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Abstract

This dissertation articulates concepts from different disciplines and incor-

porates a comprehensive study of complex systems. Many dynamical and

structural processes exhibit forms of emergent behaviors, often unspecified

in the equations of motion. One of such effects is known as synchroniza-

tion, a salient phenomenon that stands out for its ubiquitous occurrence

in both numerical and experimental settings. Although a lot of research

has been done to elucidate the intricate mechanisms underlaying the di-

verse types of synchronization reported thus far, many questions remain

open to date, especially for networked systems. Here we propose to work

at two distinct levels: (i) At the microscopic level, networks display recur-

rent structures named motif, one of which, denominated relay, enables two

separate units to interact indirectly. This first instance of a rudimentary

structure of interactions is ideal to study the communication of oscillating

elements, where two different types of synchrony arise naturally: com-

plete and generalized. To provide the system with dynamical complexity,

we consider a regime in which the interacting oscillators describe chaotic

trajectories, tuned by a continuous and instantaneous coupling. This ap-

proach allowed us to determine the exact onset of generalize synchrony and

the specific mathematical conditions to identify it. (ii) At the macroscopic

level, we increase not only size of the system but also its randomness. Sev-

eral well-known complex topologies are examined for dynamical units that

interact intermittently. This pulse-coupled populations of elements are an-

alyzed and characterized from two perspectives: a neuronal approach (in

the excitatory regime) and a sociological interpretation (in the oscillatory

regime). In either case, the systems of interest displayed a wide variety

of behaviors; regular, irregular and coherent patterns of oscillations, in-

cluding regimes where system-wide synchronization is attainable. At the

network level, we also managed to derive significant analytical predictions

and descriptions of large activity events and other average estimations,

rendering relevant discussions on their practical applications.
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Resumen

La presente tesis doctoral se enmarca dentro de la f́ısica estad́ıstica y de sistemas

complejos, haciendo especial énfasis en el estudio de fenómenos emergentes como

la sincronización de elementos oscilatorios y excitables. Espećıficamente, esta in-

vestigación abarca el análisis de dinámicas no lineales en sistemas discretos cuyas

interacciones están regidas por redes. En consecuencia, esta memoria de tesis puede

ser dividida en dos componentes interconectados: En la primera parte se introducen

conceptos básicos de la teoŕıa de grafos, los cuales son necesarios para la comprensión

de los demás contenidos de esta disertación ya que todos ellos versan sobre sistemas

con topoloǵıas complejas subyacentes. En la segunda parte se presentan los resultados

de las dinámicas no lineales sobre dichas estructuras (reales y sintéticas) y el análisis

comparativo entre éstas y lo observado en fenómenos reales de tipo neuronal, social

y experimental (circuitos electrónicos).

En śıntesis podemos afirmar que, una vez ambos componentes (topoloǵıa y dinámica)

han sido implementados y perfeccionados, el principal objetivo de este trabajo de

investigación es estudiar y analizar exhaustivamente modelos de dinámicas no lin-

eales sobre redes (simples y complejas) en aras de determinar todos los posibles com-

portamientos de dichos sistemas, abordando aspectos como la predicción anaĺıtica

de la aparición de fenómenos globales (cascadas) y de comportamientos colectivos

(sincronización), aśı como la ulterior comparación con la actividad observada en

fenómenos naturales y humanos.

Parte I: Redes complejas

Una vez introducidas diversas nociones generales sobre complejidad y comportamien-

tos emergentes, se procede a revisar exhaustivamente un amplio número de inves-

tigaciones relativas a temas afines. La primera parte de la tesis está dedicada a

examinar en detalle la teoŕıa estándar de redes complejas, vital para el desarrollo de
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los posteriores resultados. Concretamente, se introduce la definición formal de red

a manera de grafo matemático, aśı como varias alternativas para representar conve-

nientemente dichas redes (matriz de adyacencia, lista de adyacencia, etc.). Además,

se describen conceptos fundamentales del formalismo de la teoŕıa de grafos como el

grado, camino, distancia, subgrafo, componente, etc. Seguidamente proponemos cu-

atro descriptores, ampliamente usados, para caracterizar la estructura de este tipo

topoloǵıas: (i) distribución de grado, (ii) grado medio de los vecinos más cercanos,

(iii) longitud media del camino más corto y (iv) agrupación media. Aśı, habiendo

incluido estas herramientas, procedemos entonces definir cuatro tipos de topoloǵıas

extensamente estudiadas a lo largo de este trabajo, y para las cuales ya existen mu-

chos desarrollos anaĺıticos. A saber, por un lado tenemos las redes regulares, que son

1D lattices, configuración todos-a-todos y k-regulares aleatorias. Por otro, las redes

aleatorias tipos Erdős-Rényi, mundo pequeño y libres de escala. Adicionalmente, se

describe brevemente una elemental versión de las hoy populares redes multicapas, a

manera de generalización de los modelos antes mencionados. Por último, dos procesos

combinatorios son introducidos en relación con la estructura de las redes. En primer

lugar, para generar redes con una distribución de grado arbitraria, se propone el mod-

elo de configuración que corresponde a la implementación algoŕıtmica del formalismo

conocido como función generadora (con el que es posible deducir rigurosamente im-

portantes propiedades de la estructura de las redes). En segundo lugar, presentamos

una revisión de la teoŕıa de percolación, indispensable para entender cómo se pueden

dañar y desintegrar las redes, tanto por fallos aleatorios como por ataques dirigidos.

Parte II: Dinámicas no lineales

Sincronización en sistemas caóticos de relevo

Al inicio de esta parte del trabajo se especifican la imprescindible noción de sin-

cronización y las formas de sincrońıa que han sido detectadas en sistemas caóticos

a lo largo de las pasadas décadas. Posteriormente, se definen los sistemas de relevo

(también conocidos como relay, en inglés), que consisten en una estructura de red mi-

croscópica (tipo motif ) en la que dos unidades o subsistemas separados interaccionan

indirectamente a través de una tercera unidad o subsistema. Este tipo de configu-

ración es de gran importancia e interés cient́ıfico ya que para ella existen diversas

aplicaciones tecnológicas. Además, en dicha estructura simple se ha detectado la

aparición de varias formas de sincronización, lo que incluye la elusiva sincronización
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generalizada (SG), uno de los comportamientos de interés dentro de este estudio.

Concretamente, se examinan osciladores caóticos tipo Rössler en la configuración de

relevo para acoples no dirigidos, continuos e instantáneos, haciendo uso de reconoci-

das herramientas matemáticas como el espectro de Lyapunov y de dos indicadores de

presencia de sincrońıa entre las trayectorias de dichas unidades. Como medida de la

sincronización completa su utiliza una función simple de error vectorial que compara

la distancia de los puntos en el espacio de fases, mientras que para la SG se introducen

dos indicadores independientes, a saber, el porcentaje de puntos sincronizados (SPP,

en inglés) y las inter-dependencias no-lineales (́ındice N). Finalmente, se realiza el

estudio detallado desde dos perspectivas, numérica y experimental. En primer lugar,

se analiza la dinámica conjunta del sistema numérico de 9 dimensiones (3 por cada

oscilador), y se determina que existe un valor especifico del acople, llamado cŕıtico,

a partir del cual los osciladores no conectados directamente exhiben sincronización

completa. Tras un análisis más profundo y detallado de dicha dinámica a través de

técnicas espectrales e de los indicadores antes mencionados, se puede concluir que el

inicio de la sincronización completa marca el punto donde la SG ocurre. Adicional-

mente es posible establecer la condición de aparición de dicho fenómeno, caracterizada

por un único exponente de Lyapunov positivo, aśı como que la mejor técnica para de-

tectar SG está dada por el indicador SPP (ya que éste presenta cambio abrupto justo

en el acople cŕıtico). En segundo lugar, se procedió a analizar la robustez de los resul-

tados numéricos a través de la implementación experimental de circuitos electrónicos

(tipo Rössler, operando en régimen caótico). Con este enfoque, y a pesar de las

t́ıpicas limitaciones instrumentales, se puede establecer para un conjunto significativo

de circuitos en configuración de relevo la existencia de SG.

Modelos de neuronas en redes heterogéneas

El segundo sistema de estudio tiene sus ráıces en dinámicas tradicionalmente asoci-

adas al campo de la Neurociencia. En la primera parte de este contenido se hace una

significativa revisión de los modelos de neuronas desarrollados a lo largo del siglo XX,

lo cual incluye neuronas puntuales (sin distribución espacial), modelos de compar-

timentos (con distribución espacial), dinámicas multidimensionales, etc. Finalmente

nos centramos en el tipo concreto de dinámica a adoptar, llamada de integración-y-

disparo (o integrate-and-fire, en inglés), que puede ser interpretada como una versión

simplificada de modelos más realistas (como el modelo Hodgkin-Huxley). De esta
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forma, se hace una descripción detallada de las diversas versiones que han sido prop-

uestas para este modelo, con especial énfasis en aquellos ingredientes que intentan

capturar los aspectos más relevantes de los sistemas reales. En cuanto a la red subya-

cente de interacciones y en aras de introducir complejidad estructural, se consideran

sistemas de gran tamaño con obvias propiedades emergentes: Distribución de grado

tipo libre de escala. Espećıficamente, nuestro modelo consiste en un conjunto de

elementos excitables cuyas interacciones ocurren como pulsos (con retrasos) y están

regidas por la estructura de una red compleja heterogénea y no correlacionada. Tras

proponer algunas definiciones básicas, procedemos a realizar extensas simulaciones

numéricas para caracterizar el sistema y examinar los efectos paramétricos. De esta

forma, es posible determinar la existencia de varios reǵımenes de actividad auto-

sostenida dependiendo tanto de los valores puntuales del acople como de la forma

matemática de éste:

• Acoples homogéneos: En primer lugar, para acoples homogéneos (iguales

para todos los elementos de la red), existe una actividad denominada estándar

en la cual cada neurona es capaz de alcanzar su umbral de disparo con un sólo in-

put de sus vecinos. Mientras que para valores pequeños del acople, en los cuales

las neuronas requieren múltiples inputs para disparar, el sistema presenta un

tipo de actividad de bajo nivel que podemos llamar anormal o patológica. Este

último tipo de actividad se requiere que la dinámica inicie como consecuencia

de la activación simultánea de varias zonas de la red. Ahora bien, la instan-

cia más extrema de actividad anormal la denominamos cŕıtica y corresponde

al resultado de utilizar el valor más bajo del acople homogéneo para el cual

la red presenta actividad de disparos alguna (es decir, el estado de actividad

más patológica). Este estado es de actividad cŕıtica es muy significativo ya que

permite hacer estimaciones anaĺıticas que resultan muy precisas.

Con el objetivo de probar y examinar la robustez del sistema, introducimos

dos estudios de perturbaciones: dinámicas y estructurales. (i) Perturbaciones

dinámicas: Se propone una estrategia para probar la respuesta del sistema a

los est́ımulos globales de excitación e inhibición. El mecanismo consiste en ac-

tivar o desactivar el estado de un gran número de neuronas (escogidas al azar)

y observar el cómo evoluciona el sistema. Se pudieron detectar tres escenarios

principales: est́ımulos inhibitorios para extinguir toda actividad, est́ımulos ex-

citatorios que no ocasionan cambios en la actividad global irregular, y est́ımulos
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excitatorios e inhibitorios para aumentar y reducir, respectivamente, las oscila-

ciones de señales regulares (asociadas a acoples fuertes). (ii) Perturbaciones

estructurales: Se introducen perturbaciones de tipo percolativo, de modo que

una vez se remueven nodo aleatoriamente, se ejecuta la dinámica y se observa

la respuesta del sistema. De este modo se puede encontrar transiciones de fallo

de la actividad global cuya fracción cŕıtica escala con el tamaño de la red. Aśı,

se demuestra que las redes libres de escala son, una vez más, muy resilientes

dinámica y estructuralmente a fallos aleatorios.

• Acoples inhomogéneos: En segundo lugar, cuando se correlaciona la ampli-

tud de los pulsos que un nodo recibe con su grado se obtiene una excelente forma

de homogenizar la actividad de un sistema heterogéneo. Las señales globales

de disparos de la red se vuelven periódicas como resultado de un fenómeno de

sincronización que denominamos oscilaciones coherentes. Dadas ciertas condi-

ciones iniciales, todos los elementos en el sistemas exhiben una misma frecuencia

de disparo en este caso. No obstante, aspectos como la longitud del transitorio,

el valor medio, la amplitud y la periodicidad de la señal de disparos global de-

penden sensiblemente de dichas condiciones iniciales. Por esta misma razón, el

estudio de perturbaciones dinámicas producto de est́ımulos globales en el caso

de acoples inhomogéneos implica que todos los aspectos de la actividad global

pueden ser alterados por medio de est́ımulos con patrones triviales (aunque los

efectos de éstos suelen ser irreversibles).

El resultado más importante de este apartado es la derivación de expresiones anaĺıticas

que permiten deducir aspectos de la dinámica al nivel de grandes poblaciones de neu-

ronas y sin recurrir a simulaciones numéricas. Brevemente, a través de aproximaciones

de campo-medio se determina una expresión para el valor medio del intervalo-entre-

disparos de las neuronas de conectividad k, lo cual permite descomponer la actividad

global en los diversos grados e inferir otros aspectos interesantes del modelo. Aśı

mismo, se demuestra que existe una expresión aproximada entre la tasa de disparos

globales de la red y el valor medio del intervalo-entre-disparos, con lo cual se pueden

estimar todas las cantidades promedio relevantes de la dinámica del sistema. Estas

aproximaciones resultan ser muy precisas para redes que presentan alta heterogenei-

dad de grado.
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Dinámica neuronal en sistema socio-técnicos

El último sistema de estudio consiste en una dinámica de neuronas tipo integración-

y-disparo en redes sintéticas y reales. Concretamente se trata de un modelo que

pretende capturar el mecanismo conocido como contagio complejo y aplicarlo en el

contexto de las interacciones sociales (a través de plataformas tecnológicas). En la

primera parte de este caṕıtulo se revisan conceptos y trabajos previos relacionados

a la modelización de dinámicas sociales (difusión de la información, cascadas y el

modelo clásico de umbrales). En contraste con el modelo de neuronas anteriormente

presentado, este caso no se trata de una población de elementos excitables sino de

osciladores cuya actividad está completamente determinada por sólo dos parámetros:

el acople (la fuerza o amplitud de los pulsos) y la curvatura de la función de carga

de los osciladores (que especifica qué tan rápido alcanzan éstos la zona próxima al

umbral de disparo). Varios aspectos de esta propuesta pueden ser interpretados de

manera simple y directa siguiendo estas aproximaciones. Los pulsos, por ejemplo,

podŕıan simbolizar en determinados entornos los mensajes emitidos por los usuar-

ios, mientras que los parámetros de la dinámica representan aspectos esenciales de

las interacciones sociales como la influencia de los vecinos (acople) y la motivación

o propensión intŕınseca de los agentes del sistema para activarse (curvatura de la

función de carga). Trabajos previos en el tema señalan que bajo ciertas condiciones

el sistema tiende al estado sincronizado, por lo que se anticipa la aparición de eventos

de disparos globales.

Tras la implementación y caracterización del sistema, se determina que existen var-

ios reǵımenes de actividad. Dado un valor fijo de motivación y para una topoloǵıa

espećıfica, es posible encontrar que existe un valor del acople por debajo del cual el

sistema no exhibe cascadas de disparos globales. De modo que se trata de un valor

cŕıtico que establece comportamientos super- y subcŕıticos del sistema (que también

es verificado mediante el análisis de la distribución de cascadas). Con esto en mente,

se estudian dos tipos de espacios de parámetros con el fin de observar los efectos de la

dinámica en cuatro topoloǵıas: 1D lattices, Erdős-Rényi, mundo pequeño y libres de

escala. De lo cual se detecta claramente un patrón: Para redes homogéneas, cuanto

más aleatoriedad existe en la estructura mejor para alcanzar la sincronización (frente

a condiciones dinámicas adversas, como acoples pequeños). En el caso de la topoloǵıa

heterogénea, las redes libres de escala mostraron ser muy restrictivas en cuanto a la

aparición de sincronización, normalmente en ellas la sincrońıa o bien aparece rápido

o no lo hace en absoluto. Ello puede ser explicado si se considera la aśı llamada
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paradoja de la heterogeneidad.

Nuevamente, como en el caso anterior, se puede derivar una condición anaĺıtica que

el sistema debe cumplir para que ocurra una cascada global, la cual se relaciona di-

rectamente con la condición de existencia de la componente gigante en redes. Este

desarrollo permite predecir (con, por lo menos, un paso por adelantado) la ocurrencia

de este tipo de eventos sistémicos. Para ilustrar esta derivación, se ejecutan múltiples

simulaciones numéricas en las redes con los comportamientos extremos: Erdős-Rényi

(las más tolerantes) y libres de escala (las más restrictivas). De esta manera se mues-

tra que el método propuesto produce resultados precisos para un amplio rango de

valores del grado medio de dichas redes.

La última parte de este estudio se enfoca en una aplicación en una (sub) red de la

plataforma Twitter correspondiente a la actividad de un fenómeno de protesta en

España conocido como el 15M. El primer aspecto que se aborda es la determinación

del comportamiento periódico de los usuarios, para lo cual se analizan las señales

individuales de los mismo con la densidad espectral. Los resultados de esta prue-

bas son indiscutibles, en cuanto a que dichos agentes en efectos exhiben múltiples

periodicidades. El segundo aspecto que se examina es una estrategia para estimar

los valores de los parámetros del modelo a fin de reproducir el comportamiento ob-

servado. Se concluye que el valor del intervalo-entre-disparos es aproximadamente

inversamente proporcional a la propensión intŕınseca de los agentes. El último as-

pecto que se estudia es la distribución de cascadas correspondiente a periodos de alta

y baja actividad en el sistema real. Se determinó que este modelo puede describir fiel-

mente las caracteŕısticas estad́ısticas de los diversos reǵımenes que el sistema presenta.

En este orden de idea, nuestra aproximación al problema de modelizar interacciones

sociales extiende considerablemente todo el trabajo previo en el tema ya que incor-

pora elementos como la activación recurrente, el contagio complejo y las cascadas de

información.
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Chapter 1

Introduction

In recent years the term “complexity” has become a trendy word, which is particularly

widely used in specialized fields. However, specifying such term in the context of

technical research can be a tricky task, trait clearly reflected by the fact that there

is no general consensus or universal definition for it. In our particular case, we will

no try to provide a formal statement on the matter, though simply introduce a broad

notion adopted in Physics and Mathematics. In consequence, a complex system always

involves phenomena displaying at least one of the following aspects [3]:

i Circular causality, feedbacks, logical loops, self-referential rules or recursion.

ii Sensitivity to initial conditions, exponential propagation of perturbations and

unpredictability.

iii Large populations of units characterized by interconnected and interdependent

non-trivial relations.

iv Emergence: Self-organized global behaviors or large-scale structures that emerge

from the interaction of –disordered– units.

Among these qualities and behaviors, Emergence is certainly the most puzzling. The

concepts that such a methodological view involves contradict a philosophical stand-

point called Reductionism. Generally speaking, reductionist thinking suggests that

objects, phenomena, theories or even entire areas of knowledge can be reduced o

decomposed into more basic parts, that in turn can be explained or accounted for

by other –wider– theories or areas of knowledge. For example, in this tradition it is

believed that chemistry is based on physics, biology based on chemistry, psychology

on biology, and so on [4]. These ideas are not recent: Back in Newton’s time the
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Figure 1.1: Graphical representation of Complex Systems.

mechanistic approach was the main trend and scientists use to believe that any phe-

nomenon could be explained by the laws of motion. Up to this point, this posture is

still an important methodology in fields like particle physics and molecular biology

(though some changes are taking place) [5, 6]. In contrast, the idea of Emergence can

be understood –informally– as prescribed by the Aristotelian principle: “The whole

is more than the sum of its parts”. In concrete practical terms, this view states that

collective phenomena, that occur at macroscopic scales (typically in Complex Sys-

tems), are due to local interactions among its constituents but cannot be reduced or

explained as a result of the properties observed at the microscopic level of the system.

In other words, these emergent outcomes are (structural or dynamical) patterns not

specified in the equations that describe the evolution of the system. Examples of col-

lective phenomena can be found in a wide variety of natural and synthetic systems:

dissipative processes (convection in liquids or gases), hydrodynamics (viscosity, elas-

ticity and tensile strength), statistical physics (phase transitions in materials), biology
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(organization of living cells), neuroscience (activity patterns in the brain), man-made

settings (failure cascades in power-grids), among many others [7].

To illustrate how extensive complex systems is, Fig. 1.1 shows an organizational map

of the field broken into seven sub-groups1. This schematic Figure summarizes some

of the most recognizable phenomena in this field and provides an great compart-

mentation that comprises around 70 different sub-topics (that, in turn, also exhibit

interdependences with each other). Obviously, the number of possible systems that

this area comprises is quite large, so let us describe next a few limited scenarios,

narrowing our attention to a relevant historical perspective.

Three entangled stories in one timeline

With the objective of establishing the precise context in which the present doctoral

research is set, in what follows we overview some of the prior work on three related

areas and provide brief yet illuminating comments on their salient history.

• Nonlinear dynamics and chaos: The study of dynamical systems and non-

linear models has a long history, which goes back to the formulation of the

infinitesimal calculus in the 15th century [8]. However, it was not until the mid-

20th century, and in the following decades, that a true explosion of knowledge

and intense research activity began. Among many remarkable contributions,

the seminal work by E. N. Lorentz on hydrodynamic flow (1963) [9], stands

out. Lorentz observed that a simple set of coupled differential equations dis-

played a complicated behavior, quite sensitive to initial conditions, notion that

eventually came to be known as Chaos2. During the late 1960’s and the 1970s,

thanks to the introduction of computers as research tools, the powerful concept

of fractality was developed [10], and the first applications of nonlinear models

appeared in fluid mechanics (turbulence) and biological systems (e.g. cardiac

pacemakers, circadian rhythms, and other oscillators) [11, 12, 13, 14]. Today,

1Created by Hiroki Sayama, D.Sc., Collective Dynamics of Complex Systems (CoCo) Research
Group at Binghamton University, State University of New York, CC BY-SA 3.0, https://commons.
wikimedia.org/w/index.php?curid=12191267.

2Although the first person to discover a chaotic system was the mathematician and philosopher
Henri Poincaré (1854–1912) with the paradigmatic three-body problem. Poincaré demonstrated that
no general analytical solution exists for it in terms of algebraic expressions and integrals.
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after having spent nearly 40 years developing countless significant contribu-

tions to multiple disciplines, the study of deterministic nonlinear dynamics has

become one of the most solid and active scientific research fields.

• Graphs: Networks or graphs, as abstract mathematical objects, have also a

long tradition. Even though the first studies on this subject can be traced

back to the 18th century [15], which were mainly focused on topological aspects

and navigability3, the topic remained unpopular4 until the introduction of sta-

tistical methods on random graphs by Paul Erdős and Alfréd Rényi in 1959

[16] and the extraordinary contributions by Frank Harary in the decades of the

1960’s and 1970’s [17]. Their emblematic works created what is known today

as Network Theory, one of the fastest-growing areas of modern science. More

recently, in the late 1990’s and the early 2000’s, graphs became more than an

exclusive theoretical exercise for mathematicians with the introduction of novel

topologies linked to real-world phenomena (e.g. small-world and scale-free mod-

els) [18, 19]. As of now, after two decades of intense research (devoted mainly

to structural topics), network theory constitutes the standard framework upon

which scientists build up their models of discrete interacting units [20, 21].

• Mathematical neurons: The first mathematical model of a neuron was pro-

posed by a pioneer named Louis Lapicque in 1907 [22] and, for the most part of

the 20th century, just a handful of remarkable researchers contributed to this

field with abundant discoveries. Among all of these models and theories, the

most relevant are those that attempt to capture in a simple manner intricate

mechanisms of real neurons and to reproduce realistically the interactions among

them. Let us mention a few of these prominent proposals: The synaptic plas-

ticity introduced by Donald Hebb (1940s) [23], the spike generation mechanism

by Alan Hodgkin and Andrew Huxley (1950s) [24], the cable theory by Wil-

frid Rall (1950s) [25, 26], the interacting neurons by David Marr (1960s-1970s)

[27] and the working memory studies by Daniel Amit (1980s-1990s) [28, 29]

are some of the outstanding findings in Theoretical Neuroscience during this

period of time. In the decades of the 1980’s and 1990’s, thanks to the massive

progress on numerical simulations to model populations of interacting elements,

3The notable problem of the Seven Bridges of Königsberg, solved by Leonhard Euler in 1736.
4In the sense that during the 19th century and for the better part of the 20th century only a

small group of researchers, mostly mathematicians, produced isolated developments in this area.
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the scientific community developed a great interest in the study of neural sys-

tems at many different levels and scales (being random recurrent networks the

most widely used approach when it came to capturing neural architectures)

[30, 31, 28, 29]. In the past two decades, proposing dynamics of neurons be-

came a popular phenomenon as a result of the network-approach, and also due

to the realization that modeling and understanding the brain might be indeed

the ultimate challenge in network science. This is the foundation of this rel-

atively new interdisciplinary field of investigation, which, as in the previous

cases, is also extremely active nowadays5 [32, 33, 34, 35, 36].

Systems of interest

In the previous Section we presented the background in which this dissertation is

rooted. Let us now turn our attention to the specific methodology and subjects on

which our research will be mainly focused, namely deterministic processes that take

place on top of random structures of interactions.

Networks

The interest in the study of complex networked systems has been steadily increasing

over the past few decades, especially in Physics as a results of the prominent advan-

tages provided by the standard techniques of the statistical mechanics. In our case,

we will focus on discrete systems that can be modeled as static complex networks.

As an emblematic example of structural complexity let us comment on the scale-free

topology [19]. As its name indicates, these networks do not posses a characteristic

scale (their degree distribution is a power-law), allowing certain structures to appear

in all the scales (notion that connects with both fractals [10] and the scaling observed

in phase transitions [37, 38]). These emergent topological properties, can be inter-

pret as a collective behavior in terms of the so-called dynamical models (generating

algorithms that involve growth), which is precisely one of the universal fingerprints

of complexity.

As an illustration of their versatility, in the scientific literature there are numerous

applications and significant results in various disciplines; ranging from physics (e.g.

5By a straightforward search on the website http://www.pubmed.com, it can be verified that the
number of neuron-related articles published in 2016 is around 70.000 –papers containing any of the
words: “neuron”, “neural” or “brain”.
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cosmology, quantum mechanics, materials, etc.) and engineering (e.g. Internet, com-

munication and power networks) to biology (e.g. proteins, genetics, neuroscience,

epidemics, etc.) and sociology (e.g. real and online social networks, small world

effect and authors’ network, among others) [39, 21, 40, 20]. In Chapter 2 we will re-

view basic properties and measures of the graph theory, incorporating a few essential

complex networks models and structural-related processes.

Synchronization

Among all of the emergent behaviors that have been found in Complex Systems as

yet, synchronization stands out for its ubiquitous nature. This phenomenon was orig-

inally observed by Christiaan Huygens, in the mid-17th century, from a set of coupled

pendulum clocks, and it is still one of the most enigmatic outcomes detected in all

kinds of coupled oscillating setting [41, 42]. Remarkable real-world examples of syn-

chrony include flashing of fireflies, electric activity in the brain (epileptic seizures),

activity patterns of cardiac cells (pacemakers), optical communications, arrays of

electric and electronic circuits, and a broad family of dynamical systems (which in-

cludes, of course, chaotic oscillators) [43, 8]. Regarding this last example, that is,

systems consisting of units operating in chaotic regime, there has been made an

enormous effort in developing a vast amount of research over the past three decades

[44, 45, 46, 47, 48, 49, 50]. Many of these developments aimed to establish a general

framework that could account for and classify the numerous kinds of synchronized

states reported in the literature, whereas others to introduce novel mathematical in-

dicators of synchrony. At the network level a lot of works have also been devoted to

studying synchronization phenomena, particularly on diverse types of deterministic

oscillators, with outstanding rigorous findings that have spread to other disciplines as

a consequence of their practical implications [31, 51, 52, 43, 39, 42, 53, 54, 55, 56, 57].

In our particular case, we will examine thoroughly two types of synchronization, com-

plete and generalized [58], in a configuration6 that allows two separate units to com-

municate –indirectly– through a third one (in which the channels of interactions are

instantaneous and bidirectional). This setting has been considered by other authors to

study a few different forms of synchrony (mostly lag-synchronization) [59, 60, 61, 62],

and to analyze experimental systems like circuits [63, 64], Lasers [61, 62], brain dy-

namics [65, 66, 67] and underwater acoustic sensors [68]. However, many questions

6A simple structure that resembles a water molecule.
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remain open concerning the appearance of generalized synchronization in relay sys-

tems; specifically the conditions that determine the onset of relay synchronization and

the derivation of mathematical tools and measures that enable us to detect accurately

hidden behaviors in coupled chaotic systems. All of these questions, and some other,

will be addressed in Chapter 3.

Neural dynamics

In living systems of neurons there are many kinds of cell architectures, and that they

all exhibit a broad range of behaviors (diverse regimes of activity, firing mechanisms,

adaptation, spikes, and so on) [69, 70]. Over the years our models of individual neu-

rons have evolved into a high-level of sophistication as an attempt to capture such

diversity, and nowadays it is possible to perform extensive and expensive simulations

on large populations of these independent units. Regarding the interactions among

real neurons, it is indeed an essential and elusive aspect to reproduce realistically, yet

networks provide a useful and simple framework to this end. A great deal of research

has been devoted precisely to study emergent properties of ensembles of neurons that

interact according to both simple and complex topologies [71, 72, 73, 74], a topic

that continues to be an attractive interdisciplinary subject for physicists, mathemati-

cians and neuroscientists [34, 35, 33, 75]. Most of these works capitalize on numerical

approaches that have demonstrated to be quite versatile; one can generate various

underlying structures of interactions and include many realistic ingredients like chem-

ical synapses, ion currents, compartments, stochastic currents, noise and adaptative

parameters [76, 77].

However, numerical models also have many limitations and, at the network level, ana-

lytical results are scarce, particularly for sparsely connected systems (which resemble

the actual structure of the brain [78]). To illustrate this point, that is the lack of

rigorous results on networks, let us consider some of the most common constraints

imposed on the system of study. As far as we know, the vast majority of the analyt-

ical approaches already published for spiking models of neurons require some sort of

diffusion approximation, so that the membrane potential can be described approxi-

mately as a random process [79, 80, 81]. For this attribute to be true, the density of

links of the network has to be high [28, 29, 30, 82], which, by definition, is not the

case for sparse network. A second mathematical technique is the so-called “spike-

train statistics”, which is a framework developed to analyze and fit spike patterns
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of population of neurons7 by means of a characterizing probability function [83, 84].

Even though this attempt seems promising, especially to study activity patterns of

living neurons, it is a proposal that is far from fully developed (there is no general

strategy to derive such probability function from data, and the precise mathematical

form of it is required –as well as a procedure to fit accurately the many parameters

that are needed) [85].

Finally, concerning the popular family of neural dynamics known as integrate-and-

fire8, numerous studies devoted to numerical explorations were performed over the

past four decades [86, 71, 28, 79, 80, 87, 77, 36], whereas just a handful were published

on developing analytics (mostly based on mean-field approximations) [88, 89, 81, 72,

90, 91, 92, 93]. These limited theoretical developments also hinge on similar assump-

tions as the ones mentioned above, namely densely connected networks or stochastic

approximations (useless for sparse graphs). In contrast, in Chapter 4 we will examine

large ensembles of excitable elements on heterogeneous topologies, providing both

numerical findings and novel analytical estimations.

There is warning on the vernacular here: To honor a long tradition we use in this

Thesis expressions like “neural model” or “model of neurons” to refer to a group of

mathematical frameworks that mimic –to some extent– the behavior of real neurons.

However, in our view, such models are not strictly limited to be a representation of

the some biological cell. Consequently, in a more general sense, we consider them

as pulse-coupled dynamical units that should never be constrained by the features

that real neurons exhibit. As an observation related to this viewpoint, very often

one finds in the literature authors trying to justify these mathematical models by

comparing their findings, on clearly unrealistic scenarios, with the activity observed

in live populations of neurons. Be certain that this is not what we aim to do here.

On the contrary, we believe there is no need for us to follow that path because these

versatile dynamics have an intrinsic value that extends far beyond their application

as a plain description of what such cells typically do.

Socio-technical environment

The proliferation of social networking tools –and the massive amounts of data as-

sociated to them– has evidenced that modeling social phenomena demands a com-

7Generally driven by external stimuli or noise.
8Two of these models are studied in depth in the present dissertation.
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plex, dynamic perspective. Physical approaches to social modeling are contributing

to this transition from the traditional paradigm (scarce data and/or purely analyt-

ical models) towards a data-driven new discipline [94, 95, 96, 97]. This shift is also

changing the way in which we can analyze social contagion and its most interesting

consequence: the emergence of information cascades in the Information and Com-

munication Technologies (ICT) environment. Theoretical approaches, like epidemic

and rumor dynamics [98, 99, 100], reduce these events to physically plausible mecha-

nisms. These idealizations deliver analytically tractable models, but they attain only

a qualitative resemblance to empirical results [101], for instance regarding cascade

size distributions. The vast majority of models to this end –including the thresh-

old model [102], overviewed in Chapter 5– are based on a dynamical process that

determines individuals’ activity (transmission of information), and this activity is

propagated according to certain rules usually based on the idea of social reinforce-

ment, i.e. the more active neighbors an individual has, the larger his probability to

become also active, and thus to contribute to the transmission of information. Yet,

the challenge of having mechanistic models that include more essential factors, like

the self-induced (intrinsic, spontaneous) propensity of individuals to transmit infor-

mation, still remains open –though some contributions emerge in this fast-growing

field [103, 104]. Furthermore, the availability of massive amounts of microblogging

data logs, like Twitter, places scholars in the position to scrutinize the patterns of

real activity and model them. These patterns indicate that avalanche phenomena are

not isolated events. Instead, users engaged in a certain topic repeatedly participate,

affecting each other and giving rise to an heterogeneous collection of cascades emerg-

ing over time, which can not be modeled independently from each other.

As a consequence of these observations, in Chapter 5 we propose a dynamical thresh-

old model that is able to display a broad variety of behaviors and reproduce the

activity patterns detected in online platforms, extending our comprehension of social

interactions and our ability to predict the occurrence of system-wide events.
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Chapter 2

Complex networks

In order to better understand the models, descriptions, and results relative to the

underlying complex topologies that will be studied throughout this Thesis, some of

the standard framework of graph theory has to be introduced. Consequently, in this

Chapter we report on basic concepts, notation and formalism that will allow us to

grasp the importance of all the theoretical developments and findings that the present

work encompasses. There is a warning, though: The following sections are, by no

means, a full review on the subject of graph theory, and we strongly suggest reading

references [40, 20, 39, 105, 21, 106] for further insight into the topic.

The Chapter is structured in the following way: In Sect. 2.1 we bring forward

the notion of graph and provide a set rigorous definitions, mandatory for the study of

networks. Four structural-related descriptors to characterize networks are presented

in Sect. 2.2 and, in Sect. 2.3, we report on several simple and complex topologies

(providing the formal description of their defining features). The last two Sections of

the Chapter are devoted to describing models on how to build and break down graphs

respectively, both processes are of major importance in theoretical and empirical

understanding of complex systems.

2.1 Simple definitions and notation

In a wide sense the term “Network” refers to an abstraction usually represented as a

set of points connected by lines or arrows. This notion can also be stated in a more

formal way by introducing a mathematical entity known as graph (from now on we

shall use indistinctly the words graph and network). A graph G is simply a pair of sets

(V , E), where V 6= ∅ is a countable set whose elements are named nodes or vertices

and, E is a set of pairs of different nodes denominated links or edges. If these pairs
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are ordered we say that the graph is directed (also called digraph), if not, we say the

graph is undirected. The cardinality of V , usually denoted by N , is the size of the

graph, and the cardinality of E is symbolized by L. Now, if L � N2 the network is

said to be sparse and if L ≈ N2 we say it is dense.

A second way to represent a network is by its adjacency matrix, A, a square matrix of

order N with entries aij 6= 0 whenever (i, j) ∈ E and aij = 0 otherwise. Note that our

definition of graph includes two implicit constraints, first, aii = 0 since (i, i) /∈ E , and

second, no matter the value of aij 6= 0 only one edge is allowed between two nodes

(i.e. for the same pair of nodes multiple edges are forbidden). If A happens to be

binary or boolean (its entries are either 1 or 0), then we call this network unweighted,

and if not, it is weighted (and commonly represented as W instead). Two nodes, i

and j are considered neighbors (or adjacent) when aij 6= 0.

By letting Vi denote the set of all neighbors of node i, we find a third way to represent

a network. This representation is known as the adjacency list and can be defined as

a set of 3-tuples of the form (i, j ∈ Vi, aij)∀i, j (which is very useful when it comes

to computer coding).

As for individual node properties, the most salient feature of all is the degree (or

connectivity), that we can specify as in-degree and out-degree of node i by the ex-

pressions,

kini =
∑
j

aij (incident links) and kouti =
∑
i

aij (emergent links) . (2.1)

For undirected networks A is symmetric, so obviously kini = kouti = ki (which is also

the cardinality of Vi). In a similar manner, still for undirected networks, the average

nearest neighbors degree of node i can be described as follows,

kinn =
1

ki

∑
j∈Vi

kj =
1

ki

N∑
j=1

aijkj =

∑N
j=1 aij

∑N
h=1 ajh∑N

j=1 aij
, (2.2)

expression that allows us to compute easily a network descriptor that will be intro-

duced in the next section.

The word path is defined as an ordered set of n+ 1 nodes Vp = {i0, i1, ..., in} ⊆ V and

n edges Ep = {(i0, i1), (i1, i2), ..., (in−1, in)} ⊆ E (n is called path length or distance).

When n > 0 and i0 = in the path receives the name of cycle or loop. If there is a path

between any two nodes of a undirected network we say that it is connected (in the

case of digraphs the name is strongly connected network). If there is no path between

18



two nodes, we say that the distance between them is infinite (n→∞).

Finally, a set G ′ = (V ′ , E ′) is said to be a subgraph of a graph G = (V , E) if V ′ ⊆ V
and E ′ ⊆ E . A connected subgraph is named component, and the largest component

of a network is called giant component, whose size scales with the size of the network.

2.2 Characterizing networks

There are many sound and accurate descriptors reported in the literature to char-

acterize networks (at both local and global level), but since we will not use most of

them in this Thesis here we only describe four of them and suggest further reading for

more details. In the rest of the chapter all definitions are introduced for undirected

networks unless noted otherwise.

2.2.1 Degree distribution

In network science, it is customary to characterize (uncorrelated) graphs by what is

commonly known as degree distribution, p(k), which is simply the fraction of nodes

having degree k (although this is not the only definition there is, it is the simplest

one). For uncorrelated networks the average degree is thus,

〈k〉 =
∑
k

kp(k) =
1

N

∑
i

ki =
2L

N
, (2.3)

and in the same fashion it is possible to express any moment of the distribution as,

〈kn〉 =
∑
k

knp(k) , (2.4)

which are very useful to extract information about the shape and location of such

distribution (its characterization) and will play an important role when making pre-

dictions for the models we study in following chapters.

For digraphs, of course, there are two kinds of degree distributions (one for in-degree

and another for out-degree) and all relevant quantities relating to them can be com-

puted analogously to undirected graphs (p(kin), p(kout), 〈kin〉, 〈kout〉, etc.).

2.2.2 Average degree of the nearest neighbors

The average degree of the nearest neighbors for nodes having degree k, knn(k), can be

computed directly from Eq. 2.2 as follows,
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knn(k) =
1

Nk

∑
∀i|ki=k

kinn , (2.5)

where Nk = Np(k) represents the total number of nodes of degree k. This quantity

is most relevant since it is related to the conditional probability, p(k
′ |k), that a node

of connectivity k is linked to a node of degree k
′
,

knn(k) =
∑
k′

k
′
p(k

′|k) . (2.6)

When a network exhibits degree-degree correlations the probability p(k
′|k) has a de-

pendence on k, whereas for uncorrelated networks p(k
′|k) is just a function of k

′
(it

can be proved easily that knn(k) = 〈k2〉/〈k〉, constant when there are no correlations).

If knn(k) increases with k, the network is said to exhibit an assortative mixing, and

if knn(k) decreases with k, the network is considered to have a dissortative mixing.

Clearly the average degree of the nearest neighbors for nodes of degree k is a simple

measure –easy to interpret– that can be used to detect the presence of such correlation

in networks.

2.2.3 Diameter and average shortest path length

The shortest path length between nodes i and j is the number of edges of the shortest

path between them, which is a measure of distance usually represented as a matrix

whose entries are lij. This matrix leads to the concept of diameter of the network, that

corresponds to its largest entry d = max(i,j){lij}. Another important and defining

measure of networks’ metrics is the average shortest path length that can be expressed

as,

〈l〉 =
1

N(N − 1)

∑
∀i 6=j

lij . (2.7)

The behavior of this measure with the size of the graph is often studied and used to

identify networks’ topology. Unfortunately this quantity, as defined above, has one

disadvantage: it diverges when there are unreachable nodes (i.e. when the network has

more than one component). One option to sort this out is to perform the average over

nodes in the so-called giant component, and this is the definitions we will assume from

now on (other options require slightly different definitions that we shall not consider

here). The same constraint is to applied for the diameter of the network.
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2.2.4 Average clustering

It has been observed that networks (both real an synthetic) tend to form “triangles”

naturally (cycles of length 3), which can be express formally by the notion of clus-

tering of node i, Ci, as the number of links existing between nodes in Vi (nearest

neighbors), symbolized by ei, divided by the total possible number of edges,

Ci =
2ei

ki(ki − 1)
=

∑
jh aijajhahi

ki(ki − 1)
. (2.8)

Consequently, the average clustering, also known as clustering coefficient, of the net-

work is given by,

〈C〉 =
1

N

∑
i

Ci . (2.9)

Again, as in previous cases, we can many find in the literature numerous definitions

of clustering, specially those that adopt the notion of transitivity, and regarding this

it is worth emphasizing that the value of clustering depends on the particular formula

we use.

2.3 Network models

Over the past decades the scientific community has either discovered or developed

an enormous amount of network topologies and algorithms to generate synthetic

configurations with desired features (probably as an attempt to mimic real graphs).

In this section we will introduce the main aspects of topologies that will be studied

in this Thesis and some of the methods to construct them.

2.3.1 Regular graphs

An elementary definition of a regular graph states that it is a network where each

vertex has the same degree. Under such a general statement there can be found a

wide variety of topologies, being of interest three of them:

• 1D lattices or ring networks (RN): where each node is connected to the same

number, ι, of nearest neighbors on each side (having periodic boundary con-

ditions). This configuration possesses a high clustering coefficient and a large

average shortest path length (〈l〉 = O(N)) [105]. To generate this graph the

specific algorithm is not relevant, and apart from N , the only extra parameter
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needed is ι ≥ 1 (so each node has connectivity k = 2ι). See Fig. 2.1 for an

illustrative diagram.

• Complete networks or all-to-all : where each vertex is connected to the other

N − 1 nodes of the network [105]. This graph has a high clustering coefficient

and the smallest average shortest path length possible (〈l〉 = 1). Again, the

algorithm implemented to generate this network is irrelevant since the structure

of the graph is not affected by it, and no extra parameters are required.

• Random k − regular networks (RRN): In this case each node is connected to

their k neighbors, chosen uniformly at random from the N vertices. These

graphs tend to exhibit a low clustering coefficient and a small average shortest

path length. Several methods have been proposed to generate this topology

efficiently, in our case we will use the configuration model –described in the

Sect. 2.4– (apart from N and k ≥ 2 no extra parameters are needed to obtain

connected networks).

2.3.2 Erdős-Rényi topology

Random graphs, also referred to as Erdős-Rényi netwoks (ERN), were the first com-

plex topologies ever studied and come from a long tradition in mathematics [16].

Although there have been proposed several frameworks to define them, here we will

focus on two of the simplest versions (see Fig. 2.1 for an illustrative diagram).

The “ensemble-of-networks” approach is a well-known and widely used strategy to

introduce what a random network is [16, 107, 105]. Briefly, by fixing either the pair

(N,L) or the pair (N, p) (where p represents the probability of edges between vertices)

one can construct a family of graphs that satisfy such constraints, and then by select-

ing –at random– one graph among our collection of graphs it is said that a random

network is created. In fact, fixing (N, p) leads to the ensemble of graphs having size

N –family generally represented by G(N, p)–, and in which a graph having L links

appears with probability pL(1− p)N2 −L (binomial distribution). Following these ideas

one can derive a powerful theory that allows us to calculate many of the properties

of random graphs, for instance the degree distribution [21]:

pk =

(
N − 1

k

)
pk(1− p)N−1−k (binomial distribution) , (2.10)
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which, in the limit of N →∞ (for 〈k〉 constant), can be written as,

pk = e−〈k〉
〈k〉k

k!
(Poisson distribution) . (2.11)

Let us point out now some relevant remarks about this model. On the one hand,

these networks display degree homogeneity, no correlations, and a small clustering

coefficient, given by 〈C〉 = 〈k〉/N –that vanishes in the thermodynamic limit, qual-

ities rarely found in real complex networks [39, 21]. On the other hand, it can be

proved that the average shortest path length scales as 〈l〉 = O(logN) asN →∞ [20],

which is small compared to 1D lattices, and often a desirable property also present

in real-world networks.

The second approach to generate this graph observes the notions prescribed for the

so-called generalized random networks model (topologies having arbitrary degree dis-

tributions and constructed by the configuration model) that can be found in Sect.

2.4.

Many other results of this model were left out of this brief definition, again in Sects.

2.4 and 2.5 we review some structural-related properties and its relation to percolation

(a second order –structural– transition) respectively.

2.3.3 Small-world topology

Some of the key features of this model have a long history that goes back to Mil-

gram’s experiments, about fifty year ago, and have been used widely for researchers

in many fields of Science [20, 105]. Now, the two essential aspects that are included

in this class of networks are: (i). A small average shortest path length that scales

logarithmically with the size of the network (i.e. 〈l〉 = O(logN) asN →∞), and (ii).

A high clustering coefficient (〈C〉 ≈ 1) [39, 106].

Here we focus on three models to generate small-world networks (SWN):

• Watts-Strogatz model: Being the most studied version of SWN in history, this

method has received a great deal of attention, partly because it interpolates

between 1D lattices (RN) and completely random networks (ERN), but mostly

because it exhibits some of the properties observed in real systems. Its simplest

version goes as follows [108],

– Generate a ring network of size N and ι ≥ 1 (which is considered a large

world).
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– Remove edges with probability p ∈ [0, 1] and replace them with edges that

join vertices selected uniformly at random from the N nodes. These new

edges are called shortcuts or bridges and the process of replacing them is

known as rewiring.

At p = 0 no rewiring takes place, so the network is simply the underlying 1D

lattice. For small values of the parameter p the small-world effect is created

(the shortcuts reduce significantly the average shortest path length while the

remaining regular structure maintains a high value of clustering). At p = 1

vertices are connected independently at random, which is an Erdős-Rényi graph.

The degree distributions, rarely included in description of the method, can be

derived analytically [109],

pk =

min(k−ι,ι)∑
n=0

(
ι

n

)
(1− p)npι−n (pι)k−ι−n

(k − ι− n)!
e−pι (for k ≥ ι) , (2.12)

which becomes a Poisson distribution when p→ 1. For an illustrative diagram

of a SWN see Fig. 2.1.

• Newman model: This is a variation of the Watts-Strogatz model, the only

difference is that in this case instead of rewiring we add undirected shortcuts

to the ring network [21]. The obtained configuration is very useful to perform

analytics, but has one downside: At p = 1 we do not create an Erdős-Rényi

network. However this shortcoming entails no significant problem since we are

only interested in networks for which p� 1.

• Roxin-Riecke-Solla model: This is a variation of the Newman model. In this

case the structure is the same as in the previous model, but with one small

difference: shortcuts are directed [72]. Again, the disadvantage of not creating

an Erdős-Rényi graph at p = 1 is present here. Another drawback of this

approach is that our adjacency matrix is not symmetric, so performing analytic

calculations is much more difficult.

2.3.4 Scale-free topology

This model is strongly related to the concept of scale invariance. A function f is said

to be scale invariant when f(cx) ∝ f(x). Only one particular set of functions satisfies
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this property: power laws. These mathematical relations can be easily defined as a

function,

f(x) = Cx−β → log(f) = −β log(x) + log(C) , (2.13)

which in a log-log plot is clearly a line with negative slope equals to β.

Power laws shine in their own right because they appear as important results in

many fields of Science, ranging from physics (e.g. scaling functions related to phase

transitions), mathematics (fractals), and economics (Pareto’s law) to social science

(Zipf’s law) and biology (Kleiber’s law). Network science is no exception. The scale-

free configuration –illustrative diagram is shown in Fig. 2.1– is a random graph whose

degree distribution is a power-law of the form, p(k) ∼ k−γ (k ≥ 1) [19], which is a

behavior also exhibited by many real-world networks (with exponents in the range

2 < γ < 3, for the most part) [40, 39].

Now, a distribution such as this one, in theory, entails some restrictions. For instance,

both the first and second moment of the degree distribution diverge for γ < 2 and

γ < 3, respectively [105]. Nevertheless, it is possible to calculate finite values for

other ranges of the exponent as we will see next. Let kmin be the smallest degree

of network, then we can derive the following approximate expressions (exact in the

thermodynamic limit),

〈k〉 ≈ γ − 1

γ − 2
kmin (γ > 2) , (2.14)

〈k2〉 ≈ γ − 1

γ − 3
k2min (γ > 3) . (2.15)

Another significant aspect prompted by the heterogeneous degree distribution is the

presence of some nodes with large degree values, called hubs, a feature that ensures

having a small average shortest path length according to 〈l〉 = O(logN) for γ > 3

and 〈l〉 = O(log logN) for 2 < γ < 3 [39, 110]. As for the clustering coefficient, it

has been proved that 〈C〉 ∼ N (7−3γ)/(γ−1), so 〈C〉 vanishes for γ > 7/3 as N → ∞
and increases for γ < 7/3 as N →∞ [20].

In a very general sense we can say that there are two kinds of methods to construct

random networks with any degree distribution. First, the so-called static approach

which hinges on the idea that no information is needed as to how edges are created

(so connections are set at random) and that the topology can be generated by simply

assuming that nodes have at least one defining property (e.g. degree, weight, etc.)

[20]. Examples of this class of models are the configuration model and fitness models.
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Second, the dynamical approach, in which some sort of evolution or growth is assumed

(so the mechanism for connecting nodes has to be known in advanced). Examples of

this type of model include the Barabási-Albert model and the Dorogovtsev-Mendes-

Samukhin model [39]. In our case we will focus on static models, so the particular

method that will be used to generate the scale-free topology is the same as the one for

other random graphs –explained in Sect. 2.4, the configuration model (that, to ensure

uncorrelated scale-free networks, includes additional constrains reported in [111]).

Figure 2.1: Illustrative example of network topologies.

2.3.5 Multilayer networks

In this section we introduce a more complex topology, but in no way we mean to

present here a thorough mathematical description of such configuration (whose treat-

ment requires a basic tensorial formalism). For a review on this subject we suggest

references [112, 54]. By the expression “multilayer network” we denote a configura-

tion of connected graphs arranged in layers (so these structures, in addition to nodes

and edges, also incorporate layers). Assuming that each of the nl layers have one

single network of size N , then each node of the multilayer network is identified by

two numbers, first, the usual node-index 1 ≤ i ≤ N , and second, the number of

the layer, l ≥ 1, that contains the network it belongs to. As to the local topology

(within each layer), it can be generated independently using any of the models de-

scribed in the previous sections (approach that has been called “Simple static model”

[54], and that is related to the configuration model described in the next Section).

Furthermore, the degree sequences of single-layer-graphs can be specified in any de-

sired manner to set, for instance, a degree correlation between different layers (i.e.

node-indexes can be sorted in accordance to their degree values and the links between

layer can be arrange in consequence). In Fig.2.2 the inter-links (dashed lines) join
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exclusively vertices that have the same node-index i but that belong to different lay-

ers, thus each node is obviously connected to both their local neighborhood –within

the same layer (solid lines)– and to (nl − 1) neighbors in other layers. However keep

in mind that these inter-links are not constrained, in general, in such fashion and,

thus, more complex connectivity patterns can be produced by considering other rules.

Figure 2.2: Illustrative diagram of a multilayer network having a graph of size N = 7
on each of its l = 3 layers. Inter-links connecting nodes of the top layer and nodes of
the bottom layer are not shown.

Adding all these ideas together, and following the example exhibited in Fig.2.2,

the total number of neighbors of any vertex i in layer l is given by:

kli = klocali,l + nl − 1 . (2.16)

Clearly the numbers {kli,l}i=1,2,...,N follow the degree distribution of the chosen topol-

ogy for the layer l, {klocali,l }i=1,2,...,N , but shifted to the right, which would be a power-

law for scale-free networks, a Poisson distribution for Erdős-Rényi networks and so

on.

A comment on the nature of nodes and links here compared to nodes and links

of multiplex networks is in order. In this simple and illustrative definition nodes

of different layers having equal node-index i are not necessarily the same entity, in

fact, they can have independent properties and display behaviors. For instance, the

removal of node i in layer l at a particular moment does not imply necessarily that

any of the nodes identified by the node-index i in any of the other nl − 1 layers has

to be removed as well.

27



2.4 The configuration model

Originally introduced in 1978 by the authors of reference [113], it has received a lot of

attention since then because it can be used to derive many analytical results on ran-

dom networks. The ideas behind this model are quite simple, following those related

to ERNs, one can construct random networks with any desired degree distribution

p(k) as follows [20],

• Generate a degree sequence for the set of N vertices, {ki}i=1,...,N (
∑

i ki even),

its histogram should fit p(k) accurately as N →∞.

• Connect vertices by choosing pairs of nodes uniformly at random, adhering to

previously assigned degrees (self- and multiple- connections are prohibited).

Clearly this algorithm is characterized, as other static models, by the absence of in-

formation about the principles that drive the creation of links between nodes.

Now,taking advantage of the randomness of these networks, a theory based on the

so-called generating function formalism can be developed. This approach is essentially

a powerful method that, instead of dealing directly with a combinatorial problem to

derive properties of networks, introduces an alternative strategy transforming it into

an algebraic problem (involving power series), which is much easier to solve1. In this

regard, here are three interesting results on networks’ structure [21], first:

〈C〉 =
1

N

(〈k2〉 − 〈k〉)2

〈k〉3
, (2.17)

which is a general expression that can be used to prove all the results, regarding

the clustering coefficient of random networks, mentioned above. Second, the average

shortest path length can be expressed as,

〈l〉 ≈ 1 +
log(N/〈k〉)

log[(〈k2〉 − 〈k〉)/〈k〉]
. (2.18)

And third, the condition that guarantees having a giant component of size ∼ N :

〈k2〉
〈k〉

> 2 . (2.19)

This condition sets the minimum –average– connectivity that a network with arbitrary

degree distribution is required to have in order to be connected. To illustrate this

1Originally proposed by Newman, Watts and Strogatz in references [114, 115], it is very useful
to determine many properties of networks with arbitrary degree distribution.
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point, let us consider the case of ERNs, where 〈k〉 = var(k) = 〈k2〉 − 〈k〉2. Thus, Eq.

2.19 gives:
〈k〉2 + 〈k〉
〈k〉

= 〈k〉+ 1 > 2 , (2.20)

which means that any ERN with 〈k〉 > 1 exhibits a giant component of size ∼ N .

Regarding the degree sequence, for non-uniform distributions, we follow the inversion

method (also known as inverse transform sampling). Briefly, the inversion principle

states [116]:

“if Y is a continuous random variable uniformly distributed on [0, 1] and if X is

a continuous random variable with a cumulative distribution represented by FX , then

the random variable F−1X (Y ) has the same distribution as X”.

Thus we propose a simple algorithm as follows,

• Generate a random number 0 ≤ y ≤ 1.

• Calculate x = F−1x (y).

• Repeat previous steps N times.

Obviously, to generate our degree sequences from uniformly distributed random vari-

ables this method requires that the inverse function of the desired cumulative distri-

bution exists. In our case this restriction is irrelevant because the distributions we

study throughout this Thesis can be easily inverted.

As an illustration of the advantages of the configuration model, and also to show fur-

ther developments of the generating function approach, in the next Section we report

on a structural-related process in random network.

2.5 Percolation theory

So far, we have reviewed some of the main characterizing properties of networks,

their diverse topologies and also how to build them. Now let us describe how to

disassemble them. In network science, a fascinating process known as percolation can

be generally understood as a procedure to damage networks’ structure. There are

several ways to do that, and depending on what you chose to break down an how

it is performed, the process takes different names. At the most basic level, a graph
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comprise two kinds of entities, nodes and edges, and in order to damage its structure

one or both constituents have to be removed (somehow). When the damaging process

is performed only on nodes (which typically implies also removing the edges attached

to them), it is called site percolation, and when only links are involved it is called bond

percolation. The specific order to remove this elements is also an essential aspect of

the process. Generally speaking when researchers talk about percolation, they mean

random percolation which simply states that the parts to be removed are chosen

uniformly at random. Of course, this is not the only way to do it. For instance,

in the case of site percolation, if nodes are selected and removed in order by their

degree this receives the name of targeted attack and it is a simple strategy that has

proven very effective in inflicting catastrophic damage to scale-free networks2 [20].

Although such a process might seem just like a theoretical exercise, it has many

significant results and applications to biological systems, real-world infrastructures

and engineering problems. To mention a few, percolation theory can be used to

model (as an approximation) complex behaviors like disease spreading, power-grid

failures and traffic congestion.

Fortunately, many rigorous approaches on the subject have been developed over the

past decades (since, at least, the 1940s) and here we present a brief review on the

main results provided by, again, the generating function formalism. By adopting this

approach, one can obtain an expression for the critical value of the node-occupation

probability φ in uncorrelated networks [21]:

φc =
〈k〉

〈k2〉 − 〈k〉
=

1

〈k2〉/〈k〉 − 1
, (2.21)

which is the minimum fraction of nodes still present in the damaged network (after

a random removal of vertices is performed) required for the giant component to exist

(derived rigorously under the configuration model).

In the case of ERNs, Eq. 2.21 simply reduces to:

φc =
1

〈k2〉/〈k〉 − 1
=

1

〈k〉
. (2.22)

Note also that, for scale-free networks, the second moment of the degree distribution

diverges in the thermodynamic limit when γ ≤ 3 (see Eq. 2.15), and in this case

φc → 0, which means that the giant component exists even when most of the vertices

are removed.

2This is a major finding in Network Science because, as mentioned previously, many real-world
networks exhibit scale-free properties and thus the same structural vulnerabilities.
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The inequality in Eq. 2.21, also called the percolation threshold, depends crucially

on the size of the system [117], which sets a serious limitation for its application to

real networks (whose sizes are always finite, of course). Nevertheless, it can be proved

that a good approximation of φc for finite SFNs is given by [20]:

φc ≈
(
γ − 3

2− γ

)
kγ−3max k

2−γ
min 2 < γ < 3 , (2.23)

where kmax is the largest degree in the network.

For more information on percolation in complex networks we suggest reading refer-

ences [21, 115, 110, 39, 20].

Finally, other relevant aspects of the basic network framework include centrality mea-

sures, mesoscale descriptors, community detection and modular structures, among

many others. In this brief review such topics were left out because they are unrelated

to the present work, and we encourage the reader to consult the references of this

Chapter for further details.

31



Chapter 3

Synchronization in relay systems

At the local level, many networks exhibit recurrent structural patterns of connections,

called motifs [39], that may enhance or hinder the appearance of complex behaviors.

In this Chapter we focus on one of such microscopic structures to demonstrate there

is a specific form of synchronization in configurations that act as mediators between

two dynamical units (commonly referred to as relay systems). In particular, our

approach to analyze the behavior of this elementary graph and elucidate when the

global synchronized states appear1 includes a well-known tool of the spectral theory,

along with two useful indicators of synchrony. The robustness of our findings is il-

lustrated experimentally using several electronic setups, which also allows to provide

some insight into a few experimental technologies that are based on these ideas.

The Chapter is organized as follows: We introduce the notion of synchronization

and discuss some of the most recognizable types of synchronized states that have

been observed in chaotic systems (Sect. 3.1). Then, we describe the two kinds of

synchronization to be studied in the present work, the relay synchronization and the

generalized synchronization, along with a brief review on some of their current ap-

plications. In Sect. 3.2 we report on the system of interest, a set of three chaotic

oscillators diffusively coupled (according to an elementary graph), and examine all of

the mathematical and numerical tools that are used to characterize our setting and to

determine the onset of the synchronized states. Main numerical simulations/analysis

for a 9D Rössler dynamical system are reported in Sect. 3.3, as well as our experi-

mental findings on electronic circuits (operating in chaotic regime) in Sect. 3.4. At

the end of the Chapter, a detailed discussion on the results is presented, including

–possible– new lines of research, and further examples of relay synchronization in

optical and biological systems.

1As a function of the coupling strength that, of course, links our dynamical subsystems.

32



3.1 Synchronization

3.1.1 Basic notion

Synchronization is a common phenomenon in a diversity of natural and technologi-

cal systems. Examples of synchronous behavior include biological phenomena (firing

patterns of neurons in the brain, spike activity of fireflies, circadian rhythms, pace-

maker cells in the heart, and so on), social activities (finance, opinion formation,

dating patterns, and even hand clapping), engineering (lasers, electronic circuits,

communications, etc.), and physics (coupled mechanical settings, dynamical systems,

superconductive elements, etc.), and many others. [42, 41, 7].

Clearly the concept of “synchronization” is hard to pinpoint given the ubiquitous

occurrence of this behavior. In what follows, we will not try to present a comprehen-

sive report on the subject, but simply to offer some intuitive ideas that might shed

some light on this topic. The word synchronization has an ancient root in Greek,

that means syn = the same, and chronos = time [118]. In terms of modern natural

languages, a wider notion of synchronization can be stated informally as “agreement

or correlation in time of different processes”, and more formally as “a process wherein

two (or many) systems (either equivalent or nonequivalent) adjust a given property

of their motion or activity to a common behavior, due to coupling or forcing” [43].

Yet other authors prefer to follow broader notions like: “Synchronization as an ad-

justment of rhythms of oscillating objects due to their weak interaction” [41], which,

although intuitive, is rather vague for most purposes. In any case, from these ideas

we are able to see distinctly that synchronization always involves three aspects: os-

cillations, coupling or interaction, and adjustment of rhythm or common behavior.

However, as already stated, we never get to satisfy with our definitions every form of

synchronization there is, for the trouble with this concept obviously lies in the fact

that there exist several types of synchronization that have been observed in many

systems of diverse nature.

3.1.2 Forms of synchronization

In the present Chapter we focus exclusively on synchronous states defined for chaotic

elements (systems that are characterized as sensitively dependent on initial conditions

[8]), though this phenomenon is also encountered and discussed in Chapters 4 and 5

for pulse-coupled elements. Here are some of these types [43]:
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• Complete synchronization (CS): It is certainly a basic form of synchronization

present in many kinds of systems (including non-chaotic ones). It consists of

a perfect match of the trajectories of –at least– two coupled systems in the

course of the time (which can be achieved by imposing a strong undirected

interaction between them). Spectral analysis has shown that for two coupled

identical chaotic units conditional Lyapunov exponents of the subsystem to be

synchronized are all negative [58].

• Phase synchronization (PS): When considering two or more coupled nonidenti-

cal oscillators (whose motions can be characterized by amplitudes, frequencies

and phases) there is a regime in which oscillators’ phases are locked while cor-

relations in the amplitudes remain weak.

• Lag synchronization (LS): This is an intermediate form of synchrony between PS

and CS. For two or more non-identical oscillating elements, lag synchronization

means that there exist locking between phases and between amplitudes, but

with the presence of a time lag.

• Generalized synchronization (GS): Again, given at least two different oscillators,

we say that GS takes place between them whenever the trajectory of one system

can be mapped onto the trajectory of the other by a single global bijective

function (see section 3.1.4).

• Intermittent lag synchronization (ILS): It is a state where the systems involved

satisfy LS most fo the time, but occasionally their trajectories exhibit unsyn-

chronized behavior (perhaps related to certain parts of the attractors).

• Imperfect phase synchronization (IPS): Obviously this type of synchronization

refers to a state in which the oscillators involved exhibit PS most of the time

but the phase locking might fail occasionally.

3.1.3 Synchronization in relay systems

A relay configuration is simply an undirected graph of size N = 3 and L = 2, in which

two –dynamically identical– nodes are connected to a third one but not to each other

(see Fig. 3.1). This configuration, as stated above, can be interpreted as a network

motif, which are subgraphs that repeat themselves in large networks [39]. Given the

natural occurrence of these local structures, we believe it is most relevant to study

synchronization phenomena in such systems providing them a dynamical complexity
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to offsets their basic morphology (which is why we chose to study chaotic oscillators

–two varieties of Rössler attractors are depicted in Fig. 3.1).

1

2 3

Figure 3.1: Relay configuration diagram displaying three chaotic oscillators joined
as prescribed (for the 9-dimensional dynamical system, see Eqs. 3.1).

An elegant way to enhance synchronization is the use of a relay setting between

the systems to be synchronized. This synchronous state of relay units, also known

as relay synchronization (RS), involves achieving complete synchrony of the two dy-

namical subsystems (nodes 2 and 3 in Fig. 3.1) by means of the action of an indirect

coupling through a third unit (node 1 in Fig. 3.1), whose dynamics does not necessar-

ily join the shared state. This particular form of synchronization has many relevant

effects on both theoretical studies and practical applications. For instance, RS is es-

pecially useful in undirected systems with a certain delay in the coupling line, where

lag-synchronization has also been reported [59, 60, 61, 62]. In these cases, indeed, the

coupling delay may induce instability of the synchronous state [119], which can be

restored again thanks to a relay system. Lasers [59, 60, 61, 62] and electronic circuits

[63] have been the benchmark for experimental demonstration of the feasibility of RS,

showing its robustness against noise or parameter mismatch. In semiconductor lasers,

for instance, zero-lag synchronization between two delay-coupled oscillators can be

achieved by relaying the dynamics via a third mediating element, which surprisingly

lags behind the synchronized outer elements. In electronic circuits, RS has been used

as a technique for transmitting and recovering encrypted messages, which can be sent

bidirectionally and simultaneously [64]. Apart from its technological applications,

RS has also been proposed as a possible mechanism at the basis of isochronous syn-

chronization between distant areas of the brain [65, 66, 67]. Despite such evidence
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of RS, there are still open questions of a fundamental nature. The main issue is to

characterize properly the relationship, established in RS, between the dynamics of

the relay system and that of the fully synchronized identical systems it connects2.

In this Chapter we provide evidence, among other results, that there exists indeed a

correlation between them.

3.1.4 On generalized synchronization

Given that GS is one of the main concepts of this chapter, next we provide further

details on this prominent phenomenon. Consider two systems whose dynamics are

given, respectively, by ẋ(t) = f(x(t), y(t)) and ẏ(t) = g(y(t), x(t)). According to the

definition of GS discuss above, this behavior is characterized by the existence of a one-

to-one function h(x(t)), such that limt→∞‖y(t)−h(x(t))‖ = 0 [41], a condition rather

difficult to prove –directly– in most instances. To illustrate this point, let us see some

of the results reported on GS in the literature. In particular, for directed coupled units

(master system→ slave system) its existence has been proven by checking the ability

of the response unit to react identically to different initial conditions of the same

driver unit, which can be quantified by evaluating the mutual false nearest neighbors

[46] or by measuring the conditional Lyapunov exponents [58]. More recently, GS has

been also reported in networks of undirected coupled oscillators [120] and suggested

that GS could occur when a minimum value of the coupling delay is guaranteed in a

relay configuration [121] as well, but no proof of GS existed so far for systems that

are instantaneously coupled through an additional relay unit.

3.2 Model and tools

In this section we report on the system of interest and three distinctive measures

that are used to assess the existence of CS, RS and GS, all of this with the aim of

determining whether GS is behind the role played by the relay unit in the RS process.

3.2.1 Dynamical system

Let us consider the case of three interacting Rössler oscillators [122] diffusively cou-

pled according to the configuration diagram of Fig. 3.1. The generic route to complete

2A relay unit may have certain parameter mismatch with the identical units they link [50] or can
even be a completely different system [63], and thus, typically, it exhibits a dynamical behavior that
seems unrelated –a priori– to the one displayed by the systems fully synchronized.

36



synchronization of two Rössler oscillators is well known in the literature [41]. Here,

instead, we incorporate a relay configuration where units 2 and 3 are identical (same

parameters in Eq. 3.1), and unit 1 –the relay element– is set to have (one or more)

different parameters with respect to them. Again, the edges are not only undirected

but also instantaneous and RS is said to take place whenever CS between oscillators

2 and 3 occurs.

The equations of motion of the full 9D system are,
ẋ1 = −y1 − z1,

ẏ1 = x1 + a0 y1 + σ(y2 − y1) + σ(y3 − y1),

ż1 = 0.2 + z1(x1 − 5.7),
ẋ2,3 = −y2,3 − z2,3,

ẏ2,3 = x2,3 + a y2,3 + σ(y1 − y2,3),

ż2,3 = 0.2 + z2,3(x2,3 − 5.7).

(3.1)

Although here we focus our results on the case a0 = 0.3, a = 0.2, different parameter

mismatches between unit 1-2 and 3 have also been tested (exhibiting the same quali-

tative results). In all cases considered, the existence of a stable chaotic attractor has

been verified for the isolated systems.

3.2.2 Lyapunov exponents

A widely-used strategy to characterize the asymptotic behavior displayed by a dynam-

ical system is the study the Lyapunov exponents (also known as Lyapunov spectrum).

Basically, this framework offers an analysis based on the rate of divergence or con-

vergence of nearby trajectories of the system [123]. To illustrate the concepts behind

this proposal, let us describe briefly the leading Lyapunov exponent λ. Consider two

initial points in the phase space of a dynamical system xt0 and x′t0 at t0 such that

δxt0 = ‖xt0 − x′t0‖ � 1. Let xt and x′t be the images of xt0 and x′t0 after a suitable

t � 1, and δxt = ‖xt − x′t‖ the distance between these images, then the leading

Lyapunov exponent is given by the expression:

λ = lim
t→∞

1

t− t0
ln

(
δxt
δxt0

)
≈ 1

t− t0
ln

(
δxt
δxt0

)
, (3.2)

which clearly quantifies how fast the images separate form each other. If λ > 0 the

system exhibits exponential divergence of nearby orbits, a condition that characterizes
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chaotic behavior (i.e. sensitivity to initial conditions [8]). On the other hand, λ < 0

is associated with a stable fixed point and λ = 0 with a stable limit cycle. The

Lyapunov exponent thus defined is just an illustration concerning only local behavior

(two local points of the phase space), and in order to characterize the whole system

a global quantity is required (an average, as will be shown in the next paragraphs).

More formally, let ẋ = f(x) be the dynamical system, where f : U ⊆ Rn → Rn

(smooth), then the leading Lyapunov exponent can be computed as follows:

λ = lim
t→∞

1

t− t0
ln

(
‖Jt(xt0)δxt0‖
‖δxt0‖

)
= lim

t→∞

1

t− t0
ln‖Jt(xt0)n̂‖ , (3.3)

where Jt(xt0) is the Jacobian matrix of the system, whose entries are J tij(xt0) =

∂fi(t)/∂xj(t0), and n̂ = δxt0/‖δxt0‖ is the unit vector oriented in direction of the

initial perturbation. So the initial perturbation δxt0 evolves as:

δxt = Jt(xt0)δxt0 . (3.4)

Provided that, in general, the Jacobian matrix is not symmetric, diagonal or even

constant along the trajectory described by the system, from the geometric point of

view, it maps –for instance– the unit sphere into an ellipsoid. Furthermore, it can

be proved that this Jacobian deformation can be factored into a rotation (Rt(xt0),

an orthogonal matrix) and a stretch (St(xt0), symmetric positive definite matrix), for

which an orthonormal eigenbasis expands [124]:

St(xt0)ε̂ti = ωti(xt0)ε̂ti where 1 ≤ i ≤ n , (3.5)

where ωti(xt0) are the n positive real eigenvalues of St(xt0). For simplicity, let us

consider an initial perturbation along the ith-axis (it can be computed –alternatively–

by components), then n̂ = ε̂ti and from Eq. 3.3 one can define the finite-time ith-

Lyapunov exponent:

λti(xt0) ≈ 1

t− t0
ln‖Rt(xt0)ωti(xt0)ε̂ti‖ =

1

t− t0
ln
[
ωti(xt0)

]
, (3.6)

which is clearly the rate of stretching along the ith-axis (given xt0 and t). Eq. 3.6

provides a strategy to compute the average ith-Lyapunov exponent along the trajec-

tory of the dynamical system, for a suitable short interval T the Lyapunov spectrum

is obtained iteratively [125]:

λi ≈
1

KT

K∑
j=1

ln
[
ωji (xt0)

]
, (3.7)

38



which should be calculated until they show convergence.

Note that there is a Lyapunov exponent for each dimension of the dynamical system,

and that the eigenvalues ωti(xt0), that quantify the stretching (ωti(xt0) > 1) and

compression (0 < ωti(xt0) < 1), can also be computed as renormalization parameters

resulting from the reorthogonalization process to “correct” the deformation that the

Jacobian matrix causes to the initial basis [126].

3.2.3 CS measure

A useful yet simple quantity to detect the existence of complete synchronization

between nodes i and j is the error function, 〈e〉i,j, defined as,

〈e〉i,j = lim
τ→∞

1

τ

∫ τ

0

‖xi(t)− xj(t)‖dt , (3.8)

As mentioned above, in the case of CS the trajectories become identical after the

transient, so this measure provides accurate confirmation of the presence of such

behavior.

3.2.4 GS indicators

Direct evidence of the onset of GS between nodes 1 and 2 can be provided by the use

of two indexes: the synchronization points percentage (SPP, for short) introduced by

Pastur et al. in reference [49], and the non-linear interdependence (N -index) proposed

by Quiroga et al. in reference [127]. Lets us describe both of them briefly:

• SPP quantifies the fraction of phase-space points of a given subsystem (in our

case, Rössler attractors represented by nodes) for which there is a local contin-

uous function to the phase-space of the other subsystem or unit. The essence

of the method involves the analysis of the nearest neighbors of the points of the

domain space (e.g. node 1), and the search of their images in the neighborhoods

of time-related points of the codomain space (e.g node 2). In this way, one is

able to assert the existence of local functions only for certain statistical confi-

dence level (continuity statistics method) [45]. One way to optimize this search,

suggested in reference [49], is performing the so-called time-delay reconstruction

of the subspaces involved [128], due to the fact that, in higher dimensions, the

size of these neighborhoods (the number of points inside co-domains required to

assess the existence of the local function) is smaller. Note that, even though this
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reconstruction is convenient in terms of time efficiency, it is just an optional step

before SPP computation3. Whenever SPP = 1, there exists a unique, global,

continuous synchronization function from one subsystem to the other [48], and

thus we say that the two subsystems are in GS (see Ref. [49] for further details

of the method).

• The second index we consider here is the N -index, an asymmetric measure of

synchronization defined as,

N(x|y) =
1

P

P∑
n=1

Rn(x)−R(k)
n (x|y)

Rn(x)
, (3.9)

where x(t) and y(t) are the states of the two dynamical systems for which

GS is being evaluated, and the subindex n = 1, ..., P refers to a discrete-time

sampling of the attractor. Furthermore, Rn(x) = (P − 1)−1
∑

i 6=n(xn − xi)
2 is

the mean squared distance to random points in the attractor, and R
(k)
n (x|y) =

k−1
∑k

i=1(xn−xyn,i)
2 is the mean squared distance to the k false nearest neigh-

bors of xn, which are the points corresponding to the time indices yn,i of the k

nearest neighbors of yn. By definition, N(x|y) ≤ 1, and it can be marginally

smaller than 0 for totally unsynchronized dynamics. Values close to zero indi-

cate that there is no synchronization, whereas values close to 1 mean that for

any n a small cloud of neighboring points around yn is mapped into a small

cloud of neighboring points around xn, which hints again at the presence of GS

in the system (as it indicates the existence of a continuous mapping from the

phase space of system y(t) to that of system x(t)).

3.3 Numerical results

For all numerical integrations, a 4th-order Runge-Kutta algorithm with an integration

time step of 5 × 10−3 time units is used (a transient of 2 × 103 is also removed in

3Even though our findings using this index are sound, there is an important caveat: The method
is quite sensitive to sampling parameters (due to the discrete nature of the neighborhoods used in
the numerics), so a fine-tuning is required in order to compute the SPP based on the 3D spaces of
the attractors. One option to avoid this problem is to project the attractors onto any of the axis
and then perform the so-called time delayed reconstruction. When the chosen dimension for the
reconstruction satisfies the condition dr > 2× d (where d is the dimension of the attractor), we do
not find any false-nearest-neighbors [128]. In this manner, we get to use the SPP without having to
select carefully our sampling parameters. To our knowledge this is the first time that such aspect of
the SPP index has been reported in the literature.
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all cases). Fig. 3.24 shows 〈e〉1,2 (blue line) and 〈e〉2,3 (red line), as a function of

the coupling strength σ. It is clear that there is a critical value for the coupling,

σc ' 0.10, above which RS occurs for any generic initial condition, where complete

synchronization between nodes 2 and 3 takes place, whereas for nodes 1 and 2 still

displays e1,2 > 0 (no synchrony of amplitudes between the relay node and the rest).

σ

〈e
〉
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Figure 3.2: Synchronization error 〈e〉 between systems 1 and 2 (blue line), and
between systems 2 and 3 (red line) as a function of the coupling strength σ (see
Fig. 3.1). The critical coupling σc marks the beginning of the RS regime.

More insight into the role that the relay system plays in RS is gained by comput-

ing the Lyapunov spectrum of the full 9-dimensional system, which is here realized by

means of the classical method5 by Benettin et al. [126]. The results are reported in

Fig. 3.3 (a), where the 6 largest Lyapunov exponents of the spectrum are plotted as

a function of σ. The highlighted (grey) areas are windows where periodic dynamics

might appear depending on the initial conditions (in the case of σ ' 0.006), or in

all of them (around σ ' 0.12). Consequently, we do not consider any further these

coupling regions where non-chaotic dynamical regimes accidentally emerge, as they

do not add relevant information for the understanding of RS.

For negligible couplings, the set of Lyapunov exponents (labeled such that λ1 ≥
λ2 ≥ · · · ≥ λ9) is divided into three positive (λ1 > 0 and λ2 = λ3 > 0), three zero

(λ4 = λ5 = λ6 = 0), and three negative (λ7 < 0 and λ8 = λ9 < 0) exponents. As

the coupling increases, λ6 becomes negative almost immediately. By checking the

phase-space orbits of the systems, this corresponds to a phase synchronization regime

4Synchronization errors were computed for 2×104 time units, after an initial transient of 2×103

time units was disregarded. Curves in Fig. 3.2 depict averages over 30 independent realizations,
each one starting from different random initial conditions.

5For the computation of the Lyapunov exponents, a time window of 2 × 104 time units was
considered after an initial transient of 2× 103 time units. Gram-Schmidt reorthonormalization was
applied every 0.25 time units. Curves in Fig. 3.3 are the result of averages over 30 independent
realizations, each one starting from a different random initial condition.
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between systems 2 and 3. At σ ' 0.04, λ5 also becomes negative, and just one effec-

tive phase remains in the system, corresponding to λ4 = 0. So far the three largest

Lyapunov exponents remain positive, suggesting that the three chaotic amplitudes

are still not correlated. A further increase in σ determines the vanishing of λ3 and

the dropping below zero of λ4. Eventually, for higher coupling strengths, λ2 vanishes

and λ3 becomes negative. The coupling strength for which this latter scenario is

observed is σ = 0.100 ± 0.001, and therefore it almost perfectly matches the critical

coupling strength for RS. In other words, the onset of RS corresponds to a regime

with only one independent chaotic amplitude in the entire system. The fact that

λ1 > 0, λ2 = 0 and λi < 0 for i = 3, 4, . . . , 9 hints at the possibility that GS is taking

place between both of the subsystems 2 and 3 (which are in complete synchronization

with each other) and system 1 (i.e., the possibility that there is a functional relation-

ship x2,3(t) = h(x1(t)), and the phase-space trajectories collapse onto a generalized

synchronization manifold).
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Figure 3.3: (a) Lyapunov spectrum as a function of σ (only the positive, zero and
slightly negative Lyapunov exponents are shown). The gray filled areas are windows
where the dynamics is periodic see the text for further explanations). The critical
coupling σc coincides to a very high precision with the coupling strength at which
the second largest Lyapunov exponent vanishes. (b) SPP and N -index (see text for
definition) vs. σ, with system 1 as the domain set and 2 as the codomain set for the
possible mapping (blue line for SPP and green line for N -index) and vice-versa (red
line for SPP and light blue line for N -index).
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Fig. 3.3 (b) shows the curves of both the SPP6 and the N -index7, for the case

in which system 1 (2) is taken as reference and system 2 (1) is inspected for the

existence of a functional relationship (denoted by 1→ 2 (2→ 1) in the figure). The

SPP curves clearly display a smooth behavior for almost every σ, and exhibit the

transition to GS near σc, detecting the periodic dynamics at σ = 0.12 (discontinuous

jump to SPP = 1.0). The curves of the N -index fluctuate slightly above zero for small

couplings, while they reveal a clear monotonous growth with σ beyond σ ' 0.04. At

σ = σc, the N -index values are very close to 0.90, and for higher coupling strengths

they increase up to 0.98 for σ = 0.17, the changes being, from this point on, almost

indistinguishable from numerical fluctuations. All this evidence confirm that a GS

regime is associated to the setting of RS, with the function relating the states of the

peripheral and relay units being invertible, which is not the general case of GS in

unidirectionally coupled systems [46].

3.4 Experimental setup

Finally, we offer an evaluation of the robustness of these phenomena under realistic

conditions, and we implement an experiment based on oscillating electronic circuits.

The experimental setup is sketched in Fig. 3.4 and consists of three piecewise Rössler

circuits operating in a chaotic regime. The dynamical system of the experimental

setup is [129]:
ẋ1 = −α (Γx1 + β y1 + ξ z1 − σ(x3 − x1)− σ(x2 − x1)) ,

ẏ1 = −α (−x1 + υa y1) ,

ż1 = −α (−g (x1) + z1) ,
ẋ2,3 = −α (Γx2,3 + β y2,3 + ξ z2,3 − σ(x1 − x2,3)) ,

ẏ2,3 = −α (−x2,3 + υb y2,3) ,

ż2,3 = −α (−g (x2,3) + z2,3) .

(3.10)

6A time window of 5×105 time units is considered after an initial transient of 5×104 time units.
By keeping one 3D-point every 100 integration steps, the resolution of the time series is dt = 0.5 and
the total number of points in each atttactor is 106. For the time-delayed vectors (reconstruction)
we choose embedding dimension d = 7 and time delay T = 1. The parameters of SPP algorithm
are the number of points inside codomain neighborhoods n = 300 (fixed over the attractor) and the
threshold for statistical comparison Θ < 0.1.

7A time window of 105 time units is considered after an initial transient of 2 × 103 time units.
Even though the integration is performed with a time resolution of 0.005, only one time point every
0.5 time units is considered in the computation, so as to avoid temporal correlations. Finally, the
computation of N -index is performed over the resulting 2× 105 phase-space points. The procedure
is repeated 30 times from random initial conditions.
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where the piecewise part is:

g(xi) =

{
0 if xi ≤ 3

µ (xi − 3) if xi > 3
(3.11)

Here, α = 104 s−1 is a time factor, and the other parameters are: Γ = 0.05, β = 0.5,

ξ = 1, µ = 15 and υa,b = 10
Ra,b
− 0.02. The resistance mismatch (Ra = 70 kΩ,

Rb = 39 kΩ) accounts for the difference between system 1 and systems 2 and 3,

the latter being identical (this time, however, only up to tolerances of the electronic

components and noise).

Figure 3.4: Schematic representation of the experimental setup. The bidirectional
coupling is adjusted by means of three digital potentiometers X9C104 (Coupler-
XDCP) whose parameters Cu/d (Up/Down Resistance) and Cstep (increment of the
resistance at each step) are controlled by a digital signal coming from a DAQ Card.
See text for the full details of the experimental system.

The coupling strength σ is controlled by a digital potentiometer (used as a voltage

divisor), whose range is such that σ ∈ {0.00, 0.01, . . . , 0.25}. We use three digital

potentiometers (X9C104) which guarantee that the parameter σ is changed simulta-

neously for all nodes. They are adjusted by a digital signal coming from ports P0.0

and P0.1 of a NI Instruments DAQ Card (DAQ). The output of each circuit is con-

nected to a voltage follower that works as a buffer. All 9 signals are acquired by the

analog ports (AI 0 ; AI 1; ... ; AI 8) of the same DAQ Card, and recorded on a PC

for further analysis. The incoming signal of the analog inputs (ADC) and the signal

sent through the digital outputs (DO) are controlled and recorded by Labview.

Fig. 3.5 shows the values for the synchronization error (top), and the SPP and

N -index (bottom) as functions of σ for the experimental data. In particular, panel (a)
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indicates that the system achieves RS for σ > 0.13. Admittedly, the synchronization

error 〈e〉 between systems 2 and 3 can never vanish, not even within experimental

error limits in a low-precision experimental setup. However, it becomes very low as

compared to the considerably higher values of 〈e〉1,2. On the other hand, Fig. 3.5(b)

confirms that both SPP and N -index give clear indication on the existence of GS

between systems 2 and 3 and system 1 for this experimental setup. The critical

coupling observed in the synchronization error curves again matches very well with

the point where SPP and N -index become very close to 1, confirming the appearance

of GS.
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Figure 3.5: (a) Synchronization error between systems 1 and 2 (blue line) and
between systems 2 and 3 (red line) as a function of σ. (b) SPP and N -index (see text
for definitions) vs. σ, with the same color code described in the caption of Fig. 3.3.

3.5 Discussion

We have studied and characterized our numerical and experimental relay systems

by means of measures that indicate the presence of diverse regimes of activity, in-

cluding synchrony. In this regard, our results on Lyapunov exponents show that the

9-dimensional Rössler system displays two regimes of activity across a wide range

of values of the coupling: Chaotic behavior is present for most of the values consid-

ered, while periodic activity can also appear (where all the Lyapunov exponents are

λi ≤ 0∀i), even for relatively large values of the coupling. Likewise, these transitions
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between regimes are confirmed by the abrupt changes that both SPP and N -index

exhibited for those periodic-related coupling values. As to synchrony detection, our

two indicators provided strong evidence that one can correlate that the onset of the

relay synchronization between the outer –identical– units is indeed associated to the

occurrence of the generalized synchronization between both of them and the relay

oscillator. Particularly, it can be observed that both SPP and N -index experience

relatively smooth transitions across the coupling (except, of course, for the periodic

instances mentioned above), but only SPP displays a steep growth right at the critical

coupling σc (where complete synchronization is achieved by the identical nodes for

the first time). We believe that this observation constitutes additional confirmation

that SPP is the only direct evidence there is on the existence of generalized synchro-

nization (because, by definition, this is an approach that aims exclusively to proof

there is a single global function between the states of the subsystems) and, as far as

we know, this is the first time such claim on GS for the relay configuration has been

made.

Turning to the experimental settings, we can say that the implemented electronic

version of the coupled Rössler system shows the robustness of the results despite

the inherent presence of noise and parameter mismatch. In this case it can also be

observed that both indicators provide evidence of GS as they both exhibit sooth tran-

sitions, but again only SPP displays transitions to synchrony at the critical coupling

σc (where the error function between the identical oscillators –almost– vanishes).

Putting all these aspects together, and in order to better understand how the elusive

generalized synchronization works, we believe it is no sufficient for an indicator of

synchrony to shed light only on the fact that such phenomenon does happen, but also

on the location where it happens (that is, at the critical coupling value) and how the

systems organizes itself to achieve such state (i.e. the shape of the transition). Thus,

SPP indicator is better suited for this task than the N -index.

Moreover, from all of the results that the present Chapter contains, we have un-

questionably established a link between the emergence of relay synchronization in

instantaneously coupled chaotic systems and the existence of generalized synchro-

nization with the relay oscillator, which opens the possibility of using relay units

for practical applications. As an illustration, this approach has been used in a tech-

nique called optical encryption [62]. Briefly, the general concept of such cryptography

procedure is that a content can be masked or hidden into the noise-like output of a

chaotic transmitter semiconductor Laser, and that the content recovery is achieved by
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relaying on the chaos synchronization between the transmitter semiconductor Laser

and the receiver semiconductor Laser. Understanding the intricate mechanisms that

explain relay synchronization is thus essential for the implementation of long distance,

bidirectional chaos communication. We hope that the work presented in this Chapter

may be helpful to formulate new research along the line of such secure technologies.

Now, there are a few aspects of our model that deserve further attention. A lot of

research have been devoted, over the past few decades, to study synchronization be-

tween two chaotic units for diverse types of couplings (instantaneous, delayed, noisy,

directed, etc.) [41, 42], and only until recent years some works have been published

on relay systems that involve three or more chaotic oscillators [130, 131, 60, 61, 50,

63, 64, 68]. However, we still lack a complete understanding of synchronization of

chaotic elements at the network level (and in particular for GS) [55, 57]. Certainly,

there lies great opportunity for researchers to develop new knowledge because, when

it comes to random networks, size matters indeed. Though our observation is not just

about the size of the system but, more importantly, about the complexity related to

it8, which arises naturally in many real systems . One of such –paradigmatic– com-

plex system is the brain. In the brain there has been observed that two arbitrarily

separated regions or neuronal populations exhibit synchronized firing activity despite

long axonal delays [65]. To explain this phenomenon of neuronal populations a relay

configuration has been proposed: Their spiking signals are mediated by a third pop-

ulation, and the redistribution of the dynamics performed by this relay unit leads to

a robust and self-organized synchrony among the outer brain regions [67]. Clearly,

to approach and model realistically this phenomenon both dynamical and structural

complexities have to be taken into account.

Along these lines, in Chapter 4 we review several models of neurons and study, in

depth, one of them on heterogeneous complex networks. To our surprise, again, a

form of synchronization arises in such neural systems as a coherent periodic activity,

which confirms once more the ubiquitous nature of this prominent phenomenon.

8Provided the right type of topology to reflect this property, as we have explained in Chapter 2.
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Chapter 4

Neural dynamics on heterogeneous
sparse networks

As mentioned in the previous Chapter, coupled nonlinear elements often display com-

plex behavior for a wide variety of interaction rules and diverse underlaying structures

that channel them. For instance, several types of synchronization can be found in

systems that involve continuous couplings, delays, noise, relays and, of course, oscilla-

tors [42, 41]. Though, for practical reasons, no all of these dynamics are well suited to

model large-scale systems. A good example of such restrictions can be found in real

neural systems, for which one might ask whether it si possible to model, for instance,

the human brain as a set of coupled chaotic oscillators. Clearly such an approach

would involve dealing with a dynamical system having ∼ 300 billion coupled equa-

tions (i.e. at least 3 times the number of neurons in an average human brain), an

unmanageable task for most practical purposes. Thus, to model larger systems –in

most cases– the introduction of simplifications is required (aspect that should never

be regarded as a disadvantage). In physics, and particularly in statistical physics,

this strategy has proven quite fruitful for a long time. Consider the Ising model as an

illustration of this point; a simplified mathematical description of magnetic materials

that was proposed almost a century ago and that created an entire research field

which is still active nowadays. This observation highlights an interesting aspect of

Science: It is not about capturing reality in great detail and more about decomposing

phenomena into their most fundamental constituents.

Following these ideas, we note that there are different paths to provide a system

with the elements that lead to complexity and, in what follows, we consider two of

such aspects: Dynamical and topological complexity. Note that in the last Chap-

ter we studied a complex dynamics in a simple configuration and here, in contrast,
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we investigate a large number of simpler dynamical units in a complex structure of

interactions1. This resolution allows: (i) to consider random topologies (with arbi-

trary degree distribution), (ii) to perform extensive simulations in large populations

of excitable elements (∼ 105) and (iii) to compute, analytically, meaningful statistical

quantities (impossible to achieve for systems of small size).

The present Chapter is divided like this: First, we review several models of neurons

that can be found in the literature, and then we describe the specific ingredients of

the neural heterogeneous system of interest, including an introduction to the notation

and basic definitions required for our analytics. Second, we provide a full characteri-

zation of the dynamics, focusing on the effects of the parameters and its robustness

against both dynamical and structural perturbations. Third, we develop an analytical

approach to decompose the activity and predict the average behavior of the popula-

tion using a mean-filed-like approach. In last part of the Chapter we report on a form

of synchronization that emerges –unexpectedly– under couplings heterogeneity and

provide a brief discussion on the main results. Regarding our methodology here we

have two approaches: Extensive computer simulations, as in the previous Chapter,

and a novel analytical framework derived from a few simple considerations and using

elementary mathematical tools.

4.1 Models of neurons

There is a great number of models that are closely related to the problem of describ-

ing the behavior of biological neurons. Concretely, most of them try to reproduce

the electrophysiology observed in individual living cells by taking into account a wide

variety of known responses and properties of such units. Some other models do not

account for individual features and remain at the population level, so only describe

global features like the firing rate and other average behaviors. Whichever the case,

this set of models is commonly known as neural models, and it is possible to find

among them detailed descriptions of microscopic activity within each cell or macro-

scopic ones for clusters of cells. In the present Chapter, we study in depth only one of

such models, a dynamics that allow us to perform computer simulations on large net-

works (ranging from 103 to 105 nodes) without having to sacrifice too many relevant

aspects of the description of actions potential generation.

1In either case non-trivial behaviors emerge.
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4.1.1 Integrate and fire

Integrate-and-fire (I&F, for short) models are the simplest mathematical approxima-

tion to a spiking neuron. As stated at the beginning of this Thesis, they have a very

long history [132], more than a century of significant developments, and since their

original introduction many novel related versions have been proposed. In spite of

being so simple, this family of models still receives a great deal of attention by the

scientific community [32, 33, 34, 75, 35], which may be explained by its versatility.

More concretely, the main idea behind the basic version of this dynamics is that the

membrane potential of a neuron can be described as a simple circuit (see Fig. 4.1),

thought this assumption that does not stand alone. Let us review some other key

ingredients of the model [77, 70, 76, 79, 87]:

• Shape and duration of spikes is assumed to be the same (often a delta function).

• There is well-defined threshold at which neurons fire.

• There is (linear) integration of pulse-inputs.

• Membrane potential is reset to a fixed value after every spike (renewal hypoTh-

esis).

• In some cases, there is (either relative or absolute) refractory period.

• Distinction between inhibitory and excitatory pulse inputs and outputs.

Of course these assumptions are not arbitrary, they are basically simplifications of

what has been observed in live neurons. Note that under this model, a neuron is

considered as a single unit (which is not spatially extended) and the only relevant

part to capture is the membrane.

As to the specific setting to describe mathematically the behavior of the voltagelike

curve, Fig. 4.1 shows the diagram of the RC circuit (in parallel) that represents this

version of the model,

Figure 4.1: RC circuit.
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More formally, let V (t) represent the membrane potential of the neuron, then

we have that the equation is given by Kirchhoff’s current law (when the neuron is

isolated),

C
dV

dt
=
dQ

dt
= I = −V

R
, (4.1)

which, in terms of what happens inside the neuron, states that the rate of change of

the membrane potential is proportional to the rate of charge that builds up inside the

cell [69]. This equation is easily integrated so we will not perform such steps here.

Although the firing mechanism is not often described as part of the model, it has

to be included algorithmically as follows: whenever the membrane potential reaches

certain value (threshold, typically symbolized as θ), the neuron fires and its potential

is reset to zero (or another fixed value).

A word of caution is in order here. Please note that in no way we believe that

I&F models are detailed or accurate descriptions all the aspects displayed by actual

neurons. Many limitations of such mathematical approach, especially when compared

to biological systems, become quite clear if we consider what actually happens in the

coupling structures, like chemical interactions in the synapse or even the way electric

pulses travel along the axon. So, of course, we are fully aware that some additional

phenomena are expressly neglected here, for instance non-linear effects (chaos) and

adaptation, also observed in live cells. In this sense, it is obvious that our main goal

is far from proposing any realistic approach to modeling neurons, but only to study a

simple yet powerful model of non-linear dynamics on complex random topologies as

will be shown in next sections.

4.1.2 Leaky integrate and fire

Consider the very same circuit shown in Fig. 4.1, but in this case with a driving

(external) current I present. So we have that the equation for such setting is given

by the expression (when the neuron is isolated, i.e. no synaptic inputs),

I = IC + IR = C
dV

dt
+
V

R
→ τm

dV

dt
= −V + IR ,

where τm = RC is the time constant, the terms −V and IR on the right hand side

(RHS) are often called leak and resting potential respectively. Since we will follow

Ref. [72] in the rest of the Chapter, we represent the resting potential as Iext and the

last expression becomes,

τm
dV

dt
= −V + Iext . (4.2)
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After integrating, the solution of Eq. 4.2 is simply (again, in the absence of synaptic

inputs),

V (t) = Iext(1− e−
t
τm ) where V (t0 = 0) = 0 ,

and from this it can be seen that V → Iext as t → ∞, hence the name “resting

potential”. Depending on the specific values of the firing threshold and the resting

potential the neuron might behave as an oscillator (Iext ≥ θ) or as an excitable element

(Iext < θ).

4.1.3 Hodgkin-Huxley model

As an example of a different type of mathematical neuron, here we present a model

originally introduced by Alan Lloyd Hodgkin and Andrew Fielding Huxley in 1952

[24]. Just like for the I&F model, we start with Eq. 4.1 but here we consider that the

total current consists of three different types of ion currents (sodium, potassium and

leak, which is mainly Cl− ions fir live cells). Such currents are given by the expression

(using Ohm’s law):

I = INa + IK + Ileak + Iinput

= gNam
3h(V − VNa) + gKn

4(V − VK) + gleak(V − Vleak) ,
(4.3)

where gNa,K,leak are the electric conductances of each type of ion channel and VNa,K,leak

the equilibrium (reversal) potentials, all of them empirical parameters [76, 77]. Now,

n, m, and h, commonly known as gating variables, are dimensionless quantities be-

tween 0 and 1 that are related to potassium channel activation, sodium channel ac-

tivation, and sodium channel inactivation respectively. A set of ordinary differential

equations determines the time dependences of n, m, and h [70]:

dn

dt
=

1

τn(V )
(−n+N(V ))

dm

dt
=

1

τm(V )
(−m+M(V )) (4.4)

dh

dt
=

1

τh(V )
(−h+H(V )) ,

where N , M and H are the equilibrium values and τn,m,h the relaxation times. Obvi-

ously all of the equations of set 4.3 share the same mathematical form, having all of

them a dependency on the membrane potential V . A chief problem of the model is to
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determine exactly those functions, but bear in mind that for many applications one

only has to fit the experimental data to obtain them (for more details see Rinzel’s,

Abbott’s or Wilson’s simplifications in references [70, 76, 69, 36]).

Given that this model of neuron takes into account several aspects of real neurons

that others ignore, and that working with it implies solving a 4D system for each

neuron at every time step, it is obvious that performing computer simulations for

more than a few neurons becomes quite expensive as we increase the size of the sys-

tem. Since our main goal here is to study populations of neurons at the large network

level, rather than the behavior of individual cells, we will have to assume a simplified

version of the neuron model as we will be introduced in Sect. 4.2.

4.1.4 FitzHugh-Nagumo model

In the line of the previous model, this one also includes ingredients not present in I&F

models [133, 134]. It can be derived as a simplification of the Hodgkin-Huxley (HH)

model by replacing n and h by a single variable W , which leads to a system of 2D

coupled equations that explains the firing mechanism (activation and deactivation)

of the membrane [76]:

dV

dt
= f(V )−W + Iinput

dW

dt
= a(bV − cW ) ,

(4.5)

here V is, as usual, the membrane potential, f(V ) a polynomial of third degree, W is

called recovery variable and Iinput an external current. The constants a, b and c are

experimental parameters.

4.1.5 Other models

As already stated, the number of neuron models that can be found in the literature

is quite hight, which can be explained –partly– due to the fact that there is great

number of different kinds of neurons in living organisms and also because of the rich

behavior they all exhibit (which often escapes the scope of a single mathematical

model). Let us review briefly a few of them:

• Generalized Hodgkin-Huxley model: A few generalizations of the Hodgkin-

Huxley model attempt to solve problems like the low spike rates present in the
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neocortex of many animals (other than the squid, on which was based their

original study) [135]. In order to do that, Eqs. 4.3 and 4.4 have to be modified

to include terms that explain the presence of other types of ion currents. Need-

less to say this is just one version we mention here, but there are many other

generalizations that also have received attention in recent years [70].

• Nonlinear integrate and fire: Another good example of a widely used neuron

model is the nonlinear I&F [77, 87], which can be defined by an expression

similar to Eq. 4.2 (or even multidimensional sets of equations):

τm
dV

dt
= F (V ) +G(V )Iext ,

where F (V ) and G(V ) are functions that can assume any form. A stereotypical

model of nonlinear dynamics is the quadratic I&F where F (V ) is a polynomial

of second degree on V and G(V ) is often a constant function (again, no synaptic

currents are considered here).

• Spike response model: A second generalization of I&F models is the so-called

spike response model (SRM). In SRM models the memory of previous spikes is

essential, so both parameters and equations often depend on previous activity.

As for parameters in this framework we can define, for example, a dynamic

firing threshold that changes in accordance with incoming pulses (same thing

can be done for the refractory period, pulse delays, etc.) [76, 77].

• Firing rate model: A different approach, that has also received a lot of atten-

tion in recent years, is the population models [136, 69]. A population model or

firing rate model is a simplification of any spiking model, since it hinges on the

assumption that only average input and output spiking activity of neurons is

important to describe the whole neural activity. In this case average inputs are

usually interpret as currents and average outputs are called firing rates (which

is defined as the probability density for the occurrence of a spike, quantity that

can be approximated from a spike train in many different ways). In principle,

the concept of firing rate is introduced here for individual neurons, however

we can derive the model equation by averaging any of the spiking dynamics

presented above over a large group of neurons [136]. In fact, they are called

population models precisely because the whole point of using firing rates is to

deal with networks of neurons rather than single cells. Apart from the obvi-

ous computational advantages that entail these kinds of models, there are two
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additional important aspects worth mentioning. First, in many experimental

setups we can only measure or record the activity of large groups of neurons,

so the idea of having a framework that models populations is convenient for

comparison. Second, introducing true stochasticity to a deterministic spiking

model is quite difficult, so population models are ideal to include such ingredi-

ent of neural dynamics since they do not deal with specific sets of spike trains.

In spite of all of the advantages noted above, firing rate models have limitations

as well, mostly associated to correlated spiking activity and synchronization,

which makes useless this approach for capturing certain types of brain activity.

• Multi-compartment model: So far we have only mentioned single compart-

ment models, also called point neuron models, that do not take into account the

spatial distribution of real neurons (for more information on this topic see ref-

erences [76, 77]). Let us describe briefly another (generalized) family of models

that attempts to provide a more detailed and precise description of biological

neurons. The idea of the so-called multi-compartment models is that a neuron

can be divided into different parts, or compartments, and that it is possible

to assign to each of them, at least, one discrete variable that represents the

membrane potential of the compartment [69]. With this strategy in mind we

can define any kind of multi-compartment model using, for instance, any of

the dynamics mentioned above. As an example of this, a third generalization

of I&F models is the multi-compartment I&F model which is simply a set of

equations, similar to 4.2, but now with a script µ that represents different areas

of the same neuron (no synaptic inputs):

τm
dVµ
dt

= −Vµ + Iµext µ = 1, 2, 3, ..., .

Obviously this kind of concept is very useful when it comes to modeling (single)

neuron’s morphology, which is why it is often used along with cable theory

to approximate actual neuronal structures. Of course, this level of description

requires focusing only on individual cells, and thus it is far from our goals.

Many other approaches to modeling neurons were not considered here, some of

them may include multidimensional systems of equations that provide dynamical

complexity, others may include stochasticity to approach experimental settings, again

these also escape our goals. We strongly suggest reading references [137, 138, 135,

69, 76, 70, 87, 136, 36] for more information on models of neurons.
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4.2 Leaky I&F on scale-free networks

In this Section we present a particular dynamics that has been studied on random

k–regular [139] and small-world networks [72]. Most of the results already reported

in the literature are based on numerical simulations and, as far as we know, there

is no study on heterogeneous topologies. Our approach consists of two parts. First

we generate undirected random scale-free networks (2 . γ ≤ 3 and kmin ≥ 2) us-

ing the configuration model described in Sect. 2.4, and prescribing three additional

constraints:

i The domain of the power-law degree distribution function is restricted to the

values kmin ≤ ki ≤
√
N .

ii
∑

i ki even.

iii Self-connections are forbidden.

So each node is connected to the others randomly and according to these three condi-

tions, which ensures that our networks are uncorrelated [111]. By a straightforward

integration (and normalization) one obtains the exact expression of the average degree

in this case:

〈k〉 =

(
γ − 1

γ − 2

)[
k−γ+2
min −N

−γ+2
2

k−γ+1
min −N

−γ+1
2

]
(γ > 2) , (4.6)

The second part of our model is the dynamics. Given a particular network of N nodes,

and for fixed values of the model parameters, i.e. τm, τD, Iext and θ (which from now

on will be assumed constant), each node is considered as a leaky integrate-and-fire

neuron that follows the equation [139, 72]:

τm
dVi
dt

= −Vi + Iext + gi
∑
j,m

aijδ
(
t− t(m)

j − τD
)
, (4.7)

where the time-dependent variables Vi represent the membrane potential and i the

neuron index. The firing mechanism is quite simple, every time the potential of

a neuron reaches or exceeds the threshold, θ, it fires and its voltage drops to zero

instantly. As for the parameters in Eq. 4.7, τm is the time constant (that models

the decay) and the term Iext is the same driving current mentioned before for leaky

I&F dynamics, which sets the resting potential. It is straightforward to see that all

interactions between neurons are due to the third term on the RHS of Eq. 4.7 (usually

called synaptic current). The amplitudes of the spikes are represented by gi, aij are
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the entries of the unweighted adjacency matrix of the network, and τD is a constant

pulse-delay (finite speed of the pulses).

Putting all these ingredients together, the dynamics goes as follows: if node j, for

instance, has fired at t
(m)
j and aij = 1, then node i receives an excitatory input of

strength gi after τD. Clearly this model is no other than a leaky I&F with a nonlinear

synaptic current.

Following Ref. [72], we chose Iext < θ, so neurons cannot fire by themselves (non-

oscillatory regime) and it is necessary to apply some initial spike-inputs to start the

activity2. A crucial consequence of having both pulse-delay and non-oscillator neurons

is that time scale becomes discrete in the sense that there are only interactions every

∆t = τD. Since nothing interesting happens between consecutive interaction times,

from now on we will focus exclusively on such discrete time scale.

4.3 Basic definitions and notation

Let χit be the firing state of neuron i at time t (defined to be 1 if neuron i fires at time

t, or 0 otherwise), then the instantaneous firing rate of the network at t is defined by:

Firing Rate(t) =
1

N

N∑
i=1

χit , (4.8)

then the average firing rate of the network over a long time window (1 ≤ t ≤ tmax) is

given by:

α ≡ 〈Firing Rate〉t =
1

tmax ×N

tmax∑
t=1

N∑
i=1

χit . (4.9)

The time interval between two consecutive firings of a neuron is called an inter-spike-

interval (ISI, for short). For a large time window, 1 ≤ t ≤ tmax, let Nt(i) be the

number of ISIs of neuron i, and Tih be the duration (number of time steps ∆t) of the

hth ISI (1 ≤ h ≤ Nt(i)), then ISIih = Tih ×∆t. For a system that is in a stationary

regime of global self-sustained activity (i.e. transient is removed from computation),

then the average ISI of neuron i over a long time window is given by the expression:

〈ISI(i)〉t =
∆t

Nt(i)

Nt(i)∑
h=1

Tih ≈ tmax/

tmax∑
t=1

χit . (4.10)

These definitions will be used repeatedly in Sect. 4.5, and Appendixes A and B.

2Depending on the specific set of values of the parameters, one or several inputs are sufficient to
guarantee self-sustained activity.
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4.4 Numerics (homogeneous couplings)

In order to characterize our model, in the following Sections we will analyze thor-

oughly several salient numerical results for homogeneous pulse strength and compare

them with other findings already reported in the literature.

4.4.1 Self-sustained activity and the effects of parameters

Fig. 4.2 shows an example of typical activity on SFNs: After a short transient, in

which the activity spreads rapidly across the network, the global signal reaches its

stable mean value (which we may call “quiescent state”) and persists around it indef-

initely. This activity seems to be self-sustained and not merely prolonged because it

continues, without any additional external inputs, for a long time window (t > 105)

with no sign of possible spontaneous failure. The underlying mechanism that explains

this self-sustained activity is, as expected, related to the scale-free topology. The rela-

tive refractory period of the neurons, modeled by τm, has no (or small) effect on most

of the hubs because they receive many inputs (even as the reflection of their own

previous spikes) at each interaction time and, therefore, they fire at every time step

(leading the dynamics to a regime of high-level activity). Evidently, in Fig. 4.2, the

global signal does not exhibit any periodicity nor significant oscillations are present,

which means that there is no predominant fire frequency nor a large group of neurons

that fire in-phase (irregular firing pattern).
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Figure 4.2: Firing rate (left) and raster plot (right) for N = 103, γ = 3.0, kmin = 2,
Iext = 0.85, g = 0.2 (constant ∀i), τm = 10, τD = 1.0 and θ = 1. Same parameter
values are used in following figures unless noted otherwise.

Taking the population firing rate in Fig. 4.2 (left panel) as our benchmark, let us

now report briefly on some of the effects of the parameters in Eq. 4.7. By varying

τm or gi = g (g constant over i) and leaving all the other parameters unchanged,

for instance, we can alter the firing rate as follows: by reducing τm (or, equivalently,

increasing gi = g) the mean value of the global signal is increased, and we can even to
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change its structure (for significant variations it becomes periodic with small period

–see [83]). That is to say, by changing any of those parameters in the described way,

a large group of neurons saturates, because of the incoming pulses, and are forced

to fire within a short time window. Thus, for some values of these two parameters,

and only in terms of the global behavior of the system, having neurons that are more

susceptible to small inputs is equivalent to having neurons that are being stimulated

by greater impulses. Similar results can be obtained by changing the speed of the

pulses (and rescaling the time axis): Fast pulses (τD < 1) reduce the mean value of

the firing rate (because activity is distributed more broadly over time), while slow

pulses (τD > 1) increase it and may even change the structure of the signal (becoming

periodic in the same way as explained before).

As for the specific procedure to provide the initial pulse-inputs that triggers self-

sustained activity, it depends crucially on the interaction strength values g. Gener-

ally, for g > θ − Iext, one single external input applied to any neuron, at the time

when Vi ≈ Iext ∀i, is sufficient to obtain self-sustained activity (〈Firing Rate〉t > 0).

For the interval (θ − Iext)/kmin < g . θ − Iext, several external inputs, or even the

activation of all nodes, are required to star self-sustained activity, and there is no

activity whatsoever for g values below the lower bound of this interval (since neu-

rons with k = kmin cannot fire). The use of a single or N initial pulse-inputs does

not lead to significant differences for the average firing rate value obtained, though

N initial pulse-inputs might enhance (slightly) the amplitude of signal fluctuations

(because more neurons fire in-phase) and also transients are usually shorter (because

the activity does not have to spread across the network). Note in Fig. 4.2 (left panel)

that when a single fire is used to start the dynamics, a sharp peak appears during

the transient (about ∼ 50% of neurons fire at once) and then the signal decreases to

the quiescent state. This feature suggests that a global (simultaneous) activation of

neurons to initiate activity is a strategy that might not affect significantly the activ-

ity observed after the transient. However, for g = [θ − (1− e−
∆t
τm )Iext]/kmin, network

activity is already saturated (〈Firing Rate〉t = 1) for N initial pulse inputs while it

might not be yet for a single one (but close).

As shown in Fig. 4.3, there is a size effect related to the structure of the firing rate

and its mean value. Again, for the smallest networks illustrated in the left panels of

Fig. 4.3 (N ≤ 103) no predominant fire frequency in the global signal is observed, thus

we say that the firing rate has no periodicity. Whereas for the largest networks con-

sidered (N & 104), without changing any parameter of the dynamics, signal structure

emerges (reported in the left column of Fig. 4.3). To corroborate the presence of such

59



periodicities we computed normalized spectral densities for each firing rate (displayed

in the right column of Fig. 4.3), estimated using Fourier transform method, and ob-

viously there are multiple peaks for the smallest networks whereas for the largest

networks just a single peak.
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Figure 4.3: Firing rate (left column) and the corresponding normalized spectral
density (right column) for five network sizes. Same parameters as Fig. 4.2, except N .

To explain this finding we have to go back to our network model. Our networks

are generated following three prescriptions, one of them being kmax ∼
√
N . So the

larger the network, the greater the amount of hubs and their degrees. Figure 4.4

(main) depicts 〈ISI(i)〉t for all neurons of the network of size N = 5 × 104, and any

of them with 22 ≤ k . 200 has an average ISI equals to 1 (i.e. complete saturation,

they fire at every time step). Consequently, a relevant cluster of saturated hubs arises

for large networks, that do not exist for small ones, which drives the activity of small

degree neurons to fire every few time steps and also increases the average value of the

global signal. An additional confirmation can be obtained from the left panel of the

inset in Fig. 4.4, the histogram of mean ISI, which reveals that more than one-third

of the total neurons (highest bin) have 〈ISI(i)〉t = 3, value that corresponds to the

frequency detected by spectral analysis. This means that the structure of the signal

is formed by adding individual signals of neurons within the smallest connectivities

groups (k = 2, 3, since these are the most abundant). The other signals that compose

the global firing rate, neurons having k & 4, just add to the mean value and not to the
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periodicity. Periodic oscillations of neural populations have already been reported for

different models of neurons on a few complex topologies [140, 141, 72], but specifically

small period oscillations for a leaky I&F model, to our knowledge, only by reference

[83].
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Figure 4.4: Main: Scatter plot of average ISI. The averages were computed over 105

time steps. Same parameters as Fig. 4.2, except N = 5× 104. Inset: Scatter plot of
average ISI for k ≤ 20 (right) and its corresponding histogram (left).

A most significant observation from the previous results, and from the extensive

numerical simulations, is that the stationary average firing rate does not increase

continuously from zero when increasing g, though it does in an abrupt way; in other

words, there is a threshold value gc (script “c” stands for critical) at which self-

sustained activity starts with an average firing rate well above zero. Another relevant

remark on the average firing rate with respect to the coupling is that it is a monoton-

ically increasing function of g, but not a strictly increasing one (so for some values of

g the average firing rate might not change).

Finally, the salient observation, already mentioned, that once in the self-sustained

activity regime (for g > gc), there is a set of extremely active neurons for which

χit = 1 for all time t, leads to the notion of “saturation degree” ks (that decreases

with g) such that for all neurons i with degree ki ≥ ks, their ISI(i) = 1. Again, this

core of relatively high degree/fast firing neurons is responsible for the maintenance

of global self-sustained activity in SFNs and, for large networks, is also responsible

for the emergence of periodic oscillations with a higher mean value of the firing rate.

We will use some of these definitions and quantities in Sect. 4.5.
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4.4.2 Bistability and signal control

It is possible to perturb the ongoing dynamics at any point of the quiescent state by

activating or deactivating randomly chosen neurons (i.e. setting to 1 or 0 the firing

states χit, respectively, and resetting to zero their membrane potentials Vi). At first

glance, this procedure may seem artificial since it is “external”, in the sense that does

not emerge –spontaneously– from the internal dynamics of the network, but we would

like to stress that it is just an ad hoc mechanism to test the response of the system

to (synchronous) large firing signals and to assess how dynamically robust SFNs are

under perturbations. On the other hand, this mechanism can be justified by arguing

that it is simply the interaction between our network of neurons and, for instance, a

pacemaker or even a regulatory neural network (being the latter a biologically feasible

mechanism). In the next paragraphs we will describe some of the most remarkable

responses of the system that we have found when using this approach:

Bistability: For the smallest networks considered here (N . 103) an inhibitory signal

applied to & 60% of all neurons is enough to extinguish the activity permanently (see

Fig. 4.5), but for large networks (N ∼ 105, not shown) only consecutive inhibitory

global-pulses (at least two) are capable of turning “off” the dynamics. The activity

can be triggered again, in the usual way, once the membrane potentials of all neurons

have reached the resting value Iext. Hence, the property called bistability, which is

precisely the capability to switch the neural activity between “on” and “off” (resting)

states, is also present in our model [72]. Of course, all these remarks are valid for

the parameters used and as soon as they are modified, for instance, reducing the

activity level, then less inhibition might be needed in order to cease all activity. An

ad hoc mechanism to turn back “on” the network can be easily introduced using

noise (allowing neurons to fire randomly) but will not consider this approach here

(see reference [72] for more details).
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Figure 4.5: Bistability. Firing rate (left) and raster plot (right). Bistable behavior
of the network. At t = 100 an inhibitory global signal (60%of neurons) was applied
to turn off the dynamics. Same parameters as Fig. 4.2.
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No signal response: Fig. 4.6 shows the same activity pattern depicted in

Fig. 4.2, but in this case with a large excitatory stimulus at t = 75 (75% of the

total neurons) and an inhibitory perturbation at t = 125 (. 60% of the total neu-

rons). The first aspect to notice from it, is that for these parameters the global-pulses

have no persistent effect on the global firing signal, because neither through excita-

tory nor inhibitory means was possible to modify the mean value or the structure of

the firing rate after the perturbation’ transient. The second aspect to acknowledge is

that the time needed to return to the quiescent state (recovery time) for inhibitory

perturbation is much longer than the recovery time for excitatory stimulus, which is

reasonable because the activity has to spread across the network again. This scenario

suggests that, for a given set of values of the parameters, no matter the mechanism

chosen to initiate the activity (described in the previous Section), the resulting global

firing rate displays the same features.

Time
0 50 100 150 200

N
eu

ro
n
 I

n
d
ex 200

400

600

800

1000

Time
0 50 100 150 200

F
ir

in
g
 R

at
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time
0 50 100 150 200

N
eu

ro
n
 I

n
d
ex 200

400

600

800

1000

Time
0 50 100 150 200

F
ir

in
g
 R

at
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 4.6: No signal response. Firing rate (left) and raster plot (right). Same
parameter as Fig. 4.2. Note that in this regime of the activity large excitatory and
inhibitory pulses have no effect on global features of the signal (i.e. it induces no
changes to the mean value, periodicity shape and amplitude of the irregular oscilla-
tions).

Activity enhancement: Fig. 4.7 illustrates the dynamics for a stronger coupling

strength. The firing rate is clearly periodic in this case (by saturation effect, described

in the previous Section), and at t = 75 the excitatory stimulus enhances –slightly–

the amplitude of the oscillations. As already explained, this enhancement is due

to the fact that, after the excitatory stimulus is applied, there are more neurons

(with ISI close to the period of the global signal) firing in-phase. To show that it is

possible to recover the initial amplitude of the oscillations, at t = 125 an inhibitory

perturbation is applied to 90% of the neurons and obviously it is sufficient to reduce

the oscillations. Although this neural stimulus acts on randomly chosen neurons, it

might be considered as a globally reversible process when using certain parameters

(particularly, under homogeneous pulse-couplings). Note that the recovery time to

reach the quiescent state is shorter because of the high-level activity.

63



Time
0 50 100 150 200

N
eu

ro
n

 I
n

d
ex 200

400

600

800

1000

Time
0 50 100 150 200

F
ir

in
g

 R
at

e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time
0 50 100 150 200

N
eu

ro
n

 I
n

d
ex 200

400

600

800

1000

Time
0 50 100 150 200

F
ir

in
g

 R
at

e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 4.7: Activity enhancement. Firing rate (left) and raster plot (right) for
g = 0.35. It is possible to change the amplitude of the oscillations of the global
signal, but its structure (periodicity and shape) remains the same.

4.4.3 Activity failure and dynamical resilience

To investigate the activity failure as a result of the damaging process of the topology

of the network (site percolation, reviewed in Sect. 2.5), we performed an uniformly

random removal of nodes on several SFNs [105] and then we executed the dynamics

on the giant component of the resulting network. Fig. 4.8 (left panel) exhibits the

failure probability as a function of the removed fraction of nodes (fr), but taking

into account as failure only those realizations for which all activity ceased before t =

ttransient+200 time steps (each point on the curves is an average over 103 realizations of

the random deletion of nodes). It is possible, of course, that some realizations assessed

as successful using the criterion mentioned above were just prolonged activity instead

of self-sustained, but such criterion turned out to be quite reliable –in most cases–

because activity failure in SFNs generally occurs within a small time-window (perhaps

another consequence of being ultra-small [142]). Note that the steepness of failure

probability curves in the transition regime increases with the size of the network (as

it should be).

Another aspect to consider here, perhaps one that describes better what occurs

with the dynamics in the damaging process, is illustrated in the right panel of Fig. 4.8,

where the average firing rate (of successful realizations) is shown as a function of the

fraction of deleted nodes (solid curves, each point is the average over 200 non-null

realizations, i.e. for 〈Firing Rate〉t > 0). The curves of the size of the giant component

(again, average over 200) are also shown for comparison in the right panel of Fig. 4.8

(dashed curves). Clearly, the average firing rate is a decreasing function in all cases

when the removal is performed, but for the largest networks complete dynamical

failure only occurs close to the critical value of the fraction at which the network has

percolated completely (fr ≈ 0.8). In this sense, activity on SFNs is quite resilient

because, in spite of crucial changes in network’ structure, it finds its way to persist
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Figure 4.8: Failure activity probability as a function of the fraction of randomly
removed nodes (left panel). Main (right panel): average value of the firing rate over
time (solid curves, all values normalized by 〈Firing Rate〉t at fr = 0) as a function
of the fraction of randomly removed nodes, and the corresponding size of the giant
component (dashed curves) of the percolated network. Inset (right panel): Total fires
as a function of the fraction of randomly removed nodes. Same parameters as the
ones used in Fig. 4.2.

until the complete disintegration of the topology is almost achieved. The inset in the

right panel of Fig. 4.8 confirms this results, but also shows an unexpected outcome

of the last stages of the damaging process: Strikingly, the total number of networks

fires (unnormalized) just before complete failure for all network sizes are of the same

order of magnitude, which means that all SFNs are capable of sustaining activity

until certain number of nodes, regardless of the original size of the network.

4.5 Analytical estimations

In an effort to provide some rationale for these salient observed features, and on the

basis of some simplifying approximations, we develop in this Section some analytics

whose predictions agree qualitatively, but also quantitatively in some respects, with

observations on the stationary regime of self-sustained activity.

Again, let us begin by assuming that the system is in a stationary regime of global

self-sustained activity on SFNs. In this framework, a recurrence relation on Vi(t) can

be derived by straightforward integration of Eq. 4.7:

Vi (t) = Vi (t−∆t) e−
∆t
τm + (1− e−

∆t
τm )Iext + gbi (t) ,
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where bi(t) is the number of pulse-inputs that neuron i receives at time t. Then the

firing condition at the end of the hth ISI is expressed as,

Tih−1∑
n=0

[(
1− e−

∆t
τm

)
Iext + g b(Tih−n)

]
e−

n∆t
τm & θ (4.11)

where we use a simplified notation for the number of pulse-inputs received at each

time step, within the hth ISI, by neuron i: b1 are the inputs received by neuron i at

t = ∆t
∑h−1

j=1 Tij (the instant when the hth ISI begins), b2 are the inputs received by

neuron i at t = ∆t
∑h−1

j=1 Tij + ∆t, ... , bTih are the inputs received by neuron i at

t = ∆t
∑h

j=1 Tij (the instant when the hth ISI ends).

After averaging equation Eq. 4.11 over all ISIs of neurons having degree k, as well

as using a few simplifying (mean-field-like) assumptions one obtains (see Appendix A),

for the average T (k) of Tih in the k-class:

T (k) ≈ τm
∆t

ln


(

1− e−
∆t
τm

)
Iext + gαk(

1− e−
∆t
τm

)
(Iext − θ) + gαk

 , (4.12)

where α is the average firing rate, given by Eq. 4.9. The quantity T (k) provides the

average ISI of neurons of degree k as:

〈ISI(k)〉t =

{
dT (k)e ×∆t for T (k) ≤ 1

T (k)×∆t for T (k) > 1 ,
(4.13)

where dxe represents the ceiling function. As expected, T (k) is a monotone decreasing

function of k. Using as an input the numerical results of the stationary average firing

rate α in Eq. 4.12, for different values of the coupling g, one can obtain estimations

of 〈ISI(k)〉t and compare them with the numerical results (see Fig. 4.9). Clearly, Eq.

4.13 provides a good overall decomposition of the global dynamics and an accurate

description of the average behavior of each k-class.

Eqs. 4.12 and 4.13 are useful to derive other properties of the model. For instance,

the value k = ks can thus be estimated for any value of g (provided α), as 〈ISI(ks)〉t =

1 (the script “s” stands for saturation, as mentioned in the last paragraph of Sect.

4.4.1):

ks ≡ 1

gα

[
θ −

(
1− e−

∆t
τm

)
Iext

]
, (4.14)

so that all neurons with degree k ≥ ks are saturated. Note that the saturation degree

value is a decreasing function of g (for α is naturally a non-decreasing function of g).
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Figure 4.9: ISI heterogeneity. (a) Numerical result: average ISI (computed over 105

time steps) vs. connectivity and (b) Prediction of Eq. 4.13. The size of the network
is N = 5× 104 and the critical coupling for this network is gc = 0.11 (blue downward
triangles). Note that some numerical curves display what we call “step effect” as a
consequence of the discrete time scale imposed by pulse delays. In panel (b), only
for this critical value gc, gray triangles represent dT (k)e ×∆t ∀k and are displayed
for comparison. From Eq. 4.17 we estimated ksat ≈ 130 and is shown to compare
with the numerical result, ksat = 128. Finally, dashed gray lines are exhibited as
a measure of agreement –they do not mean power-law behavior–, the relative error
between their slopes is E% ≈ 0.7%.

As T (k) must be a positive quantity, again from Eq. 4.12 one has that, for all g and

k,

α >
1

gk

(
1− e−

∆t
τm

)
(θ − Iext) . (4.15)

The RHS of this inequality is maximum at k = kmin, and therefore, as α is a non-

decreasing function of the interaction strength g, one concludes that there is a lower

bound gc below which there is no global self-sustained activity, and that α jumps, at

g = gc, from zero to the finite value

αc ≡ α(gc) =

(
1− e−

∆t
τm

)
(θ − Iext)

(gc × kmin)
. (4.16)

Obviously αc is just a lower bound for the average firing rate and, since SFNs are ultra-

small [142], it just takes a few integration steps of the dynamics in order to ascertain

whether there is activity or not after the transient. So in this way, from numerical

simulations, we can determine easily the minimum value g = gc at which any network

exhibits self-sustained activity, and thus we can estimate αc from Eq. 4.16. As an

example, the estimation of αc for the network used in Fig. 4.9 is αc = 0.0648 and,

from numerics, 〈Firing Rate〉t = 0.0650 at the same coupling strength, so strikingly

there is only a small relative error of E% ≈ 0.3% between numerics and analytics.

The fact that the expression for αc provides, in this case, a good estimation of the

average firing rate obtained from simulations means that this dynamics on SFNs is
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quite resilient, because it holds until a small value of the coupling, at which most of

the kmin-class neurons are about to fail completely their activity. From Eqs. 4.14 and

4.16 we can calculate the saturation degree (ks) at the critical interaction strength

(gc), that we symbolize as ksat,

ksat ≡ ks(gc) =

 θ −
(

1− e−
∆t
τm

)
Iext(

1− e−
∆t
τm

)
(θ − Iext)

 kmin , (4.17)

which turns out to be completely determined by the (isolated) neuron parameters

and the smallest degree kmin of the network (then its computation does not require

any input from numerics). This result for the saturated core at the critical coupling

is quite surprising because it was expected to find that the larger the network, the

larger ks (since kmax ∼
√
N), but now it is clear that ksat does neither depend on

the size of the network nor on the specific value of gc. See caption of Fig. 4.9 for an

example of the quantitative agreement obtained, prediction that we have successfully

tested for very large SFNs (up to N = 105).

Another quantity that is also completely determined by the single neuron param-

eters is the slope, ms, of the curve 〈ISI(k)〉t at k = ks for g = gc in a log-log plot (see

dashed line in Fig. 4.9):

ms =
τm

∆tθ

(
1− e

∆t
τm

) [
θ −

(
1− e−

∆t
τm

)
Iext

]
, (4.18)

which also turns out to be independent of the critical coupling value gc. This slope

might be useful because there is an almost-linear behavior (in log-log plot) for a wide

range of k, so it can be used a measure of agreement between numerics and analytics.

From all these results it is indisputable that, even without any further develop-

ment, Eq. 4.12 provides useful insight into this dynamics and also allows us to predict

a few significant consequences of our model from a single input from numerics. Nev-

ertheless, we have derived an approximate relation (see Appendix B) for the average

firing rate α and the average ISI of the k-class:

α = 〈Firing Rate〉t ≈
kmax∑
k=kmin

p(k)

〈ISI(k)〉t
, (4.19)

which is only approximate due to the finite value of tmax. Eqs. 4.12, 4.13 and 4.19

constitute a set of coupled non linear equations which can be solved to estimate

〈ISI(k)〉t and α without the recourse to simulations.
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4.5.1 Accuracy of our approach

In order to examine how accurate the assumptions and approximations made in de-

riving Eq. 4.19 are, we introduce the following implicit equation (that can be solved

without performing any computer simulation of the dynamics):

f(α) = α−
kmax∑
k=kmin

p(k)

〈ISI(k)〉t
= 0 (4.20)

Note that α as a function of g is constrained by Eq. 4.14 and by the minimum

degree of the network, so we know exactly where to look for –real– roots of such

equation. The value that Eq. 4.14 yields for the upper bound of g is gsat =[
θ −

(
1− e−

∆t
τm

)
Iext

]
/kmin (at which α = 1) and the lower bound of g is given

by (θ − Iext)/kmin (below this value neurons having k = kmin cannot fire at all).

Now, the accuracy of our theory depends crucially on having enough statistics. For

large values of γ most terms in the RHS of Eq. 4.19 do not contribute significantly

(even for relatively low values of k), because they are quite small (∼ N−1) compared

to the other terms and, thus, only small connectivity groups dominate the predictions

provided by Eq. 4.19. In accordance to the scale free model, the larger the value of

γ the less likely to have a significant amount of hubs to hold our approximations, so

to have a sufficient number of nodes in most of k-classes that guarantee the contribu-

tions of most terms in the summation of Eq. 4.19, the value of γ has to be reduced.

Fig. 4.10 shows evidence of this claim. In it, the behavior of f(α) is depicted for

different couplings (six curves ranging from critical to saturation), and there is –at

most– one root for each of the values of g considered. It can be observed that for

low values of γ the roots of f(α) = 0 (represented by black crosses) are quite close

to their corresponding average firing rates computed from simulations (solid circles),

whereas for high values of γ the theory is less accurate. In fact, our approach is quite

precise when it comes to estimating the average firing rates for values of g > θ− Iext
when γ . 2.5 (e.g. for γ = 2.0 the predicted values in this range of the pulse strength

have E% < 5% with respect to the average firing rates from numerics).

Regarding the roots of f(α) = 0 for g . θ − Iext (above gc, though not very far from

it), no matter the value of γ, clearly our theory either underestimates such values

or does not provide real roots to compare with the ones computed from simulations.

The reason for this is related, again, to the topology of our system. In order to fire

each neurons in the largest connectivity group (kmin = 2) needs to receive excita-

tory inputs from all of their neighbors at the same time and when their membrane

potentials is close to the resting value. Such conditions are fulfilled only occasionally
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Figure 4.10: Theory performance. Each panel displays the graphical solution of Eq.
f(α) = 0 for several values of the coupling g (constant ∀i). Black crosses indicate
the roots of f(α) and, for comparison, solid circles represent the average firing rate
computed from numerics (both, numerical results and analytical curves are coded by
color). Note that for the higher values of γ some analytical curves do not cross the
x-axis (there is no -real- root). These cases are only for the smallest values of g. For
larger values of g, it is possible to compute the roots and, thus, the average firing rate
can be estimated. Parameters that were used are N = 5× 104, kmin = 2, Iext = 0.85,
τm = 10, τD = 1 and θ = 1.0

by neurons that are not directly connected to hubs, which explains the large values

of 〈ISI(k)〉t already reported for small values of k and g. This aspect of the model is

responsible for increasing the variability of ISIs of neurons having small degrees, and

70



some of the assumptions in the derivation of Eqs. 4.12 and 4.19 may not be valid in

this regime of pathological activity.

All in all, we believe that these findings are a great success because there are not many

analytical results for models of neurons at the network level and, to our knowledge,

none for leaky I&F on sparse heterogeneous networks.

4.6 Inhomogeneous couplings

If the strength of the pulses that each neuron receives is inversely proportional to

its connectivity (i.e. gi ∝ k−1i , provided that the proportionality constant is above

certain value –to obtain self-sustained activity), then the firing rate becomes periodic

regardless of the size of the network and the initial firing conditions (as figure 4.11

shows). In this case the period achieved by the global signal is not necessarily small,

as it usually is in saturation regime for homogeneous couplings, so the activity of

the network seems to be an organized collective phenomenon of neurons. This result

is essentially different from the periodic oscillations displayed in Fig. 4.3, not only

because in this instance it is qualitatively the same for all the network sizes considered,

but also because quantitatively both period and (proportional) amplitudes are similar

for all cases as well. Note the amplitude of the oscillations here ∼ 0.2N , much

greater than those exhibited by the same networks with homogeneous couplings (∼
0.05N , at most). The difference in amplitudes is meaningful because it suggest that a

significant amount of neurons (belonging to different k-classes) determine completely

the structure of the global signal, and not just a small group with the same degree. Let

us briefly comment a bit more this point. For inhomogeneous couplings most (or even

all) neurons fire with similar average ISI (though not always the same instantaneous

ISI), having only phase shifts between their signals. So the mechanism that explains

self-sustained activity here is no longer a saturated cluster of neurons as it is for

homogeneous couplings. As an average behavior, this can be confirmed by Eq. 4.12

(because all the assumptions made in deriving it remain unchanged, granted that

gi is a function exclusively of k). Thus 〈ISI(k)〉t predicts the exact same average

value for all k precisely when gi ∝ k−1i . To illustrate this point, using the value

of α from numerics (network of N = 103), Eq. 4.12 estimates that 〈ISI(k)〉t ≈
7.1 (arbitrary time units)∀k and from spectral analysis we have determined that the

period of the global firing signal is 8 (arbitrary time units).

What these findings establish is that linking gi ∝ k−1i is precisely one way to
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homogenize, dynamically, a system that is heterogeneous topologically (see reference

[53] for another example of correlation between dynamics and topology).
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Figure 4.11: Firing rate (left column) and the corresponding normalized spectral
densities (right column) for five network sizes. Same parameters as before, except
gi = 0.89/ki.

Unfortunately we cannot compute –a priori– a precise value of α from Eq. 4.20.

Essentially, inhomogeneous couplings induce a form of initial firing conditions sensi-

tivity, in the sense that the periodic signal reached by the network after the transient

depends strongly on the specific procedure used to trigger the activity [143]. This

effect is so sensitive that if we change the neurons at which the activity of a network

starts, it generally leads to completely different firing rates, with differences in mean

value, amplitude, periodicity and shape (see an example of this claim in Fig. 4.13).

Obviously Eq. 4.20 can not capture such diverse behaviors that occur for the same

values of the parameters (however it may be useful to estimate some –not all– of the

average firing rates resulting from precise initial conditions).

Fig. 4.12 illustrates another example of periodic oscillations, but in this instance all

neurons fire exactly at the same frequency (statistically speaking). If the variance

of {〈ISI(i)〉t}, over the whole network, remains below ∼ 10−4 for more than a cer-

tain length of the time window considered (which, in our case, is 104 –arbitrary time

units), we say that the system exhibits coherent oscillations (CO). For the outcome

shown in Fig. 4.12 this criterion is fully satisfied, so we conclude that the system
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self-organizes into one of many possible states of CO at the individual neuron level

–though to achieve this state quickly initial firing conditions have to be carefully se-

lected. Note that CO can be interpret as a form of synchronization (in spite of the

fact that these dynamical elements are not –intrinsically– oscillators), thus we may

call this behavior ISI synchronization, which have also been detected in other systems

of spiking neurons (limited to homogeneous topologies) [141, 144, 145, 146].
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Figure 4.12: Firing rate (left) and raster plot (right). Same parameters as before,
except gi = 0.89/ki.

Further evidence of the presence of CO for other network sizes is shown in Fig. 4.13,

where the set of N values of 〈ISI(i)〉t are displayed. We observe that the system’s

variability is quite low, in fact, at relatively small values of N (say, N . 103) the

variance of {〈ISI(k)〉t} can be exactly zero (as predicted by Eqs. 4.12 and 4.13) and

for {〈ISI(i)〉t} it is around 10−4. Regarding larger networks (N & 103), the variance

of 〈ISI(i)〉t is typically a bit higher (though still remains below 10−3), which can ve

explained as a result of the so-called paradox of heterogeneity (hubs are more difficult

to synchronize).

From our extensive simulations, we observe that this regime of CO also exhibits longer

transients that depend on the size of the system: the larger the system the longer the

transient. As an example, we have detected that transients can be as long as 103

(arbitrary time units) for N = 5 × 104. However we suspect that in certain cases it

might take longer to achieve full ISI synchronization (depending on the initial firing

conditions and, of course, size of the system). For now, let us express that we have

not determined yet all the ingredients that guarantee the fast appearance of CO in

our model (just the right coupling and careful selection of initial firing conditions),

so ascertaining the rest remains a subject for future research.

Finally, in order to test the response of the system for inhomogeneous couplings, we

performed the same procedure introduced in Sect. 4.4.2. As depicted in Fig. 4.13 that

after the excitatory stimulus is applied (75% of neurons at t = 100) the mean value,

the period and amplitude of the oscillations of the global signal are modified (but a
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Figure 4.13: Scatter plots of average ISI for five network sizes. Same parameters as
before, except gi = 0.89/ki.

periodic pattern remains). The activity of the network displays a major difference

compared to previous cases seeing that we have here a full signal response. This

example reveals that any stimulus applied to the SFNs under pulse heterogeneity

might be globally irreversible, because there is no customary technique to restore the

original state of the ongoing dynamics (but there might be a specific sequence to do

it). Note also that the recovery time from the external stimulus is greater than in

all previous results, which is consistent with the fact that hubs play a different roll

for gi ∝ k−1i , as they are unable to spread the activity instantly like the do for

homogeneous couplings. As for the effects of large inhibitory stimuli, we observe that

global signal cease in all cases, as a result of reseting the membrane potential and the

relative refractory period.

Summarizing our findings on inhomogeneous couplings:

• Correlating gi ∝ k−1i is a good way to homogenize the activity of a network of

excitable elements with heterogeneous topology.

• Even though the activity obtained is always well organized and can lead to the

appearance of coherent oscillations, certainly it is very sensitive to initial firing

conditions.
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Figure 4.14: Firing rate (left) and raster plot (right) for gi = 0.9/ki. It is possible to
change mean value, amplitude and structure (period and shape) by stimulating the
ongoing dynamics with large excitatory signals.

• An external excitatory stimulus can alter mean value, period and shape of the

global firing rate.

• As for the amplitude of the oscillations of the firing rate, a large excitatory

stimulus can reduce it significantly, but there is no general procedure to enhance

the oscillations of the global signal by means of trivial external firing patterns.

• If the activity is initiated using extreme initial firing conditions (e.g. N fires at

the same time), it fails rapidly in all instances (the relative refractory period

plays an important role here). Same reason explains why all inhibitory stimuli

extinguish permanently the firing activity.

4.7 Discussion

In this Chapter we have studied a pulse-coupled dynamics of excitable elements in

uncorrelated scale-free networks. Regimes of self-sustained activity were found for

homogeneous couplings, in which the system displayed a wide variety of behaviors,

including periodic and irregular global spiking signals. Our numerical results also

show that certain properties of the population firing rate depend on specific aspects

of the model, for instance the periodic signals detected are a result of either the size

of the system (i.e. large cluster of dynamical hubs) or strong couplings. Furthermore,

there exist two types of activity, standard and pathological, whose boundary is set

by the voltage-gap between the firing-threshold and the resting potential: When the

pulse-strength is larger that this gap, one obtains a kind of activity in which all

neurons in the system are able to fire with one single input. On the other hand,

when the pulse-strength is smaller than this gap, the neurons need to receive several

inputs in order to fire. This is a dramatic condition for neurons having k ∼ kmin,

as it is satisfied infrequently. The system’s response is also noticeable, the global
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–pathological– patterns become irregular and the spikes are distributed more broadly.

An extreme instance of this occurs when the coupling is set at the critical value (which

is bounded below by the mentioned voltage-gap divided by de minimum degree of the

network). For this particular state, we provided a few useful mathematical expressions

that allow us to compute average behaviors and other relevant conditions.

As demonstrated before, a few straightforward dynamical and topological strategies

can be introduced to perturb the dynamics. These are basic schemes to enhance

or hinder global behaviors, rendering a scenario where signal control is attainable.

Among the responses of the system, two of them deserve our attention. First, the

mechanism to turn off the dynamics permanently has been theorized as an essential

feature of neural activity3, however its importance is associated here to the control it

yields on the activity (especially when the dynamics is driven by noise). Second, the

ability to control the amplitude of the global oscillations by means of trivial patterns

hints at the possibility of developing an strategy to force system-wide events (i.e. a

method to create large in-phase groups of neurons).

Concerning inhomogeneous couplings, coherent oscillations (an unexpected form of

synchronization) appeared naturally. We observed that this regime of activity is

also self-sustained as it lasts for a long time window (∼ 105). However it is a state

much more sensitive to perturbations of any kind, particularly to the application of

large stimuli (either as a triggering mechanism or as an ongoing perturbation). Such

aspect can be difficult to work with because, among other effects, it induces very

long transients. Thus determining the onset of the quiescent or stationary state may

become an issue here.

As our main result, here we presented a framework to estimate, in the stationary

state, the mean firing rate over a long time window and to decompose the global

dynamics into average values of the inter-spike-interval of each connectivity group.

Our approach provides accurate predictions of these average quantities when the

network exhibits high heterogeneity. As mentioned before, most of the analytical

results that can be found in the literature on neural models are focused either on

single (isolated) units or on densely connected networks4. However, we would like to

stress that the concept of sparseness of a network is not always defined precisely or

it is assumed vaguely by some authors of the field [82, 139, 147]. For instance, in

some of these studies the term “sparse” is used to describe random networks in which

3an analogous version was developed for small-world networks [72].
4To perform approximations impossible to achieve on sparse topologies.
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each neuron receives k = C ×N inputs (or connections). C is obviously a structural

parameter (called connectivity level) to create an amorphous topology (i.e. random k–

regular network defined in Sect. 2.3.1). However, C×N is typically assumed only one

order of magnitude smaller than the size of the system (C ∼ 10−1) [28, 29, 148]. So,

for example, when the structure has N ∼ 105 nodes, then each of them is connected

to k ∼ 104 neighbors (and additional connections from outside the network are also

allowed). Clearly this is not what we commonly know as a sparse graph in network

science [149]. In spite of all the assumptions and approximations made in deriving our

analytics, the fact that it works on sparse heterogeneous networks (where, for instance,

〈k〉 ∼ 101, quite small compared to N ∼ 105) is a significant accomplishment.

Another prominent aspect of Eqs. 4.12, 4.13 and 4.19, that we want to strongly

emphasize, is that these equations are valid for SFNs, but also for any topology with

heterogeneous degree distribution (provided that all the other premises are satisfied

as well). Using the scale-free model in the present Chapter can be interpret as an

extreme example of such heterogeneity, but there is no constraint that attaches our

finding to this type of network at all, and applying the same framework to other kinds

of topologies (for the same dynamics) should produce accurate results as well.

Finally, along the lines expounded in the Introduction, we believe the study of spiking

models is not restricted to traditional Neuroscience, and that the measure of success

of such models should not be limited as to how accurate they are to reproduce what is

observed in live neurons. There are many real systems where agents do not interact

continuously, but in an intermittent fashion, and the lack of applications of these

neural models constitutes a great opportunity to formulate novel research in the

view of new progress. As a results of this observation, in the next Chapter, we

introduce and develop an original approach to describe socio-technical systems in

which information spreads as pulses and cascades occur naturally.
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Chapter 5

Neural dynamics in socio-technical
systems

In the previous Chapter we examined a nonlinear dynamics that included elementary

aspects of real neurons. Among all of the properties that such systems have, spikes,

pulse delays and excitability1 stand out. These aspects are of great relevance because,

as we have shown, they set a discrete time scale of events (or interactions) that en-

abled us to develop analytical expressions and, thus, to predict average behaviors of

the system. However, these attributes also entail some restrictions. The excitatory

regime imposes a dramatic feature: The population of neurons has to be triggered

in order to initiate the activity. Consequently, the self-sustained activity obtained in

this fashion is always linked to the initial set of fires, so any spike generated at t > 0

is a result of the initial inputs and can be tracked back to its source at t = 0. In

other words, this regime of activity and its crucial triggering mechanism always leads

to a form of time-constrained activity that involves the whole system. In fact, one

could argue that such self-sustained dynamics of fires can be considered as one never-

ending cascade2. These observations stress the fact that the I&F model explored in

the previous Chapter can never account for a distribution of cascades observed in

many real-world events, including critical phenomena.

In this Chapter, on the other hand, we propose a new framework that disentangles the

mechanisms involved in the emergence of decentralized synchronization and extends

prior models to accommodate the temporal evolution of interdependent cascading

events. Our proposal, as an approximation to socio-technical systems, conceals in an

idealized manner other desirable ingredients –such as genuine complex contagion or

1As opposed to the oscillatory regime, where these elements do not need to receive any input
from their neighbors in order to fire.

2See Sect. 5.1.2 for a formal definition of this term.
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self-induced motivation to participate3. Our goal is to characterize thoroughly this

dynamics, considering wide explorations of the parameter space and to identify the

conditions under which large-scale events are more likely to arise from networks that

are constantly pulsating with information. As with all analytical models, ours is a

simplification of what is essentially a very complex reality. But it is, we think, a less

simple approximation than previous models as it moves us one step forward in our

understanding of synchronization of interacting agents as it evolves over time.

The rest of the Chapter proceeds as follows. First, in Sect. 5.1, we consider prior

work analyzing basic concepts like contagion, diffusion and social influence, then we

review the notion of cascade and report briefly on the classic threshold model. A

neural-like dynamics is introduced in Sect. 5.2, highlighting the main differences

compared to previous approaches to modeling social activity and discussing the sub-

stantive implications of our departure. In Sect. 5.3 we provide the most significant

results for extensive numerical simulations performed on multiple topologies. Then,

under this dynamics, we develop a novel analytical approach to predict global events

in Sect. 5.4 and, its application to capture the behavior of a real socio-technical

system (Sect. 5.5). Finally, in the last Section of the Chapter we discuss our main

findings in the context of social science, especially as they relate to previous research,

and analyze future work.

5.1 Basic notions

5.1.1 Social contagion and information spreading

Social contagion and diffusion dynamics have received sustained attention since, at

least, the decade of 1950s [150, 151, 152]. The use of the term “contagion” goes back

to the 19th century, and the common analogy between societies and living organ-

isms [153, 154]. Metaphors aside, when social scientists today talk about contagion

they refer to cascading phenomena that is triggered by interdependence and influence

[155, 156]. The object of the cascades are individual activations, which offer a concep-

tual shorthand for the decision to attend a protest, join a campaign, or tweet about a

specific topic. The recent spike of interest in these phenomena responds partly to the

irruption of networked technologies, which offer new observational windows to social

interactions [157, 95, 158]; and partly to the development of new network methods

to model decision making and the paths through which contagion spreads [159, 156].

3Ingredients captured by two simple parameters of the model.
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Recent empirical efforts to dissect the mechanisms of social contagion connect with

a long theoretical tradition in mathematical sociology analyzing networks and their

impact on collective dynamics [160, 161, 162, 163, 164, 165, 166].

Models of interdependent decision-making have made two main contributions to the

study of contagion: the first refers to individual motivations, the second to the struc-

ture of interdependence. Diversity in the motivation to become active has usually

been modeled as a distribution of thresholds [167]. Prior research shows that the

shape of this distribution matters greatly for the emergence of a critical mass and a

successful contagion process. Diffusion or information spreading, however, depends

also on links and how that underlying structure encourages or hinders spreading dy-

namics. Networks shape those dynamics by creating different centrality distributions

(which allow specific individuals to be more or less influential, see [168]) and by open-

ing more or less structural holes [169, 170], which constrain opportunities for chain

reactions since they delimit the routes that cascades can follow [171]. The old idea

that ties that link socially distant groups [160] – open the bridges for global diffu-

sion is still central to much empirical research [172, 173]. However, recent years have

also seen the development of other highly influential contributions casting light on

the importance of network topology, including the theory of small world networks

[94, 18]; the distinction between simple and complex contagion [174, 175]; and the

identification of influencers and susceptible people in networks [176, 177]. These re-

cent developments show that information spreading responds to structural features

other than bridges, and that the mechanisms of contagion differ depending on the

nature of the element being diffused. As previous studies, our view assumes that

exposure to information is the driving force underlying contagion, but it is agnostic

about the specific mechanism that leads to activation – it could be influence, nor-

mative pressure, learning, or some of the other mechanisms suggested by previous

research [174, 175, 162, 178, 163, 179, 18, 171]. The intermittent dripping of infor-

mation that social networks facilitate often leads to bursts of activity [180], as when

news suddenly become trending topics [181, 182] or flash mobilizations manage to

gather thousands of people in a specific location in a matter of hours, if not minutes

[183, 184]. These instances of sudden hype and excitement are akin to the moments of

collective effervescence identified in studies of religion [185] and other group settings

[186]. The mechanism underlying these bursts of activity requires the adjustment

of individual rhythms so that everybody talks about the same news or goes to the

same venue at the same time. This activity – and how it leads to systemic (global)

outcomes, like swift information cascades, trending topics, or massive demonstrations
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– is overseen if activation is modeled as a permanent change of the state of an agent

[102, 171] (see Sect. 5.1.3). We argue here that it is more realistic to model the in-

dividual propensity of an agent to be activated as an oscillating force, the direction

and strength of which depends on the context, as defined by the network and the

signals it transmits. This, we sustain, resembles more closely the dynamics observed

in the context of large-scale mobilizations, where agents do not undergo a binary

change of state, from inactive to active, but instead oscillate in their contributions to

activities like spreading calls for action or increasing the salience of political issues

[187, 188, 189, 190, 191].

5.1.2 Cascades: Time-constrained activity

There is a general consensus around the concept of cascade, which –in the ICT

environment– can be outlined in the following way: the basic criterion to include

an agent i (which, in a network is simply a node) in the cascade where j belongs to

is to guarantee that:

i i and j became neighbors at t1 (the notion of “friend” is understood broadly here).

ii i received a piece of information from j, who had sent it out, at time t2.

iii The node i sends out a piece of information at time t3.

Typically, no strict time restriction exists besides the fact that t1 < t2 ≤ t3: the

emphasis is generally placed on whether the same content is flowing [101]. This

content-based view is useful when considering very specific pieces of information (e-

mail chain letters [192] or URL forwarding [193, 194], for instance), but renders

a scenario in which the only possible transition for a node (user) is from inactive

(susceptible) to active (infected).

Such vision oversees the fact that online platforms allow users to share contents,

but also (more often than not) to spread behavior. Indeed, discussion over a topic

typically happens not by mere information retransmission, but by iterated activity

(variable units of information expressed in online text, evolving over time) [195] which

influences (motivates) other users to join. A richer, time-constrained representation

can then be obtained if conditions i to iii above are accepted, except that for agent i

to be included in an avalanche started at j, the piece of information being transmitted

may or may not be the same, and t3 − t2 ≤ ∆τ , where τ is an arbitrary (typically

small) time lapse. In other words, the condition for i and j to be included in the

same cascade is to exhibit temporally correlated, synchronized or quasi-synchronized
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activity [1, 2, 101]. With this slight modification, not one but multiple cascading

events can be measured from an activity data set (for instance, a collection of time-

stamped tweets), and a single user may participate many times in the same cascade,

in different times. Empirical ans synthetic cascades hereafter refer to such time-

constrained representation of the information flow.

5.1.3 The threshold model

Along the lines of content-based cascades, the reputed threshold model [102] (and

its networked version [171]) mimics social dynamics, where the pressure to engage a

behavior increases as more friends adopt that same behavior. Briefly, the networked

threshold model assigns a fixed threshold τ , drawn from a distribution 0 ≤ g(τ) ≤ 1,

to each node (individual) in a network of size N and an arbitrary degree distribution

p(k). Each node is marked as inactive except an initial seeding fraction of active

nodes, typically Φ0 = 1/N . Denoting ai the number of active neighbors, a node

i with degree ki updates its state becoming active whenever the fraction of active

neighbors ai/ki > τi. The simulation of this mechanistic process evolves following

this rule until an equilibrium is reached, i.e., no more updates occur. Given this

setup, the cascade condition in degree-uncorrelated networks can be derived from the

growth of the initial fraction of active nodes, who on their turn might induce the one-

step-to-activation (vulnerable) nodes. Therefore, large cascades can only occur if the

average cluster size of vulnerable nodes diverges. This condition is met at [171, 196]

F =
∑
k

k(k − 1)ρkp(k) = 〈k〉 (5.1)

where ρk is the density of nodes with degree k close to their activation threshold,

p(k) = Nk/N is the degree probability distribution and 〈k〉 is the average degree

[171].

For F < 〈k〉 all the clusters of vulnerable nodes are small, and the initial seed can

not spread beyond isolated groups of early adopters; on the contrary, if F > 〈k〉 then

small fraction of disseminators may unleash –with finite probability– large cascades.

More recently, the cascade condition has been analytically determined for different

initial conditions [196] as well as for modular and correlated networks [197, 198], while

placing the threshold model in the more general context of critical phenomena and

percolation theory [199].

As mentioned above, this model has a limited scope since it can account only for

one-shot events, for instance the diffusion of a single rumor or the adoption of an
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innovation. Also, this framework leaves no room for spontaneous initiative: even low-

threshold nodes –those with higher propensity to participate in a cascade– will not be

recruited unless their neighbors act upon them. Empirical evidence suggests, instead,

that once an agent becomes active that behavior will be sustained, and reinforced,

over time [188]. This creates a form of enduring activation that will be affected and

affect other agents over time in a recursive way. Indeed, events evolve in time –and

so do the cascades elicited therein [2], as a consequence of dynamical changes in the

states of agents as dynamics progress. Cascades are then events that brew over time

in a system that holds some memory of past interactions. Moreover, the propensity

to be active in the propagation of information sometimes depends on other factors

than raw social influence, e.g., mood, personal implication, opinion, etc.

5.2 Model and interpretation

In the following Sections we review briefly the model of neurons adopted to approach

the problem of information spreading and cascades in ICT systems, and then we

provide an interpretation of such dynamics in the context of social interactions.

5.2.1 Peskin’s model

In 1975 a mathematician named Charles Peskin proposed a simple dynamics to model

the synchronized behavior of cardiac cells responsible for heartbeat rhythms [14].

Later on, in 1990, Renato E. Mirollo and Stephen H. Strogatz adopted the same

dynamics to study a wider scenario, the synchronization of pulse-coupled oscillators

that account for a great number of phenomena, including chirping of crickets, flashing

of fireflies, and, of course, pacemaker cells [71].

According to Peskin’s model, given a set of N identical elements, we associate to each

of them a single variable 0 ≤ xi ≤ 1 to describe their dynamics,

dxi
dt

= S0 − γdxi, i = 1, 2, 3, ..., N. (5.2)

Note that this equation has the same form of Eq. 4.2, so it is fair to say that these

elements are identical I&F oscillators (where the voltagelike variables are represented

by xi, γd is the conductance and S0 the resting potential).

The firing mechanism is introduced algorithmically as follows: When xi ≥ θ = 1

the oscillator i fires and xi is reset to zero instantly. The structure of interactions
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is naturally constrained by a network of size N , so whenever node i fires then –

instantaneously4– xj = min(1, xj + ε) ∀j ∈ Vi (where ε is the coupling strength and

Vi denotes the set of all neighbors of node i –see Sect. 2.1).

In a more general sense, following [71], it is possible to derive a continuous function

f (to describe the voltagelike curve x) that guarantees the system is always driven

to synchrony (a result valid not only for the solution of Eqs. 5.2). As a simplifica-

tion, given that the isolated elements exhibit periodic behavior, a phase φ ∈ [0, 1] is

introduced here, so that dφ/dt = 1/T (where T is the natural period of the isolated

elements), and the endpoint point conditions f(0) = 0 and f(1) = 1 are satisfied.

If the charge curve x = f(φ) (f : [0, 1] → [0, 1]) is smooth, monotonic increasing

(f ′ > 0) and concave down (f ′′ < 0), then achieving full synchronization is certain

(proved rigorously only for two oscillators). Thus, the mathematical expression of

these ideas follows this functional form5:

x = f(φ) =
1

ω
ln [1 + (eω − 1)φ] (5.3)

The model assumes that nodes in the network reach their firing threshold at different

speeds. The speed of activation is a function of two parameters: ω, which determines

how quickly each oscillator reaches the threshold zone (i.e. it defines the concavity of

the curve that maps progression of x towards activation); and ε, the strength of the

pulses received from the neighbors in the network when they fire (the coupling that

shifts the state of the node closer towards the threshold). The timeline in Fig. 5.1

(top left) illustrates the logic of this approach. The lower panels in Fig. 5.1 (bottom

left) exhibit how node i advances towards activation, both as a function of φ and as a

response to the activation of its neighbors. When a node activates, as node i does in

t2, it shifts the state of its neighbors with the ε signal and resets its state back to the

beginning of its phase. The parameter ω determines the shape of x = f(φ). When the

parameter ω is 0, the progression of nodes towards their activation threshold (θ = 1)

grows linearly with φ; as the parameter ω increases, nodes reach their activation

zone faster, i.e. a signal received from their neighbors will tip their sate over the

threshold, which means they will send a signal as well (thus helping other oscillators

also get closer to their activation zones). In our case ω > 0 (always) to make the

function concave down (an illustration of the effects of ω on x = f(φ) is shown in

the right panel of Fig. 5.1, a larger ω produces a more pronounced shape, making the

4Since the activity spreads at once, that is no pulse-delays are present, evidently the model
assumes that the pulse speed is infinite.

5Again, this function is not an exclusive nor a general solution to the problem, any function can
be used as long as they fulfill all the conditions already mentioned.
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Figure 5.1: (Left) Schematic representation of the model with recurrent firing.
(Right) The impact of the parameter ω on the activation buildup.

function rise very rapidly to then level off). Finally, to set initial random conditions

we always distribute {xi} uniformly at t = 0, and let the system evolve until global

cascades appear. Putting all these ingredients together, Fig. 5.26 shows the typical

activity observed for random initial conditions on x. Note that at the begging of the

simulation, say t . 30 only isolated nodes, or small groups of them, fire occasionally.

Then, for t & 30 a cluster of synchronized oscillators emerges abruptly until it reaches

about 80% of the total nodes and continues increasing its size –slowly– for t & 50

(see [73] for another example of this activity on two-dimensional square lattices).
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Figure 5.2: Firing rate (left) and raster plot (right) for an Erdős-Rényi network with
N = 104, 〈k〉 = 4, kmin = 2, ω = 10 and ε = 10−3 (threshold θ = 1, always).

5.2.2 Recurrent activation

Our model relaxes the assumption that agents can only transition from an inactive to

an active state. Instead of interpreting that change of state as a one-off decision that

6Although the network size is 104, the raster plot in this case only displays the activity of 10%
of the population.

85



cannot be reversed (as most prior models do), we allow individuals to activate repeat-

edly as they build up momentum as they feed on collective participation. We also

allow the effects of each activation to vary over time to the extent that they co-evolve

with the contagion dynamics taking place in the rest of the network. Incorporating

these two elements makes sense if we think about how online social networks facilitate

contagion dynamics: users are constantly exposed to signals that might shift their

inclination to act – for instance, send signals on their own, like messages directing

attention to specific issues (e.g. #occupy); only when a large enough number of users

converge in their attention to those issues, their actions become globally visible. This

type of synchronization not only affects trending buzz; it actually has the potential

to shape the public agenda in the same way than more traditional social movements

would [200]. The difference is that synchronization happens spontaneously, from the

bottom-up.

To bring these empirical intuitions into a tractable framework, we follow classic models

of synchronization developed to explain the behavior of coupled oscillators. Although

these models have been used extensively to study synchronization dynamics in bi-

ological and physical settings [52], they have never, to the best of our knowledge,

been used to illuminate dynamics relevant for the study of social mobilization, or to

extend classic threshold models as applied to sociological questions. Like threshold

models, our model assumes that the motivational structure of agents can be defined

by a limit that, when reached, triggers activation; unlike threshold models, we split

the motivation to activate into two components: a social component, which depends

on what other agents are doing (spikes); and an individual component, which de-

fines the intrinsic propensity of agents to activate regardless of what others are doing

(voltagelike curve, shaped by ω). From this line of thinking, once can observe that

the parameter ε captures social influence following a similar intuition to that behind

the notion of complex contagion, that is, the idea that adoption is more likely if an

agent is exposed to signals sent by multiple sources [175]. Our way of modeling mul-

tiple exposure, however, differs in that we make it even more complex by making the

timing of the activations be important as well. What we claim is that the activation

signals sent by different sources are more consequential if they are concurrent (as

shown in Fig. 5.1, see schematic dynamics at t4) than if they are not (diagram at

t3). In other words: our model assumes that exposure to multiple signals matters

not just because it reinforces affirmation (a process that we capture with the sudden

increases in the progression towards the firing threshold zone); but also, and mostly,

because it allows local activity to grow increasingly correlated over time. Introducing
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this temporal correlation is a crucial ingredient to build realistic models of large-scale

synchronization, especially given the available evidence on the temporal dynamics

and bursts of activity characteristic of human communication [180]. Our analytical

choice acknowledges the important difference between having multiple user partici-

pating in, say, discussions or encouraging actions at different, uncoordinated times

than having them all converge to the same timing. Convergence in the timing of

activations is more conducive to further activations, which, in turn, reinforces the

feedback mechanism that makes an obscured issue suddenly jump to the spotlight of

media attention (see [201] for an example of this type of process). Again, large-scale

synchronization becomes visible only when the timings of individual activations be-

come highly correlated; and this is an aspect that cannot be captured by models that

disregard the effects of time on activation dynamics.

To sum up, the motivational structure of agents (nodes, users, individuals, etc.) in

our model is thus determined by the parameter ω, which defines how quickly they

reach the activation zone; and by the parameter ε, which determines the strength of

social influence. In a system of dynamically isolated agents, ε would be equal to 0;

in a system where external influence overrides the rhythms of individual activation,

ε would equal to 1. Likewise, in a system of identical agents, ω would be distributed

homogeneously; the more heterogeneous the distribution, the more unequal agents

are in their propensity to activate. These two parameters, along with the structural

properties of the network, open the basic experimental space of our model.

5.3 Numerical results

5.3.1 Regimes of activity

We already showed the activity on an ERN in Fig. 5.2, which was performed for a

very small value of ε. At this value of the coupling, attaining full synchronization is

still possible because there is a large set of nodes that fire in-phase (for t & 50) and

its size increases over time. However that is not always the case. Given a particular

topology and a value of ω, there is a limiting value of ε = εc (that we call “critical”,

thus the script) below which full synchronization (or even a cascade of size ∼ N) does

not occur. This is a prominent observation because it contradicts completely what

was stated in the original paper by Mirollo and Strogatz [71], where the authors claim:

“We therefore suspect that our system would end up firing in unison for almost all

initial conditions, no matter how the oscillators were connected”. Fig. 5.3 provides

evidence of the existence of εc. It can be seen in the top panels that, for instance,
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even for a system of agents with low intrinsic motivation (ω = 3), having a strong

coupling (influence) pushes the dynamics to complete synchronization within a small

time window. On the other hand, bottom panels suggest that a system where agents

are strongly motivated (ω = 48) and favorable –to achieve synchronization– initial

conditions are set7, there are values of the coupling for which the population of

oscillators not only does not sustain its cluster of synchronized agents (which can

happen for values ∼ εc) but it tends to desynchronize rapidly the global activity.
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Figure 5.3: Firing rates (left column) and raster plots (right column) for a SFN with
N = 104, γ = 3.0, kmin = 2. In the top panels supercritical activity is shown for
ω = 3 and ε = 0.233, and bottom panels display subcritical activity for ω = 48 and
ε = 10−3.

Another relevant aspect that different regimes of activity produce is the one re-

garding the time scale to synchronization. Fig. 5.4 shows what happens with the

levels of synchronization as the system evolves for a fixed ε = 0.01 on a SWN of size

N = 104 (with edge-adding probability p = 0.1 and 〈k〉 = 4). The curves track the

fraction of agents that activate simultaneously, represented by peak of the voltagelike

x distribution p(x). As expected, high ω values (which, in this example, is the same

for all agents) lead to faster large-scale synchronization. As ω decreases, the time to

full synchronization increases. At low values (i.e. ω = 6), system-level synchronization

is unattainable: this is a condition under which only small clusters of synchronized

7Having ω = 48 and {xi} distributed uniformly at random leads to a favorable state to achieve
synchronization because of the way {xi} are mapped by f−1 onto the phases at t = 0. The conjunc-
tion of large ω and a uniform initial distribution of {xi} results in a sharp distribution of phases φi
(that explains the large cascades observed in the bottom panels of Fig. 5.3 for t . 50).
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nodes emerge. These observations allows us to conclude that for different values of

the parameters ω and ε, even when the activity is constrained by the same network,

the times to achieve full synchronization can be widespread (which can be a problem

when comparing results for different regimes of activity).
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Figure 5.4: Maximum number of synchronized nodes as a function of time across ω
values (for fixed ε = 0.01) on a SWN. Note that this value of the coupling corresponds
to different regimens of activity depending on the value of the intrinsic propensity of
the oscillators. For instance, at ω = 6 it results in subcritical activity, whereas for
ω ≥ 8 at the same value of the coupling the activity is critical or supercritical.

5.3.2 The concept of cycle

The main motivation guiding our analyses is to determine what conditions need to

be in place for large-scale synchronization to emerge. Given that the time to full

synchronization depends on the specific combination of ω and ε, and also on the

underlying network, we measure time in terms of cycle: a cycle is complete when

every agent in the network has activated at least once. This coarse-grained definition

brings different time scales to a common and allows us to compare the synchroniza-

tion dynamics that emerge under the different conditions we consider. In Fig. 5.5

three illustrative activation matrices are shown for an undirected ring network of size

N = 10 and k = 2 (regular ring). According to our definition of cycle, all of these

diagrams represent one cycle. Note that the larger the number of cycle, the fewer the

number of events (or cascades) as a result of the synchronization process. However,

in terms of the time scale of the system, the duration of each cycle is independent

from the others (i.e. if ∆t = t10 − t1, ∆t∗ = t∗6 − t∗1, and ∆t′ = t′4 − t′1 are the widths

of cycle 0, 10 and 15 respectively, the relation ∆t > ∆t∗ > ∆t′ does not necessarily
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holds –although it is generally expected to).
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Figure 5.5: The concept of cycle. Activation matrices of a 1D lattice (undirected
ring network) with N = 10 and ki = 2. In this illustration white squares represent
activations (or fires), and inactivation otherwise. Three examples of cycles are shown,
c = 0, 10, and 15.

Empirically, every time-step in our model (or every cycle) can be interpreted as

a different time window, e.g. hourly, daily, weekly, or monthly activity. Finding the

appropriate temporal resolution to analyze evolving dynamics in real networks is not

a trivial issue [202, 203]. Our model does not make any specific assumptions about

the right resolution to aggregate observed activation data; the time it takes for a

cycle to complete can correspond to different empirical windows – and, in fact, the

appropriate width for that window is likely to change as periods of bursts in activity

unfold in chronological time.

Within a cycle, nodes activate in continuous time as they reach their thresholds.

When an activation happens, the simulation enters a “frozen time” loop8 to allow

for cascading effects to unfold (a consequence of having infinite pulse speed). Once

the chain reaction stops, all node phases are increased φi → φi + ∆φ (where ∆φ =

θ − max [φi]) and the node that was closest to the threshold activates and, again,

cascades are allowed to spread. At the end of every cycle, i.e. once every node has

activated at least once, we count the number of nodes that activated within each

cascade. Large-scale synchronization arises when small local islands of nodes firing

in-phase start merging together through the cascading effects of influence, as captured

by the parameter ε (and as channeled by the network).

8In which phases (and xi states) can only change as a results of pulse interactions and not
time-evolution.
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5.3.3 Effects of network topology

Agents in our model respond to their neighborhood, which varies locally as determined

by a network of interdependence. The topology on which interactions take place is,

therefore, a crucial element in the dynamics we want to model. These networks de-

termine how oscillators influence each other via pulse-like couplings of strength ε, and

also capture different hypothetical scenarios where interactions might unfold empiri-

cally (as reported in next paragraph).

Here, we focus our attention on four distinct network topologies: (i) In Erdős-Rényi

network, for instance, edges connecting the agents are formed at random. Although

we know that social networks are never formed at random, this topology could ac-

count for a scenario where actors are connected through their online search patterns,

i.e. by looking at what others are posting on websites or blogs beyond social media

platforms. This network also offers a standard benchmark with which to assess the

performance of the other three topologies. (ii) The ring network offers a way of map-

ping interdependence when it is highly structured by logistical or space constraints

(e.g. mesh networks created with Bluetooth on cellphones, that require physical

proximity, are widely used during protests) [204, 205, 206]. (iii) Small world and (iv)

scale free topologies can be used to approximate many networks observed in the real

world, particularly in social contexts. There is sufficient evidence that social net-

works exhibit the small world property [156] and, especially those that emerge online,

they also tend to have a very skewed degree distribution [207]. Twitter, for instance,

has a long tail in the allocation of connections, with a minority of accounts being

disproportionately better connected than the vast majority [208]. Similar properties

have been found in other social media platforms like Facebook or the Chinese Sina

Weibo [209, 210, 211]. We reproduce these structural features in our simulations be-

cause ICT environment have been shown to play an important part in the emergence

of large-scale coordination of agents, from agreeing on trivial opinions to organizing

massive demonstrations [187, 190, 1, 212, 213].

Fig. 5.6 displays the results of expanding our analysis to a wider range of parametric

combinations on four network topologies of size N = 104: (a) Erdős-Rényi (〈k〉 = 4

and kmin = 2), (b) small-world (p = 0.1 and 〈k〉 = 4), (c) 1D lattice (〈k〉 = ki = 4),

and (d) scale-free (γ = 3.0 and kmin = 2). In these panels each point is an average

computed over 100 realizations of the simulation9.

9Averages over both networks and random initial conditions on xi.
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Figure 5.6: The impact of coupling or influence on large-scale synchronization across
ω values for different networks of size N = 104 and 〈k〉 = 4). Panel (a) ERN, panel
(b) SWN, panel (c) 1D lattice, and panel (d) SFN. The findings suggest that among
these topologies random homogeneous networks are more conducive to large-scale
synchronization. Small world networks are also less restrictive in the emergence of
synchronization than regular networks, and heterogeneous networks, in the last place,
do not allow large-scale synchronization soon after the coupling weakens.

Every dot in the heatmaps corresponds to a combination (ε, ω). On the left of

the horizontal axis we have systems where influence or coupling is very strong; as we

move to the right, the impact of neighbor activations on agents starts diminishing.

At the bottom of the vertical axis, we have agents that progress slowly towards the

activation zone; at the top, we have those that get very quickly into a tipping-point

state. In this set of simulations, the propensity to activate (the ω value) is distributed

homogeneously across all agents in the network. The color scheme indicates the time

it takes for each parameter combination to reach large-scale synchronization. Time,

as explained above, is measured in cycles; and the color bar at the top of each panel

indicates how cycles are coded by color (e.g. white corresponds to cycle=0 and black
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to cycle=200). We define large-scale synchronization as having at least sc = 0.75N

(sc stands for “cascade size threshold”) of the nodes activating simultaneously. So in

this scheme, lighter colors indicate earlier synchronization; as the colors get darker,

synchronization takes longer to emerge. Black signals mean that no synchronization

was possible within the limit of 200 cycles (labeled as N.C., “no cascades”, in the

color bar), when the simulations stopped.

These results suggest that all of the topologies considered here are capable of gen-

erating synchronization in scenarios with strong to moderate coupling or influence

(0.5 < ε < 1.0), regardless of the propensity to activate of the agents (that is regard-

less of the ω value). As ε starts getting smaller (i.e. as the strength of the influence

diminishes), agents need to have steeper inclinations to reach the tipping point for

synchronization to emerge. A network where links channel small pulses takes more

time, and requires more motivated agents (larger ω), to generate the same level of

synchronization than a network with stronger coupling. After some critical point,

no amount of agent predisposition can overcome the lack of substantive interaction,

which constitutes an additional confirmation of the existence of εc (as the black regions

in all of these parameter spaces show). This critical point changes across networks:

in the random, Erdős-Rényi network, large-scale synchronization emerges for most

coupling values when ω is high, even when the impact of each neighbor activation is

really low (where εc can be as low as ∼ 10−8). In the case of the small world networks

εc ∼ 10−6 at ω ≈ 100 and, at the same value of ω, for the 1D lattice the critical

coupling can get to values near εc ∼ 10−5. So we can see that a pattern emerges for

homogeneous networks: The more randomness in the network structure the better to

attain synchronization10.

As for heterogeneous networks, this conclusion is not true. In panel (d) of Fig. 5.6

one can see that εc ∼ 10−3 for ω ≈ 100), so scale free networks are way more re-

strictive in their support to spontaneous synchronization. The scale-free network is

particularly limiting: it either allows synchronization to emerge fast (white region)

or, very abruptly, it prevents it (black region). The existence of hubs, so characteris-

tic in the structure of these networks, explains why such an abrupt transition takes

place: because hubs are so much better connected than the other nodes, they have a

wide impact when they activate; but hubs, which are surrounded by many structural

10Recalling the small world model described in Sect. 2.3.3, there is a probability of rewiring p that
controls the structure of the resulting network. At p = 0 one obtains a 1D lattice, for 0 < p � 1
a small world network and at p = 1 nodes are connected independently at random, which is an
Erdős-Rényi graph. Thus, under this model, one can observe that given the same value of ω, the
higher the value of p the smaller the value of the critical coupling εc.
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holes [169], also restrict the pathways for contagion, and for the alignment of local

dynamics. In any case, we suspect that hubs are not easily synchronizable, as it is

claimed by the so-called paradox of heterogeneity [20, 214].

Another interesting aspect, related to these parameter spaces, is that some combi-

nations of ε and ω produce the same results in terms of the time it takes to achieve

full synchronization. In particular, Fig. 5.7 exhibits the time to synchronization as a

function of ε × ω on a SWN of size N = 104 (with edge-adding probability p = 0.1

and 〈k〉 = 4). To obtain each curve, one has to fix one parameter and allow varia-

tions on the other. Clearly in this log-log plot all the curves collapse onto a single

one, which confirms that some regions of the parameter space can be interpret as

equivalent11, though the process involved to reach the global synchronized state can

be very different [215].
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Figure 5.7: Time to achieve full synchronization as a function of ε× ω.

Turning to the social sphere, we could think of the ε value as a proxy to the

strength of ties [160]. In scenarios where ties are very weak and the impact of the

signals they transmit is small, the model needs agents that reach their threshold

zone quickly – that is, agents that are ready to act regardless of what others are

doing. When social influence is strong, synchronization emerges even when agents are

slower in reaching their threshold: they are just forced to respond by their neighbors

(this could be a situation where agents operate under strong social pressure). Given

that most social media networks are well represented by the scale free structure, our

simulations suggest two possibilities: either online ties are stronger than traditionally

acknowledged (e.g., see [216]); or users are so ready to activate that synchronization

11Constrained by the rule ε × ω = constant and exclusively for the time to achieve full synchro-
nization.

94



is possible even with weak social influence (but not too weak). This is indeed what

seems to happen during the emergence of campaign hashtags. Online users tend to be

proactive in their behavior to facilitate synchronization; in fact, the use of hashtags

in Twitter emerged itself as a user-driven convention (see [217]). In the context of

protest mobilization, the specific signal transmitted through the edges matters greatly

to understand its impact on the decision to activate. For instance, when the signal

has the form of dramatic images of events happening on the ground, agents might be

prompted to react out of solidarity, even if they have a low propensity to participate

in a collective effort.

5.3.4 Effects of agent heterogeneity

From the point of view of modeling social systems, it is a big simplification to assume

that all agents have the same propensity to reach their activation zone. In a third set

of simulations, we introduced diversity in the distribution of the ω > 0 parameter,

given by the normal distribution:

fG(ω;µ, σ) =
1√

2πσ2
e−

(ω−µ)2

2σ2 ,

where µ is the mean value of the set {ωi} and σ its standard deviation.

ω
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Figure 5.8: Illustrative diagram of the distributions of the speed-to-activation pa-
rameter ω. The standard deviation of ω is represented by σ and constrained to the
interval 1 ≤ σ(ω) ≤ 10 (the curve corresponding to the lower bound is not shown).

As illustrated in Fig. 5.8, we allow different levels of heterogeneity by setting

µ = 50 and the interval 1 ≤ σ(ω) ≤ 10. The results in Fig. 5.9 show that, as reported

in the previous Section, among homogeneous topologies ERNs are the less restrictive,
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whereas RNs are the most. So, once again, the more randomness in the network

structure the better to achieve synchronization (which do not hold for SFNs).
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Figure 5.9: The impact of agent heterogeneity on large-scale coordination across ε
values. On panel (a) results for ERN, panel (b) SWN, panel (c) 1D lattice, and panel
(d) SFN. The panels summarize synchronization dynamics for different distributions
of ω and ε values. The distribution of ω depends on the standard deviation (vertical
axis); ε is homogeneous across nodes. The color scheme indicates, again, the time
it takes to reach large-scale synchronization (i.e. at least sc = 0.75N of the nodes
activating simultaneously); time is averaged over 100 realizations. The results show
that, once more, all networks are less efficient in allowing large-scale synchronization
than the random benchmark provided by the Erdős-Rényi topology. Overall, low to
mild heterogeneity of ω increases the probability of global synchronization, whereas
high heterogeneity hinders it.

In general, the simulations also reveal that allowing heterogeneous ω results in

a considerable reduction of the region of system-size cascades across all networks.

As an instance of this observation, let us analyze the parameter space (ε, σ(ω)) for

ERNs –displayed in panel (a) of Fig. 5.9– and compare it with (ε, ω) for the same
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networks –panel (a) of Fig. 5.6: At σ(ω) = 1 (low agent diversity) the critical value of

the coupling εc ∼ 10−6, which completely agrees with the value reported for ω = 50

when agents are identical. In contrast, at σ(ω) = 10 (high agent diversity) εc ∼ 10−5,

thus the narrower zone of global events. In the particular case of SFNs under agent

heterogeneity, although the effect seems to be more subtle it is also present. Panel

(c) of Fig. 5.9 shows that εc . 10−2 regardless of the σ(ω), which is near the value

reported in panel (c) of Fig. 5.6 at ω = 50.

On the social side, a condition where agents differ slightly in their predispositions

could correspond to scenarios where there is a widely acknowledged window of op-

portunity. A condition where agents are very heterogeneous, on the other hand, could

correspond to situations where the level of commitment to a cause varies in the pop-

ulation (for a real-live example, see the Hong Kong protests [205]). These outcomes

support the intuition that, for a cascade to grow large, agents need to share the in-

trinsic dynamics, that is, they need to be as similar as possible in their willingness to

act. The scale-free network is, again, the most restrictive graph – but as long as the

structure channel some social influence, synchronization arises fast, which is impor-

tant for time-sensitive mobilizations (for instance, during the first hours of protests,

when mainstream media are not broadcasting news of the events on the ground, see

[187]). Given that large-scale synchronization emerges repeatedly (and swiftly) in

social media platforms, our results form simulations provide further evidence that

online ties weave relevant interdependence, that is, they are a significant source of

social influence. This is consistent with experimental evidence on the mobilizing po-

tential of online networks [218], which shows that exposure to information through

social media has a positive and significant impact on political behavior. This positive

impact is what we capture with the ε parameter; our results show that as long as it

is not too low, social influence drives the network towards synchronization even when

agent heterogeneity is high.

5.4 Analytical approach

Here we capitalize on the classic integrate-and-fire oscillator (IFO) introduced in

Sect. 5.2.1, where system-wide events emerge as microscopical conditions become

increasingly correlated. Within this framework, spontaneous propensity –activation

regardless exogenous factors– is guaranteed; while contagion is genuinely complex,

i.e. the number of necessary external influences (if any) to show activity varies in
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time. Remarkably, activity is purely periodical only if the oscillators are either iso-

lated (disconnected), dynamically uncoupled (ε = 0) or once they have reached full

(irreversible) synchronization (see Fig.5.2). These three scenarios are irrelevant for

our goals. On the other hand, some traces of periodicity in users’ activity in socio-

technical platforms –like Twitter– have been widely studied at the aggregate level

(see for instance [219]), and they exist also at the individual level as will be shown in

the next Section (see Fig. 5.12).

As explained above, our model comprises two parameters, ω and ε, which are closely

related. Again, ω may be interpreted as the willingness or intrinsic propensity of

agents to participate in a certain diffusion event: the larger ω, the shorter it takes

for a node to enter the tip-over interval 1 − ε < x < 1. Conversely, ε quantifies the

amount of influence an agent exerts onto its neighbors when it shows some activity.

Larger ε’s will be more consequential for agents, forcing them more rapidly into the

tip-over region. Both quantities affect the voltagelike variable x of a given agent,

which can be interpret as its level of motivation. ε in the current framework evokes

τ in the classical threshold model (see Sect. 5.1.3), in the sense that both determine

the width of the tip-over region. Finally, the phase can be translated back into time

steps by the prescribed rule dφ/dt) = constant.

To gain some analytical insight, we use Eq. 5.1 to derive the cascade condition in

this new approach. Note that now the distribution of activity is governed by ρ(t) =

1−
∫ 1−ε
0

g(x, t) dx where g(x, t) corresponds to the states’ probability distribution at

a certain time t. For an initial uniform distribution of the states x and a fixed ε, the

condition for the emergence of cascades reads at time t = 0

ε
∑
k

k(k − 1)p(k) = 〈k〉 , (5.4)

(see inset (a) in Fig. 5.10). And in general for any time:

ρ(t)
∑
k

k(k − 1)p(k) = 〈k〉, (5.5)

which implies that the cascade condition depends on time in our proposed framework.

Clearly, in this scenario ρ(t) is not a function of the node degree k, as opposed to ρk

in Watts’ proposal (reviewed in Sect. 5.1.3).

As the dynamics evolves in time, the states of the nodes progressively correlate

and, consequently, the distribution of states changes dramatically. The evolution of

the states distribution is depicted in Fig. 5.10. The initially uniform distribution
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Figure 5.10: Inset (a)-(d): x probability distributions of four different representative
times along the synchronization window. Each snapshot depicts the x-state histogram
of the N oscillators. The dynamics begins with a random uniform distribution of x-
states –inset (a)– and it progressively narrows during the transition to synchrony
–inset (d). Main: largest fraction of synchronized nodes across time. The path
to synchronization evolves steadily at a low level, and eventually suffers an abrupt
transition.

g(x, 0) (inset (a)) evolves towards a Dirac δ function (inset (d)) as the network ap-

proaches global synchronization, i.e. global cascade. We have not been able to find

a closed analytical expression for the consecutive composition of the function g(x, t)

after an arbitrary number of time steps to reveal the evolution of ρ(t), nonetheless it

can be solved numerically. Eq. 5.5 reduces to:

ρ(t)(〈k2〉 − 〈k〉) = 〈k〉. (5.6)

The cascade condition is thus,

ρ(t)

1 + ρ(t)
=
〈k〉
〈k2〉

, (5.7)

that exactly corresponds to the percolation critical point on uncorrelated networks

(see Sect. 2.5) [220, 221, 222]. For the case of random Poisson networks 〈k2〉 ∼ 〈k〉2,
then

ρ(t)

1 + ρ(t)
=

1

〈k〉
. (5.8)

It is worth highlighting that Eqs. 5.7 and 5.8 represent an advance in our understand-

ing of non-linear, pulse-coupled dynamics, regardless of our (social) interpretation of
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the model.

We can now explore the cascade condition in the (ε, 〈k〉) phase diagram in Fig. 5.11,

for the two topologies that exhibited radically different behavior12 under our model,

and compare the analytical predictions with results from extensive numerical simu-

lations. Since the time to full synchronization (global cascade) is different for each

(ε, 〈k〉), again, we use cycles to compare results for different time scales. The regions

where cascades size s above a prescribed threshold (sc = 0.25N , in Fig. 5.11) are pos-

sible are color-coded for each cycle 0, 25, 75, 100, . . ., and, once more, black is used in

regions where cascades do not reach sc. Note that if global cascades are possible for a

cycle c, they will be possible also for any c′ ≥ c (provided that the effects of favorable

initial condition have dissipated at c). This figure renders an interesting scenario: on

the one hand, it confirms once again the existence of critical εc values13 below which

the cascade condition is systematically frustrated (black area in the phase diagram).

On the other, it establishes how many cycles it takes for a particular (ε, 〈k〉) pair to

attain macroscopic cascades (or even full synchronization) –which becomes an attrac-

tor thereafter, for undirected connected networks. Given the cumulative dynamics

of the current framework, in contrast to Watts’ model, the region in which global

cascades are possible grows with 〈k〉.

These results open the door to predicting how long it takes for a given topology, and

a certain level of inter-agent influence, to achieve system-wide events. Furthermore,

the existence of a limiting εc determines whether such events can happen at all.

Additionally, the predictions resulting from Eq. 5.7 are represented as dashed lines

in Fig. 5.11. For the sake of clarity, we only include predictions for c = 0 (dashed

black), c = 25 (dashed gray) and c = 150 (dashed white). Projections from this

equation run close to numerical results in both homogeneous (Fig. 5.11a) and inho-

mogeneous networks (Fig. 5.11b) with degree distribution p(k) = k−γ, although some

deviations exist. Noteworthy, Eq. 5.7 clearly overestimates the existence of macro-

scopic cascades in the case of scale-free networks at low cycles (e.g. c = 0). Indeed,

ρ(0) = ε does not yet incorporate the inherent dynamical heterogeneity of a scale-free

topology, thus Eq. 5.7 is a better predictor as the dynamics loose memory of the

hardwired initial conditions. In the general case c > 0, deviations are due to the fact

that the analytical approach in the current work is not developed beyond first order.

12In the sense that ERN exhibit wider cascade zones in (ε, ω) and SFN the most limited cascade
zones.

13Though now for 〈k〉 instead of ω.
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Second order corrections to this dynamics (including dynamical correlations) should

be incorporated to the analysis in a similar way to that in [198], however it is beyond

the scope of the current presentation.
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Figure 5.11: (ε, 〈k〉) cascade diagram for different cycles (coded by color), with fixed
ω = 3. Vertical axis and each dashed line define a confined region in which global
cascades might occur according to Eq. 5.7 and for a specific cycle (here we show
only the expected zones for c = 0 –dashed white, c = 25 –dashed gray– and c = 150
–dashed black). Results are obtained for synthetic Erdös-Rényi (a) and scale-free
with γ = 3 (b) uncorrelated networks of size N = 104. A cascade is considered
“macroscopical” if the synchronized cluster sc ≥ 0.25N . Color codes indicate the
existence of at least one cascade s > sc in numerical simulations; analytical predictions
are averaged over 200 networks with random initial conditions. Note that the cascade
condition in (a) often underestimates the actual cascade regions because it does not
take into account second order interactions; the same applies in the lower panel (b),
except for c = 0 where the analytical prediction overestimates the results because the
inclusion of a hub into the cascade is improbable starting from a uniform distribution.

According to Mirollo & Strogatz [31], synchronicity emerges more rapidly when

ω or ε is large; then the time taken to synchronize, i.e. to observe global cascades, is

inversely proportional to the product ε × ω (see Fig. 5.7). In our simulations in the

next Section, we use this cooperative effect between coupling and intrinsic propensity

to fix ε, which is set to a set of values (slightly above or below) ε ' εc, and empirically

estimate ω to attain a good matching between observed cascade distributions and our

synthetic results.
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5.5 Application to real data

To illustrate the explanatory power of this dynamical threshold model, we use data14

from http://www.twitter.com. This dataset comprise ∼ 0.5 million Spanish mes-

sages publicly exchanged through this platform from the 25th of April to the 25th

of May, 2011. In this period a sequence of civil protests and demonstrations took

place, including camping events in the main squares of several cities beginning on

the 15th of May and growing in the following days. Notably, a pulse-based model

suits well with the affordances of this social network, in which any emitted message

is instantly broadcasted to the author’s immediate neighborhood –its set of followers.

For the whole sample, we queried for the list of followers for each of the emitting

users, discarding those who did not show outgoing activity during the period under

consideration. The set of N = 87569 users plus their following relations constitute

the topological support (directed network) for the dynamical process running on top

of it. The average number of followers of this network is 〈kout〉 = 69 and its degree

distribution scales like p(kout) ∼ k−1.5. Note that, unlike other substrates, friendship

networks exhibit a high level of reciprocity. In particular, r = 0.45 (as defined in

[223]) for this network of followers, which implies that many links can effectively be

regarded as undirected. This is why the theory –developed for undirected networks–

is a reasonable approach for this particular case (for more information on this dataset

see [1, 2]).

As a first step to model this activity, we regard this social system as a complex net-

work of IFOs, representing the time evolving activation of users. At first glance this

assumption may seem rather strong15, but in fact traces of periodic activity of indi-

vidual users can be detected as already mentioned. An example of this is shown in

Fig. 5.12, where individual message signals of two users (top panels) and their spec-

tral densities (bottom panels) are displayed. Certainly the presence of predominant

frequencies constitutes evidence of the assumed behavior.

On top of the described network, we measure the empirical time-constrained activity

cascade (or simply “cascade”) size distribution for different periods, as explained in

Sect. 5.1.2. To test the proposed model, we run the dynamics on the same topol-

ogy, the network of followers, for some given parameters (ε, ω). To determine which

14http://15m.bifi.es/index_en.php
15We acknowledge that the model is an idealization, an over-simplified approach to these phe-

nomena. For instance, the “oscillator assumption” is taken further as every node obeys the exact
same dynamics (same ω); which is admittedly an unrealistic scenario. Studying this dynamics on
inhomogeneous agents is part of future work.

102

http://www.twitter.com
http://15m.bifi.es/index_en.php


0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.2

0.4

0.6

0.8

1.0

Frequency (h
−1

)

S
p
ec

tr
al

 D
en

si
ty

 

 

k = 500

0 100 200 300 400 500 600 700
0.0

0.2

0.4

0.6

0.8

1.0

Time (h)

F
ir

in
g
 R

at
e

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.2

0.4

0.6

0.8

1.0

Frequency (h
−1

)
S

p
ec

tr
al

 D
en

si
ty

 

 

k = 17432

0 100 200 300 400 500 600 700
0.0

0.2

0.4

0.6

0.8

1.0

Time (h)

F
ir

in
g
 R

at
e

Figure 5.12: Firing rates (top panels) of two twitter users and their corresponding
spectral densities (bottom panels). Dotted lines indicate the onsets of activity for
these particular users.

values of ω can adequately represent the evolving nature of events, we analyzed the

inter-event intervals in the data. In Fig. 5.13, Ψ represents the average inter-event

times in the data for each 32 days of activity around the 15M movement. Grand

averages 〈Ψ〉 are computed for 8-day windows, roughly corresponding to the periods

for which we offer model fittings (see below). As expected, Ψ drops abruptly in the

first days –when the movement is brewing16– and smoothly decreases afterwards, un-

til Ψ ≈ 0. Intuitively, the willingness of an individual to participate in the protest is

proportional to real-world excitation level, i.e. it scales like the inverse of Ψ, and thus

we envisage that ω ∼ 1/Ψ. On the other hand, ε is set by locating the subcritical

regime at the estimated ω ∼ 1/Ψ in order to fit the activity during the first time

window. Surprisingly, once the coupling was set for the first period of time, it was

not necessary to adjust it in order to fit the other periods. The reason for this is

simply that the prescribed values of the intrinsic propensity ω ∼ 1/Ψ for the other

periods were sufficient to adjust the critical and supercritical behavior of the system.

This observation is in agreement with the results depicted in Fig. 5.7, that suggest

that under this dynamics only one parameter, ε× ω, might be sufficient to obtain a

wide range of behaviors.

Putting all these ideas together, in Fig. 5.14 we compare empirical versus synthetic

16A period during which agents build up momentum.
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Figure 5.13: Average inter-event times Ψ of the whole collection of data. To measure
them, an overlapping sliding window scheme has been used (windows span 1 day,
the offset between windows is 12 hours). To estimate ω for 2 different periods of
the protests, we take their corresponding time slices and compute inter-event times
grand averages 〈Ψ〉. Thus, in Fig. 5.14 a ω ∼ 10−1 will be used for the first period
and ω ∼ 20 for the last one. The scaling ω ∼ 1/Ψ is merely an heuristic estimation.
Some fine-tune is necessary to determine ε and achieve a satisfactory matching.

cascade size distributions for different periods of the protests: the “slow-growth”

phase (25th April to 3rd May; blue squares in the upper panel) for the first days,

when the protest is limited to some online activists; and the “explosive” phase (19th

to 25th May; blue squares in the lower panel), which comprehends the most active

interval –the reaction to the Spanish government ban on demonstrations around local

elections on the 22nd May. The proposed dynamics is run on the same topology for

different ω values, with remarkable success (red circles), though the bottom panel

does not show so good of an agreement as the top one. In particular, a small range

around ω ∼ 1/〈Ψ〉 values was tested in the simulations, seeking a minimization of the

relative error of the slope in the linear region of p(s), i.e. the cascade size distribu-

tion. Admittedly, the gap observed in the data (Fig. 5.14, right panel) is reminiscent

of a super-critical regime (thus the chosen name), in which one either has small-size

events or system wide cascades. The change between regimes, namely, from the sub-

critical one represented in Fig. 5.14, top panel, and the super-critical phase needs

the activity of the system to be long-lived, as this is a transition that takes place at

different time windows. Note that this is a quite relevant feature of the model here

introduced, since existing threshold models do not allow that individuals engage in

more than one cascade (recall that once one individual is active remains so forever)

and therefore cannot lead to the same kind of temporal transition observed in the

real data.
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Figure 5.14: Cascade size cumulative distributions p(s) of real data (blue squares)
and the model counterpart (red circles). We have considered two time windows which
significantly differ: first eight days (left) for which we have set ω = 0.1; last eight
days (right) for which we have ω = 30.0. Note that εc ≈ 10−3. The model performs
well in both periods, the relative error of the slope in the linear region is < 1% (not
shown). Real data distributions are measured as described in the main text, see also
[1, 2].

5.6 Discussion

The question behind many analytical models of collective action is: What makes

collective efforts become self-sustained in the absence of central organizations? Inter-

dependence, or the acknowledgment that agents do not decide in isolation but react,

instead, to what other agents are doing was central to the first approaches to that

question [102, 224]. Since then, researchers have treated with increasingly sophis-

ticated tools the nature of that interdependence. In the last few decades, network

science has produced numerous theoretical and empirical insights into why interde-

pendence matters to understand collective dynamics, including contagion effects and

the diffusion of information [159, 225, 226, 18, 156]. An increasing body of observa-

tional evidence is also shedding light on how decentralized networks help coordinate

the actions of many [187, 190, 1, 212], often generating spillover effects [218, 213]. This

evidence suggests that prior to large-scale synchronization, there is always a brew-

ing period during which agents build up momentum and reinforce their opinions.

Time-varying dynamics in networks, however, have so far been largely disregarded by

analytical approaches to collective action – and yet those dynamics are crucial, we

argue, to understand the feedback mechanisms that activate a critical mass, that is,

a number of activated agents large enough to trigger a self-sustaining chain reaction

or cascade. Prior research has shown that attaining this critical mass depends on the
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network topology, in particular the density and the centralization of ties [227]. That

work suggested that centralization always has a positive effect on collective action be-

cause it increases the probability that involved agents will be tied to a large number

of contributors, allowing for more efficient synchronization. Our model suggests that

highly centralized networks (in the form of scale-free structures) can indeed be very

efficient in coordinating efforts (and thus, achieving synchronization) but only when

certain conditions are met. The strength of social influence, and the distribution

of propensities to activate need to be conducive to the critical mass. Compared to

other network topologies, however, centralized structures perform significantly worse.

Our findings also qualify the theory of complex contagion [175]. According to this

theory, the activation of thresholds (which are modeled as a stepwise change of state)

responds not only to the fraction of neighbors that are active but to their actual

number. The assumption is that reinforcement from multiple sources is necessary

when activation involves some risk, for instance, taking part in a protest against an

authoritarian state. Our model also acknowledges the importance of multiple expo-

sures from multiple sources, but it adds an additional element to the equation: the

timing of activations. Large-scale synchronization depends on these timings aligning

over time, which in turn depends on the ability of the underlying network to spread

the chain reaction. These dynamics are disregarded by the complex contagion model

which, following previous approaches, assumes that activation is a one-off event. By

allowing activation to re-occur, we shift attention from the diffusion of activations to

their synchronization. What we find is that for a range of parametric combinations

(ω, ε), the four network topologies we analyze are equally successful at generating

synchronization. What makes them differ is the impact that social influence has

on collective dynamics. As networks grow more heterogeneous in their connectiv-

ity, and as they open more structural holes, the space for large-scale synchronization

to emerge diminishes. This is consistent with some of the findings drawn from the

complex contagion model, but it responds to the operation of a completely different

feedback mechanism. Regarding our analytics to predict the emergence of global cas-

cades, given a previous knowledge of x states distribution, we conclude that it works

reasonably well on homogeneous topologies for any cycle. As for heterogeneous net-

works we note that predictions can be less accurate for initial cycles, though precise

when far from the effects of initial conditions.

There are three aspects of our model that deserve future consideration: the distri-

bution of ε (which we keep constant across nodes) and the way in which ω values
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are distributed (randomly, when inhomogeneous).There are a number of reasons why

these two choices could be modified. We know that in social networks not all cou-

plings are worth the same: the actions of relatives, friends and acquaintances, for

instance, do not have the same effect on an agent’s behavior. Our model assumes

that all ties channel the same amount of influence; although some ties activate more

often than others (and are de facto more influential), that responds to changing local

events in the network, not to an attribute of the tie. Future work should consider

synchronization dynamics under different distributional assumptions of ε. Likewise,

future research should analyze scenarios where the propensity to activate (ω) or the

coupling are not distributed randomly but as a function of the network topology itself

(say, linking them to the degree). For instance, there is wide empirical evidence to

suggest that the values of ω might be more similar within clusters in a network – if we

assume that this is another dimension on which homophily operates [228]. Students,

for example, are more likely to share the same predispositions and be better connected

to each other compared to other demographic groups. Critical mass dynamics and

the timing of synchronization are likely to differ if we constrain the distribution of ω

to the position of nodes in the network.

Another important topic for future research is finding a temporal scale that is the

most appropriate to empirically analyze synchronization dynamics. As with all an-

alytical models, ours is developed on a level of abstraction that allows generalizing

across possible scenarios but does not give precise guidelines as to how to aggre-

gate empirical data. Digital technologies are providing richer sources of data that

could help test these models empirically [157, 95, 158] but this requires a systematic

approach to the analysis of time-evolving networks and time-dependent activations

[202, 203]. In many demonstrations, weeks offer the natural unit of analysis; in social

media activity, on the other hand, this could be days, hours, or minutes – and the

characteristic temporal scale might not even remain constant during the observation

window [229]. Bringing closer the results of simulation models with the patterns

observed in empirical data will first require solving the temporal resolution problem.

The third aspect we suspect it is possible to develop further is a recursive composition

of the x-states probability distribution to capture the time-evolution of the system.

Of course, such an ambitious task can be quite difficult to achieve because many

ingredients, like the dependence with the underlying structure, must be included.

Summarizing, this model of pulse-coupled oscillators and the results we presented
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here aimed to illuminate what happens when agents are allowed to activate repeat-

edly and contribute intermittently to the buzz around a collective cause. The theory

of a critical mass emphasizes the importance of interdependence, and highlights that

collective action is not about obtaining unanimous participation but about mobiliz-

ing enough people to make the effort self-sustaining. Our model contributes to that

line of research by emphasizing the importance of temporal correlations in network

activity, so far largely disregarded – but apparent in recent examples of large-scale

synchronization. What our model shows is that in many contagion conditions, syn-

chronization does not emerge; in others, it takes some time – which, from an empirical

point of view, might not always be available. But when social influence has a moder-

ate to strong force, large-scale synchronization emerges regardless of the underlying

network. To the extent that digital technologies are inserting communication net-

works in every aspect of social life, our results suggest that we should expect to see

more instances of large-scale synchronization cascading from the bottom-up.
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Chapter 6

Conclusions

This last Chapter is devoted to summarizing the chief findings that the present re-

search work comprises, including a discussion on their expected impact and forth-

coming scientific endeavors.

In the Chapter named Complex Networks we reviewed several topics of the stan-

dard Graph Theory. Particularly, the introduction of basic concepts, definitions,

descriptors and topologies was essential con build the foundation and further devel-

opments of this investigation. Most of these formal contributions, that have been used

repeatedly throughout this Dissertation, were formulated over the past few decades

by numerous researchers and constitute key parts of the standard framework of Net-

work Science. Although, we must remark that in spite of adopting such an approach,

we did not attempt to develop any new insight or knowledge into structural proper-

ties of the network models related to this work, as our interest lies exclusively on the

dynamical aspects and some of their applications to real-world systems.

Needless to say, network-like systems emerge naturally when considering populations

of discrete units that interact according to a well-defined set of rules. The studies pre-

sented here are no exception, once more, networks fit exceptionally well the need for

a structure of interactions. Interesting enough, random networks with an arbitrary

degree sequence can be treated analytically to derive many prominent structural-

related aspects (in a relatively simple manner). Of course, we refer to the generating

function formalism, and more concretely to its algorithmic implementation as the

configuration model. With two exceptions, that is the ring network and the small

world graph, all of the synthetic topologies on which we studied our dynamics were

generated using this versatile method. The last topic reviewed in this Chapter was

a combinatorial process related to the structure of graphs, called percolation, and its

significant consequences when it comes to damaging real networks.
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At the end of this –first– journey through the network science literature, we can say

with no hesitation that graphs have proven to be, over again, a useful yet simple

framework to study not only the dynamics and the topology of complex systems, but

also their close relationship (key to understanding them).

The third Chapter of this Dissertation addresses the problem of generalized syn-

chronization in relay systems of chaotic oscillators. In order to study this salient

and ubiquitous phenomenon, we discussed the notion of synchronization and several

different types of synchrony observed in dynamical systems. The first aspect to point

out, is that such behaviors can be quite difficult to capture in one simple definition.

After reviewing many references on the subject we believe that, rather than a for-

mal and restrictive definition, one should simply follow a general notion that enables

us to account for all types of synchrony (which, as discussed, always involves three

attributes; a form of oscillation or periodicity, coupling and rhythms). In the partic-

ular case of the generalize synchronization (GS), as the name indicates, it is a type

of synchrony for which there is no specific or explicit form of the relation between

the global states of two (sub)systems. By definition, we can say that as long as a

global one-to-one state-mapping exists this behavior takes place. From these ideas

one can see why GS is so elusive. Most measures of synchrony are designed to detect

concrete traits (e.g. coordination of amplitude, phase, etc.), and thus most of them

are just worthless when it comes to detecting GS. We, on the other hand, consid-

ered two indicators: the synchronization points percentage (SPP) and the non-linear

interdependence (N -index). The former measures the number of local functional de-

pendencies between two subsystems, and the latter compares the average size of the

neighborhoods in one of the subsystems with the average size of its mapping in the

other subsystem.

Concerning the relay configuration, here it is regarded as a network motif whose

purpose is to provide a bridge of communication between two units, that are not

connected directly. This structural setting can either amplify or interfere with syn-

chronization, depending on the nature of the systems and the type of couplings. In

our case, for undirected, continuous and instantaneous couplings between chaotic

oscillators, we showed that the two identical unconnected units achieve complete syn-

chronization at a critical coupling strength and remain fully synchronized for larger

values of it. Using the Lyapunov spectrum, the SPP and the N -index we were able

to prove that: (i) the 9D Rössler system exhibits two regimes of activity, switching

between chaotic and periodic behavior, and, more importantly, (ii) the onset of relay
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synchronization (between the two outer oscillators) indicates the regime where GS ac-

tually occurs. However, not all of these tools displayed the same features. Clearly the

Lyapunov spectrum showed that the appearance of relay synchronization (and GS)

is characterized by one single positive exponent (the rest are either zero or negative),

but no further insight could be extracted from it. As for the N -index, it experiences

a smooth transition across coupling values that starts at a value much lower than the

critical one. In contrast, SPP reveals the right critical value of the coupling as its

steeper transition to synchrony takes place right where the second largest Lyapunov

exponent vanishes. From all of these observations, we conclude that between the

two indicators of synchrony, SPP is undoubtedly a better choice to study generalized

synchronization.

Considering now the experimental setting, that is three coupled Rössler circuits oper-

ating in chaotic regime, the exact same observations stated in the previous paragraph

hold. The idea behind this approach was to demonstrate our results beyond plain

numerical models and, thus, the robustness of our findings in an experimental imple-

mentation, which was achieved indeed.

We hope these results on relay systems and generalized synchronization help in the

understanding of the intrinsic mechanisms underlying such phenomena (also present

in diverse real-world systems), and in this manner encourage other researchers to

develop better techniques on synchrony detection and promote incipient technologies

(e.g. optical cryptography and acoustic communications).

Chapter number 4 deals with concepts traditionally associated to Neuroscience.

In its first part, the notion of mathematical neuron is introduced, as well as several

emblematic models of neurons (proposed over the last century). After learning there

are too many different representations of the same biological units, the main aspects

we want to highlight on this regard are: (i) All of these models have, obviously, sim-

ilar fundamental traits, for instance most of them include spikes (pulse-couplings),

voltagelike curves (to capture the membrane potential), ion currents and firing thresh-

olds. Therefore they can be easily categorized into distinct families. (ii) The most

relevant differences between these families of models are essentially focused on the

level of detail to account either for the behavior or the structure of neurons. As an

illustration, among these families, there can be found many models that do no in-

clude spatial structure (e.g. point neurons), though they typically provide detailed

description of the dynamics of the membrane potential (e.g. Hodgkin-Huxley model

for a realistic model). Whereas on the other hand one can find multi-compartment
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models that add an extra ingredient regarding the spatial distribution of real neurons

and how these parts behave individually, which means that a single neuron can be

described as an elaborate assembly of inter-dependent compartments. In any case,

as stated in the Introduction, our view of neural dynamics, or models of neurons, is

simply as a set of units whose internal behavior follows a voltagelike curve (shaped

according to some generic parameters) and whose interactions are characterized by

pulse-couplings (defined by a given shape, amplitude, duration, delay, etc.). Such

scenario renders a great possibility to introduce these mathematical representations

to diverse systems where the interactions among their elements occur sporadically,

without having to assume the constraints that the activity of live neurons impose to

the features of the model.

Concerning the specific approach to study population of neurons studied in the fourth

Chapter, it incorporates a set of leaky I&F elements on a scale-free structure of inter-

actions (with pulse-delays). From the numerous computer simulations performed we

noted there are two regimes of self-sustain activity (for homogeneous coupling): First,

when the pulse-strength is greater than the voltage-gap between the firing threshold

and the resting potential, one obtains what may be called standard or normal activ-

ity. In this state, all neurons in the system are able to fire whenever they receive one

single input (regardless of the degree). The behavior of the global firing signal ranges

from irregular patterns at relatively low values of the coupling to periodic ones at

larger values (including the eventual full saturation of fires). Second, when the pulse

amplitude is smaller than the voltage-gap between the firing threshold and the resting

potential, then we have an abnormal or pathological activity where most neurons in

the smallest degree-class can only fire occasionally, when they receive inputs from all

of their neighbors at once. In this regime, the initial mechanism required to triggering

the dynamics has, necessarily, to be extreme (i.e. involving multiple sources, or even

all nodes, to fire at the same time) and there is a value of the coupling, that we call

critical, defined as the smallest pulse-strength for which the set of excitable elements

exhibits activity (lasting longer than a certain time-window). This critical value is

bound below by the voltage-gap mentioned above divided by the minimum degree

of the network. The extreme firing initial conditions described previously enables

the system, at the critical coupling, to reach a global state of irregular spikes where

the mean firing rate is very small (which hints the possibility that the activity only

involves certain parts of the network, those that are better connected).

Under this model, two distinct strategies to perturb the system were performed:
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(i) Dynamical perturbation: An ad hoc mechanism that involves applying a

large/global stimulus to the ongoing dynamics and observe its response. Particu-

larly, we detected three scenarios; inhibitory stimulus to cease all activity, no signal

response to stimuli in the irregular-pattern regime, and the enhancement (hindrance)

of oscillations’ amplitude for excitatory (inhibitory) stimuli in the regular-patterns

regime (associated to strong couplings). Thus, we observed that there exist some

external firing perturbations that may help to control the global activity by means

of trivial mechanisms. (ii) Structural perturbation: After performing a random

removal of nodes (site percolation) the dynamics was executed in order to measure

both the probability of activity failure and the average population firing rate. From

this strategy one can confirm, once again, that scale-free networks are quite resilient.

The threshold to activity failure depends on the size of the system as: the larger

the network, the greater the fraction of removed nodes needed to achieve full activity

failure. Furthermore, we demonstrated that the average firing rate remained positive

almost until the complete structural disintegration is achieved, hard evidence of its

tolerance to random failures.

From some basic assumptions and with an elementary mathematical approach we

managed to derive several analytical expressions that allow us to predict diverse as-

pects of the dynamics. First of all, the time-average of the inter-spike-interval for

the k-class proved to be an accurate method to decompose the dynamics and to shed

some light on the roles the different connectivity groups play. The activity ranges from

saturation to critical behavior, and with this method we provided formal equations

to compute the precise boundaries of the coupling strength and their corresponding

average firing rates. A striking result of this formulation was the fact that at the

critical value of the couping there is always a minimum saturated degree that can

be calculated analytically and it only depends on the single neuron parameters and

the smallest degree of the network. Finally, we also derived an expression that links

the mean firing rate with the time-average of the inter-spike-interval (as a function of

the connectivity), which lead us to an implicit equation that can be solved without

the recourse to simulations. This rigorous finding is accurate for standard activity on

scale-free networks having high heterogeneity (i.e. lower values of the exponent of the

degree distribution). The failure of the approximations on low heterogeneous graphs

is an statistical issue, whereas for abnormal activity one obtains unprecise estimations

as a results of not having enough activity in the smallest-connectivity groups.

At the end of Chapter 4, we analyzed the activity under inhomogeneous couplings.
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As predicted by our analytics, correlating the pulse-strength of the inputs that a

neuron receives with its degree is a way to homogenize the activity of a network of

excitable elements with heterogeneous topology: The activity becomes well-organized

and periodic, that is all neurons exhibit similar inter-spike-interval. However, under

this assumption, the system becomes quite sensitive to initial firing conditions. In

other words, different mechanisms to trigger the dynamics lead to distinct activity

patterns. As an extreme instance of this behavior, one can obtain a salient outcome:

a type of synchronization, named coherent oscillations, by carefully selecting initial

firing conditions (though further research is needed on this phenomenon).

As for future work, diverse aspects remain to be explored; being the most relevant

the oscillatory regime on complex –sparse– topologies and the applications of time-

delayed interactions to cascading processes.

In Chapter 5 we studied a second model of neurons in the context of socio-technical

interactions. The essential difference compared to the previous dynamics is that in-

stead of having excitable elements we incorporated phase oscillators with instanta-

neous pulse-couplings (a simpler model whose dynamics comprises only two param-

eters). The first part of the Chapter was devoted to reviewing essential concepts

like information spreading, complex contagion and cascades, as well a short report on

prior work on social modeling (namely the threshold model). In order to introduce our

proposal, which may be called the dynamical threshold model, we described in great

detail the Peskin’s model, and the further developments by Mirollo and Strogatz. As

mentioned above, the dynamics only includes two parameters, which, in the context

of social interactions, can be interpreted as follows: the homogeneous pulse-strength

represents social influence and the shape of the voltagelike curves typifies the intrinsic

propensity of each individual to join collective events (or willingness). It has been

proved, for an all-to-all graph, that this model leads to full synchronization when

interactions take place and under certain conditions on the voltage curve. Provided

that, at the individual level, such voltage-curve conditions are satisfied, the numerous

interactions needed for these oscillators to achieve synchrony mimic the mechanism

of complex contagion.

The first significant finding we presented on this dynamics is the one regarding the

regimes of activity. In contradiction with the original statements by Mirollo and Stro-

gatz, we found there is indeed a critical value of the coupling below which complete

synchronization can never occur (not even system-wide events). This conclusion is

based on the observation that for certain complex graphs the system evolves towards
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a desynchronized global state, even when favorable conditions to attain synchroniza-

tion are set (i.e. large intrinsic propensity and an initial large group of in-phase

oscillators).

The exploration of two kinds of parameter spaces (corresponding to uniform and dis-

tributed intrinsic propensity) on four network topologies revealed that among them

Erdős-Rényi networks are the most tolerant to attain synchronization under adverse

conditions, whereas scale-free graphs are the most restrictive (which can be explained

as a result of the paradox of heterogeneity). In fact, for the latter, we showed that

synchronization is either achieved fast or not achieve at all (perhaps a consequence of

being ultra small), while homogeneous topologies demonstrated that synchrony can

be the result of a slow process. Another related outcome is a pattern detected in

homogeneous networks: The more randomness in the network structure the better to

attain synchronization. In other words, given a specific value of the intrinsic propen-

sity of the oscillators, the critical coupling in Erdős-Rényi networks is smaller than

the one obtained in small-world networks, which in turn is smaller than the one found

in 1D lattices (similar results hold for distributed intrinsic propensity).

Again, in this case we managed to derive analytically a cascade condition that con-

nects a structural-related feature of the network (the threshold for the existence of the

giant component) with a dynamical measure that quantifies the fraction of oscillators

that need to receive only one single input to fire. Although such measure cannot be

computed as a function of time (up to this point), it can be estimated at least one

step ahead of the occurrence of a global cascade, which provides useful predictions

(even for practical purposes). As an illustration of this approach we performed exten-

sive computer simulation on both types of graphs that displayed opposite –extreme–

behaviors in terms of the time to synchronization: Erdős-Rényi networks (most toler-

ant) and scale-free networks (most restrictive). We showed that the proposed method

renders accurate predictions on both of them across a wide range of average degree

values. Once more, trough this exploration we confirmed that, given an intrinsic

propensity, there is a critical value of the coupling that decreases with the average

connectivity.

The last part of the Chapter is the application of our model to reproduce the traits of

real activity in a socio-technical phenomenon: The spanish 15M movement on Twit-

ter. We analyzed the time-constrained activity of users and extracted three main

results: (i) Most active individuals exhibit activity patterns that have periodicities, in

agreement with our assumption regarding the oscillatory nature of our elements. (ii)
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The intrinsic propensity of the model can be estimated from the inter-event-interval,

as these quantities are –approximately– inversely proportional. (iii) The dynamical

threshold model enabled us to perform simulations on the network of followers and we

obtained subcritical and supercritical cascade-size distributions that closely resemble

those extracted from the dataset. Consequently, our proposal extends considerably

prior works as it incorporates ingredients like recurrent activation and parametric

variety, which may be used to fit a broad range of behaviors observed in diverse real-

world phenomena.

Finally, there are unexplored aspects of the model that deserve further research.

Firstly, from the empirical point of view, coupling heterogeneity (or, equivalently,

weighted edges) could provide a more realistic scenario to model social influence (e.g.

the information received from a known person should have greater impact than the

one from a stranger). Secondly, another aspect to examine in the future is finding

a temporal scale that is the most appropriate to empirically analyze synchronization

dynamics, which means a strategy to extract from real activity a proper character-

ization of cycles. Thirdly, additional rigorous developments are needed to derive a

recursive composition of the state probability distribution that allows to follow the

evolution of the system without inputs from numerics.

−−−−−−−−−−−−−−−−−−−−−−−

A final personal note: After some years devoted to this research project, I came

to understand one or two things about our line of work. Perhaps one of the most

significant and apparently trivial observations is that sacrifices are always required

(yet not everyone in Academia agrees). Most of the effort that one invests to ob-

tain relevant results vanishes during those long hours when numerous attempts are

made with little or no success at all. I am convinced this is the hidden story behind

every honest scientific endeavor, and it is mine as well. Fortunately, every now and

then, the relentless struggle pays off and one gets to discover/develop something –

hopefully– novel. Rest assured it never matters whether our findings may seem as a

little progress or as a monumental breakthrough, any advancement is always fulfilling.

I am thankful for this.

“Physics is like sex: sure, it may give some practical results, but that’s not why we

do it.” –Richard Feynman.
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Appendix A

Approximations involved in the
estimation of 〈ISI(k)〉t

Let us assume that the system is in a stationary regime of global self-sustained activity.

For a long time window, 1 ≤ t ≤ tmax, let Nt(i) be the number of ISIs of neuron i,

and Tih be the duration (number of time steps –given by ∆t = τD–) of the hth ISI

(1 ≤ h ≤ Nt(i)). The firing condition at the end of the hth ISI is expressed as,

Tih−1∑
n=0

[(
1− e−

∆t
τm

)
Iext + g b(Tih−n)

]
e−

n∆t
τm & θ , (A.1)

where b(Tih−n) is the number of pulse-inputs received at the corresponding time step

by neuron i. We will consider the set of ISIs of all the neurons of degree ki = k, whose

cardinal is Mk ≡
∑

j∈in(k)Nt(j), where in(k) denotes the set containing indexes of all

neurons in the k-class.

We will call T (k) the average of Tih over this set, i.e.

T (k) =
1

Mk

∑
j∈in(k)

Nt(j)∑
h=1

Tjh . (A.2)

By averaging the inequality (A.1), one obtains

1

Mk

∑
i∈in(k)

Nt(i)∑
h=1

Tih−1∑
n=0

[(
1− e−

∆t
τm

)
Iext + g b(Tih−n)

]
e−

n∆t
τm & θ . (A.3)

Except for neurons at saturation, i.e. Tih = 1 for all h, or very close to it, one

expects that both sides of this inequality should be approximately equal in most

instances. Therefore, for values of k below the degree of saturation, we will assume

an approximate equality for equation (A.3), i.e.

1

Mk

∑
i∈in(k)

Nt(i)∑
h=1

Tih−1∑
n=0

[(
1− e−

∆t
τm

)
Iext + g b(Tih−n)

]
e−

n∆t
τm ≈ θ for k < ks . (A.4)
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The number of pulse-inputs a neuron receives at a given instant of time is obviously

bounded by its degree. Besides, as our networks do not possess degree correlations,

the numbers b(Tih−n) inside the sums in equation (A.3) above are expected to be evenly

distributed with an average αk, where α is the average firing rate, which suggests the

following (mean-field-like) approximation:

αk ≈
∑

i

∑
h

∑
n b(Tih−n)e

−n∆t
τm∑

i

∑
h

∑
n e
−n∆t
τm

. (A.5)

Inserting this into equation (A.4) one obtains

[(
1− e−

∆t
τm

)
Iext + gαk

] 1

Mk

∑
i∈in(k)

Nt(i)∑
h=1

Tih−1∑
n=0

e−
n∆t
τm

 ≈ θ for k < ks, (A.6)

where the quantity in the last brackets can be rewritten (after summation of the

truncated geometric series) as follows:

1

Mk

∑
i∈in(k)

Nt(i)∑
h=1

Tih−1∑
n=0

e−
n∆t
τm =

1

1− e−
∆t
τm

1−

 1

Mk

∑
i∈in(k)

Nt(i)∑
h=1

e−
Tih∆t

τm

 . (A.7)

Now, using the Taylor expansion of the exponential function, we can write the

average inside the parenthesis of RHS in this equation as

1

Mk

∑
i∈in(k)

Nt(i)∑
h=1

e−
Tih∆t

τm = e−
T (k)∆t
τm

(
1 +

1

2
σ2
T,k + · · ·

)
, (A.8)

where σ2
T,k denotes the variance of the distribution of ISI duration on the set of

neurons of degree k, and T (k) is the ISI average defined in equation (A.2). From

equations (A.6), (A.7) and (A.8) we can solve for T (k):

T (k) ≈ τm
∆t

ln


(

1− e−
∆t
τm

)
Iext + gαk(

1− e−
∆t
τm

)
(Iext − θ) + gαk

+
τm
∆t

ln

(
1 +

1

2
σ2
T,k + · · ·

)
. (A.9)

Provided the ISI’ duration variability on the k-class is small enough, one can neglect

the second term on the RHS of equation (A.9):

T (k) ≈ τm
∆t

ln


(

1− e−
∆t
τm

)
Iext + gαk(

1− e−
∆t
τm

)
(Iext − θ) + gαk

 , (A.10)

which is Eq. 4.12 of the Chapter 4.
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Appendix B

Approximate relation between α
and 〈ISI(k)〉t

Let us first rewrite (and rearrange a bit) equation (A.2) in time units:

Mk 〈ISI(k)〉t =
∑

j∈in(k)

Nt(j)∑
h=1

Tjh ∆t . (B.1)

The RHS of this equation is bounded above by the time window width, tmax, times

the number Nk of neurons in the k-class, and therefore

Mk 〈ISI(k)〉t ≤ Nktmax . (B.2)

However, for large values of tmax, one expects that this inequality holds as an approx-

imate equality

Mk 〈ISI(k)〉t ≈ Nktmax , (B.3)

except, perhaps, in those cases when the ISI duration is extremely large, which may

happen at low values of k and g.

On the other hand, we have defined (Eq. 4.9) the average firing rate as the average

over the whole network of the time average of the firing state, χit, of neurons

α =
1

N tmax

tmax∑
t=1

N∑
i=1

χit . (B.4)

Using the degree probability distribution p(k) = Nk/N , the RHS can be rewritten as

∑
k

p(k)
1

Nk tmax

tmax∑
t=1

∑
j∈in(k)

χjt . (B.5)
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Now, recalling that Nt(j) is the number of ISIs of neuron j, we can write,

Nt(j) ≡

(
tmax∑
t=1

χjt

)
− 1 (B.6)

which gives way to,

Mk ≡
∑

j∈in(k)

Nt(j) =
∑

j∈in(k)

[(
tmax∑
t=1

χjt

)
− 1

]
=

tmax∑
t=1

∑
j∈in(k)

χjt

−Nk (B.7)

so the double sum in t and j of equation (B.5) is just the number, (Mk + Nk), and

therefore the average firing rate can be written as

α =
∑
k

p(k)

Nk tmax
(Mk +Nk) =

1

tmax
+
∑
k

p(k)

Nk tmax
Mk , (B.8)

for large values of tmax, this expression can be approximated as,

α ≈
∑
k

p(k)

Nk tmax
Mk , (B.9)

which, together with the approximate equality (B.3) gives the desired approximate

relation between α and 〈ISI(k)〉t:

α ≈
kmax∑
k=kmin

p(k)

〈ISI(k)〉t
. (B.10)

which is Eq. 4.19 of the Chapter 4.
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Gómez-Gardenes, Miguel Romance, Irene Sendiñá Nadal, Zhen Wang, and Mas-
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[112] Mikko Kivelä, Alex Arenas, Marc Barthelemy, James P Gleeson, Yamir Moreno,

and Mason A Porter. Multilayer networks. Journal of complex networks,

2(3):203–271, 2014.

[113] E. A. Bender and E. R. Canfield. The asymptotic number of labeled graphs with

given degree sequences. Journal of Combinatorial Theory, Series A, 24(3):296

– 307, 1978.

[114] M. E. J. Newman, S. H. Strogatz, and D. J. Watts. Random graphs with

arbitrary degree distributions and their applications. Phys. Rev. E, 64:026118,

Jul 2001.

[115] Duncan S. Callaway, M. E. J. Newman, Steven H. Strogatz, and Duncan J.

Watts. Network robustness and fragility: Percolation on random graphs. Phys.

Rev. Lett., 85:5468–5471, Dec 2000.

130



[116] Luc Devroye. Non-Uniform Random Variate Generation. Springer-Verlag, New

York, 1986.

[117] Niloy Ganguly, Andreas Deutsch, and Animesh Mukherjee. Dynamics On and

Of Complex Networks: Applications to Biology, Computer Science, and the

Social Sciences. Springer Science & Business Media, 2009.

[118] A. Pikovsky and M. Rosenblum. Synchronization. Scholarpedia, 2(12):1459,

2007. revision 128276.

[119] Tilmann Heil, Ingo Fischer, Wolfgang Elsässer, Josep Mulet, and Claudio R.
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[122] Otto E. Rössler. An equation for continuous caos. Physics Letters A, 57(5):397–

398, 1976.

[123] Valery Iustinovich Oseledec. A multiplicative ergodic theorem. lyapunov char-

acteristic numbers for dynamical systems. Trans. Moscow Math. Soc, 19(2):197–

231, 1968.

[124] Predrag Cvitanovic, Roberto Artuso, Ronnie Mainieri, Gregor Tanner, Gábor
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