| Home > Articles > NanoSQUID magnetometry of individual cobalt nanoparticles grown by focused electron beam induced deposition > MARC |
000063386 001__ 63386 000063386 005__ 20190709135526.0 000063386 0247_ $$2doi$$a10.1088/0953-2048/30/2/024003 000063386 0248_ $$2sideral$$a97883 000063386 037__ $$aART-2017-97883 000063386 041__ $$aeng 000063386 100__ $$aMartinez-Pérez, M.J. 000063386 245__ $$aNanoSQUID magnetometry of individual cobalt nanoparticles grown by focused electron beam induced deposition 000063386 260__ $$c2017 000063386 5060_ $$aAccess copy available to the general public$$fUnrestricted 000063386 5203_ $$aWe demonstrate the operation of low-noise nano superconducting quantum interference devices (SQUIDs) based on the high critical field and high critical temperature superconductor YBa2Cu3O7 (YBCO) as ultra-sensitive magnetometers for single magnetic nanoparticles (MNPs). The nanoSQUIDs exploit the Josephson behavior of YBCO grain boundaries and have been patterned by focused ion beam milling. This allows us to precisely define the lateral dimensions of the SQUIDs so as to achieve large magnetic coupling between the nanoloop and individual MNPs. By means of focused electron beam induced deposition, cobalt MNPs with a typical size of several tens of nm have been grown directly on the surface of the sensors with nanometric spatial resolution. Remarkably, the nanoSQUIDs are operative over extremely broad ranges of applied magnetic field (-1 T <µ0H <1 T) and temperature (0.3 K < 80 < K). All these features together have allowed us to perform magnetization measurements under different ambient conditions and to detect the magnetization reversal of individual Co MNPs with magnetic moments (1-30) × 106 µB. Depending on the dimensions and shape of the particles we have distinguished between two different magnetic states yielding different reversal mechanisms. The magnetization reversal is thermally activated over an energy barrier, which has been quantified for the (quasi) single-domain particles. Our measurements serve to show not only the high sensitivity achievable with YBCO nanoSQUIDs, but also demonstrate that these sensors are exceptional magnetometers for the investigation of the properties of individual nanomagnets. 000063386 536__ $$9info:eu-repo/grantAgreement/EUR/FP6-COST/MP1201 000063386 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/ 000063386 590__ $$a2.861$$b2017 000063386 591__ $$aPHYSICS, CONDENSED MATTER$$b23 / 67 = 0.343$$c2017$$dQ2$$eT2 000063386 591__ $$aPHYSICS, APPLIED$$b41 / 146 = 0.281$$c2017$$dQ2$$eT1 000063386 592__ $$a1.036$$b2017 000063386 593__ $$aCeramics and Composites$$c2017$$dQ1 000063386 593__ $$aCondensed Matter Physics$$c2017$$dQ1 000063386 593__ $$aMetals and Alloys$$c2017$$dQ1 000063386 593__ $$aMaterials Chemistry$$c2017$$dQ1 000063386 593__ $$aElectrical and Electronic Engineering$$c2017$$dQ1 000063386 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion 000063386 700__ $$aMüller, B. 000063386 700__ $$aSchwebius, D. 000063386 700__ $$aKorinski, D. 000063386 700__ $$aKleiner, R. 000063386 700__ $$0(orcid)0000-0002-7742-9329$$aSesé, J.$$uUniversidad de Zaragoza 000063386 700__ $$aKoelle, D. 000063386 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada 000063386 773__ $$g30, 2 (2017), 024003 [10 pp.]$$pSupercond. sci. technol.$$tSUPERCONDUCTOR SCIENCE & TECHNOLOGY$$x0953-2048 000063386 8564_ $$s1127891$$uhttps://zaguan.unizar.es/record/63386/files/texto_completo.pdf$$yPostprint 000063386 8564_ $$s134403$$uhttps://zaguan.unizar.es/record/63386/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint 000063386 909CO $$ooai:zaguan.unizar.es:63386$$particulos$$pdriver 000063386 951__ $$a2019-07-09-11:59:58 000063386 980__ $$aARTICLE
The server encountered an error while dealing with your request.
The system administrators have been alerted.
In case of doubt, please contact deposita@unizar.es.