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List of programs 
Program Version Function 

Python 3.6.1 Main programming language interpreter 

Biopython 1.7 Extension of Python with functions for biological data processing 

scikit-learn 0.19.0 Python module for machine learning 

scipy 0.19.1 Python module for scientific uses. Scikit-learn depends on it 

matplotlib 2.0.0 Python module for graph representation. 

ggplot 0.11.5 Python module for ROC curves representation 

numpy 1.12.1 Python module for mathematic operations. Ggplot depends on it 

pandas 0.20.3 Python module for mathematic operations. Ggplot depends on it 

dateutil 2.6.0 Python module for registering date and time in programs 

blastp web Sequence-based search of similar proteins 

MUSCLE 3.8.31 Multiple sequence alignment 

CD-HIT 4.6.8 Sequence clustering by similarity 

PhyML 3.1 Fast calculation of phylogenetic trees by Maximum Likelihood 

PAML 4.9e Calculation of phylogenetic trees and ancestral sequences 

DSSP 2.2.1 Calculation of secondary structure from a PDB file 

HBPlus 3.06 Calculation of hydrogen bonds from a PDB file 

Disulphide 

by Design 
1.20 

Prediction of mutations that stabilize a protein using disulphide 

bridges 

SCWRL 4.0 Minimization of energy in protein structures using rotamers 

BetaVoid 1.1 Calculation of internal cavities and their volumes 
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List of abbreviations 
Along the text of this Master thesis, several abbreviations are found. All of them are 

collected in the following table for an easier reading. 

Abbreviation Full name 

ASR Ancestor Sequence Reconstruction 

AUC Area Under the Curve 

DbD Disulphide by Design 

ELISA Enzyme-Linked Immuno Sorbent Assay 

ESST Environment-Specific Substitution Table 

JTT Jones, Taylor and Thornton (Authors of the substitution model) 

LUCA Last Universal Common Ancestor 

ML Maximum Likelihood 

ROC Receiver Operating Characteristic (curve) 

SD Standard Deviation 

SVM Support Vector Machine 

WT Wild Type 

wwPDB Worldwide Protein Data Bank 

ΔΔG Difference in Gibbs free energy 

 

Also, aminoacids and residues are referred to along the text with their full name, one-

letter code and three-letter code. The following table gathers all codes for all 20 

proteinogenic aminoacids and 2 ambiguous positions (Asx and Glx): 

Full name Three-letter code One-letter code 

Alanine Ala A 

Arginine Arg R 

Asparagine Asn N 

Aspartic acid Asp D 

Asparagine or aspartic acid Asx B 

Cysteine Cys C 

Glutamic acid Glu E 

Glutamine Gln Q 

Glutamine or glutamic acid Glx Z 

Glycine Gly G 

Histidine His H 

Isoleucine Ile I 

Leucine Leu L 

Lysine Lys K 

Methionine Met M 

Phenylalanine Phe F 

Proline Pro P 

Serine Ser S 

Threonine Thr T 

Tryptophan Try W 

Tyrosine Tyr Y 

Valine Val V 
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Glossary 
Residue: Specific monomer forming part of a macromolecule. In the case of proteins, 

residues are aminoacids after reacting to form the peptide bond.  

Homologous proteins: Homologous proteins are proteins that share a common part of 

their ancestry. This is usually studied using sequence alignments and comparison. Two 

sequences are orthologous if their descend from the same ancestral sequence, separated 

in two species after and speciation event, and paralogous if their origin resides in an 

event of duplication of the gene. 

Protein family: Group of evolutionarily-related proteins whose ancestry is usually 

inferred with sequence alignment methods and have similar three-dimensional 

structures and functions. The biggest grouping of proteins with a common ancestor is a 

protein superfamily. 

Extant sequence: Sequence that currently exists today in a living organism. 

Consensus sequence: Sequence formed by the most common residue found at each 

position in a multiple sequence alignment, usually calculated for protein families or for 

proteins sharing a function/location in the cell, so that sequence motifs can be found. 

Ancestral sequence: Sequence calculated for a common ancestor for a group of 

sequences, usually extant, using computational algorithms known as Ancestral 

Sequence Reconstruction (ASR). 

Likelihood: Probability of a certain model of being true. In the case of phylogenetic 

trees, it is the probability of obtaining the extant sequences with that tree disposition 

using the specified evolutionary model. 

Evolutionary time: Measure of time in phylogenetic trees. As trees are based on 

models, this models can calculate how much time ago an speciation process happened 

in evolutionary time units. However, as different branches of a tree can have different 

evolution rates and models can be more or less accurate, evolutionary time is not always 

the same as the usual concept of time. 

Terminal: In Fedora (and other operative systems), a terminal is a way of giving 

commands to the computer using text instead of interacting with a graphical 

environment. It is useful for automating processes. 
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Index: In programming, the index is the position of an element in a bigger element, 

such as the position of an item in a list of items or of a character in a text string. In most 

programming languages (Python included), the index of the first element is 0.  

Function: In programming, a function (in a general sense) is a section of a program that 

performs a specific task. These functions may require particular arguments, 

information necessary for performing that task. When a function is called, the specific 

task is performed with the given arguments. As a result, the function can return data to 

the program for further use, print some information on the screen or execute the 

designed operations, returning a None value (equivalent to returning no information at 

all). 

Class: In programming, method for creating an object using defining arguments. It can 

also have class-specific functions. For example, sequence could be a class. To define a 

sequence, three arguments would be necessary: type of sequence (DNA, RNA or 

protein), Alphabet (One letter code or three letter code) and the sequence itself. With a 

sequence object, some class-specific functions can be used, such as performing a 

BLAST or a sequence alignment. 

Module: Section of a program that can work independently from most of the rest of the 

program. It usually performs an important function for the program, from which only a 

result is needed. This function must be imported to the main program before its usage. 

Segmentation fault: Error that occurs when a program attempts to access a memory 

location without the necessary permissions. 

Training: In machine learning, iterative process to adjust the parameters of a model in 

order to predict something based on the characteristics of an input object. For training, a 

list of input objects with their respective result for the prediction (measured before 

training)  is needed.  

Computational time: Time elapsed by a computer performing an operation or 

executing a program. As computers can perform several processes at the same time, it is 

not the same as real time. For example, if a computer is performing 2 processes, 

computational time would be twice the real time. 

Parallel computing: Type of computation in which many calculations or several 

processes are performed simultaneously, dividing a large problem into smaller ones.  
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Abstract 
Increasing the stability of proteins is important for several applications, such as the 

production and storage of diagnostic kits and antibodies for therapeutic use or the 

industrial enzymatic catalysis in processes at high temperature. For this reason, several 

approaches have been used to predict the effects on stability of a mutation. However, all 

current programs can only predict the effect of a mutation given by the user. In this 

Master thesis, a method based on simple rational and empirical rules that both proposes 

mutations and predicts qualitatively their effect in stability is developed. Rules used for 

this program focus both on structural features (composition of alpha-helices, disulphide 

bonds, exposed acidic hydrogen-bonded residues, overexposed apolar residues, buried 

polar residues, steric clashes and internal cavities) and on the sequence of the protein 

(calculation of a consensus and an ancestral sequences). Mutations are then evaluated 

with a logistic regression model trained using machine learning techniques with a 

training group obtained from ProTherm database. The accuracy of the model is tested 

with another group of mutations obtained in ProTherm, reaching a higher accuracy than 

current methods. Finally, a user-friendly input and output format is developed for a 

general use of the program in research. 

Aumentar la estabilidad proteica es importante para diversas aplicaciones, como la 

producción y almacenamiento de kits diagnósticos y anticuerpos con uso terapéutico o 

la catálisis enzimática en procesos industriales a alta temperatura. Por ello se han usado 

diversas aproximaciones para predecir los efectos en la estabilidad de una mutación. Sin 

embargo, los programas actuales solo predicen el efecto de una mutación introducida 

por el usuario. En este trabajo fin de Máster, se ha desarrollado un método basado en 

reglas empíricas y racionales simples que propone mutaciones y predice 

cualitativamente su efecto en la estabilidad. Las reglas utilizadas en el programa 

comprenden tanto propiedades estructurales (composición de hélices alfa, puentes 

disulfuro, residuos ácidos expuestos con puentes de hidrógeno, residuos apolares 

hiperexpuestos y polares enterrados, choques estéricos y cavidades internas) como de la 

secuencia (cálculo de las secuencias consenso y ancestral). Posteriormente, las 

mutaciones son evaluadas con un modelo de regresión logística entrenado mediante 

machine learning con un grupo de mutaciones obtenido de la base de datos ProTherm. 

La precisión del programa se calcula con otro grupo de mutaciones de ProTherm, 

alcanzando valores superiores a los de los métodos actuales. Finalmente, se han 

desarrollado formatos de entrada y salida de información sencillos para que cualquier 

usuario básico del campo de la investigación lo pueda usar.  
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Background 
Proteins are macromolecules formed by amino acids. There are 20 different 

proteinogenic amino acids, all of which are L-α-amino acids, except for glycine, which 

is not chiral. These amino acids are sequentially linked by peptide bonds forming chains 

that have two ends, N- and C-terminus, with their amino and acid moieties not bonded 

to other amino acid, respectively [1]. With the exception of intrinsically disordered 

proteins or regions, each of those chains usually folds at physiological conditions in a 

precise conformation, which allows it to fulfil its function [1]. In a living organism, 

these functions range from structural ones, such as forming the cytoskeleton, to catalytic 

functions, as those performed by enzymes. [1] 

However, technological developments allow for the usage of some proteins in  

environments different from the cell and with other purposes. Examples of this are the 

usage of antibodies or enzymes for the detection of small amounts of a substance (e.g., 

ELISA, flow cytometry with labelled antibodies) [2, 3], the production of kits for the 

amplification of nucleic acids [4] or the industrial usage of enzymes or cross-linked 

enzyme aggregates for the catalysis of beneficial chemical reactions [5]. Another 

important field are therapeutics, where enzymes and antibodies can be used as 

treatments for certain conditions [6].  

One of the main hindrances for a wider development of these techniques is protein 

stability. Depending on the protein and on solution conditions (e.g., pH, temperature, 

salt and denaturant concentration), a larger or smaller fraction of protein molecules will 

fold correctly. The more different conditions are from physiological ones, the smaller 

the folded protein fraction will be [7]. It is particularly important that a higher stability 

results in a higher percentage of folded protein, which usually means a higher level of 

the desired activity or properties [1] and, in protein-based diagnostic kits or 

therapeutics, a longer shelf life [8]. Also, this allows for a higher operation temperature 

without a significant loss of activity in industrial reactors, so that a higher 

transformation rate is achieved.[9] 

Because of all these reasons, efforts are being made to understand protein folding and 

how to increase protein stability by replacing specific amino acid residues in the 

sequence with others. Initially, some empirical observations were made and some 

improvements were proposed, such as engineering disulphide bonds or optimizing alpha 

helices. However, these simple rules do not always work, so more complex methods are 
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being developed. Currently, three main different approaches are being used for 

predicting the effects of mutations on protein stability: force fields [10], machine 

learning [11] and sequence-based analyses [12-14]. 

Force field based methods predict the difference between the stability of the native and 

mutant protein (ΔΔG) using atom and torsion angle potentials, calculated statistically 

from a set of non-redundant protein structures, as well as electrostatic and van der 

Waals forces.[10] 

Machine learning based methods rely on structure and/or on sequence analysis to 

predict if the mutation is stabilizing, destabilizing or neutral. In all cases, an algorithm 

known as support vector machine analyzes a training dataset to develop some rules and 

classify the mutations from the data provided to the program. Sequence-based machine 

learning methods use the nearest-sequence neighbours as input data, while structure-

based machine learning methods use the residues found in a sphere surrounding the 

alpha carbon of the mutated amino acid as input data.[11] 

Sequence-based methods, such as SIFT [12] or PROVEAN [13] use phylogenetically 

close homologous proteins’ sequences to evaluate the probability of the mutation being 

deleterious by alignment analysis. Some of these methods, such as Polyphen 2 [14], also 

evaluate some simple structural characteristics, such as avoiding destabilizing steric 

effects or the presence of charged residues in the hydrophobic core of the protein. 

All these methods have proven a high accuracy in validation tests, even reaching 

80%.[10-14] However, they can only predict the effect of specified mutations, and do 

not aim at proposing the best options to improve stability for a given protein, because 

the analyses they perform are based on statistics and not in rational rules, so that the 

only way for them to identify the most stabilizing mutations would be to analyze all 

possible mutations, which would be nineteen times the sequence length, extraordinarily 

increasing computational cost and complicating output analysis. 

A combination of the modern machine learning methods with rational and empirical 

rules proposed earlier could solve this problem, making a program able to both propose 

mutations (with rational rules) and ordering them according to their probability of being 

stabilizing, evaluated using information from both the sequence and the structure of the 

protein. 
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Objectives 
Based on the hypothesis that the effect of mutations on protein conformational stability 

can be estimated from simple rules and data derived from the structure and sequence of 

the analyzed protein, the objectives of this Master thesis are: 

 Developing a program that analyzes quickly several structural and sequential 

properties of a protein and proposes probably stabilizing mutations based on 

rational rules. 

 Developing a machine learning based program to evaluate the probability of a 

mutation of being stabilizing using the same structural and sequential properties. 

 Training the evaluating program with an experimental protein stability database. 

 Evaluating the accuracy of the trained program with a dataset different from the 

training one. 

 Reporting the obtained results for a given protein in an accurate, precise and 

easy to interpret format. 
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Theory behind the project 
As proteins are macromolecules, a complex network of interactions between their 

thousands of atoms can explain their folding. However, such networks are so complex 

that the calculations required for a correct study of stability based on them take very 

long times of computation [15] and are unlikely to produce accurate enough results. 

Apart from carefully considering their three dimensional properties it is important to 

realise that proteins are products of evolution and that analysis of related protein 

sequences may provide valuable insight [16], so both structure and sequence approaches 

are worth considering. 

Proteins as three-dimensional structures 
Even though studying all interactions occurring in a protein is not feasible for a fast 

program, there are some desirable or undesirable properties to be found in a stabilizing 

mutation, which allow for a fast (but less accurate) analysis of the entire protein. Some 

of these properties concern the composition of secondary structure elements, such as 

alpha-helices, others are related to the physical-chemical properties of the protein and of 

the original and mutated residues, and some others are related to specific bonds that can 

be found in proteins, such as disulphide bonds or hydrogen bonds. 

From all the possible features that can be studied in a protein structure, some have been 

selected to build this program due to their better understanding in current literature. The 

following sections will describe basic data of each of those selected properties for a 

better comprehension of the whole thesis. 

Hydrogen bonds 

A hydrogen bond is a type of electrostatic interaction between two polar groups: the 

donor, which is a hydrogen atom bonded to a highly electronegative small atom (i.e. 

oxygen, nitrogen or fluorine) and the acceptor, which is another electronegative atom 

located near the donor [17]. This kind of interaction is stronger than van der Waals 

interactions, but it is still a weak interaction, much weaker than covalent bonds. Its 

formation free energy depends on the atoms which are bonded, their environment and 

the geometry of the bond, so it covers a range of more than two factors of ten, from 0.2 

to 40 kcal/mol.[18] 

Hydrogen bonds are important in proteins as they contribute to the stabilization of 

certain elements of the secondary structure, such as alpha helices and beta sheets, and 
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they are involved in shaping the global folding of the protein, by stabilizing the tertiary 

structure too. [1] 

Therefore, modifying the pattern of hydrogen bonds of a protein with mutations might 

have some impact on both the stability and structure of the mutant protein. As the 

objective of the program is making proteins more stable without changing its function, 

which is related to the structure, and there is no clear evidence that proves stabilization 

when introducing hydrogen bonds, this option is not considered.  

However, if the strength of existing hydrogen bonds is increased, a stabilizing effect 

may be achieved without risking changing the structure. This approach has been 

successfully performed before on apoflavodoxin [19]. Also, checking for side chain 

hydrogen bonds not being eliminated when a given mutation is implemented will help 

proposing better mutations. 

Disulphide bonds 

Disulphide bonds are covalent bonds formed between two sulphur atoms, usually from 

the oxidation of thiol groups. In proteins, thiol groups are only found in cysteines. 

Disulphide bonds are responsible for the folding of some proteins, predominantly 

secreted ones, as disulphide bonds are highly dependent on the redox environment and 

most cellular compartments are too reducing for cysteines to become cystines (two 

cysteines bonded through a disulphide). However, the endoplasmic reticulum offers an 

oxidizing environment, appropriate for the folding of such proteins [8]. Some proteins, 

as insulin, rely on these links to keep their constituting chains together. 

However, not all disulphide bonds are stabilizing, due to the fact that the formation of a 

disulphide can introduce strain in the folded protein, destabilizing many other 

favourable interactions. Also, when two parts of the backbone of a protein are joined 

together by a disulphide bond, their mobility is reduced compared to the wild type 

protein, so it may alter the original function of the protein if it affects relevant residues. 

To avoid a big impact of these effects, several properties must be taken into 

consideration, such as the distance between sulphurs, and between the carbons they are 

linked to, the torsion angle of the link and the flexibility of the region of the protein 

where the disulphide is introduced [8]. As this approach is usually effective, simple 

software (Disulphide by Design [20, 21]) has been developed to predict stabilizing 

mutations and their thermodynamic effect by applying these rules. The usefulness of 

such software has been successfully demonstrated in several research papers [22, 23]. 
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Figure 1. Structure of a alpha-helix. 

Peptide bonds highlighted in yellow, alpha 

carbon atoms in black, side chains shown as 

R, hydrogen bonds as dotted green lines. 

Taken from Molecular Cell Biology, Lodish 

et al. 6th edition[1] 

Alpha-helices and secondary structure 

Secondary structure is the regular periodic conformation adopted by local segments of 

proteins. This structure is determined by phi and psi angles, which describe how the 

amino acid is rotating relative to its peptide bonds. Phi angle is the rotation of the bond 

between the alpha carbon and the nitrogen of the previous peptide bond (previous 

meaning closer to the N-terminus) and psi angle measures the rotation of the bond 

between the alpha carbon and the carbon of the next peptide bond.[24] 

Certain combinations of phi and psi angles in consecutive residues lead to dispositions 

of the backbone and side chains that favour the formation of hydrogen bonds, such as 

alpha-helices and beta-strands, where patterns of hydrogen bonds and structural 

properties are well determined. [1] 

Alpha-helices (figure 1) are formed by four or more 

residues with phi and psi angles around -60º and 

45º, respectively. These angles generate a helical 

structure in which the carbonyl group of residue i 

forms a hydrogen bond with the hydrogen of the 

amine group of residue i+4. The ends of the helix 

are named as N-cap and C- cap, N-cap being the 

first residue without alpha-helix phi and psi angles 

that still establishes hydrogen bonds with the 

amines of the helix closest in sequence to the N-

terminus, and C-cap the equivalent to N-cap but in 

the other end of the helix and interacting with 

carbonyl groups. Side chains of the residues 

conforming the helix go out of the centre of the 

helix, slightly tilted towards the N-end of the 

helix.[1] 

Several studies have been performed to understand the propensity of a sequence of 

amino acids to form a helix, and how this affects helix and, hence, protein stability [25]. 

Software for this predictions has been developed, such as AGADIR [7, 26, 27]. 

However, studies on the abundance of each type of amino acid in alpha-helices have 

shown that the distribution of amino acid residues is not random, some residues being 

favoured over others. In initial experimental studies, all positions in the helix were 
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considered to be equivalent [28], but it was soon concluded that three different regions 

have to be distinguished, as their stability behaviour related to amino acid composition 

is totally different. They are the internal positions amino acids, the N-caps and the C-

caps. [27] 

Most of the initial studies of the helix formation propensity of amino acids were 

performed using small peptides [28]. However, this data didn’t explain for the 

proportion of amino acids inside alpha-helices found in real proteins. This fact does not 

imply that data from small peptides was wrong, as the proportion of amino acids in 

alpha helices is an evolutionary result that does not necessarily correlate with stability, 

but it sparked interest in alpha helices in proteins and similar studies using statistics of 

the existing protein database and mutagenesis and thermodynamic quantifications of 

free energy in existing proteins were performed, obtaining more accurate estimates of 

the relative stabilization afforded by the presence of a given amino acid inside a helix 

relative to that of others [29]. This set of data was further improved with the 

implementation of AGADIR, where iterative algorithms were applied to find the best 

fitting set of values to accurately predict existing data [7, 26, 27]. However, this does 

not account for all the stability effects of the inner residues of a helix, as the side chains 

of residues i and i+3 or i+4 are close to each other (each turn of the helix takes 3.6 

residues) and they can establish stabilizing interactions [29]. For inner residues, alanine 

is found to be the most stabilizing one.[7, 26-29]  

N-caps do not behave as internal residues due to the fact that the amine groups of the 

closest residues inside the helix are not hydrogen-bonded to other residues. Because of 

this, a partial positive charge of the amine groups is found in the N-end of the helix, so 

that residues that can interact forming hydrogen bonds with the free amine groups or 

establishing electrostatic interactions with the positive charge, such as the negatively 

charged amino acids (aspartic and glutamic acid) or their amines (asparagine and 

glutamine, which form hydrogen bonds) are more stabilizing than others. Studies have 

been conducted with model peptides [30], proteins and their mutants [31] and further 

adjusted with iterative algorithms [7, 26, 27], as in the case of internal residues. The 

most stabilizing N-caps have been found to be asparagine and aspartic acid. As aspartic 

acid has acidic properties, it can be ionized and create an electrostatic charge. This 

charge can alter other interactions in the protein, especially electrostatic ones, so 

asparagine is preferred over aspartic acid as N-cap. 
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As N-caps, C-caps show a different behaviour from inner residues too, due to the fact 

that carbonyl groups at the C-end of the helix are not forming hydrogen bonds with the 

rest of the helix, so a partial negative charge is generated. Because of this, positively 

charged residues (lysine and arginine) were expected to be the most stabilizing ones for 

this position. Data from studies conducted in model peptides [30] backed this 

hypothesis, being arginine the most stabilizing C-cap, but data from proteins [31] and 

further adjustments [7, 26, 27] showed that the most stabilizing C-cap in proteins was 

glycine. Several hypothesis about the cause of this unexpected stabilization were 

developed. The two main hypothesis were that a small side chain allowed for a better 

solvation of the C-end of the helix and that glycine allowed for more phi and psi angles, 

making it possible to reduce the conformational stress of the structure. Recent data 

obtained with chemical protein synthesis and D-amino acids fit better with the 

conformational stress hypothesis. [32] 

Polarity and exposure of side chains 

Each of the twenty proteinogenic amino acids is different from the others due to its side 

chain. These side chains may possess similar properties, as in the case of leucine and 

isoleucine, or may be very different, such as glycine and tryptophan. There are different 

classifications of the amino acids according to these properties, such as charged and 

uncharged, small, aromatic, aliphatic, polar or hydrophobic. [1] 

For the stability of a protein it is important to consider where the hydrophobic and 

hydrophilic residues are. As proteins are in aqueous solution (i.e. a polar environment), 

polar residues establish stabilizing interactions with water, while hydrophobic residues 

do not. This simple fact can determine whether a mutation will be stabilizing or not. 

Comparing the structure of the folded and unfolded states of a protein, the stabilizing 

and destabilizing changes can be, to some extent, anticipated. As hydrophobic residues 

do not interact favourably with water and perturb water-water interactions, the burial of 

these residues at folding increases the entropy of water, stabilizing the folded form due 

to the hydrophobic effect. However, the burial of polar groups destabilizes the protein 

due to the loss of interactions between water and polar residues that take place in the 

unfolded state. Therefore, mutating polar buried residues into similarly sized 

hydrophobic ones can be a starting point for finding stabilizing mutations. This 

approach has been successfully applied in apoflavodoxin, allowing to develop equations 

to quantify this effect[33]. 
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For the case of residues on the surface of the folded conformation, polar residues 

establish interactions with water, as they do in the unfolded state, but they may also 

interact with other polar groups forming stabilizing interactions. Hydrophobic groups 

on the surface are, in principle, neither stabilizing nor destabilizing, as they are creating 

the same reduction of water entropy as in the unfolded state. However, if a hydrophobic 

residue is more exposed in the folded than in the unfolded state, it will be destabilizing. 

Therefore, overexposed hydrophobic residues should be mutated into polar 

residues.[34] 

To determine whether a residue is buried or overexposed, the folded state should be 

compared with the unfolded state. This is not a simple issue, as the unfolded state is a 

large ensemble of conformations. There are servers for the calculation of unfolded 

conformations (ProtSA[35]), but their usage would increase significantly the 

computation time, so the average exposures in the unfolded state that were calculated 

for each residue in the development of the server [35] will be used instead. 

Steric clashes 

Each atom of a protein occupies a certain volume. If two atoms (bonded or not) are 

forced to stay too close, repulsion forces due to their electron clouds become bigger 

than attraction, and the native conformation of the protein is destabilized.[1] This is to 

be taken into account when considering a mutation for a protein. As the 20 

proteinogenic amino acids have different side chains, each occupies a different volume, 

as it can be deduced from their different molecular weights, ranging from 75 Da of 

glycine to 204 Da of tryptophan.[1] 

Because of this, it is important to check that any residue introduced by mutation will not 

cause clashes in its surroundings. The most common way to analyze this is using 

visualization programs, such as Swiss PDBViewer [36] or VMD [37], but an automated 

way is needed for this work. For this purpose, some programs, such as SCWRL [38], 

can perform a minimization of the potential energy of the protein structure. If steric 

clashes appear, the repulsion forces will become bigger, increasing significantly the 

minimum potential energy, thus decreasing the conformational stability. Because of 

this, the minimum potential energy calculated by SCWRL is considered a good steric 

clashes detection property. 
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Figure 2. Different types of cavities. 

Internal cavity (a), pocket (b) and channel(c). 

This is a top view of a slice of a protein. In blue, the 

protein. In orange, cavities. In yellow, boundaries 

(volumes considered close to the surface of the protein. 

Two molecular paths (in b and c) are depicted for the 

studied molecule. Adapted from Krone et al.[39] 

 

Internal cavities 

There are several types of cavities in proteins that may facilitate their interaction with 

small molecules and play key roles in function and stability. For example, invaginations 

of the surface of a protein can be catalytic pockets where the substrate of a reaction fits 

in the optimal position for that reaction. Mutating there could well result in a change of 

stability, but the function of the protein will be altered. In this Master thesis, the 

following nomenclature will be used [39]: 

Cavity is a general term for all spaces 

inside or close to the surface of a protein 

where a certain molecule fits. For this 

work, the considered molecule is a 

molecule of water. 

Internal cavity (figure 2a) is a type of 

cavity from which a small molecule (e.g. 

water) cannot reach the surface of the 

protein. 

Pocket (figure 2b) is a type of cavity 

located on the surface of the protein with 

only one connection to the outside of the protein. An example of pocket can be the 

invagination mentioned at the beginning of this section. These pockets can be catalytic 

pockets, may have a role in molecular recognition or in regulation of the catalytic 

activity of the protein. [39] 

Channel (figure 2c) is a type of cavity in contact with the surface of the protein with 

two connections to the outside of the protein. As its name indicates, it is a channel 

connecting two areas of the surface while going inside of the protein. Channels can be 

involved in molecular transport or catalysis.[39] 

Some studies show that aliphatic deletions in the protein hydrophobic core, made by 

generating large-to-small mutations, result in less stable variants of the protein [40], so 

it can be concluded that internal cavities may have a negative effect on stability. The 

reverse approach was later used in apoflavodoxin, obtaining modest stabilizations by 

small-to-large mutations in internal cavities, with smaller effects than expected, due to 

the rearrangement required to avoid clashes with the new residue [41]. 

a 

b 
c 
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Internal cavities are good targets for stabilizing mutations, as they are not usually 

involved in the function of proteins and moderate stabilizations can be achieved by 

filling those cavities with larger aliphatic residues. However, current developments are 

mainly focused on the detection of external cavities and prediction of molecules that 

bind to them, in order to find new drugs, so few programs are focused on internal 

cavities and, according to a recent review [39], with current software it is only possible 

to detect the atoms surrounding cavities in a semi-automatic manner, using graphic 

visualizations for the user to decide which atoms are defining the cavity. What can be 

performed currently in an automated pipeline is the calculation of the volume of these 

internal cavities [42]. 

Even though programs for the detection of channels and pockets are more advanced 

than for internal cavities, they can be neither used in an automated manner. Even if they 

could, this wouldn’t be a recommended approach to increase stability in proteins, as 

both channels and pockets are usually linked to the function of the protein, and this 

modification could change its function, which is usually an undesirable effect. Because 

of this, the study of external cavities is deemed unnecessary for this project. 

Proteins as sequences 

Apart from studying protein structure as the result of several forces combined, it is also 

important to consider protein sequence as the result of evolution, where changes in the 

sequence are positively selected if they give the organism an advantage relative to the 

original form. With the current computational methods, it is possible to study not only 

proteins from currently existing organisms (extant proteins) but also their 

phylogenetical precursor predicted sequences, from back in time, when the average 

temperature of Earth was higher than current [43]. For this project, both approaches will 

be used. 

Consensus sequence 

Homologous sequences are those that apparently share a common ancestor and, because 

of that, they have a high percentage of identity and analogy between them. If two close-

related species are analyzed, most of their proteins have an equivalent homologous 

protein in the other species, with only some or no changes at all. The differences 

between two homologous sequences could be due to an improvement of the function of 

the protein for that specific species or to a change in function, which may later generate 

a new family of homologous proteins in further evolution.[44] 
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To find homologous sequences, a search for sequences with a high similarity or identity 

percentage can be performed. The problem of this approach is that it does not 

necessarily distinguish homologous sequences with different functions from the ones 

that keep the same as the original search sequence.[44] This is an inconvenient feature 

for this work. However, for a change of function, the required change in the sequence is 

usually bigger, so few sequences with a different function will be found using restrictive 

parameters while searching.[44] 

Inside a family of homologous proteins, differences between sequences can be found. If 

all these variants are aligned using some of the currently available software (MUSCLE 

[45], ClustalW [46]), a consensus sequence for the whole family can be deduced. The 

consensus sequence is composed by the most common amino acid in all sequences for a 

given position. For some purposes, such as the program developed for this thesis, it is 

convenient to set a minimum threshold for the relative frequency of the amino acid. If 

the most common amino acid falls under that threshold, an ambiguous amino acid “X” 

is placed in the consensus sequence instead. This way, variants in positions with a high 

variation rate are not interpreted as relevant. 

Consensus sequences are often used in the search of signalling patterns for specific 

functions or cell locations. However, they can also be interpreted as a reference for the 

most beneficial variants. They can be more beneficial because of a better regulation, 

better expression or better stability, among many other possibilities. Because of this, 

many prediction programs based on sequence consider the alignment of extant 

sequences and the evaluation of the consensus sequence as a way to evaluate the impact 

of a mutation in protein stability. [12-14]. 
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Figure 3. Example of a phylogenetic rooted tree. 

Black dots (1-5) are the leaves of the tree. They represent 

extant proteins, proteins from currently existing organisms. 

White dots (6-8) are the nodes of the tree. They represent the 

common ancestors of the other leaves or nodes they are 

connected to. 

The top node (0) is the root, the common ancestor to the 

whole tree. Usually, an outgroup or information apart from 

the sequence is required for a correct placing of the root, but 

an incorrect rooting does not affect maximum likelihood 

calculations [16]. 

The straight lines between nodes/leaves are branches. They 

represent an ancestral relationship, being the one closer to the 

root the ancestor of the other. The values close to these lines 

(v1-8) are the length of the branches. In rooted trees with a 

molecular clock, this length is a measure of the evolutionary 

time between ancestor and descendant. 

Figure taken from Merkl et al. 2016 [16] 

Ancestral sequence 

Another approach to find stabilizing 

mutations for a protein is using the 

extant sequences of a protein and its 

family to reconstruct the sequence of 

their ancestors through phylogenetics, in 

a process known as ancestral sequence 

reconstruction (ASR). Unlike consensus 

sequence, which compares only the 

sequences of the present, ASR tries to 

find the history of changes of the protein 

to form the current family of homologous 

proteins. Because of this, ASR is termed 

“vertical approach”, while consensus is 

referred as “horizontal approach”. There 

is no standard work pipeline for this 

purpose. However, there are some 

elements that tend to be common in most 

of the research conducted in this field. [16] A simple graphical explanation of 

phylogenetic terms used below is offered in figure 3. 

For the ancestral sequence reconstruction, four steps, involving different software, are 

necessary: selection of extant sequences, creation of a multiple alignment, computation 

of a phylogenetic tree and reconstruction of the ancestral sequence.[16] 

First step is the selection of sequences for the analysis. Extant sequences are the leaves 

of the phylogenetic tree. The more difference between sequences, the bigger distance 

between the branches of the tree. If only a few similar sequences are considered, the 

root of the tree will be close in time to the present or even can cause execution errors in 

the phylogeny program due to a high level of identity. If there are few sequences but 

they are very different from each other, the resulting tree may go a very long time back 

in evolution, but it will provide an inaccurate prediction.[16] The computational time 

associated to the construction of a phylogenetic tree grows linearly with the length of 

the sequence and with the square of the number of sequences.[47] Because of this, it is 

not recommended to use a big number of sequences. To control the number of 
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sequences and to optimize the results, a frequent solution is the usage of clustering 

software, which groups sequences in clusters with more than a given percentage of 

identity to a representative sequence, reducing the number of sequences to one per 

cluster and ensuring the differences between clusters are significant, but not too big. 

[48]  

Another fact to take into account is that recent studies show that, whereas common 

ancestor resuscitated proteins are usually thermophilic variants with higher stability at 

high temperature due to the conditions of life back in the age of the ancestor, the last 

universal common ancestor (LUCA) resuscitated proteins are usually mesophilic 

variants with similar stability to the extant ones [16, 49]. This fact points out the 

importance of not going too far back, not only because the longer the time predicted, the 

less accurate the prediction, but also because longer times do not necessarily imply a 

higher stabilization. As proteins with a low percentage of similarity are phylogenetically 

related further back in time than those with a higher percentage, minimum thresholds of 

similarity between clusters are imposed, in order to avoid getting an inaccurate ancestral 

sequence from too far back in time. 

Even considering minimum thresholds and performing clusterization, the number of 

sequences considered can vary depending on protein-specific mutation rates and the 

time span of interest. Because of this, there is no optimal number of sequences, and 

datasets used may vary from 11 to over 200 sequences [16] 

The second step is the alignment of all sequences for further construction of the tree. 

There is a wide range of heuristic software for this purpose with similar alignment 

quality, such as Clustal (X and W) [46] and MUSCLE[45], being the latter one of the 

most frequently used.[16] 

The third step is the construction of a phylogenetic tree for the family of homologous 

proteins. There are different methods for the construction of a tree, however, not all of 

them are compatible with ASR. For example, distance-based algorithms such as 

neighbour joining lack an evolutionary model, which is necessary for ASR. There are 

different ASR-compatible families of algorithms, such as substitution (measuring the 

frequency of changes between two concrete nucleotides/amino acids), maximum 

likelihood (measuring the probability of the tree being true), Bayesian inference 

(iterative method to estimate both the topology of the tree and the parameters of the 

evolutionary model) and more complex evolutionary models. [16] 
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From all the available methods, maximum likelihood is the most frequently used type, 

due to its good ratio accuracy/computational cost. Bayesian methods can be more 

accurate, but are usually more computationally expensive. However, accuracy is highly 

dependent on the selected dataset. Likelihood is defined as the probability of obtaining 

the extant sequences using a given evolutionary model with the supposed topology of 

the tree. This definition can be applied to each branch of the tree, to find close 

ancestors, or to the whole tree, trying to maximize the likelihood of the common 

ancestor. Apart from this algorithm on sequences, some programs are also capable of 

using information provided from literature. [16] 

The last step is the reconstruction of the ancestral sequence itself using the tree and the 

extant sequences, combined with an evolutionary substitution model, preferentially 

according to the one used in the construction of the tree. However, there is no consensus 

on the best substitution matrix for this purpose, so different ones have been used, with 

similar accuracy rates. For the common ancestors, their sequence is usually determined 

as the one with a highest likelihood score locally or inside the whole tree. [16] 

Some programs are capable of both creating the tree and reconstructing the ancestral 

sequence. However, they are usually specialized in one of the two functions. For 

example, PAML is a program that can create trees and, from them, calculate their extant 

sequences, but its tree search and building algorithm are rather primitive, in a way that 

trees with more than ten sequences can take a really long time to be created [50]. 

Because of that, many of these programs accept trees in Newick format as input, in 

order to avoid this slow calculation and they perform only the reconstruction of the 

sequence. On the other hand, other programs allow for fast calculation of trees with 

maximum likelihood and a high number of sequences, but they cannot reconstruct 

ancestral sequences, such as PhyML [47]. 

Some of the reconstruction programs return as a result the ancestral sequence of the root 

and all nodes, the alignment of these with all extant sequences and the likelihood for 

each position of the sequence, allowing for a fast evaluation of the reliability of each 

amino acid in the reconstructed ancestral sequence[50]. This kind of approach has been 

used successfully for the study of past conditions, such as temperature or multisubstrate 

enzymes, finding some thermophilic variants, and for the study of the evolution of 

proteins or complexes of interest, such as in interactions between proteins and hormones 

[16].  
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which all or the majority of the six main modules are involved, representing each colour one module: Violet/purple 

for sequence analysis, blue for alpha-helices, green for disulphide bonds, yellow for exposure, orange for acidic 

hydrogen-bonded residues and red for cavities and steric clashes. This colour code will be further used in figures 5-10. 

Figure 4. Global workflow of the program. 

Arrows are processes, squares are files or data. Aquamarine 

blue squares are input files. The program can start with any of 

them. Brown squares are output files. White squares are 

intermediate data. Grey arrows are parts of the code out of the 

six main modules. Rainbow arrows are processes in                   

w 

Methods 

Global workflow of the proposing prototype 
The main objective of this work is the development of a prototype of computer program 

using existing software, empiric data and newly written code. The main programming 

language used in the program is Python 3.6.1 (http://www.python.org), with its 

extension Biopython 1.7 [51], which allows for an easier manipulation of biological 

sequences. The overall task of the program is proposing probable stabilizing mutations 

and returning them in descending order of probability of being stabilizing. 

The program is composed of different modules, parts of the code focused on one 

particular characteristic of the protein. These modules can work almost as independent 

programs but, to reduce the required calculations, some modules can transfer 

information between them and they can also use files created by other modules. The 

way in which each module functions is explained below, as different characteristics 

require different approaches for its study. 

As shown in figure 4, the program performs three consecutive tasks: Mutation 

proposing, mutation evaluation and mutation scoring. The expected input for the 

program are either PDB files or PDB codes for the retrieval of a PDB file from the 

online file exchange ftp server of the wwPDB (Worldwide Protein Data Bank: 

ftp://ftp.wwpdb.org/pub/pdb/data/structures/divided/pdb/). However, there is also a 

function in the program for testing and training purposes that allows for the usage of a 

mutation list and a PDB file. 

 

The first task is an initial analysis performed by each module to propose probably 

stabilizing mutations. All six modules propose mutations whenever possible. Proposed 

mutations are already evaluated by the proposing module. If the same mutation is 

http://www.python.org/
ftp://ftp.wwpdb.org/pub/pdb/data/structures/divided/pdb/
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proposed by different modules, each module will return the mutation but the coincident 

proposals will be merged in one, with all the information from each proposing module. 

For a better explanation on this subject, go to section “the PointMutation class”. 

The second task is evaluation. As the effect of a mutation is the combination of all its 

effects in different characteristics of the protein, proposed mutations are evaluated not 

only by the proposing module(s) but also by the rest of modules, to check if there are 

important destabilizing concomitant effects and to obtain a score for the impact of the 

mutation on all the studied protein characteristics. After this task, proposed mutations 

can be filtered according to different parameters, if it is considered necessary. However, 

this is not performed by default. 

The third task is scoring, using a logistic regression machine learning model, trained 

with existing mutation data. These scores will be used to rank the most probably 

stabilizing mutations and returning them as output. 

Modules 
Six main modules have been developed for the study of the different characteristics of 

proteins that have been considered. Five of them (sequence analysis, alpha-helices, 

disulphide bonds, exposure and acidic hydrogen-bonded residues) play a role  in both 

mutation proposal and evaluation. One of them (cavities and steric clashes) only 

evaluates mutations. Because of this double role of most of the modules, they have at 

least two relevant functions: one for the proposal of mutations according to the studied 

parameters and one for the evaluation of those parameters on mutations proposed by 

other modules. However, the main modules have additional functions, such as exporting 

data that can be used in further evaluations instead of calculating it for each evaluation. 

Apart from the six main modules, there are other complementary modules with 

important functions for the program, such as the retrieval of the PDB structure from the 

PDB online database, the scoring of the mutations with a logistic regression model and 

other testing and training purposes that will not be present in the final version of the 

program. Also, there is a module for the definition of a special programming class for 

the generated mutations, the PointMutation class. All of these modules are explained 

below and all the code written  is shown in Appendix A. 
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The PointMutation class 

In Python programming, a “class" is a group of instructions on how to create and use an 

“instance”, with specific properties. It also can contain information on how to perform 

class-specific operations. For example, in geometry, an example of “class” would be a 

circle, determined by its radius. Two circles of 3 and 5 cm of radius would be different 

“instances”. A rectangle would also be a “class”, defined by its long and short sides. In 

either example of “class”, the area of the geometrical shape can be calculated. However, 

the formula for the area of the circle is different from that of the rectangle. These 

formulas are examples of class-specific functions, as they can be called with the same 

name (area), but they perform different operations. 

For this project, several classes have been used, such as protein sequences, structures, 

chains and alignments. All of them were implemented in Biopython [51] except one 

used to describe proposed and evaluated mutations, named as PointMutation class, that 

has been created for this Master thesis. 

The PointMutation class refers to a mutation of a single amino acid into a different one. 

Its arguments (information necessary to define an instance of this class) are the protein 

code, the mutated chain of the protein, the original and mutated amino acid and the 

position of the mutation. An additional argument has been created to solve the fact that 

not all of the annotated sequences in PDB files start in amino acid 1. This is the 

argument named as start number. If all these arguments are the same in two mutations, 

then they are the same mutation, no matter whether the other properties of both 

instances are the same or not. To define a mutation in structure 1A2P, that starts its 

sequence with number 1 (start number) from the glycine (G in one-letter code) in the 

position 34 of the chain A to a tryptophan (W in one-letter code), the line of code would 

be as it follows: 

mutation = PointMutation("G","W", 34, "A","1a2p", 1) 

Most of the rest of properties are defined as blank by default, to be filled by further 

evaluation by the modules. These properties are ancestral, consensus, helix, disulphide, 

acid_bonds, cavities, exposure and energy, which will be explained further in their 

respective module’s section. When a module proposes a mutation, it immediately fills 

the evaluated property field. If two mutations are the same, as mentioned before, they 

can differ on these properties, as they can be proposed by different modules, so both 

mutations merge their properties by filling the blank fields of the first mutation with the 
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data from the second one. Introducing new information for these fields in an existing 

PointMutation object is simple. Using the last example, if its consensus value is 0.5, it 

would be added using the following code: 

mutation.consensus = 0.5 

Also, there are properties intended for testing, such as measured, which is reserved for 

storing the results of empirically measured ΔΔG values on mutations for training and 

testing purposes. The properties m_average and m_sd are used in case there is more 

than one measured value and they have their own class-specific function to be 

calculated. The last two properties show which module proposed the function and the 

score of the mutation according to the logistic regression trained model. 

Class-specific functions are the representation function, that shows the mutation in a 

simple way, and write_full_mutation, which returns all data of the mutation and its 

evaluated properties in an ordered format for further analysis. The latter is specially 

used for training and testing. Other functions are used to check if all properties have 

been evaluated and, if they haven’t, to start the process to evaluate them. It can also be 

used to determine which of the modules proposed the mutation. All these functions 

contribute to an easier storage and manipulation of the information about a given 

mutation in an ordered way. 

Retrieval 

In order to make possible for the program to function with just a PDB code, a retrieval 

function must be implemented. Biopython has a retrieval function from the Worldwide 

Protein Data Bank (wwPDB) database. This complementary module uses this function 

to download the file in the right PDB format (.ent), saves it in a directory and prepares 

the necessary folders for further analysis. 

Sequence analysis 

The sequence analysis module performs both the consensus and ancestral sequence 

analysis, as both of them work with the homologous sequences of the protein. However, 

the way in which they use them is different, as shown in figure 5. As some PDB files 

contain multiple chains with the same sequence, this module will only be executed once 

for each different chain, avoiding the repetition of the process if there are two chains 

with the same sequence. 

The common part for both approaches is finding the family of homologous protein 

sequences. For this purpose, a BLAST search is performed in the web server of the 
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Figure 5. Workflow of the sequence 

analysis module. 

The proposal function workflow is 

shown, as evaluation function can be 

thought of as an analogy of the final 

part of this process. 

Same colour and shape meanings than 

in figure 4 are used, except for dark 

purple squares, which are the starting 

points for the evaluation functions. 

Because of this, the information 

related to the dark purple squares is 

exported and saved for a faster 

execution of the program Programs 

mentioned in the arrows will be 

described along the text. 

NCBI, using the program blastp [52], in the non-redundant protein sequence database, 

with gap costs in the alignments and with a minimum percentage of identity of 70% and 

a maximum expect value of 10
-4

. Expect value is the probability of the result being 

positive at random. These parameters are very restrictive. Nevertheless, if more than 

10000 results are found, only the first 10000 will be used. 

 

Consensus sequence analysis takes only the first 250 results from the BLAST search, 

which are the 250 most similar sequences, to find any kind of consensus. As there is no 

evolutionary model behind this approach, a higher number of sequences could lead to a 

completely ambiguous consensus in some proteins with a small homologous family. 

These sequences are aligned using one of the most common multiple alignment 

programs, MUSCLE 3.8.31 [45] with the default options and saved as a text file in 

FASTA format. 

After that, Biopython alignment analysis tools are used to read the file and generate a 

simple consensus with a minimum threshold of 0.3 (30%) as described in the consensus 

sequence theory section before. As a result, one consensus sequence is obtained. 

However, during multiple alignment, some gaps may have been introduced in the 

original protein sequence. Because of this, it is necessary to perform a pairwise 

alignment between the original sequence and the consensus to find differences between 

both sequences. This is achieved using Biopython global pairwise alignment tool with a 

BLOSUM62 alignment scoring matrix. Once both sequences are aligned, a comparison 

between them is performed and wherever in the sequence a difference is found, a 

mutation will be proposed, taking into consideration the number of gaps generated in 
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(1) 

the original before that amino acid in the sequence and the number in which the 

annotated sequence starts. 

Then, the mutation is scored for the consensus field. This is done using the multiple 

alignment file and follows the same process as the evaluation function. For the original 

sequence in the multiple alignment (with gaps), the program finds where the mutation is 

located and then counts in how many sequences that amino acid is the same than the 

original (WT), the mutated (mut) and in how many there is no gap in that position 

(total). With this data, a score is calculated according to the following function: 

       
      

     
 

The evaluation function follows the same process, with only slight technical changes in 

the input and output of data, as the mutation is not proposed by this module. 

Ancestral sequence analysis starts with all sequences retrieved from BLAST. As a high 

number of sequences is not good for the performance of phylogenetical programs, a first 

step is the sequence clustering using CD-HIT 4.6.8 [48], to reduce the number of 

sequences in use in a rational way, leaving sequences in a concrete range of identity 

percentage between them. For sequences with 100 residues or more, the minimum 

threshold for clustering is 90%, leaving all sequences in the range of 70-90% identity. 

However, for shorter sequences, this could be too restrictive, so the minimum threshold 

for shorter sequences is set to 80%. After the clustering, a multiple alignment of the 

sequences is performed with MUSCLE using default settings and its saved in a text file 

in PHYLIP sequential format, the required format in further phylogenetic programs. 

The first phylogenetic program to use is PhyML 3.1 [47], for the fast construction of the 

tree. As discussed before, PAML [50] can both create the tree and generate the ancestral 

sequences, but it is very slow compared to most programs, so PhyML is preferred for 

tree building. First, slight changes in the names of the sequences of the multiple 

alignment are performed, to make the file compatible with the program. Then, PhyML 

is executed in amino acid sequence mode with the substitution model JTT [53] and the 

rest of parameters are set as default. PhyML exports a tree in a Newick-like format, 

compatible with most software except PAML, so another piece of code has been 

developed to convert the Newick-like tree into strict Newick format. 

For its functioning, PAML 4.9e needs a multiple alignment file, a Newick format tree 

and a third file with all the parameters needed in the program. An example of this file is 
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provided in appendix C. Amino acids have been set as sequence type, the JTT 

substitution model has been set as rating model, all sequences are considered to be 

existing at the present and the program is running under a molecular clock hypothesis. 

The rest of the parameters are set as default. PAML returns a file with a multiple 

alignment between all extant and ancestral sequences, several analysis of the tree and an 

analysis for each position of the sequence of the probability of the ancestral sequence 

amino acid of being correct. For the proposal and evaluation of the mutation, these 

probabilities and amino acids for the common ancestor of all sequences (the root of the 

tree) are saved, as well as the original and ancestral sequence in the multiple alignment 

(with gaps). As the minimum percentage of identity used is 70%, it is improbable that 

the common ancestor is LUCA, given that most of the studies focused on LUCA use a 

30% threshold [16]. 

As ancestral and original sequences are already aligned, direct comparison is possible. 

If a difference is found between them, the mutation from the original to the ancestral is 

proposed. As score of this mutation, the probability of this amino acid being correct in 

the ancestral sequence, reported by PAML, is used as score and assigned automatically 

to the ancestral field when proposing the mutation. This section of the module also 

considers gaps and the start number, as the consensus. The evaluation function works in 

an analogous way to the scoring process of the proposing function. With a given 

mutation, the evaluation function looks for it in the original sequences, taking gaps and 

the start number into account, and then looks for the same position in the ancestral 

sequence. If the mutated amino acid is the one in the ancestral sequence, the probability 

is assigned as score. If not, score is considered zero. 

Alpha-helices 

Alpha- helices module is a key module for the program, as it does not only evaluate and 

propose mutations for alpha helices, but also performs analyses of the structure that are 

further transferred to other modules, as shown in figure 6. Two main analysis paths are 

developed in this module: one for secondary structure and one for hydrogen bonds. 

Then, the information gathered by both modules is analyzed together for the proposal 

and evaluation of mutations in alpha-helices. 

The secondary structure analysis is performed by DSSP 2.2.1 [54], which reads the 

PDB file and calculates different properties, such as exposure, phi and psi angles, 

estimated hydrogen and disulphide bonds and, using this information, determines the 
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secondary structure along the sequence. DSSP is executed with default settings and all 

residue relative exposures, tagged with their chain, one-letter code and position in the 

sequence, are exported for further use in the exposure module. Relative exposures are 

calculated as exposures returned from DSSP divided by the average exposure in the 

unfolded state for the corresponding type of residue, calculated by Estrada et al [35] 

using Alphasurf [55] and ProtSA [35]. As DSSP returns results that are 5 % higher than 

Alphasurf, relative exposure is divided by 1.05. 

For the detection of helices, the same criteria as Leader et al [56] is used: a helix must 

have at least four consecutive residues predicted by DSSP as in alpha-helical 

conformation, apart from the N- and C-cap. Less than four would not be even a full turn 

of a helix. N- and C-cap are, respectively, the residue before and after the residues in 

alpha-helical conformation. After that, all helices, including N- and C-caps, are 

extracted for their analysis as individual entities. Each amino acid in a helix is tagged 

with its one letter code, chain, position and relative exposure, calculated as before. 

 

For the analysis of hydrogen bonds, HBPlus 3.06 [17] is used, with default settings. 

This program predicts hydrogen bonds using geometrical properties of the structure 

between important atoms for possible hydrogen bonds and returns a file which shows 

each possible hydrogen bond, its predicted strength and whether the hydrogen bond 

implies a side chain or a part of the backbone. As the backbone is not supposed to 

change much after the mutation, only the residues with hydrogen bonds on their side 

Figure 6. Workflow of the alpha-

helices module. 

The proposal function workflow is 

shown, as evaluation function can be 

thought of as an analogy of the final 

part of this process. 

Same colour and shape meanings than 

in figure 4 are used, except for dark 

blue squares, which are the starting 

points for the evaluation functions 

and the information transfer points, 

shown also in figures 8 and 9. 

Programs mentioned in the arrows 

will be described along the text. 
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chains are considered relevant and saved in a list. Also, in N-caps, it is frequent to find 

interactions between the N-cap side chain and the backbone of the helix. Because of 

this, only hydrogen bonds between the side chain of the N-cap or C-cap and other side 

chain are considered relevant, in order to preserve these relevant interactions. 

Once this information is retrieved, mutations are proposed on the residues that fulfil all 

of the following criteria: 

 The amino acid is not buried (relative exposure higher than 10%). If it is buried, 

the mutation may generate steric clashes or cavities. 

 There are no hydrogen bonds affecting the side chain of the amino acid (for 

internal helical residues) or there are no side chain-side chain hydrogen bonds 

with the residue (for N- and C-caps). 

 The amino acid is not one of the best options of amino acid for its position (Ala, 

Leu, Arg, Met, Lys for inner residues; Thr, Asp, Ser, Gly, Asn for N-cap or Gly, 

His, Asn for C-cap) 

Depending on the location, the proposed mutated amino acid will be different, as the 

most stabilizing residue depends on the location. For inner residues, Ala is proposed; 

for N-cap, Asp, and for C-cap, Gly. To score the mutations, the effect on ΔG of each 

amino acid in each of the three locations is used. Three sets of data have been 

considered for each location. To determine which one is more reliable, comparison 

between sets has been done calculating correlation in a pairwise manner, using Pearson 

and Spearman coefficients, as both score and position matter for this program. Finally, 

Muñoz et al [27] dataset is chosen for all three positions. For an easier use, data has 

been represented relative to the most stabilizing residue for each position instead of Ala. 

The full dataset for each location is shown in appendix B. 

After proposing the mutation, a score is assigned to it. Score is defined as the difference 

between effects on ΔG of the original and mutated residues, defined this way in order to 

have positive scores for more stabilizing mutations. As the most stabilizing residue is 

the mutated one in proposed mutations and all ΔG values are relative to the original 

residue, score is directly ΔG for the original residue. The score in this module is given 

in a list of three elements, being the first the type of position (N-, C-cap or inner); the 

second the calculated score, and the last whether there are hydrogen bonds involved or 

not. First and last elements are only for statistical purposes. 
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For the evaluation of the mutation, the program looks for the mutation in the list of 

helices. If the mutation is not found there, then a score of 0 is assigned for the calculated 

score and “X” is written for the other two elements. If the mutation is found, its location 

is determined (N-, C-cap or inner residue), and the score is calculated as stated before. 

The absence or presence of hydrogen bonds is also stated in the list of helices to transfer 

it to the mutation helix score field. 

Disulphide bonds 

Disulphide bonds module is based mainly in one program, Disulphide by Design 1.20 

(DbD) [20]. This program is Windows-based and, as the rest of the modules are run in 

Fedora 26, the proteins have to be processed previously in this program, saved in a text 

file and transferred to a computer using Fedora 26. There is also a web server with 

Disulphide by Design 2 [21], which allows to deal with bigger proteins. 

 

Figure 7. Workflow of the disulphide bonds module. 

The proposal function workflow is shown, as evaluation function can be thought of as an analogy of the final part of 

this process. Same colour and shape meanings than in figure 4 are used, except for dark green squares, which are the 

starting points for the evaluation functions. Disulphide by Design (DbD) is executed in a Windows-based computer, 

different from the one where the rest of the program is executed. Programs mentioned in the arrows will be described 

along the text. 

 

For the analysis of the structure, the PDB file is downloaded from the worldwide PDB 

database and analyzed by DbD with default settings. The results are saved as a text file 

and transferred to the computer using Fedora 26. There, some Python code allows for 

the interpretation of the results, distinguishing between disulphide bridges where a 

cysteine is already in the protein (single mutation needed) and where there are no 

cysteines in the original protein (double mutation). 

For the proposal of mutations, the program firstly tries to propose single mutations. If 

there are no mutations found this way, then double mutations are proposed. For the 

proposal of single mutations, the program searches in the single mutation disulphide list 

and checks if the already present cysteine is part of a disulphide bond in the original 

protein. If it is, no mutation is proposed. If it is not, a mutation is proposed in the non-

cysteine residue to change it into a cysteine. The score for this mutation in the 

disulphide field is the stabilizing effect calculated by DbD. 
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If no single mutations are proposed this way, then double mutations are proposed. As 

there are no cysteines involved in the original protein, there is no need to check whether 

they could change disulphide bonds, so all double mutations are proposed. As the 

responsible of the stabilization are both residues, disulphide score is half of the 

stabilization for each one and these mutations are evaluated by the other modules as if 

they were two different mutations, but their final score as a double mutation is the 

average between both scores and they are shown as only one proposal. 

The first step of the evaluation function is checking whether a cysteine was in the 

original or mutated protein in that position. If not, the score is automatically 0, as no 

implication in disulphide bonds is possible without cysteines. Then, it analyzes if the 

mutation is involved in a disulphide bond. If it is, the score will be the stabilization 

effect calculated by DbD, being positive if the bond is being created with the mutation, 

or negative if destroyed. If there is no implication in disulphide bonds, the score is also 

0. 

Exposure 

Exposure module starts its analysis with information transferred from alpha-helices 

module and filters it in order to propose and evaluate mutations, then it transfers data to 

the acidic hydrogen-bonded residues module, as shown in figure 8. It also uses the 

information of the amino acid type for this purpose. 

 
Figure 8. Workflow of the exposure module. 

The proposal function workflow is shown, as evaluation function can be thought of as an analogy of the final part of 

this process. Same colour and shape meanings than in figure 4 are used, except for dark yellow squares, which are the 

starting points for the evaluation functions. The blue-yellow arrow is the transfer point shown in figure 6, the yellow-

orange arrow is another transfer point, connecting with figure 9. All this module works with Python code. 

 

First step is filtering exposure data. This step is necessary due to the process of 

calculation of the relative exposure. Relative exposure is calculated dividing absolute 

exposure by the average of exposure of that type of residue in an unfolded protein. 

Because of this, residues without bonds in both their amino and acid groups will be 
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more exposed, as one of their sides is not linked, making the calculation of the relative 

exposures inaccurate. This does not only happen for N- and C-terminus residues, but 

also for some segments that are intrinsically unfolded or too mobile, so that they do not 

appear in the PDB model. This way, these residues with inaccurate relative exposures 

are filtered out, and only the accurate ones are analyzed. 

For the analysis, two different types of mutation are distinguished: overexposed apolar 

residues and buried polar residues. Buried residues are considered to be those with a 

relative exposure under 15%. This value has been set by calculating the relative 

exposure from the absolute exposure threshold used by Ayuso-Tejedor et al. [33] in 

their work. Only mutations shown as stabilizing in this article are proposed (i.e. 

mutations from buried Asn or Gln to Leu). 

Overexposed residues are those with a relative exposure over 100%. For the proposal of 

these mutations, all apolar residues are considered except for Gly and Ala, due to its 

small size and higher flexibility (only in Gly), and Pro, due to its secondary amine for 

the amino group, which makes it more rigid. Cys is apolar unless ionized, but it can 

form disulphide bonds, so it is neither considered. Proposed mutations are from apolar 

overexposed residues to similar size and structure polar ones: Val to Asn; Phe to Tyr; 

Leu, Ile and Met to Gln. 

For the score, some assumptions have to be made to be able to use the equation for ΔΔG 

estimation described by Ayuso-Tejedor et al. [33], which is the following: 

                                                               

Where ΔΔASA is the buried accessible to the solvent area. As the exposure in DSSP is 

explored to a residue level instead of atomic level, some assumptions have been made to 

use data from DSSP with a simplified formula derived from (2). First assumption is that 

all the backbone is apolar and is responsible for a surface of the size of an alanine 

residue, as all residues (except glycine) are extensions of alanine. Second assumption is 

that all parts of the residue are buried in the same proportion, being that proportion the 

complementary of the relative exposure. That way, the buried area can be calculated as 

the average exposed area of a residue times a factor of one minus relative exposure. 

Third assumption is that side chains are completely polar or apolar, depending on the 

type of residue (polar or apolar, respectively). As these assumptions are not very 

accurate, the result is not going to be ΔΔG, but can be used as a score. To simplify it 
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more, the independent term 1.083 is taken out of the formula. Two formulas are 

obtained, depending on the polarity of the original and mutated residue. If the original 

residue is polar and the mutated apolar, formula (3) is used. If it is the other way round, 

formula (4) is used. 

                                                              

                                                               

Where ASA is the average exposure to the solvent in an unfolded protein of a type of 

residue, being this residue Ala (alanine), WT (the residue of the original protein) or Mut 

(the mutated residue), and RE is the relative exposure as a decimal. These functions are 

originally designed only for buried polar residues. However, as for overexposed apolar 

residues (1-RE) becomes negative, it can be used also as score for them, as the 

behaviour is the opposite than for buried residues both in the formula and in the 

empirical data and this solves the problem of the lack of quantitative studies for scoring 

mutations of overexposed apolar residues. 

The evaluation function checks if the original and mutated residues are polar (Ser, Thr, 

Tyr, Asn, Gln) or apolar (Val, Leu, Ile, Phe, Met). If both are of the same kind, a value 

of 0 for exposure is assigned. If not, the relative exposure is obtained from the filtered 

data. If relative exposure for that residue is filtered out, a 75% relative exposure is 

assigned, so that in next step is given an exposure score of 0. If relative exposure is 

under 25% or over 100%, the formula is applied to calculate the exposure score. If not, 

a value of 0 is assigned. 

Acidic hydrogen-bonded residues 

Acidic hydrogen-bonded residues module takes information from both the alpha-helices 

and exposure modules to propose and evaluate mutations. From the alpha-helices 

module, hydrogen bonds implying acidic residues (Asp, Glu) or their isosteric neutral 

equivalents (Asn, Gln) is transferred. From the exposure module, the filtered list of 

relative exposures is used. A quick search with Python of both datasets is enough for 

proposing and evaluating mutations. 

For the proposal function, the program searches in the list of acidic and equivalent 

hydrogen-bonded residues for the acidic ones (Asn, Gln). Once they are found, a search 

for these residues is performed in the exposure list. If they have been filtered out by the 

exposure module, a relative exposure value of 0 is assigned. If their relative exposure 

(3) 

(4) 
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value is over 85%, a mutation to their equivalent is proposed (i.e. Asp to Asn, Glu to 

Gln) as performed by Irún et al [19]. 

 
Figure 9. Workflow of the acidic hydrogen-bonded residues module. 

The proposal function workflow is shown, as evaluation function can be thought of as an analogy of the final part of 

this process. Same colour and shape meanings than in figure 4 are used, except for dark orange squares, which are the 

starting points for the evaluation functions. The blue-orange arrow is the transfer point shown in figure 6 and the 

yellow-orange arrow is the transfer point shown in figure 8. All this module works with Python code. 

 

For the score, only three values are used: 1, 0 and -1. This is due to the fact that only 

three mutations on the same protein have been studied with this approach by Irún et al 

[Irún]. This is not enough to develop scoring formulas or to find differences between 

stabilizations on both types of mutation, so a score of 1 is a change from an acidic  

exposed hydrogen-bonded residue to a neutral amide and a score of -1 is a mutation in 

the opposite way. A score of 0 means no change in these terms. Because of this, the 

proposal function automatically gives an acid_bonds score of 1 to the proposed 

mutations. 

The evaluation function searches for the mutation in the list of acidic or equivalent 

amide hydrogen-bonded residues. If it is there, it searches for the mutation in the 

exposure list. If there is a exposure value over 85 %, it checks whether the mutation 

corresponds to a value of 1, 0 or -1. For the cases that don’t have some of the values 

described before, its assigned value is 0. 
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Cavities and steric clashes 

The cavities and steric clashes module is the only one of the main six modules that does 

not have a mutation proposal function, due to the difficulties in automating cavity 

analysis programs. Two different scores are returned, one for cavities and another one 

for steric clashes, but the programs are executed sequentially. 

Figure 10. Workflow 

of the cavities and 

steric clashes module. 

The evaluation function workflow is shown. Same 

colour and shape meanings than in figure 4 are used, 

except for dark red squares, which are saving points 

where the information for the original protein is saved 

in order to reduce calculations. Programs mentioned in 

the arrows will be described along the text. 

 

SCWRL 4.0 [38] is a program that allows for the reorganization of the backbone and 

side chains of a molecule in order to minimize the energy of the structure, so that lower 

energy models are created. It also can be used to introduce mutations in a model by 

introducing the mutated sequence. For the original protein, SCWRL is used as default, 

fixing the whole backbone of the protein. For the mutated sequence, flexibility is 

allowed only for the mutated residue. Apart from the model, the output of the program 

gives the minimal energy achieved for the structure. This energy can be retrieved with 

Python and the score for the energy field for a mutation is the difference between the 

energy for the mutated model and the original protein. As the energy for the original 

protein is used for all mutations, it is saved to reduce computation time. 

Betavoid 1.1 [42] can calculate the total volume of cavities in the protein from a PDB 

file. However, the result for the model of the original protein before and after SCWRL 

without introducing mutations can vary greatly. Because of that, BetaVoid is applied on 

the model of the original protein after SCWRL and in the mutated model, obtained by 

SCWRL. As before, the score for the cavities field is the difference of the total cavity 

volume of the mutated model and the original protein (after SCWRL) and data for the 

original protein is saved in order to reduce computation time. 
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Scoring model 

The scoring module is based on the Logistic regression model, trained by machine 

learning methods. This model is based on a linear multiparametric equation that 

calculates a global score from partial scores. In this work, the equation is like this: 

                                                              

                                                           

Where Sc is the partial score for each property field in the PointMutation object, and λ 

and intercept, parameters adjusted using machine learning. Anc is for ancestral, cons, 

for consensus; hel, for helix; dis, for disulphide; acb, for acid bonds; exp, for exposure; 

ene, for energy and cav for cavities. 

After scoring the mutation, the program can work using two approaches: binary 

prediction or probability calculation. For the binary prediction, a threshold for the score 

is set, usually corresponding to 50% probability. Then, the mutations are evaluated. If 

the mutation is over the threshold, it will be considered as stabilizing. If not, it will be 

considered non-stabilizing. 

The probability calculation goes a step further and returns a quantitative measure of the 

probability of the mutation being stabilizing, a relative score (r-score). To calculate the 

r-score, the logistic function, that gives its name to the method, is used. This function 

takes as input any real number (in this work, the score) and returns a value between zero 

and one (the probability in this case). The r-score for a mutation A to be stabilizing is 

defined with the following function: 

    
 

          
 

Where ScoreA is the score for mutation A, as calculated in the equation (5) and being 

           the probability of mutation A being stabilizing. 

As the probability calculation approach offers a more informative result, this is the 

approach implemented in the program, offering as a result the r-score as a percentage 

rounded to an integer. 

The module first uses a dataset to train the model and adjust all λ and the intercept, as 

described below in the prediction training and testing section and builds a logistic 

regression model with this parameters. Then, for each proposed mutation, after it is 

evaluated by all modules, takes its values for all property fields and calculates the 

probability of that mutation being stabilizing. 
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This module also offers the functionality of ordering all mutations from higher to lower 

probability, in order to give an ordered output. 

Training and testing the programme 

Database 

The scoring function is based on machine learning, a group of algorithms that adjust 

their parameters to different functions using already known data in a process known as 

training. To assess the accuracy and good functioning of these methods, several 

approaches can be used, but the most straightforward is checking for the accuracy of 

predictions in a test group. 

For both training and testing, a group of mutations whose effect on stability has been 

previously determined is needed. For this purpose, two groups are extracted from 

ProTherm [57], a collection of numerical data of thermodynamic parameters for wild 

type and mutant proteins. This work was already done by Capriotti et al [11], but the 

database has been expanded since then. A first filtering process is performed to retrieve 

all mutations before distributing them in two groups. Criteria for this process is: 

 The protein must have only one amino acid-change mutation. 

 Data for ΔΔG must be provided, as well as the PDB code for the protein. 

 Temperature for the experiment must be between 15 and 35 ºC (288 and 308 K). 

 pH value for the experiment must be between 6 and 8. 

After that, data is distributed in two groups: Mutations used by Capriotti (both in their 

testing and training groups, with data until April 2007) and not used by Capriotti (New, 

with data until the latest release, February 2013). Statistics from this datasets are shown 

in table 1. As some mutations are measured several times in different conditions, the 

average and standard deviation has been calculated in order to have only one value for 

each unique mutation. 

Database 
Unique 

proteins 
Unique 

mutations 
Mutations Multiplicity 

Capriotti 
no filter 

68 1446 2067 1,429 

Capriotti 57 865 1109 1,282 

New no 
filter 

150 3387 5495 1,622 

New 108 1950 2667 1,368 

 

Table 1. Statistics of the database 

Statistics are shown for both groups 

before (named as “no filter”) and after 

the pH and temperature filtering. 

Unique proteins shows the number of 

different proteins in each group; unique 

mutations, the number of different 

mutations; mutations, the total number 

of mutations in a group and 

multiplicity is the ratio between 

mutations and unique mutations. As it 

can be seen, filtering reduces the 

multiplicity of measurements for a 

single mutation 
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Figure 11. ΔΔG distribution in the database. 

Data for databases after all filters and after discarding 

mutations for proteins unable to work in the program 

(see results section for information on this). In red, 

destabilizing mutations (ΔΔG<-1), in yellow, neutral 

mutations ( -1≤ ΔΔG≤1), in green, stabilizing mutations 

(ΔΔG>1) A) Distribution for the full database before 

creating reversed mutations. B) Distribution with 

reversed mutations. No significant differences were 

found between Capriotti and New databases (data not 

shown) 

For the classification of the mutations, same criteria as Capriotti [11] will be applied. 

ΔΔG in the range of -1 to 1 kcal/mol (both included) are considered to be derived from 

neutral mutations, due to the experimental noise of the measurements. ΔΔG higher than 

1 kcal/mol are from stabilizing mutations and lower than -1 kcal/mol, from 

destabilizing. In the context of this work, only two groups are formed: stabilizing 

mutations and non-stabilizing mutations (comprising neutral and destabilizing). 

Due to the multiplicity of values, some 

mutations can have values both over and 

under the threshold of 1 kcal/mol, so further 

filtering is needed. For mutations with an 

average over 1 kcal/mol, they must fulfil that 

                   , where           is the 

average and         is the standard 

deviation. For mutations under 1 kcal/mol, 

they must fulfil that                    . 

Mutations that don’t fulfil these rules are 

discarded. 

If the distribution of the measured ΔΔG is 

studied for the whole filtered database, it can 

be seen that there is a clear predominance of 

destabilizing mutations, as shown in figure 

11A. This can induce bias in the training and 

testing process, so Capriotti et al developed a 

method to make a symmetrical database, 

based on the assumption that if a mutation 

from a residue A to other residue B has a 

ΔΔGA→B, the mutation from B to A would 

have a ΔΔGB→A equal to -ΔΔGA→B. This makes an almost symmetrical database, as 

shown in figure 11B. Most of the scores of the program are also reversible, in the sense 

that the score for A→B is the opposite of B→A, except for ancestral score, where it 

must be recalculated. 

However, this solution can be creating a new bias too. As the sequence analysis module 

finds the family of homologous proteins from the original sequence, many of the new 

A 

B 
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reversed mutations can have a positive score due to the return to the original sequence 

instead of having a real evolutionary meaning. Because of this, two databases with 

original mutations (single, “s” in short) and both original and reversed mutations 

(duplicated, “d” in short) are saved for each initial group: Capriotti (“C” in short) or 

New (“N” in short). This generates four groups to be used in further steps: sC, sN, dC 

and dN. 

Evaluation statistics and troubleshooting 

Before training, a first statistical analysis of the mutations is performed to find out if 

there is a score for a certain module that is positive for all stabilizing mutations, to stop 

evaluating mutations with a negative partial score for that module. For this purpose, the 

program is run in mutation evaluation mode for all mutations of the full database (i.e., 

of dC and dN) and the results are saved in a text file for further analysis. At this point, 

some unforeseen errors appeared for some proteins. Troubleshooting for this cases was 

performed, preparing the program for a wider range of input files. However, some 

errors could not be avoided, and 12 proteins were discarded from the database. Further 

information about errors and troubleshooting can be found in the results section. 

Data saved in this process contains the pdb code of the protein, the chain with the 

mutation, the original and mutated residue one-letter code, its position in the chain, the 

score for the ancestral, consensus, helix, disulphide, acid_h_bonds, exposure, energy 

and cavities field, and the average and standard deviation of the empirical 

measurements of ΔΔG. From this file, data of mutations considered as stabilizing are 

extracted and saved in an Excel (.xlsx) file for statistical analysis of the relative 

frequency of positive and negative values for each parameter in order to find a filtering 

rule, if possible. 

Prediction training and testing 

Training and testing starts also with the files created in the last section, with the four 

databases described in the database section. Usually, the group with a higher number of 

elements is used as training group, while the other is kept as testing group. However, in 

this work a slightly different approach is going to be used to test if the results from 

training can be extrapolated to other groups of proteins. For this purpose, several 

training and testing processes will be performed and the obtained parameters of the 

model will be compared among them. 
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Four training and testing processes will be run, each one being trained with one of the 

four databases and then tested with their opposite database with the same type of 

mutations (simple-trained models test with simple databases, duplicated-trained models 

test with duplicated databases). Then, the parameters for each model are extracted and 

saved for further use. This process will be performed with the Python package scikit-

learn [58]. 

For assessing the accuracy of each model, a ROC (Receiver Operating Characteristic) 

curve is calculated for each trained model with their corresponding test group. This 

curve shows the ability of the binary classification model to predict at different 

thresholds. This curve plots the true positive rate against the false positive rate. At each 

false positive rate value, a different threshold is calculated, and with this threshold, the 

true positive rate is calculated. This function is also present at the scikit-learn package, 

and it can be plotted with ggplot [59]. A diagonal line with the same value for true and 

false positive rate is included in all plots, as this would be the behaviour of a random 

predictor. A better-than-random predictor would be the whole plot over this line. 

Visual inspection of the curve is the most informative method for comparison between 

curves. However, sometimes it can be difficult to determine which one is better. 

Because of this, a numerical measure of how good the prediction is can be derived from 

the ROC curve. This measure is the area under the curve (AUC) and has a value of 0.5 

for random predictors and of 1 for a perfect predictor. This is not a perfect indicator, as 

is assessing the whole false positive space, even in regions that are not going to be used 

in normal studies [60], but it can be used as a comparison between models. 

To ensure that the differences between groups are due to the training group and not to 

the testing group, another training and testing process is performed. From the best 

training/testing pair (dN/dC in this work), the training and testing groups are taken and 

used with other testing and training groups, respectively. In this case, dN/sC and sN/dC 

models are evaluated. 

Proposal testing 

Once the best model is selected, it can be used for the scoring of mutations and the 

calculation of the probability of each mutation to be stabilizing. Nevertheless, the 

accuracy of the whole program can vary from the prediction accuracy, as the program is 

already using a subset of the whole mutational space, the proposed mutations. 
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To correctly estimate the accuracy of the whole program, the program is run with the 10 

proteins with most mutations in the database. Mutations are proposed, evaluated, scored 

and ordered from higher to lower score. Then, the database with only original mutations 

is searched for the proposed mutations to get their measured ΔΔG empirical value, if 

available. As the percentage of stabilizing mutations in the database is low, the ratio of 

percentages of mutations with positive ΔΔG in the proposed mutation list (or in subsets 

of this list) and in the original database will be also calculated. 

Some other statistics will be collected also from this process, as the number of 

mutations proposed for each structure and by each module, the number of proposed 

mutations over certain probability thresholds (10, 25 and 50 %) and the maximum 

probability value achieved for a proposed mutation in each structure. Also, the time the 

program takes to analyze a structure and all proposed mutations (execution time) is 

shown. This time was measured using the Python dateutil 2.6.0 module in an Asus 

F540LA-XX030T laptop with an Intel® Core™ i3-4005U processor (2 Cores, 3M 

Cache, 1.7GHz) using Fedora 26 as operative system. 
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Figure 12. Comparison of alpha-helix scoring datasets. 

ΔΔG is the change in ΔG from a protein or peptide with a 

given residue to its homolog with alanine. This value is 

represented on both axes, but each one is from a different 

dataset. Each spot is the value of ΔΔG for a given type of 

residue in both datasets. By definition, ΔΔG of alanine is 

(0,0). In this example, the values for the internal residues of 

the helix by Fernández-Recio et al. [29] are on x-axis, and 

the values for internal residues by Muñoz et al [27] are on 

y-axis. Linear regression, its equation and R2 are shown on 

the plot. 

Results 

Alpha-helix scoring comparison 
Three different sets of data for each type 

of position have been considered, 

published by different researchers. 

Pairwise comparison has been performed. 

First, a linear correlation has been found 

for all pairs, as shown in figure 12 for one 

example. The rest of graph are not shown. 

For further study of the correlation, 

Pearson and Spearman correlation 

coefficients have been calculated. While 

Pearson coefficient measures correlation 

between numerical values, Spearman 

coefficient measures correlation between 

ranks of the ordered values, in case a set of data was badly scored but well ordered. This 

results are shown in table 2. 

According to this data, the most appropriate scoring model for N-cap and C-cap is the 

dataset from Muñoz et al [27] and Fernández-Recio [29] for internal positions, as they 

show a higher correlation with the other two datasets that both between them and has 

scores for all residues in all positions. Further discussion on the election of datasets can 

be found in the discussion section below. 

    

 

Running the program. Troubleshooting. 
In the first run of the program for evaluation of the mutations in the database, only 58 

out of 108 PDB files were analyzed correctly without stopping or showing any error 

message. All causes of error are gathered in table 3 and further description of them can 

Pair Pearson Spearman

Fernández/Muñoz 0,8955 0,8792

Fernádez/Pace 0,9588 0,9183

Pace/Muñoz 0,9004 0,8274

Pair Pearson Spearman

Serrano/Muñoz 0,8443 0,8354

Serrano/Doig 0,6456 0,7201

Doig/Muñoz 0,8806 0,8669

Pair Pearson Spearman

Serrano/Muñoz 0,7068 0,8975

Serrano/Doig 0,1845 0,3000

Doig/Muñoz 0,2955 0,1122

A B 

C Table 2. Correlation between dataset pairs. 

A) Internal residues of the helix. B) N-cap. C) C-cap. Both Pearson and 

Spearman correlation coefficients are shown. Each dataset is named after 

its first author’s surname. Data taken from Fernández-Recio et al. [29], 

Muñoz et al. [27], Pace et al. [28] Serrano et al. [31] and Doig et al.[30] 
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be found below. These are the main causes of trouble, from the most frequent to the 

least: 

BetaVoid segmentation fault. This error is caused by BetaVoid, in the cavities and 

steric clashes module. No explanation of this error can be found in the manual or 

webpage, but it seems to be related with the input file name. The input files were 

previously named as “pdbXXXXSCWRL.ent”, where XXXX is the PDB, and this error 

only happened for PDB codes starting with a number other than 1. Also, when re-

running the program, this error appeared for some files with an already existing output 

file. Because of this, two changes have been introduced for the final program: files are 

now saved with the name “pdbSCWRL.ent” in a folder named as the PDB code and this 

folder is automatically deleted after executing the program. 

Incomplete backbone structure. This error is returned by SCWRL, in the cavities and 

steric clashes module, when some atom of the backbone of the protein is not defined. 

The only solution for this problem is introducing a complete structure, as it has been 

performed for the protein with PDB code 1BNI, using another structure of the same 

protein (PDB code 1A2P) 

Repeated name. Error returned by MUSCLE, when saving the alignment in Phylip 

format. It happens when CD-HIT returns two different sequences for the same homolog 

sequence. A solution to this has not been found yet. 

Mutation index out of range. Error returned by the consensus mutation evaluation 

function. This error is returned for PDB where the starting annotated sequence amino 

acid is not numbered as 1. This causes that, in a structure like 1FNF, in which the first 

annotated amino acid is 1142, the first version of the program tried to reach position 

1142 in the sequence, that does not exist, returning this error. This is solved by adding a 

new property to the PointMutation class, the start number, and calculating the position 

of the mutation in the annotated sequence using this piece of code: 

self.seq_pos = self.position - int(start_number) + 1 

Ambiguous amino acid in family. Error returned by CD-HIT, in the sequence analysis 

module, when one of the sequences retrieved by BLAST contains an ambiguous amino 

acid such as “B” or “Z”. To solve this, a step of filtering after the retrieval is performed 

using the following piece of code, where hsp.sbjct is the sequence: 

if "Z" not in hsp.sbjct and "B" not in hsp.sbjct: 

    sequences.append(hsp.sbjct) 
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Type of error Number of files PDB codes 

BetaVoid segmentation fault 19 

1CYC, 2ADA, 2AFG, 2AKY, 2CI2, 2HMB, 
2HPR, 2IFB, 2LZM, 2TRX, 2TS1, 2WSY, 
2ZTA, 3BLS, 3D2A, 3MBP, 3PGK, 4BLM, 
5AZU 

Incomplete backbone structure 7 
1BNI, 1FC1, 1H7M, 1LRP, 1QGV, 1ZNJ, 
2BRD  

Repeated name 6 1A43, 1AXB, 1LVE, 2CRK, 2IMM, 3HHR  

Mutation index out of range 6 1AG2, 1AMQ, 1FNF, 1KDX, 1MBG, 2Q98  

Ambiguous amino acid in 
family 

4 1BVC, 1I5T, 1RTB, 1SHG  

Multiple model 4 1AJ3, 1CEY, 1LS4, 1UWO  

PhyML error. 2 1IR3, 1ONC  

Too big for DbD 1 1AON  

PAML 1 1ACB  

Table 3. Causes of error in the first run of the program. 

All causes of error are listed in the table. The causes in the first column are further described in the text, as well as 

ways to solve them. The number of files from which each error has been returned and their PDB codes are also 

shown in the table. PDB codes in bold are those whose problem has been correctly solved by applying the solutions 

described in the text. 

Multiple model. This warning is shown by Disulphide by Design. It appears for 

structures obtained using NMR or other techniques in which multiple models are 

obtained. However, this warning does not stop the program from functioning correctly, 

only using the first model, so no further action is required. 

PhyML error. This error is returned by PhyML when less than three sequences are 

introduced as input. This error is common after a CD-HIT clustering process, so it was 

solved before the first testing, by making a conditional path. If CD-HIT forms less than 

3 clusters, CD-HIT will not be used. This solved the problem for most proteins except 

for the two shown in table 3. In these cases, they retrieved the maximum number of 

sequences, but they were all in the same cluster. To solve the problem, the maximum 

number was raised up to 40000 sequences for these special cases, but it only worked for 

one of them. 

Too big for DbD. This error is returned by the program Disulphide by Design when 

using 1AON PDB file as input. This file contains a chaperonin complex with 14 chains 

of 547 residues and 7 chains of 97 residues. This is a very big structure and it cannot be 

processed by the Windows-based computer program, but it can be processed with the 

web server Disulphide by Design 2.0. However, the output format is different and a 

special option for processing this data has been develop in the program. 
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PAML. This is a specific unknown error returned for chain B of structure 1ACB. As no 

mutations in the database were found in chain B, the evaluation program skipped this 

chain to avoid stopping the workflow. 

After solving all this issues, 96 proteins (88.9%) were analyzed. This 96 proteins 

covered in total 93.4 % of the mutations in the database for further training and testing. 

Mutation database evaluation statistics 
From the 3640 mutations evaluated, only 1030 fulfil the conditions to be considered 

stabilizing. The evaluation scores for each field of these stabilizing mutations are 

classified according to their values in positive, negative or zero. Statistics are shown in 

table 4. 

 

 

Prediction accuracy 
Six different ROC curves have been calculated. The first four curves (figures 13A-D) 

are calculated to propose the best training method and the other two (figures 13E-F), to 

check to which amount the observed effect is due to the training group and not to the 

testing group. The adjusted parameters for each of the training groups, corresponding to 

figures 13A-D, are collected in table 5. 

Score % positive % zero % negative

Ancestral 77,38% 22,62% 0,00%

Consensus 86,89% 1,94% 11,17%

Helix 16,12% 66,99% 16,89%

Disulphide 0,00% 100,00% 0,00%

Acid_bonds 0,10% 99,90% 0,00%

Exposure 5,73% 91,46% 2,82%

Energy 50,78% 24,76% 24,47%

Cavities 10,97% 65,63% 23,40%

Table 4. Statistics for measured stabilizing mutations. 

All 1030 evaluated mutations with average measured 

ΔΔG higher than 1 and standard deviation lower than 

ΔΔG have been analysed for this table. As all scores 

(except ancestral) can be positive or negative, 

classification has been done according to this, making 

three classes: positive, negative and zero. All results are 

shown as percentage of the total stabilizing mutations. 
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Figure 13. ROC curves for different training/testing combinations. 

ROC curves are written as training/testing groups, being “s” for single datasets and “d” for duplicated, “C” for the 

groups taken from Capriotti et al [Capriotti] and “N” for the new ones. Groups used are the following: A) sCsN, B) 

sNsC, C) dCdN, D) dNdC, E) dNdC and F) sNdC. In this graph, the false positive rate (fpr, x-axis) and the true 

positive rate (tpr, y-axis) are plotted. The diagonal dashed line is the ROC curve for a random prediction. The 

continuous black line is the ROC curve for the model. The Area Under the Curve (AUC) is shown in the title of each 

curve. 

 

Training group sC dC sN dN

Ancestral 0,46013 0,26838 0,06220 0,21999

Consensus 0,57365 1,71494 1,22157 1,29430

Helix 0,11718 -0,44716 0,47529 -0,06069

Disulphide 0,00000 0,00000 0,00000 0,00000

Acid_bonds 0,00000 0,00000 0,26497 0,16040

Exposure 0,95738 0,96742 0,50931 0,56254

Energy -0,00161 -0,00328 0,00419 -0,00283

Cavities -0,62560 -0,51837 -0,01029 -0,03692

Intercept -2,44787 -1,41340 -1,44959 -1,37161

Table 5. Parameters for the trained model. 

Parameters shown in this table are the adjusted λ 

for each partial score and the intercept described 

in equation (5) after using each of the groups of 

the database as testing group. As the scores of 

the modules, they are defined in arbitrary units. 

The result from substituting partial scores in this 

model can then be used in a logistic curve to 

calculate the probability of a mutation being 

stabilizing. 

A 

C 

E 

D 

F 

B 



Page | 43  

Proposal statistics 
The ten structures with more mutations in the database have been analyzed without any 

execution error. Statistics obtained from the results and time spent running the program 

are summarized in table 6, only for single mutations. 24 double mutations were 

proposed, with only 3 with a probability higher than 10%, being the maximum 12,5%. 

None of this double mutations appeared in the database nor in Protherm. 

To assess the effects of mutation proposal, proposed mutations are searched in the 

database and classified as positive or negative ΔΔG. As few mutations are in the 

database, results can be inaccurate and all mutations have to be analyzed together 

instead of making a breakdown for each protein structure. The percentage of mutations 

that are positive is calculated for both the original database and the proposed mutations 

in it, in order to compare. As a measure of improvement, the ratio between percentages 

in proposed mutations and the original database is calculated. This results are shown in 

table 7. 

 
Table 6. Summary of the statistics obtained for the chosen structures in single mutations. 

The table includes for each structure the time that the program was running for that structure (in minutes), the number 

of mutations proposed, the maximum probability for a mutation, as calculated by the scoring trained model, and a 

breakdown of the mutations according to their probability and to the module they have been proposed by. The total 

column contains the addition of all the structure, except for the maximum probability, which is the maximum of the 

values. The addition of the “proposed by:” values for all modules may be higher than the total number of mutations, 

as a mutation can be proposed by several modules. 

 

  

PDB 1STN 1A2P 1RX4 1VQB 2CI2 1ARR 1WQ5 1QLP 1RN1 1FKJ TOTAL

Execution time (s) 8,076 5,616 15,492 2,385 7,430 1,608 99,999 47,368 4,313 18,290 209,577

Number of mutations 39 36 54 5 19 11 119 145 24 24 476

Max r-score 29,80% 71,64% 51,36% 13,01% 49,68% 33,17% 19,05% 34,27% 29,66% 40,43% 71,64%

Mutations over 50% 0 2 1 0 0 0 0 0 0 0 3

Mutations over 25% 1 2 1 0 3 1 0 6 1 7 22

Mutations over 10% 5 24 5 2 9 1 10 104 20 20 200

Proposed by:

Ancestral 26 24 36 0 14 0 67 91 15 11 284

Consensus 0 2 0 0 3 1 0 2 1 1 10

Helix 10 7 15 0 3 10 43 34 6 2 130

Disulphide 0 0 0 0 0 0 0 0 0 0 0

Acid bonds 0 2 0 0 0 0 1 0 0 2 5

Exposure 2 1 2 5 2 0 2 10 2 1 27

Positives % positives Ratio vs database

Database 323 18,07% 1,000

Proposed 16 32,65% 1,807

Proposed over 10% 10 58,82% 3,254

Proposed over 25% 2 100,00% 5,533

Table 7. Asessment of results of the program. 

For each group, the number of positive measured 

values, the percentage of positives from the total 

measured values in the group and the ratio 

between that percentage and the percentage of 

the full original database is shown. 
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Program input and output 
The program is started from the Fedora terminal. The only necessary input is the PDB 

code. An example of how to run the program and the necessary input is shown in figure 

14. 

 

Currently, the output the program returns is a text file with all mutations, their 

probability of being stabilizing, the function each mutation has been proposed by and 

the partial scores for all fields. Also, a simplified html file is generated for easy 

interpretation of the results, as shown in figure 15. 

The text file contains 11 different columns, separated by spaces. The first column 

describe the mutation as in the following example: “I109M_chain_A_PDB_1A2P”. In 

this case, I (isoleucine), the residue in position 109 of the chain A of structure 1A2P, 

has been mutated to M (methionine). The 2
nd

 column is the probability of the mutation 

to be stabilizing, the 3
rd

 is a list of numbers meaning which of the modules has proposed 

the mutation and the rest of columns are the scores for the evaluating functions of the 

module, shown in this order: ancestral, consensus, alpha-helix, disulphide, acid 

hydrogen bonds, exposure, energy and cavities. This order is also used for the numbers 

in the 3
rd

 column, being 0 for the ancestral module and 5 for the exposure module (as 

energy and cavities module cannot propose mutations, they are not assigned any 

number). 

The html file reduces the information from numerical values of the scores to qualitative 

information, being positive, negative or neutral. It also shows all the mutation 

description in only one column with spaces instead of underscores and uses a colour 

Figure 14. Starting the program. 

First, navigation to the folder with the 

program is performed (first line). 

Then, the program is started using 

Python 3.6 (second line). Then the 

programs shows a message (“PDB 

code:”) and the user inputs the code 

of the protein to analyze. During the 

execution of the program, several 

messages appear on the terminal 

indicating the progress of the 

analysis. 
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code for a faster visual interpretation of the results, apart from a legend for the colour 

code and the module abbreviated names. 

 
 

Figure 15. Full simplified results page in html format. 

This is the result page displayed and saved by the program at the end of the analysis of a structure. It includes the 

proposal of single mutations and double mutations with the qualitative result for each module. The legends at the end 

of the page make this report self-explanatory. 
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Discussion 

Alpha-helix scoring comparison 
Comparison between the three datasets show a good correlation on the internal residues 

of the helix (table 2a). Fernández [29] and Pace [28] are the most similar datasets. 

However, Muñoz [27] is not significantly different. However, significant differences are 

found for N- and C-cap datasets (tables 2b and 2c, respectively). For N-cap, Serrano 

[31] and Doig [30] datasets show a good correlation with Muñoz dataset, but the 

correlation between them is not so good. For C-cap, all correlations with Doig dataset 

are poor, specially for the Serrano dataset. 

This is probably a consequence of the different methods used for each dataset. Pace and 

Doig datasets are measured in model peptides, Fernández and Serrano are measured in 

model proteins and Muñoz use a model to refine empirical values measured before. As 

peptides are not complete proteins, some effects of the rest of the protein may be lost, 

which are especially important in the caps, as they are the ends of the helix and establish 

less interactions with the helix than the internal residues. Apparently, these effects are 

more important in the C-cap than in the N-cap, as the change in correlation is bigger. 

Some recent studies suggest that the effects on the C-cap can be mainly due to the 

change of mechanical tension of the protein structure with some residues as C-caps 

[32], a fact that may explain this results. 

Also, as Muñoz dataset is obtained from a refined model, data for all types of residue in 

all positions is obtained, while some residues are not present in the other datasets. 

Because of this and for the simplicity of using only one dataset instead of a combination 

of different datasets, Muñoz dataset is preferred over the rest. 

Program input and output 

Starting the program is simple for a basic user of Fedora or Linux-based operative 

systems if all dependencies of the program are already installed, such as Python 

extensions or other programs (SCWRL, BetaVoid, etc.). The input method for using 

structures from the worldwide PDB database is user-friendly, as it allows for capital and 

lowercase letters in the PDB code. However, there is not an easy way for the user to 

analyze its own files yet, but it will be implemented soon. Also, an error introducing the 

PDB code results in the exit from the program with a generic error message. Some code 

in Python should also be implemented in order to check for misspelled PDB codes and 

allow the user for another chance to write it correctly. 
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The output html file offers a summary that easily allows to distinguish between positive, 

negative and neutral scores at first sight, even for colour-blind people, as different 

symbols are used apart from the colours. However, this value for the cavities module 

can be misleading, as a negative value (decrease of the volume of the cavities) is 

stabilizing. In future versions of the program, the definition of this score will be 

reversed for a more intuitive interpretation of the results. 

The output text file (.txt) offers a more detailed summary, with quantitative values for 

the score in each module. However, some format compatibility problems have to be 

taken into account. The main problem is with line breaks. Windows Notepad does not 

detect line breaks correctly and shows the full document as one continuous line. 

Exporting the content of the document to a spreadsheet, like in Excel, solves this 

problem and allows for further analysis of the data. 

Currently, all proposed mutations are being returned, but it could be useful for the user 

to have the possibility of using a filter so that only mutations with a probability over a 

concrete threshold are returned, or only up to a concrete number of results. This 

functionality is also being developed for future versions of the program. 

Running the program. Troubleshooting. 

In the first run, only 54% of the structures could be analyzed. This is a very low value, 

as current programs with the same aim can analyze all complete structures [10, 11] and 

some can even generate a less reliable prediction based only on the sequence, without 

the need of a structure [11]. This fact highlights the importance of making a robust 

program that can analyze almost all structures. 

After the improvements, almost 89% of proteins could be analyzed. The causes of the 

failures in analysis were several (table 3). Half of the proteins that couldn’t be analyzed 

had an incomplete backbone structure. This is not an easy problem to solve, as it can be 

incomplete in different ways and it should be completed differently depending on which 

part of the backbone it is lacking, but a fast way to detect this incompletion should be 

developed to return the error message in the first seconds of execution of the program 

and not after half of the analysis is already performed. 

The second cause of error in importance is repeated name. In most of cases, it comes 

from the output of CD-HIT, that makes two different sequences for a single input 

sequence. Further study of this problem should be made to find why this happens and 
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change the parameters of the program in order to avoid it. Other way of solving this 

could be a post CD-HIT analysis to check for sequences with the same name and, if 

found, select the sequence that is most similar to the rest of representative sequences, 

given the fact that usually one of the returned sequences is totally different from the 

rest. 

PhyML error and BetaVoid segmentation fault only cause one error each, but they 

should also be handled. PhyML error happens only with proteins with a very big 

homologous family or a very small one, which in both cases creates an output for CD-

HIT of one sequence, causing the error. For the cases of small family, this step of the 

analysis should be skipped. For the cases of a big family, either the number of retrieved 

sequences or the percentage of similarity in CD-HIT should be increased to generate 

more groups (even though these groups will be more similar between them than for 

other sequences in the latter case). 

BetaVoid is a program that assesses the volume of all internal cavities of a protein, but a 

lot of errors are returned from it and it does not allow for the detection of the atoms in 

the limit of a cavity, so the prediction of cavity-filling mutation is not possible as 

originally thought. These two facts together suggest that BetaVoid is not the best option 

for this program and further software should be tested and integrated in the workflow 

for a better robustness and functionality. 

Other conflictive point is Disulphide by Design, even though it is not the cause of any 

failure. The Windows-based program cannot analyze very big structures (such as 

1AON) and requires pre-processing of the structure in a different operative system than 

the rest of the program, which is inconvenient for applications like a web server. On the 

other hand, the web-server Disulphide by Design 2.0 (DbD2) offers compatibility with 

all operative systems but makes the program dependent on this server. If this server is 

down, the program will not work. This server has been online for four years [DbD2] 

without major instabilities, so this should not be a problem in the near future. Because 

of this, a piece of code should be made to enable the program to communicate with the 

DbD2 server. 

The modular structure of the program also offers another possibility to increase the 

robustness, with some costs in the reliability of the results. As all modules can work in a 

parallel way, with only minor dependences between them, if a module fails due to some 

of the already mentioned errors or new ones, the rest of modules can still work without 
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any problem. For this purpose, a piece of code should be developed to make the 

program continue with the other modules in case of an error and mark the module with 

the error as not analyzed in the final output, to indicate the possible partial loss of 

reliability of the results when not using that module. The development of the code and 

the assessment of the effects of not using each module remain as an open field for future 

work. 

With all this modifications, especially with the last of them, the program would be able 

to analyze all structures and return a result. However, for the current work, a complete 

database of the evaluation results was needed for testing and training, so the last 

approach was useless, as it would leave some fields without evaluation. 

Mutation database evaluation statistics 

This statistics for the stabilizing subset of mutations in the database (table 4) serve as a 

first approach to detect which modules are more important for evaluating mutations. All 

disulphide scores are 0, which means that, in this database, no mutations involving 

disulphide bonds are present. This will make the logistic regression model ignore the 

disulphide scores, so more data with this type of mutations should be included in the 

database for a more complete model. Only one mutation involves acidic exposed 

hydrogen-bonded residues (0.1% of the 1030 evaluated stabilizing mutations), so the 

value for this score in the model can be inaccurate. 

For the rest of the scores, all of them are enriched in the positive values, except for 

cavities and helix values. Scores are defined in a way that a positive value is expected in 

stabilizing mutations, so this general trend is what is expected. The definition of the 

cavities score is the only one that does not follow this rule. As this score is the 

difference between the volume of the cavities in the mutated and wild type structures 

and a smaller volume of cavities is usually correlated to stabilization, if the volume of 

cavities in the mutated protein is smaller (stabilizing mutation), the score for cavities 

will be negative. Thus, the enrichment in negative cavities score also happens as 

expected. 

The only unexpected result is found for the helix module, where more positive value 

were expected, but it is slightly enriched in negative values. This could be due to many 

reasons. First of all is that residues in a helix can establish many different interactions 

with their side chains, so the effect of the mutation may depend more on the other 
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interactions than in the effect of the mutation on the stability of the helix. Also, it can be 

that some of the scores are not accurate. As three different positions (internal, N-cap 

and C-cap) exist, a breakdown of this values according to the position could be useful to 

detect in future work if some of these positions is less reliable on the results for the 

score value. If this was proven true, then three scores (one for each position) should be 

used instead of one for all residues in a helix, regardless their position. 

The high percentage of positive values for the ancestral and consensus modules could 

be due to the use of reversed mutations. As this mutations use the wild type residue as 

the mutated residue, the probability of this residue being present in the consensus or the 

ancestral sequence is higher than for other residues. Because of that, special attention to 

these scores will be paid on further discussion. 

Prediction accuracy 
For single databases (figure 13a and b), the prediction accuracy is better than random 

predictions, but it is not especially good, with AUC values around 0.55 and 0.6. In the 

sNsC ROC curve, it is even worse than random for certain false positive rate values. In 

this graph, discretization of the true positive rate values can be observed, as some 

defined straight steps in the graph instead of a curve like in dNdC graph. This is 

probably due to the low number of stabilizing mutations in the testing group (sC), so 

testing with another group has been performed. 

For duplicated databases (figure 13c and d), the results are significantly better, with an 

AUC value around 0.8 and 0.85, which is considered to be a very good value for ROC 

curves in binary prediction. Previous methods, such as the developed by Capriotti [11], 

reached a maximum AUC value of 0.76 for structure-based prediction methods and 0.73 

for sequence-based methods. Other methods with quantitative predictions, such as 

CUPSAT [10] cannot be directly compared to binary prediction methods. 

dNsC and sNdC graphs (figure 13e and f) are useful to check if the discretization effect 

in sNsC graph is caused as an effect of the low number of stabilizing mutations in the 

test group and how big that effect is. The effect is really significant, as the dN trained 

model AUC decreases to 0.58 with the sC test group and the sN trained model reaches 

an AUC of 0.83 with the dC test group, an AUC almost as big as for the dN trained 

model. This means that both models are almost equally good. However, the parameters 

can be different, especially in the consensus and ancestral functions, as mentioned 
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before. Discussion for training groups from now on will be focused on the New 

databases (N), as both their single and duplicated database generate better models after 

training than the Capriotti databases (C). 

When comparing the parameters calculated for each model (table 5), no special biases 

can be observed in the dN trained model for the ancestral and consensus values. The 

ancestral lambda value for dN trained mode is close to the average of the sC and sN 

trained models lambda values, as if it was an intermediate value between both 

databases, thus not being as biased as the single databases’ values. For the consensus 

values, the difference between the dN and sN values is insignificant and close to the 

average of sC and dC trained models. 

When comparing the rest of values between sN and dN trained models, big changes can 

only be found in helix and energy values. The helix change can be due to the reasons 

discussed in the mutation database evaluation statistics section: other interactions more 

important than the stabilization of the helix or inaccurate scores for the mutations in 

different positions. This should also be studied by making a breakdown of the three 

types of position in a helix. The change in energy is small, but can be significant as 

lambda values are both small too. No clear explanation has been found to this fact, and 

it is not on the way suggested by the analysis of the statistics for stabilizing mutations in 

the database (table 4). 

Having a look at the sign of the lambda values of the sN and dN trained models, all are 

positive except for cavities in both models and energy and helix in dN trained model. A 

value of 0 is obtained for disulphide, as no mutations of this type were in the database. 

As explained before for the scores, in all of them except for cavities, a positive value is 

expected to be stabilizing, so their lambda values should be positive too. In the case of 

cavities, as a negative value is expected to be stabilizing, its lambda value is expected to 

be negative, to account for this change of sign. Thus, all results are according to the 

expected hypothesis, except for the helix and energy values for dN, probably because of 

the aforementioned causes. 

As a whole, both sN and dN trained models seem to be good and no bias for the 

ancestral and consensus values has been found. However, differences in the helix and 

energy values should be further researched to find their real cause and determine if a 

bias is generated in the duplication of the database with the reversed mutations. If it is, 

as the sC is a bad group for testing, the “leave-one-out” approach for testing can be 
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used, that consists on training the model with all the training group (sN) except for one 

element of the group (one mutation) and predicting the r-score of that element. This is 

repeated for all mutations, so that all r-scores needed for the ROC curve are obtained 

this way. 

Comparing both databases (N and C), some significant changes are found. This means 

that not all evaluated elements are equally important in both databases, so it could be 

different in a third group of proteins, so probably a bigger group is required for reaching 

a better model. 

Proposal statistics 

In the first runs of the full program (table 6), it has proved a fast execution with the 

processing power of a standard laptop, with an average time of 20 minutes. However, 

the average is not the best measure of the time that the program takes for a full run, as 

the execution time depends on the length of the protein sequence, the size of its family 

and the number of proposed mutations, so a big variation between proteins can be 

found. In this set of 10 proteins, the fastest structure to be analyzed was 1ARR, with  

less than one minute and a half, and the slowest, 1WQ5, with over an hour and a half. 

This shows the wide range of execution times that can be found. Most of this effect is 

due to the phylogenetic programs, SCWRL and BetaVoid. As they are external 

programs, no changes can be made in them to make them faster, so this problem is only 

solvable with the use of faster programs. However, the execution time is not bad. 

Using the modular structure of the program, parallel processing can be used to make the 

program faster in more complex computational environments. For example, in a 

computer with three different processing cores, one of the cores can be dedicated to the 

sequence analysis module, with the phylogenetic programs, other can be used for the 

calculation of cavities and steric clashes with SCWRL and BetaVoid and the third one 

can use the rest of modules. This way, the three operations are being performed in 

parallel instead of in a sequential manner, avoiding queuing on faster modules. 

However, the execution time would be limited by the slowest of the three cores. 

Regarding which modules have proposed mutations, the ancestral function is clearly the 

most prolific one, followed by the helix module. The difference in the number of 

proposed mutations by the ancestral and by the consensus functions is very significant, 

even though both functions are based on sequence comparison. However, as the 
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ancestral approach goes back to the past of the proteins and uses more sequences, it is a 

more extreme approach, proposing more mutations than the consensus approach, but 

being worse at a predictive level, as it can be deduced from the data in table 5, where 

the lambda values for consensus are usually one order of magnitude over the ancestral 

lambda values, being scores for both modules in the same order of magnitude. 

The disulphide module has proposed no single mutations, but it has proposed 24 double 

mutations. This lack of single mutations involving disulphides can be the cause of the 

lack of this kind of mutations in the original database. There is also a low number of 

mutations proposed by the analysis of exposed acidic hydrogen-bonded residue, which 

also correspond to 1 mutation in the original database. Searching in current literature for 

articles using these approaches can be an effective way to enlarge the mutation 

database, as ProTherm hasn’t been updated since February 2013 and research in these 

fields is currently being conducted. This will allow for the calculation of more accurate 

lambda values for these fields. 

Another important fact is that no structures have been left without any proposed 

mutation. However, 1VQB has only 5 proposed mutations. To increase the number of 

proposed mutations, efforts should be made in functions such as consensus, acid bonds 

or exposure to make the parameters less restrictive, in order to propose more mutations. 

Also, new modules can be implemented if they are developed in the future, like the 

analysis of the distribution of charges in a protein or the introduction of cavity-filling 

mutations, which would also increase the number of proposed mutations. 

To serve as a comparison value, the average r-score for the original database, with both 

stabilizing and non-stabilizing mutations (but predominantly non-stabilizing) is around 

7 %, reaching a maximum of 57%. For the proposed mutations, three are over 50% r-

score values and almost half (42%) of the proposed mutations are over 10%, still over 

the average of the full original database. These values can be further increased 

introducing more empirically deduced rules for protein stability (see outlook section 

below) 

From the 476 proposed mutations, only 49 were present in the database. None of the 49 

proposed mutations in the database was over a 50 % r-score value, which would be 

really significant. This fact makes the analysis of the quality of the results of the 

program more difficult and less reliable.. Because of this, the percentage of mutations 
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with positive ΔΔG is used to measure the quality of the results instead of the percentage 

of stabilizing mutations. 

Comparing the subset of proposed mutations with the full original database, a clear 

improvement is found, the percentage of mutations with positive ΔΔG is almost twice 

(1.8 times) the percentage in the full database. If the r-score is over 10%, this 

percentage is over 50%, being more than three times the database value. Only two 

proposed mutations with the probability over 25% are present in the database. Both of 

them have a positive ΔΔG, one of them being stabilizing (higher than 1 kcal/mol) and 

the other one with a value of 1 kcal/mol, in the limit between neutral and stabilizing, but 

neutral by definition. However, due to the low number of samples, this results are not 

significant, but suggest an improvement in the proposal process versus random selection 

from the database. 

Outlook 

As a whole, this program is a new method to propose and evaluate mutations for the 

majority of protein structures using rational and empirical rules instead of only statistics 

or simulations with a better performance than other programs. However, optimization of 

the workflow and the parameters of each module is still necessary, as discussed before. 

Also, the creation of a larger database of mutations, especially with disulphide bonds, 

could be beneficial for the evaluating model. 

Some new modules can be developed in the near future after this work, such a module 

for cavity-filling mutations or a module to study the distribution of charges in a protein 

in order to optimize it, as described by Estrada et al [61]. Also, some new approaches 

using benchmark mutation databases and Environment Specific Substitution Tables 

(ESSTs) [62], developed at the same time than this Master thesis, can be taken into 

account both for the use of ESSTs in a new module and for the databases, in order to 

enlarge the training mutation dataset. 

Another point to address in future work is the existence of proteins with an unfolding 

equilibrium intermediate, known as three-state proteins. In this type of proteins, only a 

part of the protein unfolds at first to become the intermediate form, and then the 

intermediate fully unfolds. Because of this two step denaturing process, it is important 

to focus on the part of the protein that unfolds first to avoid the loss of biological 
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activity [63, 64]. This can be done using prediction programs such as ProteinLIPS [65] 

together with the probability obtained in this program to focus mainly on these areas. 

In few words, the developed prototype of the program allows for the proposal of 

mutations with a high probability (59% in the studied set of proteins) of having a 

positive ΔΔG if using a 10% r-score threshold. Further work on the fields discussed 

before can increase this value to reach the 80 % accuracy described for some current 

evaluation methods [10, 11] that are, therefore, more accurate but can only offer 

predictions for a few user-determined mutations and, unlike this program, do not 

attempt to propose mutations on their own. 

Conclusions 
 Combination of rational simple rules based on structural and sequential 

properties of a protein allow for the successful proposal and prediction of 

stabilizing mutations. 

 Combination of rational rules in a fast, user-friendly program allows to propose 

probable stabilizing mutations with a better performance than the already 

existing methods. 

 It is possible to use the same rational-rule based approach for the evaluation of 

given mutations with better accuracy than the already existing methods. 

 The mutation dataset for training can generate biases in the evaluating model. A 

bigger mutation dataset is required to ensure this model apply to most proteins. 

 The results from this program can be conveyed to scientists outside of the 

computational structural biology field using a simple report template. 

 Further work is required for the optimization of the program, the implementation 

of new functionalities and new mutation-proposing modules. 

Conclusiones 
 La combinación de reglas racionales simples basadas en las propiedades 

estructurales y de la secuencia de una proteína permiten la correcta propuesta y 

predicción de mutaciones estabilizantes. 

 La combinación de reglas racionales en un programa rápido y fácil de usar 

permite proponer mutaciones probablemente estabilizantes con un mayor 

rendimiento que los métodos ya existentes. 
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 Es posible utilizar el mismo enfoque basado en reglas racionales para evaluar 

mutaciones concretas con mayor precisión que los métodos actuales. 

 El conjunto de mutaciones para el entrenamiento puede generar sesgos en el 

modelo de evaluación. Un conjunto mayor es necesario para asegurar que el 

modelo sea aplicable a la mayoría de proteínas. 

 Los resultados de este programa se pueden transmitir a científicos fuera del 

campo de la biología computacional estructural usando una plantilla simple de 

informe. 

 Más trabajo es necesario para la optimización del programa, la implementación 

de nuevas funcionalidades y nuevos módulos de propuesta de mutaciones. 
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