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Abstract In this work, we are concerned with the efficient resolution of two dimen-
sional parabolic singularly perturbed problems of convection-diffusion type. The
numerical method combines the fractional implicit Euler method to discretize in time
on a uniform mesh and the classical upwind finite difference scheme, defined on a
Shishkin mesh, to discretize in space. We consider general time-dependent Dirich-
let boundary conditions, and we show that classical evaluations of the boundary
conditions cause an order reduction in the consistency of the time integrator. An
appropriate correction for the evaluations of the boundary data permits to remove
such order reduction. Using this correction, we prove that the fully discrete scheme
is uniformly convergent of first order in time and of almost first order in space. Some
numerical experiments, which corroborate in practice the robustness and the effi-
ciency of the proposed numerical algorithm, are shown; from them, we bring to light
the influence in practice of the two options for the boundary data considered here,
which is in agreement with the theoretical results.
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Numer Algor

1 Introduction

Let us consider the initial and boundary value 2D time-dependent convection-
diffusion problem

9
Lu= a—'; + (L1.6(0) + Loe(O)u = £, in 2 x (0, T,
u(x,y,0) =op(x,y), in £2, (1)
u(x,y,t) =g,y t), indf2 x [0, T],

where £2 = (0, 1) x (0, 1), and the spatial differential operators £; ., i = 1,2 are
given by

92 ]
£1,8(t)E_8_2+vl(xayst)_+kl(-xvy7t)ﬂ (2)
0x dax
92 9
‘Cz,é‘(t) = _8_2 + UZ(X» y7t)_ +k2('x’ y’t)a
dy dy

respectively. We assume that the diffusion parameter €, 0 < ¢ < 1, can be very small,
that the convective coefficients are strictly positive, i.e., v;(x, y,?) > v > 0, and
that the reaction terms satisfy k; (x, y, ) > 0, i = 1, 2. Henceforth, we will suppose
that enough smoothness and compatibility conditions among data hold in order to the
solution is four times derivable in space and twice in time in the domain £ x [0, T'].
In [6], the following sufficient conditions were given:

fe CZ+2a,l+a(§ x[0,T]), ¢ € C4(§)(Ol > 0),

4,2 3)
{800,y 1), g(1, y, 1), g(x,0,1), g(x, 1, 1)} € C+2([0, 1] x [0, T]),
g(x,y,0) =0x,y), (x,y) €08,
0
;fuou»=f@0un—ua4m+£nm»¢qu (x.y) € 982,
)
92 9
5§W%W=%@w®—@u©+QAWfW%®
+(L1,60) + L2 (0)) (x, ), (x,y) €02,

and

0
%@JJH{QAO+QQOMW%0=f@JJL

(x,y) € {(0,0), 0, 1), (1,0), (1, D}, 7 € [0, T].
)

The numerical resolution of singularly perturbed problems is an interesting subject
in applied mathematics which has been received many attention in the last years.
To dispose of reliable numerical methods, fitted operator methods or fitted mesh
methods are used (see [9, 11, 14, 16, 17] and references therein). Specially interesting
is the case when the problem is two dimensional in space of convection-diffusion
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type. The stationary case is considered, for instance, in [4, 10, 12], and the time-
dependent problem is analyzed in [2, 3, 5]. In some of these works, it was described
a two-step technique to construct the fully discrete scheme.

In [6], the authors consider and analyze the uniform convergence of a first stage
of spatial semidiscretization, via an upwind finite difference method on a Shishkin
mesh for a parabolic problem of convection-diffusion type; afterwards, the Euler
implicit method completes the discretization. Using this method, the computational
cost is large because pentadiagonal linear systems, one per time step, must be solved.
This drawback is typical when classical implicit time integrators are used for solving,
combined with finite differences, 2D parabolic problems. In [7], the reverse order
was chosen, discretizing firstly in time and later on in space, for a parabolic problem
of reaction-diffusion type; then, the use of an alternating direction method (see [18]),
permits that only tridiagonal linear systems must be solved to obtain the numerical
solution, which implies a remarkable cost reduction with respect to other, more clas-
sical, integration techniques. Here, we are going to extend the technique developed in
[7] to the case of parabolic 2D convection-diffusion, but following the reverse order
in the two-step technique considered in [5]. The reasons for choosing this option are
that, firstly, the analysis of the uniform convergence of the fully discrete is simpler
and, besides, that, in contrast with previous works (see for instance [3, 5]), no ratios
between the discretization parameters are needed to prove the uniform convergence
of the scheme.

Another interesting question, which is usually posed in the convergence analy-
sis of numerical methods for parabolic problems, is related to the influence of the
time-dependent boundary data of (1). It is well known (see, for instance [1, 15] and
references therein) that, when using one step methods, a classical evaluation of the
boundary conditions causes, in general, a reduction in the numerical order of conver-
gence; this phenomenon is specially severe for most methods of alternating direction
type. So, in this paper, we consider a different and simpler modification of these
evaluations for the fractional implicit Euler method, which eliminates the loss of
consistency without increasing the computational cost of the algorithm.

The rest of the paper is structured as follows. In Section 2, we introduce the spatial
discretization of the continuous problem on a piecewise uniform mesh of Shishkin
type, and we prove that it is uniformly convergent with respect to the diffusion param-
eter of almost first order. In Section 3, we introduce the time discretization proposed,
by using the fractional implicit Euler method and proving that this time discretiza-
tion is a first order uniformly convergent method. Also, we analyze the effect of
two choices of evaluations of the data functions associated to the non-homogenous
boundary conditions, in the uniform consistency of the method. Finally, in Section 4,
some numerical results obtained for different test problems are shown; from them, we
can observe the uniform convergent behavior of the numerical algorithm proposed
here; as well, we show the effects of the classical evaluations of the boundary data
and the improvement of them which we propose here.

Henceforth, C denotes a generic positive constant independent of the diffusion
parameter ¢ and also of the discretization parameters N and M. Below, we always
use the pointwise maximum norm, denoted by || - || p (Where D is the corresponding
domain).
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2 Spatial semidiscretization

In this section, we define approximations of u(x;, y;, t), where (x;, y;) are going to
be the grid points of a rectangular mesh 2y = Iy v X Iy n C $2, which has
(N + 1)2 nodes, for simplicity, we take the same number N of subintervals in both
space directions, and ¢ € [0, T] remains as a continuous variable. We will denote 2y
the subgrid of £2 5 obtained by removing the points which belong to 9£2.

Let us denote [.]y the restriction of a function defined on £2 to 2u, un(¢), the
semidiscrete grid functions which will approach [u(x, y, t]y, [.I5, the restriction of
a function defined on §2 to 22, and uz(t) the semidiscrete grid functions which will
approach [u(x, y, 1)]7.

Typically, ux(t) is defined as the solution of a stiff Initial Value Problem which
can be written in the form

(1) + (L1eN @) 4 Loe N @) ug(t) = [f]n,
uy(t) = [gly in 28\ 2w, (6)
uy(0) = [¢ln,

where L; .y, i = 1,2 must be appropriate spatial discretizations of the elliptic

convection-diffusion operators £; ., i = 1,2 given in (2).

Here, we consider the special mesh 2y = I, n X Iy n, tensor product of
one-dimensional meshes,
Lien=0=x<...<xy=1}, Len={0=yo<...<yny =1},

of Shishkin type as follows. We only give the details of the construction of I, . y and
analogously we proceed for Iy ¢ y.
Let us choose N as an even number. We define the transition parameter

oy = min(1/2, myeIn N), @)

where m, > 1/v; then, the piecewise uniform mesh has N/2+ 1 points in [0, 1 — oy ]
and [1 — oy, 1]. Therefore, the mesh points are given by

2i(1 —o0x)/N, i=0,...,N/2, ®)
1 —ox +2( —N/2)oy/N, i =N/2+1,...,N.

i =

Using these meshes, £; o n, i = 1,2 are the discretization of the differential
convection-diffusion operator £; ., i = 1, 2, via the simple upwind finite difference
scheme, which is given by

LienOuny@®)(xi,yj) =i jun@®) (i1, y;) +lig jun @) (xXig1, ;)

1 . . )]
—l—ll.’juN(t)(xi,yj), i=1,...,N—1, j=0,...,N,
where
—& vl(x"}",t) —&
o= —— - ATy T (10)
hx,ihx,i hx,i hx,i+lhx,i
li{j =—li_j—liqj+ki(x,yj,0),
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and analogously

LoenOuny@®)(xi, yj) =1 j—un@)(xi, yj—1) + i jrun(©) (X, yjt+1)

) . . (1n
—|—ll.’juN(t)(x,',yj), j=1,...,N—-1,i=0,...,N,
where
—& UZ(X‘ay‘,f) —¢€
lijo = = =, iy = (12)
hy jhy.; V. hy j+ihy,

liz,j = —lij— = lijy + ka(xi, yj, 1),

Withhx’i =X —Xi_1, I = 1,...,Ni hy,j =Yy —Yj-1, j=1...,N, hx,,' =
(hyi+hyiz1)/2,i=1,...,N—=1, hyj=(hyj+hyjr1)/2, j=1,...,N—1L

Using this semidiscretization, in [6], the authors prove that the upwind scheme
is an almost first-order uniformly convergent scheme; summarizing, under the
smoothness assumptions made here, it holds that

Ilux, y, DIv —un®llg, =< CN~'InN, Vre(0,T). 13)

3 Time integration: unconditional convergence

In this section, we introduce the numerical algorithm which we propose to integrate
successfully the continuous problem (1). After having considered the spatial semidis-
cretization stage in the previous section, we complete the discretization process by
using the fractional implicit Euler method as time integrator.

Using this method, we obtain numerical approximations u'y € RV 1oy N(m),
being t,, = mt, where T = T /M is the chosen time step, which we consider constant
for simplicity.

As a previous task, we need to establish the uniform behavior of the time
derivatives and the fractional differentials of uy () involved in the analysis of the
uniform consistency for the time integration process. In [6], the authors explain
briefly that, under the smoothness and compatibility assumptions made here for
the data of (1), it holds that uy(r) € (C2[0, TH™*D’, and its second deriva-
tive is bounded independently of ¢. From this property, joint to the smoothness
assumptions made on f, it is immediate to deduce that the elementary differentials
Lo yun(2), Lgﬁ nUn (t) are bounded independently of . These differentials are typ-
ically involved in the consistency analysis of classical one step time integrators, for
instance, Runge-Kutta methods. In this paper, we will assume a similar but extra nat-
ural condition in this context which is that the fractionated elementary differentials
LieNun(t), Lige NLjenun(t), i, j=1,2, satisfy

ILienunOlloy < C, |LieNLjenun@lloy <C,i,j=1,2. (14)

This property is easily deduced in the cases that operators L; o y,i = 1,2 com-
mute. In such cases, these fractional elementary differentials can be described as
solutions of Initial Value Problems similar to (15), where all of the data functions
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are e-uniformly bounded. For example, @ = L; . yuy(¢) can be described as the
solution of

&' () + (L1en®) + Lo NE)) (@) = Lien[fN,
o(1) = g in 2§\ 2w, (15)
w(0) = Ly nleln,

being g5 = L1 nlgly for y € {0, 1} and g7 = [flx — [3—§]ﬁ — Lo ¢ nlgly for
x € {0, 1}.

3.1 The fully discrete scheme

In this section, we describe the numerical method which we propose to discretize
in time the Initial Value Problems (15). We consider the fractional implicit Euler
method (see [5, 18]), which can be written as a two half step scheme as follows. Let
T = T /M be the time step, and let us consider the mesh Iy = {t,, = mt, m =
0,1,...,M}. Let ”7\1/ ~unx,y, tn), m=0,1,..., M, be the numerical solutions
defined as follows:

i) (initialize)

uy = lpx, Yy, in 2.

WS =[g(x, y, 0l in 25\ 2.

ii) (first half step)

(I + L1 N D)y % = Tf0 i 257\(0, 1) [0, 11,

m+1/2 _  m+1/2

Uz =8y , in 27 N {0, 1} x [0, 1].
iii) (second half step)
(I + T Lo N (DN = 2 o i 2\[0, 17 % {0, 1),

m+l(x y) — g%‘“, in .Qﬁm [07 1] X {07 1}7

(16)

being
f=h+p S = 1@y )ty S5 =10y Dl (D)

Of course, as a typical advantage of Alternating Direction methods, the resolution
of the half steps involves a set of N 4+ 1 uncoupled linear tridiagonal systems of
dimension N — 1 which can be solved in parallel. Moreover, the advance of one step
in time can be done with a number of arithmetic operations of size O(N 2y which is
optimal in terms of the computational complexity of the method.

In the literature (see [1, 13, 15]), the most classical option for the evaluations of
the boundary data is given by

gﬂH/z [g(x, ¥, tm+ Dl i £257 N {0, 1} x [0, 1],

18
gﬁ+l [ (x, Yy, tm—H)]ﬁ» in Qﬁm [O’ 1] X {Ov 1} ( )
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This option is natural in the sense that, classically, the contributions of the boundary
data are added to the source term [ f (x, y, )]y before the time integration process.
Nevertheless, in most of cases, this choice reduces the order of unconditional (inde-
pendent of N) consistency to zero and causes a sharp increase in the global error of
the method as well as strong difficulties for proving its uniform convergence.

Here, we propose a different choice for the boundary data, given by

1/2 i
G = (1 + T Lae (i I8 (X, ¥, tmy )y — ofy s in @y 010, 1) x [0, 1],

gt = [g(x, y, tws D)y, in 2010, 1] x {0, 1},
(19)
3.2 Stability

Let us define the operators (I + rﬁl,S,N,o(t))’l (analogously (1 + rﬁz’g,N,o(t))’l),
as follows. Let vy = (I + rﬂ’f’g’N’O(t))’l uy be the solution of the linear system

(I +tLy, y@O)oy =uy, (x,y)in 2y,

) (20)
vy =0, in 27\ 2nN.

From classical properties of M-matrices (see, e.g., [14]), it is straightforward to
deduce

I+ tLien o) oo <1, i=1,2. 1)
3.3 Uniform and unconditional consistency

Let us define e ! the local error in time of the scheme (16) at t,;,4-1 as follows:

N = un ) — iy (22)

where u”{,“ is the solution of the auxiliary problem

(I + L1 ey ey = @) + A" in 25\(0, 1) x [0, 1],
ﬁ%“/z =g%+1/2, in 25 N {0, 1} x [0, 1],
U+ tLoen(tmp)iy™ = ay ™2 4ot in2p\0.11x 0,13, 29
Wt (x,y) = g;“, in 25 N[0, 1] x {0, 1},
m=0,...,M—1.

Lemma 1 Under the assumptions (3), (4), (5) and (14), if we choose the boundary
data given in (19), then the local error defined by (22), (23) satisfies

ety < CT2, m=1,...,M, (24)

and therefore (16) is a first order uniformly consistent method.
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Proof From the definition of & ~m+1 given in (23), it is easily deduced that in 2y it
holds
(I + rﬁl,g,N(th)((l Lo D f”’“)) [y + T

(25)
On the other hand, by using the simple Taylor expansion
U (tn) = up (1) = Ty (tn41) + O,
and taking into account that uy (t 1) = f{'y mal + fo'n mtl
L2.e.n(tms1)un (tm+1), it can be deduced that

— L1,e,NtGmrDuy tug1) —

I+ Tﬁl,g,N(th))((l + L6 N (1)U (1) — sz,Nm+1)

(26)
= un(tm) + Tf"y + O(?).
Subtracting (26) and (25), it holds
(I + L1 e N e )T+ TLoe N (tmr))en T = OT?). 27)

Regarding to the boundary data, it is trivial that uz7(t,+1) = gm+1 in 275N[0, 1]x
{0, 1}, and it is also clear that, as we have chosen

g2 = U+ TLoe n (e Dy s — Tfy' 0257 010, 1) x [0, 11,

the local error can be written as the solution of a problem of the form
I+ TLen(tnr)en 2 = 0G?),  in 2y,

e%“/z =0, in 23\ 2x,

(28)
(1 + t[,'zl A N(lm+1)) merl e%ﬂ/z, in 2y,
’"“(x y) =0, in 27\2n.
From (28) and the stability property (21), the required result (24) follows. [

Remark 1 Note that for non-homogeneous boundary data g(x, y,t), in general
Lo NUmrDgC, Y, tiny )7 — fm"H # 0. Therefore, a term of size O(t) appears

in the difference between the natural boundary data given by [g(x, y, tiu11)]7, and

those ones considered here (gm+1/ 2) for the first half step. This fact causes an order

reduction in the order of consistency, up to order 0 if the classical evaluations of the
boundary data are chosen.

Remark 2 In [3], the authors propose and analyze a similar algorithm for a less gen-
eral problem; therein, the boundary conditions are homogeneous. In that paper, to
avoid the order reduction, a suitable splitting f = f| + f2, in such way that /> = 0
in {0, 1} x [0, 1] x [0, T], was necessary to complete the analysis. This restriction
agrees completely with the analysis for the (more general) case which we have stud-
ied here. In fact, with the boundary data proposed in (19) any smooth splitting for f
can be considered without risk of order reduction.
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3.4 Uniform convergence of the time integration

Let us introduce the global error of the scheme (16) at time £, as usual, i.e., E}; =
un (tm) — u’]'\ll
Theorem 1 Under the assumptions (3), (4), (5) and (14), if we choose the boundary
data given in (19), then it holds

IEY loy <Ct,Vm=1,..., M, (29)

i. e., the time integration process (16) is uniformly and unconditionally convergent of
first order.

Proof Subtracting and adding #'y, trivially we have

EY =efy +iy —uy =ef+ U +tLrenoln)” (I +7L], o) " E"
Using this recurrence, combined with (21) and (24), the result trivially follows. [
3.5 Uniform convergence of the algorithm
Theorem 2 Assuming (3), (4), (5), and (14), if we use the improved boundary data
(19), then the global error given by

Eyy= lélrlna;(M Ilu(x, y, tw)In —uy 2y,
satisfies

Evy <C(N"'InN+ M. (30)

Thus, the proposed method is unconditionally and uniformly convergent of first order
in time and almost first order in space, up to a typical logarithmic factor.

Proof We only need to add and subtract the term upy(#,) and use the triangle
inequality to deduce

Envy < max |[[u(x,y, tw)v —un(n)lloy + max [[Eylaoy-
l<m<M I<m=M

Finally, from (13) and (29), the result follows. O

4 Numerical experiments

In this section, we solve some test problems using our numerical algorithm. The first
example is given by

ur —eAu+ 2x + Duyx + 2y + Duy +30u = f(x,y,1), (x,y,1) € 2 x [0, 1],
u(x,y,t) =g(x,y,t), inas2 x [0, 1]

ulx,y,0=o9k,y), x,yel0,1],
(31
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where f(x, y,1), g(x,y,t)and ¢(x, y) are chosen in such way that the exact solution
isu(x,y, )= (1= e (P @)W (y) - xy), with

_2 2472
e ¢ —e ¢

() =g+ ——
l—e"¢

Figure 1 shows the solution at the final time r = 1; from it, we clearly see the
boundary layersat x = 1 and y = 1.

In all tables corresponding to example (31), we take my = my, = 1 to
define the transition parameters of the meshes I,y and I, n, respectively.
Moreover, we decompose (see [3]) the right-hand side in the form f(x,y,t) =
fi@, v, )+ folx, v, 1), where fo(x, y. 1) = f(x,0,0) + y(f(x, 1,0) = f(x,0,1)
and fi(x,y,1) = f(x,y,1) — falx, y, ).

As the exact solution is known, the maximum global errors at the mesh points can
be computed exactly by

ey = max max max |Uy —u(xi,y;, t)l,
’ 0<n<M 0<i<N 0<j<N

and therefore the numerical orders of convergence are calculated by

p =log (en,m/e2n,2m)/10g 2.
From these values, we calculate the uniform maximum errors by

N.M

emax =maxey, u,
&

1

merical solution at t

X axis

y axis

Fig. 1 Numerical solution of example (31) for ¢ = 1072, N = M = 32, at the final time 7 = 1
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and from them, in a usual way, the corresponding numerical uniform orders of
convergence are given by

" = log (emaxN’M/emaxZN’ZM)/log 2.

Table 1 displays the results for problem (31) by using our fully discrete scheme
when the classical boundary conditions are used. From them, we observe a reduction
in the numerical orders of convergence.

Next, we consider the choice the boundary data given in (19). Table 2 displays the
results for problem (31) by using this option. From it, an almost first order uniformly
convergent numerical behavior is observed. Moreover, note that the maximum errors
for any value of ¢ are smaller than those ones given in Table 1. A similar behavior
has been observed in all of the experiments which we have performed.

Nevertheless, in the case of using natural boundary data, the global errors behave
better than expected; this phenomenon has been deeply studied in the numerical inte-
gration of canonical parabolic problems like the heat equation, where several authors
have proven that one order of convergence can be recovered many times, by using
a summation by parts reasoning. This technique, which has been successfully used
for studying the integration of simple parabolic problems (see, e.g., [1, 13, 15]),
has not been used in the context of parabolic singularly perturbed problems and

Table 1 Maximum errors and orders of convergence for (31) with natural boundary conditions

€ N=16 N=32 N =164 N =128 N =256
M=38 M=16 M=32 M = 64 M =128

276 8.9908E-1 6.3453E-1 4.0693E-1 2.5911E-1 1.6161E-1
0.503 0.641 0.651 0.681

2-8 9.3261E-1 6.5698E-1 4.2064E-1 2.6994E-1 1.6796E-1
0.505 0.643 0.640 0.685

2-10 9.4281E-1 6.6341E-1 4.2459E-1 2.7338E-1 1.7008E-1
0.507 0.644 0.635 0.685

2-12 9.4556E-1 6.6516E-1 4.2567E-1 2.7438E-1 1.7070E-1
0.507 0.644 0.634 0.685

2~ 14 9.4625E-1 6.6561E-1 4.2595E-1 2.7465E-1 1.7088E-1
0.508 0.644 0.633 0.685

2716 9.4642E-1 6.6573E-1 4.2602E-1 2.7473E-1 1.7092E-1
0.508 0.644 0.633 0.685

2726 9.4647E-1 6.6577E-1 4.2604E-1 2.7476E-1 1.7094E-1
0.508 0.644 0.633 0.685

emax™M 9.4647E-1 6.6577E-1 4.2604E-1 2.7476E-1 1.7094E-1

puni 0.508 0.644 0.633 0.685
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Table 2 Maximum errors and orders of convergence for (31) with improved boundary conditions

€ N=16 N=32 N =64 N =128 N =256
M=8 M=16 M=32 M=64 M=128

26 8.4881E-1 5.8678E-1 3.6410E-1 2.0838E-1 1.1328E-1
0.533 0.688 0.805 0.879

28 8.8872E-1 6.0980E-1 3.7657E-1 2.1503E-1 1.1683E-1
0.543 0.695 0.808 0.880

2-10 9.0122E-1 6.1653E-1 3.7993E-1 2.1676E-1 1.1776E-1
0.548 0.698 0.810 0.880

212 9.0470E-1 6.1830E-1 3.8080E-1 2.1720E-1 1.1799E-1
0.549 0.699 0.810 0.880

2-14 9.0562E-1 6.1874E-1 3.8102E-1 2.1731E-1 1.1805E-1
0.550 0.699 0.810 0.880

2-16 9.0585E-1 6.1885E-1 3.8107E-1 2.1734E-1 1.1806E-1
0.550 0.700 0.810 0.880

2726 9.0592E-1 6.1889E-1 3.8109E-1 2.1735E-1 1.1807E-1
0.550 0.700 0.810 0.880

emaxN-M 9.0592E-1 6.1889E-1 3.8109E-1 2.1735E-1 1.1807E-1

pu 0.550 0.700 0.810 0.880

seems complicated to apply it. Thus, we can conclude that the new proposal provides
improvements both from theoretical and practical points of view.

In order to clarify a bit more the influence, in the numerical behavior of the
method, of the two options for the boundary data considered here as well as the
improvements provided by the non natural evaluations of the boundary conditions,
we estimate the local errors in time. As the exact solution is known, these estimates
can be approximated by

~ m

N.M = max max OrinjaixN Uy — u(xi, yj, tm)].
where N must be chosen large enough in order to the contribution of the spatial
discretization can be neglected. From them, we obtain the quantities

p =log (én.m/en2m)/log?2,

and note that the corresponding numerical orders of consistency are given by p — 1.
In next tables, we show such estimated local errors and the values of p corre-
sponding to the two choices of the boundary data, taking N = 512 fixed. Table 3
displays the estimated local errors when natural boundary conditions are chosen.
Here, uniform consistency of order zero is observed.
Table 4 displays the local errors obtained when the improved boundary conditions
are considered. Note that the local errors are substantially smaller than in the previous

@ Springer



Numer Algor

Table 3 Local errors and values of p for (31) with natural boundary conditions, N = 512

e M=38 M= 16 M =32 M =64 M =128

26 7.7818E-1 5.5586E-1 4.2260E-1 2.8458E-1 1.7001E-1
0.485 0.395 0.570 0.743

28 8.0824E-1 5.7012E-1 4.3375E-1 2.9248E-1 1.7518E-1
0.504 0.394 0.569 0.739

2-10 8.1763E-1 5.7464E-1 4.3731E-1 2.9506E-1 1.7694E-1
0.509 0.394 0.568 0.738

2-12 8.2041E-1 5.7599E-1 4.3837E-1 2.9583E-1 1.7746E-1
0510 0.394 0.567 0.737

214 8.2120E-1 5.7637E-1 4.3868E-1 2.9605E-1 1.7761E-1
0.511 0.394 0.567 0.737

2-16 8.2142E-1 5.7649E-1 4.3876E-1 2.9611E-1 1.7765E-1
0.511 0.394 0.567 0.737

2726 8.2150E-1 5.7653E-1 4.3880E-1 2.9613E-1 1.7767E-1
0.511 0.394 0.567 0.737

table, where the classical boundary data are used and also that the orders of consis-
tency are higher in this case. In both Tables 3 and 4, the numbers do not show clearly
the zero and first orders of consistency, respectively, specially in the last columns;

Table 4 Local errors and values of p for (31) with improved boundary conditions, N = 512

€ M=38 M=16 M =32 M = 64 M =128

276 7.6949E-1 4.5196E-1 2.1054E-1 8.0750E-2 3.1093E-2
0.768 1.102 1.383 1.377

2-8 8.0530E-1 4.7209E-1 2.1897E-1 8.3539E-2 3.4114E-2
0.770 1.108 1.390 1.292

2-10 8.1665E-1 4.7848E-1 2.2157E-1 8.4303E-2 3.5206E-2
0.771 1111 1.394 1.260

212 8.2006E-1 4.8039E-1 2.2232E-1 8.4499E-2 3.5513E-2
0.772 1.112 1.396 1.251

214 8.2105E-1 4.8094E-1 2.2253E-1 8.4548E-2 3.5592E-2
0.772 1.112 1.396 1.248

2-16 8.2133E-1 4.8110E-1 2.2259E-1 8.4561E-2 3.5612E-2
0.772 1.112 1.396 1.248

2726 8.2144E-1 4.8116E-1 2.2261E-1 8.4565E-2 3.5619E-2
0.772 1.112 1.396 1.247
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Table 5 Local errors and values of p for (31) with natural boundary conditions, ¢ = 2-12

N M=38 M=16 M=32 M =64 M =128

1024 8.2025E-1 5.7784E-1 4.4430E-1 3.0196E-1 1.8190E-1
0.505 0.379 0.557 0.731

2048 8.2021E-1 5.7923E-1 4.4803E-1 3.0573E-1 1.8460E-1
0.502 0.371 0.551 0.728

these ones correspond to the largest values of M, where the fixed value of N is not
sufficiently large, and therefore, at these columns, in the estimated errors there is a
substantial influence of the errors associated to the spatial discretization. To reduce
this effect, in Tables 5 and 6, we show the numerical results obtained for a partic-
ular value of ¢ when the discretization parameter N is increased to N = 1024 and
N = 2048; similar results are obtained for other values of . From them, we observe
the corresponding numerical orders of consistency, closer to one in Table 6 as the
theory predicts.
The second example that we consider is given by

ur — eAu +uyx +uy + (5 + 212 exp (—1/((x — xz)(y — yz)))) u
=2e (W (X)W (y) — 1), (x, y,1) € 2 x [0, 1],
ux,y,t) = e_s’(x +y—2t), ind2 x [0, 1]

ux,y,0)=x+y, x,yel0,1],
(32)

where

6—1/8(1 _ ez/S)

U(z)=z+ =

In this case, the exact solution is unknown.
We take again m, = m, = 1 to define the piecewise uniform Shishkin mesh, and
we decompose the source term by taking f1(x, y,t) = fo(x, y,t) = f(x,y,1)/2.

Table 6 Local errors and values of p for (31) with improved boundary conditions, ¢ = 2-12

N M=38 M=16 M=32 M =64 M =128

1024 8.2006E-1 4.8037E-1 2.2226E-1 8.2802E-2 2.9222E-2
0.772 1.112 1.424 1.503

2048 8.2006E-1 4.8036E-1 2.2224E-1 8.2616E-2 2.6699E-2
0.772 1.112 1.428 1.630
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To approximate the maximum pointwise errors, we use a variant of the two-
mesh principle (see [8, 9]). We calculate {ﬁN }, the numerical solution on the mesh
{(Xi, 9, f,)} containing the original mesh points and its midpoints, i.e.,

Xi=x;, i=0,...,N, Xyp1=0+x4/2, i=0,...,N—1,

V2j=yj» J=0,....N, $ojr1 =0 +yir1)/2, j=0,....,N -1,

tom =tm, m=0,.... M, ftyyy1=Un+tn+1)/2, m=0,...,M — 1.
Then, the maximum errors at the mesh points of the coarse mesh are approximated by

N ~N
dijjnyv= max max |u” (xi, yj, ) — U (X;, yj, tw)l, (33)
0<m<M 0<i,j<N

and the orders of convergence are given by

q =log (di jn.m/di j2n2m)/10g 2.
From the double-mesh differences in (33), we obtain the uniform maximum errors by
dN’M = max di,j,N,M7
&
and from them, in a usual way, the corresponding numerical uniform orders of
convergence by

quni — log (dN,M/d2N,2M)/10g2'

Table 7 displays the results for problem (32) by using our method when classical
boundary conditions are chosen. From them, we again observe a reduction in the
order of uniform convergence.

Next, we evaluate the boundary conditions using (19) to solve the same problem.
Table 8 displays the numerical results corresponding to this choice; from them, we
observe smaller maximum errors, in comparison to Table 7, and also we deduce a
first order uniformly convergent behavior.

Table 7 Maximum errors and orders of convergence for (32) with natural boundary conditions

e N =16 N =32 N =64 N =128 N = 256
M=38 M=16 M=32 M = 64 M =128

276 5.9524E-2 6.9820E-2 5.3599E-2 3.3555E-2 1.9020E-2
-230 0.381 0.676 0.819

278 6.5906E-2 7.5892E-2 5.7369E-2 3.5686E-2 2.0030E-2
-204 0.404 0.685 0.833

2-10 6.7763E-2 7.7925E-2 5.8878E-2 3.6511E-2 2.0450E-2
=202 0.404 0.689 0.836

2726 6.8412E-2 7.8680E-2 5.9490E-2 3.6912E-2 2.0677E-2
=202 0.403 0.689 0.836

an-m 6.8412E-2 7.8680E-2 5.9490E-2 3.6912E-2 2.0677E-2

g -202 0.403 0.689 0.836
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Table 8 Maximum errors and orders of convergence for (32) with improved boundary conditions

& N=16 N =32 N =64 N =128 N =256
M=38 M=16 M=32 M =64 M=128

276 3.4674E-2 1.9782E-2 1.0357E-2 5.2911E-3 2.6748E-3
0.810 0.934 0.969 0.984

2-8 3.6338E-2 2.0256E-2 1.0613E-2 5.4266E-3 2.7390E-3
0.843 0.932 0.968 0.986

2-10 3.6910E-2 2.0575E-2 1.0703E-2 5.4676E-3 2.7580E-3
0.843 0.943 0.969 0.987

2726 3.7122E-2 2.0764E-2 1.0811E-2 5.4988E-3 2.7696E-3
0.838 0.942 0.975 0.989

an-m 3.7122E-2 2.0764E-2 1.0811E-2 5.4988E-3 2.7696E-3

g™ 0.838 0.942 0.975 0.989

Now, we estimate the local errors for this second example. As the exact solution
is unknown, to approximate the errors, we proceed in a different way than before.
To approximate U}, we use one step of the fully discrete scheme given in (16), but

replacing the numerical approximation at time t,—1, U ]’\1,_1 , by the numerical solution
obtained on a very fine mesh of Shishkin type, with N = 1024, M = 512, which is
denoted by u1024,512. If #41024,512 is the piecewise bilinear interpolation of w1024 512.
We take again a large fixed value for spatial discretization parameter, concretely N =
256, in order to the errors in time dominate, then the local errors are approximated by

. .
dy,y = max max max |Uy — u1024,512(%i, ¥j, ta)l,
0<n<M 0<i<N 0<j<N

and from them we calculate
g =log (JN,M/C?N,zM)/lOg 2,

and the orders of consistency are given by g — 1.

Table 9 Local errors and values of ¢ for (32) with natural boundary conditions, N = 256

& M=38 M=16 M=32 M = 64 M =128

276 2.3118E-1 1.9211E-1 1.2116E-1 6.4267E-2 2.9005E-2
0.267 0.665 0915 1.148

2-8 2.3903E-1 1.9833E-1 1.2524E-1 6.6707E-2 3.0369E-2
0.269 0.663 0.909 1.135

2-10 2.4156E-1 2.0036E-1 1.2659E-1 6.7566E-2 3.0924E-2
0.270 0.662 0.906 1.128
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Table 10 Local errors and values of g for (32) with improved boundary conditions, N = 256

€ M=38 M=16 M=32 M = 64 M =128

276 7.0714E-2 2.5038E-2 7.5868E-3 2.0084E-3 4.6152E-4
1.498 1.723 1.917 2.122

2-8 7.1447E-2 2.5566E-2 7.7610E-3 2.0499E-3 4.6930E-4
1.483 1.720 1.921 2.127

2-10 7.1701E-2 2.5793E-2 7.8290E-3 2.0662E-3 7.2746E-4
1.475 1.720 1.922 1.506

Table 9 displays the local errors when boundary conditions (18) are taken, and
Table 10 displays the local errors when (19) are considered. In order to not enlarge
the paper in excess, we only show the results for three values of ¢ which are suf-
ficient to understand the differences between the two evaluations of the boundary
conditions. In these tables, again the local errors for improved boundary conditions
are smaller than for classical ones; also, the orders of consistency tend to zero for
natural boundary conditions and to one for improved boundary conditions.
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