30, and

item quality was not manipulated. Items were set to have a mean discrimination power of

approximately 0.60. Recently, Ma et al. (2016) extended the findings of de la Torre and Lee

(2013) by including two additional reduced models (i.e., LLM and R-RUM). In their simulation

design, they also considered two additional factors: item quality and attribute distribution. They

found that, although item quality strongly influenced the Type I error and power, the effect of

the attribute distribution (i.e., uniform or high order) was negligible. As a whole, although these

studies have shed some light on the performance of the W test, the impact of other important

factors or levels not explicitly considered in these studies remains unclear. This study aims to

fill this gap, as well as examine the potential use of S � X 2, LR, and LM tests for item-fit eva-

luation in the CDM context.

Method

A simulation study was conducted to investigate the performance of several item-fit statistics.

Five factors were varied, and their levels were chosen to represent realistic scenarios detailed in

the introduction. These factors are as follows: (a) generating model (MOD; DINA model, A-

CDM, and DINO model), (b) test length (J; 12, 24, and 36 items), (c) sample size (N; 500 and

1,000 examinees), (d) item quality or discrimination, defined as the difference between the max-

imum and the minimum probabilities of correct response according to the attribute latent profile

(IQ; .40, .60, and .80), and (e) correlational structure (DIM; uni- and bidimensional scenarios).

The following are details of the simulation study: The probabilities of success for individuals

who mastered none (all) of the required attributes were fixed to .30 (.70), .20 (.80), and .10 (.90)

for the low, medium, and high item quality conditions, respectively. For the A-CDM, an increment

of .40 / K�j , .60 / K�j , and .80/ K�j was associated with each attribute mastery for the low, medium,

and high item quality conditions, respectively. The number of attributes was fixed to K = 4. The

correlational matrix of the attributes has an off-diagonal element of .5 in the unidimensional sce-

nario, and 2 3 2 block diagonal submatrices with a correlation of .5 in the bidimensional scenario.

The Q-matrices used in simulating the response data and fitting the models are given in Online

Annex 1. There were the same number of one-, two-, and three-attribute items.

The 3 3 3 3 2 3 3 3 2 (MOD3J3N3IQ3DIM) between-subjects design produces a total

of 108 factor combinations. For each condition, 200 datasets were generated, and DINA, A-

CDM, DINO, and G-DINA models were fitted. Type I error was computed as the proportion of

times that H0 was rejected when the fitted model is true. Power was computed as the proportion

of times that a wrong reduced model is rejected. For example, in the case of the DINA model,

power was computed as the proportion of times that H0 was rejected when the generating model

Sorrel et al. 7



is the A-CDM or the DINO model. Type I error and power were investigated using .05 as the

significance level. With 200 replicates, the 95% confidence interval for Type I error is given by

:0561:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:05(1� :05)=200

p
= ½0:02, 0:08�. For the purposes of this work, a power of at least

.80 was considered adequate. The power analysis may not be interpretable when the Type I error

for the statistics compared is very disparate. To make meaningful comparisons, it was necessary

to approximate the distribution of the item-fit statistic under the null hypothesis. In doing so, the

results from the simulation study were used. A nominal alpha (an) for which the actual alpha

(aa) was equal to .05 was found for all cases (i.e., simulation conditions of the design) where

Type I error was either deflated or inflated (i.e., aa; [.02, .08]). In these cases, this adjusted

value was used as an producing a value for power which could then be compared with the other

statistical tests.

As a mean to summarize and better understand the results of the simulation study, separate

ANOVAs were performed for each of the item-fit statistics. Dependent variables were Type I

error and power associated with each statistical test for all items with the five factors as

between-subjects factors. Due to the large sample size, most effects were significant. For this

reason, omega square (v̂2), measure of effect size, was chosen to establish the impact of the

independent variables. The following guidelines were considered for interpreting v̂2 (Kirk,

1996): Effect sizes in the intervals [0.010, 0.059), [0.059, 0.138), and [0.138, N) were consid-

ered small, medium, and large, respectively. In addition, a cutoff of v̂2� .138 was used to

establish the most salient interactions. It was checked that the estimates of observed power

(i.e., post hoc power) were greater than .80. The code used in this article was written in R.

Some functions included in the CDM (Robitzsch, Kiefer, George, & Uenlue, 2015) and G-

DINA (Ma & de la Torre, 2016) packages were employed. The R code can be requested by

contacting the corresponding author.

Results

Due to space constraints, only effect sizes are discussed and marginal means for the most rele-

vant effects are reported. Type I error and power of the item-fit statistics for the three reduced

models in their entirety are shown in Online Annexes 2 and 3.

Type I Error

The effect size v̂2 values and marginal means associated with each main effect on the Type I

error are provided in Table 1. S � X 2 is the only statistic with a Type I error that was usually

close to the nominal level. The marginal means are always within the [0.02, 0.08] interval, with

the grand mean being 0.06. Only a small effect of item quality (v̂2 = .01) and the generating

model (v̂2 = .03) was found: Type I error was slightly larger in the low and medium item qual-

ity conditions and for the A-CDM. None of the interactions had a salient effect.

The Type I errors of the LR, W, and LM tests were very similar. Type I error was only accep-

table for the high item quality conditions, which was the factor with the greatest effect (v̂2 =

.33, .71, and .30 for LR, W, and LM tests, respectively). When the item discrimination is low or

medium, the Type I error was inflated. This makes it difficult to interpret the marginal means

for all other factors, because conditions with low, medium, and high item discrimination are

mixed. That was why the marginal means were generally much larger than the upper-limit of

the confidence interval (i.e., 0.08). All things considered, the grand means of the three tests were

inflated: 0.19, 0.29, and 0.14 for LR, W, and LM tests, respectively. Only one of the two-way

interactions had a salient effect: Generating Model 3 Item Quality. As can be observed from

Figure 1, there were large differences between the marginal means for the different levels of

8 Applied Psychological Measurement 00(0)
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generating model across the levels of item quality. The Type I error was closer to the nominal

level when item quality got higher, with the exception of the DINO model, where Type I error

was more inflated with medium-quality items. Marginal means for the high-quality conditions

were within the confidence interval for all models in the case of LR and W tests. When the gen-

erating model is A-CDM, the LM test tended to be conservative (i.e., Type I error dropped close

to 0).

None of the other interactions for the LR, W, and LM tests were relevant, so the main effects

could be interpreted. However, as noted above, Type I error was generally acceptable only in

the high item quality condition. Sample size and test length affected the performance of the

three statistics: Sample size had a small effect for the LR, W, and LM tests (v̂2 = .01, .03, and

.01, respectively), whereas test length had a small effect on the Type I error of the LR and LM

tests (v̂2 = .02 and .03, respectively), and a large effect in the case of W test (v̂2 = .17). The

Type I error was closer to the nominal level as the sample size and the test length increased. As

can be observed in Online Annex 2, there were cases where Type I error was within the confi-

dence interval when the test length and the sample size were large (i.e., J = 24 or 36 and N =

1,000). Finally, correlational structure had a small effect in the case of the LM test (v̂2 = .02).

The Type I error for the LM test was inflated in the bidimensional conditions compared with

the unidimensional conditions, although differences were small.

Power

The v̂2 values and marginal means associated with each main effect on the power are provided

in Table 2. For most of the conditions involving high-quality items, it was not necessary to cor-

rect aa. For example, aa was corrected for the LR tests only in some of the conditions (i.e., J =

12 and N = 500). The pattern of effects of the manipulated factors on the power was very simi-

lar for all the tests. However, power of the LR and W tests was almost always better than those

of the S � X 2 and LM tests—the grand means across models were 0.75, 0.78, 0.25, and 0.46

for LR, W, S � X 2, and LM tests, respectively. Again, item quality had the greatest effect

with an average v̂2 = .74. Power was usually lower than .80 in the low item quality conditions

for all the statistics. This factor was involved in all the salient high-order interactions: Sample

Figure 1. Two-way interaction of Generating Model 3 Item Quality with LR, W, and LM Type I error as
dependent variables.
Note. The horizontal gray line denotes the nominal Type I error (a = .05). DINA = deterministic inputs, noisy and gate;

CDM = cognitive diagnosis model; A-CDM = additive CDM; DINO = deterministic inputs, noisy ‘‘or’’ gate.
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Size 3 Item Quality (Figure 2), Test Length 3 Item Quality (Figure 3), Test Length 3 Item

Quality 3 Correlational Structure (Figure 4), and Test Length 3 Item Quality 3 Generating

Model (Figure 5). Here follows a description of each of these interactions.

As noted before, power increased as the item quality got better. This effect interacted with

the sample size and test length (see Figures 2 and 3). In the case of the S � X 2 and LM tests, the

improvement on the power associated with moving from low- to medium-quality items was sim-

ilar for the different levels of sample size and test length, but this gain is generally much bigger

Figure 2. Two-way interaction of Sample Size 3 Item Quality with S2X2, W, and LM power as
dependent variables.
Note. The horizontal gray line represents a statistical power of .80. DINA = deterministic inputs, noisy and gate; CDM

= cognitive diagnosis model; A-CDM = additive CDM; DINO = deterministic inputs, noisy ‘‘or’’ gate.

Figure 3. Two-way interaction of Test Length 3 Item Quality with S2X2, LR, and LM power as
dependent variables.
Note. The horizontal gray line represents a statistical power of .80. DINA = deterministic inputs, noisy and gate; CDM

= cognitive diagnosis model; A-CDM = additive CDM; DINO = deterministic inputs, noisy ‘‘or’’ gate.
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when moved from medium- to high-quality items in the case of the N = 1,000, J = 24, and

J = 36 conditions. The pattern of results for the LR test was similar to the one observed for the W

test. Thus, only the W test is depicted in Figure 3. Power in the medium-quality item conditions

was already close to 1.00 when N = 1,000 and J = 24 or 36. This is why there is a small room for

improvement when moved to high-quality item conditions because of this ceiling effect.

In the case of the LM test, it was found that the three-way Correlational Structure 3 Test

Length 3 Item Quality had a salient effect on the power for rejecting A-CDM when it was false.

As can be seen from Figure 4, only test length and item quality had a noteworthy effect on the

LM power in the bidimensional scenario.

There is a salient interaction effect of the item quality and the generating model factors

affecting all the statistics. As can be observed from Table 2, in general, the main effect of the

generating model indicates that, for S � X 2, LR, and W tests, the DINA model was easier to

reject when the data were generated with the DINO model and vice versa. Power for rejecting

A-CDM was generally higher when data were generated with the DINA model. The effect on

the power of LM was different: The power for rejecting DINA and DINO models was higher

for data generated using the A-CDM, and the power for rejecting A-CDM was close to 0, regard-

less the generating model 2 .09 and .13 for data generated with DINA and DINO models,

respectively. In short, LM tended to reject models different from A-CDM. In the case of the

S � X 2 power, power increased as the item quality got better, but the increment was larger for

models which were easier to distinguish (i.e., DINA vs. DINO, A-CDM vs. DINA). This rela-

tionship between item quality and generating models was affected by the test length in the case

of LR, W, and LM tests. This three-way interaction was very similar for the LR and W tests, so

it was only depicted for the W test (see Figure 5). Power was always equal to 1.00 in the high

item quality conditions, regardless of the test length. In the medium item quality conditions,

power was also very high when comparing the more distinguishable models (i.e., DINA vs.

DINO, A-CDM vs. DINA), even when test was composed of a small number of items (J = 12).

In the low item quality conditions, the LR and W tests only can differentiate between the DINA

and DINO models, but only if the number of items was at least 24. In the case of the LM test,

this three-way interaction had only a salient effect on the power for rejecting DINA and A-CDM

models. However, power was generally only acceptable for rejecting DINA and DINO models

when the generating model is A-CDM, regardless of the test length and the quality of the items.

Figure 4. Three-way interaction of Correlational Structure 3 Item Quality 3 Test Length with LM
power for rejecting A-CDM when it is false as dependent variable.
Note. The horizontal gray line represents a statistical power. CDM = cognitive diagnosis model; A-CDM = additive

CDM.
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Discussion

Even though the interest in CDMs began in response to the growing demand for a better under-

standing of what students can and cannot do, CDMs have been recently applied to data from

different contexts such as psychological disorders (de la Torre et al., 2015; Templin & Henson,

2006) and competency modeling (Sorrel et al., 2016). Item quality has been found to be typi-

cally low outside of the educational context. In addition, according to the literature this is an

expected result of applications where the attributes are specified post hoc (i.e., CDMs are retro-

fitted; Rupp & Templin, 2008). The suitable application of a statistical model requires the

assessment of model–data fit. One important question that is raised by these new applications is

how item quality may affect the available procedures for assessing model fit. While extensive

studies have been conducted to evaluate the performance of various fit statistics at the test (e.g.,

Chen et al., 2013; Y. Liu et al., 2016) and person levels (e.g., Cui & Leighton, 2009; Y. Liu

et al., 2009), the item level is probably the one that has received less attention in the previous liter-

ature. The statistical properties of the item-fit statistics remain unknown (e.g., S � X 2, LR, and

LM tests) or need further investigation (e.g., W test). Taking the above into account, this study

provides information about the usefulness of these indexes on different plausible scenarios.

To use item-fit statistics in practical use, it is necessary that Type I error is close to the nom-

inal value, and that they have a great power to reject false models. In the case of the statistic

evaluating absolute fit, S � X 2, although it has been found to have a satisfactory Type I error,

its power is far from reaching acceptable values. These results are in line with previous studies

assessing the performance of x2-like statistics in the context of the DINA model (C. Wang

et al., 2015). Here, these results are extended to compensatory and additive models (i.e., DINO

and A-CDM). In conclusion, given its poor performance in terms of power, decisions cannot be

made based only on this indicator. There are, however, a number of possible solutions for deal-

ing with this problem that need to be considered in future studies. For example, C. Wang et al.

(2015) have shown how Stone’s (2000) method can be applied to avoid low power in the case

of the DINA model. To the authors’ knowledge, this method has not yet been included in the

software available.

Figure 5. Three-way interaction of Generating Model 3 Item Quality 3 Test Length for W test power
for rejecting DINA, A-CDM, and DINO when they are false as dependent variables.
Note. The horizontal gray line represents a statistical power of .80. DINA = deterministic inputs, noisy and gate; CDM

= cognitive diagnosis model; A-CDM = additive CDM; DINO = deterministic inputs, noisy ‘‘or’’ gate.
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Overall, the Type I error and power comparisons favor LR and W tests over the LM test.

However, and more importantly, Type I error is only acceptable (i.e., affi .05) when the item

quality is high: With a very few exceptions, Type I error with medium- and low-quality items

is generally inflated. These results are tentatively attributed to the noise in the estimation of the

item parameters and the standard errors in those conditions. This also applies to other contexts

such as the evaluation of DIF (e.g., Bai, Sun, Iaconangelo, & de la Torre, 2016). Particularly in

the case of the LR test, in medium item quality conditions this can be compensated by an

increase in the number of respondents and items when the true model is DINA or A-CDM. For

the DINO model, Type I error is highly inflated even in those conditions, which is not consis-

tent with the previous results of de la Torre and Lee (2013). However, when the actual alpha is

corrected, so that it corresponds to the nominal level, it was found that the power is still gener-

ally high in the medium item quality conditions. Monte Carlo methods can be used in practical

settings to approximate the distribution of the statistics under the null hypothesis as it is done in

the simulation study (e.g., Rizopoulos, 2006). All things considered, this means that, most

likely, an incorrect model will not be chosen if LR or W test is used and the item quality is at

least medium, which is consistent with de la Torre and Lee’s results for the W test. However,

this does not mean that CDMs cannot be applied in poor-quality items conditions. In these

situations, the model fit of the test should be assessed as a whole, and it should be ensured that

the derived attribute scores are valid and reliable. Another promising alternative is to use a

strategy that makes the best of each statistic. According to the results of the present study,

S � X 2, LR, and W statistics can be used simultaneously as a useful tool for assessing item fit

in empirical applications. Among all the models fitting the data according to the S � X 2 statis-

tic, the one pointed by the LR or the W test will be chosen as the most appropriate model.

Even though the LR test was found to be relatively robust than the W test, the power of W

test was slightly higher. Another advantage of using the W test is that it requires only the unrest-

ricted model to be estimated. In contrast, the LR test required JK�
j
.1NR + 1 models to be esti-

mated, where NR is the number of reduced models to be tested. For example, for one of the

conditions with 36 items and 1,000 examinees the computation of the LR and W tests requires

2.44 min and 6 s, respectively. In other words, the W test was 24 times fast than the LR test.

Furthermore, in a real scenario, multiple CDMs can be fitted within the same test. Thus, a more

exhaustive application of the LR test would require comparing the different combinations of the

models, and lead to substantially longer time to implement the LR test. Future studies should

explore how this limitation can be addressed.

Although the LM test was introduced as an alternative for assessing fit at the item level, it

was found that its performance is highly affected by the underlying model: It tended to keep A-

CDM and reject DINA and DINO models. This test focuses on the distance between the

restricted and the unrestricted item parameter estimates. A possible explanation for this poor

performance is that the computation of this difference (i.e., the score function) relies on a good

estimation of the attribute joint distribution. In this regard, Rojas et al. (2012) found that fitting

an incorrect reduced CDM may have a great impact on the attribute classification accuracy,

affecting the estimation of the attribute joint distribution, and thus the performance of this test.

To fully appreciate the current findings, some caveats are in order. A first caveat relates to

the number of attributes. In certain application fields, the number of attributes can be high. For

example, Templin and Henson (2006) specify 10 attributes corresponding to the 10 Diagnostic

and Statistical Manual of Mental Disorders (4th ed., text rev.; DSM-IV-TR; American

Psychiatric Association [APA], 2000) criteria for pathological gambling. Thus, it is recom-

mended that future research examines the effect of the number of attributes. Second, all items

were simulated to have the same discrimination power. In a more realistic scenario, discrimi-

nating and nondiscriminating items are mixed. Third, the present study focuses on inferential
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statistical evaluation. Future studies should consider other approximations. For example,

goodness-of-fit descriptive measures have been shown to be useful in some situations. Chen et

al. (2013) found that fit measures based on the residuals can be effectively used at the test level.

Kunina-Habenicht, Rupp, and Wilhelm (2012) found that the distributions of the root mean

square error of approximation (RMSEA) and median absolute deviation (MAD) indexes can be

insightful when evaluating models and Q-matrices in the context of the log-linear model frame-

work. New studies might try to extend this result to other general frameworks.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or pub-

lication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or pub-

lication of this article: This research was supported by Grant PSI2013-44300-P (Ministerio de Economia y

Competitividad and European Social Fund).

Supplemental Material

The online supplementary appendices are available at http://journals.sagepub.com/doi/suppl/10.1177/

0146621617707510.

References

Bai, Y., Sun, Y., Iaconangelo, C., & de la Torre, J. (2016, July). Improving the Wald test DIF detection

under CDM framework. Paper presented at the International Meeting of Psychometric Society,

Asheville, NC.

Buse, A. (1982). The likelihood ratio, Wald, and Lagrange Multiplier tests: An expository note. American

Statistician, 36, 153-157.

Chen, J., de la Torre, J., & Zhang, Z. (2013). Relative and absolute fit evaluation in cognitive diagnosis

modeling. Journal of Educational Measurement, 50, 123-140.

Cui, Y., & Leighton, J. P. (2009). The hierarchy consistency index: Evaluating person fit for cognitive

diagnostic assessment. Journal of Educational Measurement, 46, 429-449.

de la Torre, J. (2011). The generalized DINA model framework. Psychometrika, 76, 179-199.

de la Torre, J., & Lee, Y. S. (2013). Evaluating the Wald test for item-level comparison of saturated and

reduced models in cognitive diagnosis. Journal of Educational Measurement, 50, 355-373.

de la Torre, J., van der Ark, L. A., & Rossi, G. (2015). Analysis of clinical data from cognitive diagnosis

modeling framework. Measurement and Evaluation in Counseling and Development. Advance online

publishing. doi:10.1177/0748175615569110

DiBello, L., Roussos, L. A., & Stout, W. (2007). Review of cognitively diagnostic assessment and a

summary of psychometric models. In C. V. Rao & S. Sinharay (Eds.), Handbook of Statistics: Vol. 26.

Psychometrics (pp. 979-1027). Amsterdam, The Netherlands: Elsevier.

Engle, R. F. (1983). Wald, likelihood ratio, and lagrange multiplier tests in econometrics. In M. D.

Intriligator & Z. Griliches (Eds.), Handbook of econometrics (Vol. 2., pp. 796-801). New York, NY:

Elsevier.

Glas, C. A. (1999). Modification indices for the 2-PL and the nominal response model. Psychometrika, 64,

273-294.
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