000063053 001__ 63053
000063053 005__ 20190709135522.0
000063053 0247_ $$2doi$$a10.1038/s41598-017-09059-7
000063053 0248_ $$2sideral$$a101563
000063053 037__ $$aART-2017-101563
000063053 041__ $$aeng
000063053 100__ $$0(orcid)0000-0001-9359-0019$$aCalatayud, M.P.
000063053 245__ $$aCell damage produced by magnetic fluid hyperthermia on microglial BV2 cells
000063053 260__ $$c2017
000063053 5060_ $$aAccess copy available to the general public$$fUnrestricted
000063053 5203_ $$aWe present evidence on the effects of exogenous heating by water bath (WB) and magnetic hyperthermia (MHT) on a glial micro-tumor phantom. To this, magnetic nanoparticles (MNPs) of 30-40 nm were designed to obtain particle sizes for maximum heating efficiency. The specific power absorption (SPA) values (f = 560 kHz, H = 23.9 kA/m) for as prepared colloids (533-605 W/g) dropped to 98-279 W/g in culture medium. The analysis of the intracellular MNPs distribution showed vesicle-trapped MNPs agglomerates spread along the cytoplasm, as well as large (~0.5-0.9 µm) clusters attached to the cell membrane. Immediately after WB and MHT (T = 46 °C for 30 min) the cell viability was ˜70% and, after 4.5 h, decreased to 20-25%, demonstrating that metabolic processes are involved in cell killing. The analysis of the cell structures after MHT revealed a significant damage of the cell membrane that is correlated to the location of MNPs clusters, while local cell damage were less noticeable after WB without MNPs. In spite of the similar thermal effects of WB and MHT on the cell viability, our results suggest that there is an additional mechanism of cell damage related to the presence of MNPs at the intracellular space.
000063053 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/MAT2016-78201-P
000063053 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000063053 590__ $$a4.122$$b2017
000063053 591__ $$aMULTIDISCIPLINARY SCIENCES$$b12 / 64 = 0.188$$c2017$$dQ1$$eT1
000063053 592__ $$a1.533$$b2017
000063053 593__ $$aMultidisciplinary$$c2017$$dQ1
000063053 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000063053 700__ $$aSoler, E.
000063053 700__ $$0(orcid)0000-0002-6116-9331$$aTorres, T.E.$$uUniversidad de Zaragoza
000063053 700__ $$aCampos-Gonzalez, E.
000063053 700__ $$0(orcid)0000-0002-9951-1075$$aJunquera, C.$$uUniversidad de Zaragoza
000063053 700__ $$0(orcid)0000-0003-0681-8260$$aIbarra, M.R.$$uUniversidad de Zaragoza
000063053 700__ $$0(orcid)0000-0003-1558-9279$$aGoya, G.F.$$uUniversidad de Zaragoza
000063053 7102_ $$11003$$2443$$aUniversidad de Zaragoza$$bDpto. Anatom.Histolog.Humanas$$cArea Histología
000063053 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000063053 773__ $$g7, 8627 (2017), [16 pp]$$pSci. rep.$$tScientific reports$$x2045-2322
000063053 8564_ $$s4705576$$uhttps://zaguan.unizar.es/record/63053/files/texto_completo.pdf$$yVersión publicada
000063053 8564_ $$s113889$$uhttps://zaguan.unizar.es/record/63053/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000063053 909CO $$ooai:zaguan.unizar.es:63053$$particulos$$pdriver
000063053 951__ $$a2019-07-09-11:57:51
000063053 980__ $$aARTICLE