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1 Introduction
Light-matter interaction has been studied over the past centuries and our knowledge has grown

from the simple observation of the macroscopical ways in which light interacts with matter (absorp-
tion, transmission, and reflection)[1] to the understanding of the light wave-particle duality and its
quantum mechanics description [2]. The quantized electromagnetic field can be regarded as a sum
of excitations, called photons, which have a bosonic character. The branch of optics that studies
the phenomena derived from the quantum aspect of the light is called quantum optics. It enables
the step from a mere observation of the light to the creation and control of monochromatic light
beans thanks to tunable band lasers [3]. At this stage, light was used to study the structure and
dynamics of matter since the energy of light lies on the energy range of electronic and vibrational
transitions[1].

The development of nanoscience and nanotechnology made necessary the study of optical phe-
nomena on the nanometer scale (nanophotonics). That seemed impossible because the diffraction
limit states that there is a maximum to the resolution of any optical system given by nearly a half of
the light wavelength (200nm)[1]. However, the diffraction conditions are not applied to a confined
field. Therefore, there has been a great effort to find different ways to confine the electromagnetic
field.

If light is confined into a small volume and it interacts with only one atom, we can reach
new regimes of light-matter interaction, which although possible, are not present in nature. With
the development of technology able of reaching temperatures of about 100mK, it was possible to
manipulate single atoms and photons [4]. In this context, the atom is pictured as a two level system
(TLS) and the electromagnetic (EM) field as a set of quantum oscillators.

Depending on the characteristics of the coupling (strength and dissipation) between one mode
of the EM field and the TLS, there are three different regimes: weak, strong and ultrastrong. The
regime most common in nature is the weak regime. It is dominated by irreversible losses and
shows phenomena such as the spontaneous emission, in which the TLS and EM field interact in an
irreversible manner [5]. That is, once the emitter has decayed from the upper to the lower state,
the photon emitted does not come back to the TLS.

The strong coupling, on the other hand, is dominated by the strength of the coupling of one EM
mode with the TLS. The emitter and the EM mode interchange excitations: the emitter goes from
the upper to the lower state creating a photon and this photon is absorbed, exciting the emitter
from the lower to the upper state. Because of this interchange of excitations over time, this dynamic
is said to be reversible. In this regime, light and matter are entangled, and they cannot be regarded
as separated entities anymore [4]. The probability of finding the emitter in the excited state has
an oscillating dynamic which decays over time. The frequency of these oscillations, called Rabi
oscillations, is related to the strength of the coupling, while the decay time is associated with the
dissipation.

The strong regime enable us to use the light not only as an information source, but also as
a tool to manipulate atoms [5]. This is why the creation and development of devices capable of
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1. Introduction 2

showing strong coupling has been an active line of research. The experiments concerning strong
coupling and its applications in the creation of quantum bits made S. Haroche and D. Wineland be
awarded with a Nobel prize in 2012. Since then, strong coupling has been achieved in some systems
as quantum dots, photonic crystals, superconducting circuits. . .

If the frequency of Rabi oscillations, related to the strength of the coupling, is of the same
order of magnitude as the light frequency, we arrive at the so called ultrastrong coupling. This
regime shows a new physics never seen before. However, it is extremely difficult to achieve for
traditional quantum optics (cavities QED, ion traps..)[6]. The experiments that have accomplished
an ultrastrong light-matter interaction involve many atoms [7] or a superconducting circuit acting
as an artificial atom [8] with a giant effective dipole moment.

Besides its relevance in fundamental research, strong coupling has many applications. It can
be used to detect single atoms [9], to modify the “chemistry” of the excited levels and to control
chemical reactions rate via quantum light [10]... Nevertheless, one of the most relevant features
of strong coupling is that it is a necessary condition for quantum information processing [6]. This
is because, due to frequency and decay of Rabi oscillation can be totally determined for a given
environment, strong coupling can be used to initialize an emitter, which acts as a qubit, in its
excited or ground state. Moreover, it would be possible the implementation of a quantum networks,
consisting in many quantum nodes (Cavities QED acting as qubits) connected coherently through
photons [11]. The quantum information would be generated, processed, and stored in a node
(cavities) and it would be transferred to another node via a photon entangled to that atom in the
node.

In this work we study the conditions to arrive at the strong and ultrastrong regime for one
single atom embedded in the air near to a metallic surface. The interface produces hybrid modes
formed by electron oscillations in the metal and electromagnetic oscillations in the dielectric which
propagate along the metallic surface. These electromagnetic modes are tied to the metallic surface,
providing a field confinement which is required to enter into the strong and ultrastrong regime. We
study the interaction for two metals: silver and gold.

The work is organized as follows. We first introduce in Sec.3 a formalism to quantize the
electromagnetic field in dispersive and absorbing media within a Green’s function approach. In
Sec.4 this formalism is applied to find the interaction between the electromagnetic field and an
emitter. We continue evaluating the coupling in the vacuum and in a cavity QED. In Sec.5 .
we described light-matter interaction of an atom near to a metallic surface and we showcase our
results. In Sec.6 and 7 are presented the summary and conclusions. The details of the calculation
are discussed in the appendixes.
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2 Goals and Objectives

The main objective of this work was to become introduced into the topic of nanophotonics and,
in particular, the understanding of the interaction between an atom and the electromagnetic (EM)
field from a quantum point of view. By reading the references presented below:

• I have learnt how to quantize the EM field both in vacuum and in dispersive and absorbing
media by using the Huttner and Barnett model.

• I have utilised the Green’s function as a useful tool to compute and understand the light-matter
interaction.

• I have found out the interaction between an atom and the electromagnetic field from this
formalism, and studied the modifications of this interaction in different environments: the
vacuum and a cavity QED.

An additional goal was to use the acquired knowledge to study the interaction between an emitter
and the electromagnetic field if the emitter is placed in the air but close (2-500nm) to a metallic
surface of silver or gold. The tasks carried out have been as follows:

• I have adapted the Huttner and Barnett formalism to the situation of an emitter close to a
metallic surface.

• I have computed the coupling (photonic spectral density) between the emitter and the EM
modes created in the nearby of the metallic surface beyond the rotational wave approximation.
Although I have calculated it for surfaces made of silver and gold, the theory adapted from
the Huttner and Barnett model allows to compute how the coupling would be if the properties
of a material are known.

• I have recalculated, following [26], the conditions in which we observe the strong coupling
regime.

• I have found, for the first time, that an emitter formed by a unique atom near to a metallic
surface can reach the ultrastrong coupling.

3



3. Quantization of the Electromagnetic Field in Dispersive and Absorbing Media 4

3 Quantization of the Electromagnetic Field in Dispersive and Ab-

sorbing Media
In order to perform a canonical quantization of a given system we need to describe it through

a Hamiltonian (or Lagrangian) formalism [12]. Dielectrics, metals or, in general, media with ab-
sorption, present losses which, a priori, can not be put in a Hamiltonian way. In a classical theory,
these losses are typically introduced in the motion equations phenomenologically, as a negative
exponential. Therefore, although Electromagnetic field quantization in vacuum is straightforward
[See Appendix A], dispersive and absorbing media need a more careful treatment of the losses to
make them compatible with a Hamiltonian formulation.

The origin of absorption can be explained by one example: a dielectric.
A dielectric material is an electric insulator characterized by forming dipoles when an electro-

magnetic field is applied. In contrast to a conductor, charges cannot freely flow in the material, but
they are able to slightly move around their equilibrium position. In this way, they create microscopic
dipoles [13]. The effect of these dipoles is macroscopically observed as an electric polarization.

P = ε0χE, (1)

where the proportionality constant is the product between the dielectric permittivity of the vacuum
ε0 and the dielectric susceptibility χ.

Along all our work we use non-magnetic and homogeneous materials where the magnetic
permeability is µ0 and the electric permittivity, ε(ω) = ε0 · ε̄(ω), is constant within the dielectric.

The constitutive relations of the non-magnetic dielectric of our example are

D(r, ω) = ε0ε̄(ω)E(r, ω) (2)
B(r, ω) = µ0H(r, ω) (3)

and macroscopic Maxwell’s equations in SI units, together with the constitutive relations read

∇ ·B(r, ω) = 0 (4)
∇ · ε0 ε̄(r, ω) E(ω) = ρ(r, ω) (5)
∇×E(r, ω) = iω B(r, ω) (6)

∇×B(r, ω) = −iωµ0ε0ε̄(ω)E(r, ω) + µ0j(r, ω). (7)

Eqs. (6) and (7) imply that the electric field E(r, ω) obeys the differential equation

∇×∇×E(r, ω)− ω2

c2 ε̄(ω) E(r, ω) = iωµ0 j(r, ω), (8)

which in the Fourier Space Eq.(8) reads

k2E(k, ω)− ω2

c2 ε̄(ω)E(k, ω) = iωµ0j(k, ω) (9)

This equation will be crucial for giving a physical interpretation to our model.
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3.1. Bath Model 5

The effect that we seek to describe is dissipation in dielectrics. If an oscillating electric field
is applied on the material, the microscopic dipoles will try to rearrange themselves at the field
frequency. If the frequency is too high, the dipoles don’t have enough time to be rearranged. So
that, it arises a delayed between the field and the displacement vector [13]. If we consider the electric
field to be harmonic: E = E0e

iωt, the displacement vector shows a phase difference D = D0e
i(ωt+δ).

This delayed gives rise to a complex part of the permittivity through the constitutive relations of
the material

εE0 = D0e
iδ, (10)

changing the permittivity to
ε = ε′ + iε′′. (11)

ε′ y ε′′ can be interpreted as the amount of electric displacement vector that varies, respectively,
in-phase and with a π

2 lag phase with the electric field. Hence, ε′′ 6= 0 denotes that the microscopic
dipoles of the material are braking, and thus, it represents an energy loss.

Having a complex permittivity, a propagating electric field in the z direction is:

E = E0e
i(ωt−
√
ε′
r+iε′′

r k0z). (12)

Exactly as in the harmonic oscillator, losses are modelled by a negative real exponential in the
solution. This phenomenological model is characterized for including the dissipation with a term
−γẋ in the motion equation, being γ the viscosity and ẋ the oscillator velocity. Unfortunately, this
term added ad hoc cannot be included in a Hamiltonian formalism .

3.1 Bath Model
In order to include the losses in a dielectric within a quantum mechanical compatible formulation

we use a reservoir (or bath) formed by an infinite set of oscillators coupled to the electromagnetic
field [14]. Because of the degree of freedom of the bath is infinite, this coupling produces an
irreversibility in the flow of energy (and information) from the EM field to the bath. So that, it
looks like the EM is loosing energy.

The model can be pictured as follows. At each point of the dielectric we have an electric field
E(r) coupled with an infinite set of oscillators, each one with a different frequency. It is like at each
position we had an infinite set of invented modes that interact with the EM field. Fig.(1) presents
a vision of the reservoir oscillators.

The Lagrangian has three terms: a part from the electromagnetic field, another from the reservoir
and one last part taking into account the interaction between them. This last term comes from the
Huttner and Battner model of the EM field quantization in dielectrics [14]. Thus,

Ltotal = LEM + LBath + Lint (13)

with

5
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Figure 1: Graphic representation of how the reservoir is coupled to the electromagnetic field. At
each position (r=1, r=2...) the electromagnetic field is coupled with an infinite set of harmonic
oscillators. The bath oscillators, Xj , are pictured as springs, each of them characterized by its
frequency, j, and its position.

Ltotal = ε0
2

∫
d3r(E2(r, t)− c2B2(r, t)) +

∑
j

∫
dr3( 1

2µẋ2
j (r, t)− 1

2µω
2
jx2

j (r, t)) +

−
∑
j

αj

∫
d3r(ẋj(r, t)A(r, t) + U(r, t)∇ · xj(r, t)), (14)

where ωj and µ stand for the resonator frequency and mass respectively. Each mode of the reservoir
is coupled to the electromagnetic field with a different coupling constant αj , being j the oscillator’s
frequency [15].

Notice that Eq.(14) is a Lagrangian and, therefore, it can be quantized. If Eq.(14), when the bath
degrees of freedom are integrated out, produces the macroscopic Maxwell equations for absorbing
media, then we will have confirmed that this model reproduces the actual behaviour. This is what
we show below.

For simplifying the calculation, it is desirable to work on the reciprocal space. For example, the
electric field is written as (to distinguish the fields in real and reciprocal space, we shall underline
the latter):

E(r, t) = 1
(2π)3/2

∫
d3kE(k, t)eikr, (15)

It is convenient to express the Lagrangian in terms of the vector and scalar potentials (A and U)
in the Couloumb Gauge k ·A = 0 in which A is purely transversal [16].

The Lagrangian can be split in a parallel part, where the bath modes do not couple with the
electromagnetic field and will be ignored [See appendix B], and a transverse part given by

L⊥total = ε0

∫ ′
d3k(|Ȧ|−c2k2|A|2) +

∑
j

∫ ′
dk3(µ|ẋ⊥j |2−µω2

j |x⊥j |2)

−
∑
j

αj

∫ ′
dk3 (ẋ⊥j ·A∗ + ẋ∗⊥j ·A). (16)

6



3.2. Classical Equations of Motion: Langevin Equation 7

Here the prime means that the integration is restricted to half of the reciprocal space.
For now on we will work with the Lagrangian density L to avoid writing all the integrals.

3.2 Classical Equations of Motion: Langevin Equation
Our goal is to find the motion equation of A and check if our model describes a lossy media

with a Lagrangian formalism in the same way that the Maxwell’s equations do (Eq.(9)).
We introduce the unit polarization vectors eλ(k) , λ = 1, 2, which are orthogonal to k and

between them, and decompose the transverse fields along them to get:

A(k, t) =
∑
λ=1,2

Aλ(k, t)eλ(k). (17)

Now we are ready to write the Euler-Lagrange equations for x∗λ⊥j and Aλ∗. Taking into account
that they are continuous fields, their motion equations read as [16]

∂t
∂L

∂ẋλ∗j
= ∂L

∂xλ∗j
−
∑
i

∂i
∂L

∂(∂ixλ∗j )
(18)

∂t
∂L

∂Ȧ
λ∗ = ∂L

∂Aλ∗
−
∑
i

∂i
∂L

∂(∂iAλ∗)
, (19)

where ∂i = ∂

∂ki
.

Omitting the fields’ polarization, the equations to solve are

µẍj + µω2
jxj = αjȦ (20)

and

ε0Ä = −ε0c
2k2A−

∑
j

αj ẋj (21)

Since we want a motion equation for the EM field, we formally solve Eq.(20), which is nothing but a
driven harmonic oscillator, and after, we insert the solution for ẋj in Eq.(21). The motion equations
for the vector potential in the Fourier space of k and ω [See Appendix C] turn out to be

−
∫ ∞
−∞

dωω2ε0A(k, ω)e−iωt = −
∫ ∞
−∞

dωε0ck
2A(k, ω)e−iωt−

∑
j

αj ẋ
h
j (k, t) +

∫ ∞
−∞

dωω2A(k, ω)λ(ω).

(22)
Here, xhj is the solution of the homogeneous equation µẍj + µω2

jxj = 0 and

λ(ω) = P [
∫

J(ω′)
ω′ − ω

dω′] + i
π

2J(ω), (23)

where J(ω) is defined as

J(ω) =
∑
j

α2
j

µωj
δ(ω − ωj). (24)

If we set
ε(ω) = ε0 + λ(ω), (25)

7
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we finally get the classical Langevin equation

−
∫ ∞
−∞

dωω2ε(ω)A(k, ω)e−iωt = −
∫ ∞
−∞

dωε0c
2k2A(k, ω)e−iωt −

∑
j

αj ẋ
h
j (k, t). (26)

In order to compare the equation of motion derived from this model, and the macroscopic
Maxwell equation in a absorbing media, Eq.(9) , we shall write Eq.(26) in terms of the electric field.
With that in mind, we use that E = − ∂

∂tA(k, t) = iωA(k, ω), carry out the Fourier transform of∑
j αj ẋ

h
j (k, t) and remove the integrals to arrive at

−ω
2

c2 ε̄(ω)E(k, ω) + k2E(k, ω) = iωµ0
iω
∑
j αjx

h
j (k, ω)

µ0c2ε0
, (27)

where we have defined ε̄(ω) = ε(ω)
ε0

= ε̄R(ω) + iε̄I(ω) .
Eq.(27) is a Langevin equation and it is equivalent to the macroscopic classical equation in a

dielectric derived from Maxwell’s equations [See Eq.(9)] with a phenomenological current.
The term ε(ω), which has been first introduced in Eq.(25) and comes from modelling the dissip-

ation as a bath of oscillators, corresponds with the dielectric permittivity. Its real and imaginary
parts are related to each other through the Kramers-Kronig relations (cf. Eqs. (23) and (25)):

ε̄R(ω)− 1 = P
π

∫
dω′

ε̄I(ω)
ω′ − ω

(28)

ε̄I(ω) = −P
π

∫
dω′

ε̄R(ω)− 1
ω′ − ω

(29)

as the permittivity of real dielectric does [17].

3.3 Quantization
Once we have checked that our model accounts for the macroscopic Maxwell equations in dielec-

tric, we quantize it. Given the Lagrangian density

L⊥total = ε0|Ȧ|−ε0c
2k2|A|2+

∑
j

(µ|ẋ⊥j |2−µω2
j |x⊥j |2)−

∑
j

αj(ẋ⊥j A∗ + ẋ∗⊥j ·A) (30)

The generalized momentum read

Π = ∂L
∂Ȧ∗

= ε0Ȧ (31)

Π∗ = ∂L
∂Ȧ

= ε0Ȧ
∗ (32)

Pj = ∂L
∂ẋ∗j

= µẋj − αjA (33)

Pj
∗ = ∂L

∂ẋj
= µẋ∗j − αjA∗. (34)

The canonical quantization imposes that a variable and its associated momentum follow a com-

8



3.3. Quantization 9

mutation relation between them. Said commutation reads, for instead, for Â as

[Â(k), Π̂(k′)] = 0 (35)
[Â(k), Π̂∗(k′)] = ih̄δ(k′ − k), (36)

yielding to the Hamiltonian density,

H = 1
ε0
|Π̂|2+ε0c

2k2|Â|2+
∑
j

( 1
µ
|P̂ j + αjÂ|2+µω2

j |x̂j |2
)
. (37)

We recall that the underlined variables depend on k and t.
We are now in conditions to find the quantum version of Maxwell equations (Eqs.(9) or (27))

applying twice the Heisenberg equations to x̂j , as ˆ̇xj = i

h̄
[Ĥ, x̂j ], and to Â, as ˆ̇A = i

h̄
[Ĥ, Â]. In this

way, we end up with the same motion equation showed in Eqs. (20) and (21), but quantized

µˆ̈xj + µω2
j x̂j = αj

ˆ̇A (38)

and

ε0
ˆ̈A = −ε0ck

2Â−
∑
j

αj ˆ̇xj . (39)

Therefore their solution is the quantum version of Eq.(26). It reads as

−
∫ ∞
−∞

dωω2ε(ω)Â(k, ω)e−iωt = −
∫ ∞
−∞

dωε0ck
2Â(k, ω)e−iωt −

∑
j

αj ˆ̇x
h
j (k, t). (40)

Our final step is to deal with the last term: write ˆ̇xhj in terms of the creation and annihilation
operators which increase (or decrease) an excitation of the bath field. This description comes
naturally because ˆ̇xhj follows the motion equation of a harmonic oscillator

µˆ̈xj + µω2
j x̂j = 0, (41)

with Lagrangian given by
L̂j = µ|ˆ̇xj |2+µω2

j |x̂j |2= 0. (42)

Here, the position variable is x̂j and its momentum p̂
j

= ∂L̂j
∂ ˆ̇x∗j

= µˆ̇xj .

Therefore ˆ̇xj in terms of the position and its momentum is

ˆ̇xhj = −ωj x̂j(0)sin(ωjt) + ˆ̇xj(0)︸ ︷︷ ︸
P̂ j(0)
µ

cos(ωjt) (43)

with ωj positive.

9
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Introducing the creation and annihilation operators

f̂j =
√
µωj
2h̄ (x̂j + i

µω
P̂j) (44)

f̂ †j =
√
µωj
2h̄ (x̂j −

i

µω
P̂j), (45)

Eq.(43) can be rewritten as

ˆ̇xhj (k, t) = i

√
h̄ωj
2µ (f̂ †j e

iωjt − f̂je−iωjt). (46)

The equation above is included in Eq.(40). However, since our goal is to determinate the behaviour
of each Â(k, ω), we transform the summation in modes j into an integral in ω [See Appendix D],
yielding to ∑

j

αj ˆ̇xhj (k, t) =
∫ ∞

0
dω
√
J(ω)√µω i

√
h̄ω

2µ (f̂ †ωeiωt − f̂ωe−iωt). (47)

Notice that the integral goes from zero to ∞ because of the definition of ˙̂xhj .
J(ω) is related to the permittivity’s imaginary part. From Eqs. (23) and (25) it is determined

that √
J(ω) =

√
2
π
εI(ω). (48)

Putting all together Eqs. (40), (47) and (48) we write:

−
∫ ∞
−∞

dωω2ε(ω)Â(k, ω)e−iωt = −
∫ ∞
−∞

dωε0ck
2Â(k, ω)e−iωt−

+

√
h̄

π

∫ ∞
0

dω
√
εI (−i ωf̂ †ωeiωt + i ωf̂ωe

−iωt). (49)

Due to Â(r, t) is an hermitian operator, we can split the integrals in positive and negative ω as∫∞
−∞ dωÂ(k, ω) =

∫∞
0 Â+(k, ω) +

∫∞
0 Â−(k, ω). We get

−
∫ ∞

0
dωω2(ε(ω)Â+(k, ω)e−iωt + ε(−ω)Â−(k, ω)eiωt) =

−
∫ ∞

0
dωε0ck

2(Â+(k, ω)e−iωt + Â−(k, ω)eiωt) +

√
h̄

π

∫ ∞
0

dω
√
εI (−i ωf̂ †ωeiωt + i ωf̂ωe

−iωt). (50)

Here, the imaginary unit that goes with the operators f̂ †ω and f̂ω is arbitrary. It comes from
the way in which these operators have been defined and from the initial phase we chose for the
expression of f̂ †ω and f̂ω. Moreover, if we include the change f̂ω → if̂ω and f̂ †ω → −if̂ †ω, the
commutation relations are the same and Eq.(50) for positive ω reads

−ε(ω)ω2A+(k, ω) = −ε0c
2k2A+(k, ω) +

√
h̄

π

√
εI ωf̂ω, (51)

with an equivalent expression for the negative part.
Eq.(51) can be expressed in terms of the transversal electric field. Being Ê⊥(k, t) = − ∂

∂t
Â(k, t)

10
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, then Ê(ω) = −iωÂ(ω). In this way, the equation is transformed to

−ε(ω)ω2Ê+(k, ω) = −ε0c
2k2Ê+(k, ω) + iω

√
h̄

π

√
εI ωf̂ω. (52)

Defining ε̄(k, ω) = ε(k, ω)
ε0

and given the equivalence µ0ε0 = 1
c2 we obtain:

k2Ê+(k, ω)− ε̄(ω)ω
2

c2 Ê
+(k, ω) = iωµ0(ω

√
h̄ε0
π

√
ε̄I f̂ω(k, ω)). (53)

The equation for the total transversal field is found by adding the hermitian conjugated.

k2Ê(k, ω)− ε̄(ω)ω
2

c2 Ê(k, ω) = iωµ0ω

√
h̄ε0
π

√
ε̄I(f̂ω(k, ω)− f̂ †ω(k, ω)) (54)

This is the “quantum version” of (27) and, thus, is the quantum macroscopic Maxwell equation.
Notice that, opposite to the classical case, the noise current is never equal to zero because, even at
T = 0K, < f2 >6= 0. That is, there are zero point fluctuations due to Heisenberg uncertainty. This
is a remarkable difference with classical dynamics

3.4 Solutions
Maxwell’s classical macroscopic equations in an absorbing, dispersive and homogeneous media

in which the permittivity follows the Kramers-Kronig relation can be regarded as an operator field
equations [18] which have the same appearance than Eq. (9):

k2Ê(k, ω)− ω2

c2 ε̄(ω)Ê(k, ω) = iωµ0ĵ(k, ω). (55)

with [cf. Eq.(54)]

ĵ(k, ω) = ω

√
h̄ε0
π

√
ε̄I(ω)(f̂ω(k, ω)− f̂ †ω(k, ω)). (56)

In real space Eq.(55) reads

∇×∇× Ê(r, ω)− ω2

c2 ε̄(r, ω)Ê(r, ω) = i
ω2

c2

√
h̄

πε0

√
ε̄I(r, ω) (f̂ω(k, ω)− f̂ †ω(k, ω)). (57)

The latter is an inhomogeneous differential equation where the solution is split as the sum of a
homogeneous and a particular solution:

Ê(r, ω) = Êhom(r, ω) + Êpart(r, ω). (58)

3.4.1 The Homogeneous Solution
We first find the solution for the homogeneous equation

k2Êhom(k, t) + 1
c2 ε̄(ω) ˆ̈Ehom(k, t) = 0, (59)

11



4. Light-Matter Interaction 12

which is given by Êhom(k, t) = Êhom(0, 0)e
it

(
ck√
ε̄

+δ
)

. If ε̄i 6= 0, Êhom tends to zero. Since we are not
interested in transitory solutions, the only contribution comes from Êpart. However, if there are not
losses, the homogeneous solution does not decay and it reads [See Appendix A for a full derivation]

Êhom(r, t) = i

∫
dω

√
h̄ω

2ε0
(âω(t)− â†ω(t))uω(r). (60)

Here, uω(r) are the normalized spatial modes fulfilling the equation ∇×∇× v(r) + ε̄ω
2

c2 v(r) = 0.

3.4.2 The Particular Solution: A Green’s Function Approach
Making use of Green function formalism [See Appendix E for a review], the particular solution

of Eq.(57) is

Êpart(r, ω) = i

√
h̄

πε0

ω2

c2

∫
d3r′

√
ε̄I(r′, ω)←→G (r, r′, ω)(f̂ω(r, ω)− f̂ †ω(r, ω)) (61)

with ←→G (r, r′, ω) the Green dyadic function of the classical electric field[
∇×∇×−ω

2

c2 ε̄(r, ω)
]
←→
G (r, r′, ω) =←→I δ(r− r′). (62)

A great accomplishment of this model is that the same Green function calculated for the classical
electric field is used to find the quantum electric field. In addition, quantization can be done for
arbitrary (and maybe phenomenological) permittivities [17].

If there are not absorption, εI = 0, the full solution is Ê = Êhom. However, if there are losses
in the medium, Êhom → 0, as we have argued in section 3.4.1. Thus, Eq.(61) is the full solution in
this case.

The quantized electric field for a media without and with absorption, shown in Eq.(60) and (61),
will be used in the next section to figure out how light and matter couple.

4 Light-Matter Interaction
When speaking of light-matter interaction, and specifically, the interaction between one emitter

and the EM field, the geometry and electrical properties of the environment around the emitter play
an important role. They can enhance or inhibit the coupling between them and lead to different
behaviours. In this section, we will find how light and matter couple quantically and apply our
results to different situations: the spontaneous emission, the physics of a cavity QED and a small
emitter near a metallic surface. In the two later, light-matter interaction can show, under some
conditions, different regimes: weak, strong and ultrastrong.

In order to describe the system behaviour, we start defining the Hamiltonian, which in general,
can be split as

Ĥtot = Ĥemitter + Ĥrad + Ĥint. (63)

12



4. Light-Matter Interaction 13

The emitter can be an atom, a molecule or any particle small enough to apply the dipole approxim-
ation. Moreover, the emitter is considered to have only two energy levels. This kind of emitters are
called two level system (TLS). Therefore, itis described by a two-dimensional state space formed by
|e〉 and |g〉. The two states constitute a complete orthonormal system [2]. The emitter Hamiltonian
is given by Ĥemitter = Ee |e〉 〈e|+ Eg |g〉 〈g| , and, if Ee − Eg = ∆, it can be written as

Ĥemitter = −h̄∆
2 σ̂z, (64)

where σ̂z is the Pauli matrix.
The radiation Hamiltonian [19],

Ĥrad = h̄

∫
d3r

∫ ∞
0

dω ωf̂ †ω(r, ω)f̂ω(r, ω), (65)

is expressed in terms of the bath elementary excitation operators (f̂ †ω and f̂ω ) which fulfil the
bosonic commutation relations.

Let us focus now on Ĥint. Starting from the minimal coupling Hamiltonian and applying the
dipole approximation [15], the interaction Hamiltonian is written as

Ĥint = −d̂ · Ê(re, t), (66)

where the electric field is evaluated at the position of the emitter. To figure out the above equation,
we need the expression of the quantized electric field, which was previously found (Eq.61), and the
electric dipole operator, d̂. We can express d̂ = q · r̂ in terms of the atom transition operators
σ̂ij = |i〉 〈j|, where |i〉 and |j〉 can take the values |g〉 and |e〉 which stand for ground and excited
states of the emitter, respectively. The electric dipole operator holds

d̂ =
∑
i,j

q |i〉 〈i| r̂ |j〉 〈j| =
∑
i,j

Pijσij . (67)

Here, Pij = q 〈i| r̂ |j〉 is the electric dipole matrix element which, at least for an atomic emitter,
the diagonal elements are equal to zero. That is because the atom eigenstates have a well defined
parity [16] and, when the dipole momentum operator is applied, it changes it. Moreover, since d̂ is
an operator, Pge = Peg = d.

The total quantum Hamiltonian is given by

Ĥtotal = −h̄∆
2 σ̂z + h̄

∫
d3r

∫ ∞
0

dω ωf̂ †ω(r, ω)f̂ω(r, ω)− σ̂xd · Ê(re). (68)

with Ê(~re) =
∫∞

0 dωÊ(re, ω).
Here we consider the case of an absorbing media, while expressions for a non-absorbing media

can be found in Appendix F. Using Eqs.(61) and (68) we get

Hint = −σ̂x
∫ ∞

0
dω
∫

d3r′g(ω, r′, re)
(
f̂(r′, ω)− f̂ †(r′, ω)

)
(69)

This is an important equation since the interaction Hamiltonian represents the coupling between

13



4.1. Spontaneous Emission 14

TLS and EM field. Here, we have introduced the shorthand notation

g(ω, r′, re) = i

√
h̄

πε0

ω2

c2

√
ε̄i(r′, ω) d

↔
G (re, r′, ω) , (70)

being re the emitter position.
To understand qualitatively what the coupling to the field produces in the emitter, we split

σx = σ+ + σ− with

σ̂+ = |e〉 〈g| (71)
σ̂− = |g〉 〈e| . (72)

Thus, σ+ takes a TLS in the ground into the excited state, whereas σ− takes a TLS in the excited
state into the ground state.

Moreover, we define the collective modes b̂(ω) [15],∫
d3r′ g(ω, r′, re)f(r′, ω) ≡ h̄g(ω)b̂(ω), (73)

which fulfil the bosonic commutation relation

[b̂(ω), b̂†(ω′)] = δ(ω − ω′) (74)

and lead to
|g(ω)|2= 1

πε0h̄

ω4

c4

∫
d3r′ ε̄i(r′, ω)~dT

↔
G (re, r′, ω)

↔
G∗ (re, r′, ω)~d . (75)

The interaction Hamiltonian expressed in terms of the new notation is

Ĥabsorption
int = −h̄(σ̂+ + σ̂−)

∫
dω g(ω)

(
b̂(ω)− b̂(ω)†

)
. (76)

Finally, by using the relation for the Green’s tensor [18]

ω2

c2

∫
d3r′ ε̄i(r′, ω)

↔
G (re, r′, ω)

↔
G∗ (re, r′, ω) = Im[

↔
G (re, re, ω)] (77)

we end up with

|g(ω)|2 = 1
h̄πε0

ω2

c2
~dT Im[

↔
G (re, re, ω)]~d (78)

|g(ω)|2 has units of ω(rad/s) and characterizes the coupling between one electromagnetic mode
and the emitter. As it is shown in Appendix F, it coincides with the non-absorbing case (ε̄i = 0).
Notice that the coupling depends on the imaginary part of Green’s function and, in turn, on the
emitter’s environment. The modulus square of the coupling constant |g(ω)|2, called spectral density,
characterizes the coupling between the system and the EM field.

4.1 Spontaneous Emission
Spontaneous emission is the process in which a quantum mechanical system transits from an

excited energy state to a lower energy state, emitting a quantum in the form of a photon [2]. We

14



4.2. Cavity QED 15

study the spontaneous emission when the temperature is equal to the absolute zero. In this case,
the decay is produced by the point zero oscillations of the field modes.

In our formalism, spontaneous emission occurs when the initial state of the electromagnetic field
is |00...00〉 (no photons), and the atom is in the excited state. Each number in |00...00〉 gives the
number of EM excitations with a given energy. We are able to work with a state with no photons
because we are at 0K. Since the field and the emitter are described in different Hilbert spaces, the
initial wave function of the total system is the tensor product |e〉 ⊗ |00.....0〉. These states, which
describe at the same time light and matter, are called dressed states [20].

In order to find the spontaneous emission rate, γ, we take advantage of Fermi’s golden rule
which evaluates the probability of finding the system in the upper state |g〉 starting from |e〉 as

Pe→g = 1
h̄2

∣∣∣∣∫ t

0
〈g| ĤI

int(t) |e〉 dt
∣∣∣∣2 . (79)

Here, the exponent I stands for interaction picture. The emission rate, γ, is found as the derivative
in time of this probability.

The interaction Hamiltonian shown in Eq.(76) has four terms. The term â(ω)†σ− describes the
process in which the emitter pass from the upper to the lower state and a photon of energy ω is
emitted. The term â(ω)σ+ describes the opposite process. The number of excitations is conserved
in both of the processes [2]. On the other hand, the term â(ω)σ− describes the situation in which
a photon is annihilated and the TLS falls from |e〉 to |g〉, resulting in the loss of approximately
2h̄ω. Similarly â†σ+ results in the gain of 2h̄ω. When Fermi’s golden rule is applied in first order
approximation, as we are doing, the coupling constant, g(ω), must be much smaller than the energy
gap between the eigenstate of the unperturbed Hamiltonian. In our case this gap is equal to ∆.
If that condition is fulfilled, the terms â†σ+ and â(ω)σ− can be neglected [2]. This is called the
rotational wave approximation (RWA).

The probability of the system to fall from the excited to the ground state emitting a photon is
found evaluating Eq.(79)[1]

Pe→g = 2πt |g(ω)|2 δ(ω −∆). (80)

Deriving with respect to time, the spontaneous transition per unit time reads

γ = 2π |g(ω)|2 δ(ω −∆) . (81)

We can calculate the intrinsic lifetime of a quantum emitter which is equivalent to the spontan-
eous emission rate in vacuum as 2π|g(ω)|2. Knowing that the imaginary part of Green function in
vacuum is 1

6π
ω
c [21], we obtain

γ0 = |~d|2∆3

3πε0h̄c3

(1
s

)
(82)

which in terms of the fine structure constant, and being ~d = e~r, reads

γ0 = 4
3α

r2∆3

c2

(1
s

)
. (83)
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4.2. Cavity QED 16

4.2 Cavity QED
A cavity QED is an electromagnetic resonator with an atom inside. It can be built with two

spherical mirrors with ultra high reflectivity facing each other placed millimetres apart [22]. [See
Fig.6]. The behaviour of the EM field within the cavity is similar to a guitar string. In this simile,
the mirrors would act as the holdings of the string and the vibration of the string would be the EM
field mode1.

Perhaps, the most blow-minding aspect of cavities are their ability of harbour entangled states
of light and matter [22]. That is, atoms and light field in a superposed state [4].

The cavity QED is tuned with a single atom transition. In other words, we study resonant
or near resonant atom-cavity interactions where the energy difference between the two level of the
TLS, h̄∆, coincides with the energy of the mode tolerated by the cavity, h̄Ω. To keep it simpler,
we first suppose that there are not dissipation.

Since only one mode is considered in a cavity QED we take the light-matter Hamiltonian,
presented in Eq.(69), and select one mode. This leads to the quantum Rabi model:

ĤRabi = −h̄∆
2 σ̂z + h̄Ωâ†â︸ ︷︷ ︸

Ĥ0

−h̄g (σ̂+ + σ−)
(
â− â†

)
(84)

Let us discuss the spectrum of (84), when g=0. In this case, the Rabi Hamiltonian is equal to
Ĥ0. Therefore, being in resonance, Ω = ∆, the states with the same number of excitations have the
same energy. For instance, the state |g,N〉 (TLS in the ground state and N photons in the cavity),
is equivalent to |e,N − 1〉 (TLS in the excited state and N-1 photons in the cavity).

When g 6= 0 but small, the degenerate levels split, having a gap energy proportional to g. This
tells us that we can no longer think of the atom and photon as separate entities [11].

We rewrite the interacting Hamiltonian of Eq.(84) as

Ĥint = −h̄g
(
σ̂+â − σ̂−â† − σ̂+â

† + σ̂−â
)
. (85)

In first order of perturbation theory only σ̂+â and σ̂−â† play a role. The other terms, which involve
mixing non-degenerate levels, are neglected. This is the RWA, already discussed in section 4.1. In
doing so we obtain the, so called, Jaynes-Cumming Hamiltonian:

HJC = −h̄∆
2 σ̂z + h̄Ωâ†â− h̄g (σ̂+â) + h.c. (86)

Jaynes-Cumming Hamiltonian conserves the number of excitations. We can compute the dy-
namic inside a subspace with a given number of excitations obtaining Rabi oscillations [20]:

|ce(t)|2= cos2(g
√
n+ 1t). (87)

|ce(t)|2 is the probability for finding the atom in its excited state when working in a subspace with
n+1 excitations. The frequency of the oscillations is proportional to the coupling constant and to

1These modes are the harmonics with ω = n
λ

2 . Typically only one mode is considered: the one that is closer to
the atomic transition.
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4.2. Cavity QED 17

the square root of the number of photons.
When the coupling, g, is increased, the perturbative argument breaks down and, as we can see in

Fig. 2, the eigenvalues of the Rabi Hamiltonian split from the James-Cumming model eigenvalues.
These effects are visible when the strength of the coupling, reaches a value around the tenth part
of the field frequency, 0.1g ≥ Ω. This regime is called he ultrastrong regime. The ultrastrong

Figure 2: Energy splitting between the Rabi Hamiltonian eigenvalues and the Jaynes-Cumming
eigenvalues.

coupling regime can be detected by measuring the emission spectra that it is asymmetric around the
bare resonance frequency [23]. This regime may be interesting beyond fundamental research, it e.g.
presents quantum nonlinear features at the single photon level [24]. Unfortunately, it is extremely
difficult to achieve for traditional quantum optics systems such as atoms in cavities QED [6].

So far, we have not taken into account any kind of dissipation. However, in actual cavities
QED there are two sources of dissipation: the spontaneous emission to different modes than the
cavity mode, modelled by the decay rate γ; and the dissipation produced in the mirrors (leaks
characterized by κ).

We will neglect the dissipation due to γ since we consider that the atom decays to other modes
slower than how long takes the mode with frequency ∆ to be dissipated by the mirrors. The mirror
dissipation is modelled as a continuum bath of harmonic oscillators which couple with the EM
field mode like Ohmic noise [25]. This bath model has been already discussed in section 2. The
Hamiltonian of the atom, cavity and bath reads

ĤOhm = −h̄∆
2 σ̂z + h̄Ωâ†â− h̄gσ̂x(â− â†) + h̄

∫
dω ωf̂ †f̂ + h̄(â† + â)

∫
dω κ(ω)(f̂ω + f̂ †ω), (88)

where the three first terms accounts for the emitter, cavity mode and their coupling, whereas the
two last are, in order of appearance, the Hamiltonian of a continuum set of harmonic oscillators
(the bath), and its coupling with the cavity. The spectral density of the continuous bath modes,
κ(ω), is assumed to be

J(ω)Ohm = κ2(ω) = κ · ω (eV )2 (89)
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4.2. Cavity QED 18

Figure 3: Schematic picture of the models used to describe a cavity QED with dissipation. In
(a) the system is a TLS coupled to a harmonic oscillators (the EM field mode), which in turn is
coupled to an Ohmic environment with spectral density JOhm(ω). In (b), the TLS is coupled to an
environment with peaked spectral density Jeff (ω). Image taken from [25].

mimicking the effects of an Ohmic electromagnetic environment.
The model presented in Eq.(88) is equivalent to an atom coupled to a continuum, but with an

effective spectral density, J(ω). This effective equivalent model is [25]

Ĥeff = −h̄∆
2 σ̂z − h̄gσ̂x

∫
dωg(ω)(â− â†) + h̄

∫
dω ωâ†â, (90)

where the effective spectral density is a Lorentzian:

g2(ω) = 1
π

g2Γ/2

(Ω− ω)2 +
(Γ

2

)2 (91)

Figure 4: Spectral density of how the modes of the EM field couple with the emitter in a cavity
QED. In the left without dissipation and in the right with dissipation.

If we compare the spectral density before and after including dissipation, we observe that, in
the first case, the atom couples with only one EM mode, whereas when dissipation is included, the
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5. A Small Emitter near Two-Dimensional Materials: Results and Discussion 19

spectral density is widened, inducing a decay in Rabi oscillations. [See Fig.(4)]
The challenge and goal, then, is to find the conditions in which the coupling strength between

the atom and a particularly chosen single photonic mode is much stronger relative to all the others
dissipative channels. In these conditions, we will be able to see Rabi oscillations decaying [See
Fig.(5a)]. This regime is called strong coupling and it is characterized because the emitter and
the EM field can exchange a photon several times before coherence is lost[8]. The strong coupling
and, therefore, Rabi oscillations were first observed in 1987 (Brune et al., 1987). The importance
of strong regime resides in that, although difficult to achieve, is essential to produce relevant effects
to quantum computation and cryptography [22].

When the spectral density shows a Lorentzian shape, the condition to observe Rabi oscillation is
g > 1

4Γ, and it can be calculated by Weisskoptf-Wigner theory [See Appendix G]. If that condition
were not fulfilled, we would be in the weak regime, where there are not Rabi oscillations and the
dynamic of the TLS population is regulated by a negative exponential [See Fig.(5b)].

Figure 5: Probability of finding the emitter in the excited state among time. Figure 5 a) pictures
the dynamic of the emitter in the strong regime, described by Rabi oscillations decaying with time
and figure 5 b) in the weak regime described by an exponential decay.

5 A Small Emitter near Two-Dimensional Materials: Results and

Discussion
In the interface between a metal, with εr(ω) << 0, and a dielectric, with εr(ω) > 0, the light

interacts with the free electrons of the metal leading to electromagnetic waves bounded to the
surface within the dielectric and charge motion within the metal surface [6]. These excitations of
the EM field confined near the interface are called surface plasmon polaritons (SPPs).

SPPs loss energy while they propagate along the surface due to Ohmic losses which heat the
metal. This dissipation is represented by the imaginary part of the metal permittivity. For this
reason, metals with low εi(ω) like silver or gold are used in SPPs applications [15].

An emitter far from the interface decays radiating a photon like if it were in vacuum. When
it is approached to a metallic surface (around 10-500 nm), the spectral density of the EM modes,
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5. A Small Emitter near Two-Dimensional Materials: Results and Discussion 20

|g(ω)|2, is modified because of the existence of SSPs [26]. At that distance from the surface, the
decay energy is transferred to a SPPs.

Besides SPPs, there are also other mechanisms through which the emitter can transfer its energy.
If the distance between the TLS and the metal surface is smaller than, approximately, 10 nm, the
energy of the decay is not used to create neither a photon nor an SPPs [See Fig.(7)]. In its place,
that energy is transferred to the free electrons in the metal surface. The spectral density, |g(ω)|2,
which is calculated using Im[

↔
G (re, re, ω)], [See Eq.(78)], takes into account the EM modes coupled

to the electronic current of the metal [26]. This current is extremely localized because it is dissipated
very quickly by Joule effect, heating the metal.

We will study the behaviour of a TLS characterized by its intrinsic decay rate, γ0, placed in the
air (medium a) and near to a metallic surface made of silver or gold (medium m). The permittivities
of the metals are defined via a fit to its real permittivity as:

ε̄m(ω) = ε̄m,∞ −
ω2
p

ω(ω + iγp)
− δε

ω2
b

ω2 − ω2
b + iωγb

. (92)

The first term corresponds to a Drude function describing a metal with only one band. Since metals
band structure is more complicated, there are other contributions to the permittivity which can be
written as a sum of functions with poles. The parameters utilized are showed in table 1 [27].

Metal εm,∞ ωp γp δε ωp γb
Gold 5.967 8.729 0.065 1.09 2.684 0.433
silver 4.6 9.0 0.07 1.1 4.9 1.2

Table 1: Parameters needed to calculate electric permittivity of the metals gold and silver.

The macroscopic QED formalism for absorbing media developed in chapter 3 and 4 is perfectly
appropriate for the description of this situation, since it characterizes the materials by their electric
permittivity and takes into account the lossy character of the interaction. In this formalism, the
emitter-plasmon Hamiltonian is shown in Eq.(76).

We can make an analogy between the atom in the nearby of a metallic surface and a cavity QED
[See Fig.(6)]. Both of them are described by the same Hamiltonian and their only difference is the
origin of the dissipation: while for a cavity QED is the photons that scape through the mirrors, the
dissipation in the interface comes from ohmic losses associated with the metal [28].

We will analyse the properties of the emitter near to a metallic surface and its similarities
with a cavity QED studying its spectral density. The magnitude that stands for the decay rate
enhancement of the emitter when it is approached to the interface is the Purcell factor:

P (re, ω) = γ(re, ω)
γ0

= ~ed
T Im[

↔
G (re, re, ω)]~ed

Im[G(ω)]vacuum
, (93)

being γ0(ω) the intrinsic decay rate, γ(re, ω) the decay rate of an emitter at re, ~ed the emitter dipole
moment unity vector and Im[G(ω)]vacuum = 1

6π
ω
c . As we can see in Fig.(7), the Purcell factor can

take values from up to 103

In the problem studied, we consider the interface between the air and the metal in the plane XY,
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Figure 6: Comparison between an emitter near to a metallic surface and a Cavity QED.

with z=0 and the emitter placed in the air at (0,0,h) [See Fig.(6a)]. This layered structure produces
a different Green dyadic above and below the interface which can be represented as follows:

↔
G (R, ω) =

↔
Ga (R, ω)+

↔
GRam (R, ω) z > 0 (94)

↔
G (R, ω) =

↔
GTam (R, ω) z < 0, (95)

being R = re − r′, with re the emitter position and r′ the position at which we are evaluating the
Green function. The behaviour in the air is governed by the sum of the direct contribution of the
emitter

↔
Ga, which is the Green function of one emitter in vacuum, plus the reflected contribution

↔
GRam. On the other hand, the behaviour in the medium m is regulated by the transmitted Green
function,

↔
GTam.

To calculate the spectral density in the dipole approximation we have to evaluate the Green
dyadic produced by the emitter at the emitter position: R = 0 and z > 0. We consider the
emitter dipole momentum ~d transversally oriented to the surface because this is the most convenient
direction to enhance the coupling [26]. Therefore, the terms of Im[

↔
G (re, re, ω)] that we had to

compute are reduced to Gzz(0). Its explicit expression reads [21]

Gzz(0) = ig

4π

∫ ∞
0

dq||
q3
||
qaz︸ ︷︷ ︸

Gzza(0)

+ −ig
4π

∫ ∞
0

dq||ram
q3
||
qaz

e2iqaz h̃︸ ︷︷ ︸
GzzRam(0)

z > 0 (96)

Here, the wave vector and the emitter position are normalized as |h̃|= g|h| and q = |k|
g

, being

g = ω

c
. In this way, |qa|2= ε̄a = 1 in the air and |qm|2= ε̄m in the metal. Moreover, the wave vector

is separated in its parallel part, q||, and its transversal part, qz =
√
ε̄− q2

||. ram is the reflectivity
and is written as

ram = qmz − qaz ε̄m
qmz + qaz ε̄m

(97)

In order to find GzzRam(0) we need to solve the integral in Eq.(96). This is a bit tricky since the
integrand includes poles in 1

qaz
and in ram. The later stands for the plasmons because it produces
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a reflected wave even if there were no emitter. Moreover, the integrand includes branch cuts in
qaz and qmz. Hence, the integral was carried out in the complex plane avoiding the poles and the
branch cuts [See Appendix H].

After evaluating GzzRam(0), the Purcell factor can be calculated from Eq.(93) as:

P (h, ω) = 1 + GzzRam(0)
Gzza(0) . (98)

Figure 7: Purcell factor with respect to the distance when the emitter emission frequency is 1.377eV
and the metallic surface is made of silver. The Purcell factor is modified when we approach the
emitter to the surface. Far from the surface the TLS emits like if it were in vacuum. When is placed
a few hundreds of nm apart from the surface the behaviour is governed by SPPs and very near to
the surface the emission is dominated by extremely fast non-radiative lossy channels.

The spectral density, |g(ω)|2, can easily be calculated from the Purcell factor using Eq.(98) and
(78). We compute this quantity for an emitter placed at different distance from the surface. Fig.(8)
shows 2π|g(ω)|2 for an emitter set at different distances from a gold and silver surface. We observed
that, when the emitter is placed at 20nm or nearer from the surface, the spectral density has a
Lorentzian shape, but if the emitter is moved away from the surface, we recover the spectral density
of the vacuum. See Eq.(82).
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Figure 8: a) Photonic spectral density of an emitter near to a gold surface with respect to the
frequency at different distances. b) The same but in a silver surface.

The effective Lorentzian found in the spectral density at distances smaller than 20nm from the
surface does not come from the SPP contribution. It comes from the modes coupled to the electronic
current which are more evanescent than SPPs [26]. If we observe the Purcell factor with respect
to the distance in silver and gold evaluated at the frequency associated with the peak maximum
(3.63eV for gold and 3.24eV for silver), we conclude that there are not SPPs contribution [see
Fig.(9)]. Moreover, we will see that, to enter into the strong and ultrastrong regime, the emitter
must be placed very close to the surface, where the dynamic is dominated by this non-radiative
lossy channels.

Figure 9: Purcell factor with respect to the distance of a TLS near to a gold metallic surface
(left) and a silver metallic surface (right). The Purcell factor is evaluated at the frequency that
corresponds with a maximum of the spectral density.
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The Lorentzian shape of the spectral densities obtained [See Fig.(8)], confirms the equivalence
between a cavity QED and an emitter near to a metallic surface [See section 4.2]. We fitted the
obtained spectral densities to the Lorentzian of Eq.(91) in order to get the strength of the coupling,
g, and its dissipation, Γ. What in the cavity was defined as the frequency of the EM mode harboured
in the cavity, Ω, now is the frequency at the maximum of the effective Lorentzian.

Spectral density depends on both the intrinsic decay rate and the frequency. Its relation with
the intrinsic decay rate, γ0, is as follows

|g(ω)|2= γ0
6πc
ω

Im[Gzz(re, re, ω)] . (99)

The larger the intrinsic decay is, the stronger is the coupling. Moreover, comparing the above
expression with Eq.(91) we can see that an increment in γ0 enlarges g. So that, emitters with a
big dipole moment helps to reach the strong and ultrastrong regime (recall that the conditions for
strong and ultrastrong regime were g > 1

4Γ and g > 0.1Ω, respectively).
In order to compute |g(ω)|2, we need to pick some values for γ0. The chosen γ0 coincide

with the intrinsic decay rates of state-of-the-art emitters with large γ0 such as nitrogen-vacancy
centers, quantum dots or J aggregates [26]. Rabi oscillations predicted for an emitter close to a
metallic surface have a period below 10−13

(1
s

)
[See Fig.(5)], these super-fast oscillations can be

measured thanks to streak-camera experiments or interfermotric electron microscopy, since they
have subpicosecond resolution [26].

We compare the necessary conditions for the strong regime when we are working with gold or
silver in Fig.(10a). We observe that the conditions are pretty similar in both of the cases. That is
because silver and gold have similar properties.

We can see in Fig.(10a) that, at least theoretically, strong coupling can be reached by an emitter
near to a surface of gold or silver. This regime is favoured by large dipole momentum of the emitter
and short distance between the TLS and the interface. We can not take into account the results for
distances smaller than 1nm since our formalism relies on a macroscopic description of the materials
and, at that distance, we can not describe the metal by its permittivity anymore. In agreement
with our results, experimentally, there have been observations of the strong regime in ensembles of
molecules near to one metallic surface [28].

We can also obtain the conditions in which the ultrastrong coupling is reached. Fig.(10b) certifies
that it is possible to fulfil those conditions for distances larger than 1nm. In other words, this theory
predicts ultrastrong regime within the limits of the performed approximations. Our results show
that silver is more suitable to show ultrastrong regime than gold. This is because of, for silver, Ω
is smaller and, in addition, g is slightly larger. Moreover, the same as in the strong regime, the
ultrastrong regime is favoured by large intrinsic emission rates, γ0, and short distances h.

In this work we have rediscovered the conditions to observe strong coupling regime of a emitter
close to a metallic surface exposed in [26] and, in addition, we have theoretically proved that it is
possible to arrive to the ultrastrong regime with a single atom emitter.
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Figure 10: The figure 10a shows the ratio of the coupling, g, divided by the dissipation, Γ, with
respect to the emitter intrinsic decay rate, γ0, and the distance between emitter and surface, h.
The white dashed line marks the border between weak and strong regime, g/Γ = 1/4. The zone
marked with a circle corresponds to strong coupling and the zone marked with a triangle to weak
coupling. On the other hand, figure 10b shows the ratio of the coupling, g, divided by the frequency
associated with the maximum spectral density, Ω, with respect to the emitter intrinsic decay rate,
γ0, and the distance between emitter and surface, h. The white dashed line marks the border of the
ultrastrong regime, g/Ω = 0.1. Here the zone with a circle corresponds to the ultrastrong regime.
The plots in the left shows the results found in a gold surface and the plots in the right in a silver
surface.
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6 Summary
In the present work we have revisited the quantization of the EM field in a dispersive and

absorbing media where the dissipation is modelled via its interaction with a bath described as an
infinite set of harmonic oscillators. The interaction of the field with this bath produces a quantum
noisy current given by the linear momentum of the bath oscillators. This noisy current is never
cancelled due to zero point fluctuations.

We observed that the quantized electric field in an absorbing media has the same spatial dis-
tribution than the classical field and, the same as classically, it can be calculated from the Green
dyadic function.

We studied the interaction between a quantum emitter with two energy levels and the electric
field in the dipole approximation. The function that represents how the emitter and the electric
field are coupled depending on its frequency is called the photonic spectral density. It is represented
by |g(ω)|2 and it contains all the information of the problem. |g(ω)|2 depends on the frequency of
the EM mode, the intrinsic decay rate of the emitter and the surroundings of the emitter via the
imaginary part of the Green function.

Over the present work we have shown three regimes of light-matter interaction (weak, strong
and ultrastrong) through two examples: the vacuum and a cavity QED. In the weak regime, the
exited atom emits a photon that is faded away in the surroundings. Hence, the dynamic is said to
be irreversible. In the strong regime, light and matter are entangled. The spectral density has a
peaked shape and, as a result, the atom couples stronger with one EM mode than with the others.
The main feature of strong coupling is the apparition of Rabi oscillation in its dynamic. Finally,
the ultrastrong regime is produced when the strength of the coupling is on the order of the emitter
and the EM mode frequency.

Our research was focused on how the spectral density is modified when the emitter is placed in
a dielectric and close to a metallic surface. We calculated the spectral density and the conditions
required to achieve the strong and ultrastrong regime when the metallic surface was made of gold
or silver.
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7 Conclusions
The results show that an emitter made of a single atom with a plausible dipole moment can

reach the strong regime when it is placed near to a metallic surface made of gold or silver. Opposite
to what it could be thought, we have not achieved the strong coupling thanks to the SPPs, but
thanks to the super-confined EM modes coupled to the electronic current of the metal (the Ohmic
losses). The relevance of this result resides in that the strong regime is a challenge. Moreover, not
only strong regime, but also ultrastrong regime was found. So far, ultrastrong regime was observed
when the emitter was made of many atoms or circuits QED simulating an effective atom, both of
them with huge dipole moments.

Although our calculations were made for a metallic surface of silver and gold, using the formalism
developed, we could compute the spectral density and, consequently, the conditions to achieve the
strong and ultrastrong regime for any material, if its electrical permittivity is known. In particular,
the discovery of 2D materials with diverse properties opens a new door for further studies.

Other lines of research could be that, instead of studying the strong and ultrastrong coupling
between an emitter and a field mode, we could see how two emitters exchange energy between them
when they are coupled to one SPP or another localized modes.
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[6] P. Törmä and W. L. Barnes, Rep. Prog. Phys. 78, 013901 (2015).

[7] T. Schwartz, J. A. Hutchison, C. Genet, and T. W. Ebbesen, Physical review letters 106, 196405 (2011).

[8] T. Niemczyk, F. Deppe, H. Huebl, E. Menzel, F. Hocke, M. Schwarz, J. Garcia-Ripoll, D. Zueco,
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Appendix A. Quantization of the Electromagnetic Field in Vacuum I

A Quantization of the Electromagnetic Field in Vacuum
Electromagnetic field consists of discrete energy parcels, photons. Although the interaction between

matter and light is normally introduced from a semi-classical point of view, this approach cannot describe
a phenomena as known as spontaneous emission. In order to analyse, for instance, the behaviour in cavities
QED, the Casimir effect and, in particular, emitters near to a two-dimensional material, a quantum formalism
of the EM field is needed.

Almost all of the key results of quantizing the electromagnetic field can be derived by treating the
electromagnetic field much like a harmonic oscillator. Indeed, we may be able to write the EM field as an
infinite set of harmonic oscillators spatially distributed following the Classical Green’s dyadic.

We start from Maxwell’s equation in the SI units in vacuum:

∇ ·B(r, t) = 0 (100)
∇ ·D(r, t) = ρ(r, t) (101)

∇×E(r, t) = − ∂

∂t
B(r, t) (102)

∇×H(r, t) = ∂

∂t
D(r, t) + j(r, t). (103)

Here ρ and j denote the charge and the current. The constitutive relations which relate the magnetic flux
density B with the magnetic field H and the electric displacement D with the electric field E in non-magnetic
materials are:

D = εE (104)
B = µ0H. (105)

Introducing the vector and scalar potential, A and U respectively, using the Coulomb Gauge given by

∇ ·A = 0, (106)

and assuming that we are in vacuum (ρ = j = 0) the wave equation for the vector potential simplifies to [29]:

∇2A− ε̄

c2
∂2

∂t2
A = 0. (107)

We solve Eq.(107) proposing the ansatz

A(r, t) = Υq(t)v(r). (108)

That is, we use the method of variable separation. Here, q(t) is a function dependent on time only and v(r)
depends exclusively on position r. Υ is a constant. Replacing this ansatz in Eq.(107) and being (j=x,y,z) we
find

∇2vj(r)
vj(r) = ε̄

c2
q̈(t)
q(t) . (109)

Because both sides are independent from r or t, they are equal to constants. The left-hand side contains a
second derivative with respect to position, thus, the constant has units of |(length)−2|. We call it −|~k|2= k2,
where ~k is the wave vector determined by the spatial boundary condition.

We obtain, in this way, the Helmholth equation,

∇2v(r) + k2v(r) = 0, (110)

for the spatial part of the vector potential and an oscillator like equation,

q̈(t) + ω2q(t) = 0, (111)

I
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for the time dependent part. Here, ω ≡ c√
ε̄
|~k| is the wave length determined by the boundary conditions

applied in the spatial part. For example, the tangential component of E and the normal component of B
vanish in the borders when the field is considered within a cavity of metal walls. These conditions of the
electromagnetic field in the cavity lead to several discrete possible solutions called modes. Each solution kl
is associated to a mode v(r). The mode functions ul(r) are vl(r) normalised,

∫
d3rul(r)ul′(r) = δl,l′ .

The mode functions ul(r) determine the spatial dependence of the vector potential A, and can be proven
to be orthonormal and complete for a cavity of rather arbitrary shape [29]. Therefore, we expand A into the
mode functions as

A(r, t) =
∑
l

ql(t)ul(r), (112)

where, so far, any condition restricts the mode amplitudes ql(t). Eq.(112) yields the corresponding electric
and magnetic mode expansion:

E(r, t) = −∂A
∂t

= −
∑
l

q̇l(t)ul(r) (113)

H(r, t) = 1
µ0
∇×A =

∑
l

ql(t)∇× ul(r) (114)

If we take the spatial part and we go backwards using again the equation ∇× (∇×A) = ∇(∇·A)−∇2A
we can rewrite Eq.(110) as

∇×∇× v(r) + ε̄
ω2

c2
v(r) = 0. (115)

This expression is worth keeping to compare with the results shown in the next sections. It could be noticed
that, so far, all the development is purely classical.

A.1 The Field as a Set of Harmonic Oscillators
Starting from the Lagrangian of the electromagnetic field in vacuum,

L = ε0

∫
d3r

[
1
2E2(r, t)− c2 1

2B2(r, t)
]
, (116)

we derive its associated Hamiltonian because, in order to quantize, we need a Hamiltonian framework.

H ≡
∫
d3r

[
1
2ε0E2(r, t) + 1

2µ0B2(r, t)
]
. (117)

The integration extends over all the space and we do not assume a specific form of the resonator.
Replacing Eqs.(113) and (114) in the Hamiltonian expressed in Eq.(117) and carrying out the integration

over the space we arrive at [See Ref[29] for details]:

H =
∑
l

Hl =
∑
l

[
1
2 q̇

2
l + 1

2ω
2
l q

2
l

]
. (118)

Once the EM field has been written as a sum of harmonic oscillators, the quantization program is trivial
following the steps learnt for a classical oscillator.

A.2 Quantization of the Electromagnetic Field
The quantization is carried out postulating the commutation relation

[q̂l, p̂l] = ih̄δl,l′ . (119)
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We introduce the creation and annihilation operators, which in our case add or remove photons from a
system,

âl ≡
1√

2h̄ωl
(ωlq̂l + ip̂l) (120)

â†l ≡
1√

2h̄ωl
(ωlq̂l − ip̂l). (121)

It is easy to check that, from the canonical relations [Eq.(119)], we obtain the well known result for the
creation and annihilation operators:

[âl, â†l ] = δl,l′ . (122)

Finally, the Hamiltonian for the EM field reads

Ĥ =
∑
l

1
2 h̄ωl(â

†
l âl + âlâ

†
l ) =

∑
l

h̄ωl(â†l âl + 1
2), (123)

where the second term of the Hamiltonian is a consequence of the commutation relation and describes a sum
over all the zero-point energies of the individual mode oscillators.

The final goal of this appendix was to find the quantified electric field. Using Eq.(113) and ˆ̇q(t) = p(t)
we end up with

Ê(r, t) =
∑
l

i

√
h̄ωl
2ε0

(
âl(t)− â†l (t)

)
ul(r). (124)

Notice that Ê is an operator, and the time dependence indicates that we are working in the Heisenberg
picture. Therefore, if we explicitly write their time dependence

Ê(r, t) =
∑
l

i

√
h̄ωl
2ε0

(
âle
−iωlt − â†l e

iωlt
)

ul(r) (125)

Eq.(125) is a crucial result. On one hand, “mathematically”, it says that the quantized EM field has quantum
time dependent fluctuations given by the creation and annihilation operators (al(t) and a†l (t)). On the other
hand, “physically”, Eq.(125) tells us what a photon is: an excitation of the EM field. Its spatial profile is
given by ul(r).

A.3 The Continuous Form of the Quantized Electromagnetic Field
So far we have expressed the quantized electric field as a sum of modes as in Eq.(125). However, it is

possible to express it as an integral in frequencies.
We firstly convert the sum in modes l using the rectangle rule

∑
l δl =

∫
dl. However, we have to take

into account how the operators âl and the modes ul varies.
The commutation rules between the operators creation of Eq.(122) and annihilation should remain in-

variant
[âl, â†l′ ] = δl,l′

δl

δk→0−−−→ δ(l − l′). (126)

In this way, the discrete operator âl is transformed to the operator âl√
δl

in the continuum.
The mode ul is defined to be orthonormal. They fulfil the equation∫

d3r u∗l ul′ = δl,l′ . (127)

When going to the continuum these modes changes in the same way as the operators creation and annihilation:
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ul −→
ul√
δl
. (128)

The electric field expressed as a integral of modes is given by

Ê(r, t) = i

∫
dl

√
h̄ωl
2ε0

(âl(t)− â†l e
iωlt)(t)ul(r). (129)

We only have left the change of variable from l to ω. Performing it, the Dirac function transforms as∫
dω δ(ω − ω′) =

∫
dl
dω

dl
δ(ω − ω′) −→ δ(l − l′) = dω

dl
δ(ω − ω′). (130)

Using the same invariant conditions as before, the creation and annihilation operators are modified to

âl −→ âω

√
dω

dl
(131)

and the modes to
ul −→ uω

√
dω

dl
(132)

Carrying out the variable change dl = dω · dldω , the electric field finishes as

Ê(r, t) = i

∫
dω

√
h̄ω

2ε0
(âω(t)− â†ω(t))uω(r). (133)

The energy of the Electromagnetic field can also be transformed to

Ĥ =
∫
dωh̄ω(â†ωâω + 1

2), (134)

B Derivation of the Lagrangian of the EM Field, the Bath and
their Interaction

In this appendix we start from

Ltotal = LEM + LBath + Lint (135)

Ltotal = ε0

2

∫
d3r(E2(r, t)− c2B2(r, t)) +

∑
j

∫
dr3( 1

2µẋ2
j (r, t)− 1

2µω
2
jx2

j (r, t)) +

−
∑
j

αj

∫
d3r(ẋj(r, t)A(r, t) + U(r, t)∇ · xj(r, t)), (136)

and we want to arrive at an equation of the Lagrangian easier to handle.
For the calculation, it is convenient to work on the reciprocal space. For example, the electric field is

written as

E(r, t) = 1
(2π)3/2

∫
d3kE(k, t)eikr, (137)

where, to differentiate between the fields in real and reciprocal space, we shall underline the latter.
In the reciprocal space, the Lagrangian in Eq.(136) reads

LEM = ε0

∫ ′
d3k(|E|2−c2|B|2) (138)
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Lbath =
∑
j

∫ ′
d3k(µ|ẋj|2+µω2|xj|2). (139)

Lint = −
∑
j

αj

∫ ′
d3k(ẋjA∗ + ikU∗xj + ẋ∗j A− ikUx∗j )). (140)

Here, the prime means that the integration is restricted to half of the reciprocal space.
From our previous experience with the quantization in vacuum, we shall use the Couloumb gauge and

express the Lagrangian in terms of the vector and scalar potentials A y U .
The relation between the potentials and the fields in the Fourier space are

B(k) = ik×A (141)
E = −∂tA− ikU. (142)

The Coulomb’s Gauge in the Fourier space is given by (k·A = 0). Notice that A is purely transversal
in this Gauge. This fact facilitates the actual calculations. In fact, the magnetic field is also transversal,
whereas the electric field has a transversal part which comes from A, and a parallel one from U .

Putting all together, the Lagrangian relative to the EM field reads

LEM = ε0

∫ ′
d3k(|Ȧ|2+k2|U |2−c2k2|A|2). (143)

We observe that U̇ does not appear in the total Lagrangian. Therefore U is not, formally speaking, a
dynamic variable of the motion. U can be eliminated of the Lagrangian using the Euler-Lagrange equations
for U̇∗. In this way we obtain

U(k, t) = i

ε0k

∑
j

αjx||j (144)

The final total Lagrangian is:
Ltotal = LEM + Lbath + Lint (145)

LEM = ε0

∫ ′
d3k(|Ȧ|2+ 1

ε2
0
|
∑
j

αjx||j |
2−c2k2|A|2) (146)

Lbath =
∑
j

∫ ′
dk3(µ|ẋj|2−µω2

j |xj|2) (147)

Lint = −
∫ ′

dk3 ( 2
ε0
|
∑
j

αjx||j |
2+
∑
j

αjẋj ·A∗ +
∑
j

αjẋ∗j ·A) (148)

This can be split in a parallel trivial part, for which the parallel bath does not coupled with the EM field (A
is purely transversal), and a transverse part:

L⊥total = ε0

∫ ′
d3k(|Ȧ|−c2k2|A|2) +

∑
j

∫ ′
dk3(µ|ẋ⊥j |2−µω2

j |x⊥j |2)

−
∑
j

αj

∫ ′
dk3 (ẋ⊥j ·A∗ + ẋ∗⊥j ·A). (149)

This equation is easier to handle in order to obtain the motion equation by the Euler-Lagrange equation
applied in the variables A and U
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C The Classical Motion Equations of Huttner and Barnett’s Model
Along this Appendix we will solve the equations

µẍj + µω2
jxj = αjȦ (150)

and

ε0Ä = −ε0c
2k2A−

∑
j

αj ẋj (151)

Eq.(150) is the equation of a harmonic oscillator driven by an external time dependent “force”: αjȦ. Its
general solution is

xj = xhj + αj
µωj

∫ t

t0

dt′sin(ωj(t− t′))Ȧ(t′), (152)

being the homogeneous solution,

xhj = xj(0)cos(ωjt) +
ẋj
ωj
sin(ωjt). (153)

Our goal is to solve this motion equation to check if our model describes a lossy media with a Lagrangian
formalism in the same way that the Maxwell’s equation do (Eq.(9)). With this propose, we first perform an
integration by parts over the integral of (152). Next, we derivative Eq.(152) with respect to time, t, using
Liebniz integral rule to finally obtain ẋj . After, we include the result of ẋj in Eq.(151) having

ε0Ä = −ε0c
2k2A−

∑
j

αj ẋ
h
j −

∑
j

α2
j

µωj

∫ t

t0

sin(ωj(t− t′))Ä(t′)dt′ (154)

We focus in the integral
∫ t
t0
sin(ωj(t− t′))Ä(t′)dt′ and we perform the variable change:

t− t′ = τ −→
∫ t−t0

0
dτ. (155)

Here, t− t0 takes into account how long we go back in time. Since the reservoir is assumed to have a short
memory, if we go backwards the integrand tends fast to zero. In this way, the limit of the integral t− t0 can
be extended to ∞. This is a usual procedure called Markovian approximation [30].

We also transform A to the Fourier space:

A(k, t) =
∫ ∞
−∞

A(k, ω)e−iωtdω (156)

Ä(k, t) = −
∫ ∞
−∞

ω2A(k, ω)e−iωtdω. (157)

In this way, after all the approximations, the integral
∫ t
t0
sin(ωj(t− t′)) changes to∫ ∞

−∞
dωω2A(k, ω)

∑
j

α2
j

µωj

∫ ∞
0

sin(ωjτ)e−iωτdτ︸ ︷︷ ︸
λ(ω)

. (158)

where λ(ω) is defined as

λ(ω) =
∑
j

α2
j

µωj

∫ ∞
0

sin(ωjτ)e−iωτdτ. (159)
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We compute λ(ω)

λ(ω) = P [
∫

J(ω′)
ω′ − ω

dω′] + i
π

2 J(ω), (160)

defining

J(ω) =
∑
j

α2
j

µωj
δ(ω − ωj). (161)

Finally, the motion equation for A(k, ω) (Eq.(154)) reads

−
∫ ∞
−∞

dωω2ε0A(k, ω)e−iωt = −
∫ ∞
−∞

dωε0ck
2A(k, ω)e−iωt−

∑
j

αj ẋ
h
j (k, t) +

∫ ∞
−∞

dωω2A(k, ω)λ(ω). (162)

D From Discrete to Continuous Frequency
The road from discrete to continuum can be more tricky than it seems. In this appendix we transform

the summation
∑
j αj

˙̂xhj to an integral.
˙̂xhj (k, t) depends on the operators f̂†j and f̂†j as

ˆ̇xhj (k, t) = i

√
h̄ωj
2µ (f̂†j e

iωjt − f̂je−iωjt) (163)

We need to pass this operators to the continuum. Knowing that the commutation rules should be invariant
and that the units of Dirac’s Delta δ(ω − ω′) are 1

ω
, the operators are modified as follows[

f̂j√
δωj

,
f̂†j√
δω

]
= lim
δω→0

δωj ,ωj′

δω
= δ(ω − ω′). (164)

We define the operators in the continuum as

f̂ω = f̂j√
δω

(165)

f̂†ω =
f̂†j√
δω
. (166)

Therefore, the summation can now be written as∑
j

αj ˆ̇xhj (k, t) =
∑
j

δω
δω

√
µωj
√
µωj

αj ˆ̇xhj (k, t) =
∑
j

δω

√
µωj√
δω

ˆ̇xhj (k, t) αj
√
µωj
√
δω︸ ︷︷ ︸

ξ

. (167)

We shall use the equivalence δij

δω
= δ(ωj − ωi) to work on the ξ expression:

ξ2 =
α2
j

µωj

1
δω

=
∑
i

α2
i

µωi

δij
δω

=
∑
i

α2
i

µωi
δ(ωj − ωi) = J(ω). (168)

Recalling Eq.(24), we conclude that when ωj → ω, then ξ2 → J(ω).
Using the rectangle rule,

∑
j ωj · δω =

∫
dω, and Eqs.(163), (167) and (168), we finally present the
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equation of the summation as an integral:

∑
j

αj ˆ̇xhj (k, t) =
∫ ∞

0
dω
√
J(ω)√µω i

√
h̄ω

2µ (f̂†ωeiωt − f̂ωe−iωt). (169)

E Green’s Function Review
Green’s function is an integral kernel that can be used to solve differential equations [31]. It is specially

useful to find the particular solution of a differential equation.
Consider the following inhomogeneous equation:

LB = D, (170)

where L is a linear operator acting on the vector field B representing the unknown response of the system.
The vector field D is a known source function and makes the differential equation inhomogeneous. Usually
it is difficult to find a solution of Eq.(170) and it is easier to consider D to be the special inhomogeneity
δ(r− r′). Then, the linear equation reads as

LGi(r, r′) = δ(r− r′) i = (x, y, z) (171)

where ni denotes an arbitrary constant unit vector. In general the Green function is dependent on the
inhomogeneity position and it is include as one of its arguments [1].

The equations showed in Eq.(171) can be written in a shorter form as

L
←→
G (r, r′) =←→I δ(r− r′). (172)

where the operator L acts on each column of ←→G separately and ←→I is the unit dyad. The dyadic function←→
G is known as the Dyadic Green’s function.

Assuming that Eq.(172) has been solved and ←→G is known, the particular solution is found with

B(r) =
∫
V

←→
G (r, r′)D(r′)dV ′, (173)

integrating over the volume V in which D 6= 0.

F Coupling Constant Without Disperssion
This appendix aims to prove that the coupling constant between the emitter and the electric field is the

same in a medium with and without dissipation. We recall that the electric field in media with absorption is
given by the particular solution of Eq.(57) whereas in a medium with εi = 0 the electric field is its given by
its homogeneous solution.

The interaction Hamiltonian in the dipole approximation is, for both of the cases,

−σ̂xd̂ · Ê(re). (174)

This expression was developed in the main text for an absorbing media finishing as

Ĥint = −h̄σ̂x
∫
dωg(ω)(b̂(ω)− b̂†(ω)), (175)

where g(ω) is called the coupling constant.
We now write the interaction Hamiltonian using the expression of the electric field in a non-absorbing
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media
Ĥint = −σ̂x

∑
l

i

√
h̄ωl
2ε0

(âle−iωlt − â†l e
iωlt)d · ul(r). (176)

Passing this expression to the Fourier space of ω, it reads as

Ĥint = −σ̂x
∑
l

i

√
h̄ωl
2ε0

(âl − â†l )d · ul(re)δωωl
. (177)

We can simplify the above equation as

Ĥint = −h̄σ̂x
∑
l

gl(âl − â†l ), (178)

where it has been included the shorthand notation:

gl = i

√
ωl

2h̄ε0
d · ul(re) δωωl

. (179)

We use the equivalence [1],

Im[
↔
G (re, re, ω)] = πc2

2ω
∑
l

u∗l (re)ul(re)δω,ωl
, (180)

to write the coupling constant regarding the dyadic Green function.

|g(ω)|2= ω2

πc2ε0h̄
~dT Im[

↔
G (re, re, ω)]~d (181)

It can be observed that we have got the same equation as Eq.(78). And, so that, both coupling constants
are equal.

G Conditions for Strong Regime in a Cavity QED
Having a TLS inside a cavity QED, we describe them, as in the main text through the Spin-Boson model

in the RWA with the losses in the media introduced by a spectral density g(ω) with the form of a Lorentzian
function. The Hamiltonian is given by

Ĥeff = −h̄∆
2 σ̂z − h̄

∫
dωg(ω)(âσ̂+ − â†σ̂−) +

∫
dω ωâ†â. (182)

We want to know how the probability of the excited TLS, |ce0(t)|2, evolves with time having the initial
conditions ce0(0) = 1 and c1ωg = 0 for any ω. The possible states of the emitter along time are given by the
wave function

|ψ(t)〉 = ce0(t) |e, 0〉+
∫
dωcg1ω |g, 1ω〉 , (183)

where cg1ω(t) are the coefficients of the states with the emitter in the ground state and one photon in a mode
ω.

We calculate the evolution of this wave function in the interaction picture through Schrödinger equation

|ψ̇(t)〉 = − i
h̄
HI
int |ψ(t)〉 . (184)

Here, HI
int is

HI
int = h̄

∫
dωg(ω)(âσ̂+e

−i(∆−ω)t − â†σ̂−ei(∆−ω)t). (185)
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Therefore, the derivatives with respect to time of the coefficients are

ċe0(t) = −i
∫
dωg(ω)ei(∆−ω)tcg1ω(t) (186)

ċg1ω(t) = −ig(ω)e−i(∆−ω)tce0(t). (187)

In order to get an equation that involves ce0(t) only, we first integrate Eq.(186)

cg1ω(t) =
∫
dt′ − ig(ω)e−i(∆−ω)ce0(t′). (188)

On substituting the expression of cg1ω(t) in Eq.(186) we obtain

ċe0(t) = −
∫
dω|g(ω)|2

∫ t

0
dt′ei(∆−ω)(t−t′)ce0(t′). (189)

Here, the integral in ω goes from 0 to ∞. However, we know that the shape of g(ω) is a Lorentzian centred
about the atomic transition frequency ∆ = Ω > 0. When we move away from ∆, g(ω) tends to zero and
consequently, the integrand tend to zero. In this way we can extend the integral in ω to −∞ without any
change in the result.

Substituting the value of the spectral density,

g2(ω) = 1
π

g2Γ/2

(Ω− ω)2 +
(

Γ
2

)2 , (190)

in Eq.189, we get

ċe0(t) = − 1
π
g2 Γ

2

∫ t

0
dt′
∫ ∞
−∞

dω
ei(∆−ω)(t−t′)

(∆− ω)2 + Γ
4
ce0(t′). (191)

The integral on ω is easy to perform by Cauchy theorem, arriving at

ċe0(t) = − 1
π
g(ω)2

∫ t

0
dt′e−

Γ
2 |t−t

′|ce0(t′). (192)

Deriving all this equation with respect to time (t) by using Leibniz rule, and taking into account that
t > t′ for all t, we finally find the motion equation of ce0(t):

c̈e0(t) = −g(ω)2ce0(t)− Γ
2 ċ

e
0(t) (193)

This is equivalent to the motion equation of a classical damped harmonic oscillator. Said oscillator is over-
damped if g < Γ

4 . In the overdamped regime, the probability of finding the emitter in the excited states
decays as a sum of two exponential. The oscillator is underdamped if g > Γ

4 , then the probability of finding
the emitter in the upper state is

|ce0|2= A2cos2

(√(
g2 − Γ2

16

)
t+ φ

)
e−

Γ
2 t, (194)

being A and φ some constants determined by the initial conditions. These oscillations characterizes the
strong regime. Therefore, we will only observed Rabi oscillator if g > Γ

4 .
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H How to Compute Gzz(0)
In this appendix we develop techniques to analyse the kernels of

Gzz(0) = ig

4π

∫ ∞
0

dq||
q3
||

qaz︸ ︷︷ ︸
Gzza(0)

+ −ig
4π

∫ ∞
0

dq||ram
q3
||

qaz
e2iqazh̃︸ ︷︷ ︸

GzzRam(0)

z > 0 (195)

that enable us to compute the integrals. The variable of integration is the parallel part of the normalized
wave vector, q|| = k||

g . Here g = ω
c , h̃ = hg is the normalized distance from the surface to the emitter,

ram = qmz−qaz ε̄m

qmz+qaz ε̄m
is the reflection factor and qaz and qmz are the transversal part of the normalized wave

vector in the air and the metal, respectively.
The Cauchy theorem tells that the integrals through two paths which connect the same two points are

equal if the function is holomorphic everywhere in between the two paths. The integrands of Eq.(195) are
holomorphic everywhere except poles and branch cuts. Our goal is to find a path that connect the points
q|| = 0 and q|| =∞ that does not have any singularity in the area within this new path and the positive real
line. Therefore, in order to obtain the new path, we need to find the poles and branch cuts of the integrands.

Since q is the normalized wave vector q = k
g , its modulus is equal to |q|=

√
ε̄(r, ω). When we are working

within the air, ε̄(r, ω) = 1, the transversal part qaz can be written in terms of the parallel part as

qaz =
√

1− q2
|| (196)

and when we are working in the metal as

qmz =
√
ε̄− q2

||. (197)

The Green function presents two poles, one if qaz = 0 an another if 1/ram = 0. The pole 1/ram = 0 represents
the plasmons because it produces a reflected wave even if there is not emitter.

We show the steps to localize a pole focusing on the pole qaz = 0, since the procedure would be similar for
ram = 0. In order to treat the singularity of qaz = 1√

ε̄−q2
||

, we have to take into account the infinitesimally

small absorption as follows:
ε̄→ ε̄+ iδ. (198)

We introduce the absorption in this way to prevent that a wave created in the emitter is infinitely large at
a position infinitely far from it [21]. As it is shown in Fig.(12), there will be two q|| that fulfil the condition
qaz = 0.

Since the integral goes from q|| = 0 to q|| =∞, we only have to avoid the poles with a positive imaginary
part. So far, it looks convenient to do the integral through a path located in the lower-half plane. However,
we still need to find the branch cuts to figure out the optimal path.

The kernels in Eq.(195) include multivalued functions as qaz and qmz. Although we have already chosen
the solution with a positive imaginary part, there are more possible solutions. To explain the concept of a
branch cut we utilize the function w = Im

√
z > 0. Being z a complex number z = reiθ, the solution is

w =
{√

zeiθ/2, if θ ≤ π.
√
ze−iθ/2, if θ > π.

(199)

If z moves around the origin in a full circle, z = rei(θ+2π), there are a discontinuity in the value of w when
z crosses the real positive axis. This is the definition of a branch cut: a curve in the complex plane across
which an analytic multivalued function is discontinuous. The function w =

√
z presents a branch cut defined
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Figure 11: Poles of the integrand of GzzRam(0). The blue points indicate the poles due to the
plasmons and the green points the pole in |q|||= 1 adding a small absorption.

as: {
Im{z} = 0,
Re{z} ≥ 0.

(200)

We can implement this result in qaz and qmz, substituting z by

z = ε̄− q2
||. (201)

The curve in the complex plane of q|| that fulfil Im{z} = 0 and Re{z} ≥ 0 draws the branch cut. In the
case of qaz, we need to add a small absorption as ε̄→ ε̄+ iδ. Its branch cut obeys

δ = Im{q||} ·Re{q||} (202)
1 + Im{q||} −Re{q||} ≥ 0 (203)

with Re{q||} ∈ [−1, 1]. For qmz the conditions are

δ = Im{q||} ·Re{q||} (204)
1 + Im{q||} −Re{q||} ≥ 0 (205)

with Re{q||}ε[−ε̄R, ε̄R].
These branch cuts are placed in the upper part of the complex plane of q|| [21]. Therefore we can carry

out the integral through the path marked in Fig.(13).
Since the kernels of Eq.(195) fall as an exponential when q|| increases, we can modify the upper limit of

the integral from ∞ to 50, for example. In this way we can neglect the integral through the path parts 2 and
3 [See Fig. (12)].
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Figure 12: Schema of the poles, branch cuts and path taken to carrying out the integral. The lines
and points in green are the branch cut and poles resulting from qaz and the ones in blue come from
qmz. We do the integral through the dashed path. It has the same result as the integral through
the real positive axis because there are not any discontinuity between the two paths.

Code
This appendix presents the codes written in Matlab which were used to solve the integral equal to

Im[Gzz(re, re, ω)],see Eq. (195), of an emitter near to a metallic surface of gold or silver.

H.1 Purcell
purcell.m is the main program used to find the Purcell factor.

1 (∗ : : Package : : ∗)
2

3 %% Input data
4 %
5 % d i s t a n c e s in microns
6 %
7 % metal , 1=s i l v e r , 2=gold , 8=tungsten
8 %
9 imeta l = 2 ;

10

11 nomega=500;
12 delomega =0.005;
13 omegain =1.37;
14 % delomega =0.0008;
15 % omegain =3.4 ;
16

17 i d i r d i p =3;
18 % d i s t a n c i a s =0.001;
19 d i s t a n c i a s = 0 . 0 0 1 : 0 . 0 0 1 : 0 . 0 1 9 ; % r e a l d i s t a n c e s in micrometres
20 n d i s t a n c i a s = length ( d i s t a n c i a s ) ;
21 hs = ze ro s (1 , n d i s t a n c i a s ) ; % adimens iona l d i s t a c e s
22 omegas=ze ro s (1 , nomega ) ;
23 e p s i l o n t o d o s=ze ro s (1 , nomega ) ;
24 %
25 % Loop in d i s t a n c e s
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26 gamma 0=logspace ( 7 , 4 , 1 1 ) ;% i n t r i n s i c decay ra t e o f the emisor in eV
27 ngamma 0=length (gamma 0) ;
28 p u r c e l l t = ze ro s (nomega , ngamma 0) ;
29 f o r i d i s t a n c i a s = 1 : n d i s t a n c i a s
30 d i s0 = d i s t a n c i a s ( i d i s t a n c i a s ) ;
31 %
32 % loop in omegas
33

34 f o r iomega = 1 : nomega
35

36

37 % vlan0 = vlan in + ( iv lan 1 ) ∗ de lv l an ;
38 % gvaccum0 = 2 . d0 ∗ pi / vlan0 ;
39

40 % omegaev = 1.240 / vlan0 ;
41 omega0=omegain + ( iomega 1 ) ∗delomega ;
42 gvaccum0 = 2 . d0 ∗ pi ∗omega0 / 1 . 2 4 0 ;
43 omegaev=omega0 ;
44 epsmetal = e p s i l o n m e t a l ( imetal , omegaev ) ;
45 omegas ( iomega )=omegaev ;
46 e p s i l o n t o d o s ( iomega )=epsmetal ;
47 d i s = d i s0 ∗ gvaccum0 ; % normal ized d i s t a n c e s
48 hs ( i d i s t a n c i a s ) = d i s ; % hs es d i s t a n c i a s normal izadas
49

50 % Dipole in Z d i r e c t i o n
51 %
52 i f i d i r d i p == 3 ;
53 [ imGvac , imGref , imG, N, tvec ] = f u n c t i o n p u r c e l l z ( d is , epsmetal

, gvaccum0 ) ;
54

55 f o r igamma 0 = 1 : ngamma 0
56 % p u r c e l l t ( iomega , igamma 0) = (gamma 0( igamma 0) ∗ (3/2) ∗ r e a l (imG

) ) ; % Esto es d i rectamente g ˆ2(w) ∗2 p i in eV
57 p u r c e l l t ( iomega , igamma 0) = r e a l (imG) ;
58 end
59 % purce l l tA ( i v l a n )=r e a l ( imGref ) / r e a l ( imGvac ) +1;
60 end
61

62

63 end
64

65

66

67 f o r i c a c a = 1 : ngamma 0
68 f o r iomega = 1 : nomega
69 % p u r c e l l t ( iomega , i c a c a ) = p u r c e l l t ( iomega , i c a c a ) ∗omegas ( iomega ) ∗omegas (

iomega ) ∗omegas ( iomega ) /(3 .256000∗3 .256000∗3 .256000) ; % Esto es
d i rectamente g ˆ2(w) ∗2 p i in eV

70 end
71 end
72 %
73 % end loop in omegas (eV)
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74 %
75

76 % %
77 % % wr i t i ng out the r e s u l t s
78

79

80 f o r igamma 0 = 1 : ngamma 0
81 gammita=num2str ( igamma 0) ;
82 s=num2str ( d i s 0 ) ;
83 s=s t r c a t ( ’ S i l v e r d i s=’ , s , ’ i= ’ , gammita ) ;
84

85

86 f i l e I D 1 = fopen ( s t r c a t ( ’C:\ Users \ usuar io \Dropbox\master\TFM\PURCELL Ag W (
matlab program ) \imG\ d a t a f i l e s \max\ ’ , s , ’ . tx t ’ ) , ’w ’ ) ;

87 [M, I ] = max( p u r c e l l t , [ ] , 1 ) ;
88 f p r i n t f ( f i l e I D 1 , ’ % f ’ , omegas ( I (1 ) ) ) ;
89 f c l o s e ( f i l e I D 1 ) ;
90

91 f i l e I D = fopen ( s t r c a t ( ’C:\ Users \ usuar io \Dropbox\master\TFM\PURCELL Ag W (
matlab program ) \imG\ d a t a f i l e s \ ’ , s , ’ . tx t ’ ) , ’w ’ ) ;

92 f p r i n t f ( f i l e I D , ’# Omega (eV) \ t imG \n ’ ) ;
93 f o r iomega = 1 : nomega
94 f p r i n t f ( f i l e I D , ’ % f \ t % . 9 f \n ’ , omegas ( iomega ) , p u r c e l l t ( iomega , igamma

0) ) ;
95 end
96 f c l o s e ( f i l e I D ) ;
97

98

99

100 f i g u r e (1 )
101 p lo t ( omegas , r e a l ( e p s i l o n t o d o s ) , ’ bx ’ ) ;
102 t i t l e ( s )
103 s=s t r c a t ( s , ’ . png ’ ) ;
104 y l a b e l gamma 0∗3/2∗imG
105 x l a b e l omega (eV)
106 saveas (1 , s t r c a t ( ’C:\ Users \ usuar io \Dropbox\master\TFM\PURCELL Ag W ( matlab

program ) \imG\ p l o t s \ ’ , s ) , ’ png ’ ) ;
107 end
108 end

H.2 Purcell function
The main program calls the function Purcell function in which the integral is performed along the

complex plane.

1 f unc t i on [ imGvac , imGref , imG, N, tvec ] = f u n c t i o n p u r c e l l z ( d is , eps ,
gvaccum0 )

2

3 cz = 0 ;
4 ui = 1 i ;
5 %
6 R = max(10/ dis , 1 0 ) ; % qmax=10/ d i s
7 N=10000;
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8 d e l t a t = pi /N;
9 %

10 tvec=ze ro s (1 ,N) ;
11 qpurvac = ze ro s (1 ,N) ;
12 purctot = ze ro s (1 ,N) ;
13 qpurc = ze ro s (1 ,N) ;
14 imGvac = 0 ;
15 imGref = 0 ;
16 imG = 0 ;
17 %
18 f o r i q = 1 :N
19 t= ( iq 0 . 5 ) ∗ pi /N;
20 q=R∗ ( 1 cos ( t ) ) R∗ ui ∗ s i n ( t ) ;
21 qz = cdsqrtnew (1 q ˆ2) ;
22 qz2 = cdsqrtnew ( eps q ˆ2) ;
23 tvec ( iq )=qz ;
24 %
25 r e f l e = ( eps ∗qz qz2 ) /( eps ∗qz + qz2 ) ;
26 expo = exp (2∗ ui ∗qz∗ d i s ) ;
27 %
28

29 qpurvac ( iq ) = ( qˆ3 / qz ) ;
30 purctot ( i q ) = ( qˆ3 / qz ∗ r e f l e ∗ expo ) ;
31 qpurc ( iq ) = ( qˆ3 / qz ∗ (1+ r e f l e ∗ expo ) ) ;
32 imGvac = imGvac + R∗( s i n ( t ) u i ∗ cos ( t ) ) ∗ pi /N∗ qpurvac ( iq ) ;
33 imGref = imGref + R∗( s i n ( t ) u i ∗ cos ( t ) ) ∗ pi /N∗ purctot ( i q ) ;
34 imG = imG + R∗( s i n ( t ) u i ∗ cos ( t ) ) ∗ pi /N∗qpurc ( iq ) ;
35 end
36

37

38 end

H.3 Epsilon metal
The function epsilon metal calculates the permittivities of the metals following Eq.(92)

1 f unc t i on [ epsmetal ] = e p s i l o n m e t a l ( imetal , omega )
2 %
3 % retu rns the d i e l e c t r i c constant f o r s e v e r a l metals f o r an input f requency
4 % in eV
5 %
6 ui = 1 i ;
7 %
8 % S i l v e r
9 i f ( imeta l ==1) ;

10 epsr = 4 . 6 ;
11 omegap0 = 9 . 0 ;
12 lgamma0 = 0 . 0 7 ;
13 de l ta eps0 = 1 . 1 ;
14 bomega0 = 4 . 9 ;
15 bgamma0 = 1 . 2 ;
16 epsmetal = epsr omegap0ˆ2/omega /( omega+ui ∗lgamma0) . . .
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17 de l ta eps0 ∗ bomega0 ˆ2/( omega ˆ 2 bomega0ˆ2+ui ∗omega∗
bgamma0) ;

18 end
19 % Gold
20 i f ( imeta l ==2) ;
21 epsr = 5 . 9 6 7 ;
22 omegap0 = 8 . 7 2 9 ;
23 lgamma0 = 0 . 0 6 5 ;
24 de l ta eps0 = 1 . 0 9 ;
25 bomega0 = 2 . 6 8 4 ;
26 bgamma0 = 0 . 4 3 3 ;
27 epsmetal = epsr omegap0ˆ2/omega /( omega+ui ∗lgamma0) . . .
28 de l ta eps0 ∗ bomega0 ˆ2/( omega ˆ 2 bomega0ˆ2+ui ∗omega∗

bgamma0) ;
29 end
30 % Cooper
31 i f ( imeta l ==3) ;
32 epsr = 1 . ;
33 omegap0 = 8 . 2 1 2 ;
34 lgamma0 = 0 . 0 3 ;
35

36 de l ta eps0 = 8 4 . 4 9 ;
37 bomega0 = 0 . 2 9 1 ;
38 bgamma0 = 0 . 3 7 8 ;
39

40 de l ta eps1 = 1 . 3 9 5 ;
41 bomega1 = 2 . 9 5 7 ;
42 bgamma1 = 1 . 0 5 6 ;
43

44 de l ta eps2 = 3 . 0 1 8 ;
45 bomega2 = 5 . 3 ;
46 bgamma2 = 3 . 2 1 3 ;
47

48 de l ta eps3 = 0 . 5 9 8 ;
49 bomega3 = 1 1 . 1 8 ;
50 bgamma3 = 4 . 3 0 5 ;
51 epsmetal = epsr omegap0ˆ2/omega /( omega+ui ∗lgamma0) . . .
52 de l ta eps0 ∗ bomega0 ˆ2/( omega ˆ 2 bomega0ˆ2+ui ∗omega∗

bgamma0) . . .
53 de l ta eps1 ∗ bomega1 ˆ2/( omega ˆ 2 bomega1ˆ2+ui ∗omega∗

bgamma1) . . .
54 de l ta eps2 ∗ bomega2 ˆ2/( omega ˆ 2 bomega2ˆ2+ui ∗omega∗

bgamma2) . . .
55 de l ta eps3 ∗ bomega3 ˆ2/( omega ˆ 2 bomega3ˆ2+ui ∗omega∗

bgamma3) ;
56 end
57

58 % Tungsten
59 i f ( imeta l ==8) ;
60 epsr = 1 . ;
61 omegap0 = 5 . 9 5 5 ;
62 lgamma0 = 0 . 0 2 7 ;
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63 omegap1 = 2 . 2 8 6 ;
64 lgamma1 = 0 . 3 3 5 ;
65 de l ta eps0 = 1 2 . 0 ;
66 bomega0 = 0 . 9 8 4 ;
67 bgamma0 = 0 . 5 9 0 ;
68 de l ta eps1 = 1 4 . 4 ;
69 bomega1 = 2 . 0 6 6 ;
70 bgamma1 = 1 . 6 5 3 ;
71 de l ta eps2 = 1 2 . 9 ;
72 bomega2 = 4 . 1 3 2 ;
73 bgamma2 = 2 . 4 7 9 ;
74 epsmetal = epsr omegap0ˆ2/omega /( omega+ui ∗lgamma0) . . .
75 omegap1ˆ2/omega /( omega+ui ∗lgamma1) . . .
76 de l ta eps0 ∗ bomega0 ˆ2/( omega ˆ 2 bomega0ˆ2+ui ∗omega∗

bgamma0) . . .
77 de l ta eps1 ∗ bomega1 ˆ2/( omega ˆ 2 bomega1ˆ2+ui ∗omega∗

bgamma1) . . .
78 de l ta eps2 ∗ bomega2 ˆ2/( omega ˆ 2 bomega2ˆ2+ui ∗omega∗

bgamma2) ;
79 end
80 end
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