
Host Mobility Drives Pathogen Competition in Spatially
Structured Populations
Chiara Poletto1,2,3*, Sandro Meloni4, Vittoria Colizza2,3,5, Yamir Moreno4,6, Alessandro Vespignani7

1 Computational Epidemiology Laboratory, Institute for Scientific Interchange, Turin, Italy, 2 INSERM, U707, Paris, France, 3 UPMC Université Paris 06, Faculté de Médecine
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Abstract

Interactions among multiple infectious agents are increasingly recognized as a fundamental issue in the understanding of
key questions in public health regarding pathogen emergence, maintenance, and evolution. The full description of host-
multipathogen systems is, however, challenged by the multiplicity of factors affecting the interaction dynamics and the
resulting competition that may occur at different scales, from the within-host scale to the spatial structure and mobility of
the host population. Here we study the dynamics of two competing pathogens in a structured host population and assess
the impact of the mobility pattern of hosts on the pathogen competition. We model the spatial structure of the host
population in terms of a metapopulation network and focus on two strains imported locally in the system and having the
same transmission potential but different infectious periods. We find different scenarios leading to competitive success of
either one of the strain or to the codominance of both strains in the system. The dominance of the strain characterized by
the shorter or longer infectious period depends exclusively on the structure of the population and on the the mobility of
hosts across patches. The proposed modeling framework allows the integration of other relevant epidemiological,
environmental and demographic factors, opening the path to further mathematical and computational studies of the
dynamics of multipathogen systems.
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Introduction

While the dynamic of infectious diseases has been traditionally

studied focusing on single pathogens one at a time, increasing

attention is currently being devoted to the interactions among

multiple infectious agents [1]. Interaction mechanisms can indeed

alter the pathogen ecology and have important evolutionary,

immunological and epidemiological implications [2–5]. A clear

example of pathogen cocirculation is given by viruses that may

have different genetic and antigenic variants, such as human

influenza A virus with different subtypes and associated strains (i.e.

phenotypically different variants) [6] and dengue virus with four

serotypes circulating in affected tropical regions [7]. Among other

examples we find many sexually transmitted diseases (like human

immunodeficiency virus (HIV), human papilloma virus, herpes

simplex virus), but also infections affecting animals, such as avian

influenza [6] or the foot-and-mouth disease causing rapid acute

infections in livestock [8].

The interaction among pathogens are mostly driven by

immune-mediated [2] or ecological [3] mechanisms, generally

resulting into competition among the infectious agents [4,5], even

though cooperation may be observed in some specific settings [9].

Among strain-polymorphic pathogens, for example, immune-

mediated interaction occur when infection by a strain confers

long-lasting protection against the particular strain, with partial

cross-immunity against viral variants, depending on the level of

similarity of their genetic and antigenic profiles. Cocirculating

strains are therefore not independent [10], as it happens in the

case of influenza A virus, with strain-dependent prolonged

immunity following infection [6] and epidemiological evidence

for partial cross-immunity among strains [11,12]. Interaction in

terms of ecological interference is due to the temporary or

permanent removal of a host from the population of susceptible

hosts, because of infection from another strain. This may occur

during the illness period and associated recovery (e.g. an individual

staying at home or being admitted to the hospital) or because of

deadly outcomes, generating complex competition dynamics for

the exploitation of the remaining hosts.

The spatial and social structure of a host population, as well as

the migration of hosts, is recognized to represent a crucial element

affecting the geographical propagation of directly transmitted

infectious diseases [13]. Infectious hosts moving from one location
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to another may seed the disease in previously unaffected locations,

whereas susceptible hosts may contract the disease by entering in

close contact with members of already infected subpopulations

[14–18]. Recently available massive datasets on host spatial

structure and mobility patterns [19–25] have enabled the

development of a large quantity of modeling approaches that

assess the relevance and impact of hosts’ mobility features on

epidemic spreading processes caused by a single pathogen

[13,19,26–42]. Given its importance for dispersal mechanisms,

the spatial structuring of the host population and the coupling

among different subpopulations may also be important to

multipathogen dispersal mechanisms, and to epidemiological and

ecological interactions [43]. Space and host mobility may indeed

act as an additional mechanism of ecological interference for host

exploitation between different pathogens cocirculating in a

population of susceptible hosts where the approximation of

homogeneous mixing among hosts does not hold. Multistrain

epidemics in the absence of homogeneous mixing have been

studied assuming static networks or lattices, without considering

host mobility [44–46], and in the context of pathogen evolution,

often providing detailed approaches regarding biological and

epidemiological mechanisms (e.g. they properly account for

pathogen mutation, physiological trade-off, cross-immunity and

other relevant immunological and biological aspects) but lacking

explicit modeling of host behavioral ecology regarding mobility

[47–51].

In view of all the elements at play in the study of host-

multipathogen systems, a key question is therefore to assess to what

extent patterns of coexistence or dominance of parasites are

shaped by competition among infectious agents induced by

specific mechanisms of interaction, as opposed to other biological

factors characterizing individually the pathogens or the host

population. In this paper we focus on the competition mechanisms

induced by hosts mobility in a spatially structured population in

the case of two strains with full cross-immunity (an exploration of

the partial cross-immunity case is reported in the Text S1). In

order to single out the effect of mobility and population structure

on the competition dynamic, we do not consider pathogen

evolution processes. Furthermore we consider rapid acute

infections, and ignore within-host interactions and within-host

coexistence, which may instead be more relevant for persistent

infections. This modeling framework represents a plausible setting

for the analysis of a multistrain model for human influenza A in

the framework of a single epidemic season. In this case the

immune-driven antigenic drift has been rarely observed in a

geographically restricted region [52,53], suggesting that virus

diversity is largely generated through importations instead of

evolutionary mechanisms [52–54].

By introducing a general modeling framework in terms of a

metapopulation approach, we find that changes in the host

mobility rate alter the ecological conditions of the host-multi-

pathogen system, which in turn changes the competitive balance

between strains, resulting in a shift in their relative abundance

and/or dominance. Given the importation of two strains with the

same basic reproductive number (i.e. equal advantage at the

population level within each patch) but different timescales

characterizing the infectious period, an increase in the host

mobility selects the fast strain (i.e. the strain with the shorter

infectious period) that becomes dominant in the system. On the

contrary, fragmented population with low host mobility selects the

slow strain (i.e. the strain with the longer infectious period) as it

diffuses more efficiently from one patch to another reaching the

highest prevalence in the population. An intermediate mobility

regime exists where the two strains codominate in the system.

Computational results are further supported by theoretical

arguments. The simplifying assumptions considered in the model

make it applicable to a large variety of host-multipathogen

systems, as competition may arise in the interactions between

strains but also of unrelated pathogens; within this general

framework we therefore use pathogen, parasite type, strain, or

variant as synonymous hereafter.

Methods

Host-multipathogen infection model
We consider a two-pathogen compartmental model that tracks

hosts according to their pathogen-specific infection status. The

infection by each strain is described by a susceptible-infectious-

recovered (SIR) dynamics [55]. We assume full cross-immunity, so

that after infection by one strain the host is found to be fully

immune to the other strain. We also assume that no other

interaction among strains occurs besides full cross-immunity,

therefore neglecting coinfection or superinfection events, a

plausible assumption for rapid acute infections such as influenza.

The case of partial cross-immunity among strains is also presented

in the Text S1, however the full exploration of this case and of the

resulting phase space of the system will be the object of further

studies.

The SIR dynamics for strain (i), with i~f1,2g, is ruled by the

transition rates, b(i) and m(i), representing the disease transmissi-

bility rate (for the transition from susceptible to infectious) and the

recovery rate (for the transition from infectious to recovered),

respectively. The dynamics is characterized by the basic repro-

ductive number R
(i)
0 ~b(i)=m(i), defined as the expected number of

secondary infections that one infectious host can produce during

its lifetime as an infectious host placed in an entirely susceptible

population, leading to the threshold condition for an epidemic

outbreak in the population, R
(i)
0 w1 [55]. In our study, we assume

that the two strains have the same basic reproductive number,

R
(1)
0 ~R

(2)
0 ~R0, but different infectious periods. This represents a

case in which the pathogens have the same transmission potential

Author Summary

When multiple infectious agents circulate in a given
population of hosts, they interact for the exploitation of
susceptible hosts aimed at pathogen survival and mainte-
nance. Such interaction is ruled by the combination of
different mechanisms related to the biology of host-
pathogen interaction, environmental conditions and host
demography and behavior. We focus on pathogen
competition and we investigate whether the mobility of
hosts in a spatially structured environment can act as a
selective driver for pathogen circulation. We use mathe-
matical and computational models for disease transmis-
sion between hosts and for the mobility of hosts to study
the competition between two pathogens providing each
other full cross-immunity after infection. Depending on the
rate of migration of hosts, competition results in the
dominance of either one of the pathogens at the spatial
level – though the two infectious agents are characterized
by the same invasion potential at the single population
scale – or cocirculation of both. These results highlight the
importance of explicitly accounting for the spatial scale
and for the different time scales involved (i.e. host mobility
and spreading dynamics of the two pathogens) in the
study of host-multipathogen systems.

Impact of Host Mobility on Pathogen Competition

PLOS Computational Biology | www.ploscompbiol.org 2 August 2013 | Volume 9 | Issue 8 | e1003169



and generate outbreaks characterized by the same impact on the

population expressed in terms of attack rates. The epidemic waves

are however different, unfolding with different timescales, the

faster being the one characterized by the shorter generation time.

In our case the generation time is uniquely determined by the

infectious period [55] (see Figure 1) and without loss of generality

we consider a fast strain with infectious period m{1
f :m{1 and a

slow strain with infectious period m{1
s :tm{1. The parameter tw1

quantifies the timescale separation.

The infection transmission is modeled by dividing the popula-

tion of N individuals into four compartments: susceptible (S),
infected by the fast strain (If ), infected by the slow strain (Is) and

recovered (R), i.e. immune to both strains. Each susceptible

individual can contract either strain with the corresponding force

of infection, bsIs=N or bf If =N, where bs (bf ) is imposed by the

equivalence of the basic reproductive numbers of the two strains.

The two infection events are independent and mutually exclusive

because of the assumptions considered.

Host metapopulation network
The multipathogen disease dynamics affects a spatially struc-

tured population of hosts modeled through a metapopulation

system. This theoretical framework was first used in population

ecology, genetics and adaptive evolution to describe population

dynamics whenever the spatial structure of populations is known

to play a key role in the system’s evolution [56–59] and later

applied to understand the epidemic dynamics on such substrates

[60–64]. For the case of epidemic modelling, the infectious disease

spreads in an environment characterized by a non-continuous

spatial distribution of susceptible hosts and the pathogen diffusion

depends on the ability of hosts to move from one region of the

system to another one, connecting otherwise isolated communities

[58,59]. Hosts mix homogeneously within the local communities

(also called subpopulations or patches or nodes of the metapop-

ulation network), whereas at the global, system-wide level, patches

are coupled through the migration of hosts (represented in terms of

mobility connections between patches), as schematically shown in

Figure 1.

Here we consider a metapopulation network with V~104

subpopulations. To each node i, we assign an initial number of

individuals, Ni, and a degree ki denoting the number of

connections the node has with other subpopulations in terms of

mobility processes. The degrees of the nodes are distributed

according to a given probability distribution P(k), which we

choose to represent the two most abundant situations in real

systems – namely, a Poisson distribution accounting for homoge-

neous networks of contacts and a power-law functional form which

represents the case in which mobility patterns are highly

heterogeneous. To compare the effects of changes in the structural

pattern of the subpopulations with no variations of the

corresponding average values, we set the average degree of both

networks, �kk, to be the same. Homogeneous networks are

generated following the Erdős-Rényi algorithm [65], which

consists of assigning a link between each pair of nodes with

probability �kk=(V{1). It models a fairly homogenous system with

low degree fluctuations. On the other hand, heterogeneous

networks characterized by a power-law degree distribution,

P(k)*k{c where we consider c~2:2, are generated using an

uncorrelated configuration model [66,67]. In this second case, the

probability distribution is characterized by a second moment that

is much larger than the first, which makes it critical to explicitly

take into account degree fluctuations. This feature is distinctive of

a vast majority of social and demographic systems that have been

empirically characterized [19–25,68].

Host mobility pattern
In case of homogenous traveling probability, mobility fluxes are

modeled by assigning to each individual in subpopulation i a

probability pi per unit of time to travel to another neighboring

subpopulation j. We assume that such probability is constant

across nodes, namely pi:p, and that individuals leaving a

subpopulation i choose at random one of the available ki links

[36], so that the probability of traveling from i to j is given by p=ki.

According to the value of p, different mobility scenarios emerge:

high values of p yield large mobility fluxes resulting in a well mixed

metapopulation system where individuals easily move from one

patch to another; on the contrary small probability values result in

a dynamically fragmented scenario in which patches are fairly

isolated. The mobility process is described by the following

diffusion equation:

Figure 1. Schematic representation of the host-multipathogen metapopulation system. At the macroscopic level the system is composed
by a network of subpopulations connected via communication links that allow individuals to migrate from one subpopulation to the other. Inside
each subpopulation the epidemic process take place. Susceptible individuals S can be infected by the slow (fast) strain and change their status to
Is If

� �
; infected individuals enter into the recovered class R at rate t{1m and m, for the slow and fast strain, respectively. Different epidemic waves are

produced by the two strains when unfolding independently in a population, as shown by the number of new cases (incidence) over time.
doi:10.1371/journal.pcbi.1003169.g001
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LtNi(t)~{pNi(t)z
X
j[u(i)

p

kj

Nj(t) ð1Þ

where the sum runs over the set u(i) of the i0s nearest neighbors.

According to this equation the population distribution at

equilibrium is given by

Ni~ki
�NN=�kk, ð2Þ

where �NN is the average population size. The main variables used

in the model and the corresponding ranges of values considered

are reported in Table 1. We also tested in the Text S1 more

realistic definitions of host mobility, following empirical findings.

Computational modeling of competing pathogens
To simulate the spread of the two strains on the metapopulation

system of susceptible hosts, we initialize the number of individuals

of each subpopulation at the equilibrium value given by Eq. (2).

We then seed 50 randomly chosen subpopulations for each strain

by setting a proportion equal to 0:1% of the local population size

in the corresponding infectious class. These conditions ensure the

start of the outbreak for each strain for the values of the basic

reproductive number considered, and at the same time they aim to

avoid competition at the initial stage of the multistrain epidemic.

Values of the number of initially infected nodes different from 50

where tested in order to check that this does not alter the

simulation results. Once the system is initialized, the transmission

dynamics of the two strains is reproduced by means of Monte

Carlo numerical simulations at the discrete individual level. We

consider hosts as integer units and we explicitly simulate both their

mobility among different subpopulations and the infection

transmission within each subpopulation as discrete-time stochastic

processes, with fixed time step representing the unitary time scale

Dt~1 of the process. To this end, at each time step, the number of

hosts traveling along any connection of the system belonging to

any compartment and the number of new infectious and recovered

hosts for each subpopulation are extracted randomly from

binomial and multinomial distributions to consider all possible

outcomes of these events. Further details on the algorithm used for

the simulations, as well as initial conditions and parameters, are

described in Section 1 of the Text S1.

For each set of parameters we simulate 2,000 stochastic

realizations of the spatial epidemic spreading averaging over

different initial conditions, and over different instances of the

metapopulation network that defines the spatial structure of the

system population. For each scenario, we collect statistics of

epidemiological quantities, including the number of subpopula-

tions affected by each strain, the outbreak probability, and the

incidence and attack rates of each strain, both at the global level

and within each subpopulation. This allows to monitor the

evolution of the two epidemics, their impact on the system, and the

result of the competition process.

Invasion threshold of a pathogen in metapopulation
models

Several works have recently studied the global spreading of a

single strain SIR-like epidemic in metapopulation models [34–

41,69,70]. The threshold condition R0w1 is sufficient for an

epidemic outbreak to occur in a given subpopulation, but it does

not guarantee the disease is able to spread globally. Low diffusion

rates may indeed hinder a pathogen to disperse to other patches

before it goes extinct locally, thus preventing the persistence of the

virus and its spatial spread in the host population. The global

spreading of an infectious disease in a metapopulation model is

captured by the definition of an additional predictor of the disease

dynamics, R�, regulating the number of subpopulations that

become infected from a single initially infected subpopulation,

analogously to the reproductive number R0 at the individual level

[71–73]. The parameter R� defines a global invasion threshold:

the condition R�w1 guarantees that the epidemic taking place in

the seeding subpopulation is able to spread at the global scale

reaching a non-infinitesimal fraction of the metapopulation

system. R� depends on several factors, including disease param-

eters, demography, metapopulation network structure, travel

fluxes and mobility timescales.

Theoretical studies in [34–41,69,70] have addressed the impact

of empirically observed features on R�, thus providing a better

understanding about how mobility patterns and demography

affect the invasion threshold of an infection. The current analytical

framework allows to get an expression for R�, in which the impact

of several sources of heterogeneities in the topology of the

metapopulation system, traffic fluxes [34–39,69,70] and time

scales [40] can be quantitatively assessed. In order to provide an

understanding of the mechanisms shaping the global invasion

condition of a multistrain epidemic, we review here the derivation

of R� for the simplest case, of a single strain on a homogeneous

metapopulation network with uniform mobility pattern.

In a homogenous system, in which topological fluctuations can

be neglected, all nodes can be assumed to have the same degree �kk.

If the mobility dynamics is described by Eq. (1), an expression for

R� can be obtained by formalizing the seeding process of infected

hosts through their migration from one patch to another. The

probability P that an infected patch i will seed the epidemic in a

Table 1. Model variables and their corresponding values.

Variable Description Values

V number of patches 104

�NN average host population size per patch 104

k patch degree, i.e. number of connections to other patches average value �kk~5

P(k) degree distribution homogenenous (Poisson) or heterogeneous (P(k)^k{2:2)

R0 reproductive number assumed to be equal across strains [1.1–4]

t scaling factor of slow strain’s infectious period to fast strain’s infectious period [1.5–10]

p uniform probability of hosts migration [1025–1022]

doi:10.1371/journal.pcbi.1003169.t001
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disease-free patch j is given by P~1{
1

R0

� �lij

[74], where lij is

the number of infectious hosts who traveled from i to j during the

entire duration of the outbreak, while infectious. The latter

quantity can be estimated as follows. The total number of

individuals that experience the disease during the epidemic

unfolding within the subpopulation i will be aNi, where a is the

attack rate given by the SIR equations and Ni is equal to �NN for all

nodes – as recovered by Eq. (2) in the case ki:�kk. Each infected

individual stays in the infectious state for an average time m{1

equal to the inverse of the recovery rate, during which it can travel

to the neighboring subpopulation at rate p=�kk. To a first

approximation we can therefore consider that the number of

seeds sent from i to j during the duration of the outbreak is given

by lij~
pa �NN

m�kk
. If we model the invasion from one patch to another

in terms of a branching process, we obtain that an infected

subpopulation infects on average (�kk{1)P subpopulations, where
�kk{1 is the number of connections along which the disease can

spread. This leads to the following expression for
R� in the homogeneous assumption

R�~ �kk{1
� �

1{
1

R0

� �pa �NN
m�kk

0
@

1
A: ð3Þ

As discussed, the global invasion threshold R� quantifies the

spreading potential of an epidemic at the global level. For any set

of parameters values characterizing the infection dynamics, the

threshold condition R�w1 defines a critical value of the host

mobility below which the epidemic is not able to spread globally. It

is worth remarking that this transition cannot be uncovered by

continuous deterministic models because of the stochastic features

of the contagion process and the discrete nature of circulating

hosts.

Let us now consider the case of two competing strains – one

slow and another fast. Even if both strains have the same

transmission potential at the local level, namely the same R0, their

large scale spreading potential, encoded in R�, would be different.

As shown by Eq. (3), R� is indeed an increasing function of the

infectious period, therefore R�(mf )vR�(ms). This indicates that, in

a metapopulation system of fully susceptible hosts, the slow strain

would be able to infect on average a larger number of

subpopulations than the fast strain, although at a much slower

pace. As we will see in the following section the trade-off between

transmission potential and spreading time-scale crucially impacts

the population level competition among the two epidemics.

Results

Two-strain competition
We consider two strains with relatively high transmission

potential, i.e. R0~1:8, and infectious rates given by m~0:6 and

t~2. As an indicator of the outcome of the competition between

the two strains we consider the final number of subpopulations Ds
?

and Df
? affected by each strain during the outbreak. We say that a

patch has been affected by a strain if at least a fraction aT of the

population within the patch has contracted the disease. We set aT

equal to 10% and we checked that the results are not sensitive to

the value of this parameter. By looking at the average of Ds
? and

Df
? when p varies, we inspect several competition scenarios that

are determined by mobility regimes.

Figure 2A shows the results of the multistrain epidemic

simulations assuming a homogeneous metapopulation structure.

Different mobility regimes give rise to different coexistence and

dominance patterns. For large values of p the fast strain dominates

affecting the vast majority of subpopulations infected in the system,

the slow strain being constrained to roughly *10% of the patches.

As the value of p decreases, the system-wide spreading potential of

the slow strain progressively grows at the expense of the fast one,

until a cross-over takes place at diffusion rate pc. This intermediate

regime is characterized by the codominance of the two strains

[75], each one affecting approximately the same portion (*40%)

of infected subpopulations. Below this point, the slow strain

becomes dominant, whereas the fast one only induces local

outbreaks propagating through a small number of subpopulations.

Eventually, for very small values of p none of the strains is able to

spread geographically and no global outbreak occurs. Figure 2b

further illustrates this phenomenology by plotting the average

value of the ratio Ds
?=Df

? as a function of p. Values of the ratio

much larger than 1 indicate the dominance of the slow strain, and

values corresponding to Ds
?=Df

?%1 to the opposite scenario in

which the fast strain dominates. The codominance phase is

obtained for values of the ratio Ds
?=Df

? close to 1, with the cross-

over diffusion rate pc given by the intersect of the curve with the

horizontal line Ds
?=Df

?:1. The figure also compares heteroge-

neous and homogeneous metapopulation systems. The results

show that the behavior is qualitatively the same for both network

structures, the main quantitative difference being given by a lower

pc value in the heterogeneous case. Similar results are also

recovered with a different model for the mobility fluxes as detailed

in Section 2 of the Text S1.

The observed behavior can be understood according to the

following intuitive explanation. After the two epidemics are seeded

in their initial locations they evolve independently at the

beginning, until one of the two strains reaches a subpopulation

that has already been infected by the other strain, thus finding part

of the population immune, i.e. a reduced pool of susceptible hosts

to infect. This may prevent the strain to widely spread within the

patch and diffuse further along the mobility connections towards

other neighboring nodes. This competing mechanism favors the

strain that spreads more rapidly and more efficiently from one

patch to another, features that change depending on the mobility

regime. When the traveling rate is high, the whole system is at risk

of a major epidemic because of the large rate of mixing across

different patches. Both Rs
� and Rf

� are much greater than 1,

implying that the two epidemics would successfully reach the

global invasion of the system, in absence of competition. When the

two strains are competing on the same metapopulation system, the

relevant factor for dominating the spread is given by the spreading

speed; the shorter the infectious period and the more rapidly the

strain reaches a large fraction of the system patches that will thus

not be invaded by the slow strain. However by decreasing the

value of p, R� of each strain also decreases. In the proximity of the

invasion threshold the condition Rs
�wRf

� becomes relevant for the

spreading dynamics and favours the slow strain which percolates

more efficiently through the network. Indeed, the global epidemic

time scale is not anymore dominated by the local velocity of

transmission but rather by the mobility time scale of individuals.

Hosts contracting the slow strain remain infectious for a longer

time and thus have more chances to migrate while infectious. The

low mobility rate, coupled with a short infectious period, hinders

the movement of infectious hosts, resulting in a lower probability

P of infecting a neighboring patch. We provide a more

Impact of Host Mobility on Pathogen Competition
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quantitative understanding of the crossover behavior in the section

dedicated to the analytical discussion of the results.

The same argument applies to explain the difference between

the two network topologies observed in Figure 2B. The topological

fluctuations that characterize the heterogeneous topology induce

larger values of the parameter R� with respect to the correspond-

ing homogeneous network (provided that the rest of parameters is

kept the same) [34–36]. Therefore the invasion threshold R�
becomes larger than one for the two strains for smaller values of

the mobility rate in the heterogenous case, which results in a shift

of the cross-over diffusion rate pc towards lower values.

In the case of partial cross-immunity presented in the Text S1,

we find that the main results reported for the full cross-immunity

scenario still hold. Specifically, we have simulated situations in

which recovered individuals from one strain may have up to 80%
cross-immunity to the other strain, which roughly correspond to

estimates for diverse degrees of antigenic drift of influenza [76].

Within-patch coexistence and spreading pattern
We now focus on characterizing the coexistence of both strains

at the within-patch level and their spread at the global spatial level.

We define the coexistence probability Pcoex as the probability that

within the same subpopulation both strains produce at least 1% of

Figure 2. Competition between strains. (A) Fraction of subpopulations infected by the fast and slow strains as a function of p. The quantity
plotted is the median and the 95% confidence interval over 2000 stochastic runs. Simulations were performed on a random homogeneous network.
(B) Ratio Ds

?=Df
? as a function of p for both homogenous and heterogenous networks. The inter-quartile range is not displayed for the sake of

visualization. In both panels the networks have average degree �kk~5. Both strains have R0~1:8. Other parameters are m~0:6 and t~2.
doi:10.1371/journal.pcbi.1003169.g002
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the population infected. For both heterogeneous and homoge-

neous mobility networks Pcoex is an increasing function of the

traveling rate p (Figure 3), therefore mobility favors the coexistence

of the two strains within the same subpopulation. Coexistence is

however generally unlikely to occur in a vast fraction of

subpopulations, given the relatively small values of the probability

obtained, showing that the two strains rarely coexist within the

same subpopulation and the competition takes place at the

metapopulation level.

To further characterize the two strain coexistence within a

patch, we measure for each patch i the attack rate at the end of the

outbreak, defined by a two-dimensional variable (af
i ,as

i ), where

a
f
i (as

i ) is the fraction of hosts affected by the fast (slow) strain within

the patch during the outbreak. In all mobility regimes explored,

the interaction between the two strains can be mapped to a small

region of the (af ,as) space. Specifically, the strains always produce

attack rates with a strictly linear dependence (Figure 4, panels

A,B,C), characterized by probability distributions centered around

a~0 and a~75% and with different proportions in the three

diffusion regimes considered (Figure 4, panels D,E,F). Moreover

configurations in which only one strain is present in a subpopu-

lation have a frequency of occurrence much higher than

configurations where the two strains co-exist, further confirming

the results of Figure 3.

We explore whether the coexistence of the two strains at the

local level may carry a spatial signature. In absence of

georeferenced data in our model that is based on an abstract

spatial network, we consider the topological properties of the

patches as possible spatial indicators. Noticeable differences arise

when the probability of within-patch coexistence is measures by

degree classes (Figure 5). In both homogenous (panel A) and

heterogenous (panel B) cases, Pcoex(k) is an increasing function of

k and it can vary over more than two orders of magnitude from

poorly connected subpopulations to most connected ones. This

behavior, although expected because highly connected patches are

more likely to collect individuals from other subpopulations,

highlights two different levels for strains competition in the system.

On one side, in highly connected nodes the two strains compete at

the single subpopulation level and the predominance of one of the

two strains is dictated only by their epidemic parameters. Such

behavior is mostly due to the fact that highly connected nodes are

almost surely reached by infected individuals of both strains at the

early stage of the spreading process. Thus, both strains are likely to

infect a non-vanishing fraction of the node population at the same

time, leading to higher probability of coexistence. On the other

hand, as low connected nodes are harder to reach, the competition

is mostly driven by the time at which one strain reaches the

subpopulation. The first strain to disseminate to the low connected

patch has likely enough time to infect a large fraction of the

susceptible hosts before the arrival of the other strain. In this case

the competition between the two strains acts at the metapopula-

tion level as coexistence between the strains is almost zero.

To conclude our analysis of the system at the patches’ degree

level in Figure 6 we present the fraction of infected subpopulations

Dk=Vk with degree k for the two strains as a function of the degree

in the cross-over mobility region. In both homogenous and

heterogenous networks the slow strain shows a higher incidence

for low-degree nodes, whereas for intermediate and higher

connectivities, the fast strain dominates the spreading process.

Impact of R0 and t
Finally, we focus on the two parameters that mainly affect the

spreading of the strains and their interaction – namely, the

reproductive number R0 of both strains and the ratio t between

the infectious periods of the two strains. Variations of R0 from 1.1

to 4 induce a variation of the cross-over mobility rate pc of more

than two orders of magnitude (Figure 7A), with higher values of

the basic reproductive number leading to smaller values of pc. The

decrease observed in the cross-over rate is very rapid for R0v2,

followed then by an almost constant value for larger values of R0

in both network types, indicating the presence of a critical R0

beyond which the interaction dynamics of the two strains is

dominated only by the disease parameters and not by the mobility

rate.

Differently from R0, variations of t do not strongly alter the

value of the cross-over mobility rate, with a change of t of one

order of magnitude inducing variations in pc of less than 20%
(Figure 7B). Moreover, the initial fall off observed for R0 at fixed t
(panel a) is not seen anymore. In both plots we note that the

critical diffusion rate is smaller in the heterogeneous networks with

respect to the homogenous ones for the whole range of parameters

explored, confirming a favoring effect in the spatial spread of both

strains as previously discussed.

To provide a specific example, we applied this framework to the

case of two influenza-like strains spatially circulating on the real

worldwide aviation network (assuming full cross-immunity and

epidemiological parameters as in Figure 7B), we obtain that the

air-transportation mobility scenario falls in the regime in which the

fast strain is dominant for all the values of t tested (more details are

reported in the Text S1).

Analytical discussion
Here we focus on the case of homogeneous networks and

propose a simplified analytical description of the dynamics to gain

theoretical insights to further support the observed numerical

behavior. We consider a continuous time approximation and

assume that two strains do not interact at the early stage of the

spreading process, in order to provide an estimation of the critical

diffusion rate pc below which we have the dominance of the slow

strain and above which we have the dominance of the fast strain.

The basic approach is to treat the dynamics at the system level in

terms of the usual SIR model in a well mixed population,

considering the subpopulations as the elementary ingredients of

the spreading process. Under this assumption, the number of

Figure 3. Coexistence probability within the same patch. Pcoex is
defined as the probability that within the same subpopulation both
strains produce at least 1% of the population infected. The quantity
plotted is the average and the standard deviation over 2000 runs. The
parameters used for the simulations are the same as in Figure 2.
doi:10.1371/journal.pcbi.1003169.g003
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infected subpopulations D(t) grows exponentially in time, and we

can write

D(t)*e
1
T

R�{1ð Þt, ð4Þ

where T(m, �NN,R0) is the duration of the outbreak in a single

population and R� is the estimator of the invasion potential, as

described in the Methods section, i.e. is the analogous of the basic

reproductive number R0 at the metapopulation level.

If we consider the case of two epidemics starting at different

seeded subpopulations, by neglecting possible interactions among

the two strains, we obtain that the ratio between the number of

subpopulations infected by the slow strain (Ds) and the number

infected by the fast one (Df ) is given by:

Ds(t)

Df (t)
*e

Rs�{1ð Þ
Ts

{
R

f
�{1

� �
Tf

� �
t

: ð5Þ

Our goal is to derive the cross-over diffusion rate pc at which we

have that both strains cocirculate, which is given by the condition
Ds(t)

Df (t)
~1. Hence, from Eq. (5), we get

Rs
�{1

Ts

{
Rf
�{1

Tf

~0: ð6Þ

In the case of equal size populations, and for the same R0, it is

possible to show that the timescale defining the epidemic

unfolding, for instance the maximum of the removal rate, is well

approximated by a linear dependence on m{1 [74,77]. We can

therefore assume that Ts~Tt and substituting Eq. (3) into Eq. (6)

we explicitly arrive to the crossover condition as

1

t
�kk{1
� �

1{
1

R0

� �pca �NNt

m�kk

0
@

1
A{1

2
4

3
5~

~ �kk{1
� �

1{
1

R0

� �pca �NN
m�kk

0
@

1
A{1,

ð7Þ

where T simplifies and disappears from the equation.

Finally, denoting:

1

R0

� �pca �NN
m�kk

~x, ð8Þ

we have:

�kk{1
� �

1{xtð Þ{1~t �kk{1
� �

1{xð Þ{1
� �

: ð9Þ

Eq. (9) can always be solved for pc numerically and, in some cases,

analytically. The comparison between theoretical predictions and

numerical simulation results shows a good agreement in the

behavior of the cross-over diffusion rate as a function of R0

(Figure 8), confirming that the analytical approximation is able to

capture the fundamental mechanisms for competition between the

two strains.

Discussion

We studied a two-pathogen interaction in a spatially structured

population of susceptible hosts mediated by immunological

mechanisms (full cross-immunity) and ecological ones (hosts

mobility), where other biological and epidemiological features

Figure 4. Within-patch coexistence and strain-specific attack rates. A,B,C: heatmaps showing the frequency of occurrence of a given
epidemic outcome (af ,as) within the patches, expressed in % as obtained by numerical simulations. D,E,F: histogram of the within-patch attack rate a

(in %) for the slow and fast strains. From left to right, three different mobility regimes are displayed: p~10{2 in which the fast strain dominates (A,D),
p~2:5:10{4 corresponding to the cross-over point (B,E), and p~1:25:10{4 in which the slow strain dominates (C,F).
doi:10.1371/journal.pcbi.1003169.g004

Impact of Host Mobility on Pathogen Competition

PLOS Computational Biology | www.ploscompbiol.org 8 August 2013 | Volume 9 | Issue 8 | e1003169



are kept equal across pathogens (basic reproductive number).

Assuming the two diseases to be imported locally in different

patches, we find that a variety of scenarios emerge as a result of the

competition between pathogens, driven by the host mobility rate.

Either both infectious agents cocirculate and codominate in the

system, each of them reaching a substantial fraction of the patches,

or one of the two dominates constraining the other to a rapid

extinction. The spatial structure enables the selection for a given

trait depending on the hosts behavioral ecology regarding

mobility. A longer infectious period constitutes a disadvantage

for a rapidly mixing population across different patches as it

generates a slower epidemic at the local level and therefore a

slower invasion at the spatial scale. If the typical timescale for host

mobility increases, the longer period during which hosts remain

infectious make the invasion process more efficient with respect to

the faster strain.

We found that in all cases the two strains rarely coexist within

the same patch. Therefore, the competition occurs at the

metapopulation level and it is determined by the spreading

pattern at large spatial scales which in turn depends on the

structure of the mobility network. Several works have recently

shown the crucial role of host dispersal in mediating multi-strain

interaction and in canalizing the evolution of pathogens traits [47–

51]. Our model contributes to this research efforts by focusing on

the specific aspect of infectious duration and providing a clear

understanding of how the interplay between the time scales of the

dynamical processes involved – the unfolding dynamics of the two

epidemics and host mobility dynamics – affects multi-strain

competition. Therefore it highlights a mechanism that plays a

potentially relevant role on the process of pathogen evolution.

Moreover, given that strains can only interact when they coexist,

our results are of further interest as they show under what mobility

conditions this interaction at the subpopulation level is feasible.

Our results show that there exist a codominance regime around

the cross-over host diffusion rate pc, where each infectious agent

accounts for a proportion approximately equal to 40% of the

subpopulations of the system. However dominance of a single

strain is more likely to occur than codominance as an outcome of

competition, as measured by the larger interval in the phase space

corresponding to a strain invading the majority of the patches.

This result is consistent with the laboratory confirmed influenza

surveillance data in the Northern and Southern hemisphere

showing that H1 and H3 subtypes are rarely found in the same

season in a given country (1 out of 171 country influenza seasons

analyzed) [75].

Figure 5. Probability of coexistence within a patch as a
function of the patch connectivity k. Homogenous (A) and
heterogeneous (B) cases are shown. Different traveling regimes are
compared: they correspond to the scenarios in which the fast strain
dominates (the highest value of p considered in the two plots), the two
strains coexist (intermediate value of p) and the slow strain dominates
(smallest value of p). The quantity plotted is the average over 2000 runs;
error bars are not displayed for the sake of visualization.
doi:10.1371/journal.pcbi.1003169.g005

Figure 6. Competition between strains per connectivity class in
the cross-over regime. Fraction of subpopulations infected by each
strain within the degree class k, Dk=Vk , in the homogeneous (A) and
heterogenous (B) networks. The two plots depict the behavior in the
cross-over mobility regime (p^2:5:10{4 in panel (A) and p^8:10{5 in
panel (B)). The quantity plotted is the average over 2000 runs; error bars
are not displayed for the sake of visualization.
doi:10.1371/journal.pcbi.1003169.g006
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In the model we considered full cross-immunity among the

circulating strains, a situation applicable, e.g., to measles

infections, characterized by complex recurrent epidemics arising

from cyclic exhaustion of susceptible hosts in the population [78].

This assumption is also often considered as a simplification when

modeling multiple strains of influenza, though immunity after

infection is strain-dependent and only partial cross-immunity

against viral variants is found [6]. We have explored situations of

partial cross-immunity showing that our findings are stable for

relatively high degrees of cross-immunity between the two strains

considered. These results thus show that our framework may be

applicable to two strains having a high level of similarity in their

genetic and antigenic profiles, as this provides large cross-

immunity across influenza strains. A full exploration of the

spectrum of cross-immunity values is needed to further investigate

to what extent they may affect the findings of this work.

The model may also be extended to more than two interacting

pathogens. While straightforward from a design point of view,

increasing the number of pathogens rapidly increases the

complexity of the system and the corresponding computational

time of its numerical simulations, so that targeted methods need to

be developed to reduce the exponentially large state spaces [79].

Furthermore our model considered an infection dynamics

acting on timescales much shorter than the host lifetime, and no

demographic processes were therefore taken into account. In order

to study outbreaks on longer timescales or that occur in recurrent

cycles, mechanisms for susceptible hosts replenishments in the

population need to be considered, as for instance birth and death

processes in the case of measles epidemics or loss of immunity in

the case of influenza infection. This latter case would correspond

to a two-strain SIRS compartmental approach and it could be

used within our framework to study the role of host mobility on

strain replacement events, as it may occur after influenza

pandemics, where we need to assume that the other strain is

already present and at equilibrium when an additional strain

emerges in the system. While an application to human influenza A

seems plausible with the limitations discussed above, a more

comprehensive understanding of the general evolutionary dynam-

ics of influenza viruses, central to its surveillance and control,

would need to include punctuated antigenic change [80],

reassortment events [53,81,82], multiple circulating lineages

[81], among other factors.

The simplicity of the approach, on the other hand, allows us to

provide analytical insights and theoretical predictions that further

support the numerical results obtained with mechanistic discrete

stochastic simulations. Such predictions are obtained with a very

simplified mathematical reasoning, and here we discuss the main

assumptions considered. We assumed that the two epidemics do

not interact at the early stage, which is strictly verified only in the

limit of infinite network size. Moreover, in using SIR-like

equations for the dynamics of the number D(t) of infected

patches, treated as a continuous variable in the continuous time

approximation, we supposed that the infectivity of a node decays

exponentially over time. However, in general, the infectivity of a

subpopulation is proportional to the number of infectious

individuals present in that subpopulation, which has a more

complex functional dependence on t. Notwithstanding these

approximations, the theoretical estimates for the cross-over

diffusion rate pc are in good agreement with the values recovered

numerically, for a large range of R0 values.

It is also worth remarking that the presented framework is valid

not only for human mobility and human multistrain epidemics,

but it also applies to farmed or wild animals for which data on

movements are available or can be partially mapped, along with

the corresponding virological and serological data. The model

Figure 7. Dependence of the cross-over diffusion rate on the
epidemiological parameters. Cross-over diffusion rate pc along with
estimation error as a function of the reproductive number R0 (A) and of
t (B) in the homogeneous and heterogeneous cases. The networks have

average degree �kk~5. Other parameters are m~0:6, t~2 (A) and
R0~1:8 (B).
doi:10.1371/journal.pcbi.1003169.g007

Figure 8. Theoretical predictions. Comparison between the
numerical and theoretical cross-over diffusion rate pc as a function of
the reproductive number R0 for the case of homogeneous network.
Numerical results are the average over 2000 stochastic runs, whereas
theoretical values are obtained solving Eq. (9). The networks have

average degree �kk~5. Other parameters are m~0:6 and t~2.
doi:10.1371/journal.pcbi.1003169.g008
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could be for instance considered to investigate the role of bovine

displacements among premises in a given country [19,20] and for

import/export across countries in the competition among foot-

and-mouth disease strains [8] following episodic invasion events

[17,83], or in the cocirculation of new serotypes of bluetongue

virus following importation in Europe in 2006 and 2007 [84].

Changing dynamics of dominant serotypes of rabies viral

infections may be also related to changes in hosts movements

(induced e.g. by changes in the local environment or ecosystem

disturbances), in addition to other mechanisms [85]. Variations

in hosts behavioral ecology may be tested to further investigate

the interactions among multiple subtypes of avian influenza

virus in specific settings, given their importance in the possi-

ble occurrence of reassortment events leading to the emer-

gence of novel viruses [86]. Here we focused specifically on

directly transmitted diseases that can be well described by the

homogeneous mixing assumption within each local community of

hosts coupled by spatial propagation due to host migrations

among communities.

Supporting Information

Text S1 The file contains the details on the model implemen-

tation, the study of the scenarios with heterogenous mobility

patters and with partial cross-immunity and the discussion of the

framing of the study in a realistic case.

(PDF)
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23. Guimerá R, Mossa S, Turtschi A, Amaral LAN (2005) The worldwide air

transportation network: anomalous centrality, community structure, and cities’

global roles. Proc Natl Acad Sci USA 102:7794–7799.

24. Brockmann D, Hufnagel L, Geisel T (2006) The scaling laws of human travel.
Nature 439:462–465.
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