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1. Introduccion

Una gran cantidad de sistemas de naturaleza biolégica o nanotecnolégica se caracterizan por una
dindmica dominada por eventos de baja frecuencia tales como el salto de una barrera de potencial. Es un
gran reto caracterizar en este tipo de sistemas tanto el paisaje de energias como su dindmica, es decir,
determinar los caminos éptimos entre los minimos del potencial del sistema, la difusién en el tiempo
de la distribucién inicial, asi como las configuraciones criticas que marcan los ritmos dindmicos por
formar los estados de transicién. Obtener toda esta informacién permite establecer pardametros de orden
y coordenadas de reaccion a posteriori, ademas de que forma la base de técnicas de diseno de sistemas
moleculares con aplicaciones tecnolégicas (por ejemplo, establecer las interacciones en un polimero al
mutar su secuencia).

El espacio de configuraciones de un sistema de gran tamano puede ser inabarcable para efectuar una
descripcién exhaustiva, pero un muestreo del mismo mediante técnicas de Montecarlo o de dindmica
molecular permite extraer la informacién més relevante, que se centra en aquellos estados con una proba-
bilidad de ocupacién no despreciable. De este modo se obtienen los estados relevantes y las transiciones



entre ellos, despreciando los estados marginalmente poblados. Aqui surge de forma natural la descripcién
del sistema como una red de Markov. Un enfoque clésico consistiria en el calculo de valores promedios
de ciertos observables, mientras que una red de Markov permite dar una visién alternativa del paisaje de
energias y la dindmica a la que da lugar.

Una vez el sistema se ha representado como una red de Markov, la informacion relevante se plasma en
los autovalores y autovectores de la matriz que la caracteriza. Estos pueden en un principio ser calculados
mediante técnicas tradicionales, pero su tamano lo hace inabordable en un tiempo razonable. Afortu-
nadamente, es posible desarrollar herramientas alternativas para obtener estimaciones de los mismos de
forma mucho mas rapida y de un modo tal que ademas se obtiene una interpretacién fisica e intuitiva de
los mismos en relacién a las propiedades del sistema.

El método aqui empleado ha sido desarrollado por la doctora Cameron de la Universidad de Maryland
[1] v calcula estimaciones de los autovalores y autovectores al tiempo que les otorga una interpretacién
como barreras de potencial entre estados y la formacion de una jerarquia de cuencas de atraccién. Para ello
emplea ciertas propiedades comunes en redes de Markov que representen sistemas fisicos y que formulan
un problema analogo de optimizacion en grafos.

El método se concreta en el empleo de un algoritmo, denominado Single Sweep Algorithm, el cual
ha sido aplicado originalmente a sistemas de dtomos con interacciones de Lennard-Jones. Estos sistemas
tienen propiedades andlogas a las presentadas por el plegamiento de proteinas, como el disponer de una
energia bien definida, por lo que usamos el mismo algoritmo en este nuevo tipo de sistemas.

Partimos de un modelo discreto para el plegamiento de proteinas aplicado a la proteina gpW. En
este modelo, la proteina posee un espacio de configuraciones que comprende 2°8 posibles configuraciones,
si bien se ve reducido a un conjunto mas limitado de estados caracteristicos pues la red de Markov se
extrae de simulaciones de Montecarlo, de modo que en la practica solo encontramos aquellos estados
que tengan una poblacion apreciable. Estas simulaciones se efectiian a la temperatura de transicion
de la proteina, lo que implica que los estados plegado y desplegado tengan la misma probabilidad. Este
sistema difiere sustancialmente del estudiado por Cameron, especialmente en que uno de los macroestados
relevantes viene dado por un conjunto considerablemente grande de microestados escasamente poblados.
Esto implica que la entropia tiene un papel relevante a la hora de caracterizar el espacio de configuraciones.

Nuestro objetivo es obtener informacién sobre el espacio de configuraciones de la proteina y el pai-
saje de energias subyacente empleando el Single Sweep Algorithm. Buscamos obtener una visién de las
cuencas de atraccién que presente, especialmente en el entorno de los estados nativo y desplegado, asi
como el camino maximal que une ambos estados. También es posible extraer a partir del algoritmo las
autocorrientes que determinan la dindmica del plegamiento.

Para poder llevar a cabo estos objetivos, desarrollamos en primer lugar un cédigo para obtener la
red de Markov que representa el plegamiento de la proteina a partir de los datos de la simulacién de
Montecarlo, de forma que satisfaga las propiedades requeridas por el algoritmo. Este cédigo también
implementa un método de agrupamiento (lumping) de estados para reducir el tamafio de la red sin perder
informacién relevante. A continuacién, hacemos una implementacién del algoritmo en C++. Finalmente,
desarrollamos una serie de herramientas y cédigos para analizar los datos obtenidos con el algoritmo.

La diferente naturaleza de nuestro sistema respecto al de Cameron ha dado lugar a algunas dificultades
tales como la adecuada especificacién de la energia de los estados y la probabilidad de transicién o la
simplificacion del paisaje de energias para agrupar estados con informacién superflua.

Hemos analizado el proceso de plegamiento de la proteina gwp, elegida por su naturaleza adecuada
para nuestro método, caracterizando el perfil de energias del camino de minima energia, analizando las
escalas temporales de los procesos de plegamiento mediante los autovalores de la matriz representativa



de la cadena de Markov y visualizando la estructura del paisaje de energias.

2. Formulaciéon del problema

Para aplicar las técnicas que vamos a desarrollar, el problema debe poder ser formulado como una
cadena de Markov. Esta cadena se trata como una red dirigida cuyos nodos representan los diferentes
estados del sistema y los arcos, las transiciones entre ellos.

La red se caracteriza mediante una matriz generadora L y la distribucién de probabilidad inicial, pg.
Las entradas de la matriz generadora L;; marcan el ratio de transicién entre los estados i y j,

Lij = e_ﬁUijv (1)

con 3 =T~ el pardmetro de la temperatura y U;; un coeficiente relacionado con la barrera de energfa
de la transicion. Esto es asi salvo en los elementos de la diagonal, que se definen de modo que se cumpla
la condicion

ZLM =0, (2)

es decir, que la suma de los elementos de cada fila de la matriz generadora sea nula. El valor absoluto
de estos elementos L;; se corresponde a los ritmos de escape de los estados «.

Se asume que la red es irreducible (la probabilidad de alcanzar algiin estado partiendo de cualquier
otro es no nula, es decir, no hay més estados que los registrados en la propia red) y tiene un ndmero
finito de estados, n. Se deduce mediante el teorema de Perron-Frobenius que L tiene un autovalor tinico
Ao = 0 y el resto de autovalores tienen parte real negativa.

Empleando la ecuacién maestra o ecuacién de Fokker-Planck se obtiene la evolucion temporal de
la distribucién de probabilidad p(t) = (p1(t),...,pn(t)), que representa la dindmica del sistema. Esta
ecuacién es

dp

— =plL, 0) = po. 3

ar p p(0) = po (3)
Es posible escribir la soluciéon empleando la descomposicién espectral de L, es decir, L = ® 2V, siendo

® y ¥ las matrices con los autovectores derechos e izquierdos como columnas, respectivamente, y Z la

matriz diagonal dada por los autovalores. Esta solucién es:

p(t) = poPe'” V. (4)

El objetivo es caracterizar la dindmica de esta red, para lo cual se requiere la obtencién de sus
autovalores y autovectores, los cuales ademas posibilitan obtener las autocorrientes y caracterizar los
flujos en la red. Si bien para ello el procedimiento usual serfa diagonalizar la matriz generadora L,
su tamano lo hace impracticable, asi que vamos a emplear ciertas propiedades que permiten obtener
estimaciones de los autovalores para temperatura 7' = 0. Esta temperatura no es la temperatura en
que se realizan las simulaciones y no debe ser confundida con la temperatura fisica, sino que es una
temperatura ficticia: suponiendo que fijamos el paisaje de energias a la temperatura de las simulaciones,



buscamos las trayectorias de menor energia, que serian las tnicas posibles si la temperatura tendiese a
cero. Aunque la verdadera temperatura a la que estd el sistema es finita, hacemos los calculos como si la
temperatura tendiese a cero. Es esta aproximacién la que permite trabajar con los pesos U;;, que son los
logaritmos de las entradas de la matriz L.

Vamos a considerar que la cadena de Markov es reversible en el tiempo, lo cual quiere decir que la
matriz generadora cumple la condicién de balance detallado,

m; Ly = m; Ly, (5)

donde 7 es la distribucién de probabilidad en el equilibrio. Gracias a esta condicién se pueden extraer
tres propiedades para la matriz L. Por un lado, se puede descomponer como L = P~!Q con Q una
matriz traspuesta y P una matriz diagonal tal que cada elemento sea la probabilidad en el equilibrio
correspondiente. Ademads, L es similar a la matriz simétrica

Lgim = P%LP_% :P_%QP_%7 (6)

de modo que sus autovalores son reales y no positivos. Por ultimo, las matrices formadas con los
autovectores izquierdos (¥) y derechos (®) como columnas se pueden relacionar mediante la siguiente
expresion:

v =0oTP (7)

Estas propiedades dan pie a usar el método iterativo del cociente de Rayleigh sobre la matriz Lg;n,
para obtener estimaciones de los autovalores a temperatura diferente de cero a partir de las estimaciones
a T = 0 que obtenemos en un primer momento, si bien en esta memoria tnicamente tratamos este caso
T=0.

2.1. Propiedades de grafos para obtener estimaciones de los autovalores

El problema para obtener estimaciones de los autovalores de la matriz L a temperatura 0 se puede
reducir a un problema de optimizacién en grafos. Para ello es conveniente extraer una serie de W-grafos,
los cuales consisten en un conjunto de k nodos extraido del grafo principal, denominados como sumideros,
y un conjunto de n — k (siendo n el nimero de nodos en el grafo principal) arcos de forma que cada nodo
que no sea sumidero tenga un arco saliente y el W-grafo sea un drbol (o un conjunto de arboles disconexos),
es decir, no contiene ciclos. Ademads, un W-grafo se considera 6ptimo si la suma de los pesos de todos
sus arcos es la minima posible dado un ntimero k£ de nodos. En adelante nos referiremos a estos W-grafos
maximales como g;, siendo k el nimero de sumideros que tenga.

En la figura 1 se muestra un grafo de ejemplo. Las figuras 1b) y 1¢) muestran dos W-grafos 6ptimos
resaltados en azul (corresponden a gj y gi respectivamente, dado el nimero de nodos y arcos que los
forman). El grafo indicado en 1d) no es un W-grafo debido a que contiene un ciclo.

Asumiendo que todos los W-grafos 6ptimos son tnicos para un dado grafo G, se pueden obtener las
siguientes aproximaciones a orden exponencial para los autovalores:

/\k = 6_Ak/€(1 + 0(1))7 donde Ak = Z Uij — Z Uij. (8)

(i—j)€g;, (i=0)€05 11



Figura 1: Ejemplo de W-grafos de un grafo dado. Figura adaptada de [1].

Esta expresién permite obtener una aproximacién de los autovalores a partir del grafo que representa
la cadena de Markov, pues cada sucesivo autovalor \; se obtiene a partir de la diferencia en la suma de
los pesos de los respectivos W-grafos éptimos g; v gy, extraidos de G. El problema reside ahora en la
busqueda de estos W-grafos éptimos.

El problema de buscar los W-grafos éptimos reside en, para cada valor 1 < k < n, tomar k£ nodos
de entre los n nodos del grafo G y a continuacién elegir n — k arcos tales que cumplan las condiciones
para formar un W-grafo. Sin embargo, dada la gran cantidad de posibles W-grafos para cada valor de
k, encontrar el éptimo puede ser muy costoso. Afortunadamente, ciertas propiedades de los W-grafos
permiten simplificar el proceso.

Teorema 1 Sea G un grafo dirigido con pesos U;; con n nodos tal que sus W-grafos éptimos gj con
1 < k < n sean unicos. Entonces se cumplen las siguientes propiedades:

= Cada sumidero de gj, es también un sumidero del W-grafo gj ;.

= Sea S el conjunto de nodos que se encuentran en la componente conectada de g; | que no contiene
ningun sumidero de gi; y S el conjunto de todos los nodos de G. Entonces todos los arcos que parten
de los nodos de SnSy en gy, coinciden con los arcos que parten de esos mismos nodos en gj.

= Hay un dnico arco en gi, que parte de Sy y llega a SnSy.

A partir de este teorema, cuya demostracién estd dada en [1], se puede establecer una estrategia para
encontrar todos los W-grafos éptimos comenzando con g;; de forma iterada, pues en cada paso la diferencia
entre los W-grafos g; ., y G} es de un solo sumidero y las diferencias entre los arcos estdn localizadas en
una sola componente conectada. Esta estrategia se ve realizada en el Single Sweep Algorithm, cuya légica
se expone en la seccién siguiente.



3. Explicacion del algoritmo

Este algoritmo, denominado Single Sweep Algorithm debido a que solo necesita recorrer una vez los
valores 0 < k < n, emplea las propiedades antes detalladas para obtener los valores A que dan una
estimacién de los autovalores de la matriz L.

El algoritmo comienza en el W-grafo g, el cual contiene todos los nodos del grafo G' como sumideros y
ningun arco. Este W-grafo es uinico y por lo tanto es 6ptimo. A continuacion, se va disminuyendo el valor
de k para encontrar en cada paso el W-grafo éptimo gj, el cual se obtiene a partir de g;,, eliminando
un sumidero, reconformando la componente conectada del sumidero eliminado (si fuese necesario) y
finalmente conectando esa componente conectada a alguna otra mediante un tnico arco.

Para cada nodo i del grafo GG, definimos min_arc(i) como el arco de menor peso que parte de ese
nodo. Tomamos a continuacién todos los arcos min_arc(i) y los unimos en un conjunto M. En cada paso
del algoritmo, tomamos el arco de menor peso de M y lo anadimos a un set G* que contiene los arcos
mediante los cuales se construyen los g; a cada paso. Siempre y cuando no se formen ciclos en G*, el
W-grafo éptimo estara formado por los arcos que se han ido eliminando de M y como sumideros tomamos
todos los nodos en G salvo aquellos que tienen un arco saliente de ellos en G*. En tal caso, el valor de
Ay viene dado directamente por el peso del arco que se ha eliminado en el paso k, pues es el inico arco
que difiere entre g; y gj,, (véase ecuacién 8).

Sin embargo, en algin momento puede formarse un ciclo entre algunos arcos de G*. Esto se produce
si los dos nodos del arco retirado de M, sea x — y, pertenecen a la misma componente conectada del
ultimo W-grafo 6ptimo encontrado. En tal caso, ahora todos los nodos de esa componente conectada
tienen exactamente un arco saliente y no hay ningtin arco en M que pueda unirla a otros nodos de G.
Por tanto, es necesario anadir un nuevo arco a M tal que parta de alguno de los nodos del ciclo y vaya a
algin nodo de G que no esté en él.

Al realizar esta operacion, estamos sustituyendo un arco de G* que ya pertenece a algin g; conl > ky
que era el arco de menor peso que partia de un cierto nodo 4, es decir, era min_arc(i), por el arco (z — y)
que ha formado el ciclo, ademas de que hemos de anadir un nuevo arco ¢ — j a M que posteriormente
pasard a G*. Al anadir este arco, la suma de los pesos aumenta con U;j +Uyzy — Upin_arc(s), Y2 que estamos
retirando el arco min_arc(i) que daba lugar a la existencia de un ciclo pero anadimos los arcos (z — y)
y (i = 7). Para llevar la cuenta de estos cambios, aplicamos la siguiente regla de actualizacién a todos
los arcos ¢ — j que partan de todos los nodos del ciclo,

Uij = Uij + Umy - Umin,arc(i)~ (9)

Conforme avance el algoritmo, es posible que se generen nuevos ciclos que contengan nodos de un ciclo
anterior. Para gestionar esto, cuando se genere un ciclo se conforma un conjunto con todos los nodos que
hayan estado en un ciclo con los nodos del nuevo y se toma ese conjunto para realizar las operaciones
antes comentadas.

Se presenta el algoritmo en forma de pseudocddigo como el algoritmo 1.

4. Plegamiento de proteinas y modelo WSME

Las proteinas llevan a cabo funciones clave en todo sistema bioldgico y es fundamental el papel de su
estructura para ello. Estan formadas por una cadena lineal de aminodcidos, la cual adquiere su estructura



Entrada: Grafo G(S, A,U), con S el conjunto de nodos, A el conjunto de arcos y U el conjunto
de pesos de los arcos.

Salida : Conjunto de valores Ay; sumideros que desaparecen sj; sumideros absorbidos ¢} ; arcos
de escape (p; — ¢;); coleccién de conjuntos cuasi invariantes Sy; coleccién de ciclos
C} y coleccién de W-grafos éptimos gj;.

Definir B; como el conjunto de arcos que salen del nodo %, Vi.

Definir min_arc(i) como el minimo arco saliente de 4, Vi.

Eliminar min_arc(7) del conjunto B;, Vi.

Definir M = | J;.gmin_arc(i).

Definir C(i) = {i}, Vi.

Definir G* = .

Definir £ =n — 1.

Definir g; , = 0.

mientras |M| > 1 hacer

Buscar el minimo arco de M, (z — y).

Eliminar (z — y) de M.

Anadir (z — y) a G*.

si z ey pertenecen a la misma componente conectada de gj,, entonces

Establecer (p; — qf) = (z — y).

Establecer s;, como el sumidero de la componente conectada de g, ; que contiene a x.

Establecer {; como el sumidero de la componente conectada de gy, ; que contiene a y.

Establecer S} como la componente conectada de g;_; que contiene a sj.

Definir Cy, = C(s3).

Establecer Ay, = U,,.

Obtener el W-grafo éptimo gy a partir de G*.

Establecer £k =k — 1.

en otro caso

Detectar el ciclo C' que se ha formado.

Vi € C, excepto i = z, actualizar los pesos de los arcos en B;.

Definir B = |, B:.

Definir C" = (J,;. C(i).

mientras los vértices del arco (r — t) = argming,_,,)ep Upq pertenecen a C' hacer
| Eliminar el arco (r — t) de B.

fin

Establecer B; = BV: € C'.

Establecer min_arc(i) = argming,_,qep Up Vi € C".
Establecer C(i) = C'Vi € C".

Eliminar el arco de minimo peso de B.

Anadir ese arco a M.

fin
fin
Algoritmo 1: Single Sweep Algorithm.



funcional (“estructura nativa”) a través de su plegamiento. Esta estructura puede ser muy compleja, con
una organizacién tridimensional que en la mayoria de los casos es muy concreta: cada aminoacido toma
una posiciéon y una orientacién muy especificas, al punto que es posible cristalizar tales estructuras. Un
pequeno cambio en algiin aminoédcido de la proteina puede suponer que sea ineficaz en su funcién.

El proceso por el cual una proteina adquiere su estructura nativa (el “plegamiento de proteinas”)
es muy complejo y viene determinado por diversos factores, relacionados también con las condiciones
del entorno en que se encuentra. En efecto, un cambio de las condiciones del entorno (variaciones de
temperatura o pH, por ejemplo) puede producir modificaciones en la estructura y desencadenar el desple-
gamiento, con la consiguiente pérdida de la funcién de la proteina [2]. Los diferentes aminoédcidos tienen
una serie de propiedades que les hace tender a buscar una posiciéon mutua que suponga una configuracién
energéticamente favorable, bien sea formando enlaces de hidrégeno o de Van der Waals, o maximizando los
contactos hidréfobos. Esto, a fin de cuentas, es lo que da lugar a las estructuras nativas de las proteinas,
la mayoria de las cuales sono capaces de plegarse “in vitro”, encontrando su estructura, completamente
determinada por la secuencia de aminodacidos, de forma auténoma y en tiempos relativamente cortos.

El estudio del plegamiento de proteinas trata de responder a cuestiones [3] tales como cudles son los
procesos fisicos que permiten el plegamiento, cual es la dindmica del proceso o como puede producirse
tan rapido el plegamiento teniendo en cuenta la gran cantidad de posibles conformaciones a partir de una
cadena de aminoacidos. Ademds, también se presentan retos que pueden tener aplicaciones importantes
en cuanto a la prediccién y el diseno de la conformacién plegada de las proteinas.

Desde un punto de vista fisico, el conjunto de conformaciones que adquiere la proteina (o més preci-
samente, el sistema proteina+disolvente), en contacto con un bafio térmico, viene marcada por la energia
libre, magnitud que determina la condicién de equilibrio y espontaneidad en una reacciéon quimica. Cada
estado de la proteina tiene asociada una energia libre que en conjunto forma el paisaje de energias de la
proteina [5]. Durante el plegado, la proteina recorre este paisaje de energfas dirigiéndose al minimo. Este
paisaje suele ser de dimensiéon muy alta y se compone de una serie de cuencas y minimos separados por
barreras de energfa [6]. Para caracterizar el paisaje se deben encontrar sus diferentes minimos y el modo
en que se relacionan: cudles son las barreras que los separan y en qué forma se agrupan en cuencas.

En la préctica, el estudio del sistema proteina+disolvente presenta dificultades relacionadas con el
gran nimero de atomos, asi como con las presencia de un gran abanico de escalas de tiempo de los
procesos involucrados, desde la formacién de un enlace hidrégeno (10~15s), hasta el tiempo de plegamiento
(ImsV - 1s). Esto hace imposible un acercamiento verdaderamente fundamental (desde la mecénica
cudntica) y deja paso a modelos méds o menos realistas. Las simulaciones de dindmica molecular (MD)
permiten estudiar el plegamiento con un alto grado de detalle, al simular todo el proceso a escala atémica
o de pequenos grupos de dtomos. Durante mucho tiempo ha sido imposible hacer estas simulaciones con
tal grado de detalle debido al tamano de los sistemas y a no disponer de una descripciéon adecuada de
los campos de fuerzas presentes. Sin embargo, el avance de la tecnologia y las técnicas de simulacién
ha posibilitado el desarrollo y aplicacién de dindmica molecular [7]. Ahora bien, el resultado de las
simulaciones es una enorme cantidad de datos y se hace necesario desarrollar técnicas para su andlisis.
Ademsds, el gran problema de las simulaciones muy detalladas es su coste computacional, que limita el
muestreo del espacio de las fases, haciendo mas complicado el estudio del equilibrio. En cambio, modelos
mas sencillos se han demostrado tutiles para estudiar de forma més extensa el equilibrio, aun al precio de
un menor realismo.

En este trabajo aplicamos un algoritmo que ha sido usado en un principio en otro tipo de sistemas,
pero que comparten ciertas propiedades fundamentales con el plegamiento de proteinas, para analizar
los datos obtenidos a partir de simulaciones procedentes del modelo WSME-S [8]. Este modelo es una
ampliacién del modelo WSME [9], el cual considera a la proteina como una cadena de N aminodcidos cada



uno de los cuales tiene asociado un estado my, que puede ser plegado (my = 1) o desplegado (my = 0).
El conjunto de los IV valores my, es un microestado del sistema.

A cada microestado en el modelo WSME se le asigna una energfa libre efectiva (que se puede pensar
como el resultado de integrar la funcién de particién sobre las variables del disolvente y de las cadenas
laterales de los aminodcidos) que viene dada por

J N
H=> e;jAij [ mr— RTD qr(1 —ma). (10)
k=1 k=1

1<j

Aqui, €;; son las energias de contacto entre cada par de aminoacidos; A;; representa la matriz de contactos,
que toma valor 1 si los aminoacidos 7 y j estdn en contacto y en configuracion nativa y 0 en otro caso;
R y T son la constante de los gases y la temperatura y g son parametros entrépicos que modelizan el
hecho de que cada aminoécido tiene multiples configuraciones no nativas posibles.

Este modelo recibe una ampliaciéon en el modelo WSME-S, el cual toma la misma estructura pero
permite que los pardmetros sean dependientes con la temperatura,

H(m,T) = o(T) + > _ hij(T) [ [ - (11)
k=1

i1<j

Resta conocer la expresién de los pardmetros dependientes de la temperatura, ¢(T') y h;;(T), pero al no
ser la energia de cada interacciéon un observable, no se pueden determinar directamente. Para salvar este
obstéculo, se relacionan los valores de h;;(T") con la estimacién de la dependencia del calor especifico con
la temperatura hecha en Ref. [10]: esto permite reducir el nimero de pardmetros libres de N(N + 1)/2
a 4, y ajustarlos a la senal experimental del calor especifico. De esta forma, quedan completamente
determinadas las h;; en 11.

Con esa expresion de la energia libre se puede estudiar una dindamica de Monte Carlo del sistema,
como se detalla en la seccién siguiente, que luego caracterizaremos utilizando las herramientas de los

Markov State Models.

Los modelos de estados de Markov (MSM) constituyen una potente herramienta para el andlisis de
datos sobre el plegamiento de proteinas [11]. Estos modelos logran obtener simulaciones en las escalas de
tiempo relevantes, con suficiente significancia estadistica y con representaciones a resoluciones suficien-
temente grandes para que sea facil de entender de forma intuitiva. Permiten pasar de simulaciones de
trayectoria inica a una aproximacion estadistica méds completa y exhaustiva.

Para desarrollar un MSM hay que partir de unos datos iniciales, bien sean experimentales o bien
procedan de una simulacion. A partir de los datos hay que establecer los microestados y a continuacién
obtener la matriz de transiciones entre esos microestados. Se pueden tomar dos orientaciones: escalas
temporales pequenias (hacia los nanosegundos) y gran cantidad de estados para obtener resultados cuan-
titativos o bien escalas temporales mds grandes (en torno a los milisegundos) y una menor cantidad de
estados, de forma que sea mads facil obtener conclusiones cualitativas y una imagen intuitiva. Los MSM
estdn siendo desarrollados como una herramienta cada vez méds 1til para estudiar el plegamiento [12].

5. Obtencién y preparacion de los datos

Los datos a emplear como entrada para el algoritmo proceden de simulaciones de Montecarlo realizadas
sobre el modelo WSME-S, expuesto en la secciéon anterior, aplicado a la proteina gpW, una proteina



pequeiia (58 aminodcidos) que ha sido caracterizada como downhill folder, es decir, que presenta barreras
bastante pequenas entre el estado nativo y el resto, faciles de atravesar, haciendo posible un plegamiento
de muy poca cooperatividad, que va poblando estados muy diferentes. Esta proteina ha sido elegida
justamente porque la escasa barrera permite estudiar las transiciones de equilibrio con mas estadistica,
en principio asegurando el balance detallado. Por otro lado, la ausencia de minimos marcados, sobre todo
en la regién desplegada, hace que un conjunto grande de estados esté poblado, aunque escasamente. En
el modelo cada aminoédcido (“residuo”) de la proteina toma el valor 0 si estd en su estado desplegado y 1
si estd en el estado plegado. En cada paso de las simulaciones se hace un barrido a todos los residuos y
se propone un cambio en el mismo, el cual es aceptado o rechazado siguiendo el algoritmo de Metropolis,
utilizando la variacién de la energfa efectiva (11) como criterio para la aceptacion.

Las simulaciones se han realizado con una temperatura constante, igual a la temperatura de transicién
T,, donde supuestamente las poblaciones de estados nativo y desplegados son iguales. Los datos son
obtenidos desde 6 trayectorias, y para cada una se efectiia un alto nimero de pasos de termalizacién
(200000 sweeps, correspondiendo un sweep con 58 intentos de cambio de estado), que son desechados
antes de comenzar a guardar los datos, durante otros 3000000 de sweeps. El estado de partida se extrae
de la distribucién de equilibrio a la temperatura dada.

Los datos resultantes consisten en una lista de estados que se han ido encontrando en cada iteracion,
en orden temporal. Cada estado consiste en una palabra binaria de 58 digitos, pero al no encontrarse
todos los estados posibles, se asignan indices enteros correlativos a los estados que si se han encontrado,
que son un total de 8745337 estados. A partir de estos datos se debe obtener la red de Markov que
representa el sistema.

En primer lugar se obtienen las frecuencias de transicién N;; entre cada par de estados de la siguiente
manera: se recorre la lista de estados encontrados y a cada paso se incrementa en una unidad la frecuencia
entre el anterior estado leido y el actual.

A continuacién se calculan las probabilidades en el equilibrio {m;},

1
T = Ni*, 12
NAt ; J ( )

donde Na; es el nimero total de pasos de tiempo en las simulaciones originales, que en nuestro caso
es Na; = 1,8 x 107. La idea de este célculo es contar el nimero de veces que se encuentra cada estado
durante las simulaciones y en normalizarlo de modo que la suma ), m; = 1.

Para obtener la matriz L hay que realizar una normalizacién sobre las frecuencias [V;;. Esta se hace
como una normalizacién por filas,

N -
Lij= i
Y Ny

Ademis, se requiere que se cumpla la siguiente condicion:

> Lij=0, (14)

para lo cual se definen los elementos diagonales como el opuesto de la suma del resto de elementos de
cada fila,
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== Ly (15)

J#i

Esta férmula se puede adaptar teniendo en cuenta que la suma de un conjunto de valores normalizados
es uno,

ZZN&] =1. (16)

Extrayendo el elemento N;;,

ZZ N; Z]j}:fw a7

J#i

Uniendo las ecuaciones 15 y 17, se obtiene

N,
Lij = —2 1, (18)
> Nij
Por tanto, se determina la siguiente expresion general:
Ny
Lij = J — 6ij- (19)

Zj Nij

Tras aplicar esta ltima ecuacién, ya se tiene la matriz L. Sin embargo y a pesar de que las condiciones
de las simulaciones estdn a favor de que se cumpla el balance detallado (5), siendo simulaciones largas y
con buena termalizacion, tal condicién no se cumple por la matriz que obtenemos con los pasos anteriores.
Debido a la naturaleza de la proteina en cuestién, que tiene un estado desplegado de mucha amplitud,
muchos estados se exploran una sola vez. Debido a esto hemos tenido que desarrollar un método para
imponer la condicién de balance detallado perturbando el sistema lo menos posible.

El procedimiento consiste en comprobar para cada par de elementos L;; y Lj; cudl es el menor y
modificarlo de acuerdo a la expresion

-

si Lij < Lj; o con los indices invertidos en caso contrario. Tras aplicar esta ecuacién, surge un nuevo
problema debido a que en ocasiones la proporcién entre las probabilidades pueden ser tales que surjan
valores de L;; mayores a la unidad. Esto supondria tener pesos negativos, lo cual carece de sentido fisico.
Para solucionar esto, procedemos a realizar una renormalizacién de toda la matriz L dividiendo todos
sus elementos por el elemento méaximo (en el caso de que sea mayor que la unidad).

Una vez se ha aplicado esta condicién, la matriz L ya cumple las propiedades requeridas. Se puede
obtener el grafo sobre el que trabaja el algoritmo como el conjunto de nodos dados por todos los estados
representados en L y los arcos dados por todos los elementos L;; no nulos y tales que 4 # j, con un peso

Uij = — IOg(Lij). (21)

11



Se observe que, de esta forma, la U;; es adimensional, y representa en efecto el producto BeqpEij,
donde Bcyp es la temperatura experimental a la cual se han hecho las simulaciones Montecarlo. Esta
expresion, por lo tanto, define un barrera de energia eficaz F;; a partir de las probabilidades de saltos
observadas.

6. Detalles de la implementacién del algoritmo y rendimiento

6.1. Obtencién de la red de Markov

Es preciso escribir un programa que tome como entrada los datos de las simulaciones y extraiga de ellos
la red de Markov, en forma de grafo. Los datos proceden de varios archivos de texto con las trayectorias
que se han obtenido mediante Montecarlo, sumando un total de 15 millones de transiciones. Estos datos
se procesan de la forma que se ha comentado en la seccién 5.

La estructura de datos escogida para almacenar el grafo y trabajar con él es un mapa cuyas claves
son los indices enteros de los nodos del grafo y los valores asociados a cada una de estas claves son, de
nuevo, mapas. Estos mapas internos tienen como claves los indices de los nodos tales que haya un arco
que llegue a ellos procedente del nodo de la clave principal. El valor asociado es el peso de ese arco.

Esta estructura presenta varias ventajas: solo se almacenan los estados y transiciones que aparecen
en la red de Markov; reconoce la posicion en memoria de cada nodo directamente con el indice asignado
a su estado, sin que sean necesariamente correlativos y se pueden hacer inserciones y eliminaciones con
facilidad.

Una inspeccién del grafo formado por la red de Markov permite ver que frecuentemente se observan
estados encadenados sin bifurcaciones, tal y como se muestra en la figura 2. Estos forman caminos que
han de ser atravesados en su totalidad por una trayectoria y pueden agruparse como un unico estado,
considerando que el tiempo que una trayectoria permanece en tal estado tiene una correspondencia con
el tiempo que una trayectoria estaria transitando entre los estados originales.

Este agrupamiento de estados o lumping permite reducir el nimero de nodos del grafo sobre el que
hay que trabajar, de modo que el tiempo de computacion requerido por el algoritmo serd mucho menor.
Ademds, mejora la calidad de la visualizacién de resultados al agrupar estados que aportan la misma
informaciéon en conjunto y reduce el nimero de estados con el mismo peso. Esto ultimo suponia un
problema adicional que se daba con bastante frecuencia y procede del hecho de tener una cantidad finita
de transiciones, que hace que las frecuencias {N;;} encontradas tengan valores concretos. El algoritmo va
tomando en cada paso el arco de menor peso, pero en el caso de que haya dos arcos con el mismo peso
no hay un criterio para escoger uno u otro, asi que esta elecciéon se hace de forma arbitraria y perjudica
a la interpretacién de los resultados.

El lumping se realiza siguiendo un procedimiento que no perturbe el sistema y tenga coherencia con
la fisica subyacente. Sea I el conjunto de estados que forman una cadena, es decir, que cada estado esta
unido a otros dos estados que pertenezcan a I' 0 a un estado de I' y a un solo estado ajeno. Entonces se
sustituye I' por un tnico estado i con dos arcos que lo unan a los otros dos estados ajenos (sean k y 1),
de forma que el arco (k — i) tenga el mismo peso que el arco original que partia de k y el arco L;; sea:

7T7n
Ly = =——Ln, (22)
' Zjerﬁj "

donde m es el estado perteneciente a I' del arco original (m — [). Ademads, la probabilidad del nuevo
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Figura 2: Arriba, representacién de un grafo con una cadena I" formada por dos nodos. Abajo, represen-
tacion del mismo grafo en el cual la cadena ha sido reemplazada por un tinico nodo 3.

e,
>0

estado es la suma de las probabilidades de los estados de T,
T, = Z Uyn (23)
jer

Otro fenémeno frecuente que no proporciona informacién util es cuando la trayectoria alcanza un
estado e inmediatamente retorna al estado anterior, sin volver nunca a tal estado. Esto da lugar a estados
aislados como el mostrado en la figura 3. Se puede eliminar estos estados facilmente, asimildndolos al
estado al que se unen:

T = T + T5. (24)

Dado que el nuevo estado j' incrementa su poblacién, también lo hard |Lj /|, por lo que hay que
calcular los valores de Ly,

T
Lj/k = J

Ljt. (25)

T+ T
En cualquier caso, en la practica el nimero de estados eliminados de este modo es muy reducido y no
supone una diferencia apreciable.

En cambio, el lumping de las cadenas permite reducir en casi un orden de magnitud el tamano del
grafo a analizar, ademéas de que es una receta que puede ser usada de forma general para este tipo de
problemas.
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Figura 3: Representacién de un grafo en el cual hay un nodo (i) que, al haber sido visitado una tnica
vez en una trayectoria que ha regresado al estado anterior (j) después de visitarlo, ha quedado aislado
del grafo salvo por un tinico camino.

Estados | Arcos | Tiempo de nuestro c6digo (s) | Tiempo del c6digo de Cameron (s)
3224 14664 20.443 0.736
5940 29506 84.298 0.703
10786 | 58194 495.499 0.902

Tabla 1: Varios valores del tiempo de computacién requerido por ambos cédigos para analizar un sistema
de diferente nimero de estados y arcos.

6.2. Implementacion del Single Sweep Algorithm

Una vez obtenido el grafo que representa la red de Markov, realizamos una implementacién del Single
Sweep Algorithm usando C++. El cédigo utiliza la estructura de mapas comentada para representar los
grafos y vectores para los conjuntos de nodos. Una comprobacién mediante grafos de prueba (como el
mostrado en la figura 1) permite asegurar que el cédigo funciona correctamente.

Al realizar las simulaciones, comprobamos que los tiempos de ejecucién no son éptimos en relacién a
las indicaciones de rendimiento tedrico aportadas por la doctora Cameron [1]. Esto da pie a cuestionar
nuestra implementacion, por lo que hemos contactado con Cameron para resolver dudas sobre ciertos
detalles del algoritmo y su implementaciéon y nos ha ofrecido su cédigo original. De este modo hemos
podido comparar el rendimiento y funcionamiento de ambos cédigos.

El cédigo que hemos desarrollado realiza todas las operaciones indicadas en el algoritmo 1 de forma
explicita, calculando en cada paso el w-grafo éptimo. El empleo de mapas implica que la bisqueda de
arcos o nodos concretos sea relativamente lenta pues no son estructuras de datos con acceso aleatorio.
Por otro lado, el cédigo de Cameron realiza muchas de las operaciones implicitamente, sin calcular a cada
paso el W-grafo éptimo y usando siempre variables con posibilidad de realizar accesos aleatorios. Esto,
unido al uso de la biisqueda de arbol binario para encontrar arcos minimos, permite que su ejecucion sea
mucho maés rapida.

En la tabla 1 se muestran los tiempos requeridos para analizar sistemas de diferentes tamanos, todos
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ellos tomados como un subconjunto de las simulaciones que analizamos. Se observa claramente la mayor
eficiencia del cédigo de Cameron.

No obstante, la mayor velocidad en tiempo de ejecucion del cédigo de Cameron se obtiene a costa de
un cédigo considerablemente mas criptico y dificil de entender. Esto trae consigo la necesidad de realizar
una documentacién sobre el mismo para asegurar la correcta comprensiéon del cédigo y poder emplearlo
y modificarlo de acuerdo a las necesidades del analisis.

Para cerciorarnos de que el resultado del analisis es el mismo con ambos cédigos, comprobamos que
los resultados obtenidos por los dos son exactamente los mismos. Debido al mejor rendimiento compu-
tacional del cédigo de Cameron, optamos por efectuar el analisis con él. Cuando ha sido necesario, hemos
modificado el cédigo para extraer resultados no contemplados en el programa original.

7. Exposicién y analisis de los resultados

Los datos originales comprenden un total de 8745337 estados. Una vez se ha realizado el tratamiento
inicial, incluyendo el lumping, el nimero de estados se ha visto reducido a 1562541. Se trata de una
reduccion considerable, de casi un orden de magnitud. Esto es debido a que una gran parte de estados
han sido observados una tnica vez uno a continuaciéon de otro, formando una cadena de estados en la
red.

7.1. Estimaciones de los autovalores

El analisis que efectia el Single Sweep Algorithm otorga una enorme cantidad de informacién sobre
el sistema. El primer y més evidente pardmetro a analizar es el conjunto de valores Ag, que son la base
de la estimacién de los autovalores dada por

A = e AT, (26)

En la figura 4 se muestran los valores Ay en funcién de k. En un primer momento, se observa que
tiene una forma escalonada, con varias mesetas que se deben a que en las simulaciones originales, muchas
transiciones han sido observadas una escasa cantidad de veces, lo que provoca que los pesos de los arcos
del grafo de entrada al algoritmo tengan valores discretos. Se observe que en la mayoria del espectro
los valores Ay forman préacticamente un continuo (incluso las partes que parecen verticales; en realidad
estdn formadas por miltiples valores), resaltando que no hay una clara separacién de escalas temporales,
excepto en las k més bajas. Aqui, especialmente para k = 14, que representa la transicion de plegamiento,
resulta separada de la del resto de los procesos que tienen lugar durante el plegamiento.

A partir de los Ay, se obtienen estimaciones de los autovalores de L mediante la ecuacién (26). Estas
estimaciones se han obtenido haciendo la asuncién de T = 0, pero es posible tomarlas como conjetura
inicial para el algoritmo iterativo del cociente de Rayleigh. No obstante, en este trabajo no se realiza esta
exploracién.

7.2. Camino maximal entre los estados desnaturalizado y nativo

Para estudiar el camino entre los estados desnaturalizado y el estado nativo, escogemos como ejemplo
paradigmatico de los primeros el estado de solo ceros, y del segundo el estado de todo unos. Por razones
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Figura 4: Valores Ay en funcién de k (escala semilogaritmica).
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Figura 5: Perfil de energia del camino maximal entre el estado desnaturalizado, a la izquierda, y el nativo,
a la derecha (ambos marcados con puntos verdes). La barrera que une ambas cuencas se muestra con
puntos azules y los sumideros de ambas cuencas, en violeta.
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Figura 6: Detalle del perfil mostrado en la figura 5, mostrando la parte del camino que cruza la cuenca
nativa.

entropicas, no esperamos que ninguno de los dos sea un minimo de energia, pero nuestra hipétesis es
que el camino maximal entre ellos pase por los sumideros de la cuenca nativa y desnaturalizada y por la
barrera entre ellas. Por tanto, nos dedicamos a identificar el camino maximal, es decir, de menor energia
total, entre ambos estados.

El Single Sweep Algorithm se sitia en el caso de temperatura cero y va tomando los arcos de menor
peso, es decir, va buscando los caminos 6ptimos entre los diferentes estados. Con esos arcos construye los
W-grafos éptimos gj. Por tanto, desplazarse de un estado a otro recorriendo un W-grafo éptimo implica
tomar el camino maximal, teniendo en cuenta siempre que el verdadero camino maximal estara incluido
en el g; tal que las componentes conectadas de ambos estados se hayan unido en ese paso de k. En pasos
posteriores una posible reordenacién de los arcos al formar un W-grafo éptimo implica una modificacién
de tales caminos.

Teniendo en cuenta lo anterior, resulta de inmediato interés encontrar cudl es el camino maximal entre
los estados desnaturalizado y nativo. En concreto, lo interesante es encontrar el perfil de energias que se
da entre ambos estados, proyectado sobre ese camino. Esto se muestra en la figura 5.

En esa figura estan representados las energias de los estados que separan el estado desplegado y
el nativo, asi como las barreras entre cada par de estados. Las energias V; se calculan a partir de las
probabilidades en el equilibrio,

Vi=— log<m>, (27)

Tf

donde 7y es la probabilidad del estado fundamental, es decir, la mayor de las probabilidades 7; para
1 <% < n. Por su parte, las barreras de energia V;; entre cada par de estados ¢ y j se obtienen a partir
de los pesos de los arcos,

17



Vij =Uij + Vi (28)

Para obtener la figura 5 se ha buscado el paso en que los estados nativo y desplegado caen en la
misma componente conectada, que resulta ser el ultimo, & = 1, y se ha extraido el W-grafo 6ptimo
correspondiente, g7. Partiendo de los nodos correspondientes a los dos estados, se ha recorrido el grafo
hasta llegar a un nodo comun, que es el sumidero sj. La lista de nodos recorridos forma el camino
maximal.

El perfil de energias encontrado muestra una gran regién sin orden aparente y una pequena regién
con un claro minimo. La primera region corresponde a la cuenca del estado desplegado, que se encuentra
a la izquierda de la figura 5, y la segunda regién contiene la cuenca del estado nativo (a la derecha) y la
zona en que se unen ambas cuencas.

La cuenca del estado desplegado tiene una gran amplitud, por lo que el camino maximal no se diferencia
en exceso de otros caminos proximos. Esto estd asociado a una mayor entropia. Estd formada por estados
con energia en general alta. Sin embargo, la cuenca del estado nativo es mucho més estrecha y sus estados
tienen energias menores. La figura 6 muestra esta parte del perfil del camino maximal con més detalle.
En esta figura se aprecia bien, marcada en azul, la barrera del arco con el cual se unen ambas cuencas.
Esta es la mayor barrera que encuentra la proteina en el plegamiento y supone su cuello de botella. Se da
entre los arcos 477729 (perteneciente a la cuenca del estado desplegado) y 719798 (de la cuenca nativa).
El valor de esta barrera es A; = 10,41KT.

La forma de este camino es coherente con la naturaleza de la proteina, ya que es un downhill folder,
es decir, su plegamiento atraviesa una gran cantidad de estados escasamente poblados y separados por
barreras de energia pequenas.

7.3. Jerarquia de cuencas en el paisaje de energia

En cada paso del Single Sweep Algorithm se unen dos componentes conectadas del W-grafo 6ptimo
del paso anterior. Los nodos de la componente conectada a la cual pertenece la cola del arco que se ha
tomado en ese paso forman el conjunto Si. De este modo, hay n conjuntos Si, uno por cada paso k
del algoritmo. Estos conjuntos tienen un significado fisico destacable, pues los estados que los componen
tienen barreras de energia menores entre ellos que con respecto a los estados externos, pues se han unido
entre si primero y después con un estado externo.

Conforme el algoritmo avanza, se van uniendo estos estados Sy entre si hasta llegar al final, cuando
todos quedan unidos. Cada conjunto representa una cuenca de energia y el avance del algoritmo muestra
la jerarquia entre todas ellas.

Un conjunto Sy se considera maximal respecto a un estado s; (I < k) si no es subconjunto de ningin
otro conjunto S,, para [ < m < k. Estos conjuntos son las cuencas que se unen directamente a s}, de
forma que la barrera que tienen con este estado es menor que la que tienen con cualquier otro estado
ajeno.

Es interesante, entonces, obtener la jerarquia de conjuntos Sy maximales respecto a los estados que
permanecen como sinks hasta los ultimos pasos del algoritmo. Esto permite caracterizar cualitativamente
las cuencas del paisaje de energias.

Con el avance del algoritmo, los conjuntos Sj maximales se van uniendo al estado de referencia s, lo
que implica que ese conjunto, que forma una componente conectada, se une a la componente conectada en
la que yace el estado de referencia, mediante un cierto arco (p; — ¢;). En el proceso, ademads, el sumidero
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k Tamano | Estado representante | M del representante
1 1553304 236283 0.66
257 6389 390914 0.78
480367 73 1026606 0.81

Tabla 2: Conjuntos S; maximales mas grandes respecto a sg = 1262694.

s}, de la componente conectada de Sy, deja de serlo. Consideraremos este como el estado representante
del conjunto Sk.

El arco (pj, — ¢;) que marca la unién del set S con s; puede ser tal que g; = s}, pero no tiene por
qué ser asi. En muchos casos se da que ¢; es un estado que pertenece a un set S,, anterior, es decir,
m < k. Esto es lo que produce la jerarquia entre los conjuntos Sy, de forma que cada cuenca se une a
la cuenca global con un enlace que la conecta a otra cuenca previamente unida a la cuenca global, pero
sin relacion directa con otras cuencas. Dado que los pesos de los arcos de unién decrecen con k, los arcos
que conectan cuencas tienen un peso mayor conforme maés alejados estan del estado de referencia en la
jerarquia.

Realizamos el andlisis de los conjuntos S, maximales respecto a sj = 1262694, que es el ultimo
sumidero en desaparecer y lo hace, ademds, en el momento en que se unen las cuencas de los estados
nativo y desplegado. Encontramos un total de 1451 conjuntos Sy maximales, pero de estos la mayoria
contiene uno o muy pocos estados. En la figura 7 se muestran aquellos conjuntos cuyo tamafo es de al
menos 5 estados. Para caracterizar a los estados representantes de cada conjunto, utilizamos el parametro

1
VI = — 2
N Ek mg, ( 9)

que toma valores proximos a 0 para estados muy desplegados o 1 para estados cercanos al nativo.

En tal figura se muestra la jerarquia entre los diferentes S, maximales en forma de grafo. Cabe
destacar que la mayoria de estos conjuntos contiene una muy pequena cantidad de estados, habiendo
solo dos con un tamafio verdaderamente notable. En la tabla 2 se muestran los tres S, maximales més
grandes. Los dos conjuntos méas grandes estan unidos entre si y concretamente el mas grande de ellos
contiene la préctica totalidad de los estados del sistema. Este conjunto se forma en el penultimo paso
y merece un andalisis similar al realizado para s§ = 1262694. Dado que su sumidero es el sumidero de
la cuenca desnaturalizada, ese conjunto es en realidad esa cuenca. En cuanto al resto de conjuntos Sj
maximales encontrados, su tamano es mucho menor, como ya se ve en el tercer conjunto mostrado en la
tabla 2.

La figura 7 representa la estructura interna de la cuenca del estado nativo, excluyendo al conjunto cuyo
representante es el estado 236283, que es la cuenca desplegada. El grafo muestra las diferentes subcuencas
y cémo se enlazan unas con otras, de tal forma que cada enlace representa la barrera de escape de la
cuenca mas baja. El anélisis empleado para obtener la figura se puede repetir para descubrir la estructura
interna de cada uno de estos conjuntos, tomando su sumidero como nueva referencia para considerar que
un estado Sy sea maximal. Repetimos el proceso para encontrar la estructura de la cuenca desplegaada,
que se muestra en la figura 8.

La cuenca desplegada se compone de 15648 estados S maximales. Aquellos que tienen un tamafio
superior a 50 estados se han representado en la figura 8, con su jerarquia correspondiente. En esta
cuenca se encuentran dos subcuencas importantes; un resumen se muestra en la tabla 3. La cuenca S,
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Figura 7: Conjuntos S, maximales respecto de s§ = 1262694 con un tamano de al menos 5 estados.
Cada nodo es uno de estos conjuntos, representado con un radio que depende logaritmicamente del
nimero de estados en el conjunto y un color que depende del pardmetro M = 1/N ), my, del sumidero
representativo. Verde claro indica valores pequenos y negro, valores préximos a 1. Por otra parte, el color
de los arcos va asociado a su peso, siendo el violeta claro para pesos bajos y negro para los altos. El nodo
que representa a s tiene un tamafio arbitrario para facilitar la visualizacién (no representa a un estado
Sk sino a un solo nodo).
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Figura 8: Conjuntos Sj maximales respecto de sj = 236283 con un tamafio de al menos 50 estados.
Cada nodo es uno de estos conjuntos, representado con un radio que depende logaritmicamente del
nimero de estados en el conjunto y un color que depende del parametro M = 1/N >, my, del sumidero
representativo. Verde claro indica valores pequenos y negro, valores mas proximos a 1. Por otra parte, el
color de los arcos va asociado a su peso, siendo el violeta claro para pesos bajos y negro para los altos.
El nodo que representa a s tiene un tamaio arbitrario para facilitar la visualizacién (no representa a un
estado Sj sino a un solo nodo). Las escalas de colores y tamafios no son cuantitativamente equivalentes
a las empleadas en la figura 7.
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k Tamano | Estado representante | M del representante
2 947400 19942 0.28

4034 | 426171 179693 0.59

33879 | 24254 532634 0.71

Tabla 3: Conjuntos S; maximales mas grandes respecto a sj = 236283.

es la que contiene al estado con todo ceros, es la més grande y la que tiene un menor valor de M. Sin
embargo, encontramos otra cuenca con aproximadamente la mitad de estados y un valor de M bastante
mayor, M = 0,59, que indica que estd a medio camino entre el estado desplegado y el nativo. Esta
cuenca puede representar una trampa cinética: un conjunto de estados intermedios bastante desconectados
energéticamente de los estados desplegado y nativo en el que la proteina puede permanecer un tiempo
considerable durante el proceso de plegamiento. La barrera de escape de esta cuenca es Aygzy = 6,42,
mientras que la barrera en el sentido inverso es de 8,54. Al ser estos valores del mismo orden, podemos
decir que efectivamente actiia como una trampa cinética.

El resto de subcuencas de la cuenca desplegada tienen tamanos considerablemente menores. Como se
ve en la tabla 3, hay un conjunto S} maximal con 24254 estados y un valor de M bastante proximo al
estado nativo; el resto de conjuntos tiene tamanos mucho menores.

8. Resumen y conclusiones

Hemos realizado una implementaciéon en C++ del algoritmo Single Sweep Algorithm, el cual analiza
una red de Markov para estudiar su dinamica obteniendo una interpretacién fisica para sus resultados.
Hemos comprobado el adecuado funcionamiento del cédigo, empleando grafos de entrada especialmente
disenados para ponerlo a prueba. Una vez desarrollado completamente este codigo, lo hemos comparado
con un codigo desarrollado por los autores del algoritmo y hemos comprobado que efectivamente su
funcionamiento es correcto, si bien no resulta computacionalmente éptimo.

A continuacién, hemos aplicado el algoritmo a una proteina; en concreto, a su proceso de plegado,
centrandonos en el equilibrio entre estados desplegado y nativo. Esta es una aplicacién novedosa del
algoritmo, que en principio se ha usado con otro tipo de sistemas mas sencillos. Gracias a los resultados
que arroja, hemos podido analizar el camino maximal que une los estados desplegado y nativo. También
hemos obtenido una visualizacién del paisaje de energias y su estructura de cuencas de atraccién.

Los datos de la proteina empleados han sido obtenidos mediante simulaciones de Montecarlo sobre el
modelo WSME-S. Estos datos han sido procesados y adaptados a un formato adecuado para el algoritmo
mediante un cédigo desarrollado para ello. Este cddigo asegura que se cumplan las condiciones necesarias
para la correcta aplicacion del algoritmo.

Los datos aportados por este algoritmo son muy ricos y se puede ampliar el analisis que hemos
realizado. Serfa interesante realizar un calculo exhaustivo de los autovectores de la matriz que representa a
la red, a partir de los cuales se pueden obtener las autocorrientes que caracterizan la dindmica del sistema.
También ha quedado fuera de nuestros objetivos la computacién de estimaciones de los autovalores de
esta matriz a temperatura finita.

Hemos podido comprobar que este algoritmo se puede aplicar al estudio del plegamiento de proteinas
con éxito, abriendo las puertas a este tipo de analisis. El algoritmo se puede aplicar a otras proteinas
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para obtener resultados similares a los presentados.
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A. Cdbdigo de la implementacién del Single Sweep Algorithm

/*

Coded by Pablo J Blasco (2017), Universidad de Zaragoza

Implementation of Single

stat-mech].

*/

#include <string>
#include <stdio.h>
#include <iostream>
#include <map>
#include <utility>
#include <fstream>
#include <sstream>
#include <cmath>
#include <vector>
#include <list>
#include <tuple>
#include <algorithm>
#include <queue>
#include <time.h>
#include <stdlib.h>

#define NUMBER_OF_TIME_STEPS

Sweep Algorithm, as developed in M. Cameron and T.
"Spectral analysis and clustering of large stochastic networks.
to the Lennard-Jones-75 cluster". ArXiv e-prints (2015). arXiv: 1511.05269[cond-mat.

1.8e7

#define SAVE_AT_STATE 3000000000

//#define INFO //If active,

or G.

//#define LOAD_STATE //If active,

the program will show a lot of info about what it’s doing
#define MINIMAL_INFO //This will show only basic information, such as the current step.
//#define BIG_INFO //If active, and INFO is too, it will show big chunks of info,

instead of starting from the beginning

//#define DEGENERACY_WARNING

using namespace std;

//With this typedef, it is unnecessary to write the double map type explicitly every time

//1f active, will show warnings if degeneracy found

typedef std::map< int, std::map<int,double> > map_of_transitions_type;

int minimal_arc(std::map<int,

double> nodes);

int single_sweep_algorithm(map_of_transitions_type &nodes);

bool are_in_same_connected_component (const map_of_transitions_type &graph,

int &sink_of_x, std::vector<int> &connected_component);
int sink_of_connected_component (map_of_transitions_type graph, int mnode);

void find_connected_component (map_of_transitions_type graph, int node, std::vector<int> &

connected_component) ;

void detect_cycle(const map_of_transitions_type &graph, const int x, const int y,

vector<int> &cycle);

void read_prepared_simulations(map_of_transitions_type &nodes);

void write_prepared_simulations(const map_of_transitions_type &nodes);
void create_testing_map(map_of_transitions_type &nodes);

int total_size_of_map(const map_of_transitions_type &nodes);

void save_current_step(const
const
const
const

map_of_transitions_type &nodes,
map_of_transitions_type &Minimum_outgoing_arcs,
map_of_transitions_type &arcs_removed_from_M,
map_of_transitions_type &optimal_W_graph,
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the program will load its current state from files

int x,



68

69

83

90

const std::vector< std:
const std::vector< std:
const std::vector< std:
const int k);

void 1oad_current_step(map_of_transitions_type
map_of_transitions_type
map_of_transitions_type
map_of_transitions_type

:vector<int> > &cycles_i,
:vector<int> > &Bi_indexes,
:tuple<int,int ,double> > &min_arc,

&nodes,
&Minimum_outgoing_arcs,
&arcs_removed_from_M,
&optimal_W_graph,

std:
std:
std:

:vector< std::vector<int> > &cycles_i,
:vector< std::vector<int> > &Bi_indexes,
:vector< std::tuple<int,int,double> > &min_arc,

int &k);
//A function to convert any type into strings.
recognize the function std::to_string()
template <typename T>
std::string to_string(T value)
{
//Create an output string stream
std::ostringstream os ;

//Throw the value into the string stream
os << value ;

There is a bug in MinGW so that gcc

//Convert the string stream into a string and return

return os.str() ;

}

main ()
{

map_of_transitions_type nodes;

#ifndef LOAD_STATE
read_prepared_simulations (nodes) ;
//create_testing_map (nodes);

//Delete the autoloops,
for (map_of_transitions_type::iterator i =
if (i->second.count (i->first) 0)

{

i->second.erase(i->first);
if (i->second.size () ==0)
{

int aux = i->first;
i--;
nodes.erase (aux) ;

}

<< "\nSize: "
<< "Simulations read\n";
<< "Map ready.
LOAD_STATE

std::cout
std::cout
std::cout
#endif //
single_sweep_algorithm(nodes);
std::cout << "\nFinished\n";

return O;
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113 int single_sweep_algorithm(map_of_transitions_type &nodes)

114 {
115
116
117
118
119
120

121

123
124
125
126

130
131
133
134
135
136
137
138

139

140

145
146
147

148

149

//The input: the double map

which represents the infinitesimal generator L

#ifdef INFO
std::cout << "Starting Single Sweep Algorithm.\nAllocating memory...\n
#endif // INFO

".
H

//We will need these variables as the outputs
double delta; //\Delta_k
int disappearing_sink; //s_k %

of the algorithm

int absorbing_sink; //t_k *
std::pair<int,int> exit_arc; //arcs (p_k ™ * -> q_k %)
std::vector<int> cycles; //Ck

map_of_transitions_type optimal_W_graph;
std::vector<int> quasi_invariant_set; //Sk.
the vertices of

This is a vector in which we will store

//every connected component of g_k7x
containing s_k"x*.
//After all these initializations of the outputs, we must declare and initialize the
internal variables.
int k = nodes.size() - 1;
iteration we are.

//The variable which takes into account in which

//We need a vector in which we will have the min_arc (i)
std::vector< std::tuple<int,int,double> > min_arc(nodes.size());
//We now create the graph of arcs of minimum weight, named M.
map_of_transitions_type Minimum_outgoing_arcs;

//We need to have record of the sets Bi.
ints.

We do it by using a vector of vectors of

std::vector< std::vector<int> > Bi_indexes; //In every ith vector, we list the
vertexes which belong to set B(i).
//For example, if B_a = B_abc, then
Bi_indexes.at(a) = {a, b, c}.

#ifdef LOAD_STATE

map_of_transitions_type arcs_removed_from_M;

std::vector< std::vector<int> > cycles_i = std::vector< std::vector<int> >(nodes.size
(ODH

load_current_step(nodes, Minimum_outgoing_arcs,

arcs_removed_from_M, optimal_W_graph,

cycles_i, Bi_indexes, min_arc, k);
#else
//We build these sets by putting into them the corresponding index (initially, B(i) =
{i}
for(int i = 0; i<nodes.size(); i++) //A loop which makes N components

in Bi_indexes
Bi_indexes.push_back(std::vector<int>
corresponding index of its vertex.

(1,i+1)); //every one with the

//We also create the output files as void files
{ofstream output_file; //With just one stream we will open and close all the files.

output_file.
output_file.

output_file.
output_file.

output_file.
output_file.

open("delta.txt");
close ();

open("disappearing_sinks.txt");
close();

open("absorbing_sinks.txt");
close();
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169
170
171
172
173
174
175
176
177
178
179

180
181
182
183
184
185
186
187

188
189
190

192
193
194

195

196
197
198
199
200

202

203

204

205

206

208

209

210

211

213

output_file.open("quasi_invariant_sets.txt");
output_file.close();

output_file.open("exit_arcs.txt");
output_file.close();

//output_file.open("W_graphs.txt");
//output_file.close();
¥

#ifdef INFO
std::cout << "Memory Allocated.\nBuilding M...\n";
#endif // INFO

//We now proceed to the construction of the set of minimum outgoing arcs M.

//First, we declare an auxiliary variable

{int index_of_minimum_weighted_arc; //We limit the existence of this variable to the
scope inside which it is going to be used.

//We sweep through all the map

for(map_of_transitions_type::iterator i=nodes.begin(); i!=nodes.end(); i++)

{
//For every node, we find first the minimal arc
index_of _minimum_weighted_arc = minimal_arc(i->second);

//We put this arc inside of the min_arc(i) vector
min_arc[i->first - 1] = std::make_tuple(i->first, index_of_minimum_weighted_arc,
i->second.at(index_of _minimum_weighted_arc));

//We then create this arc in M

Minimum_outgoing_arcs[i->first][index_of_minimum_weighted_arc]

Minimum_outgoing_arcs[i->first] [index_of _minimum_weighted_arc]
index_of _minimum_weighted_arc);

03
i->second.at (

//And we erase it from the B_i set
(i->second) .erase(index_of _minimum_weighted_arc);

}}//After this loop, we have correctly constructed the set M and we have updated the
sets B_i so that those two don’t have common members.

#ifdef INFO

#ifdef BIG_INFO

std::cout << "The set M is:\n";

for(map_of_transitions_type::iterator i=Minimum_outgoing_arcs.begin(); i!=
Minimum_outgoing_arcs.end (); i++)

for(std::map<int,double>::iterator j=i->second.begin(); j!=i->second.end(); j++)
std::cout << "M has " << i->first << " to " << j->first << " with " << j->second

<< endl;

std::cout << "We now build the initial C(i) sets" << endl;

#endif // BIG_INFO

#endif // INFO

//Next, we must initialize the cycles as C(i) = {i}
std::vector< std::vector<int> > cycles_i = std::vector< std::vector<int> >(nodes.size
0);

//cycles_i is a variable which we build inside this function and with which we will
build cycles, which is an output.
for (unsigned int i=0; i<nodes.size(); i++)
cycles_i[i].push_back(i+1); //This adds element i as the last component (in this
case, single component as it’s a new vector)
//of the ith vector in cycles_i. (Remember cycles_i is a
vector of vectors).
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214
215
216
217

236

237

245

#ifdef INFO

std::cout << "Initial C(i) sets built." << endl;
#ifdef BIG_INFO
for(std::vector< std::vector<int> >::iterator i = cycles_i.begin(); i'!=cycles_i.end()
;oi++)
for(std::vector<int>::iterator j = (*i).begin(); j!=(xi).end(); j++)
std::cout << "The cycle " << (*i).at(0) << " has " << *j << endl;

#endif // BIG_INFO
#endif // INFO

//Last part of the initialization: we must declare the set Gx
map_of_transitions_type arcs_removed_from_M; //It starts void.

#ifdef INFO
std::cout << "We enter the main cycle.\n" << endl;
#endif // INFO

#endif // LOAD_STATE

//We will also use a variable to store the number of cycles found
int number_of_cycles_found = 0;

//The main cycle
while(total_size_of_map(Minimum_outgoing_arcs) > 1) //Do it until there is only one
arc left in M

{
if (k==SAVE_AT_STATE)
{
save_current_step(nodes, Minimum_outgoing_arcs, arcs_removed_from_M,
optimal_W_graph, cycles_i, Bi_indexes, min_arc, k);
return 1;
}
std::pair<int,int> minimum_weight_arc (0,0); //A pair of variables for the

indexes of the arc of minimum weight
{//Find the minimum weight arc in M. We can’t use minimal_arc here because we
have a double map, not a simple one.
double minimum_weight = 9999999; //A variable to keep track of the ~
//We run through Minimum_outgoing_arcs and we search for the minimum
for(map_of_transitions_type::iterator i=Minimum_outgoing_arcs.begin(); i!=
Minimum_outgoing_arcs.end(); i++)
for(std::map<int ,double>::iterator j=i->second.begin(); j!=i->second.end

O5 3+
{
#ifdef DEGENERACY_WARNING
if (j->second == minimum_weight)
std::cout << "WARNING: Degeneracy found at searching for the
minimum outgoing arc." << endl;
#endif // DEGENERACY_WARNING
if (j->second < minimum_weight)
{
minimum_weight = j->second; //We store the minimum weight found
minimum_weight_arc.first = i->first; //We store the indexes of
the arc
minimum_weight_arc.second = j->first;
}
}

//We now have to add this arc to G* and delete it from M

arcs_removed_from_M[minimum_weight_arc.first][minimum_weight_arc.second] =
Minimum_outgoing_arcs.at(minimum_weight_arc.first).at(minimum_weight_arc.
second) ;
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265

273
274
275

283

285

286

288

289

290

291

292

294

295

296

297

299

300

301

302

303

305

306

307

308

309

Minimum_outgoing_arcs.at(minimum_weight_arc.first).erase(minimum_weight_arc.
second) ;

#ifdef MINIMAL_INFO
std::cout << "\nValue of k: " << k << endl;
#endif // MINIMAL_INFO

#ifdef INFO
#ifndef MINIMAL_INFO
std::cout << "\nValue of k: " << k << endl;
#endif // MINIMAL_INFO
std::cout << "Minimum arc: << minimum_weight_arc.first << " to " <K<
minimum_weight_arc.second << " with " << minimum_weight << endl;
#endif // INFO
}//End of the transferring of the minimum arc of M to G*

#ifdef INFO
#ifdef BIG_INFO
std::cout << "The G map is:" << endl;
for(map_of_transitions_type::iterator i =arcs_removed_from_M.begin(); il!=
arcs_removed_from_M.end () ; i++)
for(std::map<int,double>::iterator j=i->second.begin(); j!=i->second.end
O5 j++)
std::cout << "G has from " << i->first << " to " << j->first << "
with " << j->second << endl;

//std::cout << "The set M is: " << endl;
//for(map_of_transitions_type::iterator i=Minimum_outgoing_arcs.begin(); i!=
Minimum_outgoing_arcs.end (); i++)

// for(std::map<int,double>::iterator j=i->second.begin(); j!=i->second.
end () ; j++)

// if (i->first % 100000 == 0) std::cout << "M has from " << i->first
<< " to " << j->first << " with " << j->second << endl;

#endif // BIG_INFO

std::cout << "We test if the new arc connects two different connected components
of gxk+1\n";

#endif // INFO

//We now proceed depending on whether the two endpoints of the minimal arc are on
the same connected component
if (are_in_same_connected_component (optimal_W_graph, minimum_weight_arc.first,
minimum_weight_arc.second, disappearing_sink, quasi_invariant_set))
{
#ifdef INFO
std::cout << "It doesn’t! We proceed normally\n";
std::cout << "Saving minimal arc, absorbing and disappearing sinks and
finding connected component" << endl;
#endif // INFO
//We store the minimal arc as the arc (p_k~* -> q_k"*)
exit_arc = minimum_weight_arc;

//We store the sink of the connected component of q_k"* (for p_k~"* it has
already been made).

absorbing_sink = sink_of_connected_component (optimal_W_graph,
minimum_weight_arc.second);

#ifdef INFO

std::cout << "Disappearing sink: " << disappearing_sink << " Absorbing
sink: " << absorbing_sink << endl;

std::cout << "The connected component of the " << k+1 << " optimal W-
graph is:" << endl;
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310 for(vector<int>::iterator i = quasi_invariant_set.begin(); i!=
quasi_invariant_set.end () ; i++)

311 std::cout << *i << "\t";
312 std::cout << endl;
313
314 #ifdef BIG_INFO
315 std::cout << "The " << k << " cycle is:" << endl;
316 for(std::vector<int>::iterator i=cycles_i.at(disappearing_sink - 1).begin
(); il'=cycles_i.at(disappearing_sink - 1).end(); i++ )
317 std::cout << "Cycle has vertex " << xi << endl;
318 #endif // BIG_INFO
319 #endif // INFO
320
321 //We build the kth cycle
322 cycles = cycles_i.at(disappearing_sink - 1);
323
324 //We now have to store the optimal W-graph
325 //In this snippet we search for the k optimal W-graph
326 {
327 map_of_transitions_type inversed_G; //A inversed graph of G will make it
faster to go through it
328
329 //We have to remove the elements in the connected component which has
been joined because there may be cycles
330 for(vector<int>::iterator i=quasi_invariant_set.begin(); i!=
quasi_invariant_set.end(); i++)
331 if (optimal_W_graph.count (*¥i)==1)
332 optimal_W_graph.erase (*i);
333
334 //We build the inversed_G map
335 for(map_of_transitions_type::iterator i = arcs_removed_from_M.begin(); i
!=arcs_removed_from_M.end(); i++)
336 for(std::map<int,double>::iterator j = i->second.begin(); j!=i->
second.end () ; j++)
337 inversed_G[j->first][i->first] = j->second;
338
339 //Now we have to trace from the joined arc backwards in the connected
component S_k
340 //In a list we will have record of bifurcations we find. It shall be a
list because we want to erase it in constant time.
341 std::list<int> bifurcations, bifurcations_next; //bifurcations_next will
have the nodes which are a bit further than those which we are taking
into account at the moment.
342 bifurcations.push_back(absorbing_sink);
343
344 //We need a vector to know at every moment which nodes we have visited.
345 std::map<int, bool> already_visited;
346 for(map_of_transitions_type::iterator i = arcs_removed_from_M.begin(); i
!=arcs_removed_from_M.end () ; i++)
347 already_visited[i->first] = 0;
348 already_visited[absorbing_sink] = 1;
349
350 while (1!=0)
351 {
352 if (bifurcations.size () == 0)
353 break; //If there aren’t any bifurcations left, we have ended.
354
355 //We make a loop through every bifurcation at this level
356 for(std::list<int>::iterator i = bifurcations.begin(); i!=
bifurcations.end(); i++)
357 //We only search for the node if it has any incoming arcs
358 if (inversed_G.count (xi) != 0)
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//Then we go to the 1list of incoming arcs
for(std::map<int,double>::iterator j=inversed_G.at(*i).begin
(); j'=inversed_G.at(*i).end(); j++)
{
//We check if this node has already been visited
if (already_visited.at(j->first) == 0)
{//1f we haven’t found this node
if (optimal_W_graph.count (j->first) == 0) //1f it
has no outgoing arc, we create it
optimal_W_graph[j->first][*i] = j->second;
//We also include the node in this two containers.
bifurcations_next.push_back(j->first);
already_visited[j->first] = 1;

}

//We copy the nodes of bifurcations found in this step and start
again with them.
bifurcations = bifurcations_next;
bifurcations_next.clear ();
}
}//End of snippet to find the optimal W_graph

#ifdef INFO
#ifdef BIG_INFO

std::cout << "The k=" << k << " optimal W graph is: " << endl;
for(map_of _transitions_type::iterator i = optimal_W_graph.begin(); i!=
optimal_W_graph.end(); i++)
for(std::map<int,double>::iterator j = i->second.begin(); j'!=i->

second.end () ; j++)
std::cout << i->first << " to " << j->first << " with " << j->
second << endl;
#endif // BIG_INFO
#endif // INFO

//We can take now the value of deltal[k]
delta = arcs_removed_from_M.at(minimum_weight_arc.first).at(
minimum_weight_arc.second);

//Here we would also take the value of A_k. But we set it as 1 for all k.

#ifdef INFO

std::cout << "The found value of Delta_" << k << " is " << delta << ".\tEnd
of the step. Increasing k." << endl;

#endif // INFO

//Finally, we write in files all the computed data
ofstream output_file; //With just one stream we will open and close all the
files.

output_file.open("delta.txt", std::ofstream::app);
output_file << delta << "\n";
output_file.close();

output_file.open("disappearing_sinks.txt", std::ofstream::app);
output_file << disappearing_sink << "\n";
output_file.close();

output_file.open("absorbing_sinks.txt", std::ofstream::app);

output_file << absorbing_sink << "\n";
output_file.close();

31



412
413

414
415
416
417
418
419
420
421

423

424

430
431
432
433
434
435
436
437

439

440

output_file.open("quasi_invariant_sets.txt",

std::ofstream::app);

for(vector<int>::iterator i=quasi_invariant_set.begin(); i!=

quasi_invariant_set.end(); i++)

output_file << *i << "\n";
output_file << "\n";
output_file.close();

output_file.open("exit_arcs.txt",

std::ofstream::app);

output_file << exit_arc.first << "\t" << exit_arc.second << "\n";

output_file.close();

/*output_file.open("W_graphs.txt",

std::ofstream::app);

for(map_of_transitions_type::iterator i = optimal_W_graph.begin(); i!=

optimal_W_graph.end(); i++)
for (map<int,double>::iterator j
j++)
output_file << i->first <<
I|\nll;
output_file << "\n";
output_file.close ();*/

= i->second.begin(); j'!=i->second.end();

"\t" << j->first << "\t" << j->second <<

//We decrease the value of k and go to the next iteration.

k = k-1;

else

//We increase the variable which stores the number of cycles found

number_of_cycles_found++;

#ifdef MINIMAL_INFO
#ifndef INFO
std::cout << "Number of cycles
<< endl;
#endif // INFO
#endif // MINIMAL_INFO

#ifdef INFO

found: " << number_of_cycles_found << "."

std::cout << "It does! We look for the cycle which has been formed." <<

endl;
std::cout << "Number of cycles
<< endl;
#endif // INFO

found: " << number_of_cycles_found << "."

//A cycle is created. We have to detect it. We take a vector to store it.

std::vector<int> detected_cycle;

//Now we detect it

detect_cycle (arcs_removed_from_M, minimum_weight_arc.first,
minimum_weight_arc.second, detected_cycle);

#ifdef INFO

std::cout << "The detected cycle has the following vertexes: \n";

for(std::vector<int>::iterator i =
end () ; i++)
std::cout << "Detected cycle: "

detected_cycle.begin(); i!=detected_cycle.

<< *i << endl;

std::cout << "Starting the weight update process." << endl;

#endif // INFO

//We update the weights of the arcs which go out of every vertex in the cycle

//We make a loop through the cycle
for(std::vector<int>::iterator i =
end () ; i++)
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if (*i != minimum_weight_arc.first) //We don’t take the case i = x

{
//we search for the minimal arc in every set B_i
double weight_minimum_arc_Bi = std::get<2>(min_arc.at(*i-1)); //Ve
are going to use a variable to store the minimum weight for every
set B_i

//We proceed to the update
#ifdef BIG_INFO

std::cout << "The values before the update are the following:" <<
endl ;
for(std::vector<int>::iterator i_Bi=Bi_indexes.at(*i - 1).begin()
; i_Bi!=Bi_indexes.at(xi - 1).end(); i_Bi++)
for(std::map<int,double>::iterator j = nodes.at(*i_Bi).begin
(); j'=nodes.at(*i_Bi).end (); j++)
std::cout << "Before update: " << *i_Bi << " to " << j->
first << " has " << nodes[*i_Bi][j->first] << endl;
std::cout << "Updating by: " << arcs_removed_from_M.at(

minimum_weight_arc.first).at(minimum_weight_arc.second)

- weight_minimum_arc_Bi <<

"\t= XY: " << arcs_removed_from_M.at(
minimum_weight_arc.first) .at(
minimum_weight_arc.second) <<

"\t- Min: " << weight_minimum_arc_Bi
<< endl;

#endif // BIG_INFO

//We make a loop through every subset of B_i

for(std::vector<int>::iterator i_Bi=Bi_indexes.at(*i - 1) .begin();
i_Bi!=Bi_indexes.at(*xi - 1).end(); i_Bi++)
for(std::map<int,double>::iterator j = nodes.at(*i_Bi).begin(); j

!=nodes.at (*¥i_Bi).end (); j++)
nodes [*i_Bi][j->first] += arcs_removed_from_M.at(
minimum_weight_arc.first).at(minimum_weight_arc.second)
- weight_minimum_arc_Bi;

#ifdef BIG_INFO
std::cout << "The values after the update are the following:" <<

endl;
for(std::vector<int>::iterator i_Bi=Bi_indexes.at(*i - 1).begin()
; i_Bi!=Bi_indexes.at(*i - 1).end(); i_Bi++)
for (std::map<int,double>::iterator j = nodes.at(*i_Bi).begin
(); j'=nodes.at(*i_Bi).end(); j++)
std::cout << "After update: " << *i_Bi << " to " << j->
first << " has " << nodes[*i_Bi][j->first] << endl;

#endif // BIG_INFO
}//Here we have ended the update
#ifdef INFO
std::cout << "Update finished. Merging Bi sets..." << endl;

#endif // INFO

//We have to merge the B_i sets for all i in C
{std::vector<int> merged_Bi; //We are going to construct the merged Bi set

for(std::vector<int>::iterator i = detected_cycle.begin(); i!=detected_cycle.
end () ; i++)
for(std::vector<int>::iterator i_Bi = Bi_indexes.at(*i - 1).begin(); i_Bi
'=Bi_indexes.at(*i - 1).end(); i_Bi++)
if(std::find (merged_Bi.begin(), merged_Bi.end(), *i_Bi) == merged_Bi.
end ())

merged_Bi.push_back(*i_Bi);
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//Now it is constructed. We have to make every Bi set for i in C equal to

this set.
for(std::vector<int>::iterator i = detected_cycle.begin(); i!=detected_cycle.
end (); i++)
{
//Bi_indexes.at(*i - 1).clear();
Bi_indexes[*i - 1] = merged_Bi;

}}//End of merging Bi sets.

#ifdef INFO
#ifdef BIG_INFO
std::cout << "The Bi sets are the following:" << endl;
for(std::vector< vector<int> >::iterator i = Bi_indexes.begin(); i!=
Bi_indexes.end(); i++)

{
std::cout << "Set B_" << (*i).at(0) << " has\t";
for(std::vector<int>::iterator j = (*i).begin(); j!=(xi).end(); j++)
std::cout << *j << "\t";
std::cout << endl;
}

#endif // BIG_INFO
std::cout << "Merging the cycles\n";
#endif // INFO

//We need a vector in which we will merge the sets C(i)
std::vector<int> merged_cycles;

//We make a loop to get every vertex of the detected_cycle
for(std::vector<int>::iterator i=detected_cycle.begin(); i!=detected_cycle.
end () ; i++)
//We go to the (vector) component of cycles of that vertex and copy it
into merged_cycles.
for(std::vector<int>::iterator j=cycles_i.at(*i - 1).begin(); j'=cycles_i
Lat(xi - 1) .end(); j++)
if(std::find(merged_cycles.begin(), merged_cycles.end (), *j) ==
merged_cycles.end()) //We assure that there are no repeated
elements in merged_cycles
merged_cycles.push_back (*j);

#ifdef INFO

std::cout << "The merged cycle is:" << endl;
for(std::vector<int>::iterator i=merged_cycles.begin(); i'!'=merged_cycles.end
O5 i+4)

std::cout << *xi << "\t";
std::cout << endl;
std::cout << "Deleting inadequate arcs..." << endl;
#endif // INFO

//Here we will delete those arcs whose vertexes are in C’ and are minimal in
B.

//We need a variable for the minimum weight found

double minimum_weight = 999999;

//And another variable for the arc with that weight
std::pair<int,int> minimum_weight_arc_Cprime;

//We have a loop which breaks if the minimum arc outgoing from a vertex in B
is not in C’

while (1!=0)

{

//We loop through the detected_cycle to get the minimum arc
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for(std::vector<int>::iterator i=detected_cycle.begin(); i!=

detected_cycle.end(); i++)

//For every vertex in the detected_cycle, we go to the set B_i (this
is equivalent to B)

for(std::vector<int>::iterator i_Bi = Bi_indexes.at(*i - 1) .begin();
i_Bi != Bi_indexes.at(*i - 1).end(); i_Bi++)
//For every i in the set Bi_indexes, we go to the set of outgoing

arcs from it
if (nodes.count (xi_Bi) >= 1)
for(std::map<int,double>::iterator j=nodes.at(*i_Bi).begin(); j!=
nodes.at(*i_Bi).end(); j++)

{
#ifdef DEGENERACY_WARNING
if (j->second == minimum_weight)
std::cout << "WARNING: Degeneracy found at searching for
the minimum outgoing arc not in C’." << endl;
#endif // DEGENERACY_WARNING
if (j->second < minimum_weight) //If a lesser value is found
{
//We update the minimum value
minimum_weight = j->second;
//And the found minimum arc
minimum_weight_arc_Cprime.first = *i_Bi;
minimum_weight_arc_Cprime.second = j->first;
}
}

//We now have to check whether the two vertexes of the
minimum_weight_arc_Cprime are on C’
int check = 0; //This variable serves as a value for checking

//We go through the set C’. If we find the vertexes of the
minimum_weight_arc_Cprime, we sum 1 to check

for(std::vector<int>::iterator i=merged_cycles.begin(); il!=merged_cycles.
end () && check < 2; i++)

if (minimum_weight_arc_Cprime.first == *i || minimum_weight_arc_Cprime
.second == *i)
check ++; //1f the two vertexes are found, check will take
value 2
if (check==2) //If the two vertexes of the arc belong to C’
{ //We remove the arc from B

nodes.at (minimum_weight_arc_Cprime.first).erase(
minimum_weight_arc_Cprime.second) ;

//We reset the variable which stores the minimum weight
minimum_weight = 999999;

#ifdef INFO

std::cout << "Erasing arc " << minimum_weight_arc_Cprime.first << "
to " << minimum_weight_arc_Cprime.second << endl;
#endif // INFO
}
else //I1f they do not, we exit from the loop

break;

}
#ifdef INFO

std::cout << "Making cycles C(i) equal to C’..." << endl;
#endif // INFO
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//We have to make all the C(i) cycles as C’, for all i in C’
for(std::vector<int>::iterator i=merged_cycles.begin(); i!=merged_cycles.end

O i++)
//For every C(i) set with i in C’
cycles_i.at(xi-1) = merged_cycles; //Copy the merged_cycles into every
cycles_i

#ifdef INFO
std::cout << "Removing the minimum arc from B and adding it to M..." << endl;
#endif // INFO

//Finally we delete the minimum arc from B and add it to M

//we search for the minimal arc in every set B_i

double weight_minimum_arc_Bi = 9999999; //We are going to use a variable to
store the minimum weight for every set B_i

int index_minimum_arc_Bi; //This will be the second index of the minimum arc
outgoing from i

pair<int,int> indexes_absolute_minimum_arc_Bi; //This will be the minimum arc
from B

//We make a loop through the different subsets of B_i
for(std::vector<int>::iterator i=merged_cycles.begin(); il!=merged_cycles.end

O5 i+4)
for(std::vector<int>::iterator j=Bi_indexes.at(*i - 1).begin(); j!=Bi_indexes
Lat (ki - 1) .end(); j++)
{
if (nodes.count (¥j) >= 1)
if (nodes.at (*j).size() != 0)
{
#ifdef DEGENERACY_WARNING
if (nodes.at(*j).at(index_minimum_arc_Bi) < weight_minimum_arc_Bi)
std::cout << "WARNING: Degeneracy found at searching for the
minimum outgoing arc in B_i." << endl;
#endif // DEGENERACY_WARNING
//We search for the index of the minimal arc in the subset of B_i
which is the set of arcs outgoing from i
index_minimum_arc_Bi = minimal_arc(nodes.at(*j));
//1f the minimal arc for this subset of B_i is lesser than the by now
found minimal weight of B_i
if (nodes.at(*j).at(index_minimum_arc_Bi) < weight_minimum_arc_Bi)
{
//We save this new minimum.
weight_minimum_arc_Bi = nodes.at(*j).at(index_minimum_arc_Bi);
indexes_absolute_minimum_arc_Bi.first = *j;
indexes_absolute_minimum_arc_Bi.second = index_minimum_arc_Bi;
}
}
}
#ifdef INFO
std::cout << "The arc added to M is: " << indexes_absolute_minimum_arc_Bi
.first << " to " << indexes_absolute_minimum_arc_Bi.second << " with

" << weight_minimum_arc_Bi << endl;
#endif // INFO

//We also insert this arc in min_arc(i) for all i in C’

for(std::vector<int>::iterator i=merged_cycles.begin(); il!=merged_cycles.end
O5 i+4)
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}

min_arc.at(*i - 1) = std::make_tuple(indexes_absolute_minimum_arc_Bi.
first, indexes_absolute_minimum_arc_Bi.second, weight_minimum_arc_Bi)

H

//We add it
Minimum_outgoing_arcs[indexes_absolute_minimum_arc_Bi.first][
indexes_absolute_minimum_arc_Bi.second] = weight_minimum_arc_Bi;

//And remove it from B
nodes.at(indexes_absolute_minimum_arc_Bi.first).erase(
indexes_absolute_minimum_arc_Bi.second);

#ifdef INFO
std::cout << "End of the step." << endl;
#endif // INFO
} //End of if-else
}//End of main cycle (end while)
return 1; //Return a success.

//This function searches for the arc of minimum weight for a given node.
int minimal_arc(std::map<int,double> nodes)

{

}

double minimum_weight = 9999999; //A variable to keep track of the
int found_index = O0; //The index found at every step. If it’s O at the end, that
means there was no minimal arc. If that makes any sense at all.

//We make a loop through the given map
for(std::map<int,double>::iterator i=nodes.begin(); i!=nodes.end(); i++)
{

#ifdef DEGENERACY_WARNING

if(i->second == minimum_weight)
std::cout << "WARNING: Degeneracy found at searching for the minimal arc." <<
endl ;

#endif // DEGENERACY_WARNING
if(i->second < minimum_weight) //For every entry we check whether it is lesser
than the last minimum found.

{
//If it is, we change our control variables accordingly
minimum_weight = i->second;
found_index = i->first;
}
¥
if (found_index == 0) cout << "\n\nThere is a zero index for the minimal_weight\n\n";

//After the loop, we should have the index of the minimal arc, which is then returned

return found_index;

//A function which returns 1 if the vertexes x and y are in the same connected component

of graph, O otherwise.

bool are_in_same_connected_component (const map_of_transitions_type &graph, int x, int vy,

{

int &sink_of_x, std::vector<int> &connected_component)

//First we assure that the vector is empty
connected_component.clear ();

//In a list we will have record of the bifurcations we find. It shall be a list

because we want to erase it in constant time.
std::1list<int> bifurcations;
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}

//The sink of the connected component of x.
sink_of_x = sink_of_connected_component (graph, x);

//(The first element in the connected component as well as) the first bifurcation
will be the sink.
bifurcations.push_back(sink_of_x);

//We have to insert the sink in the connected_component vector
connected_component .push_back(sink_of_x);

//A variable to know at every moment which node we are analyzing
int current_node;

while (1!=0)

{

}

//Finally we detect

if (bifurcations.size() != 0)

//We put the current_node

else

in the last bifurcation we have noted

current_node = bifurcations.back();

break; //If there aren’t any bifurcations left, we have ended.

//We make a sweep through the graph

for(map_of_transitions_type::const_iterator i = graph.begin(); i!=graph.end(); i
++)
for(std::map<int,double>::const_iterator j = i->second.begin(); j!=i->second.
end () j++)
if (j->first == current_node) //1f the endpoint of an arc is the
current_node
{
//We note the found arc in our two containers.
connected_component.push_back(i->first);
bifurcations.push_back(i->first);
}

//We end the step by erasing the track of the analyzed node from the list of

bifurcat

ions.

bifurcations.remove (current_node) ;

if y is in the connectad_component of x.

for(std::vector<int>::iterator i = connected_component.begin(); i!=
connected_component.end(); i++)

return O;

if (%

0.

i ==y

return 1;

//1f we have not found y in the connected component of x, then we return

//Searches for the sink of the connected component which node belongs to.
int sink_of_connected_component (map_of_transitions_type graph, int node)

{

//The sink of the connected component of node. Initialized in node
int sink

= node;

do //We will find the sink of the connected component of node here

{

if (graph.count (sink) == 0) //If there aren’t any outgoing arcs from sink

else

break;

//We exit from the loop,

because we have already found the sink
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}

sink = graph.at(sink).begin()->first; //We now consider as the sink the first
(and we hope that unique) outgoing arc from sink
}while (1!=0); //We can only get out of the loop if we find the sink. There MUST be a
sink...

return sink;

//This functions gives a vector with all the vertexes in the connected component of node
void find_connected_component (map_of_transitions_type graph, int node, vector<int> &

{

}

connected_component)

//First we assure that the vector is empty
connected_component.clear ();

//We now find the sink
int sink = sink_of_connected_component (graph, node);

//In a list we will have record of bifurcations we find. It shall be a list because
we want to erase it in constant time.

std::1list<int> bifurcations;

bifurcations.push_back(sink) ;

//We have to insert the sink in the connected_component vector
connected_component .push_back(sink);

//A variable to know at every moment which node we are analyzing
int current_node;

while (1!=0)

{
if (bifurcations.size() != 0)
//We put the current_node in the last bifurcation we have noted
current_node = bifurcations.back();
else
break; //If there aren’t any bifurcations left, we have ended.
//We make a sweep through the graph
for(map_of_transitions_type::iterator i = graph.begin(); il!=graph.end(); i++)
for(std::map<int,double>::iterator j = i->second.begin(); j!=i->second.end();
j++)
if (j->first == current_node) //I1f the endpoint of an arc is the
current_node
{
//We note the found arc in our two containers.
connected_component.push_back(i—>first);
bifurcations.push_back(i->first);
}
//We end the step by erasing the track of the analyzed node from the list of
bifurcations.
bifurcations.remove (current_node);
¥

void detect_cycle(const map_of_transitions_type &graph, const int x, const int y, std::

{

vector<int> &cycle)
int current_node = y;

//Make sure that the cycle starts void
cycle.clear();

39



834
835
836

837
838
839
840
841
842
843
844

845
846

849

//We need to keep track of the deadpoints we find as well as the already vi
nodes in every iteration
std::vector<int> deadpoints;

do //Make this loop until we have reached the end
{
//1f there are no outgoing arcs from here,
if (graph.count (current_node) == 0)
{ //We put this node in the deadpoints vector and start over.
if (std::find (deadpoints.begin(), deadpoints.end(), current_node) ==
deadpoints.end())
deadpoints.push_back(current_node);
current_node = y;
cycle.clear ();
}
else //In any other case,
{
//We get an iterator to the current_node
map_of_transitions_type::const_iterator i = graph.find(current_node
std::map<int ,double>::const_iterator j;
//We go through the inner map
for(j = i->second.begin(); j!=i->second.end(); j++)
//If it is not a deadpoint nor an already visited node
if (std::find (deadpoints.begin(), deadpoints.end(), j->first) ==
deadpoints.end () &&
std::find(cycle.begin(), cycle.end(), j->first) == cycle.end
{ //We get the current_node there.
current_node = j->first;
cycle.push_back(current_node);
break; //And exit the loop.

if(j == i->second.end()) //If we reached the end of the inner map,
over.
{
if (std::find (deadpoints.begin(), deadpoints.end(), i->first) ==
deadpoints.end())
deadpoints.push_back(i->first);
cycle.clear ();
current_node = y;
}
}
}while(current_node!=x);
//We have to insert the very last component of the cycle, which closes it.
cycle.push_back(y);

void read_prepared_simulations(map_of_transitions_type &nodes)

FILE* infile;

infile = fopen("nodes_map.bin", "rb");
double mapsize;

fread (&mapsize, sizeof (mapsize), 1, infile);
for(int i = 0; i<mapsize; i++)

{

int first_element;
fread (&first_element, sizeof(int), 1, infile);
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884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901

902

903
904
905
906
907
908
909

910

double inner_mapsize;
fread (&inner_mapsize, sizeof (inner_mapsize)
for(int j = 0; j<inner_mapsize; j++)
{
int second_element;
double third_element;
fread (4second_element, sizeof (int), 1,
fread (&third_element, sizeof (double), 1
nodes [first_element] [second_element] =

3

1, infile);

infile);

s

infile);

third_element;

nodes.begin();

),

1, outfile);
i->second.begin();

outfile);

1,

outfile);

il=nodes.end(); i++)

j!=i->second.end

}
if (1%1000==0) std::cout << "Completed " << (i/mapsize)*100 << "%%\r";
}
fclose(infile);
}
void write_prepared_simulations(const map_of_transitions_type &nodes)
{
FILE* outfile;
outfile = fopen("nodes_map.bin", "wb");
double mapsize = nodes.size();
fwrite (¥mapsize, sizeof (mapsize), 1, outfile);
for(map_of_transitions_type::const_iterator i =
{
int first_element = i->first;
furite (&first_element, sizeof(int), 1, outfile);
double inner_mapsize = i->second.size();
furite (¥inner_mapsize, sizeof (inner_mapsize
for(std::map<int,double>::const_iterator j
Os 3+
{
int second_element = j->first;
double third_element = j->second;
fwrite(&second_element, sizeof (int), 1,
furite(&third_element, sizeof (double),
}
}
fclose(outfile);
}

//This function creates a simple map for testing purposes.
void create_testing_map(map_of_transitions_type &nodes)

{//Fig 5 Cameron (2017).
nodes [1]1[2] = 1;
nodes [1][3] = 5
nodes [1][4] = 2.
nodes [1][5] = 2

nodes [2] [3] = 3;
nodes [2][1] = 10;

nodes [3] [1] =

2
nodes [3][2] = 2.6;
nodes [3][4] = 3.2;
nodes [4][1] = 0.5;
nodes [4][3] = 1.5;
nodes [4] [5] = 3;
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932
933
934
935
936

937

938
939
940
941
942
943
944
945
946
947
948
949

950

960
961
962
963
964
965
966

967

968

978
979
980
981
982
983
984

985

}

nodes [5] [1]
nodes [5] [4]

7;
6;

//A simple function to compute the total size of a map, not only that of its outer part.
//Needed to a good computation of the size of a map, since by erasing its inner elements

the outer size is not decreased.

int total_size_of_map(const map_of_transitions_type &nodes)

{

}

int total_size = 0;

for(map_of_transitions_type::const_iterator i=nodes.begin(); i!=nodes.end(); i++)
total_size += i->second.size();

return total_size;

void save_current_step(const map_of_transitions_type &nodes,

const map_of_transitions_type &Minimum_outgoing_arcs,
const map_of_transitions_type &arcs_removed_from_M,

const map_of_transitions_type &optimal_W_graph,

const std::vector< std::vector<int> > &cycles_i,

const std::vector< std::vector<int> > &Bi_indexes,

const std::vector< std::tuple<int,int,double> > &min_arc,
const int k)

ofstream output_file;
output_file.open("saved_nodes.txt");

for(map_of_transitions_type::const_iterator i = nodes.begin(); il=nodes.end () ; i++)
for(std::map<int,double>::const_iterator j = i->second.begin(); j!=i->second.end
Os 3+

output_file << i->first << "\t" << j->first << "\t" << j->second << "\n";

output_file.close();

output_file.open("saved_M.txt");

for(map_of_transitions_type::const_iterator i = Minimum_outgoing_arcs.begin(); il!l=
Minimum_outgoing_arcs.end(); i++)
for(std::map<int,double>::const_iterator j = i->second.begin(); j!=i->second.end
O5 3+

output_file << i->first << "\t" << j->first << "\t" << j->second << "\n";

output_file.close();

output_file.open("saved_G.txt");

for(map_of_transitions_type::const_iterator i = arcs_removed_from_M.begin(); il!=
arcs_removed_from_M.end () ; i++)
for(std::map<int,double>::const_iterator j = i->second.begin(); j!=i->second.end
O5 3+

output_file << i->first << "\t" << j->first << "\t" << j->second << "\n";

output_file.close();

output_file.open("saved_W_graph.txt");

for(map_of_transitions_type::const_iterator i = optimal_W_graph.begin(); i!=
optimal_W_graph.end(); i++)
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986

987
988
989
990
991
992
993

994

995
996
997
998
999
1000
1001
1002
1003
1004
1005

1006

1007
1008
1009
1010
1011

1016
017
1018

1019
1020

1027
1028
1029
1030

}

for(std::map<int,double>::const_iterator j = i->second.begin(); j!=i->second.end

O5 3+
output_file << i->first << "\t" << j->first << "\t" << j->second << "\n";

output_file.close();

output_file.open("saved_cycles.txt");

for(std::vector< std::vector<int> >::const_iterator i=cycles_i.begin(); il!=cycles_i.

end () ; i++)

{
output_file << (*i).size() << "\n";
for(std::vector<int>::const_iterator j = (*i).begin(); j!=(*i).end(); j++)
output_file << (*j) << "\n";
}

output_file.close();

output_file.open("saved_Bi.txt");

for(std::vector< std::vector<int> >::const_iterator i=Bi_indexes.begin(); i!=
Bi_indexes.end(); i++)

{
output_file << (*i).size() << "\n";
for(std::vector<int>::const_iterator j = (*i).begin(); j!=(*xi).end(); j++)
output_file << (*j) << "\n";
}

output_file.close();

output_file.open("saved_min_arc.txt");

for(std::vector< std::tuple<int,int,double> >::const_iterator i=min_arc.begin();
min_arc.end () ; i++)

{

output_file << std::get<0>(*i) << "\t" << std::get<1>(*i) << "\t" << std::get
<2>(*i) << "\n";

output_file.close();

output_file.open("saved_k.txt");
output_file << k;

output_file.close();

void load_current_step(map_of_transitions_type &nodes,

map_of_transitions_type &Minimum_outgoing_arcs,
map_of_transitions_type &arcs_removed_from_M,
map_of_transitions_type &optimal_W_graph,
std::vector< std::vector<int> > &cycles_i,
std::vector< std::vector<int> > &Bi_indexes,
std::vector< std::tuple<int,int,double> > &min_arc,
int &k)

ifstream input_file;
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1043
1044
1045

1046

1059
1060
1061
1062

1063

1066
1067
1068
1069
1070

1071

1072

1073
1074
1075
1076

1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103

1104

std:

std:

std:

std:

input_file.open("saved_nodes.txt");

int first_state;
int second_state;
double weight;

nodes.clear () ;

while (! input_file.eof ())

{
input_file >> first_state >> second_state >> weight;
nodes [first_state] [second_state] = weight;

}

input_file.close();

:cout << "nodes read\n";

input_file.open("saved_M.txt");

Minimum_outgoing_arcs.clear ();

while (!input_file.eof ())

{
input_file >> first_state >> second_state >> weight;
Minimum_outgoing_arcs[first_state] [second_state] = weight;

input_file.close();
:cout << "M read\n";

input_file.open("saved_G.txt");

arcs_removed_from_M.clear () ;

while (!input_file.eof ())

{
input_file >> first_state >> second_state >> weight;
arcs_removed_from_M[first_state][second_state] = weight;

input_file.close();
:cout << "G read\n";

input_file.open("saved_W_graph.txt");

optimal_W_graph.clear();

while (!input_file.eof ())

{
input_file >> first_state >> second_state >> weight;
optimal_W_graph[first_state] [second_state] = weight;

input_file.close();
:cout << "W_graph read\n";
input_file.open("saved_cycles.txt");

int size_of_vector = 0;
int element;

cycles_i.clear ();
while (!input_file.eof ())
{

vector<int> aux_vector;
input_file >> size_of_vector;
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1105 for(int i=0; i<size_of_vector; i++)

1106 {
1107 input_file >> element;
1108 aux_vector.push_back(element) ;
1109 }
1110 cycles_i.push_back(aux_vector);
1111 }
1112
1113 input_file.close();
1114 std::cout << "cycles read\n";
1115
1116 input_file.open("saved_Bi.txt");
1117 size_of_vector = 0;
1118
1119 Bi_indexes.clear ();
1120 while (!input_file.eof ())
1121 {
1122 vector<int> aux_vector;
1123 input_file >> size_of_vector;
1124 for(int i=0; i<size_of_vector; i++)
1125 {
1126 input_file >> element;
1127 aux_vector.push_back(element) ;
1128 }
1129 Bi_indexes.push_back(aux_vector);
1130 ¥
1131
1132 input_file.close();
1133 std::cout << "Bi_indexes read\n";
1134
1135 input_file.open("saved_min_arc.txt");
1136
1137 min_arc.clear () ;
1138 while (!input_file.eof ())
1139 {
1140 input_file >> first_state >> second_state >> weight;
1141 min_arc.push_back(std::make_tuple(first_state, second_state, weight));
142 T
1143
1144 input_file.close();
1145 std::cout << "min_arc read\n";
46
1147 input_file.open("saved_k.txt");
1148
1149 input_file >> k;
1150
1151 input_file.close();
1152 std::cout << "k read\n";
1153 }
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