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Quantum signatures of a molecular nanomagnet
in direct magnetocaloric measurements
Joseph W. Sharples1, David Collison1, Eric J.L. McInnes1, Jürgen Schnack2, Elias Palacios3 & Marco Evangelisti3

Geometric spin frustration in low-dimensional materials, such as the two-dimensional

kagome or triangular antiferromagnetic nets, can significantly enhance the change of the

magnetic entropy and adiabatic temperature following a change in the applied magnetic field,

that is, the magnetocaloric effect. In principle, an equivalent outcome should also be

observable in certain high-symmetry zero-dimensional, that is, molecular, structures with

frustrated topologies. Here we report experimental realization of this in a heptametallic

gadolinium molecule. Adiabatic demagnetization experiments reach B200 mK, the first

sub-Kelvin cooling with any molecular nanomagnet, and reveal isentropes (the constant

entropy paths followed in the temperature-field plane) with a rich structure. The latter is

shown to be a direct manifestation of the trigonal antiferromagnetic net structure, allowing

study of frustration-enhanced magnetocaloric effects in a finite system.
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S
ub-Kelvin temperatures can be achieved via adiabatic
demagnetization of paramagnetic salts1,2. The underlying
physics is the magnetocaloric effect (MCE) that can be

evaluated by considering the adiabatic temperature change, which
is when the system is driven on a constant entropy (S) curve (an
isentrope):
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where C is the heat capacity, T is the temperature and B is the
applied magnetic field. For a paramagnet, the isentropes are
straight lines in a T–B plane that run through the origin.
Interacting spin systems can show a much richer response to
magnetic fields and thus very different isentropes. Importantly,
the cooling rate can massively outperform those of paramagnets
in certain regions of the T–B plane3. The simplest illustration is
an antiferromagnetically coupled dimer of s¼ 1/2 spin (Fig. 1)
where extremes in the cooling rates (even changing sign) are
found at the field-induced level crossing between singlet and
triplet because the density of states (and hence the low-
temperature entropy) peaks at this field.

Such a crossing belongs to the broader class of quantum phase
transitions where the ground-state characteristics of a system
change (for example, non-magnetic to magnetic, or from gapped
to gapless) as a function of an external parameter such as
magnetic field, pressure or doping4. For MCE, the drastic changes

in entropy across a field-induced quantum critical point can give
very efficient low-temperature magnetic cooling as recently
demonstrated experimentally for a one-dimensional (1D)
antiferromagnetic (AF) s¼ 1/2 chain3. Geometric spin
frustration can also give rise to regions of high density of states
(and zero-temperature entropy), hence very high cooling rates
should also be achievable, for example, when sweeping across the
saturation field in such materials. The combination of these
features in low-dimensional frustrated magnetic materials, for
example, the famous 2D kagome or triangular AF lattices or the
1D saw-tooth AF chain5–9, makes them attractive targets for
enhanced MCE and low-temperature refrigeration. In fact, such
effects should be also observable in certain 0D systems, that is,
molecular clusters of spins in frustrated geometries10–13. These
are a subset of the broader class of molecules known as molecular
nanomagnets.

The molecular cluster [Gd7(OH)6(thmeH2)5(thmeH)(tpa)6

(MeCN)2](NO3)2 (‘Gd7’; H3thme¼ tris(hydroxymethyl)ethane;
Htpa¼ triphenylacetic acid) consists of a planar centred hexagon
of weakly AF-coupled Gd(III) ions (Fig. 2; ref. 14), each of which
has an electronic spin s¼ 7/2. Hence, this topology is a finite
‘cutout’ of the 2D triangular AF lattice (Fig. 2). Here we model all
the magnetic observables of Gd7, including sub-Kelvin suscept-
ibility and heat capacity data. We then use this model to calculate
the isentropes for Gd7, revealing detailed structure in the T–B
landscape due to the frustration. Finally, we follow these
isentropes experimentally by direct measurement of the tem-
perature in applied magnetic field cycles under quasi-adiabatic
conditions. The experimental data, reproduced by theoretical
modelling, show the characteristics of frustration-enhanced MCE;
moreover, we achieve cooling to B200 mK—the first time sub-
Kelvin cooling has been achieved with a molecular nanomagnet.

Results
Magnetic properties. Low-temperature magnetic data of Gd7 are
summarized in Fig. 3. The magnetization (M) saturates to the
maximum possible 49/2 gmB (where g is the electronic g-factor)
per molecule at 2 K, showing that the full magnetic entropy is
accessible (Fig. 3a). The wT product, where w is the molar mag-
netic susceptibility, has the value calculated for non-interacting
Gd(III) ions at room temperature (56.2 e.m.u. K mol� 1) and
decreases only slowly on cooling down to B50 K before
decreasing rapidly on further cooling (Fig. 3b), denoting a
dominant AF interaction. That Gd7 has a richer physics than a
simple paramagnet is manifested in the very-low-temperature
susceptibility, which goes through two shallow maxima, at 1–2 K
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Figure 1 | Theoretical isentropes for an antiferromagnetically coupled

dimer of s¼ 1/2 spins. (a) Calculated isentropes in the temperature

(T)–applied magnetic field (B) plane for the dimer with the Zeeman diagram

in b. The two lowest-energy Zeeman levels cross at a field that depends

on the magnitude of the exchange coupling, giving a maximum in the

density of states. Simple paramagnets have linear isentropes, always

giving a decrease in T as B is decreased. While the cooling rate for the

antiferromagnetically coupled dimer is similar in the high T–B region (B), in

other regions it can be reduced (A), drastically enhanced (C) or even have

the opposite sign (D, that is, heating occurs on decreasing the field).

In an adiabatic process (a process of constant entropy), the system runs

along its present isentrope. The extreme behaviour at (C) and (D) is due to

the level crossing and the consequent rapid changes in entropy.

Figure 2 | Structure of the complex dication of Gd7. Crystal structure (a)

and the Gd7(OH)6 core mapped onto an ideal triangular net (b),

emphasising the relationship of the spin topology with the frustrated

triangular AF lattice. Scheme: Gd (green), O (red), N (blue), C (framework),

H omitted for clarity.
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and at 0.2–0.3 K (Fig. 3b, inset). Above 4 K, the molar heat
capacity (C) in zero applied field is dominated by lattice phonon
modes of the crystal, that is, non-magnetic contributions (Fig. 3c).
This is confirmed from C(T) data on the isostructural and
diamagnetic yttrium analogue [Y7(OH)6(thmeH2)5(thmeH)
(tpa)6(MeCN)2](NO3)2 (‘Y7’), which overlay those of Gd7 at
higher temperatures. The phonon heat capacity can be described
by the Debye model, which simplifies to a C/R¼ aT3 dependence
(R is the gas constant), where a¼ 1.35� 10� 2 K� 3 for Gd7 and
Y7, at the lowest temperatures. The magnetic contribution to the
C(T) data for Gd7 consists of a broad hump that shifts to higher
temperature on increasing the applied magnetic field (Fig. 3c).

Magnetic modelling. We have modelled all these magnetic data
assuming the simple Heisenberg spin Hamiltonian:

H ¼ � 2
X
i¼1;5

J1 ŝi � ŝiþ 1� 2J1 ŝ6 � ŝ1� 2
X
i¼1;6

J2 ŝi � ŝ7þ gmBB �
X

i

ŝi

ð2Þ

where J1 is the exchange interactions between nearest neighbours
on the hexagon (spins 1–6), and J2 is the interactions between
each of these spins and the central Gd (spin 7). The huge
matrix dimension of 87 requires exploiting group theoretical
methods15,16 (and the approximate C6 molecular symmetry) for
full matrix diagonalization. We find J1¼ � 0.090(5) K, and
J2¼ � 0.080(5) K with g¼ 2.02 reproduces all the experimental
magnetic observables (Fig. 3). Only at the very lowest
temperatures, the weak-field susceptibility and zero-field heat
capacity show slight deviations between calculated and
experimental data. For instance, the calculated susceptibility
reproduces the shallow two-peak structure, with the higher-
temperature feature agreeing well but the lower temperature one
calculated to be at B0.05 K rather than the experimental

0.2–0.3 K. Most likely, these discrepancies are due to weak
magnetic dipolar interactions, which are not incorporated in the
theoretical model. Dipolar interactions modify the structure of
energy levels and can determine (on the mean-field level) an
internal field; both become relevant in proximity of absolute zero
and zero applied field.

Experimental evaluation of the MCE. The MCE can be
evaluated indirectly for a given applied field change from the
experimental C(B,T) (for example, Fig. 3d) and M(B,T) data via
Maxwell’s relations17: values for Gd7 derived from these two
observables are in very good agreement (Supplementary Fig. 1).
Here we have also performed direct experimental measurements of
the MCE for continuous field variations, that is, the temperature
evolution via magnetization–demagnetization cycles that we
perform under controlled quasi-adiabatic conditions, using the
set-up and protocols described in Supplementary Note 1 and ref. 18.
Supplementary Fig. 2 displays a representative full magnetic field
cycle, and Supplementary Fig. 3 a representative demagnetization
process from an initial temperature T0¼ 0.50 K and field B0¼ 2 T.
We show both the raw temperature data and those for an ideal
adiabatic process, that is, corrected for unavoidable thermal losses
(non-adiabaticity) that have been evaluated independently (see
Supplementary Note 1). By this method, we experimentally follow
isentropes in the T–B plane for different B0 and T0 (up to 3 T and
3 K, respectively; Fig. 4; Supplementary Fig. 4). The general trend is
a decrease in T as B is decreased, as expected. There are
two important results from these adiabatic demagnetization
experiments. First, we achieve temperatures as low as B200 mK.
Despite many indirect MCE studies on molecular nanomagnets,
this is the first direct experimental demonstration of sub-Kelvin
cooling with such a species. Second, in contrast to the straight-line
isentropes found for simple paramagnets, a rich structure is
observed.
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Figure 3 | Magnetic properties of Gd7. (a) Magnetization (M) as a function of applied magnetic field (B) and temperature (T¼ 2, 3, 4 K), and fits (solid

lines) from spin Hamiltonian (2). (b) Molar magnetic susceptibility (w), in the form of wT and w (inset), as a function of temperature, measured in an applied

field of 0.1 T, and fits (solid lines). (c) Molar heat capacity (C) of Gd7 as a function of temperature at B¼0 (black symbols) and 7 T (red), and for its

diamagnetic analogue Y7 (blue) in nil field giving the lattice (non-magnetic) contribution to C. Solid lines are the calculated magnetic contributions to

C(B,T) from Hamiltonian (2). (d) Magnetic molar entropy, as obtained from C(T) data for B¼0 (black) and 7 T (red). Solid lines are the calculated

entropies from Hamiltonian (2). Arrows denote the magnetic entropy change, DSm (see Supplementary Fig. 1). The small deviations between theory and

experiment seen in w and C at very low temperatures indicate the onset of magnetic dipolar interactions.
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On demagnetization from B0¼ 3 T, a minimum (at 2.2 T) is
found in the isentropes, that is, the sample cools rapidly (large
positive slope) then heats (negative slope), strongly reminiscent of
the behaviour observed recently for a 1D AF chain at a quantum
critical point3. On decreasing the field further, the T(B) curves go
through a second minimum (at B0.7 T). As far as we are aware,
such multiple peak behaviour has not been observed previously.
However, secondary minima have been predicted theoretically for
ideal frustrated 2D lattices as a function of decreasing size5,7, and
also for very high-symmetry (cuboctahedral, icosidodecahedral)
frustrated clusters10–13, that is, they arise as a function of finite-
size effects.

Comparison with calculated results. We have calculated
theoretical isentropes from the entropy function S(T,B) based on
the parameters from spin Hamiltonian (2) (see Fig. 5c). We have
done this for the experimental entropies that belong to the
isentropes shown in Fig. 4 to allow a direct comparison, and for a
lower entropy to emphasize the shape of the isentropes. The
agreement with the experimental curves is remarkable, showing
the double minimum in T(B) and consequent multiple cooling
regimes. The agreement becomes poorer for the lowest tem-
peratures and small fields because the aforementioned dipolar
interactions become relevant. The latter, which are not included
in our model, ultimately limit the base temperature reached by
adiabatic demagnetization. Analysing the Zeeman diagram is
difficult because of the massive (87) number of levels; in Fig. 5a,
we plot the excitation energies (E*¼ Ei� E0, where Ei and E0 are
the energies of the ith and ground Zeeman states, respectively, at
that field) to make the changes in density of states in certain field
ranges more visible. The zero-temperature saturation field is
B2.9 T (that is, above which the ground state is singly degenerate
and the magnetic entropy is nil; Fig. 5b). Below this saturation
field, there is a high degeneracy of low-lying states (high entropy),
hence rapid magnetic cooling is observed on demagnetizing
towards 2.5 T (positive slope isentrope; Fig. 5c). Between about
2.2 and 1.4 T, the density of states is much lower (Fig. 5a), giving
a plateau in the zero-temperature magnetization curve (Fig. 5b),
hence demagnetizing into this region decreases the entropy and
leads to heating (negative slope isentrope; Fig. 5c). Below 1.4 T,
the density of states increases again, and we are back in a region
of cooling.

Discussion
Several frustrated antiferromagnets, including 2D kagome and
triangular lattices and certain 0D polytopes, have been predicted
to show plateaus in their zero-temperature magnetization curves
together with regions of lower densities of states5,7,10–13. The
uneven distributions of intervals between ground-state level
crossings is a clear signature of frustration13, and is the reason for
the peaks observed in the isentrope distribution. This frustration
arises because J1EJ2, and test calculations show that the isentrope
peaks are quickly destroyed by smaller values of J2/J1 (hence,
weakening the frustration; Supplementary Fig. 5).
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Figure 4 | Experimental temperature evolution of Gd7 on applied field

changes. The different curves (which correspond to isentropes) are for

different initial temperature and applied field conditions T0 and B0,

respectively; solid lines are guides to the eye. The magnetic entropy values

are S/R¼ 1.6, 2.9, 3.5, 4.4, 5.9 and 7.6, from bottom to top, respectively.

Data are shown for the sub-Kelvin temperature regime (see Supplementary

Fig. 4 for a wider temperature range).
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Figure 5 | Calculated level structure and isentropes for Gd7. (a) Zeeman

diagram for Gd7 calculated from spin Hamiltonian (2), shown as excitation

energies (E*¼ Ei� E0; where Ei and E0 are the energies of the ith and

ground Zeeman states, respectively, at a given B) as a function of applied

field, highlighting the varying low-lying density of states. (b) Calculated

zero-Kelvin M(B) curve. The plateau at M¼ 35/2 gmB between B¼ 1.4 and

2.2 T coincides with the region of low density of states in a; saturation (at

49/2 gmB) is achieved at B¼ 2.9 T. (c) Theoretically calculated isentropes

for magnetic entropy values S/R¼ 1.0, 1.6, 2.9, 3.5, 4.4, 5.9 and 7.6, from

bottom to top, respectively. The solid lines are those isentropes that match

the experimental entropies in Fig. 4 and can be compared with these

directly. The red dashed curve shows a further low-entropy isentrope, lower

than those experimentally accessible. The shaded red box highlights the

magnetic field region giving the low density of states, the magnetization

plateau and the maximum in the isentropes.
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Insight into the microscopic origin of the zero-Kelvin
magnetization plateau in Gd7 is gained from evaluating the
ground-state nearest-neighbour spin–spin correlation functions
Sij ¼ ~si �~sj

� �
as a function of the applied field (Fig. 6), evaluated

by numerical differentiation of the ground-state energy with
respect to J1 (S12) or J2 (S17). Calculation from the ground-state
eigenfunctions is prohibitive given the enormous Hilbert space.
The S12 function, that is, for neighbouring spins on the hexagon,
grows from a fully antiparallel alignment (maximum negative S12)
at B¼ 0 to a saturated parallel alignment (maximum positive S12)
at B¼ 1.4 T. The S17 function, that is, for a spin on the hexagon
correlated with the central spin, starts at a small negative value
and becomes more negative with increasing B, reaching a fully
antiparallel alignment at B¼ 1.4 T. S17 is then constant until
B¼ 2.2 T after which it increases, reaching full parallel alignment
at B¼ 2.9 T (and saturation of the magnetization at 49/2 gmB per
molecule). Hence, the magnetization plateau between 1.4 and
2.2 T corresponds to a region of stability for the spin configura-
tion with all the spins on the hexagon fully aligned parallel with
each other but fully antiparallel to the central spin, consistent
with the calculated plateau magnetization of 35/2 gmB per
molecule (Fig. 5b). In fact, the Gd7 structural motif is one of
the smallest fragments of the triangular AF net that would be
predicted to show such effects. For example, the smallest possible
frustrated fragment—an equilateral triangle—has no such
‘meta-stable’ intermediate spin configuration, hence no magne-
tization plateau and a much simpler isentrope structure
(Supplementary Fig. 6).

Many molecular nanomagnets have now been proposed for
low-temperature magnetic refrigeration (see, for example, refs
17,19–26), even in principle to the single-molecule level27, due to
the high magnetic degeneracies that can be built in by appropriate
choice of metal ion and a favourable exchange coupling scheme.
Almost all these studies have relied on indirect MCE
measurements from magnetization or heat capacity data, which
are analysed to predict some maximum magnetic entropy change
for a maximum field change (typically 0–5 T on a conventional
SQUID magnetometer) and certain initial temperature. Such
indirect analyses can give impressive headline figures but ignore
the details of the exchange coupling (other than, for example,
being ‘weak’, hence giving large quasi-degeneracies in zero field).
Hence, they are blind to the structure and true beauty of the

isentropes that are a function of the exchange couplings. Here we
have revealed the richness of the isentropes in Gd7 via direct
MCE studies, including the first experimental achievement of
sub-Kelvin cooling with a molecular nanomagnet, with
experimental and theoretical results in excellent agreement. Our
results show that it is possible to design the cooling power of
molecular materials by choosing an appropriate topology of
magnetic couplings between the interacting spins, hence
exploiting the great control of the latter given by molecular
coordination chemistry.

The enhanced MCE we observe in certain regions of the T–B
plane for Gd7 also confirms long-standing predictions about
unusually large cooling rates in frustrated spin 0D polytopes as
well as low-dimensional extended spin lattices5–13. Indeed, the
Gd7 molecule is a cutout of the triangular AF lattice, with
imposed geometric spin frustration giving exact or near
degeneracies at certain applied magnetic fields, and serves as a
finite-size realization of these predictions. Such finite systems are
useful in their own right, as demonstrated here, but also enable
exact numerical analysis, hence giving insight into the behaviour
of infinitely extended systems. If bigger molecular fragments of
the triangular AF net could be prepared (such molecules are
known for some d-block ions, see refs 28,29), this would allow
fascinating insight into the transition from discrete to bulk
behaviour in frustrated systems.

Methods
Materials. [Gd7(OH)6(thmeH2)5(thmeH)(tpa)6(MeCN)2](NO3)2 (‘Gd7’) was
prepared as reported previously14. Its diamagnetic and isostructural analogue
[Y7(OH)6(thmeH2)5(thmeH)(tpa)6(MeCN)2](NO3)2 (‘Y7’) was prepared by an
identical method but with substitution of the appropriate metal precursor.
Solvothermal reaction of Y(NO3)3 � 6H2O (0.085 g, 0.22 mmol) with H3thme
(0.11 mmol), Htpa (0.11 mmol) and NEt3 (0.165 mmol) in MeCN (8 ml) at 100 �C
for 12 h, followed by slow cooling (0.05 �C min� 1) to room temperature, gave
colourless crystals of the product in B40% yield. The formulation is confirmed by
elemental analysis, powder X-ray diffraction (Supplementary Fig. 7) and a single-
crystal unit cell determination, which show that Y7 is isostructural with Gd7.
Elemental analysis (%) for Y7C154H164N4O42 (found:calculated): C 53.26:54.96;
H 4.45:4.91; N 1.74:1.66.

Measurements. Magnetization measurements down to 2 K and heat capacity
measurements using the relaxation method down to 0.3 K were carried out on
powdered crystalline samples by means of commercial setups for the 0–9 T
magnetic field range. Susceptibility measurements were extended down to 0.1 K
with a homemade susceptometer, installed in a 3He-4He dilution refrigerator.
Direct MCE measurements were performed on a pressed pellet sample mounted on
a sapphire plate attached to a Cernox resistance thermometer, attached by wires to
a controlled thermal bath. Each MCE measurement started with the sample at
zero applied magnetic field and at temperature T0, and comprised: (a) gradual
application of a magnetic field, up to a maximum B0; (b) relaxation until the
sample reached the thermal equilibrium with the bath; (c) gradual demagnetization
down to B¼ 0; and (d) relaxation at zero field until the sample reached thermal
equilibrium at T0. During the whole procedure, the temperature T and applied
magnetic field B were recorded continuously. See Supplementary Note 1 for full
details.
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