000063020 001__ 63020
000063020 005__ 20200811091507.0
000063020 0247_ $$2doi$$a10.3390/s17091992
000063020 0248_ $$2sideral$$a101650
000063020 037__ $$aART-2017-101650
000063020 041__ $$aeng
000063020 100__ $$0(orcid)0000-0002-3069-2736$$aTorralba, M.
000063020 245__ $$aGeometrical characterisation of a 2D laser system and calibration of a cross-grid encoder by means of a self-calibration methodology
000063020 260__ $$c2017
000063020 5060_ $$aAccess copy available to the general public$$fUnrestricted
000063020 5203_ $$aThis article presents a self-calibration procedure and the experimental results for the geometrical characterisation of a 2D laser system operating along a large working range (50 mm × 50 mm) with submicrometre uncertainty. Its purpose is to correct the geometric errors of the 2D laser system setup generated when positioning the two laser heads and the plane mirrors used as reflectors. The non-calibrated artefact used in this procedure is a commercial grid encoder that is also a measuring instrument. Therefore, the self-calibration procedure also allows the determination of the geometrical errors of the grid encoder, including its squareness error. The precision of the proposed algorithm is tested using virtual data. Actual measurements are subsequently registered, and the algorithm is applied. Once the laser system is characterised, the error of the grid encoder is calculated along the working range, resulting in an expanded submicrometre calibration uncertainty (k = 2) for the X and Y axes. The results of the grid encoder calibration are comparable to the errors provided by the calibration certificate for its main central axes. It is, therefore, possible to confirm the suitability of the self-calibration methodology proposed in this article.
000063020 536__ $$9info:eu-repo/grantAgreement/ES/UZ/CUD2016-TEC-09$$9info:eu-repo/grantAgreement/ES/MINECO/DPI2015-69403-C3-1-R$$9info:eu-repo/grantAgreement/ES/MINECO/DPI2010-21629-C02-01
000063020 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000063020 590__ $$a2.475$$b2017
000063020 591__ $$aCHEMISTRY, ANALYTICAL$$b30 / 80 = 0.375$$c2017$$dQ2$$eT2
000063020 591__ $$aINSTRUMENTS & INSTRUMENTATION$$b16 / 61 = 0.262$$c2017$$dQ2$$eT1
000063020 591__ $$aELECTROCHEMISTRY$$b15 / 28 = 0.536$$c2017$$dQ3$$eT2
000063020 592__ $$a0.584$$b2017
000063020 593__ $$aAnalytical Chemistry$$c2017$$dQ2
000063020 593__ $$aAtomic and Molecular Physics, and Optics$$c2017$$dQ2
000063020 593__ $$aMedicine (miscellaneous)$$c2017$$dQ2
000063020 593__ $$aElectrical and Electronic Engineering$$c2017$$dQ2
000063020 593__ $$aInstrumentation$$c2017$$dQ2
000063020 593__ $$aBiochemistry$$c2017$$dQ3
000063020 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000063020 700__ $$0(orcid)0000-0003-3823-7903$$aDíaz-Pérez, L.C.$$uUniversidad de Zaragoza
000063020 700__ $$aValenzuela, M.
000063020 700__ $$0(orcid)0000-0003-4839-0610$$aAlbajez, J.A.$$uUniversidad de Zaragoza
000063020 700__ $$0(orcid)0000-0001-7152-4117$$aYagüe-Fabra, J.A.$$uUniversidad de Zaragoza
000063020 7102_ $$15002$$2515$$aUniversidad de Zaragoza$$bDpto. Ingeniería Diseño Fabri.$$cÁrea Ing. Procesos Fabricación
000063020 773__ $$g17, 9 (2017), [16 pp]$$pSensors$$tSensors (Switzerland)$$x1424-8220
000063020 8564_ $$s862308$$uhttps://zaguan.unizar.es/record/63020/files/texto_completo.pdf$$yVersión publicada
000063020 8564_ $$s104354$$uhttps://zaguan.unizar.es/record/63020/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000063020 909CO $$ooai:zaguan.unizar.es:63020$$particulos$$pdriver
000063020 951__ $$a2020-08-11-09:02:57
000063020 980__ $$aARTICLE