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Introduccion

El estudio y control del error aparece como un problema fundamental al desarrollar mé-
todos numéricos. En particular, al utilizar la representacion en coma flotante se presenta el
estudio del error de redondeo. Un andlisis cldsico del mismo depende del condicionamiento
del problema. No obstante, para algunos problemas se ha logrado dar un enfoque distinto desa-
rrollando algoritmos con alta precision relativa. Por ejemplo, para realizar cdlculos con clases
de matrices estructuradas. En estos algoritmos se parte de parametrizaciones de las matrices
que permiten asegurar la alta precision relativa independientemente del condicionamiento de
las mismas. Hasta el momento, los ejemplos de clases de matrices encontrados que presen-
tan esta ventaja son o estdn relacionados con subclases de P-matrices. Recordemos que las
P-matrices son matrices cuadradas con todos los menores principales positivos. Dentro de esta
clase, destacan las M-matrices no singulares por sus numerosas aplicaciones. En esta memoria,
presentaremos dichas matrices, describiremos una parametrizacion que permite obtener alta
precision relativa y veremos como utilizarla. Después, introduciremos las denominadas matri-
ces de Nekrasov. Estas matrices estdn intimamente relacionadas con las M-matrices diagonal-
mente dominantes, y aparecen en diversas aplicaciones, por ejemplo, al buscar cotas de error
en el problema de complementariedad lineal. Para las matrices de Nekrasov presentaremos una
parametrizacién adecuada que nos permitird obtener un método de alta precision relativa para
hallar la inversa y resolver ciertos sistemas lineales de ecuaciones. También, construiremos una
matriz de escalado para las matrices de Nekrasov que las lleva a forma estrictamente diagonal-
mente dominante. A partir de ahi, deduciremos cotas para la norma de la inversa de una matriz
de Nekrasov, problema con importantes aplicaciones potenciales.

La memoria se estructura en siete capitulos. En el primer capitulo introducimos los concep-
tos basicos que necesitamos para plantear un estudio del error, definimos alta precision relativa
y damos una condicién suficiente para asegurarla.

En el segundo capitulo presentamos las diversas clases de matrices estructuradas rela-
cionadas con las de Nekrasov, que engloban los problemas estudiados posteriormente: las
P-matrices, las Z-matrices, las M-matrices, las matrices diagonalmente dominantes y las H-
matrices.

En el tercer capitulo nos centramos en las M-matrices no singulares. Las M-matrices para
las que vamos a lograr algoritmos con alta precision relativa cumplen ademds la condicién de
dominancia diagonal. En este caso, la parametrizacion adecuada para trabajar con ellas vendra
dada por los elementos extradiagonales de la matriz asi como la suma de los elementos de
cada fila de la misma. Con estos pardmetros, buscaremos obtener con alta precision relativa
lo que se llama una descomposicién reveladora del rango. Estas descomposiciones permiten
obtener los valores singulares con alta precision relativa. En el caso de las M-matrices diago-
nalmente dominantes, las descomposiciones reveladoras del rango serdn ciertas factorizaciones
LDU, obtenidas utilizando la eliminacién Gaussiana de forma apropiada, es decir, empleando
adecuadas estrategias de pivotaje simétrico. Por ello recordaremos también dicho método de
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v Introduccion

eliminacién y expondremos cdmo adaptarlo para obtener una factorizaciéon LDU mediante un
algoritmo libre de restas (y asi con alta precision relativa), pudiendo emplear para ello dos téc-
nicas distintas de pivotaje simétrico. Al final del capitulo incluimos ejemplos numéricos para
comparar las técnicas de pivotaje simétrico descritas.

Los demas capitulos se centran en el estudio de las matrices de Nekrasov. En el cuarto capi-
tulo enunciamos propiedades elementales de las mismas, y para la subclase compuesta por las
Z-matrices de Nekrasov con elementos diagonales positivos, proponemos una parametrizacion
a partir de la cual se obtienen algoritmos con alta precision relativa para el calculo de inversas
y para el cdlculo de sistemas de ecuaciones lineales con términos independientes no negativos.

El quinto capitulo es el dedicado a desarrollar dichos métodos con alta precision relativa, y
en €l se incluye también el pseudocddigo necesario para implementarlos. La clave consiste en
relacionar las Z-matrices de Nekrasov con diagonal positiva con las M-matrices diagonalmente
dominantes empleando una matriz de escalado, y utilizar técnicas conocidas para estas matrices
descritas en el tercer capitulo aunque sin necesitar estrategias de pivotaje. Ademas, en diversos
casos, también resulta necesario utilizar la estructura de ceros de nuestra matriz para poder
resolver dichos problemas. Tras presentar los algoritmos necesarios, en el sexto capitulo se
incluyen experimentos numéricos para comparar los resultados obtenidos al utilizar dichos
algoritmos con alta precision relativa con los empleados habitualmente.

El dltimo capitulo trata un problema diferente. Se presentan dos matrices de escalado que
llevan a una matriz de Nekrasov a forma estrictamente diagonalmente dominante. Con dichas
matrices de escalado obtenemos cotas de la norma de la inversa de nuestra matriz original. Este
es un problema con importantes aplicaciones y que esté siendo estudiado en la actualidad, por
lo que para ver la bondad de las cotas introducidas en la memoria recogemos las cotas mas
utilizadas y concluimos el capitulo realizando una comparativa con otros métodos publicados
recientemente.
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Capitulo 1

Error y calculos con alta precision relativa

Un problema fundamental del dlgebra lineal numérica consiste en encontrar métodos efi-
cientes (estables y de bajo coste computacional) para la resolucion de sistemas de ecuaciones
lineales con ordenador, es decir, resolver Ax = b con A matriz cuadrada no singular. Un proble-
ma muy relacionado con el anterior es el de encontrar métodos eficientes para hallar la inversa
de una matriz no singular puesto que, si tenemos el sistema Ax = b , entonces x =A~"'b. Si A es
una matriz n X n el método més usado en general para la resolucion de sistemas de ecuaciones
lineales es la eliminacion Gaussiana (véase seccion 3.1), que tiene un coste computacional del
orden de 1’ operaciones elementales. El método de Gauss-Jordan es el mds usado en general
para hallar la inversa de una matriz n X n. Si la matriz tiene una estructura especial, puede
haber métodos con menos coste computacional para resolver los problemas anteriores. Como
el ordenador usa una aritmética de punto flotante (véase seccion 1.2), ésto ocasiona que exista
una diferencia entre nuestro cdlculo y la solucién exacta, a la que llamamos error. Para con-
trolar estos errores en la eliminacion Gaussiana se suelen usar técnicas de pivotaje, como, por
ejemplo, el pivotaje parcial.

El primer apartado de este capitulo lo dedicamos a introducir algunos conceptos bdsicos
relacionados con los errores. El siguiente apartado lo dedicamos a la representacién en coma
flotante. Finalmente, la tltima seccion trata los conceptos de condicionamiento y alta precision
relativa.

1.1. Conceptos basicos

El estudio del error aparece como un problema fundamental para desarrollar buenos algo-
ritmos. Existen tres causas fundamentales de error. La primera es el redondeo consecuencia
de trabajar en una aritmética de precision finita. Los errores de redondeo no son aleatorios, y
aunque a veces puedan ser beneficiosos, como al aplicar el método de potencias partiendo de
un vector inicial elegido desafortunadamente, hay que tener presente que un algoritmo defi-
ciente puede magnificar estos errores y dar lugar a una solucién numérica inatil. La segunda
es la incertidumbre que podamos tener en los datos de cualquier problema en la préictica, bien
sea debida a errores de medicién o estimacidn, a errores de almacenamiento de los datos o
a errores de cdlculos previos si estos datos son solucién de un problema anterior. La tercera
es la discretizacion que puede tener que llevarse a cabo al plantear la resolucidn practica del
problema. En cualquier caso, nos encontramos una primera cuestion: ;Como se cuantifica el
error? Supongamos que queremos calcular un valor x escalar.



2 Capitulo 1. Error y célculos con alta precision relativa

Definiciéon 1.1. El error absoluto cometido al hallar X es Ep,(X) = |x —Xx].

Esta primera definicion no tiene en cuenta la magnitud de la cantidad a calcular, por lo que
puede no ser muy informativa. Por tanto, se introduce el error relativo:

=]

I

Definicion 1.2. El error relativo cometido al hallar x, definido cuando x # 0, es E,;(x) =

El concepto de error relativo estd relacionado con el nimero de cifras significativas correc-
tas que obtenemos, por lo que serd el que atraiga nuestro interés. En el caso vectorial se puede
extender la misma definicion de esta forma:

Definicion 1.3. El error relativo cometido al calcular el vector X, definido cuando x # 0, es
Eo(X) = [lx—x]]

[

No obstante, puede que se obvie el error cometido en las componentes de menor magnitud
del vector, por lo que también es interesante definir :

Definicion 1.4. El error relativo componente a componente del vector x, definido cuando
x; # 0, es max; %
1
Como no conocemos con exactitud el error que cometemos, la forma de proceder consiste
en dar cotas de este error, al que se denomina forward (o progresivo), que aseguren que nues-
tros célculos son buenos.

Otro planteamiento posible y que ha resultado muy util para acotar el error forward (como
mencionamos en la seccién 1.3) es considerar para qué valores iniciales del problema nues-
tra soluciéon numérica seria la solucion exacta. Tomando como ejemplo y = f(x), una funcién
continua real de variable real, e y una aproximacién numérica a f en un punto x dado, conside-
ramos el conjunto de valores x + Ax para el que seria la solucién exacta, y tomamos el menor
|Ax|, al que llamamos error backward (o regresivo). Si para todo x, el valor |Ax| es pequefio
(en el contexto del problema que tratemos) diremos que el método es estable backward. El es-
tudio de la estabilidad backward juega un papel importante en el disefio de un buen algoritmo.
En un problema concreto, podemos definir el factor de crecimiento, que es una medida del in-
cremento de la magnitud de los datos con los que se trabaja. Si estos crecen demasiado podria
darse un problema de overflow, lo que significa que una cantidad calculada ha superado el ma-
ximo del conjunto de numeros representables. Clasicamente, en dlgebra lineal numérica, tener
una cota adecuada del factor de crecimiento nos permite a su vez acotar el error backward. Asi
también evitaremos este tipo de problemas en el desarrollo del algoritmo. De igual forma, se
dice que un método es estable forward si la magnitud del error forward de sus soluciones es
similar a la del error backward asociado a un método estable backward.

1.2. Representacion en coma flotante

Antes de introducir el concepto de alta precision relativa, debemos especificar en qué con-
texto estamos trabajando. Hemos mencionado como una causa de error el trabajar utilizando
una aritmética de precision finita. Sea F' un subconjunto de los ndmeros reales (F C R). Di-
remos que F es un sistema de numeracién en coma flotante si sus elementos presentan la
siguiente forma:

y=dmx B

El significando (también llamado mantisa), m, es un nimero entero que cumple 0 < m < '~ L
El sistema F queda caracterizado por los siguientes nimeros enteros:
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= la base f3,
= la precision t,
= y el rango de exponentes e, < € < ensx-

En nuestro caso, la base serd 2. Los nimeros representables dependerdan del nimero de
bits empleado para almacenar el significando y el exponente. El nimero de bits utilizados
para el significando determinard la precision, y el nimero de bits usados para el exponente
delimitara el rango de niimeros representables. Lo comin es emplear el estandar del IEEE para
aritmética en coma flotante. En €l se definen dos formatos de nimeros en coma flotante muy
utilizados: precision simple (de 32 bits) y precision doble (de 64 bits). El primero destina 8
bits al exponente y 23 al significando. El segundo 11 bits al exponente y 52 al significando. En
ambos casos el primer bit corresponde al signo.

Si queremos realizar un andlisis del error que cometemos al aplicar un algoritmo, existe un
valor asociado a F' fundamental: la unidad de redondeo, u. La unidad de redondeo es el maximo
error relativo que se puede cometer al aproximar un nimero dentro del rango de nimeros
representables. En los siguientes capitulos consideraremos el modelo estdndar de aritmética en
coma flotante. Sean x,y € F:

flx©y)=(xoy)(1+8),  [8[<u,  O=+—x/.

donde fI(-) con un argumento representa el valor calculado de esa expresién. El modelo dice
que el valor que se calcula es “tan bueno” como el valor exacto redondeado. A veces puede ser
mas conveniente utilizar la siguiente variacion del modelo. De nuevo, sean x,y € F':

xX©®y
146’

flxoy) = |6| < u, ©=+,—,%,/.

1.3. Condicionamiento y alta precision relativa

Ademas del interés propio que suscita el estudio del error backward (si tenemos estabilidad
backward, la solucion calculada es la soluciéon de un problema ligeramente perturbado), éste
puede servir para dar una estimacion del error que definfamos originalmente, el error forward.
La relacién entre ambos errores estd gobernada por el condicionamiento del problema, que
mide la sensibilidad de la solucién a las perturbaciones en los datos.

Como ejemplo concreto de condicionamiento, podemos considerar el problema de la reso-
lucion de un sistema lineal de ecuaciones Ax = b, con A matriz cuadrada no singular (puede
consultarse, por ejemplo, en la seccién 2.2 de [8]).

Definicién 1.5. El nimero de condicién de una matriz no singular A es k(A) = [|A]|[|A7],
donde ||-|| denota una norma matricial.

Los casos mds frecuentes corresponden a k..(A) (que usa ||-||e) y k2(A) (que utiliza ||-||2).
El nimero de condicion depende solamente de la matriz A, y cuando es muy grande, nos impi-
de dar una cota satisfactoria del error forward de la solucién del sistema.

En general, cuando en un problema tenemos definido el error forward, el error backward
y el nimero de condicién correspondientes, se busca probar la relacién siguiente (véase la
seccion 1.6 de [15]):

error forward < nimero de condicion x error backward
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ya que normalmente es mucho més fécil acotar el error backward que el error forward.
Aunque la solucién numérica que obtengamos tenga un error backward pequefio, éste pue-
de ser amplificado por un factor de hasta el tamaiio del nimero de condicién, dando lugar a una
solucion numérica con un error forward excesivo. Asi, el condicionamiento se puede presentar
como un impedimento intrinseco a la hora de dar una cota del error satisfactoria, en contraste
con el error backward, que depende del método utilizado. En la practica, si nuestro problema
lleva asociado una matriz mal condicionada, es de interés buscar algiin camino alternativo.

Un ejemplo que también justifica el buscar un planteamiento distinto es el célculo de va-
lores singulares de una matriz. Si buscamos acotar el error cometido al calcular el vector de
valores singulares en norma, aunque veamos que los valores singulares grandes tendrdn un
error relativo pequeio, muchas veces no podremos asegurar lo mismo para los mas préoximos
a cero (puede verse en [9]). Y estos son los que queremos conocer de forma precisa.

Para obtener resultados con varias cifras significativas correctas, buscaremos que el error
de nuestro algoritmo cumpla esta relacién:

error forward relativo < Ku, para alguna constante K.

Entonces, diremos que los célculos se han realizado con alta precision relativa (HRA, de
high relative accuracy). {Es posible lograr la HRA para cualquier problema? Desgraciada-
mente, la respuesta, en general, es negativa. Como primer ejemplo de cdlculo que no puede
realizarse con HRA tenemos la evaluacién de la expresion x +y + z (véase [9]). También po-
demos encontrar un ejemplo entre las clases de matrices con una estructura sencilla, que es
la evaluacion de determinantes de las matrices de Toeplitz. Una matriz de Toeplitz presenta la
siguiente forma:

ap a e dp—2 Aap—1
a.| ao an—2
B =
a.pt2 e T ai
Adpy1 Apy2 - A ap

Las matrices de Toeplitz se caracterizan porque en cada diagonal aparece siempre el mismo
elemento. Aunque estan parametrizadas con 2n — 1 parametros, para un n arbitrariamente gran-
de, no se puede asegurar la HRA. No obstante, para otras matrices con determinada estructura
veremos como lograrla.

Comenzamos la busqueda de la alta precision relativa identificando las causas de la pérdida
de la misma. El principal fendmeno que provoca este problema es la cancelacion debido a restas
de cantidades aproximadas durante el desarrollo de un algoritmo. Una resta de dos cantidades
del mismo tamafio puede magnificar errores previos y provocar que los resultados obtenidos no
sean validos. Para entender mejor este fenémeno, vamos a plantear la operacion (en aritmética
exacta en este caso) X =a— b, donde a = a(l + Aa), b = b(1+ Ab) y Aa 'y Ab son los errores
relativos en los datos que intervienen en la operacion. Veamos qué podemos decir del error
relativo que cometemos al calcular X como aproximacion de x = a — b (siempre que x # 0):

x—X la| + |b|

jla—b|

X a—>b

—alAa+ bAb
:‘ ahd + ‘gméx(]AaMAb\)
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Vemos que la cota para el error relativo de X es grande cuando |a — b| < |a| + |b|, 0 equi-
valentemente, cuando se produce mucha cancelacion al realizar la operacion.

Aunque no toda resta tiene que provocar este efecto. Por ejemplo, podemos restar dos datos
iniciales que se conozcan de forma precisa sin que se produzca una cancelacion perniciosa. En
cualquier caso, es un fendmeno que tenemos que tener presente al construir un método con
HRA. Existe una condicién suficiente para asegurar la alta precision relativa de un algoritmo
(véase [10]). Es la condicién no inaccurate cancellation (NIC): las operaciones realizadas en
el algoritmo son sumas de nimeros del mismo signo, multiplicaciones, divisiones y restas de
datos iniciales (entendiendo como resta la diferencia entre dos cantidades del mismo signo).
Es decir, estan prohibidas las restas (salvo de datos iniciales). Muchos de los algoritmos que
vamos a presentar son algoritmos libres de restas (o SF, de subtraction free). Un algoritmo
SF cumple en particular la condiciéon NIC, y, por tanto, mediante su aplicacién obtendremos
resultados con HRA.

En esta seccion hemos introducido conceptos fundamentales en el andlisis del error. No
obstante, a la hora de desarrollar un algoritmo hay que tener en cuenta més factores. Si las me-
didas utilizadas para evitar la propagacion de errores acarrean un coste computacional excesivo,
las consideraciones previas no podrdn ponerse en practica. Como vamos a describir cdlculos
matriciales, expresaremos el coste computacional en funcion del tamafio de la matriz n X n en
estudio. Normalmente, los algoritmos para resolver los problemas algebraicos enunciados al
principio de esta seccién se consideran eficientes si realizan ¢'(n®) operaciones elementales.
En el siguiente capitulo presentaremos la clase de las P-matrices, que engloba casi todas las
matrices para las que hasta ahora se han encontrado algoritmos con HRA, e introduciremos
una importante subclase de la misma intimamente relacionada con las matrices de Nekrasov,
las cuales estudiaremos en capitulos posteriores.






Capitulo 2

Clases de matrices relacionadas

Para ciertas clases de matrices, se pueden realizar muchos cédlculos con alta precision rela-
tiva independientemente del condicionamiento. Una justificacion para este hecho es que estas
matrices tienen detrds una estructura especial y traen asociados unos parametros naturales, que
son los que se emplean en los algoritmos para lograr la alta precision relativa (HRA). Casi
todas las clases de matrices estructuradas para las que se han encontrado hasta ahora algorit-
mos con HRA estdn muy relacionadas con subclases de P-matrices (véase [9]). Este hecho esta
probablemente relacionado con el de que la condicion suficiente NIC para HRA propuesta en
el capitulo anterior depende de una cuestion de signos.

En este capitulo comenzamos por tanto introduciendo el concepto de P-matriz en la primera
seccion. Incluimos algunas caracterizaciones y presentamos su aplicacion a los problemas de
complementariedad lineal. En la siguiente seccidn se presentan y relacionan los conceptos de
Z-matriz, M-matriz y dominancia diagonal y en la ultima se introducen las H-matrices, clase
que engloba a las matrices de Nekrasov (objeto de nuestro estudio en los capitulos siguientes).

2.1. P-matrices

Comencemos definiendo la importante clase de las P-matrices con la que estardn relacio-
nadas todas las clases de matrices usadas en esta memoria.

Definicién 2.1. Una matriz A = (a;;)1<;,j<n € una P-matriz si todos sus menores principales
Son positivos.

Recordemos que los menores principales de una matriz son aquellos que se forman eli-
giendo filas y columnas con el mismo indice. Vamos a introducir una notacién que usaremos
posteriormente. Definimos Qi , como el conjunto de sucesiones estrictamente crecientes de

k nimeros naturales menores o iguales que n. Sean @ = (ay,...,o), B = (Bi,...,Bx) dos
sucesiones de Oy ,. Entonces A{a|B] denota a la submatriz k x k de A conteniendo las filas
o, ...,04 y columnas By,..., B Si a = fB la submatriz A[|a] se denomina principal y tam-

bién se representa de forma abreviada como A[¢].
La Definicién 2.1 es la definicién mas comdn de P-matriz. No obstante, existen muchas
caracterizaciones. En el siguiente resultado (pagina 120 de [17]) se presentan las siguientes:

Teorema 2.2. Sea A = (a;j)1<i j<n. Las siguientes condiciones son equivalentes:

i) A es P-matriz.
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ii) Paratodo x € R" no nulo existe k € {1,...,n} tal que x;(Ax); > 0.
iii) Para todo x € R" no nulo existe una matriz D diagonal positiva tal que x* (DA)x > 0.
iv) Para todo x € R" no nulo existe una matriz D diagonal no negativa tal que x* (DA)x > 0.
v) Todo valor propio real de cualquier submatriz principal de A es positivo.

Ademas de estas caracterizaciones, podemos encontrar otras que relacionan a las P-matrices
directamente con sus aplicaciones. Como ejemplo de aplicacion en programacion lineal, tene-
mos el problema de complementariedad lineal (LCP):

Dados r € R" y M € R™", encontrar (o deducir que no existe) z € R" tal que

T (2.1)
w=r+Mz,conw>0,z>0,7 w=0.

Pues bien, la existencia y unicidad de solucién del problema de complementariedad lineal
caracteriza a una P-matriz (pagina 274 de [4]):

Teorema 2.3. M = (m;;)1<; j<n s una P-matriz si’y solo si el problema de complementariedad
lineal (2.1) tiene solucion vnica para todo r € R".

Antes de pasar a la siguiente seccion, cabe destacar que una importante aplicacion de las
matrices de Nekrasov, a las que dedicaremos gran parte de la memoria, es la obtencion de cotas
de error en el problema de complementariedad lineal.

2.2. Z-matrices, M-matrices y dominancia diagonal

Las M-matrices constituyen una subclase de P-matrices presente en numerosas aplicacio-
nes. Se encuentran, por ejemplo, en teoria de probabilidad, en el estudio de cadenas de Markov,
en andlisis numérico, al buscar cotas de valores propios, o al establecer criterios de convergen-
cia de métodos iterativos para la resolucion de grandes sistemas lineales de ecuaciones con
matriz asociada hueca (o sparse, que es una matriz en la que predominan los elementos nulos).
Entre estas aplicaciones, cabe destacar el papel que juegan las M-matrices en el campo de la
economia. Su aparicién en diversos modelos desembocé en el estudio de las mismas por parte
de los economistas. Como ejemplo fundamental tenemos el modelo input-output o modelo de
Leontief, denominado asi por su precursor Wassily Leontief, premio nobel de economia en
1973. La novedad del trabajo de Leontief radica precisamente en emplear el dlgebra lineal para
describir una economia en la que diversos sectores producen y consumen bienes, y estudiar
como sus diversas partes encajaban e interaccionaban.

Las M-matrices para las que vamos a lograr algoritmos con HRA cumplen la condicion de
dominancia diagonal. Vamos a comenzar definiendo los correspondientes conceptos basicos:

Definicién 2.4. Una matriz A = (a;j)1<i,j<n se dice Z-matriz si a;; <0 V(i, ) tal que i # j.
Es decir, es una matriz cuyos elementos extradiagonales son no positivos.

Definicién 2.5. Una Z-matriz A = (a;j)1<i, j<n se dice M-matriz si puede representarse de la
forma: A =sI —B,con B> 0y s> p(B) (donde p(B) es el radio espectral de B). Si se cumple
s > p(B), la matriz es una M-matriz no singular.
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Nota 2.6. Observemos que las entradas diagonales de una M-matriz son no negativas (véase
pagina 159 de [23]).

El siguiente resultado, que corresponde al Lema 4.1 del capitulo 6 de [4], da una relacion
entre las M-matrices y las M-matrices no singulares que nos serd de utilidad posteriormente.

Lema 2.7. Sea A = (a;j)1<i, j<n una Z-matriz. Entonces A es M-matriz si'y solo si A+ €l es
una M-matriz no singular para todos los escalares € > 0.

A continuacidn presentamos el tercer concepto importante de esta seccion.

Definicién 2.8. Una matriz A = (a;;)1<; j<n se dice matriz diagonalmente dominante por filas
(d.d.) si cumple:

@il > Y laijl, i=1,..n.
i#]

Si AT es d.d., A se dice matriz diagonalmente dominante por columnas. Si la desigual-
dad es estricta para todas las filas de A (resp. de AT), 1a matriz es estrictamente diagonalmente
dominante por filas y la denotamos SDD (resp. estrictamente diagonalmente dominante por co-
lumnas). Es bien conocido que una matriz SDD es no singular (Teorema de Levy-Desplanques,
véase 5.6.17 de [16]). Para argumentarlo, se pueden usar, por ejemplo, discos de Gershgorin
para demostrar que 0 no puede ser valor propio.

Antes hemos mencionado la variedad de aplicaciones de las M-matrices. Una curiosidad
acerca de las M-matrices no singulares guarda relacion con esta diversidad de aplicaciones, y
es la gran cantidad de caracterizaciones que poseen. En el capitulo 6 del libro [4] aparecen 50
caracterizaciones. A continuacion presentamos varias debido a su importancia. En particular,
introduciremos las caracterizaciones Dy¢, A1, E17, N33, M3s, E1g, C1o que corresponde a ii) —
viii). Recordemos previamente, que un menor principal de una matriz A se llama director si usa
filas y columnas iniciales, es decir, si es de la forma detA[l, ..., k| para algin k € {1,...,n}.

Teorema 2.9. Sea A = (a;j)1<i j<n una Z-matriz. Entonces, las siguientes condiciones son
equivalentes:

i) A es una M-matriz no singular.

ii) Todos los valores propios reales de A son positivos.

iii) Todos los menores principales de A son positivos.

iv) Todos los menores principales directores de A son positivos.
v) A es invertible, y A~! es no negativa (A~ > 0).

vi) A tiene diagonal positiva y existe una matriz D diagonal tal que AD es una matriz de
diagonal estrictamente dominante.

vii) A = LU, donde L es una matriz triangular inferior, U es una matriz triangular superior
y todos los elementos diagonales de ambas matrices son positivos.

viii) A es no singular, y A+ D es no singular para cualquier matriz D diagonal positiva.
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Vamos a presentar ahora las relaciones entre las definiciones 2.4, 2.5 y 2.8 de esta seccion.
Observemos que, utilizando la implicacién vi) = i) con D = I (matriz identidad) en el Teorema
2.9 deducimos el siguiente resultado:

Proposicién 2.10. Si A = (a;;)1<i j<n €s una Z-matriz SDD con entradas diagonales positivas,
entonces A es una M-matriz no singular.

Terminamos esta seccion con la caracterizacion que relaciona las definiciones 2.4,2.5y 2.8.
Observemos que el reciproco es inmediato y que la implicacién directa se puede obtener de la
Proposicién 2.10 y el Lema 2.7. De hecho, si A es una Z-matriz d.d. con entradas diagonales
no negativas, entonces A + €/ es una Z-matriz SDD con entradas diagonales positivas para
cualquier escalar € > 0. Asi, otra vez por la Proposicién 2.10, A + €/ es una M-matriz no
singular para cualquier € > 0, y, por el Lema 2.7, A es una M-matriz.

Teorema 2.11. Sea A = (q; j)1§i7 j<n una matriz d.d. con entradas diagonales no negativas.
Entonces A es Z-matriz si y solo si A es M-matriz.

2.3. H-matrices

En la seccién anterior hemos introducido las M-matrices. En muchos problemas tedricos y
practicos (véase [4]), aparecen otros tipos de matrices, que a pesar de no ser M-matrices, guar-
dan cierta relacion con éstas, la cual nos puede servir de guia para lograr algoritmos con HRA.
Para ilustrar como puede aparecer esta relacion, a continuacién vamos a definir el concepto de
H-matriz, una clase de matrices que engloba a las M-matrices. Para dar la definicién de una
forma clara, conviene primero introducir la nocién de matriz de comparacion:

Definicién 2.12. La matriz de comparacion M(A) = (m;;)1<i j<, de una matriz compleja
A = (ajj)1<i,j<n se define de la siguiente forma:

) il sij=i,
m’f_{—]a,-j| sij#i

Definicién 2.13. Una matriz A = (a;;)1<i, j<, compleja se dice H-matriz si su matriz de com-
paracion es una M-matriz no singular.

Observemos que una matriz de comparacion M(A) es una Z-matriz con diagonal no negati-
va cuyas entradas tienen los mismos valores absolutos que los de las entradas correspondientes
de A. Por tanto, la estructura de signos de la matriz de comparacioén es la de una Z-matriz con
diagonal no negativa. Una H-matriz es M-matriz si y solo si su matriz de comparacion coincide
con ella misma. En el caso de las M-matrices no singulares hemos visto numerosas caracteri-
zaciones. Para las H-matrices, existe una caracterizacion (véase p. 124 de [17]) que también
las relaciona con las matrices estrictamente diagonalmente dominantes (SDD).

Teorema 2.14. Sea A = (a;j)1<i j<n. Entonces, A es H-matriz si y solo si existe una matriz
diagonal D tal que AD es una matriz estrictamente diagonalmente dominante por filas.

A partir del capitulo cuatro consideraremos una subclase de las H-matrices llamadas ma-
trices de Nekrasov.



Capitulo 3

Eliminacion Gaussiana y M-matrices
diagonalmente dominantes

En el capitulo anterior hemos introducido la clase formada por las M-matrices, y hemos
expuesto la relacion de la misma con el concepto de positividad. Ya era conocido hace tiempo
que la dominancia diagonal tenia ventajas en el estudio clasico del error de la resolucién de
sistemas (véase [24]). En este capitulo, se muestra que también tienen ventajas de cara a la
obtencion de algoritmos con alta precision relativa (HRA). En particular, vamos a ver cdmo
el algoritmo de eliminaciéon Gaussiana, empleado de forma adecuada, es clave para lograr re-
solver varios problemas del dlgebra lineal numérica logrando HRA para las M-matrices d.d.
(diagonalmente dominantes). La forma de lograrlo serd obtener una factorizacién LDU asegu-
rando la HRA.

Por tanto, en la primera seccion se recuerda el algoritmo de eliminacion Gaussiana, los
pivotajes parcial y total, asi como el método de Gauss-Jordan para calcular inversas. Después,
se describen dos técnicas de pivotaje para M-matrices diagonalmente dominantes que, emplea-
das en el proceso de eliminacién Gaussiana partiendo de una parametrizacién adecuada de la
M-matriz d.d., dan lugar a una factorizacién LDU calculada con HRA. Por tltimo, se concluye
el capitulo con un apartado dedicado a la experimentacion numérica que ilustra las diferentes
consecuencias de aplicar las dos técnicas de pivotaje descritas.

3.1. Eliminacion Gaussiana, pivotaje y método de
Gauss-Jordan

Dada A = (a;j)1<i,j<» matriz no singular, la eliminacién Gaussiana es un procedimiento
de eliminacién matricial empleado para hacer ceros debajo de su diagonal. Consiste en una
sucesion de n — 1 pasos que dan lugar a una sucesion de matrices de la forma:

A=AD 5 AN 5 4@ 5 42 5 AW = A0 = py,

donde A®) tiene ceros por debajo de la diagonal en las primeras k — 1 columnas y DU es trian-
gular superior. Habiendo calculado A®) | reordenamos sus filas y/o columnas para obtener A®
mediante una estrategia de pivotaje. Una estrategia de pivotaje en el proceso de eliminacién
Gaussiana consiste en una reordenacion de las filas y/o columnas de A en cada paso para selec-
cionar cudl serd el elemento pivote que emplearemos para hacer ceros en la siguiente iteracion.

11
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En el esquema, su aplicacion se produce en el paso de A® 2 A®) Dos estrategias muy utili-
zadas son el pivotaje parcial (reordenacidn solamente de filas, consiste en buscar un elemento
de mayor modulo en la columna A®) [k,...,n|klen la que haremos ceros en el siguiente paso) y
el pivotaje total o completo (reordenacion de filas y columnas, se busca un elemento pivote de
médulo méximo en toda la submatriz A*) [k,...,n]). Sea cual sea la estrategia elegida, necesita-
mos que el elemento pivote, d,({],? , sea no nulo. Cuando en una estrategia de pivotaje utilizamos
siempre el mismo indice de filas y columnas decimos que usamos un pivotaje simétrico.
Aplicando la permutacién adecuada segun la estrategia de pivotaje que elijamos, llegamos
a A®_ El elemento d,(j,? serd el pivote elegido por la estrategia de pivotaje, y se empleard para
hacer ceros en la columna k. Para ello, restaremos multiplos de la fila k a las filas de debajo,

. . . k+1
obteniendo asf la matriz AK+1) = (al(j ))19-7 i<n
a., sil<i<k,
ay =3 ay w
i 0 ik g0
i — 4% sik<i<n.
Dk

Si nuestro objetivo es calcular la inversa de una matriz no singular, se puede emplear el
bien conocido método de Gauss-Jordan. El método de Gauss-Jordan sin pivotaje da lugar a
una sucesion de matrices de la forma:

A=A 5 AP AW =py 5 AU 5 5 AP —p 5 ACY —

donde en los primeros n — 1 pasos hemos empleado eliminacién Gaussiana sin pivotaje para
hacer ceros por debajo de la diagonal de la matriz, y en los kK — 1 pasos siguientes hemos utili-
zado de nuevo eliminacion Gaussiana sin pivotaje para hacer ceros por encima de la diagonal
de la matriz. El dltimo paso consiste en reescalar la matriz para lograr la matriz identidad. Si
aplicamos las mismas operaciones elementales a la matriz identidad (es decir, B = B =),
al obtener la matriz A(?") = I lograremos también la matriz B?") = A—!. Andlogamente a la
eliminacion Gaussiana, el método de Gauss-Jordan también se puede aplicar con estrategias de
pitovaje.

3.2. Descomposiciones reveladoras del rango,
parametrizacion y pivotaje

Volviendo a nuestro problema de aplicar algoritmos de forma precisa, recordemos que mu-
chas veces la clave consiste en buscar distintas factorizaciones o parametrizaciones del pro-
blema. Para hallar los valores singulares de una matriz, se emplea la llamada descomposicién
reveladora del rango (o rank revealing decomposition, RRD). Esta consiste en una descompo-
sicién de la matriz de la forma A = XDY 7, donde X ,Y son matrices bien condicionadas y D es
una matriz diagonal. En [10] se presenta un algoritmo que realiza ¢(n*) operaciones elemen-
tales para obtener con HRA los valores singulares de una matriz n X n a partir de su RRD.

En el caso de las M-matrices, se considera como RRD la descomposicién LDU obtenida
tras una adecuada estrategia de pivotaje, en la que L es una matriz triangular inferior y U
una matriz triangular superior. Ademads, los elementos diagonales de D son positivos, y tanto
los de L como los de U son todos unos. Podemos obtener esta descomposicion con HRA
logrando unas matrices L y U bien condicionadas, por lo que habremos calculado una RRD
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que podremos emplear para calcular los valores singulares de la matriz de forma precisa. Para
calcular la descomposicién emplearemos la eliminacién Gaussiana con una adecuada estrategia
de pivotaje.

En esta descripcion de la eliminacion Gaussiana no hemos tenido en cuenta la estructura
de la matriz. Para obtener una factorizaciéon LDU de una M-matriz diagonalmente dominante
(d.d.), con L'y U bien condicionadas, es necesario realizar cambios en el planteamiento des-
crito. Por un lado, al trabajar directamente con los elementos de la M-matriz, el algoritmo de
eliminacion Gaussiana puede dar lugar a errores por cancelaciones debido a las restas que se
llevan a cabo. Para evitar este fendmeno, en vez de trabajar directamente con los elementos
de la matriz se utiliza una parametrizacion de la misma. Para las M-matrices diagonalmente
dominantes, unos parametros adecuados son las sumas de los elementos de cada fila y sus
elementos extradiagonales. Estos pardmetros pueden tener una interpretacion fisica natural [2].

Ademads, si elegimos sin cuidado la estrategia de pivotaje, podemos perder la estructura
de M-matriz en el desarrollo del algoritmo. Con el fin de evitar este problema, se utilizan las
llamadas estrategias de pivotaje simétrico. La idea consiste en realizar en cada paso la misma
permutacion tanto de filas como de columnas. Asi, teniendo en cuenta que estas permutaciones
simultdneas de filas y de columnas preservan la propiedad de ser M-matriz y que por [12] el
complemento de Schur de M-matrices también preserva la propiedad, concluimos que todas las
submatrices AX [k, ...,n] conk € {1,...,n— 1} seran M-matrices. Obtendremos una factoriza-
cién de la forma PAPT = LDU con P una matriz de permutacién. A continuacién introducimos
dos estrategias de pivotaje simétrico que pueden servir para obtener una RRD de la forma ya
descrita.

La primera estrategia de pivotaje simétrico se denomina pivotaje simétrico total, y con-
siste en elegir un elemento de médulo maximo en la diagonal. En el caso de las M-matrices
diagonalmente dominantes, esta estrategia coincide con pivotaje total. En [11] se presenta un
algoritmo que emplea esta estrategia para lograr una descomposiciéon LDU de una M-matriz
d.d. Dados los elementos extradiagonales a;;, con i # j, y el vector de sumas de filas s, con
Si = Z’}: 1aij, €l Algoritmo 1 da la factorizaciéon LDU de una M-matriz d.d. usando pivotaje
simétrico total, sin hacer uso de restas (SF). Las salidas del algoritmo son la matriz P, la ma-
triz L y la matriz DU (estas dos tltimas almacenadas en A) de la factorizacién PAPT = LDU
mediante pivotaje simétrico total. Si necesitamos factorizar una M-matriz diagonalmente do-
minante por columnas, bastaria con aplicar el algoritmo a A”. En ese caso, tendriamos como
parametros los elementos extradiagonales de A asi como la suma de los elementos de cada
columna, que se corresponderfan con las sumas de las entradas de las filas de A .

La segunda técnica de pivotaje simétrico que presentamos para hallar una factorizacion
LDU de una M-matriz diagonalmente dominante con L y U bien condicionadas se encuentra
descrita de forma detallada en [25]. Aqui introduciremos esta técnica de pivotaje y el algoritmo
para obtener una factorizacién LDU de una M-matriz diagonalmente dominante por columnas.

La estrategia de pivotaje simétrico se denomina maximal absolute diagonal dominance
(m.a.d.d.) y se basa en elegir como pivote en el paso k (k € {1,...,n— 1}) una fila iy > k que
cumpla:

k k . k k
ail = Y el = max {la’| = ¥ lag]}.
JZk,ji == Jzk,j#i

Por el Teorema 2 de [ 1] una M-matriz A siempre tiene un elemento diagonal a;; que verifica
|aii] > ¥ j+i|aij|. Por tanto, el pivote que elijamos cumplird a;,;, 7 O (serd un pivote vélido).
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Algoritmo 1 Eliminacién Gaussiana para M-matrices d.d. utilizando pivotaje simétrico total

Entradas: A = (a;;)(i # j), s > s es el vector de sumas de las filas de A
P=1I, > la matriz de permutacion
fork=1:n-1
fori=k:n
aii = Si — Llisk j2i4ij
end for

Buscar 7 tal que a;; = max;>¢{a;i}
Elegir P, matriz de permutacién que intercambia la fila t y la fila k.
Actualizar P = PP, A = PAP], s = Pis
fori=k+1:n
Qi = Qi | axk
Si = Si — AikSk

for j=k+1:n
ifi#j
ajj = ajj — ajkdg;
end if
end for
end for
end for

Dados los elementos extradiagonales a;;, con i # j, y el vector de sumas de columnas c,
con ¢; = Y. ;a;j, el Algoritmo 2 es también SF y da la factorizacién LDU de una M-matriz
diagonalmente dominante por columnas empleando la estrategia de pivotaje m.a.d.d. Las sali-
das del algoritmo son la matriz P, la matriz L y la matriz DU (estas dos ultimas almacenadas
en A) de la factorizacién PAPT = LDU mediante pivotaje m.a.d.d.

Hemos presentado dos estrategias para obtener una factorizacion LDU que sirve como
RRD de una M-matriz diagonalmente dominante. No obstante, el siguiente teorema muestra
una importante diferencia entre ambas (Proposition 3.2 de [25]):

Teorema 3.1. Sea A = (a;j)1<i j<n una M-matriz diagonalmente dominante por filas o colum-
nas y sea P una matriz de permutacion asociada a aplicar la estrategia de pivotaje m.a.d.d.
de A o AT, respectivamente. Entonces PAPT = LDU, donde L es una matriz triangular infe-
rior de diagonal dominante por columnas y U es una matriz triangular superior de diagonal
dominante por filas.

Si utilizamos pivotaje simétrico total con una M-matriz d.d. por columnas obtendremos
una factorizaciéon LDU en la que la matriz L es d.d. por columnas. No obstante, no podremos
asegurar que U sea d.d. por filas, sino solo que el elemento diagonal es mayor en médulo que
los restantes de su fila. En la siguiente seccion se muestran ejemplos en los cuales la matriz
U obtenida empleando pivotaje simétrico total no es d.d. por filas, y su nimero de condicién
es considerablemente mayor que el de la U obtenida empleando pivotaje m.a.d.d. Para una
M-matriz d.d. por filas, considerando su matriz traspuesta se deduce que solamente tendremos
asegurada la dominancia diagonal por filas de U en el caso de estar utilizando pivotaje simé-
trico total. La dominancia diagonal de las matrices L y U implica que ambas estdn muy bien
condicionadas (Proposition 2.1 de [25]).
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Algoritmo 2 Eliminacién Gaussiana para M-matrices d.d. utilizando pivotaje m.a.d.d.

Input: A = (a;;)(i # j), c > ¢ es el vector de sumas de las columnas de A
P=1I, > la matriz de permutacion
fori=1:n

Si = L1, jridji

ajj = C; — S;

pi =Y aij
end for
fork=1:n—-1

Buscar 7 tal que p; = max;>;{pi}
Elegir P, matriz de permutacion que intercambia la fila t y la fila k.
Actualizar P = P.P,A = PAP!,c = Pic, p=Pp
fori=k+1:n
ajx = ik [ akk
Ci = Cj — QiC/ axk
Pi = Pi — QikPk
for j=k+1:n
ifi #£j
aijj = ajj — kA
end if
end for
end for
for j=k+1:n
$) = Liskt1,i) %
ajj==¢j—5j
end for
end for

Teorema 3.2. Sea T = (t;;)1<i j<n una matriz triangular diagonalmente dominante por filas
(respectivamente columnas) cuyos elementos diagonales son todo unos. Entonces k..(T) < n?
(respectivamente Koo(T) < 2n).

De nuevo, tenemos que tener en cuenta la eficiencia del algoritmo que emplee una de
estas estrategias de pivotaje. La implementacion de cualquiera de las dos estrategias supone
un aumento de & (n?) operaciones elementales sobre el coste computacional del algoritmo de
eliminacién Gaussiana. No obstante, la estrategia de pivotaje m.a.d.d. se puede implementar
para esta clase de matrices de modo que podamos obtener una factorizacion LDU con un
coste computacional ain menor y conseguir L y U matrices diagonalmente dominantes. En
[3], se presenta cémo se realiza la implementacién de la estrategia de forma que afiada & (n?)
operaciones elementales al coste computacional de la eliminacién Gaussiana.

3.3. Experimentacion numérica

En esta seccion vamos a mostrar resultados obtenidos empleando una implementacion en
MATLAB de los algoritmos presentados en este capitulo. Para ello, vamos a comenzar defi-
niendo una familia de matrices que nos servird de bateria de ejemplos. Dado n € N, definimos
la matriz A,, de la siguiente manera:
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2n —2n O o 0
0 2n+1 -2 -2 -3

: —2n 2n 0 0

A, = ) .

0

: : 5 2n 0
0 —-2n O 0 2n

En la Tabla 3.1 vemos el condicionamiento en norma infinito de la matriz L obtenida em-
pleando eliminacién Gaussiana sin pivotaje, asi como los dos pivotajes especificos para M-

matrices presentados en este capitulo.

n sin piv. total madd
5 7.2511 7.2511 2.89

10 | 18.463 18.463 | 3.4225
15 | 31.1346 | 31.1346 3.61

20 | 44.7616 | 44.7616 | 3.7056
25 | 59.102 59.102 | 3.7636
30 | 74.0121 | 74.0121 | 3.8025
35 | 89.3968 | 89.3968 | 3.8304
40 | 105.1883 | 105.1883 | 3.8514
45 | 121.3356 | 121.3356 | 3.8678
50 | 137.7993 | 137.7993 | 3.8809

Tabla 3.1: Condicionamiento en norma infinito de L
En este caso, emplear pivotaje total da el mismo resultado que no emplear una estrategia de
pivotaje, lo que ocasiona que el condicionamiento empeore a medida que crece n. No obstante,

utilizando el pivotaje m.a.d.d. obtenemos siempre un condicionamiento muy bueno.

A continuacién vamos a estudiar también el comportamiento de la matriz U (cabe esperar

que sea muy bueno en todos los casos).

n | sinpiv. | total | madd
5 | 5.6652 | 2.9988 4
10 | 6.8759 | 4.4115 4
15 | 7.6249 | 5.262 4
20 | 8.1686 | 5.8677 4
25 | 8.5957 | 6.3371 4
30 | 8.9475 | 6.7197 4
35 | 9.2465 | 7.0424 4
40 | 9.5066 | 7.3212 4
45 | 9.7367 | 7.5667 4
50 | 9.9431 | 7.7858 4

Tabla 3.2: Condicionamiento en norma infinito de U

En la Tabla 3.2 vemos que efectivamente el resultado obtenido es muy bueno en cual-
quier caso. La diferencia radica en la matriz L, como se observa en la Tabla 3.1. No obstante,
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empleando el pivotaje m.a.d.d. el condicionamiento de la matriz U también se mantiene prac-
ticamente constante al aumentar n. En las siguientes graficas se muestra el comportamiento del
condicionamiento de L y U segun la estrategia de pivotaje empleada:
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Capitulo 4

Matrices de Nekrasov

En este capitulo introducimos el concepto de matriz de Nekrasov, que jugard un importan-
te papel en el resto de la memoria. Se trata de una clase de matrices que generaliza la de las
estrictamente diagonalmente dominantes. Al parecer, la condicién que caracteriza a las matri-
ces de Nekrasov fue introducida por el matemaético ruso Pavel Nekrasov en el afio 1892 en [22].

Comenzamos el capitulo definiendo el concepto de matriz de Nekrasov, proponiendo una
parametrizacion adecuada para HRA y recopilando propiedades conocidas de estas matrices.
En la seccion 4.2 encontramos una matriz diagonal sencilla que transforma una Z-matriz de
Nekrasov con diagonal positiva en una M-matriz diagonalmente dominante. También, en la
ultima seccion, se explica como obtener la parametrizacion adecuada (vista en el capitulo 3)
de esta matriz transformada con HRA a partir de la parametrizacion que hemos introducido en
este capitulo para una matriz de Nekrasov.

4.1. Definicion y parametrizacion

Vamos a introducir las matrices de Nekrasov (véase [27]). Para ello necesitamos una no-
tacién previa: Sea A = (a;;)1<; j<n» Una matriz compleja tal que a;; # 0. Se define h;(A) con
i=1,...,nde la siguiente forma:

4 n
Z|a1j‘a Si l:17
j=2
i—1 h'(A) n . .
hi(A) = Z|aij|ﬁ+ Y laijl, si2<i<n, 4.1)
j=1 =it
ol hi(A
Z \anj|£, si i=n.
\ = jajj|

Definicién 4.1. Una matriz compleja A = (a;j)1<i j<, se llama matriz de Nekrasov si cumple
la condicién |a;i| > hi(A) parai=1,...,n.

Esta es una condicidn suficiente para que una matriz sea no singular [27], por lo que tendra
sentido plantear el cilculo de A~

Algunas aplicaciones recientes de las matrices de Nekrasov pueden consultarse en los si-
guientes articulos: [6, 14, 19, 20, 26, 29, 30].
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Existe una clase de matrices muy relacionada con las matrices de Nekrasov y que la gene-
raliza, la clase compuesta por las matrices de Gudkov. Una matriz se dice de Gudkov si existe
una permutacién simultdnea de filas y de columnas tal que al actdar sobre ella la lleva a forma
de matriz de Nekrasov. Es decir, una matriz A es una matriz de Gudkov si existe una matriz de
permutacién P tal que PAPT es una matriz de Nekrasov. En particular, una matriz de Gudkov
también es no singular. No obstante, el método de alta precision relativa que vamos a desarro-
llar para Z-matrices de Nekrasov con diagonal positiva no puede extenderse en general a las
matrices de Gudkov con la misma estructura de signos. Esto es debido a que la definicién de
matriz de Nekrasov depende del orden de filas, y nuestra parametrizacion lleva intrinseca dicha
dependencia. En general, al permutar una matriz de Nekrasov su parametrizacion variara. Para
ver més propiedades de las matrices de Gudkov puede consultarse [27].

Para lograr alta precision relativa al trabajar con Z-matrices de Nekrasov n x n con diagonal
positiva, emplearemos los siguientes n”> pardmetros:

aij, i7 ],
. 4.2
{ A](A) ::ajj—hj(A), ]Zl,...,l’t. ( )

Observemos que, a partir de los n® signos dados en (4.2), podemos caracterizar las Z-
matrices de Nekrasov con diagonal positiva. De hecho, A cumple dicha propiedad si y solo si
los n? — n primeros pardmetros (los elementos extradiagonales, a; j con i # j) son no positivos
y los n tltimos pardmetros (A;(A) con j = 1,...,n) son positivos.

4.2. Escalado para dominancia diagonal

Las matrices de Nekrasov estan intimamente relacionadas con las matrices d.d. Nos vamos
a aprovechar de esta relacién para resolver nuestro problema del célculo de la inversa con
HRA. Es conocido que una matriz de Nekrasov A es una H-matriz (por el corolario 2 de [27])
y, por tanto, por el Teorema 2.14, existe una matriz D diagonal tal que AD es estrictamente
diagonalmente dominante (SDD). Con objeto de tener una matriz diagonal S sencilla, nosotros
nos conformaremos con que AS sea diagonalmente dominante. Esta matriz S es la siguiente:
hi(A)

lai|

§— |azz| . ) 4.3)

hn(A)

|ann |

Lema4.2. Sea A = (q; j) 1<i,j<n una matriz de Nekrasov y S la matriz dada por (4.3). Entonces,
la matriz AS es una matriz diagonalmente dominante por filas.

Demostracion. Llamemos B := AS a nuestra matriz en estudio. Tenemos que los elementos de
B = (bij)1<i,j<n sON:
hj(A C.
b aijﬁ; sii# J,
ij = N ce
hi(A), sii=].
Para ver que B es diagonalmente dominante, veamos que la propiedad de dominancia dia-
gonal se cumple para la fila i-ésima, coni = 1,...,n:
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i—1 )
j:l Jj= l+1 j= z+l

puesto que /1;(A) < |a;;| por ser A matriz de Nekrasov, y asi queda demostrada la dominancia
diagonal. 0

La matriz S nos permite transformar una matriz de Nekrasov en una matriz diagonalmente
dominante. Pero ademads, si la matriz tiene la estructura de signos de una Z-matriz con diagonal
positiva, el escalado por S mantendrd dicha estructura, lo cual serd clave para la resolucién de
nuestro problema. Esta afirmacion se corresponde con el siguiente Corolario, consecuencia del
Lema 4.2.

Corolario 4.3. Sea A = (a;j)1<i j<n una Z-matriz de Nekrasov con entradas diagonales po-
sitivas y S la matriz dada por (4.3). Entonces, la matriz AS es una Z-matriz diagonalmente
dominante por filas con entradas diagonales no negativas.

Demostracion. Aplicando el Lema 4.2 a la matriz A obtenemos que B := AS es una matriz
diagonalmente dominante, por lo que solamente queda estudiar los signos de dicha matriz. No-
temos que ( ) >0 parai=1,...,n,y, portanto, S > 0. Entonces, al hacer el producto B = AS
se conserva la estructura de signos de A, y tenemos que los elementos de B = (b;;) 1< j<x Son
de nuevo:

hj(A)
bij: aijj a(lj ) Sll%]?
hi(A), sii=].

Como A es Z-matriz, los elementos extradiagonales de B son no positivos. Por definicion,
hi(A) > 0, por lo que los elementos diagonales de B son no negativos y B es una Z-matriz de
diagonal no negativa. O

Gracias a este corolario, vamos a poder apoyarnos en los resultados conocidos para M-
matrices diagonalmente dominantes a la hora de afrontar la resolucién de nuestro problema del
calculo de inversas utilizando la Z-matriz d.d. AS (y por el Teorema 2.11 M-matriz d.d.). Como
hemos mencionado previamente, la clave para aplicar algoritmos con HRA a estas matrices
se encontraba en utilizar una parametrizacién adecuada de las mismas, que en este caso se
correspondia con los elementos extradiagonales y la suma de los elementos de cada una de
sus filas. Por tanto, buscaremos hallar estos pardmetros de AS de una forma que nos asegure
su obtencion con alta precision relativa, y asi estaremos ya en condiciones de resolver nuestro
problema. Ademads, no nos haré falta usar estrategias de pivotaje.

4.3. HRA para matrices de Nekrasov

Dada una Z-matriz de Nekrasov con diagonal positiva, A, nuestro objetivo es obtener la
parametrizaciéon adecuada (vista en el capitulo 3) con HRA de la matriz escalada B := AS,
donde S es la matriz dada por (4.3), a partir de los pardmetros (4.2). En el siguiente resultado
se muestra que es posible lograr los pardmetros necesarios de B con HRA dando una demos-
tracion constructiva que permite obtener los mismos con un coste computacional del orden de
n* operaciones elementales.
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Teorema 4.4. Sea A = (a;j)1<i, j<n una Z-matriz de Nekrasov con entradas diagonales posi-
tivas 'y S la matriz dada por (4.3). Entonces, podemos hallar las sumas de las entradas de
cada fila y los elementos extradiagonales de AS a partir de los n*> pardmetros dados por (4.2)
mediante un algoritmo libre de restas (SF) que realiza m
2n— 1 cocientes.

sumas, 2n(n — 1) productos y

Demostracion. Observemos que por (4.2),
ajj=A;j(A)+h;(A), j=1,...,n (4.4)

Asi, tras calcular con SF 4 (A) con la férmula de (4.1) procedemos a calcular aj; con SF
mediante (4.4) para j=1. A continuacién, seguimos calculando h;(A), ax, h3(A), ass, .. ..h,(A),
an, con SF mediante (4.1) y (4.2). Como el elemento extradiagonal (i, j), i # j, de AS es

hil (j) , podemos calcularlo con SF. Finalmente, para cadai =1, ...,n la suma de los elementos

de la fila i-ésima de AS es

a,-j

i—1 n
hi(A hi(A
Zaij ]( )—|—hl(A>—|— Z aij ]( )’
aii aii
j=1 JJ j=i+1 JJ

que al sustituir ;(A) por su valor en (4.1) y tener en cuenta que A es Z-matriz toma el valor

il(—au) (1—@) = i |aij|%_a—w= i |a,-j|m, (4.5)

j=i+ i j=i+1 Ji j=i+1 ajj

que de nuevo se puede calcular con SF.
Veamos cudntas operaciones elementales son necesarias para calcular los parametros. Co-
mo todos los calculos descritos son SF, se realizaran cero restas. El calculo de los elementos

diagonales a;; coni=1,...,n supone la realizacién de n sumas. Para cada h;(A),coni=1,...,n
necesitaremos realizar n — 2 sumas ademds de un nimero de productos y cocientes que depen-
hj(A)

de del indice i. Notemos, eso si, que el cdlculo - se empleard tanto para calcular los /;(A)

JJ
con j < i < n asi como para obtener los elementos extradiagonales de la columna j-ésima de

AS, por lo que los calcularemos una vez y los emplearemos cuando sea necesario. Esto supone

) . 1. ~1
realizar n cocientes, ?:111 = w productos y n(n — 2) sumas. Para obtener los elementos

. .o . . hi(A P .
extradiagonales (i, j) con i # j de AS, q; j ; (..), bastard con realizar un producto. Por tanto,
JJ

se afiade el realizar n(n — 1) productos. Ahora solo queda calcular la suma de los elementos
. . Aj(A . ~
de cada fila de AS. Primero, calcularemos los cocientes % para j = 2,...,n, lo que ahade
1]
n — 1 cocientes al coste computacional. Finalmente, realizaremos "("T_l) sumas y "(”—2_1)
3n(n—1)
2

pro-
ductos para obtener el valor de los dltimos n pardmetros. En total, necesitamos sumas,
2n(n — 1) productos y 2n — 1 cocientes. O

En el siguiente capitulo veremos como utilizar el Teorema 4.4 para calcular la inversa de
A con HRA y también como resolver con HRA sistemas de ecuaciones lineales de la forma
Ax = b, siendo b un vector de componentes no negativas.



Capitulo 5

Inversas precisas de Z-matrices de
Nekrasov

El objetivo de este capitulo es dar una metodologia para resolver el problema de hallar
la inversa con HRA de una clase concreta de matriz estructurada: una Z-matriz de Nekra-
sov con elementos diagonales positivos. Para lograrlo, vamos a seguir una estrategia que se
apoya en las descritas para trabajar con M-matrices diagonalmente dominantes. Utilizando la
parametrizacion introducida en el capitulo anterior logramos relacionarlas con las M-matrices
diagonalmente dominantes y podemos aprovecharnos de las técnicas conocidas en este caso
para lograr nuestro objetivo. Ademads, podremos resolver también con HRA el sistema lineal
de ecuaciones Ax = b, con la condicidén de que ninguna componente del vector b sea negativa
(b > 0). Aseguraremos que trabajamos con HRA viendo que los algoritmos descritos satisfacen
la condicién NIC.

Comenzamos el capitulo demostrando varios resultados que serdn fundamentales para el
célculo de la matriz inversa, logrando con ellos obtener la misma en un caso particular. El
siguiente paso consiste en generalizar este resultado gracias al estudio de la estructura de ceros
asociada a una matriz de Nekrasov. Por ultimo, se incluye en pseudocddigo la implementacion
de las rutinas desarrolladas durante el capitulo.

5.1. Inversas precisas: caso particular

Comencemos viendo que dada una Z-matriz d.d. de la que conocemos sus sumas de filas
y elementos extradiagonales, podemos obtener su inversa mediante Gauss-Jordan (véase la
seccion 3.1) sin usar restas y sin uso de estrategias de pivotaje, a diferencia de como se hacia
en[11,25] (véase seccidén 3.2).

Proposicion 5.1. Sea A = (a;j)1<i, j<n una Z-matriz d.d. no singular con entradas diagonales
positivas. Si conocemos con HRA las sumas de los elementos de cada fila de A asi como sus
elementos extradiagonales, podemos calcular A™' y la solucion del sistema de ecuaciones
lineales Ax = b con b > 0 con un algoritmo libre de restas (SF, y asi con HRA) de ﬁ(n3)
operaciones elementales.

Demostracion. Como A es una Z-matriz d.d. con diagonal positiva cumple que A + D es SDD
para cualquier matriz diagonal D > 0, por lo que A + D es no singular. Por la equivalencia de
viil) con 1) en el Teorema 2.9, deducimos que A es por tanto una M-matriz no singular. Veamos
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que podemos calcular A~! con HRA. Para ello usaremos el método de Gauss-Jordan sin pi-
votaje (véase seccion 3.1). Construimos la matriz ampliada M := (A|l|s), donde I es la matriz
identidad y s es el vector de las sumas de las filas de A, es decir, s; es la suma de los elementos
de la fila i-€sima de A. Aplicaremos la eliminaciéon Gaussiana de A realizando las operaciones
por filas en toda la matriz ampliada M. El primer pivote es aj;, que se calcula sumando a s;
el valor absoluto de los elementos extradiagonales de la primera fila. Comenzamos haciendo
ceros en la primera columna debajo de éste empleando multiplos de la primera fila, y, excepto
los elementos diagonales de A() [2,...,n], todo elemento de M se calcula con HRA. No obs-
tante, estos elementos los calcularemos con HRA solo cuando necesitemos emplearlos como

pivote (y el dltimo, ag'f,), cuando hayamos terminado de hacer ceros por debajo de la diagonal).

2)

Asi, para la siguiente iteracion, solo queda calcular el elemento a,, . Para lograrlo con HRA
basta sumar sgz) y los valores absolutos de los elementos extradiagonales de la segunda fila de
A@)_ Notemos que por la estructura de signos se corresponderd con sumar los opuestos de los
elementos.

Para realizar el segundo paso, tenemos que A?)[2,....n] vuelve a ser M-matriz por ser el
complemento de Schur de una M-matriz (véase [12] ). Por tanto, utilizando la misma estrategia
que en el paso 1 sobre A?) [2,...,n] haremos ceros en la segunda columna. Repetimos hasta
llegara U = A con HRA, que ser4 triangular superior, y la estructura de signos de M ser4 la
siguiente:

+ - — ... =1
+ — ... =+ 1
M = + i+ 4+
+/+ + ... 4+ 1
~ 7 ~~ 7~
U =AM C s
En esta matriz, “+ quiere decir que el elemento correspondiente de M es > 0,y “—”, que

es < 0. Los elementos diagonales de U son positivos (> 0). A partir de ahora el vector s ya
no es necesario, asi que lo omitiremos al representar M (n),

Para llegar desde aqui hasta A~! basta con repetir el proceso empleando como fila pivote
la fila inferior para hacer ceros por encima de la diagonal de U: (U|C) — (D|DA™"), con D
matriz diagonal.

En este procedimiento, en el paso k se emplea como pivote uflk_) k.n—k> que es siempre mayor
que O (puesto que en los pasos de esta eliminacion no se ven afectados). Al ser los extra-
diagonales no positivos y los pivotes positivos, no se han realizado restas al calcular DA™ .
Solamente queda realizar el producto D~!DA~! para obtener A~!. Por tanto, hemos llevado a
cabo todo el proceso sin llevar a cabo restas (condicion SF). ]

El siguiente resultado es consecuencia del Lema 4.3 y la Proposicion 5.1.

Corolario 5.2. Sea A = (a;j)1<i j<n una Z-matriz de Nekrasov con entradas diagonales po-
sitivas que cumpla hi(A) # 0 para i =1,...,ny sea S la matriz diagonal dada por (4.3). Si
conocemos con HRA las sumas de los elementos de cada fila y los elementos extradiagonales
de AS con HRA entonces podemos calcular A~ y la solucién del sistema de ecuaciones linea-
les Ax = b con b > 0 con un algoritmo libre de restas (y asi con HRA) de 0 (n®) operaciones
elementales.
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Demostracion. Comencemos recordando que A es una matriz no singular por ser matriz de
Nekrasov. Ademds, por el Lema 4.3 la matriz B := AS serd una Z-matriz d.d., y, por la hipétesis
de no anulacién de los parametros /;(A), S serd no singular, y, por tanto, B también serd no
singular. Asi, estamos en condiciones de aplicar la Proposicion 5.1 a B y calcular la matriz
B~! con HRA. Con esta matriz, basta realizar el calculo A~! = SB~! para obtener la inversa
de A. La resolucidn del sistema de ecuaciones lineales se obtiene de forma andloga realizando
el producto x =SB~ 'b=A"1b. [

El siguiente resultado consecuencia del Teorema 4.4 y el Corolario 5.2 nos asegura, a partir
de los pardmetros (4.2), el calculo con HRA de la inversa y de la resolucidn de ciertos sistemas
lineales cuando tenemos una Z-matriz de Nekrasov con diagonal positiva y una condicion
adicional. Posteriormente veremos que podemos prescindir de esta condicion afiadida.

Corolario 5.3. Sea A = (a;j)1<i j<n una Z-matriz de Nekrasov con entradas diagonales posi-
tivas que cumpla hi(A) # 0 para i =1,...,n. Si conocemos (4.2) con HRA entonces podemos
calcular A= y la solucion del sistema de ecuaciones lineales Ax = b con b > 0 con un algo-
ritmo libre de restas (y asi con HRA) de € (n?) operaciones elementales.

Demostracion. Sea S la matriz diagonal dada por (4.3). Por el Teorema 4.4 podemos calcular
con HRA los elementos extradiagonales de B := AS asi como la suma de los elementos de cada
una de sus filas. Asi, estamos en condiciones de aplicar el Corolario 5.2 y obtener el resultado
buscado empleando un algoritmo libre de restas (SF).

[

5.2. Inversas precisas: caso general

Hemos conseguido resolver con HRA el problema descrito al comienzo de la seccién ante-

rior con la condicion adicional de que h;(A) # 0 parai= 1,...,n. El problema que se presentaba
si no imponiamos esta condicién es que el producto AS, con S la matriz dada en 4.3, da lugar
a una matriz singular si i;(A) = 0 para algin i = 1,...,n. No obstante, podemos suprimir esta

imposicion y el resultado seguird siendo cierto. Para demostrarlo, conviene comenzar estudian-
do la estructura de ceros intrinseca a una matriz de Nekrasov que satisface 4;(A) = 0 para algiin
i=1,...,n

Lema 5.4. Sea A = (a;j)1<i j<n una matriz de Nekrasov, y sea J = {iy,...,ix} C{l,...,n} el
conjunto ordenado de menor a mayor de todos los indices tales que h;, (A) = 0. Entonces para
cada j=1,... kla fila de indice i tiene al menos n— j ceros entre sus elementos extradiago-
nales.

Demostracion. Comenzamos estudiando la fila de indice i;:

ll*

Z ‘ llk‘

Como /i (A) # 0 para k < i; debido a que k §Z J, tiene que ocurrir por (5.1) que a;,x = 0 siempre
que k # i1. Es decir, todos los elementos extradiagonales de la fila son nulos. En el caso de la
fila de indice i;, con i; € J:

Z |a z,k|

+ Z \ai x| = (5.1)

k= i1+1

ij—1

+ Z |a’/ Z |’1k| + Z |a11k|_

k=ij+1 k=1, k¢J k=i +1
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En este caso, se tiene que a; x = 0 siempre que k ¢ {ij,...,i;}. De aqui se deduce que en la fila
. . J . . ’, . . .
de indice i; hay al menos n — j ceros situados en las columnas de indice k, con k ¢ {iy,...,i;}.

Observemos que en el Lema 5.4 también se demuestra que la fila de indice i; tiene exacta-
mente n — 1 ceros. Este lema juega un papel fundamental en el resultado principal que bus-
camos demostrar. En su demostracién denotaremos por I¢ al conjunto complementario en
N :={1,...,n} aun conjunto de indices I contenido en N.

Teorema 5.5. Sea A = (a;j)1<i j<n una Z-matriz de Nekrasov con entradas diagonales positi-
vas. Si conocemos (4.2) con HRA entonces podemos calcular con HRA y 0'(n?) operaciones
elementales A~! v la solucion del sistema de ecuaciones lineales Ax = b con b > 0 mediante
un algoritmo libre de restas (SF).

Demostracion. Comenzamos calculando £y (A),ayy,...,h,(A),an,. Definimos I C N como el
conjunto de indices para los que se verifica h;(A) # 0. Si I = N basta con aplicar el Corolario
5.3. En caso contrario comenzamos definiendo S como la matriz diagonal dada por (4.3). For-
mamos la submatriz A := A[I] y B := (AS)[I]. Esta segunda matriz es diagonalmente dominante
(d.d.) debido a que AS ya lo era y hemos construido la submatriz utilizando los mismos indices
de filas y columnas. Asi, B es una Z-matriz d.d. con entradas diagonales no negativas, y, por el
Teorema 2.11, es una M-matriz. Por la Proposicién 5.1 podemos calcular su inversa mediante
un algoritmo libre de restas si conocemos una parametrizacién adecuada con HRA. En este
caso los pardmetros que necesitamos obtener son los element(()s) extradiagonales y la suma de
hj(A
Jj :

los elementos de cada fila. Los primeros son de la forma a;;=2=. Las sumas de los elementos
J

de cada fila presentan la forma:

Z a,, ,.)

Jj=i+1 ajj Jj= z-l—l

Z aijhj(A) +hi(A) = iiaijhj(A)
j=1 Ji

jetj# i 4ji

La primera igualdad es debida a que los sumandos que incluimos son 0, ya que /;(A) =0
cuando j € [°. La segunda se obtiene al sustituir /;(A) en (4.1) teniendo en cuenta (4.2) y
que A es Z-matriz. En ambos casos, tenemos la expresion obtenida en el Teorema 4.4, por lo
que podemos lograr con alta precision relativa los pardmetros necesarios para poder aplicar
la Proposicién 5.1 y hallar la inversa de B = (AS)[l], M-matriz d.d., y a partir de la misma
obtener A~! = S[I)B~!. Recordemos que por la equivalencia i) < v) del Teorema 2.9 B! es
no negativa, y asi, A~ también es no negativa.

A partir de la submatriz A~! podemos construir A~!. Para ello vamos a realizar n — |1|
pasos, que consistirdn en afiadir la fila y columna de mayor indice de I¢ que atn no hayamos
incluido en A (en el lugar que corresponda) y obtener la inversa de esta nueva submatriz:

A=AW 5 AQ) 5 5 A-lED — 4 (5.2)

Como en cada paso afadiremos una fila y columna, y obtendremos la inversa de la matriz
que hemos construido, al afiadir la dltima fila y columna y continuar el proceso obtendremos
la inversa de la matriz A. Para llevar a cabo el primer paso elegimos el mayor indice k € I¢ (es
decir, el mayor & tal que /;(A) = 0). Entonces, formamos la matriz (n —|I| + 1) x (n— |I| +1)
A®@) afiadiendo la fila y columna k-ésima de A a A (en el lugar correspondiente). Para obtener
la inversa de esta nueva submatriz a partir de C = A~! nos apoyamos en el Lema 5.4, por el
cual la nueva fila afiadida a A tiene al menos |I| ceros, los cuales aparecen como elementos
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extradiagonales en la fila correspondiente de A®@)_ Por tanto, en esa fila el Gnico elemento no
nulo es el de la diagonal, ag. Los elementos de C(2) = (A(z))_1 son los siguientes:

Cij, i?jelv
1 ..
@ ) a TIiTk

i 0, i=k jel,
2 iel j=k

Comprobemos que estos son los elementos de c® y deduzcamos una expresion para los que
faltan por determinar. Tiene que cumplirse AR = L7j41- Sii,j €1, el elemento (i,7) del
producto matricial es cero o uno cuando corresponde ya que la inversa de A es C, y la operacién
que se realiza es

Zaiscsj +aig - 0=

sel

0, i#/,
I, i=j.

Sii=k, jel,setiene

Zakscsj—f—akkckj = ZO'CSj+akk'O =0.
sel sel

Sii= j =k, obtenemos

Ak
Y arses+apc =Y 0 cp+— = 1.
sel sel ik

Quedael caso i € I, j = k, que determina los valores que nos faltan.

2973 .
Za,scsk —|——l:O, iel.
sel Akk

(2)

Considerando el vector ¢ = (cik ) que queremos calcular podemos reformular el sistema
icl

N 1
Ac= —(ajx)ier <a_kk)

y, como conocemos la matriz no negativa A~! con alta precisién relativa, y el término de la
derecha es también no negativo, obtenemos ¢ con alta precision relativa. Para ello basta con
hacer el siguiente producto:

—1 N —1
c=C(ai)ics (a—kk) = A Yaw)icr <a—kk> :

Una vez calculados estos elementos ya tenemos C (2). Si se tenfa que AP =4 ya habremos
obtenido A~!. En caso contrario, procedemos de forma andloga. Es decir, seleccionamos el
mayor indice k € I° de fila y columna que ain no hayamos incluido en nuestra submatriz,
y formamos A®) afiadiendo a A? 1a fila y columna de indice k en el lugar correspondiente.
La fila afiadida tiene al menos |I| + 1 ceros en la matriz original, los cuales aparecen como
elementos extradiagonales en la submatriz construida. Para usar una notacién mds compacta,
definimos /) como el conjunto de indices ordenado de filas y columnas de A que aparecian

anterior en forma matricial:
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en A, Buscamos hallar C(3) = ( A(3))’1. Razonando de forma andloga al anterior paso, los
elementos de C3) serdn:

De nuevo, conocemos todos los elementos menos los dltimos, que podemos calcular de

()

forma anéloga. Sic = | c; , se tiene:
ik Jie1@

—1 R -1 —1
c=C? (aik)iel(z) — = ( (2)) (aik)iel<2) (_> :

Akk Aik

En general, tras realizar esta operacién p — 1 veces podemos obtener A~! y terminar el
procedimiento, o tener que reiterarlo afiadiendo la fila y columna de mayor indice k € ¢ tal
que no haya sido afiadida en ningtin paso anterior. Una vez mds, la fila afiadida tiene al menos
|I| + p — 1 ceros en la matriz original, los cuales aparecen como elementos extradiagonales en
la fila correspondiente de la submatriz construida. También definimos /(”) como el conjunto
de indices ordenado de filas y columnas de A que aparecian en AP)_ Entonces realizamos el

producto ¢ = C?) (ay)

—(» (=) para obtener los elementos de la matriz inversa crt) =
iel\r Ak

(A(P+1))=1 4 calcular y construimos la misma. Sus elementos seran de la forma:

el

CQH_l) — au = .] = k7

Y 0, i=k jelI?),
¢, ielP) j=k.

]

La demostracion del teorema da una idea de como se puede llevar a cabo una implemen-
tacion de un algoritmo para calcular la inversa de una Z-matriz de Nekrasov de elementos
diagonales positivos. En cualquier caso, no es necesario ir construyendo la sucesion de matri-

ces A; basta con ir realizando los productos matriciales de la forma ¢ = C (p) (i) ;e st (@) y

construir la matriz C(?*1) a partir de la matriz C () y el vector c.

5.3. Algoritmos

A continuacion se recogen todos los algoritmos necesarios para resolver nuestro proble-
ma con HRA. El primer algoritmo que presentamos, el Algoritmo 3, lleva nuestra Z-matriz
de Nekrasov inicial a la forma necesaria para calcular su inversa con HRA. En el caso de que
hi(A) # 0 parai = 1,...,n el procedimiento que se realiza se corresponde con el descrito en
el Teorema 4.4. Si alguno de estos pardmetros se anula, se trabaja con la submatriz descrita
en la demostracion del Teorema 5.5. Las salidas del algoritmo son la matriz A, en la que se
almacenan los parametros de la matriz AS en la submatriz A(/,1), el conjunto de indices / y la
matriz S cuando el conjunto de indices estd compuesto por mds de un indice.

Una vez obtenida la parametrizacion de la M-matriz d.d. AS, nuestro objetivo es calcular
su inversa con HRA. Para ello, emplearemos el Algoritmo 4 (este método se corresponde con
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Algoritmo 3 nektoddgen - Preparar Z-matriz de Nekrasov para obtener su inversa con HRA

Input: A = (a;;)(i # j), A > A es el vector de los pardmetros A;(A)
fori=1:n
hi = L7 ik + Ty aij
ajj = A;+h;
ki = h;/aj;
end for
Construir I, lista de indices ordenados tales que /; # 0.
if 1] > 1
fori=1
ai = Llj_iv1 @ijAj/ajj
for j =1~ {i}
aij = a;jk;
end for
end for
Construir S, matriz diagonal I x I con los elementos k;, j € 1.
elseif |[/| == 1
arp=1/ay
else
Apn = 1/ Ann
I'= [n]
end if

el descrito en la demostracion de la Proposicion 5.1). Asi obtenemos la inversa de la submatriz
de AS correspondiente a los indices de filas tales que 4; # 0, es decir, las filas de indices .

A continuacién buscamos construir la matriz inversa de AS a partir de esta submatriz. Como
entradas necesitaremos la matriz A en la que se ha sustituido A(1,1) por A~'(I,1) e I (bastar4
con multiplicar antes a izquierda por S(/) al output de inversadd). Este procedimiento es el que
se muestra en el Algoritmo 5.

Con las rutinas que hemos descrito, podemos dar una expresion compacta del método que
hemos desarrollado para calcular la matriz inversa con HRA de una Z-matriz de Nekrasov con
elementos diagonales positivos partiendo de la parametrizacion propuesta:
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Algoritmo 4 inversadd - Calcular inversa de una M-matriz d.d.

Input: A = (a;;)(i # j), s > s es el vector de sumas de elementos de cada fila de A
P=1,
fork=1:n—-1
Ak = Yjmty1 kj
fori=k+1:n
piv = aji [ ag
S; = §; — pivsy
i = 0
A(i,:) = A(i,:) — pivA(k,:)
P(i,:) = P(i,:) — pivP(k,:)
end for
end for
ann = Sn
fork=n:-1:2
fori=k—1:-1:1
piv = aji/ ajk
P(i,:) = P(i,:) — pivP(k,:)
end for
end for
fori=1:n
P(i,:) =P(i,:) % 1 /aj;
end for

Algoritmo 5 buildnekinv - construir inversa

Input: A,/ >en A(,I) estd almacenada la inversa de la submatriz original
Construir el conjunto de indices J, compuesto por los indices de I ordenados de mayor a
menor.
fori=J
a;; = 1/a;;
A(Li) = —A(I1,1)(A(1,i)./a;) > ./ denota que la operacion es elemento a elemento
I =1U{i} ordenado
end for

Algoritmo 6 Calcular inversa de una Z-matriz de Nekrasov con elementos diagonales positivos

Input: A = (a;;)(i # j), A > A es el vector de los pardmetros A;(A)
[A,1,S] = nektoddgen(A = (a;;)(i # j), A)
if || > 1
A(L,1) = Sxinversadd(A(I,))
end if

A" = buildnekinv(A)




Capitulo 6

Experimentacion numérica para inversas
y sistemas

En este capitulo vamos a comparar los resultados de una implementacién en MATLAB de
los algoritmos descritos en el capitulo anterior con el de las rutinas ya implementadas en dicho
software. En particular, se van a estudiar dos problemas.

El primero es el calculo de la inversa de una Z-matriz de Nekrasov, problema al que se de-
dica la primera seccion de este capitulo. La segunda seccidn tratard de la resolucién de sistemas
lineales de ecuaciones cuya matriz de coeficientes pertenezca a esta clase. Aunque la HRA solo
se garantiza cuando b > 0, veremos en los experimentos numéricos que nuestro método siem-
pre da soluciones precisas para cualesquiera términos independientes. En ambos apartados, se
comparan los resultados con los obtenidos empleando las rutinas implementadas en MATLAB
para resolver dichos problemas. Los errores mostrados se han obtenido considerando como
solucién exacta la obtenida empleando célculo simbdlico de MATLAB.

6.1. Calculo de inversas

El primer problema que hemos abordado es el computo de la matriz inversa. Vamos a
comparar los resultados obtenidos al calcular una matriz inversa siguiendo el procedimiento
con HRA que hemos descrito y utilizando la orden inv(A) implementada en MATLAB en
diversos ejemplos de Z-matrices de Nekrasov con elementos diagonales positivos.

A continuacién vamos a fijarnos en el comportamiento del error en casos concretos. Co-
menzamos estudiando 10 casos de matrices con entradas generadas aleatoriamente, en los que
la primera fila es muy dominante. Los resultados obtenidos se incluyen en la Tabla 6.1. En
este caso, el algoritmo que se utiliza es en la mayoria de los casos el descrito en la seccion
5.1. Aunque se observa una mejoria en los resultados obtenidos, los ejemplos generados no
son muy mal condicionados. Una forma de obtener matrices peor condicionadas dentro de esta
clase serd imponer que alguna de las primeras filas cumpla #; = 0, para que los elementos de
la columna i-ésima sean arbitrariamente grandes, y la matriz esté lejos de ser diagonalmente
dominante. Ademas, asi pondremos a prueba el método desarrollado en el Teorema 5.5. Ca-
be destacar que en el caso de inv de MATLAB, se presenta el maximo error relativo de las
componentes no nulas (puesto que el error relativo no estd definido para una entrada nula). En
el algoritmo propuesto las entradas nulas de la matriz inversa se fijan a 0, por lo que no se
introduce ningun error en las mismas. Los resultados se muestran en la Tabla 6.2.
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n° condicién inv HRA

3.6714e+04 | 1.5308e-12 3.6475e-15
5.4599e+04 | 8.3304e-13  6.6024e-15
5.8606e+04 | 3.2871e-13  6.6759¢-15
3.8833e+04 | 7.651e-13  3.5972e-15
4.2645e+04 | 9.3474e-13  5.5312e-15
8.8803e+04 | 1.1321e-14 1.5372e-15
8.2928e+04 | 1.533e-12  6.9976e-15
4.9831e+04 | 3.9542e-13  6.3254e-15
9.9321e+04 | 7.6187e-13 1.4831e-15
6.4873e+04 | 4.8123e-14 2.0905e-15

Tabla 6.1: Maximo error relativo cometido al calcular la inversa.

n° condicién inv HRA

8.6088e+09 | 1.7700e-06 1.1907e-15
1.0732e+10 | 1.1087e+07 8.2809e-16
2.4392e+10 | 4.0486e-07 5.6175e-16
4.1714e+10 | 1.8978e+00 8.2015e-16
3.0772e+10 | 6.2672e-07 5.6761e-16
2.1360e+10 | 7.9297e-07 1.2172e-15
1.8158e+10 | 1.3845e+13 6.9970e-16
6.2268e+10 | 2.9948e-01 1.0738e-15
1.2966e+11 | 1.8669¢-06 1.0067e-15
2.2980e+07 | 6.2546e-08 7.2895e-16

Tabla 6.2: Maximo error relativo cometido al calcular la inversa con 4; = 0 para algin i.

6.2. Resolucion de sistemas lineales

Con el cdlculo de la inversa, podemos también resolver sistemas de ecuaciones lineales de
la forma Ax = b. A continuacién, vamos a comparar el resultado que obtendriamos calculando
A1 con HRA y realizando el producto A~ !5 con la rutina implementada en MATLAB para la
resolucion de sistemas de ecuaciones lineales. Vamos a estudiar tanto el efecto de variar la ma-
triz de coeficientes, como el de cambiar simplemente el término independiente manteniendo la
matriz. Comenzamos generando una matriz 30 x 30 que cumple la condicién s; = 0 para algu-
nos valores de i € N. Su nimero de condicion es de 2,1334¢ + 09. Con esta matriz, resolvemos
10 sistemas de ecuaciones lineales en los que b tienen todas las componentes no negativas, y
10 sistemas en los que b presenta tanto componentes positivas como negativas.
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A\Db HRA
1.1721e-08 | 7.4861e-16
3.8531e-09 | 8.0188e-16
1.9166e-08 | 1.0915e-15
7.6172e-09 | 9.0263e-16
2.7821e-08 | 8.0516e-16
1.2423e-08 | 6.2222e-16
4.1265e-09 | 8.7997e-16
1.4059e-08 | 7.5829e-16
4.5942e-09 | 6.8648e-16
1.0882e-08 | 6.6262e-16

Tabla 6.3: Maximo error relativo cuando b > 0

Tabla 6.4: Maximo error relativo con b cualquiera

A\ Db HRA
7.6517¢-09 | 7.6183¢-16
4.7859¢-08 | 9.2650e-14
4.4467¢-09 | 9.7674¢-16
4.8492¢-09 | 1.3250e-15
1.4603¢-08 | 7.7579¢-16
6.5952e-09 | 7.3791e-16
1.5348¢-08 | 8.2503¢-16
4.0365¢-09 | 2.0006e-15
2.2514e-08 | 1.1452¢-15
3.4846¢-08 | 1.5119¢-15

b>0 b cualquiera

Aunque el método de HRA es superior en ambos casos, a simple vista no se observa un
cambio al imponer la condicién b > 0. No obstante, si representamos graficamente estos resul-
tados, podemos observar que cuando no se exige la condiciéon b > 0 hemos obtenido un error
mayor en un caso al utilizar el método con HRA para calcular A~!5. El caso b > 0 se corres-
ponde con la Tabla 6.3, y el caso en el que b puede presentar componentes de ambos signos se
recoge en la Tabla 6.4. También se incluye una grafica en la que se compara el error obtenido
en ambos casos.

Ahora vamos a cambiar la forma de proceder. Vamos a fijar un término independien-
te y cambiaremos la matriz de coeficientes. Primero, comenzamos con un vector positivo:
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b= (1,1,...,1,1)T. Para dicho vector generamos 10 matrices 20 x 20 y resolvemos el siste-
ma. Los resultados aparecen reflejados en la Tabla 6.5. También, procedemos de forma andloga,
pero esta vez con el vector b = (b;)1<;<, tal que b; = (—1)/*!. Los resultados se corresponden
con la Tabla 6.6.

n° condicién

A\b

HRA

2.3319e+10
7.5491e+10
2.7086e+09
1.0107e+10
5.8361e+10
9.6114e+09
1.4918e+10
2.2116e+10
1.5419e+10
1.4407e+11

7.8736e-07
1.9843e-06
1.427e-14
9.7238e-15
4.7639e-07
5.5802e-14
2.2768e-08
1.6766e-06
3.4e-14
1.6289¢-06

5.1521e-16
6.7465e-16
6.2988e-16
6.0401e-16
4.7223e-16
5.318e-16
3.9299¢-16
9.8126e-16
9.2892e-16
4.5371e-16

Tabla 6.5: Méaximo error relativo con b = (1,...

n° condicién A\Db HRA

1.1381e+10 | 1.0735e-06 | 1.9298e-15
2.5795e+10 | 2.0074e-14 | 7.6335e-16
2.4822e+11 | 3.5413e-12 | 1.8627e-14
4.1003e+10 | 1.8994e-06 | 3.837e-16
3.9208e+10 | 1.4595e-14 | 1.4025e-15
1.3225e+10 | 1.4073e-14 | 1.8282¢e-15
1.5134e+18 | 17.8615 | 6.1444e-16
4.9096e+11 | 1.3033e-06 | 8.2058e-16
9.5209e+09 | 6.1324e-14 | 1.5654e-14
3.6935e+10 | 1.9329e-13 | 3.6418e-15

71)

Tabla 6.6: Méximo error relativo con b; = (—1)i+!

Para concluir la seccion de experimentacién numérica, vamos a estudiar el comportamiento
de todas las componentes calculadas para un caso particular. El vector de término independien-
te serd b = (1,1,...,1,1)7, y la matriz A es la que hemos empleado anteriormente. La Tabla
6.7 muestra el resultado obtenido.
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A\b

HRA

O 0 1O\ N AW |-

29
30

5.3216e-09
4.2614e-09
2.6467e-14
3.2771e-09
2.6950e-09
3.3957e-09
3.4720e-09
3.5137e-09
3.2675e-09
2.3871e-13
3.4203e-09
3.2456e-09
3.4487e-09
3.4492e-09
3.3465e-09
3.2992e-09
4.7102e-13
3.4396e-09
3.2488e-09
6.8877e-13
3.2574e-09
4.9279e-17
3.3460e-09
3.3794e-09
3.3693e-09
4.2728e-18
7.6104e-18
3.2768e-09
1.0341e-16
2.4571e-17

3.9245e-17
1.3142e-17
1.3924e-16
4.6722e-16
4.1587e-16
1.0395e-15
2.5815e-17
2.3178e-16
8.6618e-16
2.3388e-16
3.2448e-16
2.2012e-16
1.4569¢-16
1.0272e-15
2.1040e-16
2.0365e-16
3.5679¢-17
2.1671e-16
4.4854e-17
1.1473e-16
3.5262e-16
8.8495e-17
3.1197e-16
4.4262e-16
6.5713e-16
4.2728e-18
7.6104e-18
8.7506e-16
1.0341e-16
2.4571e-17

Tabla 6.7: error relativo componente a componente con b = e
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Capitulo 7

Escalado para dominancia diagonal
estricta

En un capitulo anterior hemos desarrollado un método para calcular la inversa de una Z-
matriz de Nekrasov con elementos diagonales positivos empleando un escalado (AS, donde S
es una matriz diagonal) que daba lugar a una matriz diagonalmente dominante. No obstante,
las matrices de Nekrasov son H-matrices, por lo que podriamos buscar matrices de escalado
que las lleven a forma estrictamente diagonalmente dominante. En [7, 13] se dan matrices de
escalado que logran este fin imponiendo condiciones similares a la que hemos exigido inicial-
mente al calcular la inversa (h;(A) # 0 para todo i = 1,...,n, 0 que en cada fila, excepto en la
ultima, exista un elemento no nulo a derecha de la diagonal). Como aplicacion de la matriz de
escalado, se obtendran cotas superiores para la norma de la inversa de una matriz de Nekrasov.
Estas cotas se podran aplicar al estudio del condicionamiento de dichas matrices y también a
la obtencién de cotas para el error del problema de complementariedad lineal comentado en la
seccion 2.1.

En el primer apartado de este capitulo vamos a presentar unas matrices de escalado que
no requieren la imposicion de ninguna condicion adicional y llevan una matriz de Nekrasov
a forma estrictamente diagonalmente dominante. A continuacidn, se deduce una cota para la
norma de la inversa de una matriz de esta clase a partir de dichas matrices de escalado. La
cota es vdlida para cualquier matriz de Nekrasov y no requiere una parametrizaciéon de la
matriz. En la tercera secciéon de presentan otras cotas para el mismo problema que se han
publicado recientemente, y se concluye el capitulo haciendo una comparacion de todas las
cotas presentadas.

7.1. Matrices de escalado

Comenzamos este apartado obteniendo una matriz de escalado S que transforma cualquier
matriz de Nekrasov en una matriz SDD. Después obtendremos otra matriz de escalado que
aprovecha la existencia de elementos no nulos en A para reducir el coste computacional de la
obtencion de S.
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Teorema 7.1. Sea A = (a;j)1<i, j<n una matriz de Nekrasov. Entonces la matriz

hi(A)+e
lai]
S= ,
hy(A)+€,
‘ann|
& > 0,
con )
0<&<|aj|—hi, € Z’ ! |a;’,|, parai=2,...,n.
J]

es una matriz diagonal positiva tal que AS es estrictamente diagonalmente dominante.

Demostracion. Comenzamos viendo que existen (g, ...,&,) tales que satisfacen el enuncia-
do del teorema anterior. Tomamos & = |a;;| — h;j(A) para i = 2,...,n. Elegimos g tal que

. . 8
& > |TZI‘£|1 Comprobamos si &5 > 22, |6‘13]||j
]

caso contrario, sustituimos €; y & por —-

Si se verifica la desigualdad continuamos. En
M y =& M respectivamente, donde M3 es un ntimero po-
sitivo lo suficientemente grande, de forma que se verifique la desigualdad. Notemos que al
dividir tanto el valor de € como el de & por el mismo nimero se seguird satisfaciendo la
i—1 |aijlg;

) . Si se
J=1 lajjl

desigualdad que relaciona a € y &. En el caso de €, comprobamos si & > Y,

cumple, continuamos. Si no, sustituimos el valor de €; por el de ;7’ para j=1,...,i—1 de for-

ma que se verifique la desigualdad y, al igual que antes, se sigan cumpliendo las desigualdades

que habiamos comprobado previamente. Por tanto, reiteramos el proceso hasta comprobar la
n—1 laijl€;

desigualdad g, > ) i=1Ta[ - . Si se satisface, tendremos ya los valores de (81 ,..., &) buscados.
Si no, basta con sustituir el valor actual de €; por el de L para j=1,. — 1, eligiendo M,
de forma que los nuevos valores de (g, ..., &,) venﬁquen la demgualdad.

La matriz diagonal S es positiva puesto que /;(A) > 0y & > 0 por hipétesis. El elemen-

hj(A)+

to (i, /) de la matriz AS viene dado por la expresion a;;~ ] % . Para comprobar que AS es
' JJ

estrictamente diagonal dominante se comienza comprobando que se cumple la condicién de
dominancia diagonal estricta en la fila n-ésima:

Z|anj| ! ZI n;l +Z| nil =7 <(A) + & = [(AS)(n,n)|
| u! ja u\ | u|
ﬁ_/
hn(A)

Del mismo modo, se comprueba la filan — 1:

)+£J ha(A) + €,
Z‘an 1,]’ +lap—1 0 ———

||

’ | ghn 1 +Z’an lj‘ <hn l( )+8n—l:
JJ

<1

=|(AS)(n—1,n—1)]

La primera desigualdad es debida a la hipétesis &, < |a,,| — hn(A), por la que se tiene
ha(A)+&,

2] < 1. En general, para la fila i-ésima:

oA +e hi(A)+e; _

Y laijl Y laijl

. TS +Z|au|
j=1 | ]]‘ Jj=i+l1 ’ ]]l

hi(A) + &
la u!
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y, cuando i = 1:

11 h~A + €
Y Jan EATE Ay < m(a) + 6.
Ll

En el estudio de la fila i-ésima se utiliza la hipétesis €; < |a;;| —h;(A) para j =i+ 1,.

asi como que & > Z’j:ll % Cuando i = 1, esta ultima hipdtesis se reduce a que € sea
JJ

estrictamente positivo. [

En el Teorema 7.1 damos una matriz de escalado S que sirve para cualquier matriz de
Nekrasov. No obstante, teniendo en cuenta su estructura de ceros, podemos dar una matriz que
en muchos de los casos serd més sencilla y su producto dara lugar también a una matriz SDD.
La clave consiste en buscar la primera fila k(< n) para la cual no exista ningin elemento no nulo
a la derecha del elemento diagonal. Entonces, podremos imponer €; = O para j =1,...,k—1
y el producto AS serd también SDD con alguna pequefia matizacion sobre la eleccion de los
demids €, j =k,...,n. Sik =1, el resultado se corresponde con el Teorema anterior.

Teorema 7.2. Sea A = (a;j)i<i j<n una matriz de Nekrasov, y sea k € {1,...,n} el primer
indice tal que no existe ai; # 0 con j > k. Entonces, la matriz

hl(A)-FSl
lari]
S = , (7.1)
hy(A)+&,
‘arml
& =0, i=1,...,k—1,
con i1 laiile .
0 <& <lai| —hi, &>Y,_ k|‘a"’ parai=k,... n.

es una matriz diagonal positiva tal que AS es estrictamente diagonalmente dominante.

Demostracion. La demostracién de este resultado es similar a la del Teorema 7.1. Comenza-

mos razonando que existen (&, ...,&,) tales que satisfacen el enunciado del resultado. Dado

que A es una matriz de Nekrasov, se tiene que |a;;i| > h;(A) para i =1,...,n, lo cual sumado

a la forma constructiva dada en la demostracion del Teorema anterior asegura que podemos

encontrar tales (€, ...,&,). Notemos ademds que siempre se cumplird que &, # 0, dado que k

tomard como mucho el valor n. Veamos que en cualquier caso la matriz AS es también SDD.
Consideramos primero el caso de la fila i-ésima, cuando i < k:

A)+g & hi(A)+¢; ot g
Z\au\ L+ Y el <hi(A)+ Y laijl == = hi(A).
| ajjl j=i+1 |ajj] j=1 |ajj]

En este caso, se tiene la relaciéon de dominancia diagonal estricta debido a que el Lema 5.4 nos
asegura que /1;(A) # 0y a la cota superior estricta que satisface por hipétesis £; cuando j > i.

Veamos ahora que también se tiene dominancia diagonal estricta en la fila k-ésima:

k—1 n k—1

hi(A)+¢€; hi(A)+¢€j
2 lagj| e Y lagl == Z| _hk(A)<hk(A)+€k-
j=1 | jj| j=k+1 | Jj| ‘

En esta fila, dado que a;; = 0 siempre que j > k, se tiene que necesitamos elegir un & > 0
para lograr dominancia estricta. Ademads, la eleccion de & > 0 implicard que necesitemos que
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€; > 0 siempre que j > k. Por tltimo, comprobemos que también se da la relacién de forma
estricta para la fila i-ésima cuando i > k:

A)+¢g; u +€
Zw MALE L3 oy TG ) +Z|al,| W)+ .
\ ajjl 5 lajjl | u|
O]
En particular, si para todo i = 1,...,n — 1 existe al menos un elemento a;; # 0 para algin

indice j > i, en la matriz § podremos anular todos los &; excepto &,. Este caso particular es el
que aparece ya recogido en [13].

En cualquier caso, el tener una matriz de escalado que nos permita llevar una matriz de
Nekrasov a forma estrictamente diagonalmente dominante nos da una forma rdpida de dar
una cota de la norma de su inversa, sin tener que proceder a calcular dicha inversa como en
capitulos anteriores. Este procedimiento se mostrara en el siguiente apartado.

7.2. Cota para la norma de la inversa

Comenzamos esta seccion recordando un resultado cldsico presentado por Varah en [28]
para acotar la norma de la inversa de una matriz SDD. Este resultado se utiliza también con
frecuencia para obtener cotas de la norma de las inversas de matrices pertenecientes a clases
relacionadas con las SDD. Se corresponde con el Teorema 1 de [28]:

Teorema 7.3. Sea A = (a;j)1<i j<n Una matriz estrictamente diagonalmente dominante por
filas. Entonces
1

A o < — '
I I min; (|a;| — X j4i |aijl)

(7.2)

En el Teorema 7.3 se aprecia que la bondad de la cota que obtengamos al llevar nuestra
matriz de Nekrasov a forma SDD depende de la “holgura” que logremos en cada fila al realizar
el escalado AS. A continuacién, enunciamos la cota de la inversa de una matriz de Nekrasov.
Una vez definida la matriz § segin el Teorema 7.1 o el Teorema 7.2 podemos conseguir una cota
u otra de la norma infinito de la inversa de una matriz de Nekrasov. Posteriormente usaremos
la que utiliza el Teorema 7.2 por tener menor coste computacional.

Teorema 7.4. Sea A = (a;j) una matriz de Nekrasov. Entonces

hi(A)+e; )

min;en (& —wi + pi)’

A e < (7.3)

donde (€1,...,&,) vienen dados por el Teorema 7.1 o el Teorema 7.2, w; = |a,j| |a ‘
1]

ypPi=Y i |aij|%'
Demostracion. Observemos que:
-1 —14—1 - -1
AT oo = IS(STI AT oo = 1S(AS) ™ |eo < [1S]]eol(AS) ™" |-

En esta expresion, podemos obtener la norma infinito de S facilmente ya que es una matriz
diagonal, y aplicar el Teorema 7.3 a ||(AS) ~!||«, que por el Teorema 7.1 o 7.2 (segtin la matriz
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S que utilicemos) es SDD. Entonces, queda solamente estudiar como de dominante es la fila
i-ésima de la matriz AS:

A)+g il g aji| —hi(A)—¢;
+€z Z|au| j_ Z| ”| J + Z ’ lj|| jj| j( ) J
i | ajjl jajj| j=i+1 jajj|
— Wi+ Di,
donde simplemente hemos utilizado la definicién de 4;(A), (4.1). O

Como la matriz S cumple que ||S||» < 1, podemos dar la siguiente simplificacién de la f6r-
mula anterior para la cota de la inversa de una matriz de Nekrasov apoyandonos en el Teorema
7.4:

Corolario 7.5. Sea A = (a;j) una matriz de Nekrasov. Entonces

1
mlnlEN( — Wi +p1)

IA7H | <

donde (g,...,&,) vienen dados por el Teorema 7.1 o el Teorema 7.2, w; =Y.'\ |a ,J| |au‘
P = Ly g L

A continuacion vamos a presentar el Algoritmo 7, que permite conseguir todos los parame-
tros necesarios para obtener la matriz S del Teorema 7.2 y las sumas de filas de la matriz AS,
necesarias para dar la cota 7.3 que hemos definido anteriormente, con los & i = 1,...,n como
en el Teorema 7.2. Si repasamos la forma de obtener la matriz S en este caso observamos que
hay cierta libertad a la hora de elegir los valores de (&, ...,&,). En el siguiente algoritmo, el
valor al que se inicializa & serd 0 o tA;(A), siendo ¢ un pardmetro que podemos elegir en el
intervalo (0, 1). También podriamos dar una mayor libertad eligiendo un #; para cada &; no nulo.
No obstante, el criterio para elegir cada uno no es claro, por lo que dado que muchas veces se
tendrd que & =0 parai=1,...,n— 1, podemos utilizar esta eleccién simplificada. Eso si, la
bondad de la cota obtenida depende de la buena eleccién del valor de 7 € (0, 1). Partiendo de la
parametrizacion de la matriz M (A) (dada en (4.2)) calculamos los valores de h;(A), |aii|, & ¥ si
parai=1,...,n. En s; se obtienen los valores necesarios para aplicar el Teorema 7.4 y obtener
nuestra cota de ||[A™!||...

7.3. Cotas alternativas para la norma de la inversa

En la seccién anterior hemos dado un procedimiento para obtener una cota de la norma
de la inversa de una matriz de Nekrasov basandonos en utilizar una matriz de escalado. En
diversos articulos recientes, se ha abordado el mismo problema desde otro punto de vista, que
se apoya también en el resultado de Varah (Teorema 7.3). Por tanto, a continuacién vamos a
introducir la base que se utiliza en los mismos para obtener esas cotas para asi después proceder
a realizar una comparacién de ambas técnicas.

El punto de partida de esas cotas se basa en expresar la matrizA como A =D —L—U, donde
D es la diagonal de A, L su parte triangular inferior (sin la diagonal) y U su parte triangular
superior (también sin la diagonal). Es decir, las matrices L = (I;;)1<i j<n, D = (dij)1<i,j<ns
U = (uij)1<i j<n €N este caso son:

[ — ajj Sii>j dii — ajj sii=j w— aij sii<j
YO0 sii< Y10 sii#£ ] Y0 sii>ge
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Algoritmo 7 nektoSDD - Obtencioén de la cota 7.3

Input: A = (a;;)(i # j), At > A es el vector de los pardmetros A;(M(A))
fori=1:n
hi = Y laijlk;
r=Y i1 laijl
ifr==0,/J == > Deteccion de la primera fila para la que & > 0
J=1;
end if
hi=h;+r
aii = A+ hi
ki = hi/|a|
end for
ek =tAg
wi=...=wg=0 > Cuando i < K, se tiene que w; =0
fori=K—+1:n
&g =1tA;
pj=¢j/lajj|
wi = lj;lK laij|pj
ifw,—&>0
M= 1/2Wi
for j=K:i—1
€= SjS,'M
wj = WjS,'M
end for
w; = 81‘/2
end if
end for
for i=n:-1:2
si =& —wi+ Y laijlfj
fi=(Ai—&)/|ai
end for
s1=¢& —wi+ Yo laijlf
Calculo de la cota utilizando la férmula (7.3). > Utilizando que s; = & —w; + p;

Con esta descomposicidn, se tiene el siguiente Lema:

Lema 7.6. Dada una matriz A = (Clij)lgi’jgn compleja tal que a;; # 0 parai=1,...,n, enton-
ces
—1
hi(A) = la| (D] —IL|) " U]e)

donde e es el vector de todo unos.

(7.4)

i

Apoyéandose en el Lema 7.6, en [27] (Remark 3.3) se consigue una caracterizacion de
matriz de Nekrasov:

Teorema 7.7. Una matriz compleja A = (a;j)1<i j<n €s de Nekrasov si y solo si
-1
(ID]=[L)) " |Ule <e,

es decir, si 'y solo si I, — (|D| — |L|)~'|U| es una matriz SDD, donde I, es la matriz identidad
nxn.
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Vemos que la caracterizaciéon de que una matriz sea de Nekrasov viene dada por la do-
minancia diagonal estricta de la matriz I, — (|D| — |L|)~'|U|. La base de las cotas que se han
obtenido en el articulo [5] y en articulos en los que se intentan mejorar éstas (véase [18],[21]) se
basan en utilizar adecuadamente el Teorema 7.3 en una matriz obtenida a partir de la expresion
I, — (ID| — |L|)~1U|. Las cotas obtenidas de esta forma emplean los siguientes parametros:

1, i=1,
yi] laij|Zj(A)+17 i=2,...,n.

J=1|aj;l

Zi(A) = (7.5)

Con dichos pardmetros, estamos en condiciones de introducir las siguientes cotas, presen-
tadas en [5]:

Teorema 7.8. Sea A = (a;;)1<i j<n una matriz de Nekrasov. Entonces,

MAX;: NZi(A)
7S o —_T (7.6)
== i A '
—maXl'eN W
y ) |
1A < — Maxienzu(4) (7.7)

- mfnieN(]a,-i\ — ]’l,(A)) '

7.4. Comparacion de cotas

Como hemos mencionado anteriormente, estas cotas del apartado anterior se han obtenido
mediante un planteamiento distinto al que hemos seguido al comienzo del capitulo. Por tanto,
es de interés comparar la bondad de ambos tipos de cota. Comencemos estudiando el coste
computacional que acarrea el célculo de cada una de las cotas. Obtener la cotas (7.6) o (7.7)
supone realizar %n(n — 1) sumas y n(n — 1) productos. Por otro lado, estédn las cotas dadas en
esta memoria. Si echamos un vistazo al Algoritmo 7, vemos que hay unas condiciones if que
aumentan el coste en algin ejemplo. Por tanto, aqui consideraremos el peor caso, en el que
siempre se realicen todos los cédlculos dentro de estas condiciones. Ademads, hay que tener en
cuenta que el coste del algoritmo depende del indice K definido en el mismo. En el contexto
del Teorema 7.2, este indice representa la primera fila para la que hay que tomar un €; no
nulo. El Teorema 7.1 puede verse como un caso particular a la hora de contar las operaciones
realizadas, si tomamos siempre K = 1.

A continuacién vamos a mostrar el coste computacional dependiendo tanto de n como del
indice K. No obstante, los casos particulares K = 1 y K = n son los que se presentan en muchos
ejemplos, asi que mostraremos también el coste en estos casos particulares:

Operaciones general K=n K=1
2 —_K— — 2
sumas/restas antl 4 (=K é)(" K) | 3 Ht2 | 202 —pn+2
e 2 2 10Kn— 2
multiplicaciones | 2 +29"+4 43K 105(” UK | n(n—1) %
divisiones 2n—142(n—K) 2n—1 4n—3

Tabla 7.1: Coste computacional de la cota (7.3)

Con este objetivo, vamos a contar todas las operaciones llevadas a cabo y comparar el
término 7" de mayor grado del coste de las cotas:
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K=1
2 1172
7]’1

(7.6), (1.7)
T In?

Tabla 7.2: Término de mayor grado del coste computacional de las cotas de ||A™!|.

En esta tabla vemos que el utilizar la matriz dada en el Teorema 7.1 puede acarrear en el
peor de los casos un poco mds del doble de operaciones. En cualquier caso, el algoritmo para
obtener la cota es de orden cuadritico.

Una vez comprobado que el coste computacional es similar, nuestro interés radica en com-
parar la bondad de la acotacién obtenida en cada caso. Para comenzar tal comparacién, vamos
a utilizar la bateria de ejemplos utilizada en [5] y en los articulos posteriores:

—7 1 -02 2 8 1 —-02 33
7 8 2 -3 7 13 2 -3
A=, 05 13 2| A2 = ~13 6,7 13 =2’
05 3 1 6 05 3 1 6
21 —9,1 —-42 -21 5 1 02 2
e | 707 91 —42 -2l |1 213
37 1-0,7 =07 49 -21/|° =12 05 64 —2|°
0,7 —0,7 —0,7 238 05 -1 1 9
6 3 -2 5o 5%
As= -1 11 -8], Ag =
310 6 -4 15 -3
—49 —09 -09 6

En la siguiente tabla comparamos los resultados obtenidos empleando las cotas (7.6),(7.7),
la cota (7.4) obtenida en este capitulo y, cuando la matriz es SDD, la cota de Varah (Teorema
7.3). En la féormula (7.4), utilizamos los pardmetros € i = 1,...,n de la forma del Teorema 7.2.
Para esta bateria de ejemplos, elegir una matriz como la del Teorema 7.2 supone tener todos
los parametros epsilon nulos salvo &,. Las celdas coloreadas contienen la mejor cota obtenida
para cada matriz.

Matriz | Norma (exacta) | Varah | (7.6) (7.7) (7.3)
Aq 0.1921 0.6667 | 0.3805 | 0.5263 | 0.3521
Ay 0.2390 1 0.8848 | 0.6885 | 0.9015
Az 0.8759 1.4286 | 1.8076 | 0.9676 | 1.3563
Ay 0.2707 0.5556 | 0.6200 | 0.7937 | 0.4484
As 1.1519 - 1.4909 | 2.4848 | 1.1658
Ag 0.4474 - 1.1557 | 0.5702 | 1.0850

Tabla 7.3: Cota superior de ||A~! ||, (7.3) usa el Teorema 7.2

En la Tabla 7.3, mirando la columna (7.3) vemos la cota obtenida imponiendo & = 0 en
todas las filas excepto en la tltima. El resultado logrado mejora las cotas obtenidas en el otro
articulo en varios casos, pero no siempre es mejor. A continuacién vamos a estudiar las co-
tas obtenidas empleando de nuevo el Teorema 7.2, inicializando los valores de & como 0 o



Matrices de Nekrasov y alta precision relativa - Héctor Orera Herndndez 45

Ai(A)/2, seglin corresponda, y compararemos las cotas con las obtenidas empleando las for-
mulas (7.6) y (7.7). Las matrices sobre las que utilizaremos las cotas son matrices 20 x 20.
Los resultados se incluyen en la Tabla 7.4. En ella, las celdas coloreadas también contienen la

mejor cota obtenida para esa matriz.

Norma (exacta) (7.6) (7.7) (7.3)
6.7500e+03 6.2740e+06 | 7.0302e+06 | 4.6267e¢+06
4.9663e+03 7.5983e+05 | 3.1374e+06 | 1.9948e+06
4.9565e+03 9.6626e+05 | 1.8445e+07 | 1.9506e+07
6.5044e+03 1.4000e+06 | 5.2040e+06 | 3.1536e+06
5.2081e+03 4.0631e+06 | 6.7523e+06 | 2.7879e+05
5.9789e+03 2.9510e+05 | 5.3717e+05 | 5.0178e+06
6.0290e+03 1.3081e+06 | 2.0881e+06 | 1.2653e+06
4.1255e+03 3.7089e+06 | 1.7445e+07 | 1.5422e+05
4.9070e+03 1.8392e+06 | 3.7896e+06 | 1.6405e+06
5.2453e+03 3.0964e+06 | 2.9300e+06 | 1.6907e+07

Tabla 7.4: Cota superior de ||[A~!|

w0, (7.3) usa el Teorema 7.2

En la mitad de los casos, la cota obtenida mediante escalado es mejor que las demds. Y
cabe intentar mejorar la misma estudiando la forma 6ptima de inicializar los pardmetros. El
problema reside en discernir la forma 6ptima de los mismos. Por ejemplo, si volvemos a las
matrices de la bateria de ejemplos, podemos representar la cota obtenida segtin el valor de
€, € (0,A,(A)). En las siguientes gréficas representamos el valor de la cota obtenida segiin los
valores iniciales de €,. El valor minimo aparece resaltado, y es el que se ha incluido en la Tabla
7.3.

\
e - e
A Ay A3
e \ e = /]
/
| /']
\ ,
\0/‘ Co—
Ay As As
Hasta ahora, hemos elegido los pardmetros € i = 1,...,n siguiendo el Teorema 7.2. Las
razones para esta eleccion son el menor coste computacional, y la facilidad para elegir unos
valores iniciales para & i = 1,...,n. No obstante, también es de interés ver qué ocurre em-

pleando la otra eleccién. En la Tabla 7.5 comparamos los resultados obtenidos sobre la bateria
de ejemplos utilizando una matriz S de la forma dada en el Teorema 7.1.
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Matriz | Norma (exacta) | Varah | (7.6) (7.7) (7.3)
Aq 0.1921 0.6667 | 0.3805 | 0.5263 | 0.2354
Ay 0.2390 1 0.8848 | 0.6885 | 0.5260
Az 0.8759 1.4286 | 1.8076 | 0.9676 | 0.9273
Ay 0.2707 0.5556 | 0.6200 | 0.7937 | 0.3168
As 1.1519 - 1.4909 | 2.4848 | 1.1588
Ag 0.4474 - 1.1557 | 0.5702 | 0.4527

Tabla 7.5: Cota superior de ||[A~! ||, (7.3) usa el Teorema 7.1

A primera vista, parece que esta eleccion es superior a las demds: podemos lograr valores
muy préximos al valor exacto de la norma, siendo las estimaciones mejores que las dadas por
cualquier otra férmula en todos los casos. No obstante, la cota presenta un problema subyacen-
te: la inicializacion de los pardmetros €. Dados con el valor adecuado, la cota obtenida es muy
buena. No obstante, una mala eleccion de los mismos da lugar a cotas desastrosas. Por ilustrar
este hecho con un ejemplo sencillo fijfémonos en As. Utilizando el mismo criterio empleado
en la Tabla 7.4, es decir, escoger como valor inicial de & = A;/2 para i = 1,...,n da lugar a
la cota: 2,1392¢ + 15. Para rellenar los datos de la columna AS(2) de la Tabla anterior lo que
hemos hecho ha sido probar distintos datos de los pardmetros y quedarnos con la mejor cota.
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