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Resumen

En este trabajo se ha desarrollado un método de reconstrucción 3D de habitaciones a
partir de una única imagen panorámica de 360 grados de campo de vista horizontal.
Este método tiene la principal novedad de combinar razonamientos geométricos de
visión por computador y técnicas de aprendizaje profundo (Deep Learning) adapta-
das a la geometría del tipo de imágenes que proponemos utilizar. Nuestro método
utiliza la extracción de esquinas estructurales como punto de partida para elabo-
rar hipótesis sin información previa acerca de la forma de la habitación y con la
única restricción de Mundo Manhattan. En particular, dichas esquinas se extraen
como intersecciones entre líneas que son ortogonales en el espacio 3D. Este proceso
se ha mejorado con el uso de una Red Neuronal Convolucional que detecta bordes
estructurales y permite filtrar líneas pertenecientes a otros objetos no relevantes. A
partir de estas posibles esquinas dibujamos hipótesis de diseño y escogemos aquella
solución que encaja mejor con el mapa de normales obtenido con otro método de
aprendizaje profundo. En este trabajo se muestran resultados de reconstrucciones
3D con imágenes de la base de datos pública SUN360 usada por otros trabajos del
estado del arte. Con ellos demostramos la efectividad del método con respecto a
trabajos existentes y las ventajas de introducir redes neuronales profundas en el
desarrollo del proceso.





Abstract

In this work we have developed a method for 3D layout recovery of indoor scenes
from a single 360 degrees panoramic image. This method has the main novelty
of combining geometric reasoning on computer vision and deep learning techniques
adapted to the proposed image geometry. Our method uses the extraction of struc-
tural corners as a starting point to construct layout hypotheses assuming Manhattan
World and without any prior information about the room shape. In particular, cor-
ners are extracted as intersections of lines that are orthogonal in 3D space. This
process has been enhanced with a Convolutional Neural Network that detects struc-
tural edges and allows filtering lines belonging to other non-relevant objects. From
these possible corners we draw layout hypotheses and choose the best fitting so-
lution to the normals’ map extracted with another CNN. We show results of 3D
layouts recovered from images of the SUN360 public dataset. We demonstrate the
effectiveness of our method with respect to existing works and the advantages of the
introduction of deep neural networks in the pipeline of the process.
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Capítulo 1

Introducción

La visión es el sentido más importante que tiene el ser humano ya que es el que nos
permite obtener más información de nuestro entorno de una manera rápida y efecti-
va. La visión artificial o visión por computador es un campo esencial de la inteligencia
artificial cuyo objetivo es conseguir que los ordenadores vean extrayendo informa-
ción del mundo a través de las imágenes obtenidas por una cámara. Esta disciplina
cubre un amplio abanico de problemas y técnicas tales como el reconocimiento de
patrones (e.g. reconocimiento facial Fig. 1.1a), la reconstrucción de modelos del en-
torno, la identificación y seguimiento de objetos o la localización (e.g. Seguimiento
de personas Fig. 1.1b).

(a) Detección Facial (b) Seguimiento de personas

Figura 1.1: Ejemplos de aplicaciones y problemas de la visión por computador

Uno de los problemas fundamentales de investigación en este campo es la re-
construcción 3D de una escena a partir de una única imagen. El problema ha sido
abordado por muchos investigadores que, a lo largo de los años, han experimentado
con distintos tipos de imágenes llegando a enfrentarse a imágenes omnidireccionales
y dejando atrás las imágenes convencionales con campos de vista más limitados.
Además, se han probado diversas aproximaciones incluyendo en la etapa más re-
ciente técnicas de aprendizaje profundo (Deep Learning) con el objetivo de mejorar
el estado del arte.

Gracias a las nuevas tecnologías, contamos a día de hoy con infinitas posibilida-
des que ayudan a lograr resultados impresionantes y es importante aprovecharlas y
exprimir sus numerosas ventajas.

1



1.1 Motivación
En los últimos años ha crecido el interés por la comprensión y la reconstrucción 3D
de escenas debido al paso esencial que ha supuesto en el campo de la visión artificial.
Recientemente está siendo de gran utilidad para muchas tareas tales como la nave-
gación en interiores, SLAM [17], coches autónomos, realidad virtual y aumentada y
robótica en general.

En la Fig. 1.2a aparece la imagen de una aplicación desarrollada por Moon Flower
technologies . Se trata de una representación virtual con realidad aumentada de la
habitación de un hotel. Los sistemas visuales artificiales y en particular aquellos
basados en visión estereoscópica o 3D pueden ayudarnos notablemente a reconstruir
la escena y detectar los objetos que se encuentran ella, con el objetivo de etiquetar
la realidad, añadir información de su estructura, disposición, color o identificación,
e introducir objetos virtuales.

La Fig. 1.2b muestra un ejemplo donde interesa la reconstrucción 3D de un
escenario, en este caso exterior, con el objetivo de que un coche autónomo sea capaz
de navegar por dicho escenario o realizar acciones más complejas como por ejemplo
la de aparcar por si mismo.

Por otro lado, es conocida por todos la aplicación Google Maps de Google que
ofrece un excelente servicio de navegación en exteriores. En la Fig. 1.2c se muestra
un nuevo proyecto de Google Tango que aborda esta vez la navegación en interiores
y que fue utilizada en el tour de un museo en el Mobile World Congress 2016.

(a) Realidad aumentada (b) Coches autónomos (c) Navegación en interiores

Figura 1.2: Aplicaciones de la comprensión y reconstrucción 3D de espacios

Una imagen es una proyección 2D del mundo 3D, lo cual hace que se pierda una
dimensión. A través de razonamientos puramente geométricos es imposible inferir
el 3D de una escena a partir de una sola imagen salvo que se realicen hipótesis
adicionales (e.g. asunción de un mundo Manhattan [4]). Un reto importante de este
trabajo es el de integrar ese tipo de hipótesis y tratar de inferir el layout 3D de
escenas de interior aprovechando técnicas de aprendizaje profundo.

1.2 Estado del arte
Dado que este trabajo engloba distintas contribuciones en aspectos muy interesantes
cada uno de ellos por separado, procedemos en esta sección a describir algunos de
los trabajos más relevantes de cada uno de ellos organizados en subsecciones sepa-
radas. En la subsección 1.2.1 nos centramos en los trabajos de reconstrucción 3D
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(a) Simplificación caja 3D (b) Reconstrucción con imágenes convencionales

Figura 1.3: Limitaciones de la reconstrucción de layouts con imágenes convenciona-
les.

de layouts o diseño de habitaciones en general. A lo largo del trabajo nos referire-
mos con ambas expresiones indistintamente a este término. En la subsección 1.2.2
hablamos de los distintos tipos de imágenes que se utilizan en la literatura con este
propósito centrándonos sobretodo en la tipología de imagen por la que hemos apos-
tado nosotros, las imágenes omnidireccionales. Por último, la subsección 1.2.3 recoge
trabajos que apuestan por las novedosas redes neuronales enfocadas a fines similares
o relacionados con el tema que pueden resultar igualmente muy interesantes.

1.2.1 Reconstrucción del Layout

Probablemente el primer intento de abordar el desafío de realizar reconstrucciones
3D de espacios interiores a partir de una única imagen fueron Delage et al. en [6], cuyo
algoritmo encuentra límites entre el suelo y las paredes de habitaciones usando un
modelo de red Bayesiano. Un ejemplo de este trabajo se muestra en la Fig. 1.3b. Por
otro lado, Lee et al. [15] utiliza segmentos de líneas para generar hipótesis de diseño
evaluando su validez con un Orientation Map (OM), i.e. mapa con la orientación de
cada superficie de la imagen, pudiendo así evitar confiar en propiedades específicas
de la escena como colores o gradientes de la imagen.

Desafortunadamente, las habitaciones suelen estar llenas de objetos que oclu-
yen los bordes que realmente pertenecen a la estructura real de la habitación (e.g.
bordes entre paredes o entre paredes y suelo) así como las esquinas, lo cual ha-
ce que aparezcan segmentos de líneas engañosos que alteran la estimación de la
reconstrucción del diseño de la escena. Para combatir este problema se hacen algu-
nas suposiciones y, consecuentemente, se proponen un conjunto de reglas basadas
en cierta coherencia física. Por lo general, los principales supuestos son que todas
las estructuras en ambientes interiores están compuestas por superficies planas y
que estas superficies están orientadas de acuerdo con tres direcciones ortogonales
principales (conocida como suposición de Manhattan World [4]). Esta suposición se
da para la mayoría de los ambientes interiores, y es ampliamente utilizada en la
literatura [12, 18, 21, 22, 27, 28, 31].

Otros trabajos [10, 11, 23], tratan de simplificar el problema asumiendo que la
habitación es una caja 3D de cuatro paredes, y utilizan el mapa de características
llamado Geometric Context (GC), i.e. etiquetas geométricas como contexto para la
detección de objetos, en lugar del Orientation Map (OM), lo cual ayuda a detectar
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Figura 1.4: Estimación de layout y objetos de [27]

el desorden de la escena (e.g. muebles, plantas...). En algunos de estos trabajos,
los objetos son detectados y tratados también como cajas que delimitan los bordes
de estos. Probablemente los primeros en modelar la interacción 3D entre objetos
y layout fueron Gupta et al. en [8]. Un ejemplo de las simplificaciones a cajas se
muestra en la Fig. 1.3a.

1.2.2 Reconstrucción del Layout en Imágenes omnidireccio-
nales

La mayoría de los trabajos enfocados a este fin utilizan imágenes convencionales
con campo de vista limitado, lo cual impide una reconstrucción total de la escena
o implica “inventar” partes de ella que no vemos y que pueden no ajustarse a la
realidad (e.g. en Fig. 1.3).

Recientemente, sin embargo, se han propuesto algunas alternativas para ampliar
el campo de vista. Lopez-Nicolas et al. en [16] llevan a cabo la recuperación del layout
utilizando un sistema catadióptrico. Perez-Yus et al. en [21] realizan las hipótesis
para la reconstrucción del layout combinando imágenes tomadas por una cámara
de ojo de pez (180 grados de campo de visión horizontal) y con información de
profundidad dada por un sensor RGB-D para proporcionar una escala.

Actualmente, y con el fin de acabar con los problemas recientemente menciona-
dos, se están utilizando incluso imágenes panorámicas de 360 grados de campo de
vista horizontal. Este tipo de imágenes son muy fáciles de obtener a día de hoy con
matrices de cámaras, lentes especiales o algoritmos de combinación automática de
imágenes [9]. En [12], su método muestra las ventajas de contar con un campo
de vista completo sobre vistas parciales de la misma escena en comparación con
métodos previos. PanoContext [31] hace uso de panoramas para estimar tanto el
layout de la habitación como las cajas asociadas a cada objeto que se encuentra
en su interior. También ellos asumen como simplificación la habitación como una
caja 3D de cuatro paredes. De manera similar, Jiu Xu et al. en [27] proporciona
resultados que no se limitan a simples cajas 3D a la hora de estimar el diseño de
la habitación y confía, al igual que en [31], en mapas de características como GC o
OM. Un ejemplo de su output se muestra en la Fig. 1.4. Probablemente, estos dos
últimos trabajos mencionados [31, 27] son los que más nos han servido de inspira-
ción a la hora de afrontar nosotros este desafío. En [28] por otro lado, haciendo uso
de este mismo tipo de imágenes, tratan el problema como un gráfico con líneas y
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superpíxeles como nodos y lo resuelven con complejas restricciones geométricas en
lugar de evaluar con los mapas de características mencionados anteriormente.

Las imágenes omnidireccionales no solo están teniendo un gran impacto en el
problema de la reconstrucción 3D de distintos escenarios. Debido a su reciente po-
pularidad, otros investigadores se han fijado en ellas. Jianxiong et al. por ejemplo,
en su trabajo [26], se centra en resolver el problema de clasificar el tipo de lugar
que aparece en el panorama así como en reconocer el punto de vista del observador
dentro de esa categoría de lugar.

1.2.3 Redes Neuronales Convolucionales

Las Redes Neuronales Convolucionales (también llamadas CNNs, del inglés Convo-
lutional Neural Network) son un tipo de red neuronal artificial con la característica
peculiaridad de hacer la suposición explícita de que las entradas a la red son imá-
genes. Dicha red es feed-forward, i.e. la información se mueve a lo largo de la red
únicamente hacia adelante, desde los nodos de entrada, a través de los nodos ocul-
tos (si los hay) a los nodos de salida. No hay ciclos ni bucles en la red. Se trata
de un modelo computacional diseñado para emular el comportamiento de la corteza
visual. Las células neuronales de la corteza visual son sensibles a regiones específicas
del campo visual y todas ellas producen percepción visual. Es la base detrás de las
CNNs, donde los filtros buscan características específicas en la imagen de entrada
y aprenden de ellas, abordando temas clave de la visión artificial con precisión y
rapidez.

En los últimos años, los investigadores han abordado también el problema de la
reconstrucción de layouts con estas Redes Neuronales Convolucionales obteniendo
muy buenos resultados. Por ejemplo, [29] utiliza una CNN para segmentar el plano
del suelo superando a los métodos tradicionales. DeLay [5] proporciona mapas de
escenas con cinco etiquetas asociadas a suelo, techo y a las tres paredes visibles en
imágenes convencionales. Algunos trabajos utilizan CNNs para extraer información
de los bordes estructurales de escenas de interior, siendo capaces de encontrarlos
con bastante precisión incluso en presencia de oclusiones [18, 30], un ejemplo de
ello se aprecia en la Fig. 1.5. Por otro lado, en [14] predicen la localización de las
esquinas de la habitación usando RoomNet, una red encoder-decoder en la cual se
entrenan todos los parámetros a la vez. También en este trabajo se simplifican las
habitaciones a cajas de cuatro paredes. Un ejemplo del output de esta red se puede
ver en la Fig. 1.6.

Otros trabajos de deep learning no están en principio relacionados con la recons-
trucción de layouts pero generan resultados que pueden resultar de mucho interés
para este tipo de tareas. Por ejemplo, Eigen et al. [7] utiliza tres CNN apiladas pa-
ra procesar las imágenes en tres diferentes escalas, extrayendo una estimaciones de
profundidad, estimaciones de las direcciones normales de las superficies y etiquetas
semánticas a partir de simples imágenes RGB. Redes como esta pueden proporcional
información derivada de la profundidad similar a la que se consigue típicamente con
cámaras RGB-D, aunque de manera menos fiable.

Este tipo de CNNs han demostrado obtener muy buenos resultados pero siempre
centrándose en imágenes tradicionales con campo de vista limitado, dificultando así
su uso con imágenes omnidireccionales.

Muy recientemente han comenzado a combinarse este tipo de técnicas de deep
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Figura 1.5: Ground Truth vs. mapa estructural obtenido por la red de Mallya et al.
[18]

Figura 1.6: ]
Detección de esquinas con la red neuronal de [14]

learning con las de visión artificial tradicionales. Yuzhuo et al. [22] proponen un
método de dos fases: una primera en la que estiman aproximadamente el layout con
una red neuronal, y una segunda fase de optimización.

1.3 Objetivos
En este trabajo, proponemos un método que combina técnicas de razonamiento geo-
métrico y técnicas de aprendizaje profundo (deep learning) para estimar el diseño
completo 3D de una escena de interior a partir de una única imagen RGB panorá-
mica.

A pesar de su complejidad adicional, elegimos imágenes panorámicas ya que, gra-
cias a su amplio campo de vista, es posible acceder a toda la información de la escena
de una vez, incluyendo la parte del techo que suele no ser visible en imágenes con-
vencionales y que, al ser la parte normalmente con menos oclusiones, puede resultar
muy útil a la hora de buscar información relevante para la reconstrucción, permi-
tiendo obtener soluciones de habitación cerradas basadas en la mejor distribución
total de la escena.

Además, a diferencia de trabajos anteriores [15, 31, 21], nuestro método apro-
vecha el aprendizaje profundo a lo largo del proceso. Investigaciones recientes en
el campo, muestran que estos enfoques basados en grandes cantidades de datos su-
peran a los métodos tradicionales, que necesitan elaborar razonamientos cada vez
más complejos para tener éxito en nuevos problemas o para cumplir los requisitos
de precisión actuales.
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La principal novedad de nuestro trabajo es la explotación de trabajos de aprendi-
zaje profundo para imágenes panorámicas aplicadas al problema de la estimación de
layouts, para lo cual proponemos un nuevo método flexible que integra técnicas an-
tiguas y nuevas, sin restricciones de forma de caja 3D de cuatro paredes, calibración
de cámaras o campo de vista.

Input image

Line segments and 
vanishing points

Probability edge map
Layout hypotheses

generation

Normals map

Candidate corners 
from significant lines

...

LAYOUT
HYPOTHESES 
EVALUATION

Geometric
reasoning

Final room model 

FCN

CNN

Figura 1.7: Descripción general del algoritmo.

Una visión general de nuestro método se muestra en la Fig. 1.7: En primer lugar,
extraemos segmentos de línea y los puntos de fuga del panorama. Paralelamente, el
panorama se ejecuta a través de la red de [18] que permite filtrar líneas no informa-
tivas procedentes del desorden de la escena. A continuación, las líneas significativas
se utilizan para extraer esquinas como intersecciones de líneas ortogonales, que lue-
go se utilizan para dibujar hipótesis de diseño de diversas formas. Las hipótesis se
comparan con un mapa de normales de referencia obtenido con otra CNN [7]. La
solución que más se ajusta a este mapa de normales es el modelo de habitación final.

La evaluación experimental con imágenes panorámicas de la base de datos pública
SUN360 [26] de escenas interiores muestra una mejora con respecto a otros trabajos
del estado del arte y revela las ventajas de utilizar redes neuronales profundas en el
proceso.
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Capítulo 2

Imágenes panorámicas

Panorama

Lo que ven tus ojos Lo que ve una cámara 
convencional

Figura 2.1: Importancia visual de las diferencias en el campo de vista entre una
imagen panorámica, una imagen convencional y lo que vemos las personas.

En este trabajo hemos apostado por utilizar imágenes panorámicas como entrada
a nuestro algoritmo con el objetivo de llevar a cabo la reconstrucción de layouts. La
Fig. 2.1 muestra un ejemplo de la diferencia de cómo vemos una escena en función
del campo de vista.

Cada vez más nos estamos acostumbrando a ver imágenes de este tipo, sin embar-
go, la complejidad del tipo de proyección que emplean hace que no sea tan intuitivo
o directo comprender las proporciones o la distribución de las escenas que estas imá-
genes muestran. Esto es debido a que, tratándose de una proyección esférica, lo que
veríamos como una línea recta en la realidad o en una imagen convencional, aparece
como una línea curva en la imagen panorámica (Ver Fig. 3.1). Además, el ser hu-
mano no es capaz de ver lo que hay detrás de sí mismo y sin embargo sí es posible
con estas imágenes, lo cual muchas veces resulta extraño para nuestro cerebro.
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2.1 Modelo de proyección esférica
Dada la importancia y la poca convencionalidad de este tipo de imágenes hemos
considerado importante dedicar una sección al tipo de proyección característico de
las imágenes panorámicas y a cómo se ha trabajado con ellas, dado que ha supues-
to un reto importante en el inicio de este trabajo. Con esto hacemos referencia a
la proyección esférica o proyección equirectangular, que es la propia de los mapas
del mundo que estamos acostumbrados a ver, en la que los polos se encuentran
deformados. Ver Fig. 2.2.

Figura 2.2: Proyecciones más comunes según su campo de vista (en orden): Esférica,
Cilíndrica, Rectilinear y Ojo de pez.

En esta sección por tanto, se procede a detallar el paso de coordenadas esféricas
a coordenadas en la imagen.

Definimos la resolución de la imagen panorámica como W × H píxeles, siendo
W la anchura de la imagen y H, la altura de ésta. Este tipo de imágenes no requiere
reproyección, como es el caso de la proyección cilíndrica. La textura es simplemente
reciclada y guardada en un sistema de coordenadas de latitud / longitud que cubre
360 grados de campo de vista horizontal y 180 grados de campo de vista vertical,
por lo tanto podemos saber que W = 2H. Situamos el centro de coordenadas en el
centro de la imagen, i.e. (W

2
, H

2
).

En este tipo de representaciones, tanto de interiores como de exteriores, se es-
tablece normalmente una altura para la línea de horizonte de aproximadamente la
media de una persona, asumimos por tanto que el centro de la cámara esta situado
a una altura de e.g. 1.7 m.

El sistema de coordenadas esféricas se utiliza para determinar la posición espacial
de un punto mediante una distancia y dos ángulos. En consecuencia, un punto
P (X, Y, Z) queda representado por un conjunto de tres magnitudes: la distancia en
píxeles sobre la imagen (u o v), el colatitud θ y el azimut φ. El colatitud θ es el
ángulo complementario de la latitud, i.e. cubre desde -90 grados a +90 grados, y el
azimut φ se refiere al ángulo de la orientación sobre la superficie de una esfera real
o virtual y cubre desde -180 grados a +180 grados.

La transformación de las coordenadas esféricas a las coordenadas en la imagen
se pueden apreciar visualmente en la Fig. 2.3 y a continuación se muestran los pasos
a seguir en detalle:

Paso de coordenadas 3D en el mundo P(X,Y,Z) a su proyección sobre la esfera
unidad p(x,y,z)

(x, y, z) =
1√

X2 + Y 2 + Z2
(X, Y, Z)

Paso a coordenadas esféricas

(sinφ · cosθ, cosθ · cosφ, sinθ) = (x, y, z)
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Convertir a coordenadas de imagen (u,v)

(u, v) = (φ
W

2π
+
W

2
, θ
H

π
+
H

2
)

Los ángulos φ y θ quedarían por tanto:

φ =
(u− W

2
) · 2π

W

θ =
(v − H

2
) · π

H

Este cambio de coordenadas esta muy presente a lo largo de todo el trabajo ya
que precisamente el objetivo de éste es trasladar la información de la imagen a una
reconstrucción 3D de la misma.

Además, como consecuencia del tipo de proyección, no se pueden aplicar directa-
mente la mayoría de los métodos del estado del arte a estas imágenes, i.e. extractores
de líneas y puntos de fuga, redes neuronales, etc. Lo cual nos llevará a lo largo del
trabajo a proponer nuevos algoritmos adaptados a su geometría y a su adaptación
para el uso de cualquier red neuronal de la literatura, empleando en este trabajo dos
de ellas, [18, 7].

Figura 2.3: Proyección esférica
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Capítulo 3

Razonamiento Geométrico basado en
Visión Artificial

En este capítulo presentamos las principales tareas llevadas a cabo para la obtención
y clasificación de las piezas de información básicas de nuestro método: las líneas. Es-
tas tareas se basan en técnicas de visión artificial y han sido abordadas por múltiples
trabajos a lo largo de los años [15, 12, 21, 31].

3.1 Extracción de Líneas en Imágenes Panorámicas
Nuestra propuesta comienza con la extracción de líneas de la imagen panorámica.
Existen muchos enfoques para cámaras omnidireccionales, como [2] que es capaz de
extraer las líneas para una amplia variedad de sistemas dióptricos y catadióptricos
sin necesidad de calibración previa. Otra alternativa es [16], que utiliza la toolbox
de Matlab de Bazin adaptando las ecuaciones para un sistema hipercatadióptrico.
PanoContext [31] trabaja con panoramas y los divide en un conjunto de imágenes
en perspectiva y ejecuta el algoritmo LSD (Line Segment Detection) [25] en cada
una de ellas por separado y luego proyecta las líneas de nuevo al panorama. [20]
extiende el método LSD para hacer frente a panoramas utilizando un detector de
arcos en grandes círculos.

Nosotros hemos desarrollado un método basado en el procedimiento RANSAC
(RANdom SAmple Consensus) [32] que utiliza directamente el panorama sin ne-

Figura 3.1: Líneas en la realidad proyectadas en la imagen esférica como arcos de
un gran círculo. (Imagen de Seon Ho oh et al. [19])
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Figura 3.2: Representación del plano proyectivo 3D que incluye la línea y el centro
de la cámara con su vector normal.

cesidad de dividirlo o hacer rectificaciones. De esta manera logramos evitar líneas
duplicadas procedentes de diferentes divisiones, así como obtener segmentos de línea
completos mejorando la posterior generación de hipótesis y la eficiencia global del
método.

Dado que estamos trabajando con imágenes panorámicas, se debe tener en cuenta
que una línea recta en el mundo, Li, es proyectada como un segmento de arco en
un gran círculo sobre la esfera, Ci, y por tanto, aparece como un segmento de línea
curva en la imagen. Por este motivo, cada segmento de arco es representado por el
vector normal, ni, del plano proyectivo, πi, que incluye la propia línea y el centro
de la cámara (ver Fig. 3.2). Además, debido a las características de este tipo de
proyección, las líneas que son paralelas en el mundo son proyectadas en la esfera
intersectándose en dos puntos antipodales, v−v′. En la Fig. 3.1 aparece representado
este fenómeno.

Nuestro método se basa en extracción de contornos y el concepto de normales
de las líneas. En primer lugar aplicamos un filtro Canny [3], que permite detectar
bordes en imágenes. Individualizamos los N bordes, l1..N , y eliminamos aquellos que
están repetidos o cuya longitud es menor a un determinado threshold que decidimos
experimentalmente, ya que asumimos que no pertenecen a bordes estructurales de
la escena si no a pequeños objetos que podrían dar lugar a confusiones.

A continuación, partiendo de los bordes recién obtenidos en la imagen aplicamos
nuestro algoritmo tipo RANSAC que desarrollamos como se explica a continuación.
Este procedimiento elige inicialmente de manera aleatoria dos puntos en la imagen,
(pi, pj), que se corresponden en el espacio 3D con dos rayos, (ri,rj), de uno de los
bordes lk para generar líneas candidatas de la imagen que son votadas por el resto
de puntos del mismo borde. Para ello, se computa su producto vectorial obteniendo
así una posible dirección normal para este grupo de puntos, nk = (rki × rkj ). La
normal obtenida se compara con el resto de rayos del grupo considerándose inliers

12



Algorithm 1 Line extraction from panorama - RANSAC algorithm

function Line Extraction(bestInliers, bestOutliers)
l ← {r1, r2, ..., ri, ..., rm}
ri ← {xi, yi, zi}
for each edge, l do

for k iterations, do
(ri,rj) ← rays random selection
n ← ri × rj, normalized vector product
α1..m ← angle between n and r1..m
inliers ← r1...m(α1..m ≤ 0.5◦) . ' 90◦

outliers ← r1...m 6⊂ inliers
if n◦inliers > n◦bestInliers then,

bestInliers ← inliers
bestOutliers ← outliers

end if . Best solution is found
end for

end for
end function

del modelo aquellos que cumplen la condición de perpendicularidad con la normal nk

bajo un determinado threshold angular (e.g. 0,5◦) determinado experimentalmente,
y outliers aquellos que no la cumplen. Este procedimiento se repite un número
fijo de veces dado que se trata de un algoritmo iterativo. Finalmente, la iteración
que haya dado lugar a un mayor número de inliers se considera el mejor modelo,
dando la dirección normal que más se ajusta a la línea. A continuación, si el número
de inliers de la línea es superior a la longitud de segmento mínima establecida,
conservamos dicha línea para el siguiente paso del algoritmo. En caso contrario, la
línea es eliminada. Este mismo procedimiento se aplica para cada uno de los bordes
que se habían obtenido anteriormente, permitiéndonos así disponer finalmente de
un conjunto de líneas candidatas de longitud considerable y con su dirección normal
como información, i.e. su orientación. Ver Algoritmo 1.

3.2 Extracción de los Puntos de Fuga en Imágenes
Panorámicas

La estimación de los puntos de fuga en imágenes es muy común en temas de visión
artificial y es un problema que ha sido abordado desde hace más de una década
dado que la identificación de dichos puntos nos permite comprender estructuras 3D
a partir de características 2D. Los puntos de fuga son aquellos puntos en el plano
imagen donde convergen las proyecciones de las líneas paralelas del mundo. Son
características invariantes a escala y rotación, por lo que pueden ser utilizadas para
múltiples tareas como correspondencia entre imágenes, calibración de la cámara o
reconocimiento de objetos.

Para llevar a cabo esta tarea adoptamos la suposición del mundo de Manhattan
[4] por la cual existen tres puntos de fuga ortogonales dominantes en la esfera alinea-
dos con tres direcciones dominantes en el mundo, uno por cada orientación posible
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(a) Puntos de fuga en la esfera (b) Puntos de fuga en la imagen panorámica

Figura 3.3: Representación gráfica, sobre la esfera y sobre la imagen, de los tres
puntos de fuga principales que definen una escena y sus antipodales

de las aristas. Es importante mencionar que las líneas paralelas en el mundo inter-
sectan en un único punto de fuga mientras que en imágenes esféricas las proyecciones
lineales dan lugar a curvas de modo que las líneas paralelas se intersectan en dos
puntos de fuga antipodales. Para la estimación de dichos puntos de fuga elegimos el
trabajo de Seon Ho Oh et al. [19].

A partir de las líneas extraídas siguiendo el método de la Sec. 3.1, obtenemos los
puntos de fuga aplicando de nuevo un algoritmo tipo RANSAC. De la extracción de
líneas anterior, tenemos como información las coordenadas de proyección de cada
línea sobre la esfera unidad y la dirección normal del círculo que forma la línea en
dicha esfera, ni.

El algoritmo tipo RANSAC se inicia con una selección aleatoria de tres líneas de
entre todas las extraídas. Con las dos primeras se computa el primer punto de fuga
(vanishing point en inglés, vp) de manera que vp1 = n1 × n2. El segundo punto de
fuga se computa mediante la intersección del primero y la normal de la tercera línea
elegida por el algoritmo tal que vp2 = vp1 × n3. Por último, el punto de fuga en la
tercera dirección se calcula con los dos anteriores como vp3 = vp1× vp2. Se repite el
proceso para una serie de iteraciones hasta quedarnos con el resultado con el mayor
número de inliers. Se define una línea como inlier cuando su distancia geométrica
es menor de un determinado threshold angular a una de las direcciones principales
(|ni×vpj| ≤ th, con j=1,2 ó 3). Esto implica que la línea está alineada con el mundo
de Manhattan, es decir, la dirección de sus aristas apuntan a los puntos de fuga. En
caso contrario, la línea es descartada.

En la Fig. 3.3a se puede observar la esfera unidad con los tres puntos de fuga
principales y sus antipodales representados en ella. A su lado, Fig. 3.3b un ejemplo
de imagen panorámica con sus puntos de fuga coloreados según la dirección que
representan. En la imagen, el punto de fuga vertical (azul) y su antipodal no aparecen
uno sobre el otro, esto se debe a que realmente cualquier pixel de la primera y de la
última fila están en el mismo ángulo y punto debido a la proyección esférica de la
imagen.
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3.3 Clasificación de Líneas
Los segmentos de línea se clasifican de acuerdo a las direcciones del mundo de
Manhattan, por tanto se asocia cada línea a uno de los tres puntos de fuga existentes
obtenidos como ha sido explicado en el apartado anterior, i.e. a una de las tres
direcciones principales.

Para llevar a cabo tal clasificación sabemos que el vector normal de cada línea
ni debe ser ortogonal a la dirección de Manhattan con la que esta está orientada.
Verificamos el ángulo entre las normales de las líneas y las direcciones de Manhat-
tan. Si la perpendicularidad de la línea satisface un determinado threshold con una
dirección, etiquetamos la línea como orientada en dicha dirección. Aquellas líneas
cuyas normales no son perpendiculares a ninguna de las tres direcciones del mundo
de Manhattan son descartadas.

Las bordes iniciales obtenidos con el filtro Canny se muestran en la Fig. 3.4a.
Por otro lado, las líneas finales extraídas y clasificadas se pueden observar en la
Fig. 3.4b. Las líneas asociadas a la misma dirección de Manhattan se muestran del
mismo color.

(a) Lineas iniciales en el panorama (b) Líneas finales clasificadas según dirección

Figura 3.4: Proceso inicial de obtención y clasificación de líneas y puntos de fuga

En la Fig. 3.4b se ve como el número de líneas detectadas es muy elevado, per-
teneciendo la mayoría de ellas a partes de la escena que no conforman la estructura
principal de la habitación, i.e. aparecen muchas líneas marcando dibujos del suelo,
de las camas y de los muebles que se encuentran repartidos por la habitación en ge-
neral. Se trata de un problema muy común y en este trabajo lo abordaremos de una
manera distinta y mas novedosa con respecto a trabajos anteriores como veremos
más adelante.
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Capítulo 4

Técnicas de Deep Learning

Las Redes Neuronales Convolucionales (CNNs) han sido aplicadas con éxito a una
gran variedad de tareas como reconocimiento de objetos, clasificación de escenas,
segmentación semántica, etc. Pero en los últimos años, debido a los rápidos avances
en este área, los investigadores han explorado la posibilidad de usar este tipo de
redes para estimación de layouts.

En este trabajo no entrenamos directamente una red neuronal de extremo a
extremo (end-to-end) con imágenes omnidireccionales dado que, hasta donde sa-
bemos, no existe ningún dataset con la cantidad suficiente de datos etiquetados o
con la amplia variedad de distribución de datos que es necesaria para entrenar una
red neuronal profunda (DNN). En cambio, existen datasets de escenas de interior
etiquetadas suficientemente grandes que se han utilizado con éxito para entrenar
DNNs (e.g. el conjunto de datos RGB-D de NYUDv2 para segmentación semántica
[24], grabado con cámaras convencionales con sensores de profundidad).

Aquí elegimos utilizar dos CNNs de la literatura entrenadas con imágenes con-
vencionales para las cuales adaptamos tanto la entrada como la salida a la geometría
de imagen propuesta. Por lo tanto, nuestro enfoque demuestra que es posible apro-
vechar estas nuevas técnicas sin necesidad de etiquetar grandes conjuntos de datos
ni de entrenar redes complejas.

Para ello, las imágenes panorámicas son separadas en varias imágenes en pers-
pectiva con cierto solape con un campo de vista similar al de las imágenes con-
vencionales con las que han sido entrenadas. Ejecutamos el algoritmo en cada una
de ellas separadamente y finalmente las juntamos de nuevo en su posición original
mediante warping (pandeo) [26] resolviendo las zonas de solape en cada caso de
distinta manera. Para llevar a cabo la separación del panorama escogemos, por un
lado, los distintos puntos que serán el centro de cada imagen en perspectiva reparti-
dos a lo largo de los 360 grados en horizontal y 180 grados en vertical de la imagen
esférica y, por otro lado, el campo de vista que queremos aplicar a cada una de las
imágenes. La elección del campo de vista se basó en un estudio de funcionamiento
que realizamos para distintas fotos con varios campos de vista, comprobando que
para 70 grados de campo de vista horizontal obteníamos los mejores resultados.

4.1 Detección de Líneas Informativas
Mallya et al. [18] proponen una Fully Convolutional Network (FCN) que ha sido
entrenada para estimar mapas de probabilidades que representan los bordes de la
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Figura 4.1: Entrada y salida de la red neuronal de Mallya et al. [18]

caja 3D proyectada que encaja mejor con la habitación, incluso en presencia de
desorden y oclusiones. El hecho de que sea Fully Convolutional implica que esta
compuesta únicamente por capas convolucionales de inicio a fin, es decir, sin ninguna
capa completamente conectada (fully-conected) típicas en la parte final de las redes
convolucionales originales.

Para mejorar el mapa obtenido de bordes significativos eliminamos el ruido que
devuelve la red en las partes superior e izquierda de la imagen, así como los valores
de los píxels asociados a una menor probabilidad por debajo de un determinado
threshold obtenido experimentalmente (0.2 sobre 1). Este threshold se aplica debido a
que las probabilidades más bajas están asociadas a líneas con menor probabilidad de
ser realmente estructurales y comprobamos que era un valor adecuado para obtener
un resultado más fino.

En la Fig. 4.1 aparece a la izquierda un conjunto de imágenes que representa
las imágenes en perspectiva que introducimos a la red neuronal, y a su derecha se
puede observar el mismo conjunto de imágenes procesadas ya por la red con los
mapas de bordes donde aparecen estos marcados en un blanco graduado en función
de la probabilidad que tienen asociada y el fondo negro.

Figura 4.2: Entrada y salida de la red neuronal. Mapa de bordes estructurales.
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Las zonas de solape han sido abordadas de manera que se elige en cada caso el
valor máximo de probabilidad asociado a cada pixel para no perder información de
manera que, si en una imagen en perspectiva no se ha detectado una línea pero en
la adyacente si, podamos tenerla en cuenta en nuestro algoritmo. En la Fig. 4.2 se
aprecian dos ejemplos donde a la izquierda se ve la imagen panorámica de entrada
y a la derecha el mapa de bordes estructurales que se obtiene a la salida de la red
neuronal.

4.2 Detección de Normales

Figura 4.3: Entrada y salida de la red neuronal de Eigen et al. [7]

Eigen et al. [7] abordan en su trabajo tres tareas: predicción de profundidad,
estimación de las direcciones normales de las distintas superficies y el etiquetado
semántico utilizando una única red convolucional multiescala. Para nuestro trabajo
hemos hecho uso de la parte de la red que extrae las normales de las superficies dado
que nos permite obtener información por cada pixel de la orientación de cada su-
perficie de la habitación. Esto lo utilizamos para evaluar las hipótesis de disposición
de las paredes en lugar de los típicos mapas de características como los Orientation
Maps (OM) o Geometric Context (GC). Eigen et al. llevan a cabo esta estimación
mediante la predicción de las componentes x, y y z de la dirección normal por cada
pixel.

En la Fig. 4.3 aparece en primer lugar un conjunto de imágenes que representa
las imágenes en perspectiva que introducimos a la red neuronal, mientras que a su
derecha se puede observar el mismo conjunto de imágenes procesadas ya por la red
con los colores correspondientes en cada caso a la dirección de la normal de cada
superficie.

En el caso de esta red neuronal, para devolver las imágenes de perspectiva obte-
nidas por la red a la imagen panorámica de nuevo, necesitamos rotar las normales
para establecerlas en un marco de referencia común. Se realizan dos rotaciones, una
primera rotación asociada a aquella llevada a cabo inicialmente para generar dicha
imagen en perspectiva a partir de la imagen panorámica original (con las coordena-
das de los puntos centrales de cada una de ellas mencionados al inicio de la sección)
y una segunda rotación asociada a los puntos de fuga de la imagen panorámica
completa.

Las áreas de solape para este caso se resuelven haciendo la media de los valores
en cada pixel para lograr una mejor continuidad de la imagen global.
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Un ejemplo de la imagen panorámica tras realizar las rotaciones a las normales
obtenidas se puede ver en la Fig. 4.4a. Se ha observado que el techo es la parte peor
estimada por la red ya que las imágenes con las que ha sido entrenada, como se
ha comentado anteriormente, son de campo de vista limitado y en estas no suele
aparecer el techo. A la hora de clasificar las paredes según su dirección de acuerdo
a los puntos de fuga, a estas zonas conflictivas, clasificadas como tal en función de
un threshold angular que determina si pertenecen o no a una dirección principal, les
damos valor 0 para evitar confusiones. Aparecen en negro en la imagen de la Fig.
4.4b.

(a) Mapa de normales sin realizar rotaciones (b) Mapa de normales rotadas

Figura 4.4: Transformación del mapas de normales tras salir de la red neuronal
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Capítulo 5

Estimación del Layout de la
Habitación

Como se ha mencionado varias veces a lo largo del trabajo, nuestro objetivo es
extraer la estructura principal de una habitación, es decir, los bordes entre paredes,
entre paredes y techo y entre paredes y suelo, obviando los objetos que se encuentra
en su interior. Para ello hemos desarrollado un método que genera hipótesis de diseño
de habitaciones a partir de posibles esquinas obtenidas combinando el razonamiento
geométrico aplicado a la imagen panorámica y la información proporcionada por los
procedimientos de deep learning. Nuestro algoritmo se divide en cuatro fases.

5.1 Eliminación de Líneas No Significativas
Es en esta sección donde la Fully Convolutional Network (FCN) propuesta por
Mallya y Lazebnik [18] juega un papel importante.

La principal pieza de información utilizada para crear hipótesis de diseño son
las líneas. Sin embargo, es imposible saber a priori de donde proceden éstas, dado
que pueden provenir tanto de las deseadas intersecciones entre paredes, como de
otros elementos de la escena (e.g. objetos). Con el fin de abordar este problema,
proponemos evaluar las líneas extraídas en la imagen panorámica (Cap. 3) con el
mapa de bordes informativos (Sec. 4.1).

Cada línea viene asociada a una puntuación calculada como la suma de los valo-
res de probabilidad de los píxeles que ocupa en el mapa de bordes. De esta manera,
aquellas líneas cuya probabilidad se encuentre por debajo de un determinado th-
reshold o directamente tengan probabilidad cero, serán eliminadas, mientras que
las otras serán calificadas como líneas significativas. Esto nos permite trabajar di-
rectamente con las líneas que realmente nos dan información más precisa sobre las
estructura principal de la habitación ignorando aquellas que pertenecen al desorden
de la escena, e.g. muebles o plantas. Tras llevar a cabo esta fusión de información,
el número de líneas se ve reducido a una tercera parte o incluso a una cuarta parte
en muchos de los casos.

Un ejemplo de la evolución de este proceso se puede observar en las imágenes que
se muestran a continuación. En la Fig. 5.1a, las líneas extraídas y orientadas en el
Cap. 3 según los puntos de fuga. En la Fig. 5.1b, el mapa de probabilidades de bordes
obtenido de la red neuronal 4.1. En la Fig. 5.1c, las líneas significativas tras combinar
ambas herramientas, orientadas de acuerdo a los puntos de fuga. En estas imágenes
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es posible apreciar claramente la ventaja que ofrece fusionar ambas herramientas.
Se puede observar que prácticamente todas las líneas pertenecientes al parqué, a
las mesillas e incluso muchas de ventanas, cuadros y puertas que suelen dar más
problemas, han sido eliminadas y prácticamente sólo quedan líneas estructurales.

(a) Líneas obtenidas iniciales

(b) Mapa estructural

(c) Líneas significativas

Figura 5.1: Proceso de eliminación de líneas no significativas combinando la extrac-
ción de líneas inicial y la red neuronal de Mallya et al. [18]

5.2 Hipótesis de Esquinas Relevantes
Nuestro proceso de generación de layouts se basa en esquinas, es decir, intersecciones
estructurales entre dos paredes, o entre paredes y techo o suelo.

En el mundo de Manhattan, dos líneas son suficientes para definir una esquina,
por tanto, para obtener todas las esquinas posibles, intersectamos todas las líneas
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(a) Esquinas candidatas sin usar la red neuronal (b) Esquinas candidatas usando la red neuronal

Figura 5.2: Hipótesis de esquinas de techo y suelo en color amarillo y cían respecti-
vamente.

significativas (obtenidas como ha sido indicado en la Sec. 5.1) de diferentes direccio-
nes (x, y, z) dos a dos, siempre y cuando éstas no se crucen (i.e. la extensión de la
línea en la imagen no atraviesa el segmento de la otra). Otros trabajos como [12],
tienden a dar más énfasis a las líneas verticales y a la extensión de estos segmentos
a la hora de definir las esquinas, lo cual puede ser problemático si hay oclusiones o
condiciones de mala luminosidad.

Para obtener la dirección del vector de la esquina basta con realizar el pro-
ducto vectorial de las normales de las líneas que intersectan en dicha esquina,
Cornerxyz = ni × nj. Cada esquina tiene directamente una puntuación asociada
dada por la suma de las puntuaciones de las líneas que la han generado. El proce-
so anterior de eliminación de líneas no significativas hace que estas esquinas sean
ya buenas candidatas para las hipótesis de diseño, no siendo necesario así emplear
algoritmos más complejos de puntuación basados en la longitud de las líneas o dis-
tancias entre estas [21]. La puntuación de las esquinas nos permite eliminar aquellas
con puntuación menor a un determinado threshold determinado experimentalmente
facilitando la posterior generación de hipótesis.

Las imágenes panorámicas tienen la ventaja de proveer una vista completa de
la habitación, permitiéndonos siempre observar techo, paredes y suelo. Esto hace
posible combinar una estimación separada de esquinas en la parte superior y en la
parte inferior de la imagen o, lo que es lo mismo, por encima y por debajo de la línea
de horizonte (lugar geométrico en el cual se encuentran todos los puntos de fuga
de las proyecciones de las rectas horizontales en el espacio). Gracias a esta doble
detección de posibles esquinas, para cada borde estructural tendremos detectada
la esquina de un extremo u otro, haciendo posible obtener la complementaria por
simetría.

Dado que sólo contamos con la dirección del vector de cada esquina y no con sus
coordenadas 3D, asumimos que todos los vectores de las esquinas de cada hemis-
ferio intersectan en un único plano de techo o suelo respectivamente. Los vectores
normales de ambos planos son la dirección vertical del mundo de Manhattan, vpz ó
vp3.

La Fig. 5.2a muestra todas las esquinas candidatas que selecciona el algoritmo
sin utilizar como filtro la red neuronal de Mallya et al. [18]. En contraposición, en
la Fig. 5.2b, aparecen las esquinas candidatas seleccionadas por el algoritmo tras
hacer el filtrado con la red neuronal. En ambas imágenes se pueden observar en
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Figura 5.3: Decisión de la altura de la habitación: La solución que mejor encaja,
cumpliendo con la asunción del mundo de Manhattan, nos proporciona una altura
estimada de la habitación para nuestra hipótesis de diseño. Si la hipótesis obtenida se
corresponde con una altura de habitación desproporcionadamente grande o pequeña,
dicha hipótesis es eliminada.

amarillo las posibles esquinas detectadas sobre la línea de horizonte de la imagen
que irán proyectadas sobre un plano techo y, en azul celeste, las detectadas bajo
la línea de horizonte que se proyectaran en un plano suelo. A simple vista puede
apreciarse la mejora que supone introducir el filtrado de la red, dado que en la Fig.
5.2b se ve claramente que muchas de las esquinas detectadas por nuestro algoritmo
son ya buenas candidatas y que el número total de éstas para la posterior realización
de hipótesis de diseño se reduce notablemente, logrando así reducir el número de
iteraciones para lograr un diseño fiable y por tanto, reducir tiempos.

Más adelante, en la sección de experimentos (Sec. 6), se demuestra, además de
visualmente como acabamos de hacer, numéricamente la mejora de precisión del
algoritmo utilizando la red neuronal y sin utilizarla.

5.3 Generación de Hipótesis de Diseño / Layout
Dado que la generación de hipótesis es siempre un método iterativo y con el fin de
reducir el número de iteraciones necesarias, procedemos inicialmente a realizar una
distribución clara de la escena, dividiendo ésta en cuatro cuadrantes alrededor del
centro de la cámara teniendo en cuenta los puntos de fuga como se muestra en las
Figs. 5.3 y 5.4. Esta distribución resulta muy útil a la hora de inicializar el algoritmo
dado que sabemos que, por ejemplo, en habitaciones de cuatro paredes siempre hay
una esquina en cada cuadrante o, en habitaciones de seis paredes, siempre hay una
esquina en cada cuadrante excepto en uno de ellos donde habrá tres esquinas.

Nuestro algoritmo para la generación de hipótesis de diseño comienza con una
selección pseudo-aleatoria de entre las posibles esquinas. Decimos pseudo-aleatoria
porque la selección esta sujeta a una serie de condiciones que simplifican el proceso:

• Se generan grupos iniciales de tres, cuatro o cinco esquinas de manera aleatoria
en cada iteración

• Al menos debe existir una esquina en tres de los cuatro cuadrantes

• En el grupo seleccionado debe haber al menos una esquina de cada hemisferio
de la imagen, i.e. al menos una esquina de techo y una de suelo. Esta condición
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es importante por dos motivos. Por un lado, nos permite estimar la altura de
la habitación y, por otro lado, nos permite encontrar esquinas que, no siendo
visibles en uno de los hemisferios, si lo son en el otro (e.g. una intersección
entre paredes puede estar ocluida en su parte inferior por un sillón y estar
despejada en su parte superior, o puede estar ocluida en su parte superior por
una cortina y estar despejada en su parte inferior).

Podemos definir por tanto un modelo de layout basado en los puntos de fuga
(vpj, j = 1, 2, 3) de la imagen y en un número de esquinas (corners en inglés, ci)
equivalente al número de paredes que tenga cada habitación (e.g. cuatro o seis).

Layout = (c1, c2, ..., cn, vpj))

Como se muestra en la Fig. 5.3, las esquinas candidatas se proyectan en el plano
x−y del modelo de la esfera y se ordenan de acuerdo a la dirección de las agujas del
reloj. Las esquinas sobre la línea de horizonte se proyectan como un punto (c1, c2 y c3)
en un plano de referencia techo, ceiling plane, mientras que la esquina bajo la línea
de horizonte se proyecta como un rayo (c4) a lo largo del cual se buscará la solución
que mejor se ajuste al modelo de diseño que estamos buscando. A continuación las
hipótesis de diseño se generan uniendo las esquinas en orden, cuando sea posible,
con paredes orientadas en el mundo de Manhattan [4].

Muchos trabajos simplifican el problema estimando habitaciones como cajas 3D
de cuatro paredes, ya sea por falta de información por el uso de imágenes convencio-
nales con menor campo de vista [10, 11, 23] o por restar complejidad al problema
[31]. Aquí hemos querido dar un paso más y para ello nos enfrentamos a diseños más
complejos introduciendo también la posibilidad de estimar esquinas intermedias en-
tre las seleccionadas inicialmente por el algoritmo. En aquellos casos en los que el
conjunto de esquinas seleccionado no puede generar una hipótesis con distintas pa-
redes orientadas que satisfagan la asunción del mundo de Manhattan, se selecciona
un nuevo conjunto de esquinas pasando a la siguiente iteración.

En la Fig. 5.4 se muestran dos ejemplos de generación de hipótesis de diseño para
una habitación de seis paredes. En el ejemplo superior un grupo inicial de esquinas
candidatas aleatorias es seleccionado (c1, c3, c5). A continuación se inicia un proceso
de unión de las esquinas comenzando por c1 y encontrando en primer lugar un
rayo espacial asociado a la esquina de suelo seleccionada. Para encontrar la posición
optima de esta esquina a lo largo de su rayo 3D, el algoritmo busca posibilidades
con las esquinas más cercanas y dibuja una solución intermedia, c2. En el tercer
cuadrante, teniendo en cuenta la dirección de las uniones que se han llevado a cabo
previamente (x ó y), nuestro algoritmo decide cuál es la mejor solución para c4. En
el cuadrante vacío se lleva a cabo una intersección entre las esquinas más cercanas
a éste obteniendo c6. Para cada unión se comprueba la condición del mundo de
Manhattan bajo un determinado threshold angular decidido mediante la realización
de varias pruebas, (90◦±5◦). En la parte inferior se muestra un ejemplo de hipótesis
de diseño errónea que sería descartada por nuestro algoritmo por dos motivos. En
primer lugar sería eliminada por no cumplir la asunción del mundo de Manhattan y
en segundo lugar, en caso de que las paredes fueran más ortogonales y la hipótesis
se llegase a generar, al compararla con el mapa de normales de [7] que utilizamos
para evaluar la coincidencia de píxeles sería baja dado que se habría detectado una
habitación de cuatro pareces y sin embargo es de seis, por tanto una hipótesis así
nunca sería seleccionada por nuestro método como hipótesis final.
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Figura 5.4: Ejemplos de generación de hipótesis de diseño para una habitación de
seis paredes.

Sin pérdida de generalidad, como en trabajos previos [31, 27], asumimos que
el centro de la cámara se encuentra a una determinada altura (e.g. 1.7 metros), lo
que nos permite calcular la posición de ambos planos, techo y suelo, en 3D. Nuestro
método encuentra la altura de techo que hace que la posición 3D de las esquinas
produzca el mejor diseño Manhattan. Gracias a la simetría entre suelo y techo, ya
sea un punto del límite entre las paredes y el techo o un punto entre las paredes y
el suelo, es suficiente para especificar ambos.

5.4 Evaluación de Hipótesis de Diseño / layout
Para todas aquellas hipótesis de diseño 3D de la habitación que no sean descartadas
y que, por tanto, cumplan con la asunción del mundo de Manhattan, se genera un
mapa de normales a partir del resultado obtenido en dichas hipótesis.

Estos mapas son evaluados pixel a pixel con el mapa de normales obtenido a
través de la red neuronal de Eigen et al. [7] explicada en la Sec. 4.2. Aquel que
tenga el mayor número de píxeles coincidentes será la solución final y, por tanto, la
mejor hipótesis de diseño.

Un ejemplo de como se llega a las hipótesis resultantes para habitaciones de
cuatro o seis paredes respectivamente es mostrado a continuación en la Fig. 5.5.
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Figura 5.5: En la primera fila, los mapas de normales obtenidos de la red [7]. En
la fila central, los mapas de normal asociados a las hipótesis de diseño generadas.
En la ultima fila, la imagen con los bordes estructurales y las esquinas tras realizar
la evaluación de hipótesis y obtener aquella para la que los mapas coincidían en un
mayor número de píxeles.
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Capítulo 6

Experimentos

Para la evaluación experimental hemos recogido un subconjunto de 46 imágenes
panorámicas de la base de datos pública SUN360 (SceneUNderstanding360) [26].
La misma base de datos ha sido utilizada en trabajos previos [31, 27, 28].

Estas imágenes cubren 360◦ de campo de vista longitudinal y 180◦ de campo
de vista latitudinal, utilizando proyección esférica o, lo que es lo mismo, proyección
equirectangular. Todas ellas tienen una resolución de 9104×4552 píxeles que reduci-
mos alrededor de seis veces para ahorrar tiempo de computación. Nuestra selección
de imágenes incluye dormitorios con distinto número de paredes.

6.1 Herramientas y tecnología utilizada
A continuación se citan las tecnologías más relevantes que hemos utilizado para cada
una de las partes del proyecto.

Redes Neuronales

• Mapa de bordes de probabilidades: Para la obtención de los mapas de pro-
babilidades que proporcionan la estructura de la estancia se ha usado la red
propuesta por Mallya et al. en [18]. Para ejecutar este modelo de red se ha
utilizado Caffe [13], un framework de redes neuronales.

• Mapa de normales: Para la extracción de las direcciones normales de las dis-
tintas superficies de la imagen se ha utilizado la red que propusieron Eigen et
al. en [7] y también los parámetros de la red. La red esta entrenada utilizando
Theano [1] y hemos utilizado el mismo Framework con interfaz en Python.

Ambas redes han sido ejecutadas en GPU utilizando CUDA.

Desarrollo y experimentos Tanto el algoritmo de tratamiento de imagen, como
la adaptación de las imágenes a las redes neuronales, la generación de hipótesis de
diseño y los experimentos han sido implementados en Matlab. El entorno utilizado
ha sido Ubuntu.
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6.2 Generación de Ground Truth
Para obtener resultados de evaluación hemos creado nuestro propio Ground Truth.
Para ello hemos generado un algoritmo que, a partir de las coordenadas de los puntos
marcados a mano (esquinas) como se muestra en la Fig. 6.1, devuelve un mapa de
normales en el que cada píxel de la imagen está etiquetado según la dirección de la
superficie a la que pertenece.

No es necesario marcar todas las esquinas dado que las oclusiones lo hacen una
tarea difícil. Hemos seguido las mismas condiciones que en la sección 5.3.

Figura 6.1: Ventana de etiquetado de Ground Truth

Zhang et al., para su trabajo PanoContext [31], crearon una herramienta WebGL
de anotación en la web para que cualquier usuario pudiese etiquetar las imágenes
de este mismo dataset. El motivo principal por el cual no hemos aprovechado dicha
anotación es que en PanoContext simplifican el diseño de las habitaciones a cajas de
cuatro paredes y eso nos impide realizar una comparación con nuestros resultados.
Además, el hecho de que haya sido etiquetado por usuarios de la red hace que no sea
un Ground Truth muy preciso como hemos comprobado al observar algunos casos.

6.3 Resultados numéricos
En esta sección evaluamos nuestros resultados calculando el Pixel Accuracy, que mi-
de el nivel de precisión teniendo en cuenta la coincidencia de píxeles entre el Ground
Truth y la mejor hipótesis de diseño obtenida, dividido por el número total de píxe-
les en la imagen. Una explicación más detallada de cómo obtener la coincidencia de
píxeles aparece en la Fig. 6.2. En esta imagen se muestran los mapas de normales
correspondientes a lo que podría ser una hipótesis y el Ground Truth de una mis-
ma imagen, divididos en sus tres canales R,G,B respectivamente. Para obtener la
coincidencia entre ambos mapas se compara cada canal con su correspondiente con
el operador lógico &, que devuelve el valor booleano true si ambos operandos son
true, i.e. devuelve el valor “1” en todos aquellos píxeles que estén en blanco en las
dos imágenes que se comparan. De esta manera se suman todos los valores true de
la comparación de los tres canales obteniendo el número de píxeles que coinciden
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Figura 6.2: Mapas de normales divididos en sus tres canales R,G,B respectivamen-
te.

entre ambos mapas de normales. En el caso de este ejemplo el número de píxeles
coincidentes será bajo.

Pixel Accuracy =
n◦ de pixeles coincidentes
n◦ de pixeles en la imagen

Cada resultado mostrado a lo largo de esta sección es un promedio de las 10
veces que se ha realizado cada experimento. El número de hipótesis generadas se
especifica en cada experimento.

6.3.1 Comparación de nuestro método con el estado del arte

En este apartado llevamos a cabo una comparación con el trabajo PanoContext [31]
dado que, hasta donde sabemos, es el único trabajo del estado del arte cuyo código
esta disponible.

La comparación se lleva a cabo con la primera etapa de su algoritmo en la que
obtienen, al igual que nosotros, estimaciones de diseño de habitaciones. En una
segunda fase, este trabajo realiza detección de objetos y por tanto no tiene sentido
compararnos en dicho punto.

En la Figura 6.3 mostramos un resultado gráfico en el que aparecen reflejados
los resultados de cada trabajo variando el número de hipótesis de diseño evaluadas.

Podemos ver cómo claramente nuestro método supera al de PanoContext. La
diferencia es mayor cuando se extraen pocas hipótesis, y disminuye a medida que
aumenta su número obteniendo la mínima para 100 hipótesis. En particular, nuestro
método con sólo 20 hipótesis proporciona mejores resultados que el de PanoContext
con 100. Este resultado demuestra el buen desempeño de nuestra eliminación de
líneas no significativas que permite a nuestro algoritmo proporcionar mejores hipó-
tesis. Además, todas aquellas habitaciones que cuentan con un diseño más complejo,
son resueltas por nuestro método y no por el suyo, ya que en PanoContext asumen
siempre la simplificación de habitaciones con forma de caja de cuatro paredes.

6.3.2 Eliminación de líneas no significativas con el mapa de
bordes

Para este experimento aplicamos nuestro método con y sin eliminar las líneas no
significativas con el mapa de bordes obtenido usando la FCN de [18]. Seleccionamos
arbitrariamente realizar 100 hipótesis de diseño antes de la evaluación de hipótesis.
En la Fig. 6.4 mostramos un diagrama de barras con el resultado de precisión de
píxeles para cada imagen del conjunto de datos elegido. Podemos observar cómo,
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Figura 6.3: Comparación de nuestro método con el de [31]. Mostramos el Pixel
Accuracy en función del número de hipótesis evaluadas. Nuestro método mejora al
de [31] y es capaz de dar mejores resultados incluso con un número bajo de hipótesis.

en la gran mayoría de los casos, se experimenta una importante mejora en el re-
sultado que no debe ser pasada por alto, obteniendo un 90, 5% de precisión media
introduciendo la red y un 83, 8% sin introducirla. Esta mejora es debida al buen
desempeño que ofrece la eliminación de líneas no significativas, ya que logra man-
tener prácticamente sólo las líneas estructurales de la habitación y rara vez elimina
líneas verdaderamente útiles. Con esto queremos destacar los beneficios de nues-
tro enfoque que aprovecha la ventaja de fusionar métodos clásicos de visión por
computador con nuevas técnicas de aprendizaje profundo.

Figura 6.4: Pixel Accuracy empleando la FCN de [18] para eliminar líneas no signi-
ficativas y sin emplearla. Obtenemos un 90, 5% de precisión media introduciendo la
red y un 83, 8% sin introducirla.

6.3.3 Comparación del mapa de normales con otros mapas
de características del estado del arte

En este experimento ejecutamos nuestro algoritmo como ha sido explicado a lo
largo del trabajo, pero comparamos nuestros resultados sustituyendo el método de
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Figura 6.5: Métodos de evaluación del estado del arte: OM, GC y MM.

evaluación de hipótesis con otros tres del estado del arte. También usamos 100
iteraciones arbitrariamente para este experimento. Optamos por comparar nuestro
método con el Orientation Map (OM) [15], el Geometric Context (GC) [10] y una
combinación de ambos propuesta por los autores de PanoContext [31] a la que
llamamos Merge Map (MM). El MM consiste en utilizar la parte superior del OM y
la parte inferior del GC, lo que mejora los resultados ya que el GC elimina el desorden
que aparece más a menudo en la parte inferior de la imagen (e.g. los objetos). Un
ejemplo de cada uno de ellos se muestra en la Fig. 6.5, observándose en orden el
OM, el GC y el MM, demostrando este último un buen desempeño pero con el coste
de tener que generar los dos anteriores previamente que por sí solos ofrecen un peor
resultado.
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Figura 6.6: Boxplot del nivel de precisión de nuestro método de evaluación de
hipótesis y otras tres alternativas del estado del arte. el Boxplot esta limitado por
los cuartiles 25th y 75th con la mediana en su interior. Los bigotes alcanzan los
valores más extremos y los outliers aparecen marcados con cruces.

En la Fig. 6.6 mostramos un Box-plot con los resultados de nuestro método y los
otros mencionados donde se pueden ver valores mínimos y máximos de cada método,
cuartil superior e inferior, valores de la mediana y valores atípicos o extremos.

Atendiendo a los resultados, podemos ver que nuestro método (media de precisión
de los píxeles de 90.5%) funciona mejor que el OM (89,7%) y el GC (86.64%) por
separado, especialmente si se tiene en cuenta la varianza de los resultados. El MM
funciona ligeramente mejor en media (91.8%) pero genera más outliers. Es de esperar
dado que es un método ad hoc que combina los puntos fuertes del OM y del GC.
Creemos que en nuestro trabajo, la introducción de segmentación de objetos y su
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eliminación del mapa de Normales mejoraría considerablemente los resultados.

6.4 Resultados visuales
En esta sección se muestra una colección de ejemplos de hipótesis finales de la
estimación del diseño de habitaciones con distinto número de paredes. En la columna
de la izquierda se muestran los bordes estructurales de cada habitación en rojo y las
esquinas en amarillo. En la columna de la derecha aparecen las mismas imágenes
con el mapa de direcciones normales de cada superficie superpuesto. Ver Figs. 6.7,
6.8 y 6.9.
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Figura 6.7: Habitaciones de cuatro paredes
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Figura 6.8: Habitaciones de cuatro paredes
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Figura 6.9: Habitaciones de seis paredes
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Capítulo 7

Conclusión

Una de las principales contribuciones de este trabajo ha sido la explotación de técni-
cas de aprendizaje profundo, (deep learning), aplicadas al problema de la reconstruc-
ción 3D de una escena a partir de una única imagen. En concreto, se han aprovechado
las impresionantes ventajas que ofrecen dos redes neuronales de la literatura [18, 7]
y han sido aplicadas en distintas fases de nuestro algoritmo. Otra de las contribu-
ciones de nuestro método esta relacionada con la tipología de imagen que hemos
seleccionado. En este trabajo se ha apostado por imágenes panorámicas debido a
la gran ventaja que ofrecen por poseer un campo de vista completo de las escenas
que muestran. Sin embargo, estas imágenes ofrecen una complejidad extra como
consecuencia del tipo de proyección que utilizan y que impide aplicar directamente
la mayoría de los métodos del estado del arte directamente en ellas (e.g. extractores
de líneas y puntos de fuga, redes neuronales, etc.). Esto nos ha llevado a proponer
algoritmos nuevos para su tratamiento y tareas de adaptación para su uso en redes
neuronales, lo cual, hasta donde sabemos, no se había realizado hasta la fecha. Co-
mo tercera contribución, es importante mencionar que nuestro trabajo ofrece una
gran flexibilidad sin restricciones en cuanto al número de paredes en el diseño de las
habitaciones (a diferencia de muchos otros trabajos), campo de vista o calibración
de cámaras, y ha sido realizado bajo la única asunción del mundo de Manhattan.

Nuestros resultados experimentales demuestran que el algoritmo propuesto tiene
un buen desempeño en la interpretación de escenas con imágenes de visión comple-
ta y supera a otros trabajos del estado del arte. Además, la ventaja de combinar
técnicas tradicionales de la visión artificial con nuevos algoritmos de aprendizaje
profundo, también es apoyada por los resultados. Debido a originalidad del algorit-
mo y a la mejora que presenta con respecto a otros métodos del estado del arte, el
contenido de este trabajo esta actualmente bajo revisión para ser presentado en la
conferencia internacional del IEEE International Conference on Robotics and Au-
tomation (ICRA). El titulo del articulo es: Geometry and Deep Learning in Layout
Estimation from Panoramic Images, y esta incluido en el Apéndice A.
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Geometry and Deep Learning in Layout Estimation from Panoramic Images

Clara Fernandez-Labrador, Alejandro Perez-Yus, Gonzalo Lopez-Nicolas, Jose J. Guerrero

Abstract— In this work we have developed a method for
3D layout recovery of indoor scenes from a single 360 de-
grees panoramic image. This method has the main novelty of
combining geometric reasoning on computer vision and deep
learning techniques adapted to the proposed image geometry.
Our method uses the extraction of structural corners as a
starting point to construct layout hypotheses assuming Manhat-
tan World and without any prior information about the room
shape. In particular, corners are extracted as intersections of
lines that are orthogonal in 3D space. This process has been
enhanced with a Convolutional Neural Network that detects
structural edges and allows filtering lines belonging to other
non-relevant objects. From these possible corners we draw
layout hypotheses and choose the best fitting solution to the
normals’ map extracted with another CNN. We show results of
3D layouts recovered from images of the SUN360 public dataset.
We demonstrate the effectiveness of our method with respect to
existing works and the advantages of the introduction of deep
neural networks in the pipeline of the process.

I. INTRODUCTION

Recent years have seen a growing interest in indoor scene
understanding from a single image. It is an essential step
for a wide variety of computer vision tasks and has re-
cently received great attention from several applications like
augmented reality, scene reconstruction or indoor navigation
and SLAM [12]. Probably the first attempt to address this
challenge was [3] which finds floor-wall boundaries by using
a Bayesian network model. In contrast, Lee et al. [10] use
line segments to generate layout hypotheses evaluating with
an Orientation Map (OM).Other works [6], [7] try to simplify
the problem by assuming that the room is a 3D box with
only four walls, and using Geometric Context (GC) instead
of OM, which additionally helps detecting clutter.

Most of these works use conventional images with limited
field of view (FOV). Recently, some alternatives to extend
the FOV have been proposed. Lopez-Nicolas et al. in [11]
perform the layout recovery using a catadioptric system. In
[16], layout hypotheses are made combining fisheye images
with depth information that provides scale. Even 360 degrees
panorama images have been used. These can be easily
obtained nowadays with camera arrays, special lenses or
automatic image stitching algorithms [5]. In [8], their method
shows the advantages of having a complete scene view over
partial views of the same scene with previous methods [10].
PanoContext [25] uses panoramas to recover both the layout
(which is also assumed as a 3D box) and bounding boxes
of the main objects inside the room. Similarly, [21] provides
results not limited to simple box shaped rooms, relying on
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Fig. 1: From input to output. Top: Full-view panorama
input. Below: Best layout hypothesis and 3D reconstruction
from the single-view.

feature maps such as GC and OM like [25]. In [22] they treat
the problem as a graph with lines and superpixels as nodes,
solving it with complex geometric constraints instead.

In the last years, researches have also tackled layout
recovery problems with Deep Learning, and especifically
Convolutional Neuronal Networks (CNNs), with impressive
results. For example, [23] uses a CNN to segment the ground
plane outperforming traditional methods. DeLay [2] provides
separate belief maps of the walls, ceiling and floor of the
scene. Alternatively, some works use CNNs to extract the
informative structural edges of indoor scenes ignoring those
edges from clutter [13], [24]. Instead, in [9] they predict
the location of the room layout corners. These CNNs have
good performance but they are always focused on traditional
images with limited FOV. Other deep learning works are
not related to layout retrieval but produce an interesting
outcome for the task. For instance, Eigen et al. [4] extract
an estimation of the depth and surface normals from simple
RGB images.

In this work, we propose a method that combines geo-
metric reasoning and deep learning techniques to estimate
the full 3D layout from a single panoramic view. See Fig.
1 for a brief example. Despite their additional complexity,
we choose panoramic images since, thanks to their wide
FOV, the whole scene information is acquired at once,
including the usually less cluttered ceiling part, and thus
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Fig. 2: Algorithm overview: We present a new approach for indoor layout estimation. Starting with a single panoramic
image, the proposed method combines geometric reasoning on computer vision (lines and vanishing points estimation) and
deep learning techniques adapted to the proposed geometry (two deep neural networks from the literature). Candidate corners
are generated from significant lines after pruning the first line extraction with the edge map from [13] and layout hypotheses
are generated from them. Hypotheses satisfying Manhattan world are evaluated, remaining as the final model the one which
fits better with the normal map from [4].

allowing closed room solutions based on the best consen-
sus distributed around the scene. However, unlike previous
approaches [10], [25], [16], our method takes advantage of
Deep Learning throughout the process. Recent research in
the field shows that these data-driven approaches outperform
traditional methods, that need to elaborate more and more
complex reasoning to succeed in newer problems or accuracy
requirements. The main novelty of our work is the exploita-
tion of Deep Learning approaches for panoramic images
applied to the problem of layout estimation, for which we
propose a new flexible method that integrates old and new
techniques.

The pipeline of our method is shown in Fig. 2: First,
we extract line segments and vanishing points from the
panorama. In parallel, the panorama is run through the
network from [13] that allows to filter uninformative lines
coming from clutter. Then the informative lines are used to
extract corners as orthogonal line intersections, which are
then used to draw layout hypotheses of diverse shapes. The
hypotheses are compared to a reference normals map ob-
tained with another CNN [4]. The best fitting solution is the
final room model. Experimental evaluation with panoramic
images from the public SUN360 database [20] of indoor
environments shows an improvement with respect to the state
of the art and reveals the advantages of using deep neural
networks in the process.

II. LINES AND VANISHING POINTS IN PANORAMAS

Our proposal begins with extraction of lines from the
image. There are many approaches for omnidirectional cam-
eras, such as [1] that is able to extract the lines for a wide
variety of dioptric and catadioptric systems without requiring
previous calibration. Other alternative is [11], which uses
Bazin’s Matlab toolbox adapting the equations to hyper-

catadioptric system. PanoContext [25] works with panoramas
and they split them to a set of perspective images and run the
LSD algorithm [19] in each one separately and then project
the lines back to the panorama. In [15] they extend the LSD
method to deal with panoramas using the great circle arc
detector.

We have developed a RANSAC method that works with
panoramas directly without needing to split and rectify.
Hence, our method is fast and shows entire and unique
line segments, avoiding duplicate lines coming from differ-
ent splits and thus improving the overall efficiency of the
method. Since we work with panoramas we have to take
into account that a straight line in the world is projected as
an arc segment on a great circle onto the sphere and thus
it appears as a curved line segment in the image. For this
reason, each line is represented by the normal vector ni of
the 3D projective plane that includes the line itself and the
camera center.

Our RANSAC based approach is as follows: First we run
a Canny edge detector on the panorama. Then, we cluster the
contiguous edge points in edge groups. Two points (spatial
rays) of each group are randomly selected (ri, rj) to generate
candidate line-images which are voted by the other points of
the same group. To do that its vector product is computed
obtaining a possible normal direction for this edge group,
n1...n = (ri × rj)1...n. The normal obtained is compared
with the other rays of the group, considering inliers those that
fulfill the condition of perpendicularity with the normal, ni,
under a certain angular threshold (e.g. 0.5◦). This process is
repeated a certain number of iterations and outputs the model
leading to the highest number of inliers giving the normal
direction that best fits the line. Edge groups with few points
are discarded.

From these lines we extract the vanishing points (VPs)



Fig. 3: Left: Oriented lines and vanishing points estimation with geometric reasoning on computer vision. Center: Mallya’s
et. al. [13] FCN output after stitching all the perspective images back to the panorama showing the resultant edge probability
map. Right: Resulting lines after combining the extracted lines of the panoramic image and the informative edge map showing
a large reduction of the number of lines, remaining those more significant.

applying another RANSAC method based on [14]. We adopt
the Manhattan World assumption: there exist three dominant
orthogonal VPs in the sphere aligned with three dominant
directions in the world. It is worth mentioning that parallel
lines in the 3D world intersect in one single VP while
in spherical images, line projections result in curved line-
images so that parallel lines intersect in two antipodal VPs.
The line segments are classified according to the Manhattan
directions, so we determine which line is associated to which
VP. Lines whose normals are not perpendicular to neither of
the directions are discarded. The lines which are associated
with the same Manhattan direction are shown as identical
color in Fig. 3 (left and right).

III. DEEP LEARNING TECHNIQUES

Convolutional neural networks have been successfully
applied to a wide variety of tasks such as object detection,
scene classification or semantic segmentation. But in the last
years, researchers have explored the possibility of using such
CNNs for room layout estimation. In this work, we do not
directly train an end-to-end neural network with omnidirec-
tional images because, to the best of our knowledge, it does
not exist any dataset with the enough amount of labeled
data or wide variety of data distribution required to train a
deep neural network (DNN). Instead, there are large enough
indoor scene labeled datasets that have been successfully
used for training DNNs (e.g. the NYUDv2 RGBD dataset
[18]). Here, we choose to adapt two DNNs from the literature
trained with conventional images [13], [4] to the image
geometry proposed. Thus, our approach shows that it is
possible to take advantage of these novel techniques without
needing to label huge datasets and to train complex networks.

For this task, we proceed splitting the panoramas into a
set of overlapping perspective images with a FOV similar
to conventional images and planar projection. We run the
algorithms in each of them separately and finally stitch them
all back to the panorama by means of warping [20], solving
the overlapping zones in each case in different ways. To
define the set of virtual perspective images compounding the
panorama, we choose, on the one hand, the different points
that will be the center of each perspective image distributed
along the 360 degrees in horizontal and 180 degrees in
vertical of the spherical image and, on the other hand, the

FOV that we want to apply to each of the images. The choice
of the FOV was based on experimental results, where with
70 degrees we obtained good results. Now we describe the
procedure for each network:

A. Informative edges detection
Mallya et al. [13] propose a Fully Convolutional Network

(FCN) which has been trained to estimate probability maps
representing the room edges of the projected 3D box that
fits better with the room, even in the presence of clutter
and occlusions. To improve the edge map avoiding noise,
we remove low probability pixel values below a certain
experimental threshold (0.2 out of 1). In the overlapping
regions of the virtual perspective images compounding the
panorama, we choose the maximum value of probability to
not lose information. Fig.3 (Center) shows an example of
informative edges detection on a panoramic image.

B. Normals detection
Eigen et al. [4] address three tasks: depth prediction,

surface normal estimation and semantic labeling using a
single multiscale convolutional network. For our work we
use the surface normal estimation since it provides pixelwise
information of the walls orientation, which we use to evaluate
layout hypotheses rather than the typical feature maps such
as Orientation Maps (OM) or Geometric Context (GC). The
network provides a prediction of the x, y and z components
of the normal direction at each pixel.

In this case, in order to stitch perspective images back to
the panorama we need to rotate the normals to set them in
a common reference frame. Two rotations are carried out:
a first rotation associated with that initially performed to
generate the perspective image from the original panorama
(with the coordinates of the center points of each image)
and one second rotation associated with the scene VPs.
Overlapping areas are tackled in this case by doing the per-
pixel average to achieve a better continuity of the overall
image. Then we apply an angular threshold to determine
whether or not the normals from each pixel belong to a
main direction and label them accordingly. Resulting normal
map is shown in Fig.4 (Left). It can be noticed that the
ceiling is the worst part estimated by the network, since
black pixels means uncertain areas (i.e. not belonging to any



Fig. 4: Left: Map of normals given by the neural network of Eigen et. al. [4] after stitching all the perspective images back
to the panorama. Center: Map of normals generated from the best hypothesis at the evaluation stage. Right: Structural edges
on image with lines and corners of the best estimated layout hypothesis.

Fig. 5: Candidate corners from both ceiling and floor in
yellow and cyan color respectively before introducing the
neuronal network from [13] on the left and after that on the
right. This significant reduction makes these corners already
good candidates for the hypotheses generation stage.

main direction). This happens because in the training data
the ceiling does not usually appear and thus, the network
cannot predict the normals as expected in that areas.

IV. ROOM LAYOUT ESTIMATION

Our goal is to extract the main structure of an indoor
environment i.e. the distribution of floor, ceiling and walls,
abstracting all objects within rooms. For this purpose we
have developed a method to generate layout hypotheses from
relevant corners by combining line-based geometric reason-
ing on the panoramic image and the information provided by
deep learning procedures. Our algorithm is divided in four
stages:

A. Non-significant lines removal
It is in this section where the Fully Convolutional Network

(FCN) proposed by Mallya and Lazebnik [13] plays an
important role. The main piece of information we use to
create layout hypotheses are lines. However, we do not know
a priori whether they come from actual wall intersections, or
from other elements of the scene. In order to tackle this
problem we propose to evaluate the extracted lines on the
panoramic image (Sec. II) with the informative edge map
(Sec. III(a)). Each extracted line is associated to a score
calculated as the sum of the corresponding probability values
to the pixels it occupies in the edge map. In this way, those
lines whose score is below a certain threshold, or directly
have zero probability, are removed, while the others are
classified as significant lines. This allows us to work directly
with the lines that give us more significant information about

the main structure of the room without taking into account
those that belong to clutter. After carrying out this merger
of information, the number of lines is reduced to one-third
or even a quarter in several cases.

An example of this process can be observed in Fig. 3.
On the left, the image lines drawn and oriented according to
VPs, at the center, the probability edge map obtained in Sec.
III(a) and on the right the significant lines after combining
both tools. It is possible to see clearly the advantage of
merging both approaches. It can be observed that practically
all the lines belonging to the parquet, the tables and even
many windows, pictures and doors that usually give more
problems, have been removed and practically only structural
lines remain.

B. Relevant corner hypotheses

Our layout generation process is based on corners, i.e.
structural intersections between two walls and ceiling or
floor. In a Manhattan World, two line segments are enough
to define a corner so we intersect all the significant lines
in different directions (x, y, z) among themselves in pairs
as long as they do not cross each other. Other works such
[8] tend to give more emphasis to vertical lines and the
extension of these segments when defining corners, which
can be problematic if there are occlusions or poor lighting
conditions.

The direction vector of the corner point is computed
with a cross product of the normal of the lines intersecting
in that corner, Cornerxyz = ni × nj . Each corner has
an associated score given by the scores sum of the lines
that have generated this corner. The previous elimination
process of non-significant lines makes these extracted corners
already good candidates, instead of needing complex scoring
algorithms based on line length and distances, like in other
works [16]. The corners scores allow us to eliminate those
with a score lower than a certain threshold facilitating the
subsequent generation of hypotheses.

Panoramic images have the advantage of providing an
entire view of the room, allowing us to always observe
ceiling, walls and floor, making it possible to combine corner
estimation separately from both above and below the horizon
line in the image. Thanks to this double detection of possible
corners we ensure that, for each structural edge, we will have
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simple intersection between nearest corners is done obtaining
c6. For each union the Manhattan assumption is checked with
a certain threshold (90◦ ± 5◦).

detected the corner of one end or another, making it possible
to obtain the complementary one by symmetry.

While we do not have the 3D coordinates of the corners
but just their direction vector, we assume all corner vectors
from each hemisphere intersect in a single ceiling and floor
plane respectively, whose normal vectors are the vertical
Manhattan direction in both cases.

Fig. 5 shows, on the left, all candidate corners selected by
the algorithm without filtering with the Mallya’s et al. [13]
neuronal network. In contrast, on the right, the candidate
corners selected by the algorithm appear after filtering with
the neural network. In both images appear in yellow the
possible corners detected above the horizon line of the image
that will be projected on a ceiling plane and, in indigo blue,
those detected under the horizon line that will be projected
in a floor plane. Getting a similar result by filtering this
just with geometry constraints and reasoning will be much
costly and prone to errors, whereas this approach filters the

data efficiently thus reducing both the number of iterations
needed to achieve a reliable design and computing times.

C. Layout hypotheses generation
We generate layout hypotheses by means of an iterative

method. Therefore, in order to reduce the number of itera-
tions needed, we proceed initially to make a clear distribution
of the scene, dividing it into four quadrants around the
center of the camera and taking into account the VPs. This
distribution is very useful when initializing the algorithm
since we know that, e.g., in rooms with four walls there is
always a corner in each quadrant or, in more complex rooms,
e.g. rooms with six walls, there is always a corner in each
quadrant except in one of them where there will be three
corners.

Our algorithm for layout hypotheses generation starts with
a pseudo-random selection of possible corners subject to the
next conditions:

• Initial groups of three, four or five corners are randomly
generated at each iteration

• There must be corners in at least three of the four
quadrants. Thus, the corner in the fourth quadrant can
be estimated assuming closed Manhattan layouts.

• In the selected group there must be at least one corner
of each hemisphere of the image, i.e. at least one ceiling
and one floor corner. This condition is important for two
reasons. On the one hand, it allows us to estimate the
height of the room and, on the other hand, it allows us
to find corners that, not being visible in one hemisphere,
they are in the other.

We can therefore define a layout model based on the image
VPs vxyz and on a number of corners c1...n equivalent to the
number of walls that each room has.

Layout = (c1, c2, ..., cn, vxyz)

As the Fig. 6 shows, the candidate corners are projected
in the x − y plane of the sphere model and are ordered
clockwise. The corners above the horizon line are projected
as a point (c1, c2 and c3) on the ceiling reference plane,



while the corner below the horizon line is projected as a ray
(c4) along which we find the best fitting floor plane for the
design model we are looking for. Then layouts are generated
by joining corners in order with Manhattan-oriented walls
whenever possible.

Many works simplify the layout generation problem by
assuming that the room is a 3D box of four walls, sometimes
because of lack of information due to the use of conventional
images with less FOV [6], [7], [17], or just to subtract com-
plexity to the problem, [25]. Here, we go one step further
and face more complex designs introducing the possibility
of estimating in-between hidden corners when required.
Whenever the set of corners withdrawn cannot generate
layout hypotheses with alternatively oriented walls satisfying
Manhattan assumption, a new set of corners is selected. In
Fig. 7 an example of layout hypothesis generation is shown
and explained.

Without loss of generality, like in previous works [25],
[21], we assume that the camera center is placed at a typical
height (e.g. 1.7 meters), which allows us to compute the floor
plane and therefore the position of the corners in 3D. Our
method finds the ceiling height so that the 3D position of
the corners would produce the best Manhattan layout. Due
to the ceiling-floor symmetry, either a point in the ceiling-
wall boundary or in the floor-wall boundary is sufficient to
specify both. Additionally, layout hypotheses with abnormal
values of height of the ceiling can be discarded.

D. Layout hypotheses evaluation

For all those layout hypotheses that fulfill the Manhattan
world assumption, a normal map is generated from the result
obtained in such hypotheses. These maps are evaluated pixel-
to-pixel with the normal map obtained through the Eigen et
al. neural network [4]. The one with the largest number
of equally-oriented pixels will be the final solution and,
therefore, the best design hypothesis.

V. EXPERIMENTS

For the experimental evaluation we have collected a subset
of 46 full-view equirectangular panoramas of indoor sce-
narios, from the public SUN360 database [20]. The same
database was used in prior work [25], [21], [22]. All of them
have a resolution of 9104×4552 pixels, which we downsize
around six times to save computation time. Our selection of
images include bedrooms with different number of walls not
restricted to box-shaped rooms.

To obtain results we have use the Ground Truth (GT)
manually labeled by ourselves, in which each pixel in the
image is labeled according to the direction of the surface it
belongs to. PanoContext had made also a GT with the same
dataset but it was no useful since all cases were considered
as four-wall rooms. We evaluate our results computing the
Pixel Accuracy, which measures the accuracy level by taking
into account the pixel coincidence between the labels of the
ground truth and the labels of the best hypotheses divided by
the total number of pixels in the image. Each result shown

is an average of 10 times performing the experiment. The
hypotheses number drawn are specified in each experiment.

a) Comparison of our method with the state of the
art: We perform a comparison with PanoContext [25], since
it is to our knowledge the only method with available code.
We proceed to compare it with the first stage of their
algorithm that reaches the same point as our work does,
since after layout extraction they introduce object detection
in the method. In Fig. 9 there is a graphical result that
shows the results from each method varying the number of
hypotheses evaluated. We can see how our method clearly
outperforms PanoContext. The difference is larger when only
a few hypotheses are drawn, and decreases as the amount
of hypotheses rises. In particular, our method with only 20
hypotheses provides better results than the PanoContext with
100. This result shows the good performance of our non-
significant lines removal which allows our method to provide
better hypotheses. Besides, some scenes have more than four
walls, which our method is able to solve unlike theirs.

b) Non-significant lines removal with the edge map:
For this experiment we apply our method with and without
removing non-significant lines with the edge map obtained
using the FCN from [13]. We arbitrarily choose to draw 100
layout hypotheses prior the hypotheses evaluation. In Fig. 8
we show a bar diagram with the pixel accuracy result for
each image of the dataset, and we can observe how in the
great majority of cases there is an important improvement
that must not be overlooked. With this we want to highlight
the benefits of our approach with the advantage of fusing
classical computer vision methods with new deep learning
techniques.

c) Comparison of the Normals Map with state of the
art methods: In this experiment we run our algorithm, but we
compare our results substituting the hypotheses evaluation
method with three others from the state of the art. We use 100
iterations arbitrarily for this experiment as well. We choose
to compare our method with the Orientation Map (OM) [10],
the Geometric Context (GC) [6] and a combination of the
two that was proposed by the PanoContext authors [25] and
that we call Merge Map (MM). The MM consists of using
the upper part from the OM and the lower part of the GC,
which improves results since the GC removes clutter which
appears more often in the lower part of the image. In Fig. 10
we show a boxplot with the results of our method and the
others mentioned. Looking at the results, we can see that our
method (mean pixel accuracy = 90.5%) performs better than
OM (89,7%) and GC (86.64%) alone, especially considering
the variance of the data. The MM performs slightly better
in average (91.8%) but producing more outliers. That is to
be expected since this is ad hoc method which combines
strengths of OM and GC. We believe that introducing an
object segmentation and removal from the Normals map
would improve the results considerably.

VI. CONCLUSION

In this work we have introduced the main novelty of
the exploitation of Deep Learning approaches for single



Fig. 8: Pixel Accuracy using the FCN from [13] to remove non-significant lines and without using it. We obtain a 90, 5%
of mean accuracy value introducing it and 83, 8% without it.
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Fig. 9: Comparison of our method with the PanoContext
[25]. We show the Pixel Accuracy against the number of
hypotheses. Our method outperforms PanoContext and is
able to provide much better results with fewer hypotheses.
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Fig. 10: Boxplot of the accuracy level for our hypotheses
evaluation method and three alternatives from the state of the
art. The box is limited by the 25th and 75th quartile with the
median inside. The whiskers reach the most extreme points
and the outliers are marked with a cross.

panoramic images applied to the problem of 3D room layout
estimation with Manhattan World assumption (without four-
walls simplifications), for which we propose a new flexi-
ble method that integrates old and new techniques fusing
geometric reasoning in computer vision with two different
deep neural networks [13], [4] adapted to the proposed image
geometry.

Our experimental results imply that the proposed algo-
rithm has a good performance in scene interpretation of full-
view images and overcomes the state of the art.
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