Resumen: Photogrammetry methods are being used more and more as a 3D technique for large scale metrology applications in industry. Optical targets are placed on an object and images are taken around it, where measuring traceability is provided by precise off-process pre-calibrated digital cameras and scale bars. According to the 2D target image coordinates, target 3D coordinates and camera views are jointly computed. One of the applications of photogrammetry is the measurement of raw part surfaces prior to its machining. For this application, post-process bundle adjustment has usually been adopted for computing the 3D scene. With that approach, a high computation time is observed, leading in practice to time consuming and user dependent iterative review and reprocessing procedures until an adequate set of images is taken, limiting its potential for fast, easyto-use, and precise measurements. In this paper, a new efficient procedure is presented for solving the bundle adjustment problem in portable photogrammetry. In-process bundle computing capability is demonstrated on a consumer grade desktop PC, enabling quasi real time 2D image and 3D scene computing. Additionally, a method for the self-calibration of camera and lens distortion has been integrated into the in-process approach due to its potential for highest precision when using low cost non-specialized digital cameras. Measurement traceability is set only by scale bars available in the measuring scene, avoiding the uncertainty contribution of off-process camera calibration procedures or the use of special purpose calibration artifacts. The developed selfcalibrated in-process photogrammetry has been evaluated both in a pilot case scenario and in industrial scenarios for raw part measurement, showing a total in-process computing time typically below 1 s per image up to a maximum of 2 s during the last stages of the computed industrial scenes, along with a relative precision of 1/10, 000 (e.g. 0.1 mm error in 1 m) with an error RMS below 0.2 pixels at image plane, ranging at the same performance reported for portable photogrammetry with precise off-process pre-calibrated cameras. Idioma: Inglés DOI: 10.3390/s17092066 Año: 2017 Publicado en: SENSORS 17, 9 (2017), [30 pp.] ISSN: 1424-8220 Factor impacto JCR: 2.475 (2017) Categ. JCR: CHEMISTRY, ANALYTICAL rank: 30 / 80 = 0.375 (2017) - Q2 - T2 Categ. JCR: INSTRUMENTS & INSTRUMENTATION rank: 16 / 61 = 0.262 (2017) - Q2 - T1 Categ. JCR: ELECTROCHEMISTRY rank: 15 / 28 = 0.536 (2017) - Q3 - T2 Factor impacto SCIMAGO: 0.584 - Analytical Chemistry (Q2) - Atomic and Molecular Physics, and Optics (Q2) - Medicine (miscellaneous) (Q2) - Electrical and Electronic Engineering (Q2) - Instrumentation (Q2) - Biochemistry (Q3)