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Summary 

Live attenuated and killed whole cell vaccines offer a promising vaccination 

strategy against tuberculosis. A number of whole cell vaccine candidates, 

based on recombinant BCG, attenuated Mycobacterium tuberculosis, or 

related mycobacterial species are in various stages of preclinical or clinical 

development. In this review, we discuss the vaccine candidates and key 

factors shaping the development pathway for live and killed whole cell 

vaccines, and provide an update on progress. 
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Development of vaccines against many human pathogens was traditionally 

based on attenuation or inactivation of the pathogenic organism. This 

approach has been very successful and many live attenuated vaccines confer 

highly durable immune responses that provide protective immunity for 

decades [1]. 

Live attenuated or killed whole cell vaccines (WCV) against mycobacteria also 

have potential advantages over protein–adjuvant formulations and 

recombinant viral-vectored constructs for vaccination against tuberculosis 

(TB). This is supported by a plethora of evidence of vaccination against TB 

with Bacille Calmette Guerin (BCG), an attenuated strain derived from 

Mycobacterium bovis originally isolated from cows. BCG is typically the most 

protective vaccine against Mycobacterium tuberculosis in experimental animal 

models. A number of human trials of BCG also show partial vaccine efficacy 

against TB [2, 3]. The advantages of WCV over protein-adjuvant formulations 

and viral-vectored constructs are hypothesized to be due to their broad 

antigen composition, which includes the (almost) complete protein repertoire, 

lipids, carbohydrates and other moieties that may be antigenic and induce 

donor unrestricted T cell responses, B cell responses and possibly also NK 

and ILC responses. Live WCV also possess an ability to induce long-lasting 

memory immune responses, probably related to their restricted persistence or 

replication in vivo, as typified by other whole cell vaccines (e.g. measles, 

yellow fever, polio). In addition, BCG vaccination may have a general positive 

effect on mortality due to other diseases, at least in resource-limited countries 

[4]. This effect may rely, at least in part, on epigenetic imprinting of immune 
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cells after BCG vaccination, a process referred to as “trained immunity” [5]. It 

is most likely that these positive effects are also induced by live WCV. 

Live attenuated TB vaccines thus offer a promising vaccination strategy 

against TB, and a number of vaccine candidates based on recombinant BCG 

and attenuated M. tuberculosis are in preclinical or clinical development. To 

be considered for licensing the WHO recommends that these vaccine 

candidates will need to be either on their own or as heterologous boosts of 

BCG, i/ safer than BCG or ii/ at least as safe as BCG and more efficacious 

than BCG in a prophylactic setting. Therefore, it is expected that various new 

WCV candidates will target different indications: (1) WCV safer than BCG will 

primarily target neonates, since BCG is already (partially) protective in this 

population; (2) a WCV developed as a booster of BCG and to be used in 

adolescents will have to fill particular booster conditions, e.g. inducing 

tolerable and/or acceptable adverse events after secondary or tertiary booster 

administration; (3) a WCV expressing latency antigens is needed for 

adolescents and young adults with latent M. tuberculosis infection (LTBI); and 

(4) a highly attenuated or even killed WCV may be particularly interesting for 

therapy in adjunct to chemotherapy, especially for immunocompromised 

individuals such as those with AIDS. 

Here we review recent progress in clinical and preclinical development of 

WCV for TB (Tables 1 and 2, listing WCV in clinical or preclinical 

development, respectively). 

http://jid.oxfordjournals.org/
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Lessons from VPM1002 and MTBVAC, the most clinically advanced WCV 

The recombinant BCG, VPM1002, is at the most advanced stage of clinical 

development. VPM1002 expresses listeriolysin (LLO, encoded by the gene 

hly in Listeria monocytogenes), which is known to perforate the phagosomal 

membrane and is biologically active at a pH of 5.5 [6]. Optimal biological 

activity of LLO in the phagosome containing VPM1002 is achieved by deletion 

of the urease C subunit-encoding gene (ureC), which functions to reduce 

acidification of the phagosomal compartment. VPM1002 is therefore designed 

to allow enhanced release of BCG-derived antigens into the cytosol and 

increased apoptosis and xenophagy of host cells in vitro [7, 8]. After extensive 

preclinical development VPM1002 successfully completed two phase I trials 

(NCT 00749034 [9, 10] and NCT 01113281) and one phase IIa trial in infants 

(NCT 01479972), which show that it is safe and immunogenic in 

adolescents/adults and infants. It is currently being assessed in large cohorts 

of newborns from HIV+ and HIV- mothers (NCT 02391415). VPM1002 has 

been found to be highly efficacious, with an excellent safety record in 

preclinical models as compared to BCG [7]. In a mouse model, VPM1002 

induced central memory T cells to a greater degree than BCG and when 

adoptively transferred, this central memory cell population provided protection 

with high efficiency [11]. In vitro studies indicate that VPM1002 induces 

increased apoptotic and xenophagic events, which may underlie the 

promising safety and efficacy record to date [8]. More recently, it has also 

been shown to be highly effective as post-exposure vaccine in an 

experimental mouse model of LTBI (M. Gengenbacher et al. Submitted). 

Currently it is being prepared for a phase III trial in India comprising a group of 
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TB patients who had completed drug treatment, expected with a risk of 

relapse in the order of 10%. Hence, this is a high-risk group allowing 

assessment in study groups of 1,000-2,000 individuals. 

MTBVAC is a live rationally attenuated derivative of the M. tuberculosis isolate 

MT103, which belongs to lineage 4 (Euro-American), one of the most 

widespread lineages of M. tuberculosis. MTBVAC contains all the genes 

present in M. tuberculosis strains commonly transmitted between humans by 

the aerosol route, including the genes that are deleted in M. bovis and BCG. 

MTBVAC contains two independent stable deletion mutations in the virulence 

genes phoP and fadD26. These deletions were generated in the absence of 

antibiotic resistance markers, fulfilling the Geneva consensus requirements 

for progressing live mycobacterial vaccines to clinical trials [12]. PhoP is a 

transcription factor that controls expression of 2% of the M. tuberculosis 

genome, including production of immunomodulatory cell-wall lipids and early 

secretory antigenic target (ESAT)-6 secretion [13]. Deletion of fadD26 leads to 

complete abrogation of synthesis of the virulence surface lipids phtiocerol 

dimycocerosates (PDIMs) [14]. Extensive preclinical studies demonstrated 

adequate attenuation and safety of MTBVAC comparable to BCG, with 

superior immunogenicity and efficacy against M. tuberculosis [12, 15]. A first-

in-human MTBVAC clinical trial was recently completed successfully in 

healthy adults in Lausanne, Switzerland (NCT02013245) [16]. In this trial, 

when MTBVAC was given at the same dose as BCG (5x10⁵ CFU), there were 

more responders in the MTBVAC group than in the BCG group, with a greater 

frequency of polyfunctional CD4+ central memory T cells. However, this study 
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has the limitation, as a phase I first in-human trial, that the secondary 

objective (immunogenicity) was not powered for statistical analysis. 

Nevertheless, MTBVAC is the first live-attenuated M. tuberculosis vaccine to 

enter clinical trials and to date has shown a comparable safety profile to BCG 

[16]. A notable finding in the first trial was the absence of ESAT-6 and CFP-

10-specific T cell responses at the end of the study [16], suggesting that 

interferon- release assays (IGRAs) could be utilized as study endpoints in 

future efficacy trials to test efficacy against M. tuberculosis infection. The 

immunogenicity data show that MTBVAC is at least as immunogenic as BCG. 

Altogether these data supported the advanced clinical development in high-

burden countries where TB is endemic. A dose-escalation safety and 

immunogenicity study to compare MTBVAC to BCG in newborns with a safety 

arm in adults is currently ongoing in South Africa (NCT02729571). 

Other WCV candidates 

Other WCV candidates have completed preclinical development and entered 

or are about to enter clinical trials in humans. They include candidates to be 

used either as therapeutic or preventive vaccines. 

Therapeutic vaccine candidates 

RUTI is a polyantigenic liposomal vaccine made of detoxified, fragmented M. 

tuberculosis cells. It is targeted for the prevention of active TB in subjects with 

LTBI. A phase IIa clinical trial was completed in 2014 in South Africa [17]. 

Three different doses of RUTI were compared to placebo for safety, 
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tolerability and immunogenicity in HIV-infected and -uninfected subjects with 

latent M. tuberculosis infection after completion of one-month isoniazid 

treatment before vaccination. RUTI was well tolerated and its immunogenicity 

profile suggested a single injection of one of the highest doses might be 

optimal and sufficient, which will be tested in future trials. New trials are being 

planned, including evaluation of the efficacy of RUTI in specific populations 

such as patients with MDR-TB (C. Villaplana and P.J. Cardona, Personal 

communication). 

M. indicus pranii preparation was found to have potential effects against TB 

when used as an aerosol-delivered adjunct to chemotherapy in animal 

models, including guinea pigs [18]. However, in a recent phase III clinical trial 

in patients with TB pericarditis M. indicus pranii vaccination had no 

immunotherapeutic effect either alone or adjunctive to prednisolone [19]. 

Based on clinical evidence that this vaccine candidate can modulate 

immunopathology in sepsis [20], it is currently being assessed as an 

immunotherapeutic agent in a phase IIb trial in patients with severe sepsis 

(ClinicalTrials.gov reference, NCT02330432). 

Vaccine preparations of the non-tuberculous mycobacteria, M. vaccae and M. 

obuense, have also been extensively developed in preclinical studies and 

clinical trials. Killed M. vaccae was studied for use as an immunotherapeutic 

agent against leprosy and TB [21]. Killed M. vaccae as well as a M. vaccae 

lysate, made by a press method, have been assessed as adjunct therapy to 

anti-TB treatment in many trials in different countries, including in HIV-infected 
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persons. Two meta-analyses by Yang et al. [22, 23] suggested that M. vaccae 

therapy led to moderate improvements in sputum conversion and 

radiographical appearances. A phase III trial of the lysate preparation of M. 

vaccae is currently underway in China (personal communication, Ann 

Ginsberg, Aeras). 

Heat-killed preparations referred to as SRL172 and DAR-901, initially thought 

to be M. vaccae but recently identified as M. obuense, have also been tested 

in numerous trials [24, 25]. One such a M. obuense preparation was tested as 

a booster in a phase III trial known as the Dar-Dar trial in BCG-vaccinated and 

HIV-infected adults in Tanzania [26]. The data suggest that multiple-dose 

administration of inactivated, whole cell M. obuense may prevent HIV-

associated TB. The conclusions of this trial need to be confirmed in further 

trials; a phase I of the DAR-901 candidate is currently underway (personal 

communication, Ann Ginsberg, Aeras). 

Preventive live vaccine candidates 

Many other live WCV candidates are in the preclinical development pipeline, 

some with very promising results (Table 2). For instance, a BCG mutant 

inactivated in zmp1, a gene involved in inflammasome inhibition, appeared 

more immunogenic and safer than BCG in mice and is more protective than 

BCG in mice and guinea pigs [27]. This candidate is poised to enter phase I 

clinical trial soon (P. Sander, Personal communication). Other attenuated M. 

tuberculosis strains, inactivated in the transcriptional regulator SigH [28] or in 

metabolic genes such as panCD or lysA, involved in pantothenate and lysine 
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biosynthesis respectively, amongst others [29, 30] are also in preclinical 

development and may enter phase I trials in the future. 

Safety of WCV 

Safety of live WCV is a critically important consideration. The safety concerns 

are exemplified by the observation that BCG, a highly attenuated live vaccine 

that has been given to ca. 4 billion people, can cause disseminated disease in 

immunocompromised persons. The inherently difficult question for WCV is the 

optimal degree of attenuation. According to WHO recommendations two 

independent genetic inactivations must be made in an M. tuberculosis-based 

vaccine candidate before it can enter clinical trials [31]. Highly attenuated 

strains, completely incapable of in vivo replication, are most likely very safe, 

but might fail to induce sufficient immunity for long-term protection. For 

example, a M. tuberculosis pantothenate auxotrophic mutant was found much 

safer and as protective as BCG in mice [30]; whether strains of this nature 

confer long-term protection against TB remains to be evaluated in appropriate 

experimental settings. The BCG-Δzmp1 mutant [27] and VPM1002 (see 

above) are good examples of WCV that appear safer and more immunogenic 

and protective than BCG, at least in animal models. 

On the other hand, less attenuated strains may persist for longer periods of 

time in vivo and therefore be highly immunogenic, but may also be associated 

with unacceptable adverse events. For example, a phase I clinical safety trial 

of a recombinant BCG vaccine, which expressed perfringolysin, Ag85A, 

Ag85B, and Rv3407, had to be terminated because two vaccine recipients 

presented with shingles reactivation [32]. 

http://jid.oxfordjournals.org/
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Given the rich literature on safety and efficacy of BCG, it is ideal that studies 

of WCV candidates be performed with BCG as a comparator, to allow 

comparison of adverse events between the WCV candidates with BCG. 

Which animal models are preferred for preclinical WCV studies? 

A remarkable range of animal species have been utilized in TB vaccine 

research, including mice, guinea pigs, rabbits, mini pigs, badgers, cattle, and 

rhesus or cynomolgus macaques. A recent development in the TB vaccine 

community is a renewed emphasis on more stringent preclinical data about 

vaccine efficacy. Further, the Bill and Melinda Gates Foundation has 

communicated that significant vaccine efficacy in non-human primates is a 

prerequisite for their support of late-phase human trials. In light of this 

background, selection of an appropriate animal model and study design of 

animal experiments is important. Different approaches and species may be 

required for efficacy testing and in-depth immunological studies of WCV in 

animal models. For example, guinea pigs may be suitable for the former, 

whereas the virtually unlimited immunological reagents and genetic 

approaches for murine experimentation may encourage mechanistic 

immunological studies in mice. In light of the clear differences in BCG efficacy 

between unsensitized and sensitized persons [33], a good animal model for 

latent M. tuberculosis infection would be highly desirable. 

http://jid.oxfordjournals.org/
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Can WCV be used as heterologous boosts of childhood BCG 

vaccination? 

A large number of human studies suggest that homologous boosting of 

childhood BCG vaccination with BCG does not provide additional benefit [34]. 

Although it must be acknowledged that none of these studies systematically 

optimized the interval between administrations of BCG, or any other 

parameters of the homologous prime-boost protocol, it is generally believed 

that revaccination with BCG is inefficient. It remains possibe that BCG 

revaccination in humans can be optimised to achieve greater efficacy, as 

supported by a number of studies of homologous BCG revaccination in cattle, 

deer and wild pigs, which have shown enhanced efficacy over single BCG 

[35-37]. Importantly though, BCG revaccination is not associated with major 

safety concerns in these studies. A recent study in tuberculin skin test (TST)+ 

adults also reported that BCG-revaccination was safe and well tolerated and 

that injection site reactogenicity was similar to that of primary BCG 

vaccination [38]. 

If BCG revaccination itself does not confer better protection than a BCG 

prime, how can a single heterologous WCV administration before or during 

adolescence be expected to boost BCG-induced immunity? Although 

speculative at this stage, we propose that a WCV that is better than BCG as a 

prime may also be better than BCG as a boost. This speculation might also 

hold true regarding the ability of such a better WCV to overcome the 

limitations of BCG-induced protection, thought to be due to exposure to 

environmental non-tuberculous mycobacteria or to helminthic infection, for 

example [39]. In addition, recent modelling results suggest targeting of 
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adolescents with TB vaccines will be more cost effective and have greater 

impact on transmission of M. tuberculosis [40]. Since BCG is the only 

currently licenced vaccine, it is likely that advancing such heterologous 

strategies to efficacy trials will require strong evidence in preclinical models. 

Selection of animal models ideal for testing such approaches is therefore an 

important issue. 

Important further considerations include selection of revaccination intervals 

(for example, short or long intervals between prime and boost), environmental 

exposure of animals, and how to define protective efficacy in animal models. 

What is the optimal administration route for WCV? 

BCG is given as an intradermal vaccination in most countries. Can efficacy of 

WCV be improved by changing the route of immunization to percutaneous, 

intramuscular, or mucosal routes (although the latter raises safety concerns 

that will need to be addressed before proceeding for clinical trials)? 

Experiments have already started in order to test the efficacy of WCV, such 

as MTBVAC and VPM1002, when delivered into the lungs via alternative 

routes, such as the intratracheal, intranasal, oral and aerosol routes. A recent 

murine study showed that BCG administered intranasally, but not 

subcutaneously, confers robust protection against pulmonary M tuberculosis 

challenge, indicating that pulmonary vaccination triggers a specific mucosal 

immune response [41]. These results demonstrate that airway delivery of 

BCG can overcome the lack of protection observed when BCG is given 

parenterally. Respiratory administration could therefore be advantageous in 

TB-endemic countries, where intradermally administered BCG has inefficient 

effectiveness against pulmonary TB. 

http://jid.oxfordjournals.org/
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Conclusion 

Many questions in the development of TB WCV remain. Much will be learnt 

from the many preclinical studies and clinical studies currently underway. It is 

critical that rare and expensive efficacy trials in humans are appropriately 

leveraged to perform exploratory studies that maximise the knowledge 

gained. 
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Table 1. WCV candidates in clinical development 

Vaccine 

candidate 

Backbone Live/ 

dead 

Modifications Purposea Safe in HIV+ 

individuals 

Clinical 

trial 

stage 

References 

VPM1002 Recombinant 

BCG 

Live LLO inserted, 

ureC deletion 

P Yes Phase II [7, 9] 

MTBVAC Attenuated  

M. tuberculosis 

Live phoP & fadD26 

deletions 

P Not tested in 

human. 

Safer than 

BCG in 

SCID mice 

Phase I [12, 16] 

RUTI Detoxified & 

fragmented cells 

M. tuberculosis 

Dead Polyantigenic 

liposomal 

preparation 

T Yes Phase II [17] 

M. indicus 

pranii 

M. indicus pranii 

(formerly 

Mycobacterium w) 

Dead Heat-killed T Yes Phase II [18, 19] 

M. vaccae 

or SRL172 

or DAR-901 

M. vaccae or 

M. obuense 

(formerly thought 

to be M. vaccae) 

Dead Heat-killed or 

irradiated 

T Yes Phase III, 

Phase IIb 

(sepsis) 

[22-24, 26,

42] 

a. P, prophylactic; T, therapeutic
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Table 2. WCV candidates in preclinical development 

Vaccine 

candidate 

Backbone Live/dead Modifications Purposea Safe in HIV+ 

individuals 

References 

BCGΔzmp1 Recombinant 

BCG 

Live zmp1 deletion P Yes (safer than 

BCG in SCID mice) 

[27] 

MtbΔsigH Recombinant 

M. 

tuberculosis 

Live sigH deletion P Possibly, not 

stipulated 

[28] 

sigE mutant Recombinant 

M. 

tuberculosis 

Live sigE deletion P Yes (safer than 

BCG in nude mice) 

[43] 

ΔleuD ΔpanCD Recombinant 

M. 

tuberculosis 

Live leuD & panCD 

deletions 

P Yes (safer than 

BCG in SCID mice) 

[44] 

mc26020 Recombinant 

M. 

tuberculosis 

Live lysA & panCD 

deletions 

P Yes (safer than 

H37Rv in SCID and 

than BCG  IFN 

knock-out mice) 

[29, 45] 

ΔsecA2 Recombinant 

M. 

tuberculosis 

Live secA2 deletion P Possibly, not 

stipulated 

[46] 

ΔlysA ΔsecA2 Recombinant 

M. 

tuberculosis 

Live lysA & secA2 

deletion 

P Yes (safer than 

BCG in SCID mice) 

[47] 

mc26030 Recombinant 

M. 

tuberculosis 

Live RD1 & panCD 

deletions 

P Yes (safer than 

H37Rv in SCID and 

than BCG  IFN 

knock-out mice) 

[45, 48] 

BCG::ESAT6-

L28A/L29S 

Recombinant 

BCG 

Live Reconstituted 

with ESX-1, 

ESAT-6 

mutated 

P Yes (safer than 

BCG in SCID mice) 

[49] 
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L28A/L29S 

BCGΔsapM Recombinant 

BCG 

Live sapM delection P Not definitive, 

Persistence in 

immunocompetent 

mice equivalent to 

BCG 

[50] 
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