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A B S T R A C T

The storage of energy facilitates the management of renewable energy systems by reducing the mismatch between the
supplied energy and the forecasted production due to forecasting errors. The storage increases the reliability of the re-
newable energy system and enables participation in the electricity market by committing to the sale of electricity for the
following day. Nevertheless, the inclusion of the energy storage capacity requires the development of new management
policies. In this paper, we propose a management strategy for a renewable energy system with storage capacity that inte-
grates tactical and operational decisions in a single mathematical model that makes use of an updated probabilistic wind
speed forecast. Management policies are obtained by solving a sequence of rolling-horizon stochastic optimization prob-
lems whose formulation is inspired by the Stochastic Approximation Average technique. The management policies are
illustrated by their application to wind-farms using hydrogen as the energy storage medium.
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Nomenclature

unit price of committed energy at hour i
unit penalty cost of not supplying committed energy at
hour i
unit price of surplus energy at hour i

CapRecovery maximum capacity of the recovery process
(H2 → kWh)

CapTank maximum storage capacity of the tank
Captransf maximum capacity of the transformation

process(kWh → H2)
negative deviation of the supplied energy with regard
to the commitments
positive deviation of the supplied energy with regard
to the commitments
negative deviation of the supplied energy with regard
to the commitments associated with the predicted
wind speed curve wj(t)
positive deviation of the supplied energy with regard
to the commitments associated with the predicted
wind speed curve wj(t)
expected value of expression[.]

EfI efficiency rates of the transformation process
EfO efficiency rates of the recovery process
Gi kWh generated at hour i
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Email addresses: cazcarate@unavarra.es (C. Azcárate); mallor@unavarra.es (F.
Mallor); mateo@unizar.es (P. Mateo)

Gij kWh generated at hour i associated with the predicted
wind speed curve wj(t)

PWSF probabilistic wind speed forecast
Qi stochastic part of the economical objective function

that includes the penalty and surplus cost
Ti kWh stored in the tank at hour i
Tij kWh stored in the tank at hour i associated with the

predicted curve wj(t)
wj(t) wind speed for time t from the j-th prediction curve
W(t) probabilistic wind speed forecast at time t

kWh transformed into H2 and stored in the tank
kWh transformed into H2 and stored in the tank, at
time i, associated with wj(t)
kWh obtained transforming H2 from the tank, at time
i, into electricity (recovery process)
kWh recovered from the tank, at time i, associated with
the predicted curve wj(t)

Yi kWh committed for selling at hour i
Zi kWh sold at hour i
Zij kWh sold at hour i associated with the predicted wind

speed curve wj(t)

1. Introduction

Renewable energy provides valuable benefits to the environment,
public health, and the economy, but it has some drawbacks that in-
crease the difficulty of its management. The high variability in its
availability and uncertainty in its forecasting hinders the matching of
production to demand. Consequently, when there is low renewable
energy production in geographic areas with high renewable energy

http://dx.doi.org/10.1016/j.renene.2016.10.064
0960-1481/© 2016 Published by Elsevier Ltd.
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penetration, it is necessary to employ energy produced from fossil fu-
els to support the network. Fig. 1 illustrates this situation in the case
of Spain where, on average, more than one third of the electricity is
produced by renewable sources; however, although there are periods
in which the renewable penetration reaches 70%, in others, it does not
reach 20%. These periods with a lack of renewable energy generation
are compensated for by a greater generation of energy from unclean
sources, mainly from coal power plants.

The storage of energy would enable the management of the gen-
erated renewable energy, diminishing the effects of forecasting errors
by matching the output energy to the forecasted production. Thus,
the reliability of the renewable energy system would increase and the
storage would enable participation in the electricity market by com-
mitting to the sale of electricity for the following day. Furthermore,
the storage of energy during the high production periods and its re-
lease during the low production periods would help to increase the re-
newable energy penetration index. The storage of energy refers to the

Fig. 1. Sources of electricity production in Spain: Total percentage distribution for 2014 (top Figure) and daily total production by source for the years 2014 and 2015 (lower Figure)
(Source REE: http://www.ree.es/en).
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process of converting energy from one form, usually electrical en-
ergy, to a storable form in order to convert the stored energy back
into electrical energy when needed. According to the multiple func-
tions of the energy storage many authors have reviewed in the special-
ized literature research results from different perspectives: new mate-
rials, new technologies, management, applications, etc. (see for exam-
ple [3], [7] [14]). A comprehensive critical review of several types of
storage technologies and their deployment status is provided in Ref.
[5]. In addition to the state of the art of the available technologies, Luo
et al. provide an application potential analysis and where they would
be suited for integration into a power generation and distribution sys-
tem, [16].

This paper is focused on wind energy, and among the several en-
ergy storage systems available (lead-acid and sodium-sulfur batteries,
compressed air energy storage, pumped hydroelectric storage, elec-
trolysis combined with fuel cells, etc.), hydrogen (H2) is considered
as the storage medium. See Refs. [6] and [29] for a review of energy
storage technologies for wind power applications, and see Refs. [4]
[10], and [15] for different perspectives on the integration of storage
technologies. Water electrolysis technology produces hydrogen which
can be stored in high pressure containers. The stored hydrogen is used
for electricity generation by means of fuel cell, which can convert
the hydrogen plus oxygen in water plus energy (2H_2 + O_2 → 2H_2
O + Energy). It is a flexible way to store renewable energy on a large,
long-term scale potential from 1 kW to hundreds of MW, [22]. Hy-
drogen has the largest energy content of any fuel, with a capacity to
hold 120 MJ/kg, so that small amount of hydrogen can store signifi-
cant amounts of energy. The stable chemistry of hydrogen also facili-
tates the storage of energy longer than any other medium.

Nevertheless, the analysis presented in this paper could be eas-
ily adapted to other storage systems and even to other renewable
sources of energy. A hybrid wind-hydrogen energy system comprises
electricity-generating wind turbines, electrolyzers, and hydrogen com

pressors to convert electricity into hydrogen (the conversion process),
an H2-tank with finite hydrogen storage capacity, and various en-
ergy-conversion technologies for the process of turning hydrogen into
electricity (the recovery process) [1].

Energy prices follow rules similar to those of the stock market.
They vary with demand and depend of the availability of the different
energy sources. They fluctuate throughout a given day (as illustrated
in Fig. 2) and vary for the same time on different days and among dif-
ferent periods of the year (as reflected by the data in Table 1, which
summarizes information from the Spanish electricity market in 2015).
Our price model is taken from the Iberian Market, which is one of Eu-
rope's more liquid ones. There is a detailed description of the electric-
ity market on the web page of OMIE ([30]), the company that man-
ages the wholesale electricity market on the Iberian Peninsula. Elec-
tricity prices in Europe are set every day at 12 noon for the subsequent
24 h period. The purpose of this daily market is to facilitate electric-
ity transactions for the following day through the presentation of elec-
tricity sale and purchase bids by the market participants. Furthermore,
prices depend on whether the amount of electricity to be sold has been
pre-committed the previous day. In the case of a pre-commitment, the
price is higher, but if the agreed amount is ultimately not supplied,
then a penalty must be paid. When more than the agreed amount is
supplied, the surplus has a lower price. Thus, to obtain the full benefit
of participation in the electricity market, it is necessary to commit the
maximum possible amount of electricity for the day ahead and to have
no deviations in the quantity of electricity ultimately supplied.

The drawback of this system for determining electricity rates for
wind energy is that the exact amount of energy that will be produced
in the future cannot be known in advance because of the stochastic
nature of the wind. Therefore, the commitments to supply energy in
the electricity market must be made based on wind speed forecasts
whose errors will negatively impact the management of the energy

Fig. 2. Example of the variation in the hourly electricity price for the Iberian Peninsula. Source: OMIE web page: http://www.omie.es/en/inicio.

Table 1
Relevant data from the Spanish electricity market for 2015. Source: OMIE web page: http://www.omie.es/en/inicio.

Hour max. Hour min. Max. daily difference Min. daily difference Max. daily average Min. daily average Max. monthly average Min. monthly average

€/MWh 85.05 4.0 65.15 6.07 66.41 16.35 59.55 42.57
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system. Usually, the magnitude of the forecasting error grows with in-
creasing forecast lead time.

The prevailing paradigm in weather forecasting, in general, and in
the wind speed forecast, in particular, is to issue deterministic fore-
casts based on numerical weather prediction models [28]. These mod-
els describe the dynamic and physical behaviors of the atmosphere and
are usually run under different initial conditions. Each model, run un-
der different initial conditions, generates a trajectory that forecasts the
future wind speed values. A probabilistic wind speed forecast (PWSF)
at time t is a set of m predicted wind speed trajectories for the near fu-
ture [20]. Usually, meteorological forecasts have a forecast resolution
of 1 h for look-ahead times up to 48 h [24]. A comprehensive report
on numerical weather prediction has been issued by Argonne National
Laboratory [21]. Ensemble forecasting methodologies enable to esti-
mate the probability distribution of future wind speed variables [9].

Nevertheless, as is recognized in Ref. [25], a number of decision
support systems using PWSF as an input need ensembles (in other
words, trajectories) instead of predictive densities. For example, in
Ref. [19], forecasted wind speed trajectories are simulated by adding
random samples drawn from ARMA series modeling possible out-
comes of forecasting errors to historical time series. These trajecto-
ries are fed into a stochastic linear programming model to schedule the
electricity production from different sources of energy in cases of high
wind energy penetration.

This paper is focused on obtaining both tactical and operational
management policies for wind farms equipped with energy storage
systems. By tactical decisions, we mean the decisions made every day
to fix the amount of energy that should be committed for selling for
each of the 24 h of the day ahead. The information available for these
decisions consists of the electricity prices, the associated penalties, the
state of the energy storage, the commitments to sell electricity for the
rest of the day, and a PWSF. Operational decisions are made every
hour when the amount of electricity to sell must be decided. These
operational decisions are made taking into account the produced and
committed electricity for the current hour and the state of the energy
storage, as well as the commitments and the wind speed forecast for
the near future and the electricity prices. These operational and tacti-
cal decisions, in the presence of a PWSF, have been treated separately
in the literature. In this stochastic environment, the decisions of com-
mitments, including how the system will be operated in the future, and
the operational decisions, considering the future commitments, have
not yet been studied simultaneously. In Ref. [1] a mixed integer linear
program problem was proposed to obtain the commitments using only
one trajectory for the wind forecast [2]. introduced a newsvendor strat-
egy for fixing the commitments making use of a PWSF. Operational
decisions were not optimized in either of these two models, which
consider only simple strategies oriented towards fitting the commit-
ted energy as much as possible. Certain types of optimal policies for
the management of the energy tank were studied in Ref. [18], but the
commitments are fixed independently of these operational strategies.
Using the future production densities obtained from a PWSF, an oper-
ational strategy for the management of a set of batteries connected to
a wind-farm is proposed in Ref. [12] to control the deviations from the
dispatch curve.

In this study, we present a unique stochastic mathematical model
that is used to obtain both the commitments of energy and the opera-
tional management of the energy system. When this integrated model
is applied to obtain one type of decision, it also considers the other
type of decision. Furthermore, the use of this mathematical model in a
rolling horizon strategy includes a regular updating of the PWSF.

To obtain both optimal management policies, we formulate and
solve a sequence of rolling-horizon stochastic optimization problems
whose formulation is inspired by the Stochastic Approximation Aver-
age (SAA) technique ([11] [27]).

The paper is organized as follows. In section 2, we describe the
energy system management and we present its mathematical model-
ing in a stochastic environment. We propose an SAA inspired algo-
rithm to solve it. Section 3 illustrates the methodology by analyzing
several scenarios defined by differences in the variability in the wind
regime, different electricity prices and differences in the accuracy of
the wind speed forecasts. Furthermore, we compare the results of this
method with one that separately optimizes both types of decisions. Fi-
nally, section 4 contains our conclusions and final remarks.

2. Mathematical modelling

2.1. Stochastic nature of the energy system management

We consider a wind energy system grid-connected to a storage ca-
pability. In particular, we assume that the energy is stored by produc-
ing H2 in an electrolysis process, although other storage systems could
also be considered. This energy backup facilitates participation in the
electricity market through committing energy to be sold for the day
ahead. These commitments are made once per day and can be con-
sidered as tactical decisions. In the day-ahead electricity market, the
suppliers of energy must declare the amount of energy that they are
selling in each one of the 24 h of the following day. Specifically, let
Yi be the amount of kWh committed for selling at hour i. The revenue
obtained from the selling of Yi kWh at hour i is , where is
the unit price of a committed kWh at hour i. Let Zi be the amount of
kWh ultimately sold at hour i. In general, it is advantageous to match
the amount of committed energy Yi with the dumped energy Zi be-
cause deviations have adverse economic consequences: when the sold
energy Zi is less than Yi, a penalty Cpi should be paid for each kWh
committed and not supplied (furthermore, the renewable energy sys-
tem becomes a non-reliable energy supplier). For the case in which
the sold energy Zi exceeds the committed energy Yi, the selling price
of each kWh in excess, , is less than the committed kWh price,
. Thus, the total economic revenue at hour i with Yi committed KWh
and Zi kWh sold can be expressed as:

where.
Here, the deviational variables and express the negative and

positive deviations of the supplied energy with regard to the commit-
ments.

The sold energy Zi comes from the Gi kWh generated at hour i plus
the kWh obtained transforming H2 from the tank into electricity
minus the amount of kWh used for the production of H2. These
decisions concerning the management of the energy storage constitute
the operational decision making. That is,

Then, the economic revenue at hour i can be decomposed into two
parts:

(1)
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• , which depends on the committed energy when the tactical de-
cision is made, once per day

• which depends on both the energy generated
at hour i and the operative management decisions of the energy stor-
age system

At every moment when tactical and operational decisions are
made, the decision-maker knows the structure of prices and penal-
ties, as well as the amount of energy stored. However, the value Gi,
the amount of energy produced at hour i, which is crucial to making
both tactical and operational decisions, is not known with certainty.
Therefore, the amount of renewable resource available in the future
can be considered stochastic. Decisions are made based on a forecast
of the renewable resource, which is subject to errors. In an effort to
minimize these errors, several forecasts obtained from different types
of meteorological methods are considered simultaneously, leading to
a probabilistic forecasting ([9] [13], [20] [23]). Specifically, we as-
sume that a probabilistic wind speed forecast (PWSF) at each time t0
is available: a set of m predicted wind speed trajectories for the near
future. We denote the available probabilistic forecast at time t0 by

, where wj(t) is the predicted
wind speed for time t in the j-th prediction curve. These m different

forecasts for the wind speed are used as inputs of the power curve,
which converts wind speed to power generation. After this transforma-
tion, we obtain a probabilistic forecast of the amount of electricity pro-
duced for each of the next n hours: ,
where Gij is the KWh generated at hour i associated with the predicted
wind speed curve wj(t). Fig. 3 depicts two examples of a PWSF with
25 trajectories. In this figure, the red dotted line represents the actual
wind speed and the other trajectories represent the PWSF. In conclu-
sion, the decision-making is performed in a stochastic environment,
which has to be taken into account to obtain meaningful results. In the
next section, we present a methodological approach for the stochastic
optimization that is appropriate for analyzing our problem.

2.2. Stochastic Average Approximation

Sample-average approximation (SAA) [27] is a technique used to
solve simulation optimization problems. It is applied to problems of
the form

Fig. 3. Examples of a probabilistic wind speed forecast (25 curves).
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where, and the real-valued function , with
a random element whose distribution does not depend on x, can-

not be observed or computed directly. In SAA, the function f(x) is
estimated through simulation by using a sample of
. The function is deterministic and therefore the function

is. Thus, deterministic optimization tech-
niques can be applied to solve the problem:

The optimal solution of the last problem is taken as the estima-
tor of the optimal solution of the original problem. The solution is
expected to converge to the solution of the stochastic problem when it
satisfies certain nice structural properties [11]:

1. SAA is appropriate only when the approximating functions fm have
some structure that enables the application of an efficient determin-
istic optimization algorithm, and

2. the limiting function f that we actually want to optimize shares that
structure, so that the properties of the limiting function - such as the
location of local optima - are similar to those of the approximating
function.
The continuity of the objective function presented in the previous

section guaranties the achievement of condition 2. The formulation of
our problem as a linear programming problem (see the next section)
ensures the fulfillment of condition 1. The reader is referred to [26] for
a deep analysis of SAA convergence properties.

2.3. Formulation of the optimization problem for the energy system
operational management

The operational management of the energy system consists of de-
ciding at each hour how much electricity to release into the grid. This
implies management of the energy storage that consists of deciding at
each hour i the amount of the generated kWh that is used to produce
hydrogen, denoted by , and the amount of kWh that is produced by
using the stored hydrogen, denoted by . Then, and are the
decision variables of the operational optimization problem. The con-
straints on these values refer to the impossibility of storing a quantity
greater than the storage capacity and using more hydrogen than the
amount stored in the tank.

Let us suppose that the present time is denoted by t = 0 and that the
operational problem is to be solved for the next hour, denoted by t = 1.
The mathematical formulation of this problem to determine the opti-
mal values for and is:

The stochastic objective function was already introduced in equa-
tion (1) (section 2.1), and it assesses the profit obtained from the en-
ergy sold during the next hour. Constraint (2) measures the deviation
between the committed energy Y1 and the released energy Z1. Con-
straint (3) expresses the released energy Z1 as a function of the gener-
ated energy G1 and the energy introduced/released to/from the storage,

and , respectively. The H2 flow control is considered in con-
straint (4), where Ti represents the amount of H2 stored at the begin-
ning of period i, and EfI and EfO represent the efficiency rates in the
transformation process and the recovery process, respectively. Finally,
the constraints (5), (6) and (7) represent the transformation, recovery
and H2-tank capacity constraints, respectively.

This optimization problem to maximize the profit at time t = 1, has
a trivial solution: emptying the tank to obtain the maximum profit by
the selling of the maximum amount of energy. Clearly, the solution of
the problem neglects the consequences in the future evolution of the
energy system. To overcome this drawback, two possible alternative
formulations of the problem can be considered. The first is to assign
an economic value to the energy stored in the tank at the end of the
time period (value T2) and to include it in the objective function:

However, the solution to this problem is very sensitive to the value
of α, which is very difficult to calibrate properly.

A more adequate formulation of the optimization problem consists
of adopting a rolling horizon strategy, evolving the system into the fu-
ture. This strategy takes into account both the consequences of current
decisions and the future profits from the selling of energy. We propose
the following problem considering a horizon of n hours:

(2)

(3)

(4)

(5)

(6)

(7)
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Although the formulation of this problem involves the decision
variables , only the decision variables associated
with the first hour, and , are necessary to implement the op-
erational control. At the next hour, a new optimization problem with
updated information will be formulated to obtain its operational man-
agement. That is, variables are only necessary to
evolve the system into the future.

At any time, the value of energy committed for the next few hours
(at least for the next 12 h) is known, and the value of Yi is known. Nev-
ertheless, the problem can include periods of time in which the com-
mitments are not fixed yet. In these cases, Yi is not a parameter but
rather a decision variable of the optimization problem.

As we discussed in section 2.1, this problem is stochastic in na-
ture. Let Qi denote the second part of the objective function, which ac-
counts for the consequences of the deviations from the commitments:

. At each hour, we seek the best

operational management of the energy storage in the sense that it max-
imizes the total expected revenue during the period of the next n hours.

where we recall that are random variables because they are
functions of the random variable , the amount of energy generated
at hour i:

An SAA inspired algorithm. We propose to solve this stochastic
problem using a method inspired by the Stochastic Average Approxi-
mation. The application of SAA methodology needs, at every time t, a
sample of the wind speed random variable. Sensu stricto, this random
variable cannot be sampled because it is only observable in the future.
However, we can assume that the role of the needed statistical sample
is played by the available PWSF.

A direct implementation of the SAA method leads to the following
formulation:

Subject to

Variables measure the deviation of the energy released into
the grid, , with respect to the committed energy
when the j-th forecasted energy value for time period i, Gij, is con-
sidered, and the common operational management, described by vari-
ables , is implemented. Then,

The average of all of these deviations, , is
used as estimation of the expectations in the ob-
jective function.

The main drawback of this formulation is the inflexibility that im-
plies maintaining the same operational decisions in the future, inde-
pendently of the amount of energy generated in each one of the m wind
forecasts. Thus, the operational policy for the tank could dictate re-
trieval of energy from the tank in the cases of trajectories anticipating
a high production of electricity, even though there is sufficient produc-
tion to satisfy the commitments for that hour; and the opposite may
also occur: in cases of low levels of production, the operational de-
cisions could require storing part of the electricity that is necessary
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to fulfill commitments. Therefore, a common policy may be far from
optimal in each individual scenario defined by each wind speed trajec-
tory.

To overcome this problem, we propose to modify this straight for-
ward formulation of the SAA algorithm by imposing the same oper-
ational management in all forecasted trajectories at the first hour (the
one that is implemented in practice) but allowing a specific opera-
tional management beyond time t = 1. The amount of electricity to be
released into the grid is obtained as the mean of the values obtained for
each of the m wind scenarios. Then, the objective function accounts
for the cost resulting from the deviation of this mean value with re-
spect to the value of committed electricity.

[P4] SAA algorithm with future flexible management

Observe that constraints (8) and (9) were already included in the
formulation of [P1], while (10) defines the amount of kWh to be
released in the future according to each wind trajectory, (11) as-
sures that the employed policies are feasible, (12) estimates the ex-
pected kWh released into the grid and (13) evaluates the deviations of
this average with respect to the committed kWh. The remaining con

straints, (14), (15) and (16), are the capacity constraints that were al-
ready used in previous problems.

2.4. Formulation of the optimization problem for the energy system
tactical management

Once per day, the managers should decide how much energy to
commit for each of the 24 h of the day ahead. This problem is solved
by formulating a problem similar to the previous one [P4]. The differ-
ence is that the Yi are known parameters for the indices i correspond-
ing to decision hours of the current day, but they are decision variables
for each of the 24 h of the next two days, and the values obtained for
the variables in the next day define the tactical decisions because
they are considered as the electricity selling commitments. Suppose
that the decision is made every day at 12 a.m., then t = 1 corresponds
to the hour from 12 a.m. to 1 p.m., t = 2 to the hour from 1 p.m. to 2
p.m., and so on. The commitments for the 12 h ranging from 12 a.m.
to 12 p.m. are known because they were fixed the day before. Then,
the decision variables are Yi for i = 13, ….,36, which will provide the
energy that should be committed for each of the 24 h of the day ahead.
Sometimes the time horizon extends further because it is common to
obtain a wind speed forecast for the rest of the day plus two whole
days. In terms of hours, this would mean that there are decision vari-
ables Yi for i = 37, …,60, which are used to evolve the operation of the
energy system into the future.

3. Illustrative examples and results

To illustrate the methodology to obtain both tactical and opera-
tional management policies, we consider a renewable wind-farm sys-
tem with H2-based storage inspired by a real system that was the sub-
ject of previous research [1]. An experimental wind-farm was built in
Sotavento, Spain, to explore energy storage systems and their manage-
ment [31].

We developed a discrete time simulation model to test the man-
agement policies in different environments defined by the electricity
prices, by the accuracy of the PWSF and by different wind regimes.
The simulation model incorporated all of the important equipment that
comprises the wind-H2 energy system [1]. The wind-farm was char-
acterized by its power capacity and its wind-power conversion curve.
The H2-tank was described by its capacity. The electrolyzers, com-
pressor, and the various technologies involved in the recovery process
were specified by both their capacities and their efficiency curves.

Key features in our management strategy are the updated PWSF
and the integration of the tactical and the operational decisions within
a single mathematical model. Our model simulates the PWSF at each
hour through the simulation of m wind trajectories. This model han-
dles the prediction errors as follows. The wind speed predictions are
simulated by adding an error to the historical wind speed series. The
error is obtained by combining the absolute and relative errors. The
relative error depends on the prediction horizon and increases as the
horizon extends. To smooth the predicted energy curve, an auto-cor-
related error series is generated from a record of past errors. For more
details about this wind-speed simulation model, see Ref. [17] (a sim-
ilar model is used in Ref. [19]). Furthermore, a temporal displace-
ment of the forecasted trajectories is incorporated to simulate phase
errors, which are of great importance because they may easily produce
a significant energy imbalance. Thus, the accuracy of the probabilistic
forecast can be controlled through the error, magnitude and temporal
components [8].

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)
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Actual wind speed data are used to drive the simulation, whereas
the PWSF is used as an input to the optimization problems to ob-
tain the tactical and operational management policies. Specifically, for
each hour, the updated PSWF is simulated along with the associated
energy production. Taking into account the probabilistic renewable
energy forecast, the quantity of hydrogen stored in the tank, and the
amount of pre-committed electricity for the next hour, the optimiza-
tion problem [P4] is formulated and solved to obtain the operational
policy for the next hour. When the simulation clock reaches the time
at which the energy supply commitments for the following day need
to be announced (at 12 a.m.), these values are determined by solving
the optimization problem [P4] wherein the decision variables Yi for
i = 13, …., 36 are used as commitments of energy for the 24 h of the
day ahead.

We conducted different simulation experiments by using histori-
cal hourly wind speed data. We present simulation results considering
both one-year data and three specific patterns of wind speed: periods
of low wind speed, (Fig. 4-a), long periods of high wind speed (Fig.
4-b), and periods with oscillating wind speed (Fig. 4-c).

A maximum absolute error of 2 m/sec and two ranges of relative
error, [0%, 50%] and [0%, 100%], are set. This means that at the end
of the forecasting horizon, the magnitude of the relative error can be
any percentage of the real wind between 0 and 50% or 100%. We con-
sider an H2-tank with an 800 equivalent-kWh storage capacity, effi-
ciencies of 60% and 80% for the electricity-H2 transformation sys-
tem and the recovery system, respectively (thus, an efficiency of 48%
for the whole storage system). We use real hourly energy prices for
committed energy, and we explore different penalty and surplus

prices The

optimization problems are solved with a rolling horizon of 61 h.
The management policy O + T proposed in this paper is imple-

mented using one, ten and thirty curves in the PWSF (O + T-Manag.
columns in the tables). These results are compared with the policy
that only optimizes the tactical decisions and operates the tank in an
attempt to meet the commitments for each hour by using the tank if
necessary and storing any surplus (Tact-Manag. column, strategy pro-
posed in Ref. [1].) The results comprise a standardized economic as-
sessment of the system (Profit row); the standardized amount of en-
ergy committed (Commitments row); an assessment of the system reli-
ability by providing the percentage of committed energy not supplied
(% Commits not supplied row); the percentage of energy sold above
commitments (% Surplus row); and the assessment of the use of the
tank measured through the percentage of energy sold obtained from
the tank storage (% kWh from the tank row).

Tables 2–4 show simulation results considering the three different
wind patterns represented in Fig. 4-a, 4-b, and 4-c, respectively. The
results for a 1-year wind period are presented in Tables 5 and 6, and in
the latter, the PWSF includes a 1-h displacement in the temporal axis
to simulate phase errors. Finally, Tables 7 and 8 present experimen-
tal results for the case in which the storage of energy is not available,
using PWSF without and with phase errors in the predictions, respec-
tively.

The results show that a greater benefit is obtained when the tacti-
cal and operational decisions are integrated than when the decisions
are made separately. In the case of a single wind curve, the profit im-
provement can reach 5% in the simulation of a full year (profit values
0.949 and 0.943 in column Tact-Manag in Table 5).

The availability of PWSF improves the economic benefit. The
profit increase can exceed 10% in cases of final relative forecasting
errors of 50% and can be near 10% when the forecasting errors in-
crease to 100% (see results in Tables 2 and 4). However, this im

provement due to PWSF in the case of high wind periods (Table 3) is
less.

Regarding the system reliability, the Tact-Manag is slightly bet-
ter than O + T-Manag when only one prediction curve is used; how-
ever, the system reliability is significantly enhanced when a proba-
bilistic forecast is available. See, for example, the results in Tables 2
and 4, which show reliability values of approximately 11–12% for the
O + T-Manag 1-curve-case, 10–11% for the Tact-Manag case, and an
improvement for the PWSF case, in which the percentage of commit-
ments not supplied decreased to 3.3–4.7%.

The use of the tank in situations with strong winds (Table 3) is
lower compared to other more irregular wind patterns (Tables 2 and
4). These tables also reveal that the PWSF achieves reduced tank us-
age.

Tables 6 and 8 demonstrate that phase errors in the wind fore-
cast hinder the management of the system. For example, consider-
ing penalties of 30%, we observe a decrease of 4%–6% in the profits
for 1-year experiments (Table 6) in comparison with the same exper-
iments without phase errors (Table 5). This profit decrease is accen-
tuated in the case of 70% penalties, approaching 10% for the PWSF
cases. This worsening is also observed in the reliability when compar-
ing the percentage of commitments not supplied, with values of ap-
proximately 12% for the single forecast case and final relative error of
100%. For the PWSF case, the results in Table 6 show values over 6%
for 50% final relative errors, while the same scenario without tempo-
ral errors (Table 5) has approximately a 1% failure in commitments.

Finally, when only the tactical decisions are considered and no
storage is available, the results in Table 7 show a soft decrease in the
profit and a worsening in the system reliability. Furthermore, this be-
havior is emphasized when the temporal errors in forecasting are con-
sidered (Table 8), reaching 16.31% of commitments not supplied.

4. Conclusions

In this paper, we proposed a management strategy for a renewable
energy system with a storage capacity that includes tactical and oper-
ational decisions in a single mathematical model, which makes use of
an updated PWSF. In this way, decisions regarding the sale of energy
commitments in the electricity market and the operation of the energy
storage are integrated in the same decision framework. The mathe-
matical optimization problem is stochastic and has been solved by us-
ing an approach based on the Stochastic Approximation Average tech-
nique.

We tested the new management strategies by developing a simula-
tion model, and the results indicate that a greater benefit is obtained
when the tactical and operational decisions are integrated than when
the decisions are made separately. The superiority of the new man-
agement strategy is reinforced by the use of PWSF, which increases
the reliability of the renewable energy as a provider of committed en-
ergy. Finally, the advantage of having energy storage has been demon-
strated in all of the studied scenarios.

The management policies presented in this paper were illustrated
for wind-farms and H2-based energy storage. However, these policies
can be adapted easily to other renewable sources and other methods of
storing energy.

Finally, the optimization was carried out by using an economic ob-
jective function, and although the results related to the reliability of
the energy system as a provider of energy were presented, this relia-
bility goal was explicitly included in the optimization problems. The
consideration of this objective would lead to bi-objective optimiza



UN
CO

RR
EC

TE
D

PR
OO

F

10 Renewable Energy xxx (2016) xxx-xxx

Fig. 4. Different wind speed patterns: periods of low wind speed, (Fig. 4-a), long periods of high wind speed (Fig. 4-b), and periods of oscillating wind speed (Fig. 4-c).

tion problems to represent the trade-off between reliability and profit
achievements.
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Table 2
Experimental results for wind oscillation including periods around zero-wind in Fig. 3-a.

Final relative forecasting error = 100% Final relative forecasting error = 50%

PWSF O + T-Manag. Tact-Manag PWSF O + T-Manag. Tact-Manag

1 10 30 1 1 10 30 1

Cp = 0.3
Cs = 0.5

Profit 1 1.087 1.096 0.987 1.060 1.107 1.115 1.051

Commitments 1 1.013 1.000 0.999 1.005 1.012 1.002 1.006
% Commits not supplied 11.41 4.76 3.28 9.87 6.15 2.66 1.35 5.33
% Surplus 9.44 3.32 3.1 7.44 4.46 1.41 1.08 3.29
% kWs from the tank 5.85 4.37 4.22 6.37 5.04 4.16 4.04 5.31

Cp = 0.7
Cs = 0.1

Profit 1 1.167 1.185 0.997 1.117 1.207 1.223 1.112

Commitments 1 1.007 0.995 0.999 1.006 1.009 1.000 1.006
% Commits not supplied 11.15 4.13 2.92 9.89 6.18 2.36 1.27 5.45
% Surplus 8.53 3.0 2.93 7.37 4.06 1.27 1.12 3.29

Table 3
Experimental results for high wind periods in Fig. 3-b.

Final relative forecasting error = 100% Final relative forecasting error = 50%

PWSF O + T-Manag. Tact-Manag PWSF O + T-Manag. Tact-Manag

1 10 30 1 1 10 30 1

Cp = 0.3
Cs = 0.5

Profit 1 1.030 1.031 0.996 1.037 1.050 1.052 1.034

Commitments 1 1.014 1.008 1.000 1.053 1.052 1.051 1.053
% Commits not supplied 2.83 0.28 0.06 2.49 1.62 0.26 0.07 1.33
% Surplus 7.1 3.91 4.31 6.43 1.36 0.42 0.35 0.67
% kWs from the tank 1.62 1.09 0.99 1.96 1.36 0.99 0.97 1.66

Cp = 0.7
Cs = 0.1

Profit 1 1.054 1.053 0.999 1.067 1.090 1.092 1.066

Commitments 1 1.014 1.008 1.000 1.052 1.053 1.051 1.053
% Commits not supplied 2.6 0.11 0.02 2.49 1.5 0.16 0.04 1.33
% Surplus 6.67 3.57 4.24 6.44 1.19 0.34 0.28 0.67
% kWs from the tank 1.85 1.24 1.02 1.96 1.49 1.08 1.01 1.66

Table 4
Experimental results for regular wind periods in Fig. 3-c.

Final relative forecasting error = 100% Final relative forecasting error = 50%

PWSF O + T-Manag. Tact-Manag PWSF O + T-Manag. Tact-Manag

1 10 30 1 1 10 30 1

Cp = 0.3
Cs = 0.5

Profit 1 1.082 1.095 0.986 1.063 1.108 1.129 1.053

Commitments 1 1.024 1.030 0.999 1.010 1.025 1.020 1.008
% Commits not supplied 12.16 4.38 3.61 11.45 5.96 2.1 0 5.28
% Surplus 11.72 2.66 1.73 10.3 5.02 0.81 0 3.83
% kWs from the tank 4.43 3.19 2.78 5.02 3.89 2.74 2.18 4.38

Cp = 0.7
Cs = 0.1

Profit 1 1.174 1.196 0.995 1.132 1.222 1.234 1.129

Commitments 1 1.021 1.028 1.000 1.009 1.024 1.026 1.008
% Commits not supplied 11.85 3.93 3.28 11.34 5.69 1.82 1.38 5.22
% Surplus 11.22 2.33 1.44 10.25 4.73 0.55 0.41 3.86
% kWs from the tank 4.82 3.56 3.07 5.09 4.21 2.96 2.58 4.44
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Table 5
Experimental results for 1 year of wind data.

Final relative forecasting error = 100% Final relative forecasting error = 50%

PWSF O + T-Manag. Tact-Manag PWSF O + T-Manag. Tact-Manag

1 10 30 1 1 10 30 1

Cp = 0.3
Cs = 0.5

Profit 1 1.050 1.059 0.949 1.047 1.075 1.080 1.024

Commitments 1 0.978 0.979 0.913 1.004 0.991 0.991 0.973
% Commits not supplied 9.86 3.42 2.61 7.47 5.17 1.63 1.12 4.04
% Surplus 7.29 3.91 3.33 12.0 2.75 1.15 0.86 3.88
% kWs from the tank 4.03 3.03 2.73 5.3 3.34 2.73 2.53 4.13

Cp = 0.7
Cs = 0.1

Profit 1 1.102 1.117 0.943 1.093 1.148 1.157 1.051

Commitments 1 0.978 0.980 0.914 1.004 0.991 0.992 0.940
% Commits not supplied 9.45 3.16 2.37 7.11 4.89 1.44 0.98 3.52
% Surplus 6.75 3.64 3.04 11.41 2.46 1.01 0.74 6.35
% kWs from the tank 4.36 3.21 2.89 5.61 3.55 2.85 2.62 4.58

Table 6
Experimental results for 1 year of wind data, with a 1-h temporal displacement in the forecasted trajectories.

Phase error (1-h temporal displacement)

Final relative forecasting error = 100% Final relative forecasting error = 50%

PWSF O + T-Manag. Tact-Manag PWSF O + T-Manag. Tact-Manag

1 10 30 1 1 10 30 1

Cp = 0.3
Cs = 0.5

Profit 0.961 1.005 1.009 0.937 1.001 1.018 1.019 0.987

Commitments 0.976 0.977 0.983 0.944 0.993 0.994 0.997 0.990
% Commits not supplied 12.45 7.43 7.36 10.47 8.78 6.89 6.98 7.27
% Surplus 10.74 5.7 5.09 10.35 5.41 3.3 3.08 2.86
% kWs from the tank 5.49 5.35 5.3 7.0 5.47 5.55 5.53 6.82

Cp = 0.7
Cs = 0.1

Profit 0.938 1.033 1.041 0.868 1.023 1.060 1.062 1.016

Commitments 0.976 0.974 0.980 0.875 0.992 0.992 0.994 0.991
% Commits not supplied 11.75 6.64 6.49 9.70 8.02 6.11 6.12 7.25
% Surplus 9.6 4.74 4.0 16.15 4.18 2.27 2.06 2.94
% kWs from the tank 6.17 6.0 6.0 7.25 6.22 6.22 6.23 6.84

Table 7
Experimental results for 1 year of wind data, without tank storage.

Final relative forecasting
error = 100%

Final relative forecasting
error = 50%

PWSF O + T-
Manag.

Tact-
Manag

PWSF O + T-
Manag.

Tact-
Manag

10 30 1 10 30 1

Cp = 0.3
Cs = 0.5

Profit 1.037 1.047 0.980 1.065 1.071 1.032

Commitments 0.994 0.995 1.010 1.011 1.010 1.018
% Commits not
supplied

4.30 3.22 11.72 2.08 1.40 6.20

% Surplus 6.31 5.17 12.17 2.51 1.85 5.95
Cp = 0.7
Cs = 0.1

Profit 1.070 1.091 0.943 1.128 1.141 1.056

Commitments 0.996 0.997 1.012 1.013 1.013 1.020
% Commits not
supplied

4.30 3.22 11.72 2.08 1.40 6.20

% Surplus 6.31 5.17 12.17 2.51 1.85 5.95

Table 8
Experimental results for 1 year of wind data, without tank storage, with a 1-h temporal
displacement in the forecasted trajectories.

Phase error (1-h temporal displacement)

Final relative forecasting
error = 100%

Final relative forecasting
error = 50%

PWSF O + T-
Manag.

Tact-
Manag

PWSF O + T-
Manag.

Tact-
Manag

10 30 1 10 30 1

Cp = 0.3
Cs = 0.5

Profit 0.977 0.980 0.931 0.989 0.990 0.972

Commitments 0.988 0.994 0.986 1.007 1.010 1.005
% Commits not
supplied

11.06 10.88 16.31 10.57 10.59 12.46

% Surplus 13.4 12.73 18.65 11.27 11.01 13.28
Cp = 0.7
Cs = 0.1

Profit 0.940 0.947 0.841 0.964 0.966 0.927

Commitments 0.990 0.996 0.989 1.009 1.012 1.007
% Commits not
supplied

11.06 10.88 16.31 10.57 10.59 12.46

% Surplus 13.4 12.73 18.65 11.27 11.01 13.28
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