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Abstract

Within search-on-speech, Spoken Term Detection (STD) aims to retrieve data from a speech repository given a
textual representation of a search term. This paper presents an international open evaluation for search-on-speech
based on STD in Spanish and an analysis of the results. The evaluation has been designed carefully so that several
analyses of the main results can be carried out. The evaluation consists in retrieving the speech files that contain
the search terms, providing their start and end times, and a score value that reflects the confidence given to the
detection. Two different Spanish speech databases have been employed in the evaluation: MAVIR database, which
comprises a set of talks from workshops, and EPIC database, which comprises a set of European Parliament sessions
in Spanish. We present the evaluation itself, both databases, the evaluation metric, the systems submitted to the
evaluation, the results, and a detailed discussion. Five different research groups took part in the evaluation, and ten
different systems were submitted in total. We compare the systems submitted to the evaluation and make a deep
analysis based on some search term properties (term length, within-vocabulary/out-of-vocabulary terms, single-word/
multi-word terms, and native (Spanish)/foreign terms).
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1 Introduction
Search-on-speech aims to retrieve speech content from
audio repositories that matches user queries. Due to the
huge amount of information stored in audio and video
repositories, the development of efficient methods for
retrieving the stored information makes search-on-
speech an important research area [1]. Within search-
on-speech, there are several applications (that can be
further divided into two different categories depending
on the input/output of the system) shown in Table 1 for
which significant research has been conducted. Within
these applications, Spoken Term Detection (STD) is
especially important, since this offers the possibility of
retrieving any speech file that contains any term from its
textual representation and hence is able to be used from
devices with text input capabilities. Moreover, STD is

also suitable for building open-vocabulary search-on-
speech systems.

1.1 Spoken term detection overview
Spoken Term Detection has been receiving much interest
for years from several companies/research institutes around
the world (IBM [2–4], BBN [5], SRI and OGI [6–8], BUT
[9–11], Microsoft [12], QUT [13, 14], JHU [15–17],
Fraunhofer IAIS/NTNU/TUD [18], NTU [19, 20], IDIAP
[21], etc). Spoken Term Detection systems are composed of
two main stages: indexing by an Automatic Speech
Recognition (ASR) subsystem, and then search by a
detection subsystem, as depicted in Fig. 1. The ASR
subsystem produces word/subword lattices from the input
speech signal as an index. The detection subsystem inte-
grates a term detector and a decision maker. The term de-
tector searches for putative detections of the terms in the
word/subword lattices, and the decision maker decides
whether each detection is a hit or a false alarm (FA) based
on certain confidence measures.
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Word-based ASR has been widely used for building STD
systems [7, 22–26] since this typically yields better
performance than subword-based ASR [7, 8, 10, 22, 27–41]
due to the lexical information the former employs. How-
ever, one of the main drawbacks of word-based ASR in
STD is that this can only detect within-vocabulary, hence-
forth in-vocabulary (INV) terms. On the other hand, the
subword-based approach has the unique advantage that
it can detect terms that consist of words that are not
in the recognizer’s vocabulary (i.e., out-of-vocabulary
(OOV) terms). In order to exploit the relative advan-
tages of the word and subword-based approaches, it
has been proposed to combine these two approaches
[8, 11, 12, 22, 38, 42–49].
The availability of several ASR tools (e.g., Hidden Markov

Model Toolkit (HTK) [50], Sphinx [51], Kaldi [52] etc.)
facilitates the development of STD systems, since these save
researchers constructing an ASR system from scratch.
Among these, Kaldi is especially suitable for building
STD systems, since this integrates an ASR subsystem,
a term detector, and a decision maker [52–54]. The
Kaldi STD system employs a word-based approach for
term detection, and a method based on proxy-words (i.e.,
replacing each OOV word by the most similar in-
vocabulary word) to detect OOV terms [55].

1.2 Motivation and organization of this paper
In general, the systems developed for STD research are
difficult to compare since just a few of them are typically
evaluated under a common framework (i.e., the speech

database and the search terms differ from one to an-
other). International evaluations, however, provide a
framework that can be effectively employed to evaluate
the progress of the technology.
Specifically, ALBAYZIN evaluation campaigns comprise

an international open set of evaluations supported by the
Spanish Thematic Network on Speech Technologies
(RTTH1) and the ISCA Special Interest Group on
Iberian Languages (SIG-IL2), which have been held
every 2 years since 2006. These evaluation campaigns
provide an objective mechanism to compare different
systems and are a powerful way to promote research
on different speech technologies [56–63].
Spanish is a major language in the world and sig-

nificant research has been conducted on it for ASR,
KeyWord Spotting (KWS), and STD tasks [64–70].
The increasing interest in search-on-speech around
the world and the lack of search-on-speech evalua-
tions dealing with Spanish language encouraged us to
organize a series of STD evaluations starting in 2012
and held biannually until 2016 aiming to evaluate the
progress in this technology for Spanish. Each evalu-
ation has focused on improving its strategy by incorp-
orating new challenges. This third ALBAYZIN STD
evaluation was specifically designed to evaluate the
performance of STD systems that address several challen-
ging conditions (in-vocabulary vs. out-of-vocabulary terms,
native (Spanish), henceforth in-language (INL) vs. out-of-
language (OOL) terms, single-word vs. multiple-word
terms, and single-domain vs. multiple-domain databases).
This evaluation also incorporated stricter rules regarding

the evaluation terms. In addition, all the terms and the
database employed in the STD evaluation held in 2014
were kept, enabling a comparison between the systems sub-
mitted to both evaluations on the common set of terms.
The rest of the paper is organized as follows: next sec-

tion presents the STD evaluation, the metric used, the da-
tabases released for experimentation, a comparison with
previous evaluations, and the participants involved in the
evaluation. Then, in Section Systems, we present the

Fig. 1 STD system architecture

Table 1 Search-on-speech applications

Type of result
(output)

Type of query (input)

Text Query

Document SDR QbE-SDR

Document+Position STD/KWS QbE-STD

‘SDR’ stands for Spoken Document Retrieval, ‘STD’ for Spoken Term Detection,
‘KWS’ for Keyword Spotting, and ‘QbE’ for Query-by-Example. STD is called
when the audio is processed before knowing the terms to search, and KWS
knows beforehand the terms to search
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different systems submitted for the evaluation. Results
along with discussion are presented in Section Results and
discussion and the paper is concluded in the last section.

2 Spoken term detection evaluation
2.1 STD evaluation overview
This evaluation involves searching a list of terms
within speech content. In other words, the STD
evaluation focuses on retrieving the appropriate audio
files, with the occurrences and timestamps, which
contain any of those terms.
The evaluation consists of searching a development

term list within development speech data, and searching
two different test term lists within two different sets of
test speech data (MAVIR and EPIC databases as can be
seen next). The evaluation result ranking is based on the
system performance when searching the test terms
within the test speech data corresponding to the MAVIR
database. Training data can only be used for participants
for system training. Development data can only be used
for participants for system tuning. Additionally, any
other data could also be used for participants for both
stages (training and development).
This evaluation defined two different sets of terms for

each database: the in-vocabulary term set and the out-of-
vocabulary term set. The OOV term set was defined to
simulate the out-of vocabulary words of a Large Vocabulary
Continuous Speech Recognition (LVCSR) system. In case
participants employ an LVCSR system for processing the
audio, these OOV terms must be previously removed from
the system dictionary and hence, other methods have to be
used for searching OOV terms. On the other hand, the
INV terms could appear in the LVCSR system dictionary in
case participants consider it.
Participants could submit a primary system and up to

two contrastive systems. No manual intervention was
allowed for each developed system to generate the final
output file and hence, all the developed systems had to
be fully automatic. Listening to the test data, or any
other human interaction with the test data was forbid-
den before all the evaluation results in terms of the per-
formance of the systems in test data (i.e., evaluation
result ranking) had been sent back to the participants.
The standard eXtensible Markup Language (XML)-based
format corresponding to the National Institute of Standards
and Technology (NIST) evaluation tool [5] was used for
building the system output file. Ground-truth labels
corresponding to the test data were given to participants
once the Organizers sent them back the evaluation results.

2.2 Evaluation metric
In STD, a hypothesized occurrence is called a detection;
if the detection corresponds to an actual occurrence, it

is called a hit, otherwise it is a false alarm. If an actual
occurrence is not detected, this is called a miss. The
Actual Term Weighted Value (ATWV) proposed by
NIST [5] has been used as the main metric for the
evaluation. This metric integrates the hit rate and false
alarm rate of each term into a single metric and then
averages over all the terms:

ATWV ¼ 1
∣Δ∣

X

K∈Δ

NK
hit

NK
true

−β
NK

FA

T−NK
true

; ð1Þ

where Δ denotes the set of terms and ∣Δ∣ is the number
of terms in this set. NK

hit and NK
FA represent the numbers of

hits and false alarms of term K, respectively, and NK
true is

the number of actual occurrences of K in the audio. T
denotes the audio length in seconds (i.e., the number of
seconds of the corresponding speech files where the terms
are searched) and β is a weight factor set to 999.9, as in the
ATWV proposed by NIST [5]. This weight factor causes an
emphasis placed on recall compared to precision in the
ratio 10:1.
ATWV represents the term weighted value (TWV) for

the threshold set by the STD system (usually tuned on
development data). An additional metric, called max-
imum term weighted value (MTWV) [5] can also be
used to evaluate the performance of an STD system.
This MTWV is the maximum TWV achieved by the
STD system for all possible thresholds, and hence does
not depend on the tuned threshold. Therefore, this
MTWV represents an upper bound of the performance
obtained by the STD system. Results based on this
metric are also presented to evaluate the system per-
formance with respect to threshold selection.
In addition to ATWV and MTWV, NIST also proposed

a Detection Error Tradeoff (DET) curve [71] to evaluate
the performance of an STD system working at various
miss/FA ratios. Although DET curves were not used for
the evaluation itself, they are also presented in this paper
for system comparison.
The NIST STD evaluation tool [72] was employed to

compute MTWV, ATWV, and DET curves.

2.3 Databases
Two different databases that comprise different acoustic
conditions and domains have been employed for the evalu-
ation. For comparison purposes, the same MAVIR database
employed in the ALBAYZIN STD evaluation held in 2014
has been used. The second database is the EPIC database
distributed by ELRA3. For MAVIR database, three separate
datasets (i.e., for training, development, and test) were pro-
vided to participants. For EPIC database, only test data
were provided. This allowed measuring the generalization
capability of the systems in an unseen domain.
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MAVIR database consists of a set of Spanish talks
extracted from the MAVIR workshops4 held in 2006,
2007, and 2008 (corpus MAVIR 2006, 2007, and 2008)
that contain speakers from Spain and Latin America.
The MAVIR Spanish data consist of spontaneous speech

files, each containing different speakers, which amount to
about 7 h of speech and are further divided for the purpose
of this evaluation into training, development, and test sets.
The data were also manually annotated in an orthographic
form, but timestamps were only set for phrase boundaries.
To prepare the data for the evaluation, organizers manually
added the timestamps for the roughly 3000 occurrences of
the spoken terms used in the development and test evalu-
ation sets. The training data were made available to the par-
ticipants including the orthographic transcription and the
timestamps for phrase boundaries5.
The speech data were originally recorded in several

audio formats (Pulse Code Modulation (PCM) mono and
stereo, Moving Picture Experts Group (MPEG)-1 Audio
Layer 3 (MP3), 22.05 KHz., 48 KHz., etc.). All data were
converted to PCM, 16 KHz., single channel, 16 bits per
sample using SoX tool6. Recordings were made with the
same equipment, a Digital TASCAM DAT model DA-P1,
except for one recording. Different microphones were
used for the different recordings. They mainly consisted of
tabletop or floor standing microphones, but in one case a
lavalier microphone was used. The distance from the
mouth of the speaker to the microphone varies and was
not particularly controlled, but in most cases the distance
was smaller than 50 cm. All the recordings contain spon-
taneous speech of MAVIR workshops in a real setting.
Thus, the recordings were made in large conference
rooms with capacity for over a hundred people and a large
amount of people in the conference room. This poses

additional challenges including background noise (particu-
larly babble noise) and reverberation. The realistic settings
and the different nature of the spontaneous speech in this
database make it appealing and challenging enough for
the evaluation. Table 2 includes some database features
such as the division in training, development, and test
data of the speech files, the number of word occurrences,
duration, and p.563 Mean Opinion Score (MOS) [73] as a
way to get an idea of the quality of each speech file in the
MAVIR Spanish database. The p.563 MOS algorithm is
intended to be employed for evaluating the quality of the
human voice. In addition, no reference signal is needed to
compute the p.563 MOS value. MOS values are in the
range of 1–5, being 1 the worst quality and 5 the best
quality. More information about the p.563 algorithm can
be found in [73].
EPIC database comprises speech data from the Euro-

pean Parliament Interpretation Corpus recorded in 2004
in English, Spanish, and Italian, along with their corre-
sponding simultaneous interpretations to the other lan-
guages. Only the Spanish original speeches, which
amount to more than 1:5 h of speech, were used for the
evaluation. Table 3 includes some features of EPIC data-
base as those shown in Table 2.

2.3.1 Term list selection
All the terms selected for both development and test
sets aimed to build a realistic scenario for STD, by in-
cluding high occurrence terms, low occurrence terms,
foreign terms, single-word and multi-word terms, in-
vocabulary and out-of-vocabulary terms, and different
length terms. A term may not have any occurrence or
appear one or more times in the speech data. Table 4 in-
cludes some features of the development and test term

Table 2 MAVIR database characteristics

File ID Data #word occ. dur. (min) #spk. p.563 Ave. MOS

Mavir-02 train 13432 74.51 7 (7 ma.) 2.69

Mavir-03 dev 6681 38.18 2 (1 ma. 1 fe.) 2.83

Mavir-06 train 4332 29.15 3 (2 ma. 1 fe.) 2.89

Mavir-07 dev 3831 21.78 2 (2 ma.) 3.26

Mavir-08 train 3356 18.90 1 (1 ma.) 3.13

Mavir-09 train 11179 70.05 1 (1 ma.) 2.39

Mavir-12 train 11168 67.66 1 (1 ma.) 2.32

Mavir-04 test 9310 57.36 4 (3 ma. 1 fe.) 2.85

Mavir-11 test 3130 20.33 1 (1 ma.) 2.46

Mavir-13 test 7837 43.61 1 (1 ma.) 2.48

ALL train 43467 260.27 13 (12 ma. 1 fe.) -

ALL dev 10512 59.96 4 (3 ma. 1 fe.) -

ALL test 20277 121.3 6 (5 ma. 1 fe.) -

‘train’ stands for training, ‘dev’ for development, ‘occ.’ stands for occurrences, ‘dur.’ stands for duration, ‘min’ stands for minutes, ‘spk.’ stands for speakers, ‘ma.’
stands for male, ‘fe.’ stands for female, and ‘Ave.’ stands for average
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lists such as the number of in-language and foreign
terms, the number of single-word and multi-word terms,
and the number of in-vocabulary and out-of-vocabulary
terms, along with the number of occurrences of each set
in the corresponding speech data. It must be noted that
a multi-word term is considered OOV in case any of the
words that form the term is OOV. It can be seen that

the test EPIC term list only contains easy terms (i.e., no
out-of-language and multi-word terms are included),
since the main purpose was to evaluate the systems sub-
mitted to the evaluation in a different domain.

2.4 Comparison to other STD international evaluations
In 2006, the National Institute of Standards and Tech-
nology of the United States of America (USA) organized
the first NIST STD evaluation [5], in which English,
Mandarin Chinese, and Modern Standard and Levantine
Arabic languages were included. The speech used in this
evaluation included conversational telephone speech
(CTS), broadcast news (BNews) speech, and speech re-
corded in roundtable meeting rooms (RTMeet) with dis-
tantly placed microphones (this last type was used for
English only). The NIST STD 2006 evaluation results
are publicly available7, and are very interesting to
analyze the influence of the language and the type of
speech on STD results. Table 5 presents the best results
obtained by the participants for each condition. With re-
spect to the type of speech, it is clear from Table 5 that re-
sults using microphone speech, particularly distant
microphones in less controlled settings than in audiovisual

Table 3 EPIC database characteristics

File ID #word occ. dur. (min) #spk. p.563 Ave. MOS

10-02-04-m-058-org-es 280 2.47 1 fe. 3.71

10-02-04-m-074-org-es 3189 25.2 1 ma 2.79

11-02-04-m-017-org-es 532 3.47 1 fe. 3.70

11-02-04-m-022-org-es 896 5.08 1 ma. 2.76

11-02-04-m-032-org-es 726 3.37 1 ma. 3.12

11-02-04-m-035-org-es 535 3.12 1 ma. 3.44

11-02-04-m-041-org-es 92 0.78 1 ma. 3.00

11-02-04-m-054-org-es 199 1.70 1 ma. 3.12

12-02-04-m-010-org-es 344 2.38 1 ma. 3.18

12-02-04-m-028-org-es 78 0.45 1 ma. 1.66

12-02-04-m-038-org-es 285 2.17 1 ma. 3.31

25-02-04-p-024-org-es 1205 8.50 1 fe. 3.92

25-02-04-p-027-org-es 353 2.23 1 ma. 3.67

25-02-04-p-030-org-es 523 3.18 1 fe. 3.79

25-02-04-p-034-org-es 353 2.23 1 fe. 3.78

25-02-04-p-037-org-es 492 2.93 1 fe. 3.67

25-02-04-p-043-org-es 1705 12.27 1 ma. 3.32

25-02-04-p-047-org-es 922 5.82 1 ma. 3.39

25-02-04-p-072-org-es 278 1.90 1 fe. 4.27

25-02-04-p-081-org-es 1270 8.07 1 ma. 3.20

25-02-04-p-096-org-es 211 1.27 1 ma. 3.41

ALL 14468 98.58 21 (14 ma. 7 fe.) -

‘occ.’ stands for occurrences, ‘dur.’ stands for duration, ‘min’ stands for minutes, ‘spk.’ stands for speakers, ‘ma.’ stands for male, ‘fe.’ stands for female, and ‘Ave.’
stands for average

Table 4 Development and test term list characteristics for
MAVIR and EPIC databases

Term list dev test-MAVIR test-EPIC

#IN-LANG terms (occ.) 354 (959) 208 (2071) 183 (1912)

#OUT-LANG terms (occ.) 20 (55) 15 (50) 0 (0)

#SINGLE terms (occ.) 340 (984) 198 (2093) 183 (1912)

#MULTI terms (occ.) 34 (30) 25 (28) 0 (0)

#INV terms (occ.) 292 (668) 192 (1749) 150 (1562)

#OOV terms (occ.) 82 (346) 31 (372) 33 (350)

‘dev’ stands for development, ‘IN-LANG’ refers to in-language terms, ‘OUT-
LANG’ to foreign terms, ‘SINGLE’ to single-word terms, ‘MULTI’ to multi-word
terms, ‘INV’ to in-vocabulary terms, ‘OOV’ to out-of-vocabulary terms, and ‘occ.’
stands for occurrences. The term length of the development term list varies
between 5 and 27 graphemes. The term length of the MAVIR test term list
varies between 4 and 28 graphemes. The term length of the EPIC test term list
varies between 6 and 16 graphemes
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studios (such as in broadcast news) or close-talking con-
versational telephone data, are definitely much more lim-
ited. With respect to the language, English is the language
with more resources and for which more research has
been done so far. When applying similar technology to
languages for which less specific research has been con-
ducted, performance decreases are observed.
A significant amount of research has been carried out in

the framework of the IARPA BABEL program and NIST
Open Keyword Search (OpenKWS) evaluation series
[74–84]. BABEL program was born in 2011 aiming to de-
velop fully automatic and noise-robust speech recognition
systems in limited time (e.g., 1 week) with limited amount
of transcribed training data. This program supports re-
search in low-resource languages such as Cantonese,
Pashto, Tagalog, Turkish, Vietnamese, etc. Since 2013,
NIST has been organizing an annual open STD evaluation
called OpenKWS, which is included within the BABEL
program, but open to other research groups besides BA-
BEL participants [85–88]. This evaluation is very similar
to the former NIST STD 2006 evaluation and aimed to
build STD systems in a limited time for low-resource lan-
guages. This includes CTS and microphone speech data
on a surprise language that was announced only a few (4
or less) weeks before the evaluation. The main results of
these OpenKWS evaluations are shown in Table 6.
In our evaluation, the audio contains microphone

recordings of real talks in real workshops, in large
conference rooms in public. Microphones, conference
rooms, and even recording conditions change from one
recording to another. Microphones are not close-talking
microphones but mainly tabletop and ground standing
microphones. In addition, our evaluation explicitly

defines different in-vocabulary and out-of-vocabulary set
of terms. These differences in the evaluation conditions
make our evaluation pose different challenges, and make
it difficult to compare the results obtained in our evalu-
ation to those of the previous NIST STD evaluations.
STD evaluations have also been held in the framework

of the NTCIR conferences [89–92]. Data used in these
evaluations contained spontaneous speech in Japanese
provided by the National Institute for Japanese language
and spontaneous speech recorded during seven editions
of the Spoken Document Processing Workshop. These
evaluations also provide the manual transcription of the
speech data and the output of an LVCSR system to the
participants. Table 7 presents the best result obtained in
each individual evaluation, where the F-measure was
used as the evaluation metric. Although our evaluation
could be similar in terms of speech nature to these NTCIR
STD evaluations (speech recorded in real workshops), our
evaluation makes use of other language, employs a larger
list of terms along with two different databases, and defines
disjoint development and test term lists to measure the
generalization capability of the systems. Besides, the evalu-
ation metric used by these evaluations is different, which
makes comparison very difficult.

2.5 Participants
Ten different systems were submitted from five different
research groups to the ALBAYZIN Spoken Term Detection
2016 evaluation, as listed in Table 8. About 3 months were
given to the participants for system development and
hence, the STD evaluation focuses on building STD
systems in limited time. The training, development, and
test data were released to the participants in different
periods. Training and development data were released by
the end of June 2016. The test data were released at the
beginning of September 2016. The final system submission
was due by mid-October 2016. Final results were discussed
at IberSPEECH 2016 conference by the end of November
2016.

3 Systems
In this section, the systems submitted to the evaluation
are described. All the systems integrate two subsystems:
an ASR subsystem based on the Kaldi open-source toolkit

Table 5 Best performance (in terms of Actual Term Weighted
Value, ATWV) obtained by the different participants of the NIST
STD 2006 evaluation in the different conditions: ‘CTS’ stands for
Conversational Telephone Speech, ‘BNews’ for Broadcast News,
and ‘RTMeet’ for speech recorded in roundtable meeting rooms

Language CTS BNews RTMeet

English 0.8335 0.8485 0.2553

Arabic 0.3467 -0.0924 N/A

Mandarin 0.3809 N/A N/A

Table 6 Best performance (in terms of Actual Term Weighted
Value, ATWV) obtained by the different participants in the
OpenKWS evaluations held in 2013, 2014, and 2015 under the
full language pack condition

Evaluation ATWV Language

OpenKWS 2013 0.6248 Vietnamese

OpenKWS 2014 0.5802 Tamil

OpenKWS 2015 0.6548 Swahili

Table 7 Best performance (in terms of F-measure) obtained by
the different participants in the NTCIR STD evaluations

Evaluation F-measure

NTCIR STD-09 0.3660

NTCIR STD-10 0.7944

NTCIR STD-11 0.6140

NTCIR STD-12 0.7188
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[52], and an STD subsystem that comprises a term
detector and a decision maker.

3.1 Combined Kaldi-based STD system (combined Kaldi)
This system consists of the combination of a word-based
STD system to detect INV words, and a phone-based
STD system to detect OOV words, as depicted in Fig. 2.
Both systems are described next.

3.1.1 Word-based STD system
The ASR subsystem is based on the Kaldi open-source
toolkit [52] and employs deep neural network (DNN)-
based acoustic models. Specifically, a DNN-based context-
dependent speech recognizer was trained following the
DNN training approach presented in [93]. 40-dimensional
Mel-frequency cepstral coefficients (MFCCs) augmented
with three pitch and voicing related features [94], and
appended with their delta and acceleration coefficients were
first extracted for each speech frame. The DNN has six
hidden layers with 2048 neurons each. Each speech frame
is spliced across ±5 frames to produce 1419-dimensional
vectors which are the input to the first layer, and the output
layer is a soft-max layer representing the log-posteriors of
the context-dependent Hidden Markov Model (HMM)
states. The Kaldi LVCSR decoder generates word lattices
[95] using these DNN-based acoustic models.
The data used to train the acoustic models of this Kaldi-

based LVCSR system were extracted from the Spanish

material used in the 2006 TC-STAR automatic speech rec-
ognition evaluation campaign8 and the Galician broadcast
news database Transcrigal [96]. It must be noted that all
the non-speech parts as well as the speech parts corre-
sponding to transcriptions with pronunciation errors, in-
complete sentences, and short speech utterances were
discarded, so in the end the acoustic training material
consisted of approximately 104.5 h.
The language model (LM) employed in the LVCSR

system was constructed using a text database of 160
million of word occurrences composed of material from
several sources (transcriptions of European and Spanish
Parliaments from the TC-STAR database, subtitles, books,
newspapers, on-line courses, and the transcriptions of the
MAVIR sessions included in the development set provided
by the evaluation organizers9 [97]). Specifically, the LM
was obtained by static interpolation of trigram-based
language models which were trained using these different
text databases. All LMs were built using the Kneser-Ney
discounting strategy using the SRILM toolkit [98], and the
final interpolated LM was obtained using the SRILM static
n-gram interpolation functionality. The LM vocabulary
size was limited to the most frequent 60,000 words and,
for each evaluation data set, the OOV terms were
removed from the language model.
The STD subsystem integrates the Kaldi term detector

[52–54] which searches for the input terms within the
word lattices obtained in the previous step. To do so,
these lattices are processed using the lattice indexing
technique described in [99] so that the lattices of all the
utterances in the search collection are converted from
individual weighted finite state transducers to a single
generalized factor transducer structure in which the
start-time, end-time, and lattice posterior probability of
each word token are stored as three-dimensional costs.
This factor transducer is actually an inverted index of all
word sequences seen in the lattices. Thus, given a list of
terms, a simple finite state machine is created such that
it accepts each term and composes it with the factor
transducer to obtain all occurrences of the terms in the
search collection. The Kaldi decision maker conducts a
YES/NO decision for each detection based on the term
specific threshold (TST) approach presented in [23]. To

Fig. 2 Combined Kaldi-based STD system architecture

Table 8 Participants in the ALBAYZIN Spoken Term Detection
2016 evaluation along with the systems submitted

Team ID Research Institution Systems

GTM-UVigo AtlantTIC Research Center
Universidad de Vigo, Spain

Combined Kaldi
Proxy Kaldi

AHOLAB Universidad del País Vasco,
Spain

Syn-Syll Comb

ATVS-FOCUS Universidad Autónoma de
Madrid - FOCUS, Spain

DD Kaldi
DI Kaldi

GTH-UPM Universidad Politécnica de
Madrid, Spain

Kaldi matcher

ViVOLAB Universidad de Zaragoza, Spain Phone STD
Mismatch Phone STD
CM Phone STD
CM Phone STD+TST
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do so, the score for each detection is computed as
follows:

p >
N true

T
β þ β−1

β N true

; ð2Þ

where p is the confidence score of the detection, Ntrue

is the sum of the confidence score of all the detections
of the given term, β is set to 999.9, and T is the length
of the audio in seconds.

3.1.2 Phone-based STD system
OOV terms were handled with a phone-based STD sys-
tem strategy. A phoneme sequence was first obtained
from the 1-best word path obtained with the word-based
Kaldi LVCSR system presented before. Next, a reduction
of the phoneme set was performed in order to combine
phonemes with high confusion; specifically, semivowels
/j/ and /w/ were represented as vowels /i/ and /u/,
respectively, and palatal n /ŋ/ was represented as /n/.
Then, the tre-agrep tool is employed to compute partial
matches so that the Levenshtein distance between each
recognized phoneme sequence and the phoneme
sequence corresponding to each term can be computed.
An analysis of the proposed strategy suggested that
those matches whose Levenshtein distance was equal to
0 were, in general, correct matches. Matches with
Levenshtein distance equal to 1 were more prone to be
false alarms, although many matches were found as well;
since no specific criteria to assign a score was implemented,
only those matches with Levenshtein distance equal to 0
were kept, and they were assigned the maximum score (1).
The OOV term detections found using this phone-based
STD system were directly merged with the INV detections
obtained using the word-based STD system.

3.2 Proxy Kaldi STD system (proxy Kaldi)
This system, whose architecture is presented in Fig. 3, is
the same as the Combined Kaldi system, except that the
OOV terms were searched with the proxy words strategy
of the Kaldi toolkit [55]. This strategy consists of
substituting each OOV word of the search term with
acoustically similar INV proxy words, getting rid of the
need of a subword-based system for OOV term search.

3.3 Synthesis and syllabic decomposition-based combined
STD system (Syn-Syll comb)
This system, whose architecture is presented in Fig. 4,
integrates different strategies in the STD component.
The ASR component is based in Kaldi and follows the s5

recipe for the Wall Street journal database. The acoustic
features used are 13-dimensional MFCCs with cepstral
mean and variance normalization (CMVN). These features
are first used to train context-independent Gaussian

Mixture Model (GMM)-HMMs. Next, context-dependent
GMM-HMMs have been trained. After that, a new set of
features is derived by processing the initial 13-dimensional
MFCCs. Specifically, these 13-dimensional features are
spliced across 4 frames to produce 117-dimensional
vectors. Next, Linear Discriminant Analysis (LDA) is used
to reduce the dimensionality to 40, and a maximum likeli-
hood linear transform (MLLT) is applied to match the diag-
onal assumption in GMM. The context-dependent GMM-
HMM states are used as classes for the LDA estimation.
Next, feature-based maximum likelihood linear regression
(fMLLR) and speaker adaptive training (SAT) techniques
are applied to improve model robustness. With this MFCC
(spliced) + LDA + MLLT + fMLLR + SAT 40-dimensional
features, DNN-based acoustic models were trained. The
DNN is trained with four hidden layers, and follows the
training approach (layer-wise back-propagation) described
in [100].
The DNN-based acoustic models were trained from a set

of 47 parliamentary sessions that took place in the Basque
parliament10, of which only the Spanish part was employed.
As a result, more than 124 h of speech in Spanish, uttered
by 45 male and 39 female speakers, were employed. In
addition, the training data provided by the organizers were
also employed for acoustic model training. These data con-
sist of 4 h of spontaneous speech.
A dictionary composed of more than 37,000 words has

been constructed for the ASR component. In addition,
trigram and uniform unigram LMs have been built. The
trigram LM has been trained from a set of 54 million of
words (after removing the OOV words) corresponding
to the European Parliament Proceedings Parallel Corpus
1996–2011 [101]. On the other hand, the uniform
unigram LM has been trained using the training input
dictionary created with the material provided by the
organizers. The SRILM toolkit [98] has been used to
train both LMs. Two different LVCSR processes were
conducted: The first one employs the trigram LM, and
the second one employs the uniform unigram LM. Both
produce word lattices that comprise the input to the
STD subsystem.
For the STD subsystem, the INV terms were searched

from the word lattices obtained in the ASR component
using the Kaldi term detector [52–54]. A two-pass strategy
was employed. In the first-pass, the Kaldi term detector
receives as input the lattices obtained in the trigram LM-
based LVCSR decoding and produces putative detections.
These putative detections are taken by the Kaldi decision
maker and sorted according to their posterior probability
to assign a preliminary YES/NO decision to each detec-
tion. This decision is next modified as follows: if the num-
ber of occurrences of a certain term is above a predefined
threshold t, all the occurrences for this term that present a
probability higher than a certain score s are assigned YES
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decision. For the terms that have not been detected in the
first pass, a second pass is conducted. In this second pass,
the lattices given to the Kaldi term detector were obtained
from the uniform unigram LM, and the YES/NO decision
is given by the Kaldi decision maker from the posterior
probability assigned to each detection.
The purpose of this second pass is to minimize the effect

of the trigram LM and favor the acoustic models. The
occurrences of the terms detected in this second pass are
added to those obtained in the first pass.
The OOV terms were handled using the proxy words

strategy of the Kaldi toolkit [55]. As for INV terms, a
two-pass strategy has been applied: In the first pass, the
OOV terms were synthesized and recognized to create
proxy word Finite State Transducers (FSTs) that are
needed in the Kaldi term detector to produce a first set
of OOV term detections. In the second pass, all the
OOV terms with no occurrences in the first pass were
searched by means of a syllabic decomposition to pro-
duce a second set of OOV term detections. All the de-
tections corresponding to both OOV term sets were
merged to the INV term detections to produce the final
list of detections. Next, these two passes are explained.

3.3.1 Text to speech synthesis-based first pass
All the OOV terms are synthesized using the Aholab
Text-to-Speech synthesizer [102]. The generated synthetic
signals are then given to the Kaldi-based LVCSR system,
where the uniform unigram LM was employed to obtain
the word-based lattices. From the word lattices, the best
hypothesis is chosen as the term to search, i.e., as proxy
term. The aimed goal is to get the most acoustically similar
INV term for each OOV term. Next, each FST correspond-
ing to each OOV term is built. The resulting FSTs are given
to the Kaldi term detector, which uses the lattices obtained
from the uniform unigram LM to hypothesize detections.
Next, the Kaldi decision maker assigns the YES/NO deci-
sion to each detection. The possibility of using more than
one hypothesis was discarded because the results showed a
high number of false alarms.

3.3.2 Syllabic decomposition-based second pass
First, the audio is recognized using the Kaldi-based LVCSR
system with the uniform unigram LM, and the 1-best path
is stored. Then, the corresponding 1-best path transcription
that contains the start-time and end-time of each word rec-
ognized is obtained. The next step is to decompose the

Fig. 3 Proxy Kaldi STD system architecture

Fig. 4 Synthesis and Syllabic decomposition-based combined STD system architecture
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words of the transcription in syllables. The OOV terms are
decomposed in syllables too, and a measure of the differ-
ence between the syllables of each term and the syllables of
the whole transcription is calculated. A window with the
length of the syllables of the OOV term slides through the
transcription text and the difference is calculated based on
the phonetic transcription of the syllables. Every place
where this difference falls below a predefined threshold is
taken as an occurrence of the search term. The final score
obtained for each search window is calculated as 1 - dL
where dL represents the Levenshtein distance. In our case,
the penalty assigned to an insertion/deletion of a phone of
the syllable is set to 0.5, and the penalty for replacing one
phone by another can vary from 0 to 1 according to the
previously estimated acoustic distance between the two
phones. This penalty was estimated from the data used for
acoustic model training as follows:

� Training data are given to the HTK tool [50] to
train HMM monophone models. Each HMM
consist of 39-dimensional, three emitting-states for
each phone (24 in this case).

� The mean vector of the central state of each phone
model is selected, and the Euclidean distance
between all the mean vectors is calculated to have
an estimation of the acoustic distance.

� The resulting distances are normalized to the
maximum distance. The distance computed between
a phone and itself is set to 0.

Once the distance is calculated, a decision for each de-
tection must be taken (i.e., some distance threshold must
be set). The threshold value to consider a detection as a
true occurrence was chosen empirically based on the
mean score and the standard deviation of each detection
evaluated over the whole transcription. This threshold
was selected from the development data provided by the
organizers to be quite conservative (i.e., to minimize the
insertion of false alarms).

3.4 Domain dependent Kaldi-based STD system (DD Kaldi)
This system is the standard Kaldi STD system with its deci-
sion maker, and its structure is the same as that in Fig. 3.
For the ASR subsystem, first an energy-based Voice

Activity Detector (VAD) implemented in SoX removed
non-speech segments. For word-based speech recogni-
tion, the system used the s5 recipe of the Kaldi toolkit
[52] for the Fisher Callhome Spanish database. To do so,
13-dimensional MFCCs with cepstral mean and variance
normalization were used as acoustic features. The
normalized MFCC features then pass a splicer which
augments each frame by its left and right 4 neighboring
frames. LDA was applied to reduce the feature dimen-
sion to 40, and next, MLLT was also applied. fMLLR

and SAT were also applied to improve model robustness.
A subspace Gaussian Mixture Model (SGMM) was then
trained, and a discriminative training approach based on
boosted maximum mutual information (bMMI) is used
to produce better acoustic models.
The SGMM models were trained with the training part

of the Fisher Spanish corpus and the Callhome Spanish
corpus (about 268 h of conversational telephone speech in
total), and the training data provided by the organizers
(about 4 h of speech). For English words that appear in the
Fisher Spanish corpus, a letter-to-sound module has been
used to build the phone transcription of these words using
Spanish phones. To do so, the Carnegie Mellon University
(CMU) Dictionary was employed to obtain an English
phoneme transcription and define translation rules from
English to Spanish phonemes to build the phoneme tran-
scription of the English words using Spanish phonemes.
Interjections and acronyms were transcribed manually. In
the end, a dictionary of about 36,000 terms, fully tran-
scribed with a set of 24 Spanish phonemes with stress
marked as different phonemes, was built. Besides the phon-
eme models, models for laughter and noise were included.
A trigram LM was employed for ASR decoding. This

LM was trained from the SRILM toolkit [98] using the
word transcription of the data employed for acoustic
model training.
As in the Combined Kaldi system explained before, the

Kaldi term detector [52–54] was employed to hypothesize
detections from the word lattices obtained in the ASR
component, and the Kaldi decision maker ascertains
reliable detections.
OOV term detection has been carried out using the

proxy words mechanism of the Kaldi toolkit [55], as in
the Proxy Kaldi system explained before.

3.5 Domain independent Kaldi-based STD system (DI
Kaldi)
This system is the same as the previous one (DD Kaldi)
except that the training data provided by the organizers
were not employed for acoustic model and language
model training.

3.6 Kaldi-word + phone matcher decoding STD system
(Kaldi matcher)
This system consists of two speech recognition processes:
a word-based speech recognition, and a phone-based
speech recognition, and different term detection modules,
as shown in Fig. 5.
The ASR component integrates word and phone-based

speech recognizers built with the Kaldi toolkit [52]. First,
feature vectors consisting of 13 MFCCs and their first and
second order time derivatives are used to train tied-pdf
cross-word triphone context, three hidden state phone
models. This results in GMM-HMMs with 200 k Gaussians
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and 4294 senones. Then, feature-level transformations such
as LDA, MLLT, and fMLLR were applied. This results
in 40-dimensional acoustic vectors per frame of 10 ms
(Fig. 6). The GMM-HMMs served as alignment sources
for training a DNN-HMM model, with 4 hidden layers
in a 2-norm maxout network [100] with 3000 nodes per
hidden layer with groups of 10. The number of spliced
frames was 9. The network was trained along 20 epochs.
DNN-HMM ASR acoustic models were trained from

the training data provided by the organizers, and the
Spanish partition of the European Parliament Plenary
Sessions (EPPS) and the CONG-PARL databases included
in the TC-STAR database [103]. As for the LMs,
different LMs were used for the word and phone-based
speech recognizers, and for the different evaluation data
sets. The word-based LM consists of a trigram LM
trained from different text sources, which vary for
MAVIR or EPIC data processing: for MAVIR development
data processing, the data employed for LM training com-
prise the training data provided by the organizers and web
texts (which amount to about 400 k word occurrences)
related to similar topics to those of the MAVIR training
data; for MAVIR test data processing, the trigram LM was
enhanced with the MAVIR development data transcrip-
tion; for EPIC data processing (test), the LM training data
comprise the transcription data corresponding to 100 h of
speech of the EPPS and CONG-PARL databases used for
acoustic model training, and the EUROPARL corpus [101]
that amount to about 44 million of word occurrences. The

resulting dictionaries contained 24 K words for the MAVIR
development and test data processing, and 136 K words for
the EPIC test data processing. An unknown word has also
been added to the dictionary in order to deal with the
speech segments that contain the lowest-occurrence words
in the training data. The corresponding acoustic model for
this unknown word is a single phone trained with the
lowest occurrence words of the training speech data. As for
the phone-based speech recognizers, an 8-g phone LM
trained from the same counterpart sources than the word-
based LM was employed for MAVIR development and test
data. For EPIC test data, a 6-g phone LM trained from the
same transcription data than the word-based LM for this
same dataset has been employed. LM training has been
conducted with the SRILM toolkit [98].
To process the speech data, this system first segmented

the speech signals into more manageable chunks (which
spread between 5 and 30 s), using a ITU-T G.729 VAD im-
plementation. Then, each chunk is processed by the word
and phone-based speech recognizers to obtain the corre-
sponding set of words/phones recognized along with their
confidence scores. Next, post-processing of the segments
that contain words whose confidence score falls below a
threshold (type 1) or the unknown word was recognized
(type 2) was carried out. This threshold has been tuned on
development data.
For type 1 segments, the corresponding speech seg-

ment is given to a GMM-HMM word matcher. This
GMM-HMM word matcher takes the phone

Fig. 5 Kaldi - word + phone matcher decoding STD system architecture

Fig. 6 Phone-based STD system architecture
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transcription given by the phone based speech
recognizer in the time intervals corresponding to the
start and end times of the segment, and produces the
most likely word/s given this phone transcription. To do
so, a dictionary composed of the 5000 most frequent
words in the training data plus the OOV terms is given.
This GMM-HMM word matcher has been trained from a
set of training data and the decoding of these speech data
to learn from the phone recognition errors. These training
data differ again for each data set. For MAVIR develop-
ment and test data processing, the training data include
the training data provided by the organizers. For EPIC
test data processing, all the TC-STAR training data
were employed. In the GMM-HMM word matcher,
each phone is modeled with three emitting states, with
a total number of Gaussians of 15,000.
For type 2 segments, an OOV term is expected to be

found. To do so, a Levenshtein distance-based word identi-
fier computes the Levenshtein distance between the phone
sequence given by the phone-based recognizer and the
phone transcription of the OOV term so that a low
Levenshtein distance match suggests the occurrence of this
OOV term. The threshold set for these type 2 segments has
been tuned on development data.
Finally, the system merges the putative detections that

come from three different sources: (1) All the terms de-
tected by the word-based LVCSR system, (2) a single-word
term output by the GMM-HMM word matcher that coin-
cides with a term (for multi-word terms a new detection
emerges in case all the words of the term appear in the out-
put of the word-based LVCSR system or the GMM-HMM
matcher) for type 1 segments, and (3) the OOV detections
corresponding to the type 2 segments. The score given to
each detection depends on the specific source. In this way,
term detections from the word-based LVCSR system main-
tain the confidence score given by the recognition process;
detections from the GMM-HMM word matcher take as
score the confidence computed during the GMM-HMM
word matching; and detections from the Levenshtein
distance-based word identifier take a score in the opposite
direction to the computed distance.

3.7 Phone-based STD system (phone STD)
This system bases on phone speech recognition and its
architecture is shown in Fig. 6.
The ASR conducts phone-based speech recognition to

produce phone lattices from the speech data. As features,
the widely used 13-dimensional MFCCs with first and
second order time derivatives and CMVN applied were first
extracted. Following the steps of the Kaldi Librispeech s5
recipe, LDA is applied to reduce the feature dimensionality,
which is then followed by MLLT to match the GMM diag-
onal assumption. Finally, to improve model robustness
fMLLR and SAT are also applied. Regarding to acoustic

model training, context-dependent GMM-HMMs, with 16
GMM components each, have been trained. As LM, 5-g
phone LM has been trained with the SRILM toolkit [98].
Twenty-seven phones were modeled in this system.
For acoustic model training, the training speech data

comprise different speech data sets:

� ALBAYZIN [104], which consists of phonetically
balanced sentences that cover a wide range of
variability in terms of speaker-dependent and phonetic
factors, a collection of semantically and syntactically
constrained sentences extracted from a geographic
database query task, and a set of frequently used words
and sentences recorded in clean and noisy environ-
ments (12:7 h in total).

� DOMOLAB [105], which corresponds to a corpus
recorded in the kitchen of a home automation
scenario, and contains a combination of speaker
utterances for the automatic control of appliances
where different acoustic environments and speaker
locations are considered (9:2 h in total).

� SpeechDat-Car [106], which comprises a collection
of speech resources to support training and testing
of multilingual speech recognition applications in
car environments (18:7 h in total).

� TC-STAR [107], which focuses at the translation of
unconstrained conversational speech as it appeared
in the broadcast (parliamentary) speeches and
meetings from 2004 until 2007 (58:8 h in total).

� TDTDB, which corresponds to television (TV)
program broadcast by the Spanish public TV
(RTVE) during 2014, and includes a collection of
audio recordings of multigenre data automatically
transcribed manually validated (14:1 h in total).

In addition, the training data provided by the organizers
(4 h in total) were also employed. Then, about 120 h were
used for acoustic model training.
For language model training, about one million of

word occurrences extracted from the Europarl corpus
[101] were employed to train the 5-g phone LM.
Kaldi term detector [52–54] was employed to produce

putative detections from the phone lattices given by the
ASR subsystem and the corresponding canonical phone
transcription for each term, and the decision maker outputs
as detections those whose score derived from the Kaldi
term detector is above a predefined threshold.

3.8 Mismatch-based phone STD system (mismatch phone
STD)
This system is the same as the Phone STD system ex-
plained before with some term-based modifications aiming
to increase term detection: Instead of considering the ca-
nonical phone sequence as phone transcription for each
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search term, multiple term pronunciations are considered
to form proxy terms. To do so, a mismatch of one phone
was considered to build the multiple term pronunciations
(and hence the proxy terms). To keep the number of proxy
terms reasonable, only the pronunciations whose occur-
rence probability obtained from a phone confusion matrix
is above a predefined threshold were considered. This
phone confusion matrix was trained on the training data
employed for acoustic model training by running a phone
recognition experiment. The threshold was estimated from
the development data provided by the organizers.

3.9 Confusion matrix-based phone STD system (CM phone
STD)
This system is the Phone STD system explained before
with the use of a confusion matrix during term search.
The idea is to expand the term search graph considering
the whole ensemble of proxy terms. For this purpose, the
mechanism of the Kaldi tool to generate proxy words [53]
was employed, but deploying the term search at phone-
level (instead of word-level) as referred in Eq. 3:

K ′ ¼ Project ShortestPath K ∘L∘Eð Þð Þ; ð3Þ

where K is a finite-state acceptor for a certain OOV
term, L is a finite-state transducer for the pronunciation
of that OOV term, and E is an edit-distance transducer
that maps the costs of alternative phone sequences given
by a phone confusion matrix. This confusion matrix is
the same as that used in the Mismatch Phone STD
system explained before.
When several occurrences of the same term are output

at the same time, the one with the highest score is kept.

3.10 Confusion matrix-based phone STD system + term-
specific threshold (CM phone STD + TST)
This system aims to improve the decision maker of the
CM Phone STD system explained before. To do so, in-
stead of using a fixed threshold for selecting the most
reliable detections, the TST approach [23] explained be-
fore has been employed to produce a term-dependent
score for each detection.

4 Results and discussion
System results are presented in Table 9 for development
data and Tables 10 and 11 for MAVIR test data and
EPIC test data, respectively. The result ranking for
development and test data for MAVIR database shows a
different behavior. For development data, Syn-Syll Comb
system performs the best, whereas for test data, Combined
Kaldi system gets the best performance. This discrepancy is
due to the Combined Kaldi system has a larger vocabulary
than the Syn-Syll Comb system, which derives in a smaller
out-of-vocabulary rate (defined as the number of terms in

the MAVIR INV test term list that do not appear in the
LVCSR system vocabulary), as shown in Table 12. The best
performance of both systems on each set of data
(development and test) compared to the rest of the systems
is due to the more robust ASR subsystem (word-based
ASR with acoustic model and LM trained on a great variety
of speech and text sources). On development data, the use
of a phone-based ASR subsystem in the Phone STD, Mis-
match Phone STD, CM Phone STD, and CM, Phone
STD + TST systems is clearly giving the worst overall per-
formance compared with the other systems (that employ
word-based ASR subsystems). However, these phone-based
systems typically have a great advantage in terms of fast
search and indexing, and the possibility of retrieving OOV
terms without any additional system development. The
performance on development data of the Syn-Syll Comb
system is significantly better for a paired t-test compared
with the other systems (p < 0.01) except with the Combined
Kaldi and Proxy Kaldi systems, whose performance gaps
are insignificant for a paired t test. The Kaldi matcher sys-
tem obtains better performance than the DD Kaldi and DI

Table 9 System results of the ALBAYZIN STD 2016 evaluation
on development data

System ID MTWV ATWV p(FA) p(Miss)

Combined Kaldi 0.5597 0.5551 0.00008 0.359

Proxy Kaldi 0.5155 0.5151 0.00015 0.334

Syn-Syll Comb 0.5729 0.5729 0.00009 0.337

DD Kaldi 0.2333 0.2315 0.00003 0.737

DI Kaldi 0.2118 0.2096 0.00004 0.748

Kaldi matcher 0.4828 0.4828 0.00006 0.458

Phone STD 0.0720 0.0613 0.00014 0.789

Mismatch Phone STD 0.0000 -2.5465 0.00000 1.000

CM Phone STD 0.1390 0.1358 0.00009 0.771

CM Phone STD+TST 0.1705 0.1545 0.00013 0.704

Table 10 System results of the ALBAYZIN STD 2016 evaluation
on MAVIR test data

System ID MTWV ATWV p(FA) p(Miss)

Combined Kaldi 0.5850 0.5724 0.00008 0.336

Proxy Kaldi 0.5560 0.5506 0.00005 0.397

Syn-Syll Comb 0.5140 0.5090 0.00007 0.414

DD Kaldi 0.2165 0.2141 0.00006 0.721

DI Kaldi 0.2139 0.2122 0.00007 0.714

Kaldi matcher 0.4327 0.4311 0.00011 0.453

Phone STD 0.1323 0.1288 0.00013 0.734

Mismatch Phone STD 0.0000 -3.8487 0.00000 1.000

CM Phone STD 0.1816 0.1803 0.00011 0.710

CM Phone STD+TST 0.2098 0.2077 0.00010 0.691
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Kaldi systems since the former incorporates more robust
ASR subsystem (DNN-HMM as acoustic modeling and
language model trained on a great variety of text sources)
and STD subsystem. This better performance is significant
for a paired t test (p < 0.01).
On MAVIR test data, the best performance corresponds

to the Combined Kaldi system. This better performance is
significant for a paired t test compared with the rest of the
systems (p < 0.01) except with the Proxy Kaldi and Syn-Syll
Comb systems. This is consistent with the findings in the
development data. Again, Combined Kaldi, Proxy Kaldi,
and Syn-Syll Comb systems outperform the rest due to the
more robust ASR subsystem. In addition, these systems
have smaller out-of-vocabulary rate than the rest, as shown
in Table 12, which is clearly giving a better performance. As
in the development data, the improvement of the Kaldi
matcher system over the DD Kaldi and DI Kaldi systems is
significant for a paired t test (p < 0.01) due to the more
robust ASR and STD subsystems. An interesting finding is
that the performance of the CM Phone STD+TST system,
which bases on phone ASR, is quite near to that of the DD
Kaldi and DI Kaldi systems, and that the performance gaps
are insignificant for a paired t test. This confirms the power
of phone-based ASR to build STD systems. Mostly, this in-
significant performance gap is due to the OOV term re-
trieval capability of a phone-based STD system, which is

partially absent in the DD Kaldi and DI Kaldi systems (see
the OOV rate in Table 12), and the multi-term retrieval
capability, which is absent in the DD Kaldi and DI Kaldi
systems (see Section Performance analysis of STD systems
based on single/multi-word terms). This confirms that a
phone-based STD system can obtain a performance that is
comparable to that of the word-based STD systems in case
these do not incorporate a robust mechanism for OOV and
multi-word term detection.
On EPIC test data, the best performance is obtained

by the Proxy Kaldi system. This performance is signifi-
cant for a paired t test compared with all the systems
(p < 0.01) except with the Syn-Syll Comb system whose
performance gap is weak significant (p < 0:04), and with
the Kaldi matcher and Combined Kaldi for which the
performance gaps are insignificant. Again, the phone-
based STD systems obtain the worst performance due
to the absence of lexical information in the ASR sub-
system. EPIC test data are easier data from an ASR
point of view than the MAVIR data, since EPIC data
contain clean speech. This is confirmed by the p.563
MOS values presented in Tables 2 and 3 for MAVIR
and EPIC data, respectively, where the MOS values are
generally better in the EPIC database. Therefore, the
performance of all the systems for EPIC data is much
better than that obtained on MAVIR data, whose
acoustic conditions degrade the ASR performance, and
hence the overall STD performance. In addition, as can
be seen in Table 13, the lower OOV rate compared to
MAVIR test data is also enhancing the final STD
performance. On the other hand, the performance gaps
between the word-based STD systems and the phone-
based STD systems are larger than in MAVIR test data
due to the clean speech condition. In addition, the bet-
ter performance of the DD Kaldi and DI Kaldi systems
compared with the phone-based STD systems is signifi-
cant for a paired t test (p < 0.01). One interesting find-
ing is the insignificant performance gap between the
Proxy Kaldi and the Kaldi matcher systems. We con-
sider this is due to the mismatch between the develop-
ment data (noisy speech in general domain) and test
data (clean speech in meeting domain), which may

Table 13 Percentage of EPIC INV test terms that do not appear
in the LVCSR system vocabulary (only for word-based STD
systems)

System ID OOV rate

Combined Kaldi 0.6%

Proxy Kaldi 0.6%

Syn-Syll Comb 1.3%

DD Kaldi 7.3%

DI Kaldi 7.3%

Kaldi matcher 4.6%

Table 12 Percentage of MAVIR INV test terms that do not
appear in the LVCSR system vocabulary (only for word-based
STD systems)

System ID OOV rate

Combined Kaldi 7.3%

Proxy Kaldi 7.3%

Syn-Syll Comb 11.9%

DD Kaldi 19.8%

DI Kaldi 19.8%

Kaldi matcher 13.5%

Table 11 System results of the ALBAYZIN STD 2016 evaluation
on EPIC test data

System ID MTWV ATWV p(FA) p(Miss)

Combined Kaldi 0.8416 0.8373 0.00005 0.105

Proxy Kaldi 0.8436 0.8388 0.00007 0.082

Syn-Syll Comb 0.8035 0.8023 0.00004 0.156

DD Kaldi 0.5507 0.5336 0.00007 0.378

DI Kaldi 0.5507 0.5376 0.00008 0.373

Kaldi matcher 0.8341 0.8296 0.00004 0.126

Phone STD 0.2637 0.2394 0.00028 0.452

Mismatch Phone STD 0.0000 -8.7347 0.00000 1.000

CM Phone STD 0.4028 0.3523 0.00019 0.412

CM Phone STD+TST 0.4354 0.4008 0.00019 0.372
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degrade the performance of the best system due to the
change in the application domain.
For all sets of data, the performance gap between

MTWV and ATWV metrics is, in general, low. This
means that the term detection scores are well-
calibrated.
DET curves are shown in Figs. 7, 8, and 9 for MAVIR

development data, MAVIR test data, and EPIC test data,
respectively. On development data, the Proxy Kaldi sys-
tem performs the best for low and high false alarm rates,
whereas for moderate false alarm and miss rates, the
Syn-Syll Comb system performs the best. The phone-
based systems, as expected from the evaluation results,
perform the worst in all the operation points. On
MAVIR test data, the Proxy Kaldi system also performs
the best for low and high false alarm rates, whereas for
moderate false alarm and miss rates, the Combined
Kaldi system performs the best. The CM Phone
STD + TST and the CM Phone STD systems perform
better than the DD Kaldi and DI Kaldi systems for low
miss rate, and the reverse stands for low false alarm rate.
On EPIC test data, the Proxy Kaldi system performs the
best for almost all the operation points, and the per-
formance gets near that of the Kaldi matcher for low
miss rate. In general, the performance of the phone-
based STD systems in EPIC data is the worst in almost
all the operation points, except for low miss rate, where

the DD Kaldi and DI Kaldi system performances are
worse than that of three out of the four phone-based
STD systems. All these results are consistent with the
ATWV-based evaluation results.

4.1 Comparison to previous NIST STD evaluations
The results obtained in this ALBAYZIN STD 2016 evalu-
ation cannot be directly compared with those of the NIST
STD evaluations since 2006. However, some analysis aiming
to provide some light across different languages/domains
can be carried out. Comparing our results with those
obtained in the first NIST STD evaluation held in 2006, it
is clearly seen that better results are obtained in the
ALBAYZIN STD 2016 evaluation compared to those
obtained for the Arabic and Mandarin languages in the
NIST STD 2006 evaluation, which agrees with the conclu-
sions presented in [59]. However, for English language
(which is easier than Arabic and Mandarin languages from
an ASR perspective) on broadcast news and conversational
telephone speech domains, for which typically enough
training data exist, STD performance is near to that ob-
tained in the EPIC data in our evaluation. These BNews
and CTS domains are typically easier than the MAVIR do-
main, and hence better performance is expected. However,
EPIC domain, which is much easier than MAVIR domain,
obtains performance similar to the English language on
BNews and CTS domains. Therefore, the difficulty of

Fig. 7 DET curves of the STD systems for MAVIR development data
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Fig. 9 DET curves of the STD systems for EPIC test data

Fig. 8 DET curves of the STD systems for MAVIR test data
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BNews, CTS, and clean speech on parliament sessions can
be considered equivalent for an STD perspective. However,
when the diffculty of the domain increases (as is the case
for meeting speech on English language), significant per-
formance degradation is observed. It must be noted that
the meeting speech employed in the English STD NIST
2006 evaluation contains more difficult speech than the
parliament sessions corresponding to the EPIC data (e.g.,
the meeting speech contains more overlapping and noise
than the parliament session speech). In addition, the pro-
gress of the STD technology since 2006 also contributes to
enhance the system performance.
Comparing our results with those obtained in the

NIST OpenKWS evaluations held from 2013 to 2016,
similar performance is obtained on MAVIR data. Both in
the NIST OpenKWS evaluations and ALBAYZIN STD
evaluations, there is still enough room for improvement.
On EPIC data, our results are much better than those
obtained in the OpenKWS evaluations. This is expected,
since EPIC data comprise a much easier domain than
the MAVIR data for ASR, and hence from an STD
perspective as well.

4.2 Performance analysis of STD systems based on term
length
An analysis of the performance of the STD systems
based on the length (in number of graphemes) of the
test terms has been conducted and results are shown in
Tables 14 and 15 for MAVIR and EPIC test data, re-
spectively. Test terms have been divided into three
categories: short-length terms (terms with up to 7
graphemes), medium-length terms (terms between 8 and
10 graphemes), and long-length terms (terms with more
than 10 graphemes). In general, performance improves

to a great extent from short to medium-length terms,
since shorter words tend to produce more errors in ASR
systems. However, for longer terms the improvement is not
that clear and in most of the cases the STD performance
for longer terms is worse than for medium-length terms.
This may happen because, in word-based STD systems,
longer terms are frequently composed of multiple words,
which tend to decrease the STD performance since these
words are more possible to convey ASR errors than a single
word. For the phone-based STD systems presented, which
are based on a sequence of phones, the term is simply
treated as a sequence of phones (i.e., the number of words
of the term does not play an important role). In this case,
STD performance for long-length terms also degrades com-
pared to medium-length terms, since they are more difficult
to detect than medium-length terms (i.e., the sequence of
phones output by the ASR subsystem has more ASR errors
since more phones need to be detected). On the other hand,
short-length terms typically cause so many FAs that
the STD performance is also worse compared with
medium-length terms.

4.3 Performance analysis of STD systems based on single/
multi-word terms
An analysis of the performance of the STD systems for
single-word and multi-word terms has been carried out
and results are shown in Table 16. Results show per-
formance degradation from single-word to multi-word
terms for STD systems based on word units. This occurs
because ASR errors affect term detection to a great
extent when the terms are composed of more than one
word. However, for STD systems based on phone recog-
nition, this behavior is not that clear, since each term is
simply treated as a sequence of phones, and hence the

Table 15 System results of the ALBAYZIN STD 2016 evaluation
on EPIC test data based on the term length (ATWV
performance)

System ID ATWV

Short Medium Long

Combined Kaldi 0.8197 0.8504 0.8446

Proxy Kaldi 0.8076 0.8583 0.8611

Syn-Syll Comb 0.7848 0.8202 0.7973

DD Kaldi 0.5862 0.5023 0.4923

DI Kaldi 0.5992 0.5026 0.4854

Kaldi matcher 0.8229 0.8337 0.8342

Phone STD 0.1532 0.3005 0.2828

Mismatch Phone STD −13.5174 −6.6105 −3.2178

CM Phone STD 0.2267 0.4507 0.3917

CM Phone STD+TST 0.3532 0.4498 0.3866

‘Short’ denotes short-length terms (terms with up to 7 graphemes), ‘Medium’
denotes medium-length terms (terms between 8 and 10 graphemes), and
‘Long’ denotes long-length terms (terms with more than 10 graphemes)

Table 14 System results of the ALBAYZIN STD 2016 evaluation
on MAVIR test data based on the term length (ATWV
performance)

System ID ATWV

Short Medium Long

Combined Kaldi 0.5239 0.6285 0.5346

Proxy Kaldi 0.5355 0.5546 0.5626

Syn-Syll Comb 0.4394 0.5644 0.4993

DD Kaldi 0.1920 0.2299 0.2141

DI Kaldi 0.1941 0.2246 0.2133

Kaldi matcher 0.3229 0.4759 0.4897

Phone STD 0.1274 0.1449 0.1019

Mismatch Phone STD −3.9749 −5.0886 −1.4833

CM Phone STD 0.1603 0.2240 0.1280

CM Phone STD+TST 0.1793 0.2560 0.1582

‘Short’ denotes short-length terms (terms with up to 7 graphemes), ‘Medium’
denotes medium-length terms (terms between 8 and 10 graphemes), and
‘Long’ denotes long-length terms (terms with more than 10 graphemes)
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term length is more suitable than the single/multi-word
term classification for further analysis. Results also show
that multi-word term detection is still a challenging task
in STD even for word-based STD systems.

4.4 Performance analysis of STD systems based on in-
vocabulary/out-of-vocabulary terms
An analysis of the performance of the STD systems for in-
vocabulary and out-of-vocabulary terms has been carried
out and results are shown in Tables 17 and 18 for MAVIR
and EPIC test data, respectively. Results show perform-
ance degradation from INV to OOV terms for all the
word-based STD systems even though these incorporate
some mechanism for OOV term retrieval. This suggests
the difficulty of OOV term retrieval in STD systems no
matter the target domain is easy as EPIC data, or difficult
as MAVIR data. This performance degradation is due to
the impossibility of using lexical information. On the other
hand, performance is rather similar for INV and OOV
terms (and even better for OOV terms in some cases) for

the phone-based STD systems because for these systems
INV and OOV are the same from the term retrieval point
of view, since they do not use words. Since all the STD
systems have to resort to phone based ASR or some other
phone-based approach for OOV term retrieval all the dif-
ferences between word, and phone-based STD become to
a minimum when retrieving OOV terms, and hence many
systems obtain equivalent OOV term performance.

4.5 Performance analysis of STD systems based on in-
language/out-of-language terms
An analysis of the performance of the STD systems for
in-language and out-of-language terms has been carried
out and results are shown in Table 19. Performance deg-
radation is observed from in-language to out-of-language
terms. Whereas INL terms are terms whose pronunciation
matches the target language, and for which enough data
are typically employed to train both the acoustic models
and LMs, for OOL terms, the pronunciation cannot be
effectively derived from grapheme-to-phoneme rules given

Table 17 System results of the ALBAYZIN STD 2016 evaluation on MAVIR test data for INV and OOV terms

System ID INV OOV

ATWV p(FA) p(Miss) ATWV p(FA) p(Miss)

Combined Kaldi 0.6324 0.00008 0.274 0.2084 0.00008 0.712

Proxy Kaldi 0.6404 0.00008 0.274 0.0059 0.00047 0.400

Syn-Syll Comb 0.5767 0.00005 0.365 0.0984 0.00014 0.754

DD Kaldi 0.2292 0.00007 0.697 0.1225 0.00002 0.852

DI Kaldi 0.2268 0.00008 0.690 0.1236 0.00002 0.849

Kaldi matcher 0.4791 0.00012 0.397 0.1399 0.00007 0.789

Phone STD 0.1320 0.00015 0.715 0.1090 0.00008 0.787

Mismatch Phone STD −3.9621 0.00000 1.0000 −3.1612 0.00000 1.0000

CM Phone STD 0.1787 0.00012 0.702 0.1900 0.00005 0.755

CM Phone STD+TST 0.1787 0.00012 0.702 0.1972 0.00005 0.755

‘INV’ refers to in-vocabulary terms and ‘OOV’ refers to out-of-vocabulary terms

Table 16 System results of the ALBAYZIN STD 2016 evaluation on MAVIR test data for single-word and multi-word terms

System ID Single Multi

ATWV p(FA) p(Miss) ATWV p(FA) p(Miss)

Combined Kaldi 0.6028 0.00009 0.303 0.2857 0.00000 0.452

Proxy Kaldi 0.5711 0.00005 0.364 0.3571 0.00000 0.405

Syn-Syll Comb 0.5276 0.00008 0.387 0.3333 0.00000 0.667

DD Kaldi 0.2368 0.00007 0.691 0.0000 0.00000 1.000

DI Kaldi 0.2347 0.00008 0.683 0.0000 0.00000 1.000

Kaldi matcher 0.4516 0.00013 0.420 0.2381 0.00000 0.762

Phone STD 0.1273 0.00012 0.745 0.1429 0.00000 0.857

Mismatch Phone STD −4.2547 0.00000 1.000 −0.0208 0.00008 0.857

CM Phone STD 0.1868 0.00012 0.692 0.1190 0.00003 0.762

CM Phone STD+TST 0.1868 0.00012 0.692 0.2143 0.00003 0.762

‘Single’ refers to single-word terms and ‘Multi’ refers to multi-word terms
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the target language, and are typically scarce in the acoustic
model and LM training data.
It must be noted that the lowest performance deg-

radation from INL terms to OOL terms corresponds
to the DD Kaldi and DI Kaldi systems. This might be
explained by the presence of some English terms in
the dictionary of both systems.

4.6 Lessons learned
The ALBAYZIN Spoken Term Detection 2016 evalu-
ation is integrated into a more general search-on-speech
ALBAYZIN evaluation. This is the third edition of the
search-on-speech ALBAYZIN evaluation, after those
held in 2012 and 2014. This evaluation involves two differ-
ent applications: Spoken Term Detection and Query-by-
Example Spoken Term Detection. In the search-on-speech
ALBAYZIN evaluation, the STD evaluation constitutes the
third STD evaluation in Spanish language, after those held
in 2012, and 2014. From the first evaluation, considerable

improvements have been carried out in the evaluation
organization aiming to offer an appealing evaluation for po-
tential participants. In the first evaluation, only MAVIR
data were employed. In addition, the list of terms only
included single-word, INV, and INL terms. The second edi-
tion incorporated more difficult terms, since multi-word,
and OOL terms were added on the same MAVIR data. In
this third evaluation, the evaluation complexity is higher
since two different domains were considered (MAVIR and
EPIC data), and a real OOV term set was provided to par-
ticipants. This means that participants were required to
manage OOV term detection using an approach different
to the traditional search on word lattices. In addition, some
auxiliary data such as the word lattices provided by a Kaldi-
based ASR system were also provided, but in the end none
of the participants used them.
In previous evaluations, a single dataset for training/

development was provided to participants, who may use
the same data for training and development. This makes

Table 19 System results of the ALBAYZIN STD 2016 evaluation on MAVIR test data for in-language and out-of-language (foreign)
terms

System ID INL OOL

ATWV p(FA) p(Miss) ATWV p(FA) p(Miss)

Combined Kaldi 0.5985 0.00009 0.305 0.2167 0.00000 0.750

Proxy Kaldi 0.5719 0.00005 0.369 0.2609 0.00013 0.567

Syn-Syll Comb 0.5447 0.00008 0.374 0.0225 0.00002 0.950

DD Kaldi 0.2202 0.00007 0.712 0.1300 0.00001 0.833

DI Kaldi 0.2183 0.00007 0.705 0.1300 0.00001 0.833

Kaldi matcher 0.4453 0.00012 0.435 0.2381 0.00006 0.698

Phone STD 0.1382 0.00014 0.715 0.0000 0.00000 1.0000

Mismatch Phone STD −4.1236 0.00000 1.0000 −0.1101 0.00000 1.0000

CM Phone STD 0.1935 0.00012 0.689 0.0000 0.00006 0.919

CM Phone STD+TST 0.1935 0.00012 0.689 −0.0954 0.00006 0.919

‘INL’ refers to Spanish terms and ‘OOL’ refers to foreign terms

Table 18 System results of the ALBAYZIN STD 2016 evaluation on EPIC test data for INV and OOV terms

System ID INV OOV

ATWV p(FA) p(Miss) ATWV p(FA) p(Miss)

Combined Kaldi 0.9290 0.00004 0.026 0.4206 0.00012 0.461

Proxy Kaldi 0.9309 0.00004 0.026 0.4203 0.00024 0.187

Syn-Syll Comb 0.9362 0.00003 0.035 0.1936 0.00010 0.709

DD Kaldi 0.5894 0.00008 0.311 0.2798 0.00001 0.669

DI Kaldi 0.5928 0.00007 0.324 0.2865 0.00001 0.669

Kaldi matcher 0.9268 0.00004 0.033 0.3877 0.00001 0.594

Phone STD 0.2324 0.00029 0.437 0.2714 0.00029 0.393

Mismatch Phone STD −8.8765 0.00000 1.000 −8.0902 0.00000 1.000

CM Phone STD 0.3506 0.00020 0.386 0.3597 0.00009 0.528

CM Phone STD+TST 0.3506 0.00020 0.386 0.3617 0.00009 0.528

‘INV’ refers to in-vocabulary terms and ‘OOV’ refers to out-of-vocabulary terms
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a fair comparison of the system performance on devel-
opment data almost impossible. To solve this issue, in
this evaluation the training/development speech dataset
was explicitly divided into two different datasets (train-
ing and development) so that a meaningful analysis can
be done on the development data.
This is the third time that MAVIR data have been

employed in this round of ALBAYZIN STD evaluations.
Although MAVIR data become very repetitive in the
evaluations, we plan to use them again in next evalua-
tions for comparison purposes aiming to evaluate the
progress of the STD technology in Spanish. Regarding
EPIC data, this is the first use of these data in the
ALBAYZIN STD evaluation. Using two different do-
mains is a straightforward way to compare system per-
formances across two different domains, and has
allowed us to examine the performance degradation of
the systems depending on the nature of the speech data.
The ALBAYZIN STD evaluations held so far focused

on finding disjoint term lists into disjoint speech data. In
future evaluations, cross-search (searching development
terms into test speech data, and searching test terms
into development speech data) should also be taken into
account. This will measure the generalization capability
of the systems when searching for known terms within
unknown speech data.

5 Conclusions
This paper has presented a spoken term detection inter-
national open evaluation for search-on speech in Spanish.
The amount of systems submitted to the evaluation has
made it possible to compare the progress of this technology
under a common framework. System design and results
along with a deep result analysis across different term
characteristics (term length, INV/OOV, single/multi-word
terms, and INL/OOL) have been presented. Five different
research groups have taken part in the evaluation and ten
different systems were submitted in total. All the submitted
systems allow INV and OOV term detection. Some systems
are based on phone ASR to retrieve OOV terms whereas
others employ word lattices output by a word-based ASR
system to produce OOV term detections. In addition, a full
phone-based STD system has also been submitted. This
phone-based STD system is suitable for fast indexing and
search, although the performance is not as good as the rest
of the systems based on word ASR. Given the challenge of
the MAVIR data, the best performance can be considered
high (ATWV= 0.5850). This performance is higher than
that obtained in the previous ALBAYZIN STD 2014 evalu-
ation (ATWV= 0.5350), which confirms the progress of the
STD technology in Spanish, even though this year OOV
terms have been explicitly designed, and the term list is
more difficult (e.g., more OOL and multi-word terms).
Regarding domain comparison, we have shown that for an

easier domain such as that of the EPIC data with an easier
term list (INV, INL, and single-word terms) performance is
much better (ATWV= 0.8436).
We have also shown that OOV term detection still

remains an important challenge in STD, as is the case
with OOL and multi-word terms. For word-based
STD systems longer words contribute to enhance the
STD performance, and shorter words contribute to
get lower the STD performance.
Given the best result obtained in the MAVIR data,

there is still ample room for improvement. Due to the
low rates obtained in OOV term detection on these data,
the upcoming evaluations should focus on OOV terms
aiming to encourage participants to build robust systems
for OOV term detection. In addition, more OOL and
multi-word terms could also be considered in the term
list in future evaluations. All these results encourage us
to maintain this evaluation in the future, trying to focus
more on the challenges remaining in STD.

6 Endnotes
1http://www.rthabla.es/
2http://www.isca-speech.org/iscaweb/index.php/

sigs?layout=edit&id=132
3http://catalog.elra.info/

product_info.php?products_id=1145
4http://www.mavir.net
5http://cartago.lllf.uam.es/mavir/index.pl?m=videos
6http://sox.sourceforge.net
7http://www.itl.nist.gov/iad/mig/tests/std/2006
8http://www.tc-star.org
9http://cartago.lllf.uam.es/mavir/index.pl?m=descargas
10This database is presently being developed by the

Software Technology Working Group (GTTS) research
group of the University of the Basque Country (UPV/
EHU), contact german.bordel@ehu.eus
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