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1. Introducción

Una gran cantidad de sistemas de naturaleza biológica o nanotecnológica se caracterizan por una
dinámica dominada por eventos de baja frecuencia tales como el salto de una barrera de potencial. Es un
gran reto caracterizar en este tipo de sistemas tanto el paisaje de enerǵıas como su dinámica, es decir,
determinar los caminos óptimos entre los mı́nimos del potencial del sistema, la difusión en el tiempo
de la distribución inicial, aśı como las configuraciones cŕıticas que marcan los ritmos dinámicos por
formar los estados de transición. Obtener toda esta información permite establecer parámetros de orden
y coordenadas de reacción a posteriori, además de que forma la base de técnicas de diseño de sistemas
moleculares con aplicaciones tecnológicas (por ejemplo, establecer las interacciones en un poĺımero al
mutar su secuencia).

El espacio de configuraciones de un sistema de gran tamaño puede ser inabarcable para efectuar una
descripción exhaustiva, pero un muestreo del mismo mediante técnicas de Montecarlo o de dinámica
molecular permite extraer la información más relevante, que se centra en aquellos estados con una proba-
bilidad de ocupación no despreciable. De este modo se obtienen los estados relevantes y las transiciones
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entre ellos, despreciando los estados marginalmente poblados. Aqúı surge de forma natural la descripción
del sistema como una red de Markov. Un enfoque clásico consistiŕıa en el cálculo de valores promedios
de ciertos observables, mientras que una red de Markov permite dar una visión alternativa del paisaje de
enerǵıas y la dinámica a la que da lugar.

Una vez el sistema se ha representado como una red de Markov, la información relevante se plasma en
los autovalores y autovectores de la matriz que la caracteriza. Estos pueden en un principio ser calculados
mediante técnicas tradicionales, pero su tamaño lo hace inabordable en un tiempo razonable. Afortu-
nadamente, es posible desarrollar herramientas alternativas para obtener estimaciones de los mismos de
forma mucho más rápida y de un modo tal que además se obtiene una interpretación f́ısica e intuitiva de
los mismos en relación a las propiedades del sistema.

El método aqúı empleado ha sido desarrollado por la doctora Cameron de la Universidad de Maryland
[1] y calcula estimaciones de los autovalores y autovectores al tiempo que les otorga una interpretación
como barreras de potencial entre estados y la formación de una jerarqúıa de cuencas de atracción. Para ello
emplea ciertas propiedades comunes en redes de Markov que representen sistemas f́ısicos y que formulan
un problema análogo de optimización en grafos.

El método se concreta en el empleo de un algoritmo, denominado Single Sweep Algorithm, el cual
ha sido aplicado originalmente a sistemas de átomos con interacciones de Lennard-Jones. Estos sistemas
tienen propiedades análogas a las presentadas por el plegamiento de protéınas, como el disponer de una
enerǵıa bien definida, por lo que usamos el mismo algoritmo en este nuevo tipo de sistemas.

Partimos de un modelo discreto para el plegamiento de protéınas aplicado a la protéına gpW. En
este modelo, la protéına posee un espacio de configuraciones que comprende 258 posibles configuraciones,
si bien se ve reducido a un conjunto más limitado de estados caracteŕısticos pues la red de Markov se
extrae de simulaciones de Montecarlo, de modo que en la práctica solo encontramos aquellos estados
que tengan una población apreciable. Estas simulaciones se efectúan a la temperatura de transición
de la protéına, lo que implica que los estados plegado y desplegado tengan la misma probabilidad. Este
sistema difiere sustancialmente del estudiado por Cameron, especialmente en que uno de los macroestados
relevantes viene dado por un conjunto considerablemente grande de microestados escasamente poblados.
Esto implica que la entroṕıa tiene un papel relevante a la hora de caracterizar el espacio de configuraciones.

Nuestro objetivo es obtener información sobre el espacio de configuraciones de la protéına y el pai-
saje de enerǵıas subyacente empleando el Single Sweep Algorithm. Buscamos obtener una visión de las
cuencas de atracción que presente, especialmente en el entorno de los estados nativo y desplegado, aśı
como el camino maximal que une ambos estados. También es posible extraer a partir del algoritmo las
autocorrientes que determinan la dinámica del plegamiento.

Para poder llevar a cabo estos objetivos, desarrollamos en primer lugar un código para obtener la
red de Markov que representa el plegamiento de la protéına a partir de los datos de la simulación de
Montecarlo, de forma que satisfaga las propiedades requeridas por el algoritmo. Este código también
implementa un método de agrupamiento (lumping) de estados para reducir el tamaño de la red sin perder
información relevante. A continuación, hacemos una implementación del algoritmo en C++. Finalmente,
desarrollamos una serie de herramientas y códigos para analizar los datos obtenidos con el algoritmo.

La diferente naturaleza de nuestro sistema respecto al de Cameron ha dado lugar a algunas dificultades
tales como la adecuada especificación de la enerǵıa de los estados y la probabilidad de transición o la
simplificación del paisaje de enerǵıas para agrupar estados con información superflua.

Hemos analizado el proceso de plegamiento de la protéına gwp, elegida por su naturaleza adecuada
para nuestro método, caracterizando el perfil de enerǵıas del camino de mı́nima enerǵıa, analizando las
escalas temporales de los procesos de plegamiento mediante los autovalores de la matriz representativa
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de la cadena de Markov y visualizando la estructura del paisaje de enerǵıas.

2. Formulación del problema

Para aplicar las técnicas que vamos a desarrollar, el problema debe poder ser formulado como una
cadena de Markov. Esta cadena se trata como una red dirigida cuyos nodos representan los diferentes
estados del sistema y los arcos, las transiciones entre ellos.

La red se caracteriza mediante una matriz generadora L y la distribución de probabilidad inicial, p0.
Las entradas de la matriz generadora Lij marcan el ratio de transición entre los estados i y j,

Lij = e−βUij , (1)

con β = T−1 el parámetro de la temperatura y Uij un coeficiente relacionado con la barrera de enerǵıa
de la transición. Esto es aśı salvo en los elementos de la diagonal, que se definen de modo que se cumpla
la condición

∑
j

Lij = 0, (2)

es decir, que la suma de los elementos de cada fila de la matriz generadora sea nula. El valor absoluto
de estos elementos Lii se corresponde a los ritmos de escape de los estados i.

Se asume que la red es irreducible (la probabilidad de alcanzar algún estado partiendo de cualquier
otro es no nula, es decir, no hay más estados que los registrados en la propia red) y tiene un número
finito de estados, n. Se deduce mediante el teorema de Perron-Frobenius que L tiene un autovalor único
λ0 = 0 y el resto de autovalores tienen parte real negativa.

Empleando la ecuación maestra o ecuación de Fokker-Planck se obtiene la evolución temporal de
la distribución de probabilidad p(t) = (p1(t), . . . , pn(t)), que representa la dinámica del sistema. Esta
ecuación es

dp

dt
= pL, p(0) = p0. (3)

Es posible escribir la solución empleando la descomposición espectral de L, es decir, L = ΦZΨ, siendo
Φ y Ψ las matrices con los autovectores derechos e izquierdos como columnas, respectivamente, y Z la
matriz diagonal dada por los autovalores. Esta solución es:

p(t) = p0ΦetZΨ. (4)

El objetivo es caracterizar la dinámica de esta red, para lo cual se requiere la obtención de sus
autovalores y autovectores, los cuales además posibilitan obtener las autocorrientes y caracterizar los
flujos en la red. Si bien para ello el procedimiento usual seŕıa diagonalizar la matriz generadora L,
su tamaño lo hace impracticable, aśı que vamos a emplear ciertas propiedades que permiten obtener
estimaciones de los autovalores para temperatura T = 0. Esta temperatura no es la temperatura en
que se realizan las simulaciones y no debe ser confundida con la temperatura f́ısica, sino que es una
temperatura ficticia: suponiendo que fijamos el paisaje de enerǵıas a la temperatura de las simulaciones,
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buscamos las trayectorias de menor enerǵıa, que seŕıan las únicas posibles si la temperatura tendiese a
cero. Aunque la verdadera temperatura a la que está el sistema es finita, hacemos los cálculos como si la
temperatura tendiese a cero. Es esta aproximación la que permite trabajar con los pesos Uij , que son los
logaritmos de las entradas de la matriz L.

Vamos a considerar que la cadena de Markov es reversible en el tiempo, lo cual quiere decir que la
matriz generadora cumple la condición de balance detallado,

πiLij = πjLji, (5)

donde π es la distribución de probabilidad en el equilibrio. Gracias a esta condición se pueden extraer
tres propiedades para la matriz L. Por un lado, se puede descomponer como L = P−1Q con Q una
matriz traspuesta y P una matriz diagonal tal que cada elemento sea la probabilidad en el equilibrio
correspondiente. Además, L es similar a la matriz simétrica

Lsim = P
1
2LP−

1
2 = P−

1
2QP−

1
2 , (6)

de modo que sus autovalores son reales y no positivos. Por último, las matrices formadas con los
autovectores izquierdos (Ψ) y derechos (Φ) como columnas se pueden relacionar mediante la siguiente
expresión:

Ψ = ΦTP. (7)

Estas propiedades dan pie a usar el método iterativo del cociente de Rayleigh sobre la matriz Lsim
para obtener estimaciones de los autovalores a temperatura diferente de cero a partir de las estimaciones
a T = 0 que obtenemos en un primer momento, si bien en esta memoria únicamente tratamos este caso
T = 0.

2.1. Propiedades de grafos para obtener estimaciones de los autovalores

El problema para obtener estimaciones de los autovalores de la matriz L a temperatura 0 se puede
reducir a un problema de optimización en grafos. Para ello es conveniente extraer una serie de W-grafos,
los cuales consisten en un conjunto de k nodos extráıdo del grafo principal, denominados como sumideros,
y un conjunto de n− k (siendo n el número de nodos en el grafo principal) arcos de forma que cada nodo
que no sea sumidero tenga un arco saliente y el W-grafo sea un árbol (o un conjunto de árboles disconexos),
es decir, no contiene ciclos. Además, un W-grafo se considera óptimo si la suma de los pesos de todos
sus arcos es la mı́nima posible dado un número k de nodos. En adelante nos referiremos a estos W-grafos
maximales como g∗k, siendo k el número de sumideros que tenga.

En la figura 1 se muestra un grafo de ejemplo. Las figuras 1b) y 1c) muestran dos W-grafos óptimos
resaltados en azul (corresponden a g∗3 y g∗1 respectivamente, dado el número de nodos y arcos que los
forman). El grafo indicado en 1d) no es un W-grafo debido a que contiene un ciclo.

Asumiendo que todos los W-grafos óptimos son únicos para un dado grafo G, se pueden obtener las
siguientes aproximaciones a orden exponencial para los autovalores:

λk = e−∆k/ε(1 + o(1)), donde ∆k =
∑

(i→j)∈g∗k

Uij −
∑

(i→j)∈g∗k+1

Uij . (8)
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Figura 1: Ejemplo de W-grafos de un grafo dado. Figura adaptada de [1].

Esta expresión permite obtener una aproximación de los autovalores a partir del grafo que representa
la cadena de Markov, pues cada sucesivo autovalor λk se obtiene a partir de la diferencia en la suma de
los pesos de los respectivos W-grafos óptimos g∗k y g∗k+1 extráıdos de G. El problema reside ahora en la
búsqueda de estos W-grafos óptimos.

El problema de buscar los W-grafos óptimos reside en, para cada valor 1 < k 6 n, tomar k nodos
de entre los n nodos del grafo G y a continuación elegir n − k arcos tales que cumplan las condiciones
para formar un W-grafo. Sin embargo, dada la gran cantidad de posibles W-grafos para cada valor de
k, encontrar el óptimo puede ser muy costoso. Afortunadamente, ciertas propiedades de los W-grafos
permiten simplificar el proceso.

Teorema 1 Sea G un grafo dirigido con pesos Uij con n nodos tal que sus W-grafos óptimos g∗k con
1 < k 6 n sean únicos. Entonces se cumplen las siguientes propiedades:

Cada sumidero de g∗k es también un sumidero del W-grafo g∗k+1.

Sea Sk el conjunto de nodos que se encuentran en la componente conectada de g∗k+1 que no contiene
ningún sumidero de g∗k y S el conjunto de todos los nodos de G. Entonces todos los arcos que parten
de los nodos de SnSk en g∗k+1 coinciden con los arcos que parten de esos mismos nodos en g∗k.

Hay un único arco en g∗k que parte de Sk y llega a SnSk.

A partir de este teorema, cuya demostración está dada en [1], se puede establecer una estrategia para
encontrar todos los W-grafos óptimos comenzando con g∗n de forma iterada, pues en cada paso la diferencia
entre los W-grafos g∗k+1 y G∗k es de un solo sumidero y las diferencias entre los arcos están localizadas en
una sola componente conectada. Esta estrategia se ve realizada en el Single Sweep Algorithm, cuya lógica
se expone en la sección siguiente.
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3. Explicación del algoritmo

Este algoritmo, denominado Single Sweep Algorithm debido a que solo necesita recorrer una vez los
valores 0 < k 6 n, emplea las propiedades antes detalladas para obtener los valores ∆k que dan una
estimación de los autovalores de la matriz L.

El algoritmo comienza en el W-grafo g∗n, el cual contiene todos los nodos del grafo G como sumideros y
ningún arco. Este W-grafo es único y por lo tanto es óptimo. A continuación, se va disminuyendo el valor
de k para encontrar en cada paso el W-grafo óptimo g∗k, el cual se obtiene a partir de g∗k+1 eliminando
un sumidero, reconformando la componente conectada del sumidero eliminado (si fuese necesario) y
finalmente conectando esa componente conectada a alguna otra mediante un único arco.

Para cada nodo i del grafo G, definimos min arc(i) como el arco de menor peso que parte de ese
nodo. Tomamos a continuación todos los arcos min arc(i) y los unimos en un conjunto M . En cada paso
del algoritmo, tomamos el arco de menor peso de M y lo añadimos a un set G∗ que contiene los arcos
mediante los cuales se construyen los g∗k a cada paso. Siempre y cuando no se formen ciclos en G∗, el
W-grafo óptimo estará formado por los arcos que se han ido eliminando de M y como sumideros tomamos
todos los nodos en G salvo aquellos que tienen un arco saliente de ellos en G∗. En tal caso, el valor de
∆k viene dado directamente por el peso del arco que se ha eliminado en el paso k, pues es el único arco
que difiere entre g∗k y g∗k+1 (véase ecuación 8).

Sin embargo, en algún momento puede formarse un ciclo entre algunos arcos de G∗. Esto se produce
si los dos nodos del arco retirado de M , sea x → y, pertenecen a la misma componente conectada del
último W-grafo óptimo encontrado. En tal caso, ahora todos los nodos de esa componente conectada
tienen exactamente un arco saliente y no hay ningún arco en M que pueda unirla a otros nodos de G.
Por tanto, es necesario añadir un nuevo arco a M tal que parta de alguno de los nodos del ciclo y vaya a
algún nodo de G que no esté en él.

Al realizar esta operación, estamos sustituyendo un arco de G∗ que ya pertenece a algún g∗l con l > k y
que era el arco de menor peso que part́ıa de un cierto nodo i, es decir, era min arc(i), por el arco (x→ y)
que ha formado el ciclo, además de que hemos de añadir un nuevo arco i → j a M que posteriormente
pasará a G∗. Al añadir este arco, la suma de los pesos aumenta con Uij +Uxy−Umin arc(i), ya que estamos
retirando el arco min arc(i) que daba lugar a la existencia de un ciclo pero añadimos los arcos (x → y)
y (i → j). Para llevar la cuenta de estos cambios, aplicamos la siguiente regla de actualización a todos
los arcos i→ j que partan de todos los nodos del ciclo,

Uij = Uij + Uxy − Umin arc(i). (9)

Conforme avance el algoritmo, es posible que se generen nuevos ciclos que contengan nodos de un ciclo
anterior. Para gestionar esto, cuando se genere un ciclo se conforma un conjunto con todos los nodos que
hayan estado en un ciclo con los nodos del nuevo y se toma ese conjunto para realizar las operaciones
antes comentadas.

Se presenta el algoritmo en forma de pseudocódigo como el algoritmo 1.

4. Plegamiento de protéınas y modelo WSME

Las protéınas llevan a cabo funciones clave en todo sistema biológico y es fundamental el papel de su
estructura para ello. Están formadas por una cadena lineal de aminoácidos, la cual adquiere su estructura
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Entrada: Grafo G(S,A,U), con S el conjunto de nodos, A el conjunto de arcos y U el conjunto
de pesos de los arcos.

Salida : Conjunto de valores ∆k; sumideros que desaparecen s∗k; sumideros absorbidos t∗k; arcos
de escape (p∗k → q∗k); colección de conjuntos cuasi invariantes Sk; colección de ciclos
Ck y colección de W-grafos óptimos g∗k.

Definir Bi como el conjunto de arcos que salen del nodo i, ∀i.
Definir min arc(i) como el mı́nimo arco saliente de i, ∀i.
Eliminar min arc(i) del conjunto Bi, ∀i.
Definir M =

⋃
i∈S min arc(i).

Definir C(i) = {i}, ∀i.
Definir G∗ = ∅.
Definir k = n− 1.
Definir g∗k+1 = ∅.
mientras |M | > 1 hacer

Buscar el mı́nimo arco de M , (x→ y).
Eliminar (x→ y) de M .
Añadir (x→ y) a G∗.
si x e y pertenecen a la misma componente conectada de g∗k+1 entonces

Establecer (p∗k → q∗k) = (x→ y).
Establecer s∗k como el sumidero de la componente conectada de g∗k+1 que contiene a x.

Establecer t∗k como el sumidero de la componente conectada de g∗k+1 que contiene a y.

Establecer Sk como la componente conectada de g∗k+1 que contiene a s∗k.

Definir Ck = C(s∗k).
Establecer ∆k = Uxy.
Obtener el W-grafo óptimo gk a partir de G∗.
Establecer k = k − 1.

en otro caso
Detectar el ciclo C que se ha formado.
∀i ∈ C, excepto i = x, actualizar los pesos de los arcos en Bi.
Definir B =

⋃
i∈C Bi.

Definir C ′ =
⋃
i∈C C(i).

mientras los vértices del arco (r → t) = arg mı́n(p→q)∈B Upq pertenecen a C ′ hacer
Eliminar el arco (r → t) de B.

fin

Establecer Bi = B∀i ∈ C ′.
Establecer min arc(i) = arg mı́n(p→q)∈B Upq∀i ∈ C ′.
Establecer C(i) = C ′∀i ∈ C ′.
Eliminar el arco de mı́nimo peso de B.
Añadir ese arco a M .

fin

fin
Algoritmo 1: Single Sweep Algorithm.
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funcional (“estructura nativa”) a través de su plegamiento. Esta estructura puede ser muy compleja, con
una organización tridimensional que en la mayoŕıa de los casos es muy concreta: cada aminoácido toma
una posición y una orientación muy espećıficas, al punto que es posible cristalizar tales estructuras. Un
pequeño cambio en algún aminoácido de la protéına puede suponer que sea ineficaz en su función.

El proceso por el cual una protéına adquiere su estructura nativa (el “plegamiento de protéınas”)
es muy complejo y viene determinado por diversos factores, relacionados también con las condiciones
del entorno en que se encuentra. En efecto, un cambio de las condiciones del entorno (variaciones de
temperatura o pH, por ejemplo) puede producir modificaciones en la estructura y desencadenar el desple-
gamiento, con la consiguiente pérdida de la función de la protéına [2]. Los diferentes aminoácidos tienen
una serie de propiedades que les hace tender a buscar una posición mutua que suponga una configuración
energéticamente favorable, bien sea formando enlaces de hidrógeno o de Van der Waals, o maximizando los
contactos hidrófobos. Esto, a fin de cuentas, es lo que da lugar a las estructuras nativas de las protéınas,
la mayoŕıa de las cuales sono capaces de plegarse “in vitro”, encontrando su estructura, completamente
determinada por la secuencia de aminoácidos, de forma autónoma y en tiempos relativamente cortos.

El estudio del plegamiento de protéınas trata de responder a cuestiones [3] tales como cuáles son los
procesos f́ısicos que permiten el plegamiento, cuál es la dinámica del proceso o cómo puede producirse
tan rápido el plegamiento teniendo en cuenta la gran cantidad de posibles conformaciones a partir de una
cadena de aminoácidos. Además, también se presentan retos que pueden tener aplicaciones importantes
en cuanto a la predicción y el diseño de la conformación plegada de las protéınas.

Desde un punto de vista f́ısico, el conjunto de conformaciones que adquiere la protéına (o más preci-
samente, el sistema protéına+disolvente), en contacto con un baño térmico, viene marcada por la enerǵıa
libre, magnitud que determina la condición de equilibrio y espontaneidad en una reacción qúımica. Cada
estado de la protéına tiene asociada una enerǵıa libre que en conjunto forma el paisaje de enerǵıas de la
protéına [5]. Durante el plegado, la protéına recorre este paisaje de enerǵıas dirigiéndose al mı́nimo. Este
paisaje suele ser de dimensión muy alta y se compone de una serie de cuencas y mı́nimos separados por
barreras de enerǵıa [6]. Para caracterizar el paisaje se deben encontrar sus diferentes mı́nimos y el modo
en que se relacionan: cuáles son las barreras que los separan y en qué forma se agrupan en cuencas.

En la práctica, el estudio del sistema protéına+disolvente presenta dificultades relacionadas con el
gran número de átomos, aśı como con las presencia de un gran abanico de escalas de tiempo de los
procesos involucrados, desde la formación de un enlace hidrógeno (10−15s), hasta el tiempo de plegamiento
(1ms∇ · 1s). Esto hace imposible un acercamiento verdaderamente fundamental (desde la mecánica
cuántica) y deja paso a modelos más o menos realistas. Las simulaciones de dinámica molecular (MD)
permiten estudiar el plegamiento con un alto grado de detalle, al simular todo el proceso a escala atómica
o de pequeños grupos de átomos. Durante mucho tiempo ha sido imposible hacer estas simulaciones con
tal grado de detalle debido al tamaño de los sistemas y a no disponer de una descripción adecuada de
los campos de fuerzas presentes. Sin embargo, el avance de la tecnoloǵıa y las técnicas de simulación
ha posibilitado el desarrollo y aplicación de dinámica molecular [7]. Ahora bien, el resultado de las
simulaciones es una enorme cantidad de datos y se hace necesario desarrollar técnicas para su análisis.
Además, el gran problema de las simulaciones muy detalladas es su coste computacional, que limita el
muestreo del espacio de las fases, haciendo más complicado el estudio del equilibrio. En cambio, modelos
más sencillos se han demostrado útiles para estudiar de forma más extensa el equilibrio, aun al precio de
un menor realismo.

En este trabajo aplicamos un algoritmo que ha sido usado en un principio en otro tipo de sistemas,
pero que comparten ciertas propiedades fundamentales con el plegamiento de protéınas, para analizar
los datos obtenidos a partir de simulaciones procedentes del modelo WSME-S [8]. Este modelo es una
ampliación del modelo WSME [9], el cual considera a la protéına como una cadena de N aminoácidos cada
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uno de los cuales tiene asociado un estado mk, que puede ser plegado (mk = 1) o desplegado (mk = 0).
El conjunto de los N valores mk es un microestado del sistema.

A cada microestado en el modelo WSME se le asigna una enerǵıa libre efectiva (que se puede pensar
como el resultado de integrar la función de partición sobre las variables del disolvente y de las cadenas
laterales de los aminoácidos) que viene dada por

H =
∑
i<j

εij∆ij

j∏
k=1

mk −RT
N∑
k=1

qk(1−mk). (10)

Aqúı, εij son las enerǵıas de contacto entre cada par de aminoácidos; ∆ij representa la matriz de contactos,
que toma valor 1 si los aminoácidos i y j están en contacto y en configuración nativa y 0 en otro caso;
R y T son la constante de los gases y la temperatura y qk son parámetros entrópicos que modelizan el
hecho de que cada aminoácido tiene múltiples configuraciones no nativas posibles.

Este modelo recibe una ampliación en el modelo WSME-S, el cual toma la misma estructura pero
permite que los parámetros sean dependientes con la temperatura,

H(m, T ) = ϕ(T ) +
∑
i<j

hij(T )

j∏
k=i

mk. (11)

Resta conocer la expresión de los parámetros dependientes de la temperatura, ϕ(T ) y hij(T ), pero al no
ser la enerǵıa de cada interacción un observable, no se pueden determinar directamente. Para salvar este
obstáculo, se relacionan los valores de hij(T ) con la estimación de la dependencia del calor espećıfico con
la temperatura hecha en Ref. [10]: esto permite reducir el número de parámetros libres de N(N + 1)/2
a 4, y ajustarlos a la señal experimental del calor espećıfico. De esta forma, quedan completamente
determinadas las hij en 11.

Con esa expresión de la enerǵıa libre se puede estudiar una dinámica de Monte Carlo del sistema,
como se detalla en la sección siguiente, que luego caracterizaremos utilizando las herramientas de los
Markov State Models.

Los modelos de estados de Markov (MSM) constituyen una potente herramienta para el análisis de
datos sobre el plegamiento de protéınas [11]. Estos modelos logran obtener simulaciones en las escalas de
tiempo relevantes, con suficiente significancia estad́ıstica y con representaciones a resoluciones suficien-
temente grandes para que sea fácil de entender de forma intuitiva. Permiten pasar de simulaciones de
trayectoria única a una aproximación estad́ıstica más completa y exhaustiva.

Para desarrollar un MSM hay que partir de unos datos iniciales, bien sean experimentales o bien
procedan de una simulación. A partir de los datos hay que establecer los microestados y a continuación
obtener la matriz de transiciones entre esos microestados. Se pueden tomar dos orientaciones: escalas
temporales pequeñas (hacia los nanosegundos) y gran cantidad de estados para obtener resultados cuan-
titativos o bien escalas temporales más grandes (en torno a los milisegundos) y una menor cantidad de
estados, de forma que sea más fácil obtener conclusiones cualitativas y una imagen intuitiva. Los MSM
están siendo desarrollados como una herramienta cada vez más útil para estudiar el plegamiento [12].

5. Obtención y preparación de los datos

Los datos a emplear como entrada para el algoritmo proceden de simulaciones de Montecarlo realizadas
sobre el modelo WSME-S, expuesto en la sección anterior, aplicado a la protéına gpW, una protéına
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pequeña (58 aminoácidos) que ha sido caracterizada como downhill folder, es decir, que presenta barreras
bastante pequeñas entre el estado nativo y el resto, fáciles de atravesar, haciendo posible un plegamiento
de muy poca cooperatividad, que va poblando estados muy diferentes. Esta protéına ha sido elegida
justamente porque la escasa barrera permite estudiar las transiciones de equilibrio con más estad́ıstica,
en principio asegurando el balance detallado. Por otro lado, la ausencia de mı́nimos marcados, sobre todo
en la región desplegada, hace que un conjunto grande de estados esté poblado, aunque escasamente. En
el modelo cada aminoácido (“residuo”) de la protéına toma el valor 0 si está en su estado desplegado y 1
si está en el estado plegado. En cada paso de las simulaciones se hace un barrido a todos los residuos y
se propone un cambio en el mismo, el cual es aceptado o rechazado siguiendo el algoritmo de Metropolis,
utilizando la variación de la enerǵıa efectiva (11) como criterio para la aceptación.

Las simulaciones se han realizado con una temperatura constante, igual a la temperatura de transición
Tm donde supuestamente las poblaciones de estados nativo y desplegados son iguales. Los datos son
obtenidos desde 6 trayectorias, y para cada una se efectúa un alto número de pasos de termalización
(200000 sweeps, correspondiendo un sweep con 58 intentos de cambio de estado), que son desechados
antes de comenzar a guardar los datos, durante otros 3000000 de sweeps. El estado de partida se extrae
de la distribución de equilibrio a la temperatura dada.

Los datos resultantes consisten en una lista de estados que se han ido encontrando en cada iteración,
en orden temporal. Cada estado consiste en una palabra binaria de 58 d́ıgitos, pero al no encontrarse
todos los estados posibles, se asignan ı́ndices enteros correlativos a los estados que śı se han encontrado,
que son un total de 8745337 estados. A partir de estos datos se debe obtener la red de Markov que
representa el sistema.

En primer lugar se obtienen las frecuencias de transición Nij entre cada par de estados de la siguiente
manera: se recorre la lista de estados encontrados y a cada paso se incrementa en una unidad la frecuencia
entre el anterior estado léıdo y el actual.

A continuación se calculan las probabilidades en el equilibrio {πi},

πi =
1

N∆t

∑
j

Nij , (12)

donde N∆t es el número total de pasos de tiempo en las simulaciones originales, que en nuestro caso
es N∆t = 1, 8 × 107. La idea de este cálculo es contar el número de veces que se encuentra cada estado
durante las simulaciones y en normalizarlo de modo que la suma

∑
i πi = 1.

Para obtener la matriz L hay que realizar una normalización sobre las frecuencias Nij . Esta se hace
como una normalización por filas,

Lij =
Nij∑
j Nij

. (13)

Además, se requiere que se cumpla la siguiente condición:

∑
j

Lij = 0, (14)

para lo cual se definen los elementos diagonales como el opuesto de la suma del resto de elementos de
cada fila,
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Lii = −
∑
j 6=i

Lij . (15)

Esta fórmula se puede adaptar teniendo en cuenta que la suma de un conjunto de valores normalizados
es uno,

∑
j

Nij∑
j Nij

= 1. (16)

Extrayendo el elemento Nii,

∑
j 6=i

Nij∑
j Nij

= 1− Nii∑
j Nij

. (17)

Uniendo las ecuaciones 15 y 17, se obtiene

Lii =
Nii∑
j Nij

− 1. (18)

Por tanto, se determina la siguiente expresión general:

Lij =
Nij∑
j Nij

− δij . (19)

Tras aplicar esta última ecuación, ya se tiene la matriz L. Sin embargo y a pesar de que las condiciones
de las simulaciones están a favor de que se cumpla el balance detallado (5), siendo simulaciones largas y
con buena termalización, tal condición no se cumple por la matriz que obtenemos con los pasos anteriores.
Debido a la naturaleza de la protéına en cuestión, que tiene un estado desplegado de mucha amplitud,
muchos estados se exploran una sola vez. Debido a esto hemos tenido que desarrollar un método para
imponer la condición de balance detallado perturbando el sistema lo menos posible.

El procedimiento consiste en comprobar para cada par de elementos Lij y Lji cuál es el menor y
modificarlo de acuerdo a la expresión

Lij =
πj
πi
Lji, (20)

si Lij < Lji o con los ı́ndices invertidos en caso contrario. Tras aplicar esta ecuación, surge un nuevo
problema debido a que en ocasiones la proporción entre las probabilidades pueden ser tales que surjan
valores de Lij mayores a la unidad. Esto supondŕıa tener pesos negativos, lo cual carece de sentido f́ısico.
Para solucionar esto, procedemos a realizar una renormalización de toda la matriz L dividiendo todos
sus elementos por el elemento máximo (en el caso de que sea mayor que la unidad).

Una vez se ha aplicado esta condición, la matriz L ya cumple las propiedades requeridas. Se puede
obtener el grafo sobre el que trabaja el algoritmo como el conjunto de nodos dados por todos los estados
representados en L y los arcos dados por todos los elementos Lij no nulos y tales que i 6= j, con un peso

Uij = − log(Lij). (21)
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Se observe que, de esta forma, la Uij es adimensional, y representa en efecto el producto βexpEij ,
donde βexp es la temperatura experimental a la cual se han hecho las simulaciones Montecarlo. Esta
expresión, por lo tanto, define un barrera de enerǵıa eficaz Eij a partir de las probabilidades de saltos
observadas.

6. Detalles de la implementación del algoritmo y rendimiento

6.1. Obtención de la red de Markov

Es preciso escribir un programa que tome como entrada los datos de las simulaciones y extraiga de ellos
la red de Markov, en forma de grafo. Los datos proceden de varios archivos de texto con las trayectorias
que se han obtenido mediante Montecarlo, sumando un total de 15 millones de transiciones. Estos datos
se procesan de la forma que se ha comentado en la sección 5.

La estructura de datos escogida para almacenar el grafo y trabajar con él es un mapa cuyas claves
son los ı́ndices enteros de los nodos del grafo y los valores asociados a cada una de estas claves son, de
nuevo, mapas. Estos mapas internos tienen como claves los ı́ndices de los nodos tales que haya un arco
que llegue a ellos procedente del nodo de la clave principal. El valor asociado es el peso de ese arco.

Esta estructura presenta varias ventajas: solo se almacenan los estados y transiciones que aparecen
en la red de Markov; reconoce la posición en memoria de cada nodo directamente con el ı́ndice asignado
a su estado, sin que sean necesariamente correlativos y se pueden hacer inserciones y eliminaciones con
facilidad.

Una inspección del grafo formado por la red de Markov permite ver que frecuentemente se observan
estados encadenados sin bifurcaciones, tal y como se muestra en la figura 2. Estos forman caminos que
han de ser atravesados en su totalidad por una trayectoria y pueden agruparse como un único estado,
considerando que el tiempo que una trayectoria permanece en tal estado tiene una correspondencia con
el tiempo que una trayectoria estaŕıa transitando entre los estados originales.

Este agrupamiento de estados o lumping permite reducir el número de nodos del grafo sobre el que
hay que trabajar, de modo que el tiempo de computación requerido por el algoritmo será mucho menor.
Además, mejora la calidad de la visualización de resultados al agrupar estados que aportan la misma
información en conjunto y reduce el número de estados con el mismo peso. Esto último supońıa un
problema adicional que se daba con bastante frecuencia y procede del hecho de tener una cantidad finita
de transiciones, que hace que las frecuencias {Nij} encontradas tengan valores concretos. El algoritmo va
tomando en cada paso el arco de menor peso, pero en el caso de que haya dos arcos con el mismo peso
no hay un criterio para escoger uno u otro, aśı que esta elección se hace de forma arbitraria y perjudica
a la interpretación de los resultados.

El lumping se realiza siguiendo un procedimiento que no perturbe el sistema y tenga coherencia con
la f́ısica subyacente. Sea Γ el conjunto de estados que forman una cadena, es decir, que cada estado está
unido a otros dos estados que pertenezcan a Γ o a un estado de Γ y a un solo estado ajeno. Entonces se
sustituye Γ por un único estado i con dos arcos que lo unan a los otros dos estados ajenos (sean k y l),
de forma que el arco (k → i) tenga el mismo peso que el arco original que part́ıa de k y el arco Lil sea:

Lil =
πm∑
j∈Γ πj

Lml, (22)

donde m es el estado perteneciente a Γ del arco original (m→ l). Además, la probabilidad del nuevo
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Figura 2: Arriba, representación de un grafo con una cadena Γ formada por dos nodos. Abajo, represen-
tación del mismo grafo en el cual la cadena ha sido reemplazada por un único nodo i.

estado es la suma de las probabilidades de los estados de Γ,

πi =
∑
j∈Γ

πj . (23)

Otro fenómeno frecuente que no proporciona información útil es cuando la trayectoria alcanza un
estado e inmediatamente retorna al estado anterior, sin volver nunca a tal estado. Esto da lugar a estados
aislados como el mostrado en la figura 3. Se puede eliminar estos estados fácilmente, asimilándolos al
estado al que se unen:

πj′ = πj + πi. (24)

Dado que el nuevo estado j′ incrementa su población, también lo hará |Lj′j′ |, por lo que hay que
calcular los valores de Lj′k,

Lj′k =
πj

πi + πj
Ljk. (25)

En cualquier caso, en la práctica el número de estados eliminados de este modo es muy reducido y no
supone una diferencia apreciable.

En cambio, el lumping de las cadenas permite reducir en casi un orden de magnitud el tamaño del
grafo a analizar, además de que es una receta que puede ser usada de forma general para este tipo de
problemas.
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i

j

Figura 3: Representación de un grafo en el cual hay un nodo (i) que, al haber sido visitado una única
vez en una trayectoria que ha regresado al estado anterior (j) después de visitarlo, ha quedado aislado
del grafo salvo por un único camino.

Estados Arcos Tiempo de nuestro código (s) Tiempo del código de Cameron (s)

3224 14664 20.443 0.736

5940 29506 84.298 0.703

10786 58194 495.499 0.902

Tabla 1: Varios valores del tiempo de computación requerido por ambos códigos para analizar un sistema
de diferente número de estados y arcos.

6.2. Implementación del Single Sweep Algorithm

Una vez obtenido el grafo que representa la red de Markov, realizamos una implementación del Single
Sweep Algorithm usando C++. El código utiliza la estructura de mapas comentada para representar los
grafos y vectores para los conjuntos de nodos. Una comprobación mediante grafos de prueba (como el
mostrado en la figura 1) permite asegurar que el código funciona correctamente.

Al realizar las simulaciones, comprobamos que los tiempos de ejecución no son óptimos en relación a
las indicaciones de rendimiento teórico aportadas por la doctora Cameron [1]. Esto da pie a cuestionar
nuestra implementación, por lo que hemos contactado con Cameron para resolver dudas sobre ciertos
detalles del algoritmo y su implementación y nos ha ofrecido su código original. De este modo hemos
podido comparar el rendimiento y funcionamiento de ambos códigos.

El código que hemos desarrollado realiza todas las operaciones indicadas en el algoritmo 1 de forma
expĺıcita, calculando en cada paso el w-grafo óptimo. El empleo de mapas implica que la búsqueda de
arcos o nodos concretos sea relativamente lenta pues no son estructuras de datos con acceso aleatorio.
Por otro lado, el código de Cameron realiza muchas de las operaciones impĺıcitamente, sin calcular a cada
paso el W-grafo óptimo y usando siempre variables con posibilidad de realizar accesos aleatorios. Esto,
unido al uso de la búsqueda de árbol binario para encontrar arcos mı́nimos, permite que su ejecución sea
mucho más rápida.

En la tabla 1 se muestran los tiempos requeridos para analizar sistemas de diferentes tamaños, todos
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ellos tomados como un subconjunto de las simulaciones que analizamos. Se observa claramente la mayor
eficiencia del código de Cameron.

No obstante, la mayor velocidad en tiempo de ejecución del código de Cameron se obtiene a costa de
un código considerablemente más cŕıptico y dif́ıcil de entender. Esto trae consigo la necesidad de realizar
una documentación sobre el mismo para asegurar la correcta comprensión del código y poder emplearlo
y modificarlo de acuerdo a las necesidades del análisis.

Para cerciorarnos de que el resultado del análisis es el mismo con ambos códigos, comprobamos que
los resultados obtenidos por los dos son exactamente los mismos. Debido al mejor rendimiento compu-
tacional del código de Cameron, optamos por efectuar el análisis con él. Cuando ha sido necesario, hemos
modificado el código para extraer resultados no contemplados en el programa original.

7. Exposición y análisis de los resultados

Los datos originales comprenden un total de 8745337 estados. Una vez se ha realizado el tratamiento
inicial, incluyendo el lumping, el número de estados se ha visto reducido a 1562541. Se trata de una
reducción considerable, de casi un orden de magnitud. Esto es debido a que una gran parte de estados
han sido observados una única vez uno a continuación de otro, formando una cadena de estados en la
red.

7.1. Estimaciones de los autovalores

El análisis que efectúa el Single Sweep Algorithm otorga una enorme cantidad de información sobre
el sistema. El primer y más evidente parámetro a analizar es el conjunto de valores ∆k, que son la base
de la estimación de los autovalores dada por

λk = e−∆k/T . (26)

En la figura 4 se muestran los valores ∆k en función de k. En un primer momento, se observa que
tiene una forma escalonada, con varias mesetas que se deben a que en las simulaciones originales, muchas
transiciones han sido observadas una escasa cantidad de veces, lo que provoca que los pesos de los arcos
del grafo de entrada al algoritmo tengan valores discretos. Se observe que en la mayoŕıa del espectro
los valores ∆k forman prácticamente un continuo (incluso las partes que parecen verticales; en realidad
están formadas por múltiples valores), resaltando que no hay una clara separación de escalas temporales,
excepto en las k más bajas. Aqúı, especialmente para k = 14, que representa la transición de plegamiento,
resulta separada de la del resto de los procesos que tienen lugar durante el plegamiento.

A partir de los ∆k se obtienen estimaciones de los autovalores de L mediante la ecuación (26). Estas
estimaciones se han obtenido haciendo la asunción de T = 0, pero es posible tomarlas como conjetura
inicial para el algoritmo iterativo del cociente de Rayleigh. No obstante, en este trabajo no se realiza esta
exploración.

7.2. Camino maximal entre los estados desnaturalizado y nativo

Para estudiar el camino entre los estados desnaturalizado y el estado nativo, escogemos como ejemplo
paradigmático de los primeros el estado de solo ceros, y del segundo el estado de todo unos. Por razones
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Figura 4: Valores ∆k en función de k (escala semilogaŕıtmica).
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Figura 5: Perfil de enerǵıa del camino maximal entre el estado desnaturalizado, a la izquierda, y el nativo,
a la derecha (ambos marcados con puntos verdes). La barrera que une ambas cuencas se muestra con
puntos azules y los sumideros de ambas cuencas, en violeta.
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Figura 6: Detalle del perfil mostrado en la figura 5, mostrando la parte del camino que cruza la cuenca
nativa.

entrópicas, no esperamos que ninguno de los dos sea un mı́nimo de enerǵıa, pero nuestra hipótesis es
que el camino maximal entre ellos pase por los sumideros de la cuenca nativa y desnaturalizada y por la
barrera entre ellas. Por tanto, nos dedicamos a identificar el camino maximal, es decir, de menor enerǵıa
total, entre ambos estados.

El Single Sweep Algorithm se sitúa en el caso de temperatura cero y va tomando los arcos de menor
peso, es decir, va buscando los caminos óptimos entre los diferentes estados. Con esos arcos construye los
W-grafos óptimos g∗k. Por tanto, desplazarse de un estado a otro recorriendo un W-grafo óptimo implica
tomar el camino maximal, teniendo en cuenta siempre que el verdadero camino maximal estará incluido
en el g∗k tal que las componentes conectadas de ambos estados se hayan unido en ese paso de k. En pasos
posteriores una posible reordenación de los arcos al formar un W-grafo óptimo implica una modificación
de tales caminos.

Teniendo en cuenta lo anterior, resulta de inmediato interés encontrar cuál es el camino maximal entre
los estados desnaturalizado y nativo. En concreto, lo interesante es encontrar el perfil de enerǵıas que se
da entre ambos estados, proyectado sobre ese camino. Esto se muestra en la figura 5.

En esa figura están representados las enerǵıas de los estados que separan el estado desplegado y
el nativo, aśı como las barreras entre cada par de estados. Las enerǵıas Vi se calculan a partir de las
probabilidades en el equilibrio,

Vi = − log

(
πi
πf

)
, (27)

donde πf es la probabilidad del estado fundamental, es decir, la mayor de las probabilidades πi para
1 6 i 6 n. Por su parte, las barreras de enerǵıa Vij entre cada par de estados i y j se obtienen a partir
de los pesos de los arcos,
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Vij = Uij + Vi. (28)

Para obtener la figura 5 se ha buscado el paso en que los estados nativo y desplegado caen en la
misma componente conectada, que resulta ser el último, k = 1, y se ha extráıdo el W-grafo óptimo
correspondiente, g∗1 . Partiendo de los nodos correspondientes a los dos estados, se ha recorrido el grafo
hasta llegar a un nodo común, que es el sumidero s∗0. La lista de nodos recorridos forma el camino
maximal.

El perfil de enerǵıas encontrado muestra una gran región sin orden aparente y una pequeña región
con un claro mı́nimo. La primera región corresponde a la cuenca del estado desplegado, que se encuentra
a la izquierda de la figura 5, y la segunda región contiene la cuenca del estado nativo (a la derecha) y la
zona en que se unen ambas cuencas.

La cuenca del estado desplegado tiene una gran amplitud, por lo que el camino maximal no se diferencia
en exceso de otros caminos próximos. Esto está asociado a una mayor entroṕıa. Está formada por estados
con enerǵıa en general alta. Sin embargo, la cuenca del estado nativo es mucho más estrecha y sus estados
tienen enerǵıas menores. La figura 6 muestra esta parte del perfil del camino maximal con más detalle.
En esta figura se aprecia bien, marcada en azul, la barrera del arco con el cual se unen ambas cuencas.
Esta es la mayor barrera que encuentra la protéına en el plegamiento y supone su cuello de botella. Se da
entre los arcos 477729 (perteneciente a la cuenca del estado desplegado) y 719798 (de la cuenca nativa).
El valor de esta barrera es ∆1 = 10,41KT .

La forma de este camino es coherente con la naturaleza de la protéına, ya que es un downhill folder,
es decir, su plegamiento atraviesa una gran cantidad de estados escasamente poblados y separados por
barreras de enerǵıa pequeñas.

7.3. Jerarqúıa de cuencas en el paisaje de enerǵıa

En cada paso del Single Sweep Algorithm se unen dos componentes conectadas del W-grafo óptimo
del paso anterior. Los nodos de la componente conectada a la cual pertenece la cola del arco que se ha
tomado en ese paso forman el conjunto Sk. De este modo, hay n conjuntos Sk, uno por cada paso k
del algoritmo. Estos conjuntos tienen un significado f́ısico destacable, pues los estados que los componen
tienen barreras de enerǵıa menores entre ellos que con respecto a los estados externos, pues se han unido
entre śı primero y después con un estado externo.

Conforme el algoritmo avanza, se van uniendo estos estados Sk entre śı hasta llegar al final, cuando
todos quedan unidos. Cada conjunto representa una cuenca de enerǵıa y el avance del algoritmo muestra
la jerarqúıa entre todas ellas.

Un conjunto Sk se considera maximal respecto a un estado s∗l (l < k) si no es subconjunto de ningún
otro conjunto Sm para l < m < k. Estos conjuntos son las cuencas que se unen directamente a s∗l , de
forma que la barrera que tienen con este estado es menor que la que tienen con cualquier otro estado
ajeno.

Es interesante, entonces, obtener la jerarqúıa de conjuntos Sk maximales respecto a los estados que
permanecen como sinks hasta los últimos pasos del algoritmo. Esto permite caracterizar cualitativamente
las cuencas del paisaje de enerǵıas.

Con el avance del algoritmo, los conjuntos Sk maximales se van uniendo al estado de referencia s∗l , lo
que implica que ese conjunto, que forma una componente conectada, se une a la componente conectada en
la que yace el estado de referencia, mediante un cierto arco (p∗k → q∗k). En el proceso, además, el sumidero
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k Tamaño Estado representante M del representante

1 1553304 236283 0.66

257 6389 390914 0.78

480367 73 1026606 0.81

Tabla 2: Conjuntos Sk maximales más grandes respecto a s∗0 = 1262694.

s∗k de la componente conectada de Sk deja de serlo. Consideraremos este como el estado representante
del conjunto Sk.

El arco (p∗k → q∗k) que marca la unión del set Sk con s∗l puede ser tal que q∗k = s∗l , pero no tiene por
qué ser aśı. En muchos casos se da que q∗k es un estado que pertenece a un set Sm anterior, es decir,
m < k. Esto es lo que produce la jerarqúıa entre los conjuntos Sk, de forma que cada cuenca se une a
la cuenca global con un enlace que la conecta a otra cuenca previamente unida a la cuenca global, pero
sin relación directa con otras cuencas. Dado que los pesos de los arcos de unión decrecen con k, los arcos
que conectan cuencas tienen un peso mayor conforme más alejados están del estado de referencia en la
jerarqúıa.

Realizamos el análisis de los conjuntos Sk maximales respecto a s∗0 = 1262694, que es el último
sumidero en desaparecer y lo hace, además, en el momento en que se unen las cuencas de los estados
nativo y desplegado. Encontramos un total de 1451 conjuntos Sk maximales, pero de estos la mayoŕıa
contiene uno o muy pocos estados. En la figura 7 se muestran aquellos conjuntos cuyo tamaño es de al
menos 5 estados. Para caracterizar a los estados representantes de cada conjunto, utilizamos el parámetro

M =
1

N

∑
k

mk, (29)

que toma valores próximos a 0 para estados muy desplegados o 1 para estados cercanos al nativo.

En tal figura se muestra la jerarqúıa entre los diferentes Sk maximales en forma de grafo. Cabe
destacar que la mayoŕıa de estos conjuntos contiene una muy pequeña cantidad de estados, habiendo
solo dos con un tamaño verdaderamente notable. En la tabla 2 se muestran los tres Sk maximales más
grandes. Los dos conjuntos más grandes están unidos entre śı y concretamente el más grande de ellos
contiene la práctica totalidad de los estados del sistema. Este conjunto se forma en el penúltimo paso
y merece un análisis similar al realizado para s∗0 = 1262694. Dado que su sumidero es el sumidero de
la cuenca desnaturalizada, ese conjunto es en realidad esa cuenca. En cuanto al resto de conjuntos Sk
maximales encontrados, su tamaño es mucho menor, como ya se ve en el tercer conjunto mostrado en la
tabla 2.

La figura 7 representa la estructura interna de la cuenca del estado nativo, excluyendo al conjunto cuyo
representante es el estado 236283, que es la cuenca desplegada. El grafo muestra las diferentes subcuencas
y cómo se enlazan unas con otras, de tal forma que cada enlace representa la barrera de escape de la
cuenca más baja. El análisis empleado para obtener la figura se puede repetir para descubrir la estructura
interna de cada uno de estos conjuntos, tomando su sumidero como nueva referencia para considerar que
un estado Sk sea maximal. Repetimos el proceso para encontrar la estructura de la cuenca desplegaada,
que se muestra en la figura 8.

La cuenca desplegada se compone de 15648 estados Sk maximales. Aquellos que tienen un tamaño
superior a 50 estados se han representado en la figura 8, con su jerarqúıa correspondiente. En esta
cuenca se encuentran dos subcuencas importantes; un resumen se muestra en la tabla 3. La cuenca S2
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Figura 7: Conjuntos Sk maximales respecto de s∗0 = 1262694 con un tamaño de al menos 5 estados.
Cada nodo es uno de estos conjuntos, representado con un radio que depende logaŕıtmicamente del
número de estados en el conjunto y un color que depende del parámetro M = 1/N

∑
kmk del sumidero

representativo. Verde claro indica valores pequeños y negro, valores próximos a 1. Por otra parte, el color
de los arcos va asociado a su peso, siendo el violeta claro para pesos bajos y negro para los altos. El nodo
que representa a s∗0 tiene un tamaño arbitrario para facilitar la visualización (no representa a un estado
Sk sino a un solo nodo).
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Figura 8: Conjuntos Sk maximales respecto de s∗1 = 236283 con un tamaño de al menos 50 estados.
Cada nodo es uno de estos conjuntos, representado con un radio que depende logaŕıtmicamente del
número de estados en el conjunto y un color que depende del parámetro M = 1/N

∑
kmk del sumidero

representativo. Verde claro indica valores pequeños y negro, valores más próximos a 1. Por otra parte, el
color de los arcos va asociado a su peso, siendo el violeta claro para pesos bajos y negro para los altos.
El nodo que representa a s∗1 tiene un tamaño arbitrario para facilitar la visualización (no representa a un
estado Sk sino a un solo nodo). Las escalas de colores y tamaños no son cuantitativamente equivalentes
a las empleadas en la figura 7.
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k Tamaño Estado representante M del representante

2 947400 19942 0.28

4034 426171 179693 0.59

33879 24254 532634 0.71

Tabla 3: Conjuntos Sk maximales más grandes respecto a s∗1 = 236283.

es la que contiene al estado con todo ceros, es la más grande y la que tiene un menor valor de M . Sin
embargo, encontramos otra cuenca con aproximadamente la mitad de estados y un valor de M bastante
mayor, M = 0,59, que indica que está a medio camino entre el estado desplegado y el nativo. Esta
cuenca puede representar una trampa cinética: un conjunto de estados intermedios bastante desconectados
energéticamente de los estados desplegado y nativo en el que la protéına puede permanecer un tiempo
considerable durante el proceso de plegamiento. La barrera de escape de esta cuenca es ∆4034 = 6,42,
mientras que la barrera en el sentido inverso es de 8,54. Al ser estos valores del mismo orden, podemos
decir que efectivamente actúa como una trampa cinética.

El resto de subcuencas de la cuenca desplegada tienen tamaños considerablemente menores. Como se
ve en la tabla 3, hay un conjunto Sk maximal con 24254 estados y un valor de M bastante próximo al
estado nativo; el resto de conjuntos tiene tamaños mucho menores.

8. Resumen y conclusiones

Hemos realizado una implementación en C++ del algoritmo Single Sweep Algorithm, el cual analiza
una red de Markov para estudiar su dinámica obteniendo una interpretación f́ısica para sus resultados.
Hemos comprobado el adecuado funcionamiento del código, empleando grafos de entrada especialmente
diseñados para ponerlo a prueba. Una vez desarrollado completamente este código, lo hemos comparado
con un código desarrollado por los autores del algoritmo y hemos comprobado que efectivamente su
funcionamiento es correcto, si bien no resulta computacionalmente óptimo.

A continuación, hemos aplicado el algoritmo a una protéına; en concreto, a su proceso de plegado,
centrándonos en el equilibrio entre estados desplegado y nativo. Esta es una aplicación novedosa del
algoritmo, que en principio se ha usado con otro tipo de sistemas más sencillos. Gracias a los resultados
que arroja, hemos podido analizar el camino maximal que une los estados desplegado y nativo. También
hemos obtenido una visualización del paisaje de enerǵıas y su estructura de cuencas de atracción.

Los datos de la protéına empleados han sido obtenidos mediante simulaciones de Montecarlo sobre el
modelo WSME-S. Estos datos han sido procesados y adaptados a un formato adecuado para el algoritmo
mediante un código desarrollado para ello. Este código asegura que se cumplan las condiciones necesarias
para la correcta aplicación del algoritmo.

Los datos aportados por este algoritmo son muy ricos y se puede ampliar el análisis que hemos
realizado. Seŕıa interesante realizar un cálculo exhaustivo de los autovectores de la matriz que representa a
la red, a partir de los cuales se pueden obtener las autocorrientes que caracterizan la dinámica del sistema.
También ha quedado fuera de nuestros objetivos la computación de estimaciones de los autovalores de
esta matriz a temperatura finita.

Hemos podido comprobar que este algoritmo se puede aplicar al estudio del plegamiento de protéınas
con éxito, abriendo las puertas a este tipo de análisis. El algoritmo se puede aplicar a otras protéınas
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para obtener resultados similares a los presentados.
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1038/nature02261.

[3] K. A. Dill y J. L. MacCallum. “The Protein-Folding Problem, 50 Years On”. En: Science 338
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A. Código de la implementación del Single Sweep Algorithm

,
1 /*

2 Coded by Pablo J Blasco (2017) , Universidad de Zaragoza

3

4 Implementation of Single Sweep Algorithm , as developed in M. Cameron and T. Gan ,

5 "Spectral analysis and clustering of large stochastic networks. Application

6 to the Lennard -Jones -75 cluster ". ArXiv e-prints (2015). arXiv: 1511.05269[ cond -mat.

stat -mech].

7 */

8

9 #include <string >

10 #include <stdio.h>

11 #include <iostream >

12 #include <map >

13 #include <utility >

14 #include <fstream >

15 #include <sstream >

16 #include <cmath >

17 #include <vector >

18 #include <list >

19 #include <tuple >

20 #include <algorithm >

21 #include <queue >

22 #include <time.h>

23 #include <stdlib.h>

24

25 #define NUMBER_OF_TIME_STEPS 1.8e7

26

27 #define SAVE_AT_STATE 3000000000

28

29 //#define INFO //If active , the program will show a lot of info about what it’s doing

30 #define MINIMAL_INFO //This will show only basic information , such as the current step.

31 //#define BIG_INFO //If active , and INFO is too , it will show big chunks of info , like M

or G.

32 //#define LOAD_STATE //If active , the program will load its current state from files

instead of starting from the beginning

33 //#define DEGENERACY_WARNING //If active , will show warnings if degeneracy found

34

35 using namespace std;

36 //With this typedef , it is unnecessary to write the double map type explicitly every time

37 typedef std::map < int , std::map <int ,double > > map_of_transitions_type;

38

39 int minimal_arc(std::map <int ,double > nodes);

40 int single_sweep_algorithm(map_of_transitions_type &nodes);

41 bool are_in_same_connected_component(const map_of_transitions_type &graph , int x, int y,

int &sink_of_x , std::vector <int > &connected_component);

42 int sink_of_connected_component(map_of_transitions_type graph , int node);

43 void find_connected_component(map_of_transitions_type graph , int node , std::vector <int > &

connected_component);

44 void detect_cycle(const map_of_transitions_type &graph , const int x, const int y, std::

vector <int > &cycle);

45 void read_prepared_simulations(map_of_transitions_type &nodes);

46 void write_prepared_simulations(const map_of_transitions_type &nodes);

47 void create_testing_map(map_of_transitions_type &nodes);

48 int total_size_of_map(const map_of_transitions_type &nodes);

49 void save_current_step(const map_of_transitions_type &nodes ,

50 const map_of_transitions_type &Minimum_outgoing_arcs ,

51 const map_of_transitions_type &arcs_removed_from_M ,

52 const map_of_transitions_type &optimal_W_graph ,
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53 const std::vector < std::vector <int > > &cycles_i ,

54 const std::vector < std::vector <int > > &Bi_indexes ,

55 const std::vector < std::tuple <int ,int ,double > > &min_arc ,

56 const int k);

57 void load_current_step(map_of_transitions_type &nodes ,

58 map_of_transitions_type &Minimum_outgoing_arcs ,

59 map_of_transitions_type &arcs_removed_from_M ,

60 map_of_transitions_type &optimal_W_graph ,

61 std::vector < std::vector <int > > &cycles_i ,

62 std::vector < std::vector <int > > &Bi_indexes ,

63 std::vector < std::tuple <int ,int ,double > > &min_arc ,

64 int &k);

65

66 //A function to convert any type into strings. There is a bug in MinGW so that gcc doesnt

recognize the function std:: to_string ()

67 template <typename T>

68 std:: string to_string(T value)

69 {

70 // Create an output string stream

71 std:: ostringstream os ;

72

73 //Throw the value into the string stream

74 os << value ;

75

76 // Convert the string stream into a string and return

77 return os.str() ;

78 }

79

80 main()

81 {

82 map_of_transitions_type nodes;

83

84 #ifndef LOAD_STATE

85 read_prepared_simulations(nodes);

86 // create_testing_map(nodes);

87

88 // Delete the autoloops , which make the algorithm go crazy

89 for(map_of_transitions_type :: iterator i = nodes.begin(); i!=nodes.end(); i++)

90 if(i->second.count(i->first) != 0)

91 {

92 i->second.erase(i->first);

93 if(i->second.size()==0)

94 {

95 int aux = i->first;

96 i--;

97 nodes.erase(aux);

98 }

99 }

100

101 std::cout << "\nSize: " << nodes.size() << "\n";

102 std::cout << "Simulations read\n";

103 std::cout << "Map ready. Starting the algorithm ...\n";

104 #endif // LOAD_STATE

105

106 single_sweep_algorithm(nodes);

107

108 std::cout << "\nFinished\n";

109

110 return 0;

111 }

112
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113 int single_sweep_algorithm(map_of_transitions_type &nodes) //The input: the double map

which represents the infinitesimal generator L

114 {

115 #ifdef INFO

116 std::cout << "Starting Single Sweep Algorithm .\ nAllocating memory ...\n";

117 #endif // INFO

118

119 //We will need these variables as the outputs of the algorithm

120 double delta; //\Delta_k

121 int disappearing_sink; //s_k^*

122 int absorbing_sink; //t_k^*

123 std::pair <int ,int > exit_arc; //arcs (p_k^* -> q_k^*)

124 std::vector <int > cycles; //Ck

125 map_of_transitions_type optimal_W_graph;

126 std::vector <int > quasi_invariant_set; //Sk. This is a vector in which we will store

the vertices of

127 //every connected component of g_k^*

containing s_k^*.

128

129 //After all these initializations of the outputs , we must declare and initialize the

internal variables.

130 int k = nodes.size() - 1; //The variable which takes into account in which

iteration we are.

131

132 //We need a vector in which we will have the min_arc(i)

133 std::vector < std::tuple <int ,int ,double > > min_arc(nodes.size());

134

135 //We now create the graph of arcs of minimum weight , named M.

136 map_of_transitions_type Minimum_outgoing_arcs;

137

138 //We need to have record of the sets Bi. We do it by using a vector of vectors of

ints.

139 std::vector < std::vector <int > > Bi_indexes; //In every ith vector , we list the

vertexes which belong to set B(i).

140 //For example , if B_a = B_abc , then

Bi_indexes.at(a) = {a, b, c}.

141

142 #ifdef LOAD_STATE

143 map_of_transitions_type arcs_removed_from_M;

144 std::vector < std::vector <int > > cycles_i = std::vector < std::vector <int > >(nodes.size

());

145 load_current_step(nodes , Minimum_outgoing_arcs , arcs_removed_from_M , optimal_W_graph ,

cycles_i , Bi_indexes , min_arc , k);

146 #else

147

148 //We build these sets by putting into them the corresponding index (initially , B(i) =

{i}

149 for(int i = 0; i<nodes.size(); i++) //A loop which makes N components

in Bi_indexes

150 Bi_indexes.push_back(std::vector <int > (1,i+1)); //every one with the

corresponding index of its vertex.

151

152 //We also create the output files as void files

153 {ofstream output_file; //With just one stream we will open and close all the files.

154 output_file.open("delta.txt");

155 output_file.close();

156

157 output_file.open("disappearing_sinks.txt");

158 output_file.close();

159

160 output_file.open("absorbing_sinks.txt");

161 output_file.close();
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162

163 output_file.open("quasi_invariant_sets.txt");

164 output_file.close();

165

166 output_file.open("exit_arcs.txt");

167 output_file.close();

168

169 // output_file.open(" W_graphs.txt");

170 // output_file.close();

171 }

172

173 #ifdef INFO

174 std::cout << "Memory Allocated .\ nBuilding M...\n";

175 #endif // INFO

176

177 //We now proceed to the construction of the set of minimum outgoing arcs M.

178 //First , we declare an auxiliary variable

179 {int index_of_minimum_weighted_arc; //We limit the existence of this variable to the

scope inside which it is going to be used.

180 //We sweep through all the map

181 for(map_of_transitions_type :: iterator i=nodes.begin(); i!=nodes.end(); i++)

182 {

183 //For every node , we find first the minimal arc

184 index_of_minimum_weighted_arc = minimal_arc(i->second);

185

186 //We put this arc inside of the min_arc(i) vector

187 min_arc[i->first - 1] = std:: make_tuple(i->first , index_of_minimum_weighted_arc ,

i->second.at(index_of_minimum_weighted_arc));

188

189 //We then create this arc in M

190 Minimum_outgoing_arcs[i->first ][ index_of_minimum_weighted_arc] = 0;

191 Minimum_outgoing_arcs[i->first ][ index_of_minimum_weighted_arc] = i->second.at(

index_of_minimum_weighted_arc);

192

193 //And we erase it from the B_i set

194 (i->second).erase(index_of_minimum_weighted_arc);

195 }}// After this loop , we have correctly constructed the set M and we have updated the

sets B_i so that those two don’t have common members.

196

197 #ifdef INFO

198 #ifdef BIG_INFO

199 std::cout << "The set M is:\n";

200 for(map_of_transitions_type :: iterator i=Minimum_outgoing_arcs.begin (); i!=

Minimum_outgoing_arcs.end(); i++)

201 for(std::map <int ,double >:: iterator j=i->second.begin (); j!=i->second.end(); j++)

202 std::cout << "M has " << i->first << " to " << j->first << " with " << j->second

<< endl;

203 std::cout << "We now build the initial C(i) sets" << endl;

204 #endif // BIG_INFO

205 #endif // INFO

206

207 //Next , we must initialize the cycles as C(i) = {i}

208 std::vector < std::vector <int > > cycles_i = std::vector < std::vector <int > >(nodes.size

());

209 // cycles_i is a variable which we build inside this function and with which we will

build cycles , which is an output.

210 for(unsigned int i=0; i<nodes.size(); i++)

211 cycles_i[i]. push_back(i+1); //This adds element i as the last component (in this

case , single component as it’s a new vector)

212 //of the ith vector in cycles_i. (Remember cycles_i is a

vector of vectors).

213
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214 #ifdef INFO

215 std::cout << "Initial C(i) sets built." << endl;

216 #ifdef BIG_INFO

217 for(std::vector < std::vector <int > >::iterator i = cycles_i.begin(); i!= cycles_i.end()

; i++)

218 for(std::vector <int >:: iterator j = (*i).begin (); j!=(*i).end(); j++)

219 std::cout << "The cycle " << (*i).at(0) << " has " << *j << endl;

220 #endif // BIG_INFO

221 #endif // INFO

222

223 //Last part of the initialization: we must declare the set G*

224 map_of_transitions_type arcs_removed_from_M; //It starts void.

225

226 #ifdef INFO

227 std::cout << "We enter the main cycle .\n" << endl;

228 #endif // INFO

229

230 #endif // LOAD_STATE

231

232 //We will also use a variable to store the number of cycles found

233 int number_of_cycles_found = 0;

234

235 //The main cycle

236 while(total_size_of_map(Minimum_outgoing_arcs) > 1) //Do it until there is only one

arc left in M

237 {

238 if(k== SAVE_AT_STATE)

239 {

240 save_current_step(nodes , Minimum_outgoing_arcs , arcs_removed_from_M ,

optimal_W_graph , cycles_i , Bi_indexes , min_arc , k);

241 return 1;

242 }

243

244 std::pair <int ,int > minimum_weight_arc (0,0); //A pair of variables for the

indexes of the arc of minimum weight

245 {//Find the minimum weight arc in M. We can’t use minimal_arc here because we

have a double map , not a simple one.

246 double minimum_weight = 9999999; //A variable to keep track of the ~

247

248 //We run through Minimum_outgoing_arcs and we search for the minimum

249 for(map_of_transitions_type :: iterator i=Minimum_outgoing_arcs.begin (); i!=

Minimum_outgoing_arcs.end(); i++)

250 for(std::map <int ,double >:: iterator j=i->second.begin (); j!=i->second.end

(); j++)

251 {

252 #ifdef DEGENERACY_WARNING

253 if(j->second == minimum_weight)

254 std::cout << "WARNING: Degeneracy found at searching for the

minimum outgoing arc." << endl;

255 #endif // DEGENERACY_WARNING

256 if(j->second < minimum_weight)

257 {

258 minimum_weight = j->second; //We store the minimum weight found

259 minimum_weight_arc.first = i->first; //We store the indexes of

the arc

260 minimum_weight_arc.second = j->first;

261 }

262 }

263 //We now have to add this arc to G* and delete it from M

264 arcs_removed_from_M[minimum_weight_arc.first][ minimum_weight_arc.second] =

Minimum_outgoing_arcs.at(minimum_weight_arc.first).at(minimum_weight_arc.

second);
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265 Minimum_outgoing_arcs.at(minimum_weight_arc.first).erase(minimum_weight_arc.

second);

266

267 #ifdef MINIMAL_INFO

268 std::cout << "\nValue of k: " << k << endl;

269 #endif // MINIMAL_INFO

270

271 #ifdef INFO

272 #ifndef MINIMAL_INFO

273 std::cout << "\nValue of k: " << k << endl;

274 #endif // MINIMAL_INFO

275 std::cout << "Minimum arc: " << minimum_weight_arc.first << " to " <<

minimum_weight_arc.second << " with " << minimum_weight << endl;

276 #endif // INFO

277 }//End of the transferring of the minimum arc of M to G*

278

279 #ifdef INFO

280 #ifdef BIG_INFO

281 std::cout << "The G map is:" << endl;

282 for(map_of_transitions_type :: iterator i =arcs_removed_from_M.begin(); i!=

arcs_removed_from_M.end(); i++)

283 for(std::map <int ,double >:: iterator j=i->second.begin (); j!=i->second.end

(); j++)

284 std::cout << "G has from " << i->first << " to " << j->first << "

with " << j->second << endl;

285

286 //std::cout << "The set M is: " << endl;

287 //for(map_of_transitions_type :: iterator i=Minimum_outgoing_arcs.begin(); i!=

Minimum_outgoing_arcs.end(); i++)

288 // for(std::map <int ,double >:: iterator j=i->second.begin(); j!=i->second.

end(); j++)

289 // if(i->first % 100000 == 0) std::cout << "M has from " << i->first

<< " to " << j->first << " with " << j->second << endl;

290 #endif // BIG_INFO

291 std::cout << "We test if the new arc connects two different connected components

of g*k+1\n";

292 #endif // INFO

293

294 //We now proceed depending on whether the two endpoints of the minimal arc are on

the same connected component

295 if(! are_in_same_connected_component(optimal_W_graph , minimum_weight_arc.first ,

minimum_weight_arc.second , disappearing_sink , quasi_invariant_set))

296 {

297 #ifdef INFO

298 std::cout << "It doesn ’t! We proceed normally\n";

299 std::cout << "Saving minimal arc , absorbing and disappearing sinks and

finding connected component" << endl;

300 #endif // INFO

301 //We store the minimal arc as the arc (p_k^* -> q_k ^*)

302 exit_arc = minimum_weight_arc;

303

304 //We store the sink of the connected component of q_k^* (for p_k^* it has

already been made).

305 absorbing_sink = sink_of_connected_component(optimal_W_graph ,

minimum_weight_arc.second);

306

307 #ifdef INFO

308 std::cout << "Disappearing sink: " << disappearing_sink << " Absorbing

sink: " << absorbing_sink << endl;

309 std::cout << "The connected component of the " << k+1 << " optimal W-

graph is:" << endl;
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310 for(vector <int >:: iterator i = quasi_invariant_set.begin(); i!=

quasi_invariant_set.end(); i++)

311 std::cout << *i << "\t";

312 std::cout << endl;

313

314 #ifdef BIG_INFO

315 std::cout << "The " << k << " cycle is:" << endl;

316 for(std::vector <int >:: iterator i=cycles_i.at(disappearing_sink - 1).begin

(); i!= cycles_i.at(disappearing_sink - 1).end(); i++ )

317 std::cout << "Cycle has vertex " << *i << endl;

318 #endif // BIG_INFO

319 #endif // INFO

320

321 //We build the kth cycle

322 cycles = cycles_i.at(disappearing_sink - 1);

323

324 //We now have to store the optimal W-graph

325 //In this snippet we search for the k optimal W-graph

326 {

327 map_of_transitions_type inversed_G; //A inversed graph of G will make it

faster to go through it

328

329 //We have to remove the elements in the connected component which has

been joined because there may be cycles

330 for(vector <int >:: iterator i=quasi_invariant_set.begin (); i!=

quasi_invariant_set.end(); i++)

331 if(optimal_W_graph.count(*i)==1)

332 optimal_W_graph.erase (*i);

333

334 //We build the inversed_G map

335 for(map_of_transitions_type :: iterator i = arcs_removed_from_M.begin(); i

!= arcs_removed_from_M.end(); i++)

336 for(std::map <int ,double >:: iterator j = i->second.begin (); j!=i->

second.end(); j++)

337 inversed_G[j->first][i->first] = j->second;

338

339 //Now we have to trace from the joined arc backwards in the connected

component S_k

340 //In a list we will have record of bifurcations we find. It shall be a

list because we want to erase it in constant time.

341 std::list <int > bifurcations , bifurcations_next; // bifurcations_next will

have the nodes which are a bit further than those which we are taking

into account at the moment.

342 bifurcations.push_back(absorbing_sink);

343

344 //We need a vector to know at every moment which nodes we have visited.

345 std::map <int , bool > already_visited;

346 for(map_of_transitions_type :: iterator i = arcs_removed_from_M.begin(); i

!= arcs_removed_from_M.end(); i++)

347 already_visited[i->first] = 0;

348 already_visited[absorbing_sink] = 1;

349

350 while (1!=0)

351 {

352 if(bifurcations.size() == 0)

353 break; //If there aren’t any bifurcations left , we have ended.

354

355 //We make a loop through every bifurcation at this level

356 for(std::list <int >:: iterator i = bifurcations.begin(); i!=

bifurcations.end(); i++)

357 //We only search for the node if it has any incoming arcs

358 if(inversed_G.count(*i) != 0)
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359 //Then we go to the list of incoming arcs

360 for(std::map <int ,double >:: iterator j=inversed_G.at(*i).begin

(); j!= inversed_G.at(*i).end(); j++)

361 {

362 //We check if this node has already been visited

363 if(already_visited.at(j->first) == 0)

364 {//If we haven’t found this node

365 if(optimal_W_graph.count(j->first) == 0) //If it

has no outgoing arc , we create it

366 optimal_W_graph[j->first ][*i] = j->second;

367 //We also include the node in this two containers.

368 bifurcations_next.push_back(j->first);

369 already_visited[j->first] = 1;

370 }

371 }

372

373 //We copy the nodes of bifurcations found in this step and start

again with them.

374 bifurcations = bifurcations_next;

375 bifurcations_next.clear();

376 }

377 }//End of snippet to find the optimal W_graph

378

379 #ifdef INFO

380 #ifdef BIG_INFO

381 std::cout << "The k=" << k << " optimal W graph is: " << endl;

382 for(map_of_transitions_type :: iterator i = optimal_W_graph.begin (); i!=

optimal_W_graph.end(); i++)

383 for(std::map <int ,double >:: iterator j = i->second.begin (); j!=i->

second.end(); j++)

384 std::cout << i->first << " to " << j->first << " with " << j->

second << endl;

385 #endif // BIG_INFO

386 #endif // INFO

387

388 //We can take now the value of delta[k]

389 delta = arcs_removed_from_M.at(minimum_weight_arc.first).at(

minimum_weight_arc.second);

390

391 //Here we would also take the value of A_k. But we set it as 1 for all k.

392

393 #ifdef INFO

394 std::cout << "The found value of Delta_" << k << " is " << delta << ".\tEnd

of the step. Increasing k." << endl;

395 #endif // INFO

396

397 //Finally , we write in files all the computed data

398 ofstream output_file; //With just one stream we will open and close all the

files.

399

400 output_file.open("delta.txt", std:: ofstream ::app);

401 output_file << delta << "\n";

402 output_file.close();

403

404 output_file.open("disappearing_sinks.txt", std:: ofstream ::app);

405 output_file << disappearing_sink << "\n";

406 output_file.close();

407

408 output_file.open("absorbing_sinks.txt", std:: ofstream ::app);

409 output_file << absorbing_sink << "\n";

410 output_file.close();

411
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412 output_file.open("quasi_invariant_sets.txt", std:: ofstream ::app);

413 for(vector <int >:: iterator i=quasi_invariant_set.begin (); i!=

quasi_invariant_set.end(); i++)

414 output_file << *i << "\n";

415 output_file << "\n";

416 output_file.close();

417

418 output_file.open("exit_arcs.txt", std:: ofstream ::app);

419 output_file << exit_arc.first << "\t" << exit_arc.second << "\n";

420 output_file.close();

421

422 /* output_file.open(" W_graphs.txt", std:: ofstream ::app);

423 for(map_of_transitions_type :: iterator i = optimal_W_graph.begin (); i!=

optimal_W_graph.end(); i++)

424 for(map <int ,double >:: iterator j = i->second.begin (); j!=i->second.end();

j++)

425 output_file << i->first << "\t" << j->first << "\t" << j->second <<

"\n";

426 output_file << "\n";

427 output_file.close();*/

428

429 //We decrease the value of k and go to the next iteration.

430 k = k-1;

431 }

432 else

433 {

434 //We increase the variable which stores the number of cycles found

435 number_of_cycles_found ++;

436

437 #ifdef MINIMAL_INFO

438 #ifndef INFO

439 std::cout << "Number of cycles found: " << number_of_cycles_found << "."

<< endl;

440 #endif // INFO

441 #endif // MINIMAL_INFO

442

443 #ifdef INFO

444 std::cout << "It does! We look for the cycle which has been formed." <<

endl;

445 std::cout << "Number of cycles found: " << number_of_cycles_found << "."

<< endl;

446 #endif // INFO

447

448 //A cycle is created. We have to detect it. We take a vector to store it.

449 std::vector <int > detected_cycle;

450

451 //Now we detect it

452 detect_cycle(arcs_removed_from_M , minimum_weight_arc.first ,

minimum_weight_arc.second , detected_cycle);

453

454 #ifdef INFO

455 std::cout << "The detected cycle has the following vertexes: \n";

456 for(std::vector <int >:: iterator i = detected_cycle.begin (); i!= detected_cycle.

end(); i++)

457 std::cout << "Detected cycle: " << *i << endl;

458 std::cout << "Starting the weight update process." << endl;

459 #endif // INFO

460

461 //We update the weights of the arcs which go out of every vertex in the cycle

462 //We make a loop through the cycle

463 for(std::vector <int >:: iterator i = detected_cycle.begin (); i!= detected_cycle.

end(); i++)
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464 if(*i != minimum_weight_arc.first) //We don’t take the case i = x

465 {

466 //we search for the minimal arc in every set B_i

467 double weight_minimum_arc_Bi = std::get <2>( min_arc.at(*i-1)); //We

are going to use a variable to store the minimum weight for every

set B_i

468

469 //We proceed to the update

470 #ifdef BIG_INFO

471 std::cout << "The values before the update are the following:" <<

endl;

472 for(std::vector <int >:: iterator i_Bi=Bi_indexes.at(*i - 1).begin ()

; i_Bi!= Bi_indexes.at(*i - 1).end(); i_Bi ++)

473 for(std::map <int ,double >:: iterator j = nodes.at(*i_Bi).begin

(); j!=nodes.at(*i_Bi).end(); j++)

474 std::cout << "Before update: " << *i_Bi << " to " << j->

first << " has " << nodes[*i_Bi][j->first] << endl;

475 std::cout << "Updating by: " << arcs_removed_from_M.at(

minimum_weight_arc.first).at(minimum_weight_arc.second)

476 - weight_minimum_arc_Bi <<

477 "\t= XY: " << arcs_removed_from_M.at(

minimum_weight_arc.first).at(

minimum_weight_arc.second) <<

478 "\t- Min: " << weight_minimum_arc_Bi

<< endl;

479 #endif // BIG_INFO

480

481 //We make a loop through every subset of B_i

482 for(std::vector <int >:: iterator i_Bi=Bi_indexes.at(*i - 1).begin ();

i_Bi!= Bi_indexes.at(*i - 1).end(); i_Bi ++)

483 for(std::map <int ,double >:: iterator j = nodes.at(*i_Bi).begin(); j

!=nodes.at(*i_Bi).end(); j++)

484 nodes[*i_Bi][j->first] += arcs_removed_from_M.at(

minimum_weight_arc.first).at(minimum_weight_arc.second)

485 - weight_minimum_arc_Bi;

486

487 #ifdef BIG_INFO

488 std::cout << "The values after the update are the following:" <<

endl;

489 for(std::vector <int >:: iterator i_Bi=Bi_indexes.at(*i - 1).begin()

; i_Bi!= Bi_indexes.at(*i - 1).end(); i_Bi ++)

490 for(std::map <int ,double >:: iterator j = nodes.at(*i_Bi).begin

(); j!=nodes.at(*i_Bi).end(); j++)

491 std::cout << "After update: " << *i_Bi << " to " << j->

first << " has " << nodes[*i_Bi][j->first] << endl;

492 #endif // BIG_INFO

493

494 }//Here we have ended the update

495

496 #ifdef INFO

497 std::cout << "Update finished. Merging Bi sets ..." << endl;

498 #endif // INFO

499

500 //We have to merge the B_i sets for all i in C

501 {std::vector <int > merged_Bi; //We are going to construct the merged Bi set

502 for(std::vector <int >:: iterator i = detected_cycle.begin (); i!= detected_cycle.

end(); i++)

503 for(std::vector <int >:: iterator i_Bi = Bi_indexes.at(*i - 1).begin (); i_Bi

!= Bi_indexes.at(*i - 1).end(); i_Bi ++)

504 if(std::find(merged_Bi.begin(), merged_Bi.end(), *i_Bi) == merged_Bi.

end())

505 merged_Bi.push_back (*i_Bi);
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506

507 //Now it is constructed. We have to make every Bi set for i in C equal to

this set.

508 for(std::vector <int >:: iterator i = detected_cycle.begin (); i!= detected_cycle.

end(); i++)

509 {

510 // Bi_indexes.at(*i - 1).clear ();

511 Bi_indexes [*i - 1] = merged_Bi;

512 }}//End of merging Bi sets.

513

514 #ifdef INFO

515 #ifdef BIG_INFO

516 std::cout << "The Bi sets are the following:" << endl;

517 for(std::vector < vector <int > >::iterator i = Bi_indexes.begin (); i!=

Bi_indexes.end(); i++)

518 {

519 std::cout << "Set B_" << (*i).at(0) << " has\t";

520 for(std::vector <int >:: iterator j = (*i).begin (); j!=(*i).end(); j++)

521 std::cout << *j << "\t";

522 std::cout << endl;

523 }

524 #endif // BIG_INFO

525 std::cout << "Merging the cycles\n";

526 #endif // INFO

527

528 //We need a vector in which we will merge the sets C(i)

529 std::vector <int > merged_cycles;

530

531 //We make a loop to get every vertex of the detected_cycle

532 for(std::vector <int >:: iterator i=detected_cycle.begin (); i!= detected_cycle.

end(); i++)

533 //We go to the (vector) component of cycles of that vertex and copy it

into merged_cycles.

534 for(std::vector <int >:: iterator j=cycles_i.at(*i - 1).begin(); j!= cycles_i

.at(*i - 1).end(); j++)

535 if(std::find(merged_cycles.begin (), merged_cycles.end(), *j) ==

merged_cycles.end()) //We assure that there are no repeated

elements in merged_cycles

536 merged_cycles.push_back (*j);

537

538 #ifdef INFO

539 std::cout << "The merged cycle is:" << endl;

540 for(std::vector <int >:: iterator i=merged_cycles.begin (); i!= merged_cycles.end

(); i++)

541 std::cout << *i << "\t";

542 std::cout << endl;

543 std::cout << "Deleting inadequate arcs ..." << endl;

544 #endif // INFO

545

546 //Here we will delete those arcs whose vertexes are in C’ and are minimal in

B.

547 //We need a variable for the minimum weight found

548 double minimum_weight = 999999;

549

550 //And another variable for the arc with that weight

551 std::pair <int ,int > minimum_weight_arc_Cprime;

552

553 //We have a loop which breaks if the minimum arc outgoing from a vertex in B

is not in C’

554 while (1!=0)

555 {

556 //We loop through the detected_cycle to get the minimum arc
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557 for(std::vector <int >:: iterator i=detected_cycle.begin (); i!=

detected_cycle.end(); i++)

558 //For every vertex in the detected_cycle , we go to the set B_i (this

is equivalent to B)

559 for(std::vector <int >:: iterator i_Bi = Bi_indexes.at(*i - 1).begin ();

i_Bi != Bi_indexes.at(*i - 1).end(); i_Bi ++)

560 //For every i in the set Bi_indexes , we go to the set of outgoing

arcs from it

561 if(nodes.count(*i_Bi) >= 1)

562 for(std::map <int ,double >:: iterator j=nodes.at(*i_Bi).begin (); j!=

nodes.at(*i_Bi).end(); j++)

563 {

564 #ifdef DEGENERACY_WARNING

565 if(j->second == minimum_weight)

566 std::cout << "WARNING: Degeneracy found at searching for

the minimum outgoing arc not in C’." << endl;

567 #endif // DEGENERACY_WARNING

568

569 if(j->second < minimum_weight) //If a lesser value is found

570 {

571 //We update the minimum value

572 minimum_weight = j->second;

573 //And the found minimum arc

574 minimum_weight_arc_Cprime.first = *i_Bi;

575 minimum_weight_arc_Cprime.second = j->first;

576 }

577 }

578

579 //We now have to check whether the two vertexes of the

minimum_weight_arc_Cprime are on C’

580 int check = 0; //This variable serves as a value for checking

581

582 //We go through the set C’. If we find the vertexes of the

minimum_weight_arc_Cprime , we sum 1 to check

583 for(std::vector <int >:: iterator i=merged_cycles.begin (); i!= merged_cycles.

end() && check < 2; i++)

584 if(minimum_weight_arc_Cprime.first == *i || minimum_weight_arc_Cprime

.second == *i)

585 check ++; //If the two vertexes are found , check will take

value 2

586

587 if(check ==2) //If the two vertexes of the arc belong to C’

588 { //We remove the arc from B

589 nodes.at(minimum_weight_arc_Cprime.first).erase(

minimum_weight_arc_Cprime.second);

590

591 //We reset the variable which stores the minimum weight

592 minimum_weight = 999999;

593

594 #ifdef INFO

595 std::cout << "Erasing arc " << minimum_weight_arc_Cprime.first << "

to " << minimum_weight_arc_Cprime.second << endl;

596 #endif // INFO

597 }

598 else //If they do not , we exit from the loop

599 break;

600 }

601

602 #ifdef INFO

603 std::cout << "Making cycles C(i) equal to C ’..." << endl;

604 #endif // INFO

605
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606 //We have to make all the C(i) cycles as C’, for all i in C’

607 for(std::vector <int >:: iterator i=merged_cycles.begin (); i!= merged_cycles.end

(); i++)

608 //For every C(i) set with i in C’

609 cycles_i.at(*i-1) = merged_cycles; //Copy the merged_cycles into every

cycles_i

610

611

612 #ifdef INFO

613 std::cout << "Removing the minimum arc from B and adding it to M..." << endl;

614 #endif // INFO

615

616 // Finally we delete the minimum arc from B and add it to M

617

618 //we search for the minimal arc in every set B_i

619 double weight_minimum_arc_Bi = 9999999; //We are going to use a variable to

store the minimum weight for every set B_i

620 int index_minimum_arc_Bi; //This will be the second index of the minimum arc

outgoing from i

621 pair <int ,int > indexes_absolute_minimum_arc_Bi; //This will be the minimum arc

from B

622

623 //We make a loop through the different subsets of B_i

624 for(std::vector <int >:: iterator i=merged_cycles.begin (); i!= merged_cycles.end

(); i++)

625 for(std::vector <int >:: iterator j=Bi_indexes.at(*i - 1).begin(); j!= Bi_indexes

.at(*i - 1).end(); j++)

626 {

627 if(nodes.count(*j) >= 1)

628 if(nodes.at(*j).size() != 0)

629 {

630 #ifdef DEGENERACY_WARNING

631 if(nodes.at(*j).at(index_minimum_arc_Bi) < weight_minimum_arc_Bi)

632 std::cout << "WARNING: Degeneracy found at searching for the

minimum outgoing arc in B_i." << endl;

633 #endif // DEGENERACY_WARNING

634

635 //We search for the index of the minimal arc in the subset of B_i

which is the set of arcs outgoing from i

636 index_minimum_arc_Bi = minimal_arc(nodes.at(*j));

637

638 //If the minimal arc for this subset of B_i is lesser than the by now

found minimal weight of B_i

639 if(nodes.at(*j).at(index_minimum_arc_Bi) < weight_minimum_arc_Bi)

640 {

641 //We save this new minimum.

642 weight_minimum_arc_Bi = nodes.at(*j).at(index_minimum_arc_Bi);

643 indexes_absolute_minimum_arc_Bi.first = *j;

644 indexes_absolute_minimum_arc_Bi.second = index_minimum_arc_Bi;

645 }

646 }

647 }

648

649 #ifdef INFO

650 std::cout << "The arc added to M is: " << indexes_absolute_minimum_arc_Bi

.first << " to " << indexes_absolute_minimum_arc_Bi.second << " with

" << weight_minimum_arc_Bi << endl;

651 #endif // INFO

652

653 //We also insert this arc in min_arc(i) for all i in C’

654 for(std::vector <int >:: iterator i=merged_cycles.begin (); i!= merged_cycles.end

(); i++)
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655 min_arc.at(*i - 1) = std:: make_tuple(indexes_absolute_minimum_arc_Bi.

first , indexes_absolute_minimum_arc_Bi.second , weight_minimum_arc_Bi)

;

656

657 //We add it

658 Minimum_outgoing_arcs[indexes_absolute_minimum_arc_Bi.first][

indexes_absolute_minimum_arc_Bi.second] = weight_minimum_arc_Bi;

659

660 //And remove it from B

661 nodes.at(indexes_absolute_minimum_arc_Bi.first).erase(

indexes_absolute_minimum_arc_Bi.second);

662

663 #ifdef INFO

664 std::cout << "End of the step." << endl;

665 #endif // INFO

666 } //End of if -else

667 }//End of main cycle (end while)

668 return 1; // Return a success.

669 }

670

671 //This function searches for the arc of minimum weight for a given node.

672 int minimal_arc(std::map <int ,double > nodes)

673 {

674 double minimum_weight = 9999999; //A variable to keep track of the ~

675 int found_index = 0; //The index found at every step. If it’s 0 at the end , that

means there was no minimal arc. If that makes any sense at all.

676

677 //We make a loop through the given map

678 for(std::map <int ,double >:: iterator i=nodes.begin (); i!=nodes.end(); i++)

679 {

680 #ifdef DEGENERACY_WARNING

681 if(i->second == minimum_weight)

682 std::cout << "WARNING: Degeneracy found at searching for the minimal arc." <<

endl;

683 #endif // DEGENERACY_WARNING

684 if(i->second < minimum_weight) //For every entry we check whether it is lesser

than the last minimum found.

685 {

686 //If it is, we change our control variables accordingly

687 minimum_weight = i->second;

688 found_index = i->first;

689 }

690 }

691

692

693 if(found_index == 0) cout << "\n\nThere is a zero index for the minimal_weight\n\n";

694 //After the loop , we should have the index of the minimal arc , which is then returned

.

695 return found_index;

696 }

697

698 //A function which returns 1 if the vertexes x and y are in the same connected component

of graph , 0 otherwise.

699 bool are_in_same_connected_component(const map_of_transitions_type &graph , int x, int y,

int &sink_of_x , std::vector <int > &connected_component)

700 {

701 //First we assure that the vector is empty

702 connected_component.clear();

703

704 //In a list we will have record of the bifurcations we find. It shall be a list

because we want to erase it in constant time.

705 std::list <int > bifurcations;
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706

707 //The sink of the connected component of x.

708 sink_of_x = sink_of_connected_component(graph , x);

709

710 //(The first element in the connected component as well as) the first bifurcation

will be the sink.

711 bifurcations.push_back(sink_of_x);

712

713 //We have to insert the sink in the connected_component vector

714 connected_component.push_back(sink_of_x);

715

716 //A variable to know at every moment which node we are analyzing

717 int current_node;

718

719 while (1!=0)

720 {

721 if(bifurcations.size() != 0)

722 //We put the current_node in the last bifurcation we have noted

723 current_node = bifurcations.back();

724 else

725 break; //If there aren’t any bifurcations left , we have ended.

726

727 //We make a sweep through the graph

728 for(map_of_transitions_type :: const_iterator i = graph.begin (); i!=graph.end(); i

++)

729 for(std::map <int ,double >:: const_iterator j = i->second.begin(); j!=i->second.

end(); j++)

730 if(j->first == current_node) //If the endpoint of an arc is the

current_node

731 {

732 //We note the found arc in our two containers.

733 connected_component.push_back(i->first);

734 bifurcations.push_back(i->first);

735 }

736

737 //We end the step by erasing the track of the analyzed node from the list of

bifurcations.

738 bifurcations.remove(current_node);

739 }

740

741 // Finally we detect if y is in the connectad_component of x.

742 for(std::vector <int >:: iterator i = connected_component.begin(); i!=

connected_component.end(); i++)

743 if(*i == y)

744 return 1;

745

746 return 0; //If we have not found y in the connected component of x, then we return

0.

747 }

748

749 // Searches for the sink of the connected component which node belongs to.

750 int sink_of_connected_component(map_of_transitions_type graph , int node)

751 {

752 //The sink of the connected component of node. Initialized in node

753 int sink = node;

754

755 do //We will find the sink of the connected component of node here

756 {

757 if(graph.count(sink) == 0) //If there aren’t any outgoing arcs from sink

758 break; //We exit from the loop , because we have already found the sink

759 else
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760 sink = graph.at(sink).begin()->first; //We now consider as the sink the first

(and we hope that unique) outgoing arc from sink

761 }while (1!=0); //We can only get out of the loop if we find the sink. There MUST be a

sink ...

762

763 return sink;

764 }

765

766 //This functions gives a vector with all the vertexes in the connected component of node

767 void find_connected_component(map_of_transitions_type graph , int node , vector <int > &

connected_component)

768 {

769 //First we assure that the vector is empty

770 connected_component.clear();

771

772 //We now find the sink

773 int sink = sink_of_connected_component(graph , node);

774

775 //In a list we will have record of bifurcations we find. It shall be a list because

we want to erase it in constant time.

776 std::list <int > bifurcations;

777 bifurcations.push_back(sink);

778

779 //We have to insert the sink in the connected_component vector

780 connected_component.push_back(sink);

781

782 //A variable to know at every moment which node we are analyzing

783 int current_node;

784

785 while (1!=0)

786 {

787 if(bifurcations.size() != 0)

788 //We put the current_node in the last bifurcation we have noted

789 current_node = bifurcations.back();

790 else

791 break; //If there aren’t any bifurcations left , we have ended.

792

793 //We make a sweep through the graph

794 for(map_of_transitions_type :: iterator i = graph.begin(); i!=graph.end(); i++)

795 for(std::map <int ,double >:: iterator j = i->second.begin (); j!=i->second.end();

j++)

796 if(j->first == current_node) //If the endpoint of an arc is the

current_node

797 {

798 //We note the found arc in our two containers.

799 connected_component.push_back(i->first);

800 bifurcations.push_back(i->first);

801 }

802

803 //We end the step by erasing the track of the analyzed node from the list of

bifurcations.

804 bifurcations.remove(current_node);

805 }

806 }

807

808 void detect_cycle(const map_of_transitions_type &graph , const int x, const int y, std::

vector <int > &cycle)

809 {

810 int current_node = y;

811

812 //Make sure that the cycle starts void

813 cycle.clear ();
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814

815 //We need to keep track of the deadpoints we find as well as the already visited

nodes in every iteration

816 std::vector <int > deadpoints;

817

818 do //Make this loop until we have reached the end

819 {

820 //If there are no outgoing arcs from here ,

821 if(graph.count(current_node) == 0)

822 { //We put this node in the deadpoints vector and start over.

823 if(std::find(deadpoints.begin(), deadpoints.end(), current_node) ==

deadpoints.end())

824 deadpoints.push_back(current_node);

825 current_node = y;

826 cycle.clear ();

827 }

828 else //In any other case ,

829 {

830 //We get an iterator to the current_node

831 map_of_transitions_type :: const_iterator i = graph.find(current_node);

832 std::map <int ,double >:: const_iterator j;

833 //We go through the inner map

834 for(j = i->second.begin (); j!=i->second.end(); j++)

835 //If it is not a deadpoint nor an already visited node

836 if(std::find(deadpoints.begin(), deadpoints.end(), j->first) ==

deadpoints.end() &&

837 std::find(cycle.begin (), cycle.end(), j->first) == cycle.end())

838 { //We get the current_node there.

839 current_node = j->first;

840 cycle.push_back(current_node);

841 break; //And exit the loop.

842 }

843

844 if(j == i->second.end()) //If we reached the end of the inner map , we start

over.

845 {

846 if(std::find(deadpoints.begin(), deadpoints.end(), i->first) ==

deadpoints.end())

847 deadpoints.push_back(i->first);

848 cycle.clear ();

849 current_node = y;

850 }

851 }

852 }while(current_node !=x);

853 //We have to insert the very last component of the cycle , which closes it.

854 cycle.push_back(y);

855 }

856

857 void read_prepared_simulations(map_of_transitions_type &nodes)

858 {

859 FILE* infile;

860

861 infile = fopen("nodes_map.bin", "rb");

862

863 double mapsize;

864

865 fread(&mapsize , sizeof(mapsize), 1, infile);

866

867 for(int i = 0; i<mapsize; i++)

868 {

869 int first_element;

870 fread(& first_element , sizeof(int), 1, infile);
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871 double inner_mapsize;

872 fread(& inner_mapsize , sizeof(inner_mapsize), 1, infile);

873 for(int j = 0; j<inner_mapsize; j++)

874 {

875 int second_element;

876 double third_element;

877 fread(& second_element , sizeof(int), 1, infile);

878 fread(& third_element , sizeof(double), 1, infile);

879 nodes[first_element ][ second_element] = third_element;

880 }

881 if(i %1000==0) std::cout << "Completed " << (i/mapsize)*100 << " % %\r";

882 }

883 fclose(infile);

884 }

885

886 void write_prepared_simulations(const map_of_transitions_type &nodes)

887 {

888 FILE* outfile;

889

890 outfile = fopen("nodes_map.bin", "wb");

891

892 double mapsize = nodes.size();

893

894 fwrite (&mapsize , sizeof(mapsize), 1, outfile);

895

896 for(map_of_transitions_type :: const_iterator i = nodes.begin (); i!=nodes.end(); i++)

897 {

898 int first_element = i->first;

899 fwrite (& first_element , sizeof(int), 1, outfile);

900 double inner_mapsize = i->second.size();

901 fwrite (& inner_mapsize , sizeof(inner_mapsize), 1, outfile);

902 for(std::map <int ,double >:: const_iterator j = i->second.begin(); j!=i->second.end

(); j++)

903 {

904 int second_element = j->first;

905 double third_element = j->second;

906 fwrite (& second_element , sizeof(int), 1, outfile);

907 fwrite (& third_element , sizeof(double), 1, outfile);

908 }

909 }

910 fclose(outfile);

911 }

912

913 //This function creates a simple map for testing purposes.

914 void create_testing_map(map_of_transitions_type &nodes)

915 {//Fig 5 Cameron (2017).

916 nodes [1][2] = 1;

917 nodes [1][3] = 5;

918 nodes [1][4] = 2.5;

919 nodes [1][5] = 2.7;

920

921 nodes [2][3] = 3;

922 nodes [2][1] = 10;

923

924 nodes [3][1] = 2;

925 nodes [3][2] = 2.6;

926 nodes [3][4] = 3.2;

927

928 nodes [4][1] = 0.5;

929 nodes [4][3] = 1.5;

930 nodes [4][5] = 3;

931
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932 nodes [5][1] = 7;

933 nodes [5][4] = 6;

934 }

935

936 //A simple function to compute the total size of a map , not only that of its outer part.

937 // Needed to a good computation of the size of a map , since by erasing its inner elements

the outer size is not decreased.

938 int total_size_of_map(const map_of_transitions_type &nodes)

939 {

940 int total_size = 0;

941 for(map_of_transitions_type :: const_iterator i=nodes.begin (); i!=nodes.end(); i++)

942 total_size += i->second.size();

943 return total_size;

944 }

945

946 void save_current_step(const map_of_transitions_type &nodes ,

947 const map_of_transitions_type &Minimum_outgoing_arcs ,

948 const map_of_transitions_type &arcs_removed_from_M ,

949 const map_of_transitions_type &optimal_W_graph ,

950 const std::vector < std::vector <int > > &cycles_i ,

951 const std::vector < std::vector <int > > &Bi_indexes ,

952 const std::vector < std::tuple <int ,int ,double > > &min_arc ,

953 const int k)

954 {

955 ofstream output_file;

956 output_file.open("saved_nodes.txt");

957

958 for(map_of_transitions_type :: const_iterator i = nodes.begin (); i!=nodes.end(); i++)

959 for(std::map <int ,double >:: const_iterator j = i->second.begin(); j!=i->second.end

(); j++)

960 output_file << i->first << "\t" << j->first << "\t" << j->second << "\n";

961

962 output_file.close();

963

964

965 output_file.open("saved_M.txt");

966

967 for(map_of_transitions_type :: const_iterator i = Minimum_outgoing_arcs.begin(); i!=

Minimum_outgoing_arcs.end(); i++)

968 for(std::map <int ,double >:: const_iterator j = i->second.begin(); j!=i->second.end

(); j++)

969 output_file << i->first << "\t" << j->first << "\t" << j->second << "\n";

970

971 output_file.close();

972

973

974 output_file.open("saved_G.txt");

975

976 for(map_of_transitions_type :: const_iterator i = arcs_removed_from_M.begin (); i!=

arcs_removed_from_M.end(); i++)

977 for(std::map <int ,double >:: const_iterator j = i->second.begin(); j!=i->second.end

(); j++)

978 output_file << i->first << "\t" << j->first << "\t" << j->second << "\n";

979

980 output_file.close();

981

982

983 output_file.open("saved_W_graph.txt");

984

985 for(map_of_transitions_type :: const_iterator i = optimal_W_graph.begin(); i!=

optimal_W_graph.end(); i++)
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986 for(std::map <int ,double >:: const_iterator j = i->second.begin(); j!=i->second.end

(); j++)

987 output_file << i->first << "\t" << j->first << "\t" << j->second << "\n";

988

989 output_file.close();

990

991

992 output_file.open("saved_cycles.txt");

993

994 for(std::vector < std::vector <int > >:: const_iterator i=cycles_i.begin (); i!= cycles_i.

end(); i++)

995 {

996 output_file << (*i).size() << "\n";

997 for(std::vector <int >:: const_iterator j = (*i).begin(); j!=(*i).end(); j++)

998 output_file << (*j) << "\n";

999 }

1000

1001 output_file.close();

1002

1003

1004 output_file.open("saved_Bi.txt");

1005

1006 for(std::vector < std::vector <int > >:: const_iterator i=Bi_indexes.begin(); i!=

Bi_indexes.end(); i++)

1007 {

1008 output_file << (*i).size() << "\n";

1009 for(std::vector <int >:: const_iterator j = (*i).begin(); j!=(*i).end(); j++)

1010 output_file << (*j) << "\n";

1011 }

1012

1013 output_file.close();

1014

1015

1016 output_file.open("saved_min_arc.txt");

1017

1018 for(std::vector < std::tuple <int ,int ,double > >:: const_iterator i=min_arc.begin (); i!=

min_arc.end(); i++)

1019 {

1020 output_file << std::get <0>(*i) << "\t" << std::get <1>(*i) << "\t" << std::get

<2>(*i) << "\n";

1021 }

1022

1023 output_file.close();

1024

1025

1026 output_file.open("saved_k.txt");

1027

1028 output_file << k;

1029

1030 output_file.close();

1031 }

1032

1033 void load_current_step(map_of_transitions_type &nodes ,

1034 map_of_transitions_type &Minimum_outgoing_arcs ,

1035 map_of_transitions_type &arcs_removed_from_M ,

1036 map_of_transitions_type &optimal_W_graph ,

1037 std::vector < std::vector <int > > &cycles_i ,

1038 std::vector < std::vector <int > > &Bi_indexes ,

1039 std::vector < std::tuple <int ,int ,double > > &min_arc ,

1040 int &k)

1041 {

1042 ifstream input_file;
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1043 input_file.open("saved_nodes.txt");

1044

1045 int first_state;

1046 int second_state;

1047 double weight;

1048

1049 nodes.clear ();

1050 while(! input_file.eof())

1051 {

1052 input_file >> first_state >> second_state >> weight;

1053 nodes[first_state ][ second_state] = weight;

1054 }

1055 input_file.close ();

1056 std::cout << "nodes read\n";

1057

1058 input_file.open("saved_M.txt");

1059

1060 Minimum_outgoing_arcs.clear();

1061 while(! input_file.eof())

1062 {

1063 input_file >> first_state >> second_state >> weight;

1064 Minimum_outgoing_arcs[first_state ][ second_state] = weight;

1065 }

1066

1067 input_file.close ();

1068 std::cout << "M read\n";

1069

1070 input_file.open("saved_G.txt");

1071

1072 arcs_removed_from_M.clear();

1073 while(! input_file.eof())

1074 {

1075 input_file >> first_state >> second_state >> weight;

1076 arcs_removed_from_M[first_state ][ second_state] = weight;

1077 }

1078

1079 input_file.close ();

1080 std::cout << "G read\n";

1081

1082 input_file.open("saved_W_graph.txt");

1083

1084 optimal_W_graph.clear ();

1085 while(! input_file.eof())

1086 {

1087 input_file >> first_state >> second_state >> weight;

1088 optimal_W_graph[first_state ][ second_state] = weight;

1089 }

1090

1091 input_file.close ();

1092 std::cout << "W_graph read\n";

1093

1094 input_file.open("saved_cycles.txt");

1095

1096 int size_of_vector = 0;

1097 int element;

1098

1099 cycles_i.clear();

1100

1101 while(! input_file.eof())

1102 {

1103 vector <int > aux_vector;

1104 input_file >> size_of_vector;
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1105 for(int i=0; i<size_of_vector; i++)

1106 {

1107 input_file >> element;

1108 aux_vector.push_back(element);

1109 }

1110 cycles_i.push_back(aux_vector);

1111 }

1112

1113 input_file.close ();

1114 std::cout << "cycles read\n";

1115

1116 input_file.open("saved_Bi.txt");

1117 size_of_vector = 0;

1118

1119 Bi_indexes.clear ();

1120 while(! input_file.eof())

1121 {

1122 vector <int > aux_vector;

1123 input_file >> size_of_vector;

1124 for(int i=0; i<size_of_vector; i++)

1125 {

1126 input_file >> element;

1127 aux_vector.push_back(element);

1128 }

1129 Bi_indexes.push_back(aux_vector);

1130 }

1131

1132 input_file.close ();

1133 std::cout << "Bi_indexes read\n";

1134

1135 input_file.open("saved_min_arc.txt");

1136

1137 min_arc.clear ();

1138 while(! input_file.eof())

1139 {

1140 input_file >> first_state >> second_state >> weight;

1141 min_arc.push_back(std:: make_tuple(first_state , second_state , weight));

1142 }

1143

1144 input_file.close ();

1145 std::cout << "min_arc read\n";

1146

1147 input_file.open("saved_k.txt");

1148

1149 input_file >> k;

1150

1151 input_file.close ();

1152 std::cout << "k read\n";

1153 }
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