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The lack of intensity in the central region of Laguerre-Gaussian beams reduces its 

applicability as illumination sources. For this reason, it is usual to shape a Laguerre-

Gaussian beam to a nearly-Gaussian beam using a binary phase mask. The behaviour of 

this rectified Laguerre-Gaussian beam is analysed in this work in the Fresnel regime. A 

comparison between diverse Laguerre-Gaussian beams with rectified Laguerre 

Gaussian beams shows that there appear two differentiate regions along the propagation 

axis: first transition region (for lower distances) with a flat intensity distribution, and a 

second region (for longer distances) where the rectified Laguerre-Gaussian tends to a 

Gaussian shape. The results of this work are very valuable for the use of this kind of 

beams in micro-optical applications. 
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1 Introduction 

In the recent years, several efforts have been made in order to miniaturize optical components 

and systems. In this sense, vertical-cavity surface-emitting lasers (VCSELs ) [1] represent a 

good choice as illumination source, due the small size and its mechanical properties. For this 

reason, VCSELs  have been extensively used in several micro opto-electronical applications 

[2]-[5]. However, when relatively high output powers are required, VCSELs  (and other laser 

resonators) emit usually in a high-order Gaussian beam [6]-[8]. Under cylindrical symmetry, 

these kinds of beams are referred as Laguerre-Gaussian beams, m
pLG , where p  is the radial 

order and m  is the azimuthal order [9]. The fundamental mode 0
0LG  corresponds to a pure 

Gaussian beam. Higher orders m
pLG  (specifically 0

mLG  beams) can present some kind of 

singularity in the phase at the central position, and consequently the beam intensity vanishes 

at the central region [9]. This fact reduces the applications of this kind of beams in fields such 

as communications, sensing or micro optics. For example, Fresnel-type Computer Generated 

Holograms ( CGH ) deflect an illumination beam producing an intensity pattern in the Fresnel 

regime [10]. The illumination with a non-fundamental m
pLG  with no intensity in the central 

region reduces drastically the efficiency of the system. 

Several solutions have been proposed to transform a m
pLG  into a fundamental Gaussian beam, 

[11]-[22], regardless the nature of the illumination source. The simplest transformation is 

made with a binary phase plate having alternating 0 and π  phase shifts, eliminating the 

singularity of the phase. This solution is also the best solution for micro-optical application, 

minimizing the size of the system. Thus, a Gaussian-like beam is obtained in the far field, or 

when the beam is focused. In general, the published works are centered on the focalization 

capabilities of the transformed beams and its spatial characteristics in the far field. However, 



it is not clear at which point along the propagation axis a corrected beam can be considered as 

a near-Gaussian beam with stable intensity at the central region. For a considerable number of 

micro optical applications, the common feature of the systems implies light travel lengths in 

the range of Fresnel approach. In this sense, unlike previous works, we analyze in this work 

the propagation under Fresnel approach, in order to obtain a good description of the 

propagation of a rectified m
pLG  beam.  

For the numerical analysis, we have used the “Beam Propagation Method” (BPM) [23]. It 

consists of a split-step numerical method for the simulation of light propagation under Fresnel 

approach. Thus, we consider scalar and paraxial domain, and we will assume in the following 

that laser beams have transversal dimensions small enough to consider them as paraxial 

beams and the angular spectrum of the amplitude distribution is located around the axis of 

propagation). Moreover, we will assume that the amplitudes of the beams are scalar 

quantities, and we will not consider polarization effects. These assumptions are in 

concordance with the common features of VCSELs  and micro opto-electronical devices, and 

do not reduce the validity of our work. 

This paper is organized as follows: first we explain in Section 2 the characteristics of the 

Laguerre-Gaussian beams. Next, in Section 3 we analyze the behavior of the rectified 

Laguerre-Gaussian beams under Fresnel approach. Finally, in Section 4 we summarize the 

main conclusions that can be extracted from this work. 

. 

2 Theoretical fundamentals 

A Laguerre-Gaussian beam m
pLG  of orders p  and m  (with beam waist radius 0ω ) in 

cylindrical coordinates ( ), ,z r θ  has its electric field amplitude at 0z =  defined by [24] 
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where m
pL  is the Laguerre polynomial with mode orders p  and m  [25]. When 0p m= =  the 

expression refers to a pure Gaussian beam. The beam waist width 0ω  coincides with the 

Gaussian width of the beam only for the fundamental mode. For higher orders, its width can 

be calculated by means of by [26] 

 0 2 1.pm p mω = ω + +  (2) 

Another important parameter related to Gaussian beams is the Rayleigh Range. For the 

fundamental mode, and being λ  the wavelength, this parameter is expressed as 

 
2
0 ,Rz πω=

λ
 (3) 

which gives a description of the behavior of the beam along the propagation distance. The 

width of a fundamental Gaussian beam at Rz  is ( ) 02Rw z z w= = . For example, for a 

Gaussian beam with 0 5 mω = μ  and 0.6 m,λ = μ  eq. (3) results 130 m.Rz = μ  We will use the 

Rayleigh Range in order to generalize our analysis along the distance propagation. 

Some examples of m
pLG  beams at 0z =  are collected in Figure 1, where several intensity and 

phase patterns for m
pLG  beams with different values of p  and m  are drawn. The intensity 

patterns have been obtained as the square of the complex amplitude field distribution. As it is 

shown, for 0p m= =  we obtain a pure Gaussian beam with a constant value of the phase. On 

the contrary, when the value of p  increases, corresponding concentric rings appear in the 

phase distribution. A profile along the radial coordinate from the central point to an extreme 

will change its value p  times between 2− π  and 2π . The intensity pattern has the form of a 

central peak surrounded by secondary concentric rings if 0m = . On the contrary, when the 



value of m  increases, there is not radial dependence in the phase distribution, but a profile 

along the azymuthal coordinate will change its value m  times between 2− π  and 2π  when 

2π  radians are covered. Thus, a singularity appears at the central position, which is the origin 

of the lack of intensity in the central region. When not p  nor m  vanish, we can appreciate 

both effects.  

When a m
pLG  beam propagates, the singularity in phase remains along the propagation. As 

example, and considering only the paraxial domain, some simulations by means of BPM are 

here carried out. We introduce as illumination field one of the modes shown in Figure 1. 

Then, we propagate along a certain distance z  from the origin. Finally, we take the profiles 

along x -axis at 0y =  for each distance, and we plot together these profiles. In Figure 2 are 

drawn a propagation for a 0
0LG  beam and for 1

0LG  beam. As we have commented, the 

singularity when 0m ≠  remains along the propagation, and consequently these kind of beams 

are not convenient as illumination sources. In the next section we will show a method to 

remove this singularity, and an analysis of the rectified beam. 

 

3 Rectified Laguerre-Gaussian beams 

The procedure used in this work to correct the singularity is quite simple: we introduce a 

binary phase mask at 0z =  in the form of the complementary image of the beam phase 

pattern [22]. In other words, wherever the beam phase has a value of 2− π , the correction 

mask has a value of 2π  and vice versa. Thus, the corrected beam (also called “rectified” 

Laguerre-Gaussian beam, referred here as m
pRLG ) has the same intensity pattern, but with a 

constant phase pattern. Binary phase mask manufacturing is a reliable and attainable 

technology, and advantageous in terms of cost-efficiency. 



Figure 3 shows the propagation of a 1
0RLG  beam and a 4

0RLG  beam. As can be seen, there is a 

redistribution of the intensity as the beam propagates. Thus, we see that the intensity at the 

central point grows with the distance of propagation for both cases. At the same time, the 

lobes-structure is lost with the propagation. The profiles along x - and z -axis at 0y =  are 

also plot in Figure 4. 

It is remarkable that this kind of beams do not correspond to a pure Gaussian beam, rather to 

generalized Gaussian beam. Thus, eq. (2) is no longer valid for the description of the beam 

width. In order to obtain a proper description of the m
pRLG  beams, we can make use of a 

generalized width, based on second-order moments of the irradiance patterns [26]. Let us 

assume an amplitude distribution along one dimension, ( ).E x  We define first the “center of 

mass” of this distribution as 
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Then, the width of the  m
pRLG  beam is defined as 
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and similarly for ( )y Eω  along the y -axis. We make use of ( )x Eω  rather than ( )y Eω  since 

we always have lobes along the x -axis for any m
pLG  mode with 0m ≠ . Using this 

expression, we have obtained the Gaussian width of several 0
mRLG  beams with different m  

orders (see Figure 5a). As can be shown, for the fundamental mode (where no correction has 

been made, since the phase pattern has no singularity) corresponds to the behavior of a 



fundamental Gaussian beam. Also the 1
0RLG  beam shows a similar behavior, but with higher 

width and divergence as the fundamental mode. It should be noted that the 1
0LG  phase pattern 

has not dependence along the y -direction, and is a special case. On the contrary, for rectified 

beams of higher orders, two regions can be differentiated: first, there is a transition region 

between a 0
mLG  mode and a near-fundamental Gaussian beam. In this region ( )x Eω  has a 

maximum and a minimum. This first region is shorter when m  increases, but the width is 

higher when m  increases. In the second region, the width follows a dependence similar to a 

Gaussian beam. In the case of 2
0RLG , the beam even shows a lower divergence as the 

fundamental Gaussian beam. Higher values of m  the divergence of the beams decreases with 

.m  For any case, the transition between both regions are located at a distance lower than 2 .Rz  

A study of the characteristics of m
pRLG  beams in the far field can be founded in [22]. 

Also, Figure 5b shows the profiles along the propagation axis for the central point in the x y−  

plane (perpendicular to the propagation axis). The behavior of the 0
0RLG  corresponds to a 

typical Gaussian fundamental beam. For higher orders, the behavior is similar in all the cases 

studied: it begins with no intensity at the central point, and then the intensity increases until 

reach a maximum. The distance at which the maximum is reached is longer when m  is 

higher. This maximum also increases with the mode order .m  After the maximum is reached, 

the intensity decreases along the propagation axis following the behavior of a fundamental 

Gaussian beam.  

However, the propagations drawn in Figure 3 show that the rectified beams are not pure 

Gaussian beam, rather near-likely Gaussian beams. In order to give a numerical description of 

the quality of the mean, we use a merit function. The Mean Square Error ( )MSE  for an x y−  

plane at any distance z  of propagation, is defined as 
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where ( ), ;referenceI x y z  is an intensity pattern used as a reference, which can change along 

z − axis, and ( ), ;I x y z  is the intensity pattern of the m
pRLG  beam at a distance .z  We are 

interested in two parameters: the closeness to a pure fundamental Gaussian beam, and the 

closeness to a “flat-top” profile (in other words, the amount of light that is concentrated in the 

central region with a homogeneous distribution). These two concepts will bring us a 

description of the validity of RLG  beams as illumination sources. For the first point, we use 

as referenceI  the square of a Gaussian distribution, defined as 
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where K  is a constant that gives the maximum value of the function. The reference function 

is then calculated as 
2
.reference GI G= = ψ  For the second point of interest, we use as referenceI  

the square of a Super-Gaussian distribution of order n , defined as 
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where n  is an integer. A higher value of n  produces a distribution closer to a flat-top profile. 

In our case, we chose 90.n =  Then, the reference intensity for this case results 

290 .reference SGI SG= = ψ  

For the calculus of MSE , we calculate at any distance xω  and .yω  Then, we define a G  and 

a SG  functions with these widths, and a maximum value equal to the maximum intensity at 

this plane. In Figure 6 we compare a 1
0LG  intensity one-dimensional profile with the 

corresponding G  and SG  functions with the proper width (for the calculations, we have bi-



dimensional functions). Next, we apply eq. (6) to these functions using each referenceI , and we 

obtaining a value of MSE  at this distance. Iterating these steps along z -axis, we can plot the 

curves shown in Figure 7.  

In Figure 7a, the MSE  relative to a Gaussian distribution along the axis of propagation is 

plotted. The smaller MSE  observed correspond to the fundamental 0
0RLG  beam. For higher 

orders of 0
mRLG  beams, a quickly minimization of the error before a distance of Rz  is noticed. 

After a distance of 2 Rz  all the curves show a falling dependence with the distance. It is 

notorious that the minimum MSE  with the distance, between the upper orders plotted, is 

obtained for 2.m =  This is due the lack of rotational symmetry. 

The MSE relative to a super-Gaussian distribution is plotted in Figure 7b. The curve for the 

fundamental 0
0RLG  beam follows a falling dependence, due again to the limited size of the 

computational window: as the beam diverges through propagation, there is a high amount of 

intensity in the internal zone of the super-Gaussian distribution. For 0
mRLG  beams of higher 

orders, the amount of intensity concentrated in the internal zones of the super-Gaussian 

profile decreases with the order m  (as the error increases with m ), except for a transition 

zone at a distance lower than .Rz  In this transition zone the 0
mRLG  beams (with 1m ≠ ) reach 

a minimum error lower than the error of the fundamental 0
0RLG  at the same distance. This 

minimum error is lower when m  increases. Thus, in this transition zone the rectified beams 

trends to a flat-top profile rather than to a Gaussian distribution. This fact can represent even 

an advantage in order to use RLG  beams as illumination sources in micro optical devices.  

 

 



4 Conclusions 

Laguerre-Gaussian beams are produced by laser resonators, especially when high output 

powers are required. They usually present a singularity in the phase distribution, causing a 

lack of intensity in central region. As a consequence, they do not result a good choice for 

illumination in micro-optical applications. The simplest way to correct the singularity is to use 

binary phase masks producing a homogeneous phase distribution. The behavior of rectified 

beams produced in such a way has been studied under Fresnel approach. For distances longer 

than 2 Rz  the rectified beams tend to a Gaussian distribution, but with lower quality than a 

pure Gaussian beam. For the particular case of 2m =  we obtain a lower Gaussian width in 

addition to a closer-Gaussian distribution along the distance of propagation. For distances of 

propagation smaller than 2 Rz  a transition region is observed. In this region, the rectified beam 

is changing from the original Laguerre-Gaussian mode to a near-Gaussian beam. In this 

transition region, the rectified beams are closer to a super-Gaussian distribution rather than a 

common Gaussian distribution. The results of this work are very valuable for the use of laser 

sources producing this kind of beams (as in the case of VCSELs) in micro-optical 

applications. 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure captions 

Figure 1. Intensity and phase patterns for m
pLG  beams at 0=z  with 0.6328 nmλ = , 

0 5 mw = μ  and different values of p  (the radial order ) and m  (the azimuthal 

order).  

Figure 2. Simulation by means of BPM: a) propagations of a 0
0LG  mode beam, and b) 

propagation of a 1
0LG  mode beam. Both propagations correspond to a profile along 

x -axis for 0y = , and are expressed in terms of 0w  and Rz . For the calculations, 

632.8 nm,λ =  0 5 μm,w =  and 124 μm.Rz =  

Figure 3. Propagation of a 1
0RLG  beam (up) and a 4

0RLG  beam (down), at different distances. 

Simulation obtained by means of BPM with 632.8 nmλ =  and 0 5 μm.w =  

Figure 4. Simulation by means of BPM of the propagation of several 0
mRLG  with different 

values of m . For the calculations, 632.8 nm,λ =  0 5 μm,w =  and 124 μm.Rz =  

Figure 5. Left: Gaussian width along x -axis obtained using eq. (5), for several 0
mRLG  beams 

along the propagation axis. Right: Intensity along z -axis at the central point for 

several 0
mRLG  beams. Numerical data have been obtained by means of BPM. 

Figure 6. Intensity for different field distribution. (LG): a 1
0LG  function with 0 5 m;ω = μ  (G): 

a Gaussian function; and (SG): Super-Gaussian function with 90.n =  All of them 

have a Gaussian width of 7.07 mxω = μ  corresponding to 1 1 2x x xω = + ω = ω  

following eq. (2).  
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Figure 7. Mean Square Error (normalized to the unity) of a 0
mRLG  beam for different values 

of ,m  relative to a) a Gaussian beam; and b) a Super-Gaussian beam with 90;=n  

both with the same widths xω  and yω  as the 0
mRLG  beam at any distance from the 

origin. 

 

 


