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Summary

In the context of PDEs approximation, saddle point problems take an important place. This type of
problems appear when the weak formulation of a PDE system shows a special structure. Moreover,
these problems can be ill-posed: There might not be unique solvability for every right hand side. They
can be formulated in Hilbert spaces as a model variational problem, that we describe in Chapter 2. At
this level, their existence and uniqueness of solution are not always ensured. That is the case when the
so-called inf-sup conditions do not hold. However, when these conditions are satisfied, one is even able
to bound the solution using constants related to them. This topic will be developed in Chapter 3, where
some estimates for the solution of a saddle point problem are given.

Besides, Chapter 4 is devoted to the approximation of saddle point problems in finite dimensional
spaces. One important issue is the fact that the fulfillment of the inf-sup conditions on Hilbert spaces
does not imply the fulfillment of their discrete version on finite dimensional subspaces. Due to this, one
has to be careful when choosing those subspaces. Furthermore, this choice may yield better or worse
estimates depending on the size of the discrete inf-sup constants.

The discretisation of these problems using a numerical method, like the finite element method, yields a
linear system whose matrix is called saddle point matrix. Again, we find particular properties on them.
As we will see along Chapter 5, although one is interested on invertibility of these matrices, they are
indefinite. Thus, one has to make a further study about solvability conditions.

Among the PDEs whose variational formulation yields a saddle point problem, we find the Stokes equa-
tions. In order to discretize the Stokes equations, it is usual to apply mixed finite element methods. This
fact is due to the non fulfillment of the discrete inf-sup conditions if one applies the same finite element
spaces for both variables. In addition, not every pair of finite element spaces guarantees the stability
of the method. For instance, some troubles may take place like the spurious pressure modes and the
locking phenomenon. This will be studied in Chapter 6, where we will comment on the stability of
several finite element pairs for the Stokes equations.

Finally, the choice of a good finite element pair implies satisfactory numerical results and expected
convergence rates. That is the case of the Minielement and the Taylor-Hood finite element method
for the Stokes equations. In order to prove this statement, we show the obtained numerical results in
Chapter 7. Furthermore, the interested reader can find the implementation of these mixed finite element
methods in the appendices.
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Resumen

Los problemas de tipo punto silla son sistemas lineales cuya matriz de coeficientes tiene una estructura
especifica. Su nombre se debe a que la solucién a dicho sistema es precisamente un punto silla para
un problema de minimizacién cuadrética asociado. Antes de estudiar las propiedades de estas matrices,
que reciben el nombre de matrices de punto silla, consideramos una generalizacién de este tipo de prob-
lemas en espacios de Hilbert. Es en estos espacios donde introducimos un problema variacional que nos
sirve como modelo para iniciar nuestro estudio.

En primer lugar, denotamos con V' y Q a los dos espacios de Hilbert con los que vamos a desarrollar
dicho modelo. Asi, considerando dos formas bilineales a(-,-) : VXV — Ry b(-,-): Vx Q0 — R,
formulamos el siguiente problema variacional:

Dadas f € V'y g € @', hallar (u, p) € V x Q tal que:
a(”av) + b(vvp) - <f7v>V/><V7 Vv e V, (1)
b(”?‘]) = <gaQ>Q’><Q7 Vq €0.

A su vez, este problema modelo puede ser reformulado empleando operadores lineales construidos a
partir de las formas bilineales a(-,-) y b(-,-). Dichos operadores vienen dados respectivamente por:

AV —V, B:V—Q.

A:V—V' con (Au,v)yiwy :=alu,v), Yu,v €V,
B:V— (', con (Bv,q)gxp:=b(v,q), VeV, VqeQ.
B':Q—V', con (B'q,v)yyxy :=(B'qVv)yxv = (Bv,q)gxo=Dbq), WeEV.

Asi, el problema variacional (1) es equivalente al siguiente problema:

Dadas f € V''y g € ¢, hallar (u, p) € V x Q tal que:
Au + B'p=f, )
Bu=g.

Lo primero que nos planteamos es si el problema (1) tiene solucién y si es dnica. Para abordar esta
cuestion, llamamos K := Ker B y denotamos con Agg’ := IlgrAEk, donde Ex : K — V es el oper-
ador extension y Ilg : V/ — K’ es el operador proyeccion entre espacios duales. Con esta notacién
presentamos el siguiente resultado:

Teorema 1. Para cada (f,g) € V' x Q', el problema variacional dado en (1) tiene una tinica solucion
(u,p) €V x Q si'y sdlo si Axg: es un isomorfismo de K en K' y el operador B es suprayectivo.

No obstante, se puede demostrar que las anteriores condiciones impuestas sobre los operadores lineales
Akg’ y B son equivalentes a las conocidas como condiciones inf-sup. En concreto:

b
B es suprayectivo <= inf sup ﬂ > Pp.
9c0 vev [Vllviialio
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. a(vo, wo
inf sup _alvo.wo) > oy,
wek ek [[vollvIiwollv
Aggr es un isomorfismo <= Ja; > 0 tal que
. a(vo,wo
inf sup ¥ > 0.
woek ek [vollvliwolly
A parte de asegurar la existencia y unicidad de la solucién del problema modelo, con las condiciones
inf-sup nos es posible acotar la solucién en la norma del espacio correspondiente. El siguiente resultado
determina dichas cotas:

Teorema 2. Sean B, 0 dos constantes positivas con las que se cumplen las condiciones inf-sup de la
forma bilineal b(-,-) y de la forma bilineal a(-,-) restringida a K. Entonces, para cada (f,g) € V' x O/,
el problema modelo (1) tiene una tnica solucion (u,p) € V x Q acotada por:

1 2||al|
ully < —IIfllv + 3
el p” £l B lello

o
2ljal| 2||al?
< — / _— /.
Ipllo < B £ llv + B2 lgllo

Nuestro siguiente objetivo es aproximar la solucién del problema modelo (1) definido en espacios de
Hilbert. Para ello, consideramos los subespacios V;,, C V, Q) € O de dimensién finita y buscamos en
ellos una aproximacién que denotamos con (uy,qy) € Vj, X Qp. De este modo obtenemos el siguiente
problema discreto:

Dadas f € V'y g € @, hallar (uy, py) € V), x Qj, tal que:
a(up,ve) + b(vppn) = (f,vn)vixv, Vv €V, (3)
b(un,qn) = (8:9n)0'x0> Van € Oh-

A partir de este problema, podemos definir los respectivos operadores lineales y condiciones inf-sup
discretas. De este modo es posible obtener un resultado similar al anterior teorema para acotar el error
entre la aproximacion (up, pp) € Vi X Qp 'y (u,p) € V x Q. Sin embargo, hay que tener en cuenta que
contamos con nuevas dificultades afiadidas: Los nicleos de los operadores lineales discretos no tienen
por qué estar contenidos en los niicleos de los operadores A y B. Esto dltimo puede introducir aproxima-
ciones defectuosas y nos obliga a ser cuidadosos con la eleccion de los espacios V, y Q. A lo anterior
se le suma que, el hecho de que se cumplan las condiciones inf-sup, no implica que se cumplan sus
versiones discretas.

Cuando el problema (1) se corresponde con la formulacién variacional de un sistema de ecuaciones en
derivadas parciales, la discretizacion produce un sistema lineal. Ademds, las matrices de estos sistemas
tienen una estructura especial y reciben el nombre de matrices de punto silla:

Definicion 1. Un sistema lineal describe un problema de tipo punto silla si se corresponde con un
sistema estructurado en 2 x 2 bloques tal que

A e Rnxl’l
A BIT X f ’
B c = , donde: B1,B e R™"  n>m. 4)
2 - y g i}
N C e Rmm,
o b

y dichos bloques satisfacen al menos una de las siguientes condiciones:
i) A es simétrica.

(A —i—AT) es semidefinida positiva.

| =

ii) La parte simétrica de A dada por H =
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iii) By =B, =B.
iv) C es simétrica y definida positiva.

v) C=0psxm-

Dada la anterior definicidn, nuestro interés se centra en estudiar las propiedades espectrales de la matriz
para determinar cuando es invertible. Asi, bajo ciertas condiciones sobre los bloques constituyentes,
sabremos en qué casos nos es posible asegurar que el sistema tiene solucion tnica. Para profundizar en
este estudio, empleando el complemento de Schur S = —(C+ B,A™!BT') de la matriz A, obtenemos que:

g(A Bl \ (1 0 A0 1 A'BT
"\ B, —C ) \ BA' I 0 S 0 I '

Luego con esta factorizacion en matrices triangulares por bloques vemos que .o serd invertible si y s6lo
si los bloques A y S son matrices no singulares. En el capitulo 5 se incluyen varios resultados relaciona-
dos con esta idea, alguno destinado a mejorar una posible resoluciéon mediante métodos iterativos.

Tras desarrollar la teoria sobre problemas de tipo punto silla, el propdsito del trabajo es resolver las
ecuaciones de Stokes, puesto que su formulacion variacional adopta la estructura de un problema de
punto silla. Las ecuaciones de Stokes describen el flujo de un fluido incompresible cuando el flujo es
lento. Considerando un dominio acotado Q C R”, n > 2, la formulacion fuerte de las ecuaciones de
Stokes considerando condiciones de contorno de tipo Dirichlet viene dada por:

—Au+Vp=f enQ,
V-u=0, en Q, 4
u=g, en 0Q,

donde u es el vector de las velocidades y p es la presion. Ademds, diremos que (u, p) es una solucién
clasica de las ecuaciones de Stokes si resuelven (5) y (u,p) € (€2(Q)N%(Q)) x €' (Q). Por otro lado,
para llegar a la formulacién débil de las ecuaciones de Stokes, definimos como espacios test V = H(l) y
Q = L3(Q). De este modo, obtenemos que la formulacién débil es la siguiente:

/Vu:Vvdx—/(V~V)pdx:/f~vdx, vvevy,
Q Q

/ﬂ (6)
(V-u)-g=0, Vg € Q.

Q

Tras comprobar que el anterior problema variacional presenta una estructura de problema de tipo punto
silla, nuestro siguiente paso es obtener una aproximacioén de la solucién empleando elementos finitos
mixtos. Es en este punto donde de nuevo las condiciones inf-sup discretas toman importancia, puesto
que si elegimos de manera inadecuada los subespacios Vj, y Oy, el método empleado serd inestable.
Para evidenciar esto, entre los pares de elementos finitos inestables para las ecuaciones de Stokes men-
cionamos el par P, / Py y la aproximacién P / Py: El primer par no cumple la condicién inf-sup discreta
mientras que el segundo es inestable debido a que el nicleo de B, := Il BEy, no estd contenido en
Ker B.

Finalmente, el método del Minielemento y los elementos de Taylor-Hood convergen y producen bue-
nas aproximaciones de la solucién. Para comprobar que las cotas del error se cumplen, en el dltimo
capitulo del trabajo presentamos los resultados nimericos obtenidos al implementar dichos métodos.
Ademads incluimos los resultados obtenidos tras implementar el par P / Py, de este modo el lector puede
comprobar que este Ultimo par de elementos finitos es claramente inestable.
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Chapter 1

Previous results

In order to study the uniqueness and existence of solutions for saddle point problems, first some func-
tional analysis results are needed. This work focuses on analyzing the characteristics of this type of
problems and furthermore to solve some examples numerically, so we will treat the previous results
briefly giving some references to the reader for detailing proofs. Moreover, the notation given along this
chapter will be used in order to state the variational formulation that we will deal with.

Definition. A normed linear space (H, || - ||) is said to be complete if for every Cauchy sequence {v,}
in H there exists an element v € H such that v, — v, that is ||[v — v,||z — 0.

Definition. A pre-Hilbert space (H, || - ||g) is a space provided with a scalar product (-,-)y and a norm
|| - || satisfying the usual properties of every norm including the so called parallelogram identity:

v+ ullzy + v =7 = 2 ([lell 7 + 1V]) -

Definition. A Hilbert space is a pre-Hilbert space that is complete. (i.e.: A Hilbert space is a Banach
space whose norm satisfies the parallelogram identity)

Definition. Let V and W be Hilbert spaces and let f : V — W be a linear mapping. We say that f is
bounded or that it is continuous if there exists a constant A € R such that

Ivllw <Alplly,  Wev.

We say that f is bounding if there exists a constant ¢ € R such that

[fvllw = ulvlly, — wweV.

We will assume V and W are always Hilbert spaces. Then, we will denote by .Z’(V, W) the linear space
composed by the set of all f: V — W linear continuous operators. Let’s also introduce a norm for this
space:

fvllw
1Al van, = sup W
4P vl

We define the dual space of a Hilbert space V as the space of all linear continuous functionals f: V —
R. The dual space of V will be denoted with V'. For the dual space a dual norm is also given:

O _ |, vy

| fllvr == sup =
vev IVIlv o vev [vilv

The next one is the first important result:

Theorem 1.1 (Banach Theorem). Let V and W be Hilbert spaces and let M € £ (V,W) be a one to
one mapping. Then, its inverse operator M L1 W — V is also continuous.
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Proof. [2] OJ

Theorem 1.2 (Riesz Theorem). Let V be a Hilbert space. For every | € V' continuous, there exists an
unique z € V such that
(Lvyyrsy = (z,V)v, Yvev.

From another point of view, if we define the operator Ry : V. — V' that to each z € V associates the
functional f, = Ryz € V' defined as
<f27 v>V/><V - <Z7 V>V7
then Ry is one to one and ||Ry || ¢ 11y = IR, | 2w 1y = 1.
Proof. See [9], pp. 97. O

Definition. Let Z be a subspace of a Hilbert space V. We call Z° the polar space of Z defined as
7% :={f € V' such that f(z) =0 Vz € Z} = Ry(Z").

Bilinear Forms and transposed operators: Let V and Q be Hilbert spaces. A bilinear form b : V x
Q0 — R is continuous if 3y, € R such that b(v,q) < w||v|lvilgllo , ¥v € V, Vg € Q. We denote with
AV x O,R) the set of all bilinear continuous operators from V x Q to R. The norm of the continuous
bilinear form b is defined as follows:

b(v,q)
vev,qeo VIIvIigllo

16l 20v x0,R)

Let B be a linear operator from V to Q' defined as:

(Bv,q)g'xo :==b(v,q), YveV,Vg € Q.

Furthermore it is possible to prove that the operator B is continuous if and only if the associated bilinear
form b is continuous. We can associate to the linear operator B : V — Q' the so called transposed
operator B' : Q — V' given by

(v,B'q)yxv = (Bv,q)g'xo = b(v,q).

These operators are deeply related, even their norm is the same in the corresponding spaces:
1Bl 2,0y = 1B 20y = bl zvxoR)-
It might be useful for future results to add the definition of the next subspaces:

Ker B := {v € V‘b(v,q) =0, Vg€ Q} = {v € V|<v,B’q>VXv/ =0, Vg e Q},
Ker B' := {q € Q‘b(v,q) =0, VWve V} = {q € Q‘(Bv,q>Q/XQ =0, Wve V}.

Theorem 1.3 (Banach Closed Range Theorem). Let V and Q be Hilbert spaces and let B be a linear
continuous operator fromV to Q'. Set:

K:=KerBCYV, H :=Ker B' C Q.
Then, the following statements are equivalent:
e Im B is closed in Q.
e Im B is closedinV'.

e K=ImB.
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e HO=ImB.

e There exists Ly € £ (Im B,K") and 3B > 0 such that B(Lg(g)) = g Vg € Im B and moreover
BliLsgllv < ligll Ve €ImB.

e There exists Ly € Z(Im B',H") and 3B > 0 such that B' (L (f)) = f Vf € Im B' and moreover
BliLs fllo < I fllv: Vf€lmB'.

The assumption of the special case in which B is surjective leads us to the next corollary:

Corollary 1.1. Let V and Q be Hilbert spaces, and let B be a linear continuous operator from'V to Q'.
Then the following statements are equivalent:

e ImB=0.
e Im B' is closed and B' is injective.

e B'is bounding: 3B € R such that |B'q|lv: > Bllqllo, Vg€ Q.

1
o There exists Lg € £ (Q',V) such that B(Lg(g)) =g Vg€ Q with ||Lg|| = B
Finally, as a consequence of this corollary we reach a first result about uniqueness and existence of
solution for variational problems: The Lax-Milgram lemma. In the next chapter, some proofs will be
supported by this result.

Lax-Milgram Lemma. Let V be a Hilbert space and let a(-,-) be a bilinear continuous form on V.
Assume that a is coercive (3o > 0 such that a(v,v) > a||v||?, ¥v € V). Then for every f € V’, the
problem:

Find u € Vsuch that a(u,v) = (f,v)y/xy, YWWEV,

has an unique solution.

Proof. See [9], pp. 140. O






Chapter 2

Saddle point problems on Hilbert spaces

The previous section allows us to obtain results about existence and uniqueness of solutions for saddle
point problems on Hilbert spaces adding some conditions due to the form of this kind of problems. We
will assume along this section that V and Q are Hilbert spaces and we are given two bilinear forms
a(+,-):VxV — Rand b(-,-) : V x Q — R with their corresponding linear continuous operators
A:V —V'and B:V — Q'. At this point we build the following model problem:

Given f € V' and g € O/, find (u,p) € V x Q such that:
a(u,v) + b(v,p)=(fv)vixy, WeV, 2.1)
b(u,q) = (8:9)ox0, Vq € Q.

This model problem can be rewritten. The following problem is an equivalent formulation of (2.1):

f o o /
{Au + B'p=f iV 2.2)

Bu=g in(Q,

where we are dealing with the corresponding linear continuous operators. Assuming that a(-,-) is sym-
metric, our model problem can be understood as the optimality conditions for the following minimisa-
tion problem:

1
inf — — V-
inf Sa(vv) = {f,v)vcy
Then, variable p takes the role of the Lagrange multiplier associated with the constraint Bu = g and the
saddle point problem concerning us is:

i 1

lnfsup *Cl(V,V)‘i‘b(V,q)—<f7V>V/><V—<g,q>Q'><Q .
veV geQ 2

Now, it is possible to introduce a first result about existence and uniqueness of solution for our model

problem, noting that the second equation of (2.1) requires the surjectivity of the linear operator B in

order to ensure the existence of solution:

Theorem 2.1. Assume that Im B = Q' and a(-,) is coercive on K := Ker B. Then, for every (f,g) €
V' x Q' problem (2.1) has a unique solution.

Proof. As far as B is surjective, Corollary 1.1. ensures us that there exists Lg € .Z(Q',V) such that
B(Lpg) =g, Vg € Q'. Let us call ug := Lpg, then Bu, = g and considering uo := u — u, such that Bu =g
it implies that uy € K. Furthermore, testing the first equation of (2.1) with every vy € K and using that
a(-,-) is a bilinear form, one obtains:

a(uoﬂ’o) = <f7 VO>V’><V _a(ugav())a Vvo € K.

5
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At this point, the Lax-Milgram Lemma ensures that there is an unique solution uy € K to this equation.
Now we define the functional / : V — R given by /(v) = (f,v)y'«y — a(u,v) for every v € V. This
functional vanishes identically for every v € K, so I € K° and then the Banach Closed Range Theorem
provides us / € K = Im B'. Then, there exists an elemenent p € Q such that B p = [ and yields:

(I Vyixy = (B pv)yisy = (f,v)visy —a(u,v), W eV < a(u,v)+b(v,p) = (f,v)yxy, YWeEV.

And hence the first equation is satisfied, but thanks to the definition of u := ug + uy one also gets the
second one:

B(u) = B(ug +uo) ek Bug+0 - g
In addition to existence, we now prove uniqueness of solution for the model problem: Using linearity, it
is sufficient to check that the case with f =0 and g = 0 has an unique solution. Testing the first equation
on this problem with v = u we get a(u,u) = 0. On one hand, the coercivity of the bilinear form a(-,-)
provides u = 0. On another hand we get B'p = 0, which also implies p = 0 because as it was seen in
Corollary 1.1, Im B = Q' <= B is bounding.
O

A generalisation of the previous theorem provides us a necessary and sufficient condition for existence
and uniqueness of solution. Let us call again K := Ker B C V and let us define the operator Axg’ as the
composition Aggr := [1grAEg, where Ex : K — V is the extension operator and Ik is the projection
between the corresponding dual spaces I[Ig : V! — K.

Theorem 2.2. Let us consider the model problem and the operator Ak defined as before. Then, for

every (f,g) €V' x Q'
_ . . Agg' i ] hi KtoK’
There exists a unique solution (u,p) €V x Q <= { Kk is an isomorphism from K to

ImB=Q

Proof. We start assuming Ak is an isomorphism and B is surjective, then we get the uniqueness and
existence of solution for our model problem by following the same steps given in the proof of the last
theorem, but this time we use Agg’ is an isomorphism in order to get the existence of a solution uy € K,
instead of Lax-Milgram theorem.

Conversely, let us assume the model problem has a unique solution for every (f,g) € V' x Q'. Using as
example the case f = 0 and any g € Q', our assumption yields that for every g € Q' there exists u € V
such that:

Au+ B'p =0,
Bu =g, foreveryge(Q'.

That means Im B = (', so this proves that the operator B is surjective. At this point, we can prove
Ak is an isomorphism: For every ¢ € K’, we can build a model problem with f, = Ex:¢ and g =0,
each one owns a unique solution (1, py) and uy € K since g = 0. Now, if we test the first equation of
the model problem with vy € K:

a(ug,v0) = (fo,vo)k'xkx = (@, vo)vixv,  YweK,peK'

Then, we get Agxup = @ and hence Aggs is surjective. Finally, in order to prove that Agg is also
injective, let us assume Agg'w = 0 for some w € K, w # 0. This would imply a(w,vy) =0, Yvy € K and
hence Aw € K°. Now we apply the Banach Closed Range Theorem and then one gets Aw € Im B’ since
K° =Im B'. Moreover, it leads us to ensure the existence of a p,, € Q, p,, # 0 such that B'p,, = A,, and
then (w, —p,,) would be a solution for the model homogeneous problem, making uniqueness to be lost.
Therefore such a w # 0 cannot exist and it shows that Axg must be injective. O



Chapter 3

Stability Constants and inf-sup Conditions

In this section, we point out an important topic: The Banach Closed Range Theorem ensures us that the
operator B is surjective if and only if its transpose operator is bounding. In a practical point of view, it
is easier to prove that one operator is bounding than its surjectiveness, for this reason our next goal is
to define the best possible constant § > 0 that fits in the bounding condition for the linear operator B'.
Note that using the definition of norm in a dual space:

. B'q||y . b(v,q
IB'qllv: > Bllgllo VgeQ <= inf IBq]| >pB <= inf sup 7( ) > f3.
90 |lqllo 9€0 vev |IVllviiglle
With a similar argument one can also gets that:
inf sup a(vo, wo) > oy,

weK ek [|vollv[lwollv
Agg is an isomorphism <= Jog > 0 such that

inf sup mzal.
woeK ek [[vollvI[wollv

Thus, we get an equivalence for the second condition given in the if and only if theorem for existence
and uniqueness. Now, we are also interested in obtaining a bound for the solution of the model problem.
Furthermore, these inf-sup constants ¢ and 8 will appear in these bounds. Hence, the inf-sup constants
take an important role in this chapter. Before showing the main result about this topic, first we need two
useful lemmas for its proof:

Lemma 3.1. Let V be a Hilbert space and let a(-,-) be a symmetric bilinear continuous form on V.
Assume that a(v,v) >0, Vv € V. Then,
(a(v, w))2 <a(v,v)a(w,w), Yv,w eV,

and for the associated operator A:
1AvI[5: < llalla(v,v) = A[[{AV,V)vrcy.
Proof. Let us consider v,w € V. Applying that a(-,-) is a bilinear form, one gets that:

a(v+Aw,v+Aw) = A2a(w,w) +24a(v,w) +a(v,v).

Thanks to our hypothesis, a(v 4+ Aw,v+Aw) >0, ¥v,w € V, VA € R so the equation A2a(w,w) +
2Aa(v,w)+a(v,v) = 0 can not have two different real roots, that is:

A=4(a(v,w))? —4a(v,v)a(w,w) <0

And finally dividing it by four, one gets the expected result. O

7
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Lemma 3.2. Let V be a Hilbert space and let a(-,-) be a symmetric bilinear continuous form on V.
Assume that a(v,v) > 0, Yv € V. Then, the double inf-sup condition on the restriction of a(-,-) to K
implies coercivity of a(-,-) on the kernel K.

Proof. From the inf-sup condition, using the previous lemma one gets:

2
o <inf sp U gy <sup W) afuviéé(sllp aW))
vek ek [vllvIwlly wek Wil wek Wil
a(v,w)? a(v,v)a(w,w)
i <swp “GURE< s SEIEEY < o) ),
wek Wil wek v
wlly =1
Thus, the result is reached with o = a?/||al|. O

Now we are ready to present a first bound result for solutions of our model problem. The next theorem
is only valid for the case of Im B = Q’, further results can be found on the literature, but won’t be needed
for the problems treated in this work.

Theorem 3.1. Assume that there exists two positive constants B, o such that the inf-sup condition on
b(-,-) and the double inf-sup condition on the restriction of a(-,-) to the kernel K are satisfied. Then, for
every (f,g) € V' x Q', the model problem has a unique solution (u,p) € V x Q satisfying the following
bounds:

2lall) o
o B o>

2H I | 2lal?
Iplle = = g 1Fllv+ 2 g llgle

1
lullv < *HwaJr

If, moreover, a(-,-) is symmetric and satisfies a(v,v) > 0 Vv € V, then we have the improved estimates:

1 2[|al|'/?
Hulle*Hfller 2 gl
o, B

pllo < A o 1l
Pllo = o' [32 8l

&y

where o > 0 satisfies the coercivity condition for the bilinear form a(-,-) restricted to K (also known
as the elker condition).

Proof. The Closed Range Theorem ensures us the existence of a continuous lifting operator L € £ (Q’, V)
such that we can split u = ug + u, where uy € Ker B and u, := Lg. Continuity of the lifting operator
provides:

ILI=5 gllo
lugllv = ILglv < [[Llllglg =" llugllv < BQ-

Then we reach the following estimate: ||Aug||y: < ||al|||ug|lvy < Hg‘||g|Q/.
The solution for our model problem with g = 0 is (ug, po), uo,po € Ker B. Considering this problem,

one easily gets that ||Aug||y» = || f — Aug||y+, but using the inf-sup condition for the bilinear form a(-,-):

A A
1Auolly- — 7< o, V)y'xy > sup 761(”0")) > inf sup 761(”0"}) >y, Yupg € Ker B —
luolly — vev luollvlvily — vex lluollvIvlly — wek vegx [luollv([vilv

Ja
— ol < -1 - Auguw<<rf\v 1 lally g
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And then the estimate for ||u|y is:

lall

ap B
Note that the last inequality is trivial because 1 < ||a||/oy. Now we are looking for an estimate of p. In
order to get it, we recall the inf-sup condition for the bilinear form b(-,-), that is equivalent to:

2IIGH

lullvy = [luo +ugllv < *Hva + ( ) lello < *Hfl!v +—— gl

Blpllo <18 pllv,  Vpeo.

We return again to the model problem. This time we consider its general version with a solution (u, p) €
V x Q. Then the first equation and the previous estimates yield:

2IIaH2

Ipllo < 17— Aullr < 5 (15T + allally) < ( ‘“”)nfuv el <

B
ey, Al
S+ % g el

Furthermore, assuming a(-,-) is symmetric and a(v,v) >0, Vv € V, Lemma 3.1 and Lemma 3.2 lead
us easily to the improved estimates. In order to get this last result, we build the following estimates and
collecting them the proof shall be ended. Those estimates require the statement of two cases derived
from our model problem, where we recall u := ug + u, with ug € Ker B, u, such that Bu, = g, and

P = Po + p, satisfying:
AM0+ BtPO = f7 Au + Btp = 07
(1) _ ()4 o
Buy =0, Bu, =g.

Let us begin with the first problem in order to get estimates of ug and Aug. Taking the first equation
multiplied to the right by ug:

(Aug, uo)y'xv + (B'po,uo)vi<v = (f,u0)v'xv }

A ! = ! .
<Btp0auO>V’><V = <Bu0,p0>vl><v =0 = < M(),Lt0>v xV <f, MO>V <V

Now applying the ellipticity condition on the kernel one gets easily:

) fli2,
aollolf < (A 0) = (fu) < Uflhalle = Buolly < 21 Gaue, ) < L1
a
— lAuolly < flall 2 ({Auo,u0)) 2 < " Wi
%y

We are interested on an estimate for ||p||o/, then we recall the given inf-sup condition on the B operator
and, thanks to the previous estimates:

1 1 ]l
Bllpolle < 1B pollv = If —Auollvy = llpolle < *Hf—AMOHV/ *HfHV/ Tz 1Al <
0
2Ha||1 /2
1/2 HfHV
0

Here, we come back to the problem (2) derived from the model problem. Multiplying the first equation
by ug:

(Aug, ug) + <Btpga”g> =0 = (Aug,uy) = —<Btpgv“g> = —(g,ug) < |Ipsllollgllo-

The next step in our proof is to get an estimate of || p,|| by ((Au,, ug>)1/ 2. The inf-sup condition provides
the existence of a i such that B|i|||| p,|| < b(i, p,) and then combining it with the result of Lemma 3.1:
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_ _ _ _ a 1/2
Bllallvlipglle < (B, pe) = —(Adi,ug) < [lal'*|@lly ((Aug,ue))'* = lIpgllo < ! ‘/|3 ((Aug, ).

At this point, we combine the last inequality with (Aug,us) < ||p||ol/gl|¢r, so inmediately:

2 llall' llall

a
1™ g, ) 2 lglly = (g )2 < 5 lele = lIpdlo < 5 lelo.

B

Finally, we recall again Lemma 3.1 in order to get the new estimate for ||u,||v:

(A”ga ”g> <

]

llall
0wl [y < (Aug,tg) < lIpelivllsle < g 2 llsly = ||”g||V§a1/2ﬁ||g||Q"
0

Hence, collecting the estimates above, one obtains the improved estimates for ||u||y and || p||o.



Chapter 4

Approximation of Saddle Point Problems

In order to ensure the existence and uniqueness of solutions for saddle point problems in the context
of Hilbert spaces, we have already seen that the inf-sup conditions for the bilinear form a(-,-) and the
linear form b(-,-) are needed. However, when we build an approximation problem such that its solution
belongs to a finite dimensional subspace, some additional issues might appear. Firstly, we start defining
the corresponding discrete operators and finite dimensional subspaces:

Let V), CV and Q) C Q be finite dimensional subspaces. We define the extension operators Ey, : Vj, —
V, Ep, : On — Q and the projection operators Iy, : V. — Vj,, I1p, : O — Q). Along this chapter, we
will use the notation a(uy, vy) := a(Evy,up, Ev,vy) and b(vy, qp) 1= b(Ey,vi, Eg,qn). We also define their
associated linear operators as follows:

Byvy, =g BEy, vy, Vi €V, Bqn =1y B'Eg,qn, Yan € On,
Apvp = HV;:AEV;, Vi, Vv, € Vp, A;,Vh = HV/:AtEVh Vi, Vv, € V.

Finally we consider the discrete kernels:

Ky = Ker B := {vy € Vi, | b(vi,q1) =0, Ygn € On},
Hy = Ker Bj,:= {q), € Oy ‘ b(vi,qn) =0, Vv, €Vy}.

Hence, we are ready to state the approximation problem:

Given f € V' and g € O/, find (uy, pp) € Vi, X Q) such that:
a(up,vi)  +  b(vnpr) = (fivu)vixv,  Yvn € Vi,
b(un,qn) = (& qn)o'x0, Yaqn € On-
At this point, it is natural to assume that the necessary and sufficient condition for getting the existence
and uniqueness of solution in this case might be the following pair of inf-sup conditions:
a(vh, wp) a(vh, wp)

Vh >0 El(xf’ >0: inf sup ——————— = inf sup
’ "geKhwgeKh ||V8HK11HW8||Kh WgeKhvgeKh ||V8HK11HW8||K;[

b
VYh>0,3B,>0: inf supMZBh-
4n€Qny, eV, thHVHQhHQ

h
1

Vv

o

)

The cases where the last two parameters do not depend on /4 are really interesting, but it is not always
possible to find them. For this reason, in general, we will assume their dependence on h, which will
refer to the mesh size chosen.

Here there are some important considerations to make: At the approximation problem, everything seems
to work fine, but it is not like that due to the choice of our finite dimensional subspaces Vj, and Q;,. Hence,

we remark that:

11
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e The kernel K}, is not in general a subspace of K.
e The kernel Hj, is not in general a subspace of H := Ker B'.

e The existence of o > 0 satisfying the inf-sup condition for the operator a(-, -) at K does not imply
the existence of chl > 0 for the same inf-sup condition at Kj,.

e The existence of B > 0 satisfying the inf-sup condition for the operator b(-,-) at (Q,V) does not
imply the existence of 8, > 0 for the same inf-sup condition at (Qp, V},).

It worths also to remark that the property K;, C K is a nice one but we can dispense with it. Nevertheless,
the property H, C H is absolutely important, because when that inclusion does not hold then the solution
of the approximation problem will be determined up to elements of Hj,. In fact, those elements use to be
called spurious numerical artefacts because they might yield false solutions. For example, let (uy, py)
be the solution of our approximation problem, pg € H, \ H. Then the pair (u;, pp + pg) is a solution of
the approximation problem, but not at all an approximation of the original one. Therefore sometimes
we restrict the space Q to Q/H. This is the case of the Stokes equations, where we take L3(Q) in the
place of L2(Q).

As we have seen, it is important to hold the inclusion H, C H in order to control the solution of our
discrete problem. Due to this, we are now interested in the next proposition:

Proposition 4.1. Let b(-,-) : V x Q — R be a bilinear operator, V;, C'V, Q, C Q finite dimensional
subspaces. Let also By, B}, be the discrete operators as we defined before, H, = Ker Bj. Suppose that
there exists a linear operator Iy, : V. — V}, such that

b(v_ Hthv Qh) =0 Vv e Va qn € Qh~
Then Iy (Im B) C Im By, and equivalently Hy C H.

Proof. We have that b(v —Ily,v,q,) = (Bv,q;) — (BEy,I1y,v,q) =0, Vg, € Q. And applying the g
operator to the last equality we get:

<HQZBV) CIh> - <BhHVhV7 4h> =0, vqh € Oh.

Then we get the following equality between linear operators:

HQ;IBV = BhHth, WwevV—= HQ;I( Im B) C Im By,

Our next point is to prove that the last inclusion 1y (Im B) C Im By, implies that H, C H. Let us
consider qg € Hy, that is:

(vi; Byqg) = 0 <= (T Bvy,q5) = (Bvi,q0) = (vi, B'q) = (v Tlg, B'gp) =0, vy € Vi

We recover the definition of polar space and realise that, then, qg € ( Im HQ;lBEVh)O = ( Im Bh)o. The
inclusion HQZ( Im B) C Im By, clearly implies the inclusion between the corresponding polar spaces
(Im B;)° C (Tl (Im B))®, due to their closeness, and, then, we get gj € (ITp (Im B))”. Finally we
have (v, B'ql) = (T1y By, gty =0, Yv € V, and hence gf} € H),. O

Operators holding the proposition above are called B-compatible operators, which are really important
to find inf-sup conditions. Here, we should remark that the converse for last proposition is also true,
even one could go further and find an equivalence between them and the condition K, C K.

Another important topic is the stability and error estimates of our finite dimensional solutions, so we are
interested in finding bounds on ||u — u; ||y and || p — px||o. In order to get them, first we will consider the
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best approximations i € Vj,, p € Q), for the solution (u, p) € V x Q of our model problem. Secondly we
take (uy, pp) € Vi, X Qp as the solution of the discretised problem and, then, we will bound the distance
between them in terms of the distance of (i, p) from (u, p). Finally, using the triangle inequality we
will be able to obtain an expression of ||u — uy||y and ||p — pul|o in terms of the distance between the
original solution and its best approximation.

Hence, let us define the so-called approximation errors:

Eyi= inf u—villy,  Ep:= inf [[p—aqufo.
€0

eV,

Now using the linearity of operators a(-,-) and b(+,-) we substract the continuous problem to the discre-
tised problem and then one easily introduces & and p getting the variational problem:

Find (uj, — i, pp — p) € V), X Oy, such that

alup — @, vp) +b(vp, pn— p) = a(u—it,vy) + b(vp,p — P) Vv € Vi,

b(up —it,qn) = b(u—it,qn) Vqn € On.
Therefore, for every (i, p) € V; x Qp, we can ensure that (u;, — i, p, — p) is the unique solution of the
variational problem above in V}, x Q. For brevity, it is useful to define the operators f and g as follows:

(Fovm)visy, = alu—a,vy) +b(vi,p = p) Vi € Vi,
(8,9n) 0 <0, = b(u—1,qn) aqn € On.

Now we are ready to state a first basic estimate theorem just combining the estimates given in chapter
3:

Theorem 4.1. (The basic estimate) Let a(-,-) :V xV — R and b(-,-) : V. x Q — R be two bilinear
operators, V,, CV , Oy C Q finite dimensional subspaces. Let us consider the restrictions of a(-,-) and
b(-,-) to these subspaces and assume that the corresponding inf-sup conditions hold for ch’ > 0 and
Bn>0. Let feV', g€ Q and f €V}, § € Q) be as we have defined. Then, for every (ii, p) € Viy X Qy
combining the estimates for the variational problem above, the continuous variational problem with
unique solution (u,p) € V x Q and the discretised problem with its unique solution (uy, pp) € Vi, X Qp,
one gets the estimates:

_ L= 2|al
Jup — |y < *Hva,;Jr o B 181lg;
3 IIGH 2llall
lpn—Pllo < £l + 181l ;-
l} h al }% h

If moreover a(-,-) is symmetric and semidefinite positive in Vj, then we have the improved estimates:

_ 2||a|'/?

(|, — dlly < h||f||v+( 113, 181l »
Iow = Plo < g + Lk Ll
Ph—Pp Q_( 0)1/2ﬁ 14 8llg;,>

)2

o

with Océ' = ( 1,) , where Mé’: sup sup M.
Mal VhEVhWhGVhthHVHWhHV

Furthermore, if we apply to the previous result the inequalities below

17 llv; < llallllu—allv +l12lllp = Bllo, — 3llg, < Iblllu—aly,

and the triangular inequalities for ||u;, — u||ly and || p; — p||o:
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e o Nallllol]
e, — ul| < ug, — | + || — ul| < [|up, — @] + — i —ul,
O‘{Zﬁh
N 3 1, lalllizll
lpn=pll < llpn =2+ 17 =Pl < llpn— DIl + 55— 17— Pll-
a1ﬁh

Then we obtain as a corollary the so-called basic error estimate:

Corollary 4.1. (The basic error estimate) Under the same assumptions, we have the following error
estimates:

oy < Al
) o B oy
o —plg < (222 el sl
a B B o By

If moreover a(-,-) is symmetric and semidefinite positive in Vj,, then we have the improved estimates:

up —ully < 2|l +2||aH1/2||bH E +ME

> u )z
% (a)Pp)

2al* o allligly o 3ljall2l1o]

u .

(o) 2By By (o) 12B "

Finally, we close this chapter with the statement of a commonly used estimate avaiable for a particu-

lar case, when the inf-sup condition on the bilinear operator b(-,-) is satisfied with a constant f > 0
independent of 4 and the bilinear operator a(-,-) satisfies uniformly the discretised elker condition:

lpn—pllo < (

Theorem 4.2. Let (u,p) €V x Q and (up, py) € Vj, X Q, be respectively solutions of the continuous and
discretised problems. Assume that the inf-sup condition

b
inf sup (qu}z)

— > B3>0,
lIhEQthGVhthHVHQhHQ

is satisfied and let a(-,-) be uniformly coercive on K, :== Ker Bj:

a(vi,vh) = oollvglly, G € Ki.

b

Then, one has the following estimate with C a constant depending on ||a , B and o but independent

of h:

i

!M—MthJrllp—Ph!QSC(iﬂf |u—vpllv + inf ‘P_PhHQ)'

Vi€V qan€0h
Moreover, when we have the inclusion K, C K, we have the better estimate

[[u—unlly < Cinf |lu—vllv.
V€V

Remark: In the previous results, when H := Ker B is not zero, then the constant 3, goes to zero when
h tends to zero. Instead of O, one must apply these results with Oy, that is the case of Stokes equations,
for example.



Chapter 5

Properties of Saddle Point Matrices

This section is devoted to introduce the basic properties of saddle point matrices and how we could
make a good use of them in order to get numerical solutions through adaptive methods. Due to its block
structure, it will be appropiate to handle with a Schur complement reduction for the appearing saddle
point matrices. Thus, our management of the linear system will be easier and we will improve our
understanding of the problem we are dealing with. In the previous chapters, we could deduce how the
structure of a saddle point problem is, but now we state its general structure as follows:

Definition. A linear system is said to describe a saddle point problem if its form corresponds to a block
2 x 2 linear system such that

A E Rl’lxn
A BlT X f 7
5 c y = ¢ where: By,B, e R™", n>m. (5.1
2 X
C 6 R’n m’

o b

and the constitutive blocks satisfy at least one of the following conditions:
1) A is symmetric.
ii) The symmetric part of A, H = % (A+AT), is positive semidefinite.
iii) By =B, =B.
iv) C is symmetric and positive semidefinite.
V) C =0pxm-

On the other hand, the saddle point problem receives its name due to the case where all the condi-
tions above are hold: Then, one can prove that the solution of our problem is also the solution of a
quadratic programming problem whose matrix <7 contains exactly n positive eigenvalues and m nega-
tive eigenvalues. However, we need still to develop a Schur complement reduction in order to check this.

At this point, we introduce a Schur complement based block factorization of .27 valid if A is nonsingular.
Although other factorizations could be found by means of C Schur complement when A is singular,

in general A will be nonsingular for us. More detailed information about this topic can be found in
[8]. Then, under the last assumption, our saddle point matrix admits the following block triangular

factorization:
ge(A Bl \_ (1 0 A0 1 A'BT
B, —C BA™l I 0 S 0 I ’

15
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where S = —(C + B,A~'BT) is the Schur complement of A in «7. The reader might note this factor-
ization yields a lot of information about the spectral properties of our saddle point matrix because the
eigenvalues of &7 are then given by the corresponding eigenvalues of A and its Schur complement S.
Moreover, we are able to deal directly with solvability conditions for saddle point problems due to </
is nonsingular if and only if § is (assuming A is nonsingular). Therefore, our next point is to find out
under which assumptions S is nonsingular and which restrictions on the blocks A, B, B, and C are nec-
essary/sufficient to get the desired result.

By this way, our first approach to avoid O to be an eigenvalue of &7 is to require A and S to be definite.
Hence, now we consider the so-called symmetric case: Let us assume A to be symmetric positive
definite, B = B, = B and C = 0. Clearly, the Schur complement of A takes the form § = —BA7!BT and
this matrix is symmetric negative semidefinite matrix, so we can hold that <7 is invertible if and only
if rank (B) = m. That would imply S was symmetric negative definite and then we would back to the

(50 )(0)-(3)

whose solution solves the following quadratic programming problem:

J )= A T

s.t. Bx =g,

Find x € R"minimizing

where y € R™ takes the role of Lagrange multiplier. Now we compute the associated Lagrangian for the
problem above, its gradient and hessian matrix:

1
D%c,y = EXTAX_ fo+ (Bx - g)TYa
V-ZLiy = (Ax— T+ By, (Bx—g)" ) =0,
A BT
nze- (4 7).
Finally, the Hessian matrix of the Lagrangian provides us the answer to why our problem receives the
saddle point problem name: As far as H.Z, , has the eigenvalues of A and S, it has n positive eigenval-

ues and m negative eigenvalues. Thus, H.Z, , is indefinite and therefore the solution of the quadratic
programming problem we are looking for is a saddle point.

On the other hand, the last assumption we did about the constitutive blocks can be relaxed for C, if we
just assume C # 0 is symmetric positive definite, we obtain § = —(C + BA~!BT) is symmetric negative
semidefinite also. However, for this discussion we need an additional condition in order to ensure the
invertibility of ./ and it is exposed in the following theorem:

Theorem 5.1. Assume A is symmetric positive definite, By = By = B, and C is symmetric positive
semidefinite. If Ker (C)N Ker (BT) = {0}, then the saddle point matrix </ is nonsingular. In particular
o is invertible if B has full rank.

The assumption taken for A can be relaxed. There are many results with A positive semidefinite, but
easy counterexamples appear when A is considered indefinite. In that case </ might be singular as it is
in the following example:

o

Il
o
|
—_
—_
£
-
=
b
Il
N
O -
=
—_
S~
ov]
ﬂ
Il
N
f—
~_
[N
=]
o,
a
Il
o
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As we have already checked, the requirement for A can be relaxed only to be positive semidefinite.
Hence the next result that we expose with its respective proof provides an if and only if condition for
nonsingularity of <7

Theorem 5.2. Assume A is symmetric positive semidefinite, By = B, = B has full rank and C = 0. Then
the saddle point matrix </ holds:

</ is nonsingular < Ker (A)N Ker (B) ={0}.

Proof. First, let (x,y) € R™™ be such that &7 (x,y)” = 0. In order to prove the condition above is a
sufficient condition, let us see that (x,y) must be zero using Ker (A) N Ker (B) = {0}. We note that the
pair (x,y) satisfies

Ax+BTy=0, Bx=0.

Then, one easily deduces multiplying on the left by x” that x Ax = —x" BTy = —(Bx)Ty = 0. Moreover,
Ax = 0 since A is symmetric positive semidefinite and then it follows that x € Ker (A) N Ker (B). Con-
sequently we have BTy = 0 and rank (B) = m implies y € R”™ must be zero. At this point, it follows
that (x,y) = 0 and, thus, .2/ is nonsingular.

In order to prove the converse, let us assume there exists x € Ker (A) N Ker (B) with x # 0. Inmediately
one notes that .<7(x,0)” = 0 implying that <7 is singular. This proves the given condition Ker (4) N
Ker (B) = {0} is also necessary. O

More results can be found holding positive definiteness over the symmetric part of A instead of A making
possible even to relax the C = 0 condition. Then we will be able to talk about solvability of saddle point
problems where matrix A does not have to be symmetric. The proof of the following theorem follows
the same steps for proving Theorem 5.1 and we refer the interested reader to [12] for finding more
details about these results.

Theorem 5.3. Assume H = %(A +AT) the symmetric part of A is positive semidefinite, By = B, = B has
full rank and C is symmetric positive semidefinite. Then the following holds:

i) Ker (H)N Ker (B) = {0} = & is invertible.
ii) < is invertible => Ker (A)N Ker (B) = {0}.
All these results serve us for ensuring that .7 is invertible in some cases thanks to the nonsingularity of

A and its Schur complement S. For those cases, an explicit expression for the inverse of a general saddle
point matrix can be given and it is:

(A BL\_ (AT 4AT BB —aT'B]ST!
“\ B, —C - —S71B,A™! s-! '

However, a more interesting case appears when we assume again A to be symmetric positive definite,
By =B, =B, C =0, S nonsingular and in addition we consider g = 0. Then, the explicit expression for
o7~ yields the following explicit expression for the solution of the respective saddle point problem in
words of the constitutive blocks:

x (I+A7'BTS™'B)A~1f
y |~ S'BA~ly '

This case would correspond to the discretisation of the Stokes equations with a Dirichlet boundary con-
dition using for instance Taylor-Hood finite elements.
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Our next point is to study the spectral properties of the saddle point matrices. These properties are really
important when we solve the system by an iterative method and they determine for each case the methods
which are usable. As we have seen before, the symmetric case has an important role in the saddle point
problems. Therefore, we start our study assuming that A is symmetric positive definite, B; = B, = B has
full rank and C is symmetric positive semidefinite. Then, the matrix <7 is congruent with the following
block diagonal matrix < 13 g >, where the Schur complement of A given by S = —(C+ BA~'B7) is

consequently symmetric negative definite. We can ensure this last since the factorization of 7 holds for

this case as follows:
I 0 A BT I —A7'BT\ (A0
—BA™! T B —C 0 I “\o s /)

With this argument, it is clear that with the last assumption the matrix <7 has exactly n positive and m
negative eigenvalues. Hence, .27 is indefinite as we pointed out before. Further results ensure that even
if we just assume that A is symmetric positive semidefinite and the condition Ker A N Ker B = {0} is
given, then .27 is congruent with a block diagonal matrix where the S block has m — r negative eigenval-
ues, with r = rank(S).

Now, we focus in the A symmetric positive definite case in order to get eigenvalue bounds. The reason
why we are interested in these bounds lies in obtaining estimates for the condition number of o7, that
provides us light about convergence of iterative methods on each case. Furthermore, these bounds will
be useful for checking the inf-sup condition and thus the stability of mixed finite element discretisations.
Then we open up the following theorem:

Theorem 5.4. Assume A is symmetric positive definite, Bj = By = B with full rank, and C = 0. Let
Ur and LW, denote the largest and smallest eigenvalues of A, and let 61 and 6, denote the largest and
smallest singular values of B. Let 6 (<) denote the spectrum of </. Then, 6(</) C I~ UI" where

1 / 1 /
- — | = _ 2 2 - _ 2 2
I = |:2 (u'l’l uy; +4G]>72 (.ul .u] +46m>:| )
1 /
I = |:;un72<.ul+ “12+4612>:| :

Let us note that clearly I~ C (—o0,0) and I C (0,+o0). Although our matrix <7 is indefinite, one is
usually interested in a symmetric positive (semi-)definite matrix . in order to define an inner product
on R™*™ which suits better to iterative methods like Krylov subspaces methods, more if we want to use
certain preconditioners. For this reason, we can rewrite our saddle point problem as follows:

(4 5)(0)-(%) w s

I, O

0 —I,
define a _#-symmetric matrix as a matrix ./ that satisfies ¢ .# = .# r 7. Then, we note that o
holds this property and it is symmetric respect to the indefinite inner product defined on R™*" given by
(u,v) = vl _Zu. Saving some algebraic issues that we will not treat along this work, this nonstandard

Note that &7 = B <

) &/ is nonsymmetric positive (semi-)definite, but here one can

inner product with respect to which <7 is symmetric positive (semi-)definite lead us to a favourable
situation for applying some iterative methods. Thus, we show the following result for the alternative
formulation &7 u = b:

Theorem 5.5. Assume that A is symmetric positive definite, B| = B> = B has full rank, and C = 0. Let
W, denote the smallest eigenvalue of A. If W, > 4||S||2, then, all the eigenvalues of < are real and
positive.
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Proof. See [13]. O]

Another important topic about saddle point matrices is the condition number of .o#. The system matrix
of these problems uses to be poorly conditioned. In particular, for mixed finite element formulations of
elliptic partial differential equations u, and o, tends to zero as h goes to zero. Hence, the condition
number of &7 is given by

max |A ()|
HN(A ) = ——77——
() min |A (<)’
and it grows like &'(h7), with p > 0. This means that a refinement of our mesh will imply a deterio-

rated convergence rate of iterative methods for solving the system. However, a possible way to save this
issue is to use preconditioners.

where A (.27') denotes the set of eigenvalues of o7,

Finally, we finish this chapter adding another strategy for solving a saddle point system: A Schur com-
plement reduction. This way only requires to assume that A and .2/ are nonsingular, but on the other
hand, only transforms our original system to a block upper triangular system. With this last assumption,
we recall S the nonsingular Schur complement of the matrix A. Then, let us multiply both sides of the
first equation of the saddle point system by B,A~!:

Ax+Bly =/, . Byx+BA"'BTy =B,A7lf,
Byx—Cy =g. Byx—Cy =g.

Now, we substract the first equation to the second one and using S = —(C + B,A~'BT) we obtain the

following equation:

Sy=g—BA"'f.

At this point, we build a new system joining the first equation of the original system with this one:

{ Ax—l—BlTy =f,

Sy =g-BAlf. 62

In this system we are able to obtain x and y separately. We proceed solving first the system for y and
then backsubstituting its solution on the system for x, so we solve two systems of m and n equations
respectively. Nevertheless, those two systems might keep being costly to solve by iterative methods
since we are not assuming positive definiteness of A and —S.






Chapter 6

The Stokes Equations

Introduction

The Stokes equations are a system of linear partial differential equations which describe incompressible
fluid flows. This system represents a limiting case of the more general Navier-Stokes equations, but it is
useful only when the flow is very slow. Thus, convection effects considered in Navier-Stokes equations
can be neglected and one can obtain the stationary Stokes equations. On the other hand, a fluid is said to
be incompressible if its density is constant along trajectories of a fluid element with a fixed temperature
but changing pressure. The Stokes equations have many applications, for instance they can modtael how
honey drops, flow of blood along veins and arteries...

In this chapter, we will see that the Stokes equations can be formulated as a saddle point problem. An-
other point is to use the results appearing in previous chapters in order to study existence and uniqueness
of solution for this problem. Finally, the last aim of this chapter is to solve these equations through fi-
nite element approximations. However, the choice of discrete spaces can not be arbitrary: The inf-sup
condition takes again an important role and our finite element methods will have to satisfy it.

The first step is to state the Stokes equations. Firstly we consider Dirichlet boundary conditions, but we
will see that this problem also admits Neumann boundary conditions. Thus, let Q C R" be a bounded,
connected and open domain, with n > 2 and dQ-Lipschitz boundary. Then, the strong formulation of
the Stokes equations is written as follows:

—Au+Vp=f  inQ,
V.u=0, in Q, 6.1
u=g, on Q.

In the system above, variable u is a vector function that represents the velocity of the fluid mean-
while p is a scalar function that represents the pressure. The first equation models the conservation
of the momentum of the fluid and, hence, it is known as the momentum equation. On the other hand,
the second equation is the incompressibility constraint and enforces the conservation of mass. It is
also known as the continuity equation. Given a force f € €' (Q) and a boundary data g € € (9Q),
we will say that a pair (u,p) is a classical solution of the Stokes problem if it fulfills (6.1) and
(u.p) € (F2Q)NE(Q)) x 7' (Q).

After this introduction to the Stokes equations with Dirichlet boundary conditions, it worths to remark
that one has to be careful in the choice of the boundary conditions. Due to well-poseness of the problem,
one condition needs to be satisfied:

Lemma 6.1. The following compatibility constraint is a necessary condition for the existence of solu-
tions for the Stokes equations:

21
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g-nds=0.

That is, the volume of fluid entering the domain must be matched by the volume of fluid flowing out of
the domain.

Proof. Let u =g on dQ. First, integrating the incompressibility condition in the Stokes problem (6.1)
one gets

/V-udx:O.
Q

And secondly using the Divergence theorem we reach the desired result:

0:/ V-udx:/ u~nds:/ g-nds.
Q 20 o0

O]

This compatibility condition on the boundary data is very important: If it does not hold, then, there is
no solution for the Stokes equations. For the Dirichlet problem given in (6.1), pressure p is unique up
to a constant. This is due to the appearance of Vp instead of p in the system of equations: Note that
given a constant ¢ € R, one has V(p+c¢) = Vp. On the other hand, Neumann boundary conditions can
be given by making a boundary partition dQ = dQp U JdQy and stating

Dirichlet boundary condition: u=g ondQp.

.. u
Neumann boundary condition: ——n-p=s ondQy.

on

. : du S :
where s € € (dQy), n is the outward unit normal to the boundary and —— denotes the directional deriva-

on

tive in the normal direction.

In this case, we need that dQp # 0 in order to ensure uniqueness of the velocity solution u. Fortunately,
the condition appearing in the lemma given above holds when Neumann boundary conditions are taken
into account too. That is caused by a self-acting adjustment of the product u - n in order to satisfy the
incompressibility constraint.

Moreover, adding Neumann boundary conditions we can ensure the uniqueness of solution p to (6.1):
Although p is unique up to a constant, known as hydrostatic pressure level, a Neumann outflow condition
will fix it. One is able to check this statement with a simple example: Let us consider a two-dimensional
domain Q = [0,L] x [0, H] with a Neumann outflow condition given in dQy = {(L,y)|0 <y < H}, and
a homogeneous Dirichlet boundary condition in dQp = dQ\ dQy. Then, the natural outflow condition
is

du,
p— :S
ax p X

duy

ox

Now, let us integrate the normal component over dQy. Thus, one gets,

H ) H H
uxdy—/o pdyz/o Sydy.

0o Jx
. . . .. Ouy du, . .
Then, using the incompressibility condition = ———= and the Dirichlet boundary condition:

ox dy
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H H Ju, H H H
/ pdy = —/ a—dy—/ sydy = —uy(H) + uy(0) —/ sedy = —/ sydy.
0 0o dy 0 0 0

Finally, the average pressure value at dQy gets fixed. One can even set it to zero by taking s = 0. How-
ever, for sake of symplicity, we will study the Dirichlet problem (6.1).

Weak Formulation of the Stokes Equations

We are interested in approximating the solution of the Stokes problem given in (6.1) using mixed finite
element methods. In order to do that, we need first to build the variational formulation of the Stokes
problem and then apply the results given along this work. As one usually does, we start defining our
test spaces:

V=Hj(Q):={veH (Q) : v, =0},

0=1L§Q) = {qELz(Q) : /qux:O}.

The next step in order to obtain the weak formulation is to multiply the Stokes equations by test func-
tions. Thus, we test the first equation by a function v € V and the second equation by a function g € Q:

—Au:v+Vp-v=f-v, ¥YWeYV,
(V-u)g=0, Vg € Q.

Finally, we integrate both equations in Q and then apply integration by parts using again the Divergence
theorem. Hence one gets the weak formulation of the Stokes equations: Given f € H™'(Q) =V, find
(u, p) € V x Q such that
/ Vu : Vvdx— / (V-v) pdx = / f-vdx, WevV,
. . JQ

Q (6.2)
j:z(v'u)‘q:(), Vg € Q.

A pair (u, p) is said to be weak solution of the problem (6.1) if it fulfills (6.2). Moreover, a weak solu-
tion is also a classical solution if it fulfills the smoothness requirements given in the strong formulation.

The variational problem (6.2) can be written using the same notation given in chapter 2. Thus, let us
introduce the following bilinear and linear forms:

a(,-):VxV—R
a(u,v) := /QVu : Vvdx, Yu,veV,
b(-,-):VxQ—R
b(v,p) = —/Q(V-V)pdx, YveV,¥peo,
f:V—R
f(v) ::/Qf-vdx, withfeV/ VvevV.
Since our test spaces V and Q are Hilbert spaces which own a defined scalar product, we are interested
in proving that the operators given above satisfy some linearity and continuity conditions. Thus, we

will be able to state that the weak formulation of the Stokes problem and the model variational problem
given in (2.1) with g = 0 are equivalent. The following result lets us to ensure that:
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Lemma 6.2. It holds
i) a(-,-) is symmetric, bounded, positive definite and coercive bilinear form.
ii) b(-,-) is a bounded bilinear form.

iii) f(-) is a bounded linear functional.

Proof. We proof i) here, the interested reader can find the proof of ii) and iii) in [9], pp. 23. First, the
operator af(-,-) is symmetric since the tensor product is symmetric too:

aluv) = [ Vu:vvax= [ ¥ ou; Vi, _/ ST
Q

P | 90X 0x; —, 0X; 8xj

:/Vv : Vudx=a(v,u), Yu,veV.
Q

Secondly, we prove the boundedness of a(+, -) using the Cauchy-Schwartz inequality.

la(u,v)| = ‘/QVu : Vvdx

< /Q\Vu D VY[ dx = [[Vu s VV|[g) < Va2 g) - (IVVI2q) =
= [uly[vly <|luflv[[vl]ly, VuveV.

Note that a linear operator between normed Hilbert spaces is continuous if and only if it is bounded.
Therefore the operator af(-,-) is continuous. Moreover, one realises that the seminorm defined in V and
its norm are equivalent by using the Poincaré inequality:

”u”Lz <CQ||Vu||L2 with Cq >0, Vue V.

Then, a(-,-) is clearly positive definite:

1

a(u,u) /QVu Vuds= [Vull g, = 0 > ]

lulli >0, vueV\{0}.

And consequently a(-,-) is coercive too. Finally, bilinearity of a(-,-) is due to its already proved sym-
metry and the fact that to integrate and to derive are linear operators. O

With this lemma, the weak formulation for the Stokes equations takes the form given in (2.1):

Given f € V', find (u, p) € V x Q such that:
a(w,v) + b(v,p)={EV)yyy, YVWEV. (6.3)
b(u,q) =0 VgeQ

Moreover, we can define the associated linear operators corresponding to a(-,-) and b(-,-) such that

A=-A:V—V
(A, v)yr .y :=a(u,v), Yu,vev,
B= div:V—(Q
(BV,q) o< :=b(v,q), VveV,VgeQ,
B'= grad :Q — V'
(B'q,V)vixy := (B'q,V)viy = (BV,q) <0 = b(V,9), VveV,VgeQ.

Then, we obtain an operator formulation for the Stokes problem that is equivalent to a saddle point
problem on the Hilbert spaces V and Q: Given f € V’, find (u, p) € V x Q such that

! _
{Au+Bp =f, 6.4)

Bu =0.
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At this point, let us call K := Ker B C V and define Agg’ := [Ix/AEx. Hence, one can consider theorem
2.2 for talking about existence and uniqueness of solutions. As we saw in chapter 3, the conditions
required in that theorem can be replaced by the following inf-sup conditions

b
3B >0:inf sup MZ&
€0 vev |Vllvllallo

doy >0:inf sup M: inf  sup M > oy.
wek woek |[Vollvl[wollv — woek yoex [[vollv|Iwollv

(6.5)

Since a(+,-) is symmetric and a(v,v) > 0, it is possible to prove that the converse statement of Lemma
3.2 is also true. Then, the inf-sup condition for the bilinear form a(-,-) can be replaced by the elker
condition. Note that we checked this condition in the proof of Lemma 6.2. Hence, we are almost ready
to show a result about existence and uniqueness of solutions for the variational formulation of the Stokes
equations. In order to prove it, we will need the following lemma:

Lemma 6.3. Let g € Q. Then
dlveKerB:V-v=gqand ||y <Cl|qlo,
for a constant C > Q.
Proof. See [14], pp. 40. O
Finally, we finish this section with the mentioned result about existence and uniqueness.

Theorem 6.1. Let Q be a bounded domain in R" with 0 lipschitz boundary. Then, for every f € H ™!,
the weak Stokes problem (6.3) has a unique solution (u,p) € V x Q.

Proof. As we have said before, the bilinear form a(-, -) holds the ellipticity condition on Ker B and then
we need only to prove that b(-, ) satisfies the inf-sup condition given in (6.6). Using the result provided
in lemma 6.3 one gets

2
sup b(v.q) up (V-v,q) 1300 - (V-v,q) 1300 _ (4:9) 12(0) B HCIHL%(Q) -
vev [Ivivliglio  vemopo  [IVlvilalle — liviiviiglio Iviivllglle — IIvllvllglle —

1
EH‘]HL%(Q)

by taking v such that V-v = g and ||v|ly < C||g||o. Finally, we can choose ¢ € L}() arbitrarily and
then we obtain
b(v,q) 1

inf sup >—=:0.
GELFQN\O veq) (Q)\0 HV”H(I)(Q)\()HQHL%(Q)\O c

Discrete Stokes Problem

A good-working discretisation is needed when we consider the variational formulation of the Stokes
equations and our aim is to find an approximation of the problem (6.2). As far as we find two variables
in the Stokes equations, a pair of finite element spaces will be required. Furthermore, when we use a
different test space for each variable our numerical method receives the name of mixed finite element
method.

In regard to the discrete Stokes problem, finite dimensional subspaces V), C H}(Q) and Q), C L}(Q)
have to be chosen carefully. As we pointed out in chapter 4, firstly we have to take care about whether
K, := Ker B, and Hj, := Ker Bj, are actually subspaces of the original kernels K and H. Secondly, the
finite element spaces have to verify the corresponding discrete inf-sup conditions, that are not implied by
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the fulfillment of the inf-sup conditions on the general spaces. These remarks will make the difference
between the choice of stable or unstable finite element spaces. Thus, we start this section stating the
discrete Stokes problem: Let V;, C H)(Q) and Q;, C L%(Q) be finite dimensional subspaces,

Given f € V', find (uy, p,) € V, X Qy, such that:
a(up,vi) + bV, pn) = V) vy, Vi € Vi (6.6)
b(Uh,Qh) =0 VQh € Qh-

Since af(-,-) is coercive on V, we don’t have to check whether the inf-sup condition for a(-,-) holds
when we consider homogeneous Dirichlet boundary conditions. However, there might be troubles with
the uniqueness of p; and we will be interested in verifying the following discrete inf-sup condition for

b(.’.)

b
3B, > O such that: inf  sup M > B
@€ v,ev, |IVallvlignllo

If this condition is verified, we are able to use corollary (4.1) since a(-,-) is symmetric, definite positive
in V;, and coercive in V. Then, we ensure that there exists an unique solution (uy, pj) for (6.6) and we
obtain the following improved error estimates

2lall  2|lal|?||b b
IIuh—u||v§< | H+ I ||1/2H II>EM+H ”Ep, 67)
a (o)~ By «
2(|al*  lall|lb]| 3|al|*/2| 5|
—pllp < E, : 6.8
lpn—pllo < ((06)1/2[3;,+ 5 + ()7, (6.8)

with a > 0 such that the coercivity condition a(u,u) > o|ul|y, Yu € V holds. Moreover, when the
discrete inf-sup condition is satisfied with a constant 3y > 0 which does not depend on the mesh size A,
the same assumptions lead us to the following estimate

Jwn—ully +[lps— plio < C(Ey+Ep). (6.9)

Mixed Finite Element Methods for the Stokes Equations

In this section we verify the importance of the inf-sup conditions for building an stable pair of finite
element spaces. Some combinations violate the discrete inf-sup condition and consequently they do not
yield a good approximation at all. In order to illustrate this, we will show some unstable pairs of finite
element spaces explaining the reason why they do not work. Before that, let us introduce some common
notation for a given decomposition of our domain Q:

Definition. A triangulation .7}, is a decomposition of a domain Q C R” into polyhedrons T € .7},. The
union of all these polyhedrons is called grid or mesh and the grid size is defined as follows

h:=max diam (T).
T€e9,
We will consider that the polyhedrons for our triangulation are triangles. At using a finite element
method, variables are approximated elementwise by polynomial functions. However, the general finite
element theory is developed for a reference triangle.

Definition. The reference triangle is the convex hull of the points £y =0, £ =e¢;, Vi=1,...n, where
ej,i = 1,...n are the cartesian unit vectors in R”. In addition, we will denote the reference triangle with
T.
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X
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Figure 6.1: There exists an affine map between the reference triangle and each mesh cell.

Although the cells might have different size and shape in every triangulation, it is possible to find
an affine map between the reference triangle and every cell. Let Fr : T — T be this map such that
F(%)=x;, i=0,...,n, where x;,i = 0,...,n are the vertices of a mesh triangle.

Another point of this grid introduction is to define the polynomial spaces on a cell mesh 7" as follows

Pu(T) := {s T —R ’ s(x) = Z caX%, cq € R}.
|| <k
Now, let us realise that since V;, and Qj, are finite dimensional spaces, we can find a finite basis for each
one. Let {¢;}Y, be a basis of Vj, {y;}, a basis of Q. Then, every u, € V,, and pj, € Q) can be
expressed as

N M
u, = o0, withoy, e R, i=1,...,N; Ph = Biy;, withB;eR, i=1,... M.
i=1 i=1

In addition, note that it suffices to know the coefficients ¢; and fB; in order to compute our approximations
u;, and p,. Also, both equations of the discrete Stokes problem are tested with functions v, € V, and

pn € Q. Hence, using bilinearity of a(-,-) and b(-,-) one notes that it is enough to solve the following
system:

M=

M
a(@r, @)ooy + Y b(@i, vi)Be = f(@),  Vi=1,...,N,
k=1

N
Il
—_

(6.10)

™=

b(@r, yj)oy =0, Vi=1,....M,

N
Il
—

where N = dim V;, M =dim Q;. Thus, we are able to obtain a linear system describing a saddle point
problem by defining

(Ah)i,j : a((Pj7 (Pi)7 Ae RNXN: (uh)j = aju u; € RN)
(Bn)i,j :=b(@;, ), BERMN (p,);j:=B;, ppeRM,
(fu)j = (@), [feRY.

Thereby, one gets finally the following saddle point problem:

Ah Bt uy . fh
(5 o) ()= (8)

Note again that this system is uniquely solvable if and only if rank (A;) = N and rank (Bj,) = M. How-
ever, A is positive definite due to a(-,-) is positive definite too. Therefore, Aj has full rank and we
will have to deal only with the condition: rank (B,) = M. On the other hand, M < N is a necessary
condition because the opposite case means that the system is overconstrained and then we have linearly
dependent rows. Let us introduce an important result that relates the full rank of B;, with the discrete
inf-sup condition of b(-,-):
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Theorem 6.2. Let B, € RN with M < N. Then we have,

qTBhV
rank,,(Bp) =M <—  inf sup ————>p>0. (6.12)

gerM\ (0} verM\gor [IVlI2llgll2

Proof. We prove here that rankow (B,) is a necessary condition for holding the discrete inf-sup condi-
tion. The interested reader can find the converse (=) proven in [10], pp. 45. Hence, let us prove the
<« direction by contradiction: Assume that there exists B > 0 such that the discrete inf-sup condition
above holds. In addition, let us suppose rank;ow (Bj,) < M. Then,

rankrow (By) <M < dim (Ker (Bf)) >1 < g€ RY\{0}: ¢'B=B"g=0 =

T
B
=3¢ cRY\{0}: ¢"Bv=0, WweR" = 3gcRM\{0}: sup 120 _ ¢ =
verv\joy |[V[|2
T
B
= inf up 4 Phv_ <0,
geRM\{0} yern\ g0y [IVII2llgll2

and then, we obtain a contradiction. Thus, it has to be necessarily rank;ow (Bj) = M. ]

Our next aim is to show some pairs of finite element spaces for the Stokes equations. In order to explain
why some of them do not work, we have to introduce the main troubles that might appear when one
applies a mixed finite element method for these equations. Hence, we might face with:

e Spurious Pressure Modes: The choice of a too large finite dimensional space Qj might cause
the existence of a pj, € Q, with pj, # 0 such that

b(Vi,pn) =0, Vv, €V,

Then, the discrete inf-sup condition for b(-,-) is violated. Taking such a p;, one gets

b ’l7~ . b Y
sup M:O:> inf sup M<O.

vev,\0 [Vl v, 9h€Qn\0 yev,\0 IVallv, lgnllo, —

Thus, the appearance of a spurious pressure mode p;, € Q) makes the finite element pair V,/Qj,
inf-sup unstable: If we assume that the pair (uy, p;) solves the discrete Stokes equations, then
(ap, pn+ pr) solves them too.

e The Locking Phenomenon: This phenomenon appears when the space Vj, has not been chosen
large enough. In that case, V;, might not contain nontrivial discretely divergence-free functions.
In other words, when we have

b(up,qn) =0, Vg, € Qp < w,=0.
Consequently, the discete velocity field approximation will be u, = 0.

At this point, we are ready to show some pairs of finite element spaces for the Stokes equations. When
a pair of elements is inf-sup unstable, one of the two main troubles given above appears. On the other
hand, when a stable pair is given, one can prove this fact by checking that the discrete inf-sup condition
holds. There are some practical ways to do this, a common one is the so-called Fortin’s trick. This one
consists in building a B-compatible operator I, as we described in Proposition 4.1. However, this task
might be sometimes pretty toilsome and we will reference the reader to detailed proofs if it is the case.
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e Linear-Constant Element: The P, / Py Approximation: Velocity and pressure are respectively
approximated by elementwise polynomials of degree one and constant funcions. Considering
thus homogeneous Dirichlet boundary condition, the choice of our finite dimensional spaces is

Vi i={vi € €°(Q) : vy, €PI(T),VT € T, Vi, =0},

Oy = {Qh GLz(Q) “4qh|; S P()(T),VT € %, th dx = 0} .

Let us see an example for which this choice does not fulfill the inf-sup condition. Assume that Q
is a square domain subdivided into 2N? triangles. In addition, let us consider Dirichlet boundary
conditions. Thus, for this example the dimension of V, is given by:

dim (V) = 2-#{Inner nodes} = 2(N — 1)*.

On the other hand since we are approximating the pressure by constant functions, one gets one
degree of freedom per element. Note that the pressure mean value has to be balanced in € since
gn € L3(Q). Due to this balance, the value in one mesh cell is determined by the rest of mesh
cells values. Therefore,

dim (Q;,) = #{Elements} — 1 = 2N — 1.

Hence the locking phenomenon appears because dim Q; > dim V, for N > 1 and then u;, € V,,
is overconstrained. Finally, the unique discrete divergence-free velocity field might be u;, = 0
making the pair P / Py unstable.

Figure 6.2: Local degrees of freedom for the velocity (left) and pressure (right) for the inf-sup un-
stable pair P; /Py.

e Linear-Linear Element: The P, / P, Approximation: The velocity field and the pressure are
both approximated by elementwise linear functions. This finite element pair yield bad approxi-
mations since the appearance spurious pressure modes might take place. Our finite dimensional
spaces are:

V= {v, €6°(Q): Vi € PU(T), VT € T, Vij,q =0},

O = {qh € %O(Q) “dh|y S Pl(T),VT € 9, /Qqh dx = O} .
However, this choice makes the P; / Py element is inf-sup unstable. For instance, let us consider
our bidimensional domain Q = (0,1)? with a given triangulation .7,. Note that every element

is determined by the convex hull of its nodes {xj,x2,x3}. At this point, let 5, be a nonzero
elementwise linear function such that

pn(xit) =0, VT € F,.

-

I
—_
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Since we are using a linear approximation for the velocity field, it holds that (V- Vh)‘T =cr
constant on each triangle T € .7,. Thus, applying a Gaussian quadrature rule exact for linear
functions one gets:

| wde= ¥ Vo), [ prdr= ¥ (Vow), [ =

T, T,
7| &
= (V . Vh) — ph(x,'j) =0, Vv,eV,.
lr 3
T, i=1

Hence, this spurious pressure mode p, can yield any approximation of the pressure for the discrete
Stokes problem. Note that calling (uy, pj,) to its solution, then (uy, py + ¢+ pj) with ¢ € R solves
the discrete problem too.

Figure 6.3: Local degrees of freedom for the velocity (left) and pressure (right) for the inf-sup un-
stable pair Py /P.

e The Minielement: (P, + B3) / Pi: As we have seen in the example above, P / Py is an inf-sup

unstable pair, but if we enrich enough the space Vj, the spurious pressure modes might disappear.
In order to do this, we introduce the so-called bubble functions: Given an element T € .7}, a
function is said to be a bubble function in 7 if it vanishes on d7. In addition, one uses to find
polynomial bubble functions that also belong to the infinite dimensional test space restricted to
the element T, that is: V = H} (7). Furthermore, the bubble funcions for an element T are chosen
such that their value on the barycenter is equal to 1. Thus, the following bubble space is used for
the Minielement:

B;:={v, € °(Q): Vi, € P3(T) NHY(T), VT € F,}
Thereby, the finite dimensional spaces given for this pair are
V= {v, € €°(Q) : vy, € (P1(T)®B3(T)) VT € Ty, Vy,, =0},

Qh = {qh € %O(Q) : qh|T € Pl(T),VT S %, /g% dx = 0} .

The Minielement yields an inf-sup stable pair of finite element spaces. It is possible to prove
that the discrete inf-sup condition holds by building a proper B-compatible operator known as
Clément operator. The detailed proof can be found in [4], pp. 470. Moreover, one finds out that
the inf-sup constant does not depend on the mesh size A. It worths to say that the Minielement is
considered the most economic element for the Stokes equations because the additional degrees of
freedom do not increase significantly the computational cost.

Finally, assuming that the solution (u,p) € ((H*(Q)NH}(Q)) x (H'(Q)NLF(RQ))), one can
obtain the following bound:

0=l + 12— Pl < Ch ([0l + 1Pl e)) . With € >0, (6.13)
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Figure 6.4: Local degrees of freedom for the velocity (left) and pressure (right) for the Minielement.

e Taylor-Hood Element: P; / P,_1, with k > 1: The Taylor-Hood element also holds the discrete
inf-sup condition and then it yields stable pairs of finite elements spaces. Again, the search of an
uniformly stable Fortin operator becomes tedious and we reference the interested reader to [6], pp.
252. On the other hand, the approximation of velocity field and pressure is given by elementwise
polynomials of degree k and k — 1 respectively. Thus, we have

Vii={vi € €°(Q) : vy, €PUT). VT € G, Wy, =0},

o= {qh S %O(Q) “4hy S Pkfl(T),VT S ,%,, /Qqh dx:O} .

This time, if we assume that the solution (u,p) € ((H*"(Q)NH}(Q)) x (HX(Q)NL3(Q))),
then the following inequality holds:

=Wl + 12— Pl < OFF (Il + IPlisey ), WithC >0, (6.14)

In addition, the Taylor-Hood element has optimal convergence rate and the lowest order is given
by P, / Py;. To end, we show the local degrees of freedom for this pair:

Figure 6.5: Local degrees of freedom for the velocity (left) and pressure (right) for the stable Taylor-
Hood element P> / P.






Chapter 7

Numerical Results for the Stokes
Equations

The previous chapter introduced us to the strong and weak formulation of the Stokes equations. Also,
the discrete problem and some mixed finite element methods were included in order to open this chapter.
Now, we are about to check that the theory and practice agree by approximating numerically the Stokes
equations. Our aim is to show the results obtained using some finite element methods and compare
them with the exact solution on each case. First, we consider a square domain Q = (0,1) x (0,1)
with homogeneus Dirichlet boundary conditions on dQ = dQp. Secondly, we consider the following
velocity field and pressure:
L

u = (sin(mx)cos (my) , —cos(mx)sin(7y) ), p=5—x.

Thereby, the right-hand side is given by
f = ( 27°sin (7x) cos (my) — 2x , —2m* cos (7mx)sin (7y) ).

Note that the force field f has been computed in order to make (u, p) a classical solution for the strong
formulation of the Stokes equations. These solutions are depicted in Figure 7.1.

ux uy

D\’\_/
B 1 1

Figure 7.1: The exact solutions (u, p) for our example to the Stokes equations.

To discretise the problem we also consider a conforming triangulation. It worths to remark that a trian-
gulation is said to be compatible or conforming if the intersection of any mesh cells 7,7’ € .7, is either
empty, a vertex or a whole edge. Figure 7.2 shows the triangulation that has been used in our numerical
implementation.

As we saw, the approximation of this problem by a mixed finite element method yields a saddle point
problem. Moreover, in this type of problems the discrete inf-sup conditions are required in order to
obtain stability. If they are not fulfilled, some troubles may appear yielding a bad approximation. That
was the case of the Py / Py pair, where the spurious pressure modes take place. Let us see the numerical

33
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Figure 7.2: The triangulation .7, of domain €.

results obtained with Matlab using this mixed finite element method. The error computed in H'(Q) for
each component of the velocity field u and the error for p in L? are showed in Table 7.1.

H' —norm Uy Uy L* —norm p
i=0 6.427 e-02 | 7.195e-02 i=0 1.948e+00
i=1 2.084e-02 | 2.018e-02 i= 1.517e+02
i=2 9.622¢-03 | 9.357e-03 i=2 2.694e+02
i=3 4.516e-03 | 4.398e-03 i=3 9.111e+02
i=4 2.146e-03 | 2.093e-03 i=4 3.135e+03
i=5 1.024e-03 | 1.002¢-03 i=5 6.379e+03

Table 7.1: H' errors for velocities and L? errors for pressure by using the inf-sup unstable P, / Py pair
of finite element spaces.

It worths to remark that in these tables, i denotes the number of refinements applied to the triangulation
. Thus, we see that the approximation of p obtained with P; / Py and the exact solution are totally
different. As it was expected, the spurious pressure modes make this method unstable and the errors
obtained are very large. In Figure 7.3, we show a plot of the pressure error in order to see this effect

On the other hand, the results obtained by using inf-sup stable pairs are pretty good. Applied to the
same example, the Minielement yields satisfactory results and the convergence order agrees with the
bound for the error given in (6.13). This can be see in Table 7.2.

H' — norm

L? —norm

ux uy p
i=0 3.289¢e-01 | 3.264e-01 i=0 1.201e-01
i=1 1.668e-01 | 1.654e-01 i=1 5.545e-02
i=2 8.384e-02 | 8.314e-02 i=2 2.514e-02
i=3 4.198e-02 | 4.162e-02 i=3 1.009e-02
i=4 2.099¢-02 | 2.082e-02 i=4 3.762e-03
i=5 1.050e-02 | 1.359¢-02 i=5 1.359¢-03

Table 7.2: H'! errors for velocities and L? errors for pressure by using the Minielement method.

With every refinement of our mesh, % is divided by two approximately. Since the sum given by
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Figure 7.3: Pressure approximation by using the pair P, / Py with mesh refinement i = 1.

lu—wy |y @t P — Pullz2 (@) is also divided by two, we deduce that the Minielement method has con-
vergence rate & (h).

In regard to the Taylor-Hood finite element method, the bound given in (6.14) points out that its conver-
gence rate is & (h*). Hence the inf-sup stable pair P, /P, should have convergence rate &(h?). In Table
7.3 we show the corresponding errors and we observe the expected results.

H' —norm Uy Uy L* —norm p
i=0 1.768e-03 | 1.732¢-03 i=0 1.908e-03
i=1 3.223e-04 | 3.153e-04 i=1 2.260e-04
i=2 5.726e-05 | 5.592¢-05 i=2 3.662¢e-05
i=3 1.013e-05 | 9.892¢-06 i=3 7.524e-06
i=4 1.791e-06 | 1.748e-06 i=4 1.766e-06
i=5 3.167e-07 | 3.091e-07 i=5 4.343e-07

Table 7.3: H' errors for velocities and L? errors for pressure by using the inf-sup stable P, / Py pair
of finite element spaces.

In this case, with high refinements, the sum of the velocity field error measured in H'!(Q) and the
pressure error in L?(Q) is divided approximately by 4. Thus, we check that the expected convergence
rate is given.
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Appendix A. The Minielement Method

scriptStokesP1bubbleP1.m

% Exact solution, rhs and Dirichlet boundary conditions
uExactX = @(x,y) (sin(pi*x)).*xcos(pi*xy);

uExactY = @(x,y) —(cos(pi*x)).xsin(pix*xy);

pExact = @(x,y) 1/2 — x."2;

X = @(x,y) (2*«pixpix(sin(pixx)).*xcos(pixy) — 2x%xx).xx.70;
fY = @(x,y) (—2xpixpi*(cos(pixx)).xsin(pixy) — 0).xy."0;
gN = @(x,y) [0.xx, O.xy];

T= cuadrado;

%T= cuadradorefl ;
%I'= cuadradoref2;
%T= cuadradoref3;
%I'= cuadradoref4;
%T= cuadradoref5 ;

if length(T.neumann)>0

disp (’Neumann condition detected ’)

disp (’Domain is not suitable for Stokes equation )
disp(’Try with another one’)

return

end

chr = uintl6(’.");
DispText = zeros (1,40);
DispText (:) chr;

disp (’ Stokes FEM experiment ’)

disp (’ Full vectorized Plbubble—P1 FEM implementation ’)
disp(’ )
disp ([ *'Mesh with ° num2str(length(T.elements)) ° triangles and

num2str (max (max(T.elementsbubble))) ’ nodes’])
tic

[S,~] = FEMmatricesbubble_v4(T);

[~ . M] = FEMmatrices_v4(T);

[B1,B2] = FEMmatricesPlbubbleP1_v4(T);

ele = sum(M,2);
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clear M

’

mess="Assembly of the matrix: ’;
DispText(1l:length (mess))= mess;
disp ([ DispText num2str(toc) ’° seconds '] )

tic

DispText (:)=chr;
mess="Assembly of the rhs: ’;
DispText(1:length (mess))= mess;

[LoadX,~]=FEMrhsbubble_v4 (T,fX,gN);
[LoadY ,~]=FEMrhsbubble_v4 (T,fY ,gN);

disp ([ DispText num2str(toc) ’° seconds '] )

% Solver

nNodes = max(max(T.elements (:,1:3)));
nNodesbubble = max(max(T.elementsbubble (:,1:4)));
iD = unique (T.dirichlet (:));

iIND = 1:nNodesbubble; iND(iD)=[];

uX = zeros (nNodesbubble ,1);

uY = zeros (nNodesbubble ,1);

% Direct method for solving the linear system

mess="Size of the matrix :...........
DispText(l:length (mess))= mess;

disp ([ DispText num2str(2xlength (iND)+nNodes) ° x °’
num2str(2xlength (iND)+nNodes) ]| )
disp(’ Direct method )

uX(iD) = uExactX(T.coordinates (iD,1),T.coordinates (iD,2));
uY (iD) = uExactY(T.coordinates (iD,1),T.coordinates (iD,2));
LoadX = LoadX-S(:,iD)*uX(iD);

LoadY = LoadY-S(:,iD)xuY(iD);

LoadP = B1(:,iD)*uX(iD)+B2(:,iD)*uY(iD);

matrix = kron(eye(2),S(iND,iND));

matrix = [matrix —[B1(:,iND)’; B2(:,iND) ’];...
—[B1(:,iND) B2(:,iND)] sparse (nNodes ,nNodes) ];

matrix = [matrix [sparse(2xlength(iND),1); ele];...

sparse (1,2xlength (iND)) ele’ 0 ];

rhs = [LoadX (iND); LoadY (iND); LoadP; O0];
tic
sol = matrix\rhs;

toc
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niND=length (iND);

uX(iND) = sol (1:niND);

uY(iND) = sol ((1:niND) + niND);
P = sol(2*xniND+1:(end —1));

DispText (:)=chr;

mess="Solution of the linear system: ’;
DispText(l:length (mess))= mess;
disp ([ DispText num2str(toc) ’ seconds '] )

disp(” 7 )
DispText(l:length (mess))= mess;
disp(’ Error computed in Hl and L27)

DispText (:)=chr;
% Error computed in Hl and L2

ErrorH1_uX= [(uExactX(T.coordinates (:,1),T.coordinates (:,2))
—uX(1:1length(T.coordinates ))) ;

(uExactX(T.baryc (:,1),T.baryc(:,2)) —(uX(T.elements (:,1))

+uX(T.elements (:,2))+uX(T.elements (:,3)))/3

—uX(length(T.coordinates )+1:(length(T.coordinates)+length(T.baryc))))];
ErrorH1_uX=(ErrorHl_uX’ % S)xErrorH1_uX;

ErrorH1_uX=sqrt (ErrorH1_uX);

mess=" uX.’;

DispText(1l:length (mess))= mess;

disp ([ DispText num2str (ErrorH1_uX, %8.3¢e’)] )

ErrorH1_uY= [(uExactY (T.coordinates (:,1),T.coordinates (:,2))
—uY(1l:1length(T.coordinates )))

(uExactY (T.baryc (:,1),T.baryc(:,2)) —(uY(T.elements (:,1))

+uY (T.elements (:,2))+uY(T.elements (:,3)))/3

—uY(length (T.coordinates )+1:(length(T.coordinates)+length (T.baryc))))];
ErrorH1_uY=(ErrorHl_uY’ % S)xErrorH1_uY;

ErrorH1_uY=sqrt (ErrorH1_uY );

mess=" uY.’;

DispText(1l:length (mess))= mess;

disp ([ DispText num2str (ErrorH1_uY, %8.3¢e’)] )

errorP = (pExact(T.coordinates (1:nNodes, 1),
T.coordinates (1:nNodes,2))—P) ;
meanP=sum(errorP )/nNodes;
errorP2 = (pExact(T.coordinates (1:nNodes,1), .
T.coordinates (1:nNodes,2)) —P—meanP)."2 ;

for i=1:length(T.elements)
aux (i)=errorP2 (T.elements (i,1))+errorP2(T.elements(i,2))

+errorP2 (T.elements(i,3));

ErrorL2_P(i)=(T.detB(1)/3)*xaux(i);
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end
ErrorL2_P=sqrt (sum(ErrorL2_P));

mess=" P.’;

DispText(1l:length (mess))= mess;
disp ([ DispText num2str (ErrorL2_P,’%8.3e’)] )
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FEMmatricesbubble_v4.m

function [S,M,Load, Tr]=FEMmatricesbubble_v4 (T, f,gN)
% Matrices in the reference element
Mxx = 0.5 % [1,—-1,0,0;
-1,1,0,0;
0,0,0,0;
0,0,0,81/107;
Mxy = 0.5 % [1,—1,0,0;
0,0,0,0;
—-1,1,0,0;
0,0,0,81/207;
1,0,-1,0;
0,0,0,0;
—-1,0,1,0;
0,0,0,81/107;
[1/12 1/24 1/24 3/40;
1/24 1/12 1/24 3/40;
1/24 1/24 1/12 3/40;
3/40 3/40 3/40 81/560];

Myy = 0.5 * [

2

’

MO

nTr = length (T.elements);
nbubbles = nTr;

nNodes = max(T.elements (:)) + nbubbles;
S = sparse (nNodes,nNodes);

M = sparse (nNodes,nNodes);

Load = zeros (nNodes ,1);

[j,i] = meshgrid([1 2 3 4],[1 2 3 4]);

indi = zeros(4,4*xnTr);

indj = indi;

indi(:) = T.elementsbubble (:,1)’;
indj (:) = T.elementsbubble (:,j)’;

M = kron(T.detB’,MO);

M = sparse(indi,indj ,M);

S = kron(T.cll’ ,Mxx)+kron(T.c22’ ,Myy)+kron(T.cl12’ ,Mxy+Mxy’);
S = sparse(indi,indj,S);

return
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FEMmatrices_v4.m

function [S,M,Load, Tr]=FEMmatrices_v4(T,f,gN)
% Matrices in the reference element

Ki1 = 0.5 x [1 -1 O0; -1 1 0; O O O];

K12 = 0.5 = [1 0 —1; =1 0O 1; 0 0];

K22 = 0.5 x[1 O -1; O O 0O; — 0 11];

Mk = 1/24 = [2 1 1; 1 2 1; 1 2];

nTr = length (T.elements);

nNodes = max(T.elements(:)); % other choices: nTr = max(T.coord);
S = sparse (nNodes,nNodes);

M = sparse (nNodes,nNodes);

Load = zeros (nNodes ,1);

[j,i] = meshgrid([1 2 3],[1 2 3]); %%

indi zeros (3,3xnTr);

indj = indi;

indi(:) = T.elements(:,1)’;
indj (:) = T.elements (:,j)’;

M = kron(T.detB’ ,Mk);

M = sparse(indi,indj ,M);

S = kron(T.cll1’ ,Kll)+kron(T.c22’,K22)+kron(T.c12’ ,K12+K12");
S = sparse(indi,indj,S);

return
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FEMmatricesP1bubbleP1_v4.m
function [B1,B2]=FEMmatricesPlbubbleP1_v4(T)

% Matrices in the reference element

Kx0

[-1/6 1/6 0 9/40;
—-1/6 1/6 0 —9/40;
—-1/6 1/6 0 O;
—-9/40 9/40 0 0];
Kyo = [-1/6 0 1/6 9/40;
—-1/6 0 1/6 O;
—-1/6 0 1/6 —9/40;
—9/40 0 9/40 0];%

if ~isfield (T, ’bll"’)
px = T.coordinates (:,1);
py = T.coordinates (:,2);

T.bll = px(T.elements(:,2)) —px(T.elements (:,1));
T.b12 = px(T.elements (:,3)) —px(T.elements (:,1));
T.b21 = py(T.elements(:,2)) —py(T.elements (:,1));
T.b22 = py(T.elements(:,3)) —py(T.elements (:,1));
clear px py

end

nTr = length(T.elements);

nNodesP1 = max(max(T.elements (:,1:3)));
nNodesPlbubble = max(max(T.elementsbubble (:,1:4)));
[j,i] = meshgrid([1 2 3 4 ],[1 2 3]);

indi = zeros(3,4xnTr)’;

indj = zeros(3,4*nTr)’;

indi(:) = T.elementsbubble (:,1);

indj (:) = T.elementsbubble (:,j)’;

Bl = kron(T.b22’ ,Kx0(1:3,:)) —kron(T.b21’ ,Ky0(1:3,:));
Bl = sparse(indi,indj ,Bl);
B2 = —kron(T.b12’ ,Kx0(1:3,:))+kron(T.bl1’ ,Ky0(1:3,:));
B2 = sparse(indi,indj ,B2);

return

VII
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FEMrhsbubble_v4.m
function [Load, Tr]J=FEMrhsbubble_v4 (T, f,gN)

nodes = [1/2 O /2 ;...
1/2  1/2 0o 1;

nodesB = [1—nodes(1,:) —nodes (2 ,:);
nodes ];

PlbubbleValues = [nodesB ; .
27.xnodes (1 ,:).*nodes(2,:).x(1 —nodes(1,:) —nodes(2,:))];
weights = [1/6; 1/6; 1/6];

nTr = length (T.elements );

nNodes = max(T.elements (:)); % other choices: nTr = max(T.coord);
px = T.coordinates (:,1);

py = T.coordinates (:,2);

val = f(px(T.elements (:,1:3))*xnodesB, py(T.elements(:,1:3))*nodesB);
indNodes = kron((1:nTr)’,[1 1 1 1]7);

aux = kron(T.detB(:),PlbubbleValues);

aux = aux.xval(indNodes ,:);

clear val

indT =T.elementsbubble ’; indT=indT (:);

aux3=auxs*weights ; aux3 = aux3(:);

Load = accumarray (indT, aux3);

Tr = zeros(nNodes,1);

return



Appendix B. Taylor-Hood Finite Element
Method

scriptStokesP2P1.m

% Exact solution, rhs and Dirichlet boundary conditions
uExactX = @(x,y) (sin(pi*x)).*cos(pi*xy);

uExactY = @(x,y) —(cos(pixx)).*xsin(pixy);

pExact = @(x,y) 1/2 — x."2;

X = @(x,y) (2«pixpix(sin(pixx)).*xcos(pixy) — 2x%xx).xx.70;
fY = @(x,y) (—2xpixpi*x(cos(pixx)).xsin(pixy) — 0).xy."O0;
eN = @(x,y) [0.xx, 0.xy];

T= cuadrado;

%T= cuadradorefl ;
%I'= cuadradoref?2;
%T= cuadradoref3;
%I'= cuadradoref4;
%T= cuadradoref5;

if length(T.neumann)>0

disp (’Neumann condition detected ’)

disp (’Domain is not suitable for Stokes equation ’)
disp(’Try with another one’)

return

end

T2 = prepareGridP2(T);
chr = uintl6(’.’);

DispText = zeros (1,40);
DispText(:) = chr;

disp (’ Stokes FEM experiment ’)

disp(’:::::::::::::::::::::’)

disp(’ )

disp(’ Full vectorized P2 FEM implementation ’)
disp(” ")

>

disp ([ ’Mesh with ° num2str(length(T2.elements)) ° triangles and
num2str (length (T2.coordinates)) ’ nodes ’])

IX



X Chapter 7. Appendix B. Taylor-Hood Finite Element Method

tic

[S,~] = FEMmatricesP2_v4(T2);
[~ M] = FEMmatrices_v4(T);
[B1,B2] = FEMmatricesP2P1_v4(T2);

% ele(j) =\int_\Omega \varphi_j
ele = sum(M,2);

clear M

mess="Assembly of the matrix: ’;
DispText(l:length (mess))= mess;
disp ([ DispText num2str(toc) ’ seconds '] )

tic

DispText (:)=chr;
mess="Assembly of the rhs: ’;
DispText(l:length (mess))= mess;

[LoadX ,~]=FEMrhsP2_v4 (T2,fX,gN);
[LoadY ,~]=FEMrhsP2_v4 (T2,fY ,gN);

>

disp ([ DispText num2str(toc) seconds ] )

% Solver
nNodesPl = max(max(T2.elements (:,1:3)));
nNodesP2 = max(max(T2.elements (: ,1:6)));

iD = unique (T2. dirichlet (:));

iND = 1:nNodesP2; iND(iD)=[];

uX zeros (length (T2.coordinates ) ,1);
uY zeros (length (T2. coordinates ) ,1);

% Direct method for solving the linear system

mess="Size of the matrix :........... ;
DispText(1l:length (mess))= mess;

disp ([ DispText num2str(2xlength (iND)+nNodesP1) ° x °
num?2str (2xlength (iND)+nNodesP1) ] )
disp(’ Direct method )

uX(iD) = uExactX(T2.coordinates (iD,1),T2.coordinates (iD,2));
uY(iD) = uExactY(T2.coordinates (iD,1),T2.coordinates (iD,2));
LoadX = LoadX-S(:,iD)*uX(iD);

LoadY = LoadY-S(:,iD)xuY(iD);

LoadP = BI1(:,iD)*uX(iD)+B2(:,iD)*uY(iD);

matrix = kron(eye(2),S(iND,iND));
matrix = [matrix —[B1(:,iND)’; B2(:,iND) ’];...
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—[B1(:,iND) B2(: ,iND)] sparse (nNodesP1 ,nNodesP1) ];
matrix = [matrix [sparse(2xlength(iND),1); ele];...
sparse (1,2xlength (iND)) ele’ 0 ];

rhs = [LoadX (iND); LoadY (iND); LoadP; O0];
tic

sol = matrix\rhs;

toc

niND=length (iND);

uX(iND) = sol (1:niND);

uY (iND) = sol ((1:niND) + niND);
P = sol(2+xniND+1:(end —1));

DispText (:)=chr;

mess="Solution of the linear system: ’;
DispText(1l:length (mess))= mess;
disp ([ DispText num2str(toc) ’° seconds '] )

disp(® 7 )
DispText(l:length (mess))= mess;
disp(’ Error computed in Hl and L27)

DispText (:)=chr;
% Error computed in Hl and L2

ErrorH1_uX= [(uExactX(T2.coordinates (:,1),T2.coordinates (:,2))
—uX(1:1length (T2.coordinates )))];

ErrorH1_uX=(ErrorH1_uX’ x S)*xErrorHl_uX;

ErrorH1_uX=sqrt (ErrorH1_uX);

mess=" uX.’;

DispText(1l:length (mess))= mess;

disp ([ DispText num2str (ErrorH1_uX, %8.3¢e’)] )

ErrorH1_uY= [(uExactY (T2.coordinates (:,1),T2.coordinates (:,2))
—uY(1l:length (T2.coordinates )))];

ErrorH1_uY=(ErrorHl1_uY’ x S)xErrorHl_uY ;

ErrorH1_uY=sqrt (ErrorH1_uY);

mess=" uY.

DispText(1l:length (mess))= mess;

disp ([ DispText num2str (ErrorH1_uY, %8.3¢’)] )

errorP = (pExact(T.coordinates (1:nNodesP1,1),
T.coordinates (1:nNodesP1,2))—P) ;
meanP=sum(errorP )/ nNodesP1 ;
errorP2 =((pExact(T.coordinates (1:nNodesP1,1),
T.coordinates (1:nNodesP1,2)) —P—meanP))."2 ;

for i=1:length(T.elements)

aux (i)=errorP2 (T.elements(i,l))+errorP2(T.elements(i,2))
+errorP2 (T.elements(i,3));

ErrorL2_P(i)=(T.detB(1)/3)*xaux(i);
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end
ErrorL2_P=sqrt (sum(ErrorL2_P));

mess=" P.’;

DispText(1l:length (mess))= mess;
disp ([ DispText num2str (ErrorL2_P,’%8.3e’)] )
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prepareGridP2.m

function T2 = prepareGridP2(T)
T2 = T;

nNodesOld = max(T.elements (:));
px = T.coordinates (:,1);

py = T.coordinates (:,2);

edgesLocal =[2 3; 3 1; 1 2];

edges=[];
for j=1: length(edgesLocal)

edges = [edges; T.elements (:,edgesLocal(j,:))];

end
edges = sort(edges ,2);
edges = unique(edges,’ rows ’);

newNodes = (1:1length(edges))+nNodesOld;
mCon = sparse ([edges (:,1); edges(:,2)],[edges(:,2);

[newNodes newNodes |);

T2.coordinates=[T.coordinates ;...
(px(edges(:,1))+px(edges(:,2)))/2
(py(edges (:,1))+py(edges(:,2)))/2];

for j=1: length(edgesLocal)

ind = sub2ind(size (mCon) ,...

T.elements (: ,edgesLocal(j,1)),T.elements (:,edgesLocal(j,2)));

T2 .elements (: ,end+1)=mCon(ind );
end

% Dirichlet

ind = sub2ind(size (mCon),T. dirichlet (:,1),T.dirichlet (:,2))
T2.dirichlet (: ,end+1)=mCon(ind);

XIII

edges(:,1)],...
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FEMmatricesP2P1_v4.m

function [B1,B2]=FEMmatricesP2P1_v4(T)
% Matrices in the reference element

Blhat = [—-1/6 0 0 1/6 —-1/6
0 1/6 0 1/6 —1/6
0 0 0 1/3 —-1/3
B2hat = [-1/6 0 0 1/6 1/6
0 0 0 1/3 0
0 0 1/6 1/6 —-1/6

if ~isfield (T, ’bll"’)
px = T.coordinates (:,1);
py = T.coordinates (:,2);

1/6;
—1/6;
0;1;

—1/6;
—1/3;
—-1/6;51;

T.bll = px(T.elements(:,2)) —px(T.elements (:,1));

T.bl2 = px(T.elements(:,3)) —px(T.elements (:,1));
T.b21 = py(T.elements(:,2)) —py(T.elements (:,1));
T.b22 = py(T.elements (:,3)) —py(T.elements (:,1));
clear px py

end

nTr = length (T.elements);

nNodesP1 = max(max(T.elements (:,1:3)));

nNodesP2 = max(max(T.elements (:,1:6)));

[j,i] = meshgrid([1 2 3 4 5 6],[1 2 3]);
indi zeros (3,6xnTr) ’;

indj = zeros(3,6*nTr) ’;

indi (:) = T.elements(:,i)’;

indj(:) = T.elements(:,j)’;

Bl = kron(T.b22’,Blhat)—kron(T.b21°,B2hat);

Bl = sparse(indi,indj ,Bl);
B2
B2

sparse (indi ,indj ,B2);

return

—kron(T.bl2’,Blhat)+kron(T.bll1’,B2hat);
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FEMmatricesP2_v4.m

function [S,M]=FEMmatricesP2_v4(T)

% Matrices in the reference element

S11 = [ 3 1 0 0 0 —4

1 3 0 0 0 —4

0 0 0 0 0 0 ;

0 0 0 8 -8 0 ;

0 0 0 -8 8 0 ...

4 4 0 0 0 81/6:
S12 =[ 3 0 1 0 —4 0 ;

1 0 1 4 0 4

0 0 0 0 0 0 ;

0 0 4 4 —4 —4

0 0 4 —4 4 4

—4 0 0 —4 4 4 1/6;
S22 = [ 3 0 1 0 —4 0;.

0 0 0 0 0 0;

1 0 3 0 —4 0;.

0 0 0 8 0 —8;.

4 0 —4 0 8 0;...

0 0 0 -8 0 81/6:
Mk=1[ 6 -1 -1 -4 0 0;

—1 6 -1 0 —4 0;...

—1 —1 6 0 0 —4;...

—4 0 0 32 16 16;...

0 —4 0 16 32 16;...

0 0 -4 16 16 321/360;

nTr = length(T.elements);

nNodes = max(T.elements (:));

S sparse (nNodes ,nNodes );
M sparse (nNodes ,nNodes );

[j,i] = meshgrid([1 2 3 4 5 6],[1 2 3 45 6]);
indi = zeros(6,6xnTr);

indj = indi;

indi(:) = T.elements(:,1)’;
indj (:) = T.elements (:,j)’;

M = kron(T.detB’ ,Mk);

sparse (indi , indj ,M);
kron(T.cl11’,S11)+kron(T.c22’,S22)+kron(T.c12’,S12+S12");
sparse (indi ,indj ,S);

M
S
S

return

XV
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FEMrhsP2_v4.m
function [Load, Tr]J=FEMrhsP2_v4(T,f,gN)

nodes = [1/2 O 1/2 ;...
1/2  1/2 0 1;

nodesB = [l1—nodes(1,:) —nodes(2,:); nodes];

P2Values = [2*%(l —nodes(1,:) —nodes(2,:)).x(0.5 —nodes(1,:) —nodes (2 ,:));...
2xnodes (1 ,:).x(nodes(1,:)—0.5);...
2xnodes (2 ,:).x(nodes(2,:) —0.5);...
4xnodes (1 ,:).xnodes (2 ,:);...
4%(1—nodes(1,:) —nodes (2 ,:)).xnodes (2 ,:);...
4%(1 —nodes(1,:) —nodes (2 ,:)).xnodes (1 ,:)];

weights = [1/6; 1/6; 1/6];

nTr = length (T.elements );

nNodes = max(T.elements (:));

T.coordinates (:,1);
T.coordinates (:,2);

px
Py

val = f(px(T.elements (:,1:3))*xnodesB,py(T.elements (:,1:3))=*nodesB);

indNodes = kron((1:nTr)’,[1 1 1 1 1 1]7);
aux = kron(T.detB(:),P2Values);

aux = aux.xval(indNodes ,:);

clear val

indT =T.elements ’; indT=indT (:);

Load = accumarray (indT, auxxweights);

clear indT aux

nNeumann = length (T.neumann);
Tr = zeros(nNodes,1);

return
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Approximation

scriptStokesP1P1.m

% Exact solution, rhs and Dirichlet boundary conditions
uExactX = @(x,y) (sin(pi*x)).*cos(pi*xy);

uExactY = @(x,y) —(cos(pixx)).*xsin(pixy);

pExact = @(x,y) 1/2 — x."2;

X = @(x,y) (2«pixpix(sin(pixx)).*xcos(pixy) — 2x%xx).xx.70;
fY = @(x,y) (—2xpixpi*x(cos(pixx)).xsin(pixy) — 0).xy."O0;
eN = @(x,y) [0.xx, 0.xy];

T= cuadrado;

%T= cuadradorefl ;
%I'= cuadradoref?2;
%T= cuadradoref3;
%I'= cuadradoref4;
%T= cuadradoref5;

if length(T.neumann)>0

disp (’Neumann condition detected ’)

disp (’Domain is not suitable for Stokes equation ’)
disp(’Try with another one’)

return

end

chr = uintl6(’.");
DispText = zeros (1,40);
DispText (:) chr;

disp (’ Stokes FEM experiment ’)

disp(’ Full vectorized P1-P1 FEM implementation )
disp(’ )
disp ([ ’Mesh with ° num2str(length(T.elements)) ° triangles and

num2str(length (T.coordinates)) ’ nodes’])
tic

[S,~] = FEMmatrices_v4(T);

[~ M] = FEMmatrices_v4(T);

XvII



XVIIL Chapter 7. Appendix C. The Linear-Linear Approximation

[B1,B2] = FEMmatricesP1P1_v4(T);

% ele(j) =\int_\Omega \varphi_j
ele = sum(M,2);

clear M

mess=’"Assembly of the matrix: ’;
DispText(l:length (mess))= mess;
disp ([ DispText num2str(toc) ’° seconds '] )

tic

DispText (:)=chr;
mess="Assembly of the rhs: ’;
DispText(1l:length (mess))= mess;

[LoadX,~]=FEMrhs_v4(T,fX,gN);
[LoadY ,~]=FEMrhs_v4(T,fY ,gN);

>

disp ([ DispText num2str(toc) seconds '] )

% Solver
nNodes = max(max(T.elements (:,1:3)));
iD = unique (T.dirichlet (:));

iND = 1:nNodes; iND(iD)=[];
uX zeros (nNodes ,1);
uY zeros (nNodes , 1);

% Direct method for solving the linear system

mess="Size of the matrix :........... ;
DispText(l:length (mess))= mess;

disp ([ DispText num2str(2xlength (iND)+nNodes) ° x °’
num2str (2« length (iND)+nNodes) ] )
disp(’ Direct method )

uX(iD) = uExactX(T.coordinates (iD,1),T.coordinates (iD,2));
uY (iD) = uExactY(T.coordinates (iD,1),T.coordinates (iD,2));

LoadX = LoadX-S(:,iD)*uX(iD);
LoadY = LoadY-S(:,iD)*uY(iD);
LoadP = B1(:,iD)*uX(iD)+B2(:,iD)*uY(iD);

matrix = kron(eye(2),S(iND,iND));

matrix = [matrix —[B1(:,iND)’; B2(:,iND) ’];...
—[B1(:,iND) B2(:,iND)] sparse (nNodes ,nNodes) ];

matrix = [matrix [sparse(2xlength(iND),1); ele];...
sparse(l,2xlength (iND)) ele’ 0 ];

rhs = [LoadX (iND); LoadY (iND); LoadP; O0];

tic
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sol = matrix\rhs;

toc

niND=length (iND);

uX(iND) = sol (1:niND);

uY(iND) = sol ((1:niND) + niND);
P = sol(2xniND+1:(end —1));

DispText (:)=chr;

mess=’"Solution of the linear system: ’;
DispText(l:length (mess))= mess;
disp ([ DispText num2str(toc) ’° seconds '] )

disp(" 7 )

DispText(l:length (mess))= mess;
disp (’ Error computed in H1 and L27)
DispText (:)=chr;

ErrorH1_uX= [(uExactX(T.coordinates (:,1),T.coordinates (:,2))
—uX(1:1length(T.coordinates )))];

ErrorH1 _uX=(ErrorHIl_uX’ % S)xErrorH1_uX;

ErrorH1_uX=sqrt (ErrorH1_uX);

mess=" uX. ;

DispText(l:length (mess))= mess;

disp ([ DispText num2str (ErrorH1_uX, %8.3¢’)] )

ErrorH1_uY= [(uExactY (T.coordinates (:,1),T.coordinates (:,2))

—uY(1l:length(T.coordinates ))) 1;

ErrorH1_uY=(ErrorH1_uY’ x S)*ErrorHl_uY ;

ErrorH1_uY=sqrt (ErrorH1_uY );

mess=" uY.’;

DispText(1l:length (mess))= mess;

disp ([ DispText num2str (ErrorH1_uY, %8.3¢e’)] )

errorP = (pExact(T.coordinates (1:nNodes, 1), .

T.coordinates (1:nNodes,2))—P) ;

meanP=sum(errorP )/ nNodes;

errorP2 = ((pExact(T.coordinates (1:nNodes,1), .
T.coordinates (1:nNodes,2)) —P—-meanP)).*2 ;

for i=1:length(T.elements)

aux(i)=errorP2 (T.elements(i,l))+errorP2(T.elements(i,2))...
+errorP2 (T.elements(i,3));

ErrorL2 P (1)=(T.detB(i)/3)*aux(i);

end

ErrorL2_P=sqrt (sum(ErrorL2_P));

mess=" P.’;

DispText(l:length (mess))= mess;

disp ([ DispText num2str (ErrorL2_P,’%8.3e’)] )

XIX
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FEMmatricesP1P1_v4.m

function [B1,B2]=FEMmatricesP1P1_v4(T)
Kx0 [-1/6 1/6 0 ;
—1/6 1/6 0 ;
—1/6 1/6 0 1;
[—-1/6 0 1/6 ;
—-1/6 0 1/6 ;
—1/6 0 1/6 1;

Ky0

if ~isfield (T, bll")

px = T.coordinates (:,1);

py = T.coordinates (:,2);

T.bll = px(T.elements(:,2)) —px(T.elements (:,1));

T.bl2 = px(T.elements(:,3)) —px(T.elements (:,1));
T.b21 = py(T.elements(:,2)) —py(T.elements (:,1));
T.b22 = py(T.elements(:,3)) —py(T.elements (:,1));
clear px py

end

nTr = length(T.elements);

nNodesP1 = max(max(T.elements (:,1:3)));

[j,i] = meshgrid([1 2 3],[1 2 3]);
indi = zeros(3,3xnTr)’;
indj = zeros(3,3%nTr) ’;
indi (:) = T.elementsbubble (:,i1)’;
indj (:) = T.elementsbubble (:,j)’;

Bl = kron(T.b22’ ,Kx0(1:3,:)) —kron(T.b21’ ,Ky0(1:3,:));
Bl = sparse(indi,indj ,Bl);
B2 = —kron(T.b12’ ,Kx0(1:3,:))+kron(T.bl1’ ,Ky0(1:3,:));
B2 = sparse(indi,indj,B2);

return
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FEMrhs_v4.m
function [Load, Tr]=FEMrhs_v4 (T, f,gN)

nodes = [1/2 O /2 ;...
1/2  1/2 0o 1;

nodesB = [1—nodes(1,:) —nodes(2,:); nodes];
P1Values = nodesB;

weights = [1/6; 1/6; 1/6 ];

nTr = length (T.elements );

nNodes = max(T.elements (:));

T.coordinates (:,1);
T.coordinates (:,2);

px
Py

val = f(px(T.elements (:,1:3))*xnodesB,py(T.elements (:,1:3))+*nodesB);

indNodes = kron((1:nTr)’,[1 1 1]);
aux = kron(T.detB(:),P1Values);

aux = aux.xval(indNodes ,:);

clear val

indT =T.elements ’; indT=indT (:);

Load = accumarray (indT, auxxweights);

clear indT aux
Tr = zeros(nNodes,1);
return
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