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Introducción

El estudio y control del error aparece como un problema fundamental al desarrollar mé-
todos numéricos. En particular, al utilizar la representación en coma flotante se presenta el
estudio del error de redondeo. Un análisis clásico del mismo depende del condicionamiento
del problema. No obstante, para algunos problemas se ha logrado dar un enfoque distinto desa-
rrollando algoritmos con alta precisión relativa. Por ejemplo, para realizar cálculos con clases
de matrices estructuradas. En estos algoritmos se parte de parametrizaciones de las matrices
que permiten asegurar la alta precisión relativa independientemente del condicionamiento de
las mismas. Hasta el momento, los ejemplos de clases de matrices encontrados que presen-
tan esta ventaja son o están relacionados con subclases de P-matrices. Recordemos que las
P-matrices son matrices cuadradas con todos los menores principales positivos. Dentro de esta
clase, destacan las M-matrices no singulares por sus numerosas aplicaciones. En esta memoria,
presentaremos dichas matrices, describiremos una parametrización que permite obtener alta
precisión relativa y veremos cómo utilizarla. Después, introduciremos las denominadas matri-
ces de Nekrasov. Estas matrices están íntimamente relacionadas con las M-matrices diagonal-
mente dominantes, y aparecen en diversas aplicaciones, por ejemplo, al buscar cotas de error
en el problema de complementariedad lineal. Para las matrices de Nekrasov presentaremos una
parametrización adecuada que nos permitirá obtener un método de alta precisión relativa para
hallar la inversa y resolver ciertos sistemas lineales de ecuaciones. También, construiremos una
matriz de escalado para las matrices de Nekrasov que las lleva a forma estrictamente diagonal-
mente dominante. A partir de ahí, deduciremos cotas para la norma de la inversa de una matriz
de Nekrasov, problema con importantes aplicaciones potenciales.

La memoria se estructura en siete capítulos. En el primer capítulo introducimos los concep-
tos básicos que necesitamos para plantear un estudio del error, definimos alta precisión relativa
y damos una condición suficiente para asegurarla.

En el segundo capítulo presentamos las diversas clases de matrices estructuradas rela-
cionadas con las de Nekrasov, que engloban los problemas estudiados posteriormente: las
P-matrices, las Z-matrices, las M-matrices, las matrices diagonalmente dominantes y las H-
matrices.

En el tercer capítulo nos centramos en las M-matrices no singulares. Las M-matrices para
las que vamos a lograr algoritmos con alta precisión relativa cumplen además la condición de
dominancia diagonal. En este caso, la parametrización adecuada para trabajar con ellas vendrá
dada por los elementos extradiagonales de la matriz así como la suma de los elementos de
cada fila de la misma. Con estos parámetros, buscaremos obtener con alta precisión relativa
lo que se llama una descomposición reveladora del rango. Estas descomposiciones permiten
obtener los valores singulares con alta precisión relativa. En el caso de las M-matrices diago-
nalmente dominantes, las descomposiciones reveladoras del rango serán ciertas factorizaciones
LDU, obtenidas utilizando la eliminación Gaussiana de forma apropiada, es decir, empleando
adecuadas estrategias de pivotaje simétrico. Por ello recordaremos también dicho método de
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eliminación y expondremos cómo adaptarlo para obtener una factorización LDU mediante un
algoritmo libre de restas (y así con alta precisión relativa), pudiendo emplear para ello dos téc-
nicas distintas de pivotaje simétrico. Al final del capítulo incluimos ejemplos numéricos para
comparar las técnicas de pivotaje simétrico descritas.

Los demás capítulos se centran en el estudio de las matrices de Nekrasov. En el cuarto capí-
tulo enunciamos propiedades elementales de las mismas, y para la subclase compuesta por las
Z-matrices de Nekrasov con elementos diagonales positivos, proponemos una parametrización
a partir de la cual se obtienen algoritmos con alta precisión relativa para el cálculo de inversas
y para el cálculo de sistemas de ecuaciones lineales con términos independientes no negativos.

El quinto capítulo es el dedicado a desarrollar dichos métodos con alta precisión relativa, y
en él se incluye también el pseudocódigo necesario para implementarlos. La clave consiste en
relacionar las Z-matrices de Nekrasov con diagonal positiva con las M-matrices diagonalmente
dominantes empleando una matriz de escalado, y utilizar técnicas conocidas para estas matrices
descritas en el tercer capítulo aunque sin necesitar estrategias de pivotaje. Además, en diversos
casos, también resulta necesario utilizar la estructura de ceros de nuestra matriz para poder
resolver dichos problemas. Tras presentar los algoritmos necesarios, en el sexto capítulo se
incluyen experimentos numéricos para comparar los resultados obtenidos al utilizar dichos
algoritmos con alta precisión relativa con los empleados habitualmente.

El último capítulo trata un problema diferente. Se presentan dos matrices de escalado que
llevan a una matriz de Nekrasov a forma estrictamente diagonalmente dominante. Con dichas
matrices de escalado obtenemos cotas de la norma de la inversa de nuestra matriz original. Éste
es un problema con importantes aplicaciones y que está siendo estudiado en la actualidad, por
lo que para ver la bondad de las cotas introducidas en la memoria recogemos las cotas más
utilizadas y concluimos el capítulo realizando una comparativa con otros métodos publicados
recientemente.
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Capítulo 1

Error y cálculos con alta precisión relativa

Un problema fundamental del álgebra lineal numérica consiste en encontrar métodos efi-
cientes (estables y de bajo coste computacional) para la resolución de sistemas de ecuaciones
lineales con ordenador, es decir, resolver Ax = b con A matriz cuadrada no singular. Un proble-
ma muy relacionado con el anterior es el de encontrar métodos eficientes para hallar la inversa
de una matriz no singular puesto que, si tenemos el sistema Ax = b , entonces x = A−1b. Si A es
una matriz n×n el método más usado en general para la resolución de sistemas de ecuaciones
lineales es la eliminación Gaussiana (véase sección 3.1), que tiene un coste computacional del
orden de n3 operaciones elementales. El método de Gauss-Jordan es el más usado en general
para hallar la inversa de una matriz n× n. Si la matriz tiene una estructura especial, puede
haber métodos con menos coste computacional para resolver los problemas anteriores. Como
el ordenador usa una aritmética de punto flotante (véase sección 1.2), ésto ocasiona que exista
una diferencia entre nuestro cálculo y la solución exacta, a la que llamamos error. Para con-
trolar estos errores en la eliminación Gaussiana se suelen usar técnicas de pivotaje, como, por
ejemplo, el pivotaje parcial.

El primer apartado de este capítulo lo dedicamos a introducir algunos conceptos básicos
relacionados con los errores. El siguiente apartado lo dedicamos a la representación en coma
flotante. Finalmente, la última sección trata los conceptos de condicionamiento y alta precisión
relativa.

1.1. Conceptos básicos

El estudio del error aparece como un problema fundamental para desarrollar buenos algo-
ritmos. Existen tres causas fundamentales de error. La primera es el redondeo consecuencia
de trabajar en una aritmética de precisión finita. Los errores de redondeo no son aleatorios, y
aunque a veces puedan ser beneficiosos, como al aplicar el método de potencias partiendo de
un vector inicial elegido desafortunadamente, hay que tener presente que un algoritmo defi-
ciente puede magnificar estos errores y dar lugar a una solución numérica inútil. La segunda
es la incertidumbre que podamos tener en los datos de cualquier problema en la práctica, bien
sea debida a errores de medición o estimación, a errores de almacenamiento de los datos o
a errores de cálculos previos si estos datos son solución de un problema anterior. La tercera
es la discretización que puede tener que llevarse a cabo al plantear la resolución práctica del
problema. En cualquier caso, nos encontramos una primera cuestión: ¿Cómo se cuantifica el
error? Supongamos que queremos calcular un valor x escalar.
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2 Capítulo 1. Error y cálculos con alta precisión relativa

Definición 1.1. El error absoluto cometido al hallar x̂ es Eabs(x̂) = |x− x̂|.

Esta primera definición no tiene en cuenta la magnitud de la cantidad a calcular, por lo que
puede no ser muy informativa. Por tanto, se introduce el error relativo:

Definición 1.2. El error relativo cometido al hallar x̂, definido cuando x 6= 0, es Erel(x̂) =
|x−x̂|
|x| .

El concepto de error relativo está relacionado con el número de cifras significativas correc-
tas que obtenemos, por lo que será el que atraiga nuestro interés. En el caso vectorial se puede
extender la misma definición de esta forma:

Definición 1.3. El error relativo cometido al calcular el vector x̂, definido cuando x 6= 0, es
Erel(x̂) =

‖x−x̂‖
‖x‖ .

No obstante, puede que se obvie el error cometido en las componentes de menor magnitud
del vector, por lo que también es interesante definir :

Definición 1.4. El error relativo componente a componente del vector x̂, definido cuando
xi 6= 0, es máxi

|xi−x̂i|
|xi| .

Como no conocemos con exactitud el error que cometemos, la forma de proceder consiste
en dar cotas de este error, al que se denomina forward (o progresivo), que aseguren que nues-
tros cálculos son buenos.

Otro planteamiento posible y que ha resultado muy útil para acotar el error forward (como
mencionamos en la sección 1.3) es considerar para qué valores iniciales del problema nues-
tra solución numérica sería la solución exacta. Tomando como ejemplo y = f (x), una función
continua real de variable real, e ŷ una aproximación numérica a f en un punto x dado, conside-
ramos el conjunto de valores x+4x para el que sería la solución exacta, y tomamos el menor
|4x|, al que llamamos error backward (o regresivo). Si para todo x, el valor |4x| es pequeño
(en el contexto del problema que tratemos) diremos que el método es estable backward. El es-
tudio de la estabilidad backward juega un papel importante en el diseño de un buen algoritmo.
En un problema concreto, podemos definir el factor de crecimiento, que es una medida del in-
cremento de la magnitud de los datos con los que se trabaja. Si estos crecen demasiado podría
darse un problema de overflow, lo que significa que una cantidad calculada ha superado el má-
ximo del conjunto de números representables. Clásicamente, en álgebra lineal numérica, tener
una cota adecuada del factor de crecimiento nos permite a su vez acotar el error backward. Así
también evitaremos este tipo de problemas en el desarrollo del algoritmo. De igual forma, se
dice que un método es estable forward si la magnitud del error forward de sus soluciones es
similar a la del error backward asociado a un método estable backward.

1.2. Representación en coma flotante
Antes de introducir el concepto de alta precisión relativa, debemos especificar en qué con-

texto estamos trabajando. Hemos mencionado como una causa de error el trabajar utilizando
una aritmética de precisión finita. Sea F un subconjunto de los números reales (F ⊂ R). Di-
remos que F es un sistema de numeración en coma flotante si sus elementos presentan la
siguiente forma:

y =±m×β
e−t .

El significando (también llamado mantisa), m, es un número entero que cumple 0≤m≤ β t−1.
El sistema F queda caracterizado por los siguientes números enteros:
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la base β ,

la precisión t,

y el rango de exponentes emin ≤ e≤ emáx.

En nuestro caso, la base será 2. Los números representables dependerán del número de
bits empleado para almacenar el significando y el exponente. El número de bits utilizados
para el significando determinará la precisión, y el número de bits usados para el exponente
delimitará el rango de números representables. Lo común es emplear el estándar del IEEE para
aritmética en coma flotante. En él se definen dos formatos de números en coma flotante muy
utilizados: precisión simple (de 32 bits) y precisión doble (de 64 bits). El primero destina 8
bits al exponente y 23 al significando. El segundo 11 bits al exponente y 52 al significando. En
ambos casos el primer bit corresponde al signo.

Si queremos realizar un análisis del error que cometemos al aplicar un algoritmo, existe un
valor asociado a F fundamental: la unidad de redondeo, u. La unidad de redondeo es el máximo
error relativo que se puede cometer al aproximar un número dentro del rango de números
representables. En los siguientes capítulos consideraremos el modelo estándar de aritmética en
coma flotante. Sean x,y ∈ F :

f l(x� y) = (x� y)(1+δ ), |δ |< u, �=+,−,∗,/.

donde f l(·) con un argumento representa el valor calculado de esa expresión. El modelo dice
que el valor que se calcula es “tan bueno” como el valor exacto redondeado. A veces puede ser
más conveniente utilizar la siguiente variación del modelo. De nuevo, sean x,y ∈ F :

f l(x� y) =
x� y
1+δ

, |δ |< u, �=+,−,∗,/.

1.3. Condicionamiento y alta precisión relativa
Además del interés propio que suscita el estudio del error backward (si tenemos estabilidad

backward, la solución calculada es la solución de un problema ligeramente perturbado), éste
puede servir para dar una estimación del error que definíamos originalmente, el error forward.
La relación entre ambos errores está gobernada por el condicionamiento del problema, que
mide la sensibilidad de la solución a las perturbaciones en los datos.

Como ejemplo concreto de condicionamiento, podemos considerar el problema de la reso-
lución de un sistema lineal de ecuaciones Ax = b, con A matriz cuadrada no singular (puede
consultarse, por ejemplo, en la sección 2.2 de [8]).

Definición 1.5. El número de condición de una matriz no singular A es κ(A) = ‖A‖‖A−1‖,
donde ‖·‖ denota una norma matricial.

Los casos más frecuentes corresponden a κ∞(A) (que usa ‖·‖∞) y κ2(A) (que utiliza ‖·‖2).
El número de condición depende solamente de la matriz A, y cuando es muy grande, nos impi-
de dar una cota satisfactoria del error forward de la solución del sistema.

En general, cuando en un problema tenemos definido el error forward, el error backward
y el número de condición correspondientes, se busca probar la relación siguiente (véase la
sección 1.6 de [15]):

error forward . número de condición× error backward
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ya que normalmente es mucho más fácil acotar el error backward que el error forward.
Aunque la solución numérica que obtengamos tenga un error backward pequeño, éste pue-

de ser amplificado por un factor de hasta el tamaño del número de condición, dando lugar a una
solución numérica con un error forward excesivo. Así, el condicionamiento se puede presentar
como un impedimento intrínseco a la hora de dar una cota del error satisfactoria, en contraste
con el error backward, que depende del método utilizado. En la práctica, si nuestro problema
lleva asociado una matriz mal condicionada, es de interés buscar algún camino alternativo.

Un ejemplo que también justifica el buscar un planteamiento distinto es el cálculo de va-
lores singulares de una matriz. Si buscamos acotar el error cometido al calcular el vector de
valores singulares en norma, aunque veamos que los valores singulares grandes tendrán un
error relativo pequeño, muchas veces no podremos asegurar lo mismo para los más próximos
a cero (puede verse en [9]). Y estos son los que queremos conocer de forma precisa.

Para obtener resultados con varias cifras significativas correctas, buscaremos que el error
de nuestro algoritmo cumpla esta relación:

error forward relativo ≤ Ku, para alguna constante K.

Entonces, diremos que los cálculos se han realizado con alta precisión relativa (HRA, de
high relative accuracy). ¿Es posible lograr la HRA para cualquier problema? Desgraciada-
mente, la respuesta, en general, es negativa. Como primer ejemplo de cálculo que no puede
realizarse con HRA tenemos la evaluación de la expresión x+ y+ z (véase [9]). También po-
demos encontrar un ejemplo entre las clases de matrices con una estructura sencilla, que es
la evaluación de determinantes de las matrices de Toeplitz. Una matriz de Toeplitz presenta la
siguiente forma:

B =


a0 a1 · · · an−2 an−1

a-1 a0
. . . an−2

... . . . . . . . . . ...

a-n+2
. . . . . . a1

a-n+1 a-n+2 · · · a-1 a0


Las matrices de Toeplitz se caracterizan porque en cada diagonal aparece siempre el mismo

elemento. Aunque están parametrizadas con 2n−1 parámetros, para un n arbitrariamente gran-
de, no se puede asegurar la HRA. No obstante, para otras matrices con determinada estructura
veremos cómo lograrla.

Comenzamos la búsqueda de la alta precisión relativa identificando las causas de la pérdida
de la misma. El principal fenómeno que provoca este problema es la cancelación debido a restas
de cantidades aproximadas durante el desarrollo de un algoritmo. Una resta de dos cantidades
del mismo tamaño puede magnificar errores previos y provocar que los resultados obtenidos no
sean válidos. Para entender mejor este fenómeno, vamos a plantear la operación (en aritmética
exacta en este caso) x̂ = â− b̂ , donde â = a(1+∆a), b̂ = b(1+∆b) y ∆a y ∆b son los errores
relativos en los datos que intervienen en la operación. Veamos qué podemos decir del error
relativo que cometemos al calcular x̂ como aproximación de x = a−b (siempre que x 6= 0):∣∣∣∣x− x̂

x

∣∣∣∣= ∣∣∣∣−a∆a+b∆b
a−b

∣∣∣∣≤máx(|∆a|, |∆b|) |a|+ |b|
|a−b|

.
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Vemos que la cota para el error relativo de x̂ es grande cuando |a− b| � |a|+ |b|, o equi-
valentemente, cuando se produce mucha cancelación al realizar la operación.

Aunque no toda resta tiene que provocar este efecto. Por ejemplo, podemos restar dos datos
iniciales que se conozcan de forma precisa sin que se produzca una cancelación perniciosa. En
cualquier caso, es un fenómeno que tenemos que tener presente al construir un método con
HRA. Existe una condición suficiente para asegurar la alta precisión relativa de un algoritmo
(véase [10]). Es la condición no inaccurate cancellation (NIC): las operaciones realizadas en
el algoritmo son sumas de números del mismo signo, multiplicaciones, divisiones y restas de
datos iniciales (entendiendo como resta la diferencia entre dos cantidades del mismo signo).
Es decir, están prohibidas las restas (salvo de datos iniciales). Muchos de los algoritmos que
vamos a presentar son algoritmos libres de restas (o SF, de subtraction free). Un algoritmo
SF cumple en particular la condición NIC, y, por tanto, mediante su aplicación obtendremos
resultados con HRA.

En esta sección hemos introducido conceptos fundamentales en el análisis del error. No
obstante, a la hora de desarrollar un algoritmo hay que tener en cuenta más factores. Si las me-
didas utilizadas para evitar la propagación de errores acarrean un coste computacional excesivo,
las consideraciones previas no podrán ponerse en práctica. Como vamos a describir cálculos
matriciales, expresaremos el coste computacional en función del tamaño de la matriz n×n en
estudio. Normalmente, los algoritmos para resolver los problemas algebraicos enunciados al
principio de esta sección se consideran eficientes si realizan O(n3) operaciones elementales.
En el siguiente capítulo presentaremos la clase de las P-matrices, que engloba casi todas las
matrices para las que hasta ahora se han encontrado algoritmos con HRA, e introduciremos
una importante subclase de la misma íntimamente relacionada con las matrices de Nekrasov,
las cuales estudiaremos en capítulos posteriores.





Capítulo 2

Clases de matrices relacionadas

Para ciertas clases de matrices, se pueden realizar muchos cálculos con alta precisión rela-
tiva independientemente del condicionamiento. Una justificación para este hecho es que estas
matrices tienen detrás una estructura especial y traen asociados unos parámetros naturales, que
son los que se emplean en los algoritmos para lograr la alta precisión relativa (HRA). Casi
todas las clases de matrices estructuradas para las que se han encontrado hasta ahora algorit-
mos con HRA están muy relacionadas con subclases de P-matrices (véase [9]). Este hecho está
probablemente relacionado con el de que la condición suficiente NIC para HRA propuesta en
el capítulo anterior depende de una cuestión de signos.

En este capítulo comenzamos por tanto introduciendo el concepto de P-matriz en la primera
sección. Incluimos algunas caracterizaciones y presentamos su aplicación a los problemas de
complementariedad lineal. En la siguiente sección se presentan y relacionan los conceptos de
Z-matriz, M-matriz y dominancia diagonal y en la última se introducen las H-matrices, clase
que engloba a las matrices de Nekrasov (objeto de nuestro estudio en los capítulos siguientes).

2.1. P-matrices
Comencemos definiendo la importante clase de las P-matrices con la que estarán relacio-

nadas todas las clases de matrices usadas en esta memoria.

Definición 2.1. Una matriz A = (ai j)1≤i, j≤n es una P-matriz si todos sus menores principales
son positivos.

Recordemos que los menores principales de una matriz son aquellos que se forman eli-
giendo filas y columnas con el mismo índice. Vamos a introducir una notación que usaremos
posteriormente. Definimos Qk,n como el conjunto de sucesiones estrictamente crecientes de
k números naturales menores o iguales que n. Sean α = (α1, . . . ,αk), β = (β1, . . . ,βk) dos
sucesiones de Qk,n. Entonces A[α|β ] denota a la submatriz k× k de A conteniendo las filas
α1, . . . ,αk y columnas β1, . . . ,βk. Si α = β la submatriz A[α|α] se denomina principal y tam-
bién se representa de forma abreviada como A[α].

La Definición 2.1 es la definición más común de P-matriz. No obstante, existen muchas
caracterizaciones. En el siguiente resultado (página 120 de [17]) se presentan las siguientes:

Teorema 2.2. Sea A = (ai j)1≤i, j≤n. Las siguientes condiciones son equivalentes:

i) A es P-matriz.

7
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ii) Para todo x ∈ Rn no nulo existe k ∈ {1, . . . ,n} tal que xk(Ax)k > 0.

iii) Para todo x ∈ Rn no nulo existe una matriz D diagonal positiva tal que xT (DA)x > 0.

iv) Para todo x∈Rn no nulo existe una matriz D diagonal no negativa tal que xT (DA)x > 0.

v) Todo valor propio real de cualquier submatriz principal de A es positivo.

Además de estas caracterizaciones, podemos encontrar otras que relacionan a las P-matrices
directamente con sus aplicaciones. Como ejemplo de aplicación en programación lineal, tene-
mos el problema de complementariedad lineal (LCP):

Dados r ∈ Rn y M ∈ Rn×n, encontrar (o deducir que no existe) z ∈ Rn tal que

w = r+Mz, con w≥ 0,z≥ 0,zT w = 0.
(2.1)

Pues bien, la existencia y unicidad de solución del problema de complementariedad lineal
caracteriza a una P-matriz (página 274 de [4]):

Teorema 2.3. M = (mi j)1≤i, j≤n es una P-matriz si y solo si el problema de complementariedad
lineal (2.1) tiene solución única para todo r ∈ Rn.

Antes de pasar a la siguiente sección, cabe destacar que una importante aplicación de las
matrices de Nekrasov, a las que dedicaremos gran parte de la memoria, es la obtención de cotas
de error en el problema de complementariedad lineal.

2.2. Z-matrices, M-matrices y dominancia diagonal
Las M-matrices constituyen una subclase de P-matrices presente en numerosas aplicacio-

nes. Se encuentran, por ejemplo, en teoría de probabilidad, en el estudio de cadenas de Markov,
en análisis numérico, al buscar cotas de valores propios, o al establecer criterios de convergen-
cia de métodos iterativos para la resolución de grandes sistemas lineales de ecuaciones con
matriz asociada hueca (o sparse, que es una matriz en la que predominan los elementos nulos).
Entre estas aplicaciones, cabe destacar el papel que juegan las M-matrices en el campo de la
economía. Su aparición en diversos modelos desembocó en el estudio de las mismas por parte
de los economistas. Como ejemplo fundamental tenemos el modelo input-output o modelo de
Leontief, denominado así por su precursor Wassily Leontief, premio nobel de economía en
1973. La novedad del trabajo de Leontief radica precisamente en emplear el álgebra lineal para
describir una economía en la que diversos sectores producen y consumen bienes, y estudiar
cómo sus diversas partes encajaban e interaccionaban.

Las M-matrices para las que vamos a lograr algoritmos con HRA cumplen la condición de
dominancia diagonal. Vamos a comenzar definiendo los correspondientes conceptos básicos:

Definición 2.4. Una matriz A = (ai j)1≤i, j≤n se dice Z-matriz si ai j ≤ 0 ∀(i, j) tal que i 6= j.

Es decir, es una matriz cuyos elementos extradiagonales son no positivos.

Definición 2.5. Una Z-matriz A = (ai j)1≤i, j≤n se dice M-matriz si puede representarse de la
forma: A = sI−B, con B≥ 0 y s≥ ρ(B) (donde ρ(B) es el radio espectral de B). Si se cumple
s > ρ(B), la matriz es una M-matriz no singular.
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Nota 2.6. Observemos que las entradas diagonales de una M-matriz son no negativas (véase
página 159 de [23]).

El siguiente resultado, que corresponde al Lema 4.1 del capítulo 6 de [4], da una relación
entre las M-matrices y las M-matrices no singulares que nos será de utilidad posteriormente.

Lema 2.7. Sea A = (ai j)1≤i, j≤n una Z-matriz. Entonces A es M-matriz si y solo si A+ εI es
una M-matriz no singular para todos los escalares ε > 0.

A continuación presentamos el tercer concepto importante de esta sección.

Definición 2.8. Una matriz A = (ai j)1≤i, j≤n se dice matriz diagonalmente dominante por filas
(d.d.) si cumple:

|aii| ≥∑
i 6= j
|ai j|, i = 1, ...,n.

Si AT es d.d., A se dice matriz diagonalmente dominante por columnas. Si la desigual-
dad es estricta para todas las filas de A (resp. de AT ), la matriz es estrictamente diagonalmente
dominante por filas y la denotamos SDD (resp. estrictamente diagonalmente dominante por co-
lumnas). Es bien conocido que una matriz SDD es no singular (Teorema de Levy-Desplanques,
véase 5.6.17 de [16]). Para argumentarlo, se pueden usar, por ejemplo, discos de Gershgorin
para demostrar que 0 no puede ser valor propio.

Antes hemos mencionado la variedad de aplicaciones de las M-matrices. Una curiosidad
acerca de las M-matrices no singulares guarda relación con esta diversidad de aplicaciones, y
es la gran cantidad de caracterizaciones que poseen. En el capítulo 6 del libro [4] aparecen 50
caracterizaciones. A continuación presentamos varias debido a su importancia. En particular,
introduciremos las caracterizaciones D16, A1, E17, N38, M35, E18, C10 que corresponde a ii)−
viii). Recordemos previamente, que un menor principal de una matriz A se llama director si usa
filas y columnas iniciales, es decir, si es de la forma detA[1, . . . ,k] para algún k ∈ {1, . . . ,n}.

Teorema 2.9. Sea A = (ai j)1≤i, j≤n una Z-matriz. Entonces, las siguientes condiciones son
equivalentes:

i) A es una M-matriz no singular.

ii) Todos los valores propios reales de A son positivos.

iii) Todos los menores principales de A son positivos.

iv) Todos los menores principales directores de A son positivos.

v) A es invertible, y A−1 es no negativa (A−1 ≥ 0).

vi) A tiene diagonal positiva y existe una matriz D diagonal tal que AD es una matriz de
diagonal estrictamente dominante.

vii) A = LU, donde L es una matriz triangular inferior, U es una matriz triangular superior
y todos los elementos diagonales de ambas matrices son positivos.

viii) A es no singular, y A+D es no singular para cualquier matriz D diagonal positiva.
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Vamos a presentar ahora las relaciones entre las definiciones 2.4, 2.5 y 2.8 de esta sección.
Observemos que, utilizando la implicación vi)⇒ i) con D= I (matriz identidad) en el Teorema
2.9 deducimos el siguiente resultado:

Proposición 2.10. Si A = (ai j)1≤i, j≤n es una Z-matriz SDD con entradas diagonales positivas,
entonces A es una M-matriz no singular.

Terminamos esta sección con la caracterización que relaciona las definiciones 2.4, 2.5 y 2.8.
Observemos que el recíproco es inmediato y que la implicación directa se puede obtener de la
Proposición 2.10 y el Lema 2.7. De hecho, si A es una Z-matriz d.d. con entradas diagonales
no negativas, entonces A+ εI es una Z-matriz SDD con entradas diagonales positivas para
cualquier escalar ε > 0. Así, otra vez por la Proposición 2.10, A + εI es una M-matriz no
singular para cualquier ε > 0, y, por el Lema 2.7, A es una M-matriz.

Teorema 2.11. Sea A = (ai j)1≤i, j≤n una matriz d.d. con entradas diagonales no negativas.
Entonces A es Z-matriz si y solo si A es M-matriz.

2.3. H-matrices
En la sección anterior hemos introducido las M-matrices. En muchos problemas teóricos y

prácticos (véase [4]), aparecen otros tipos de matrices, que a pesar de no ser M-matrices, guar-
dan cierta relación con éstas, la cual nos puede servir de guía para lograr algoritmos con HRA.
Para ilustrar cómo puede aparecer esta relación, a continuación vamos a definir el concepto de
H-matriz, una clase de matrices que engloba a las M-matrices. Para dar la definición de una
forma clara, conviene primero introducir la noción de matriz de comparación:

Definición 2.12. La matriz de comparación M(A) = (mi j)1≤i, j≤n de una matriz compleja
A = (ai j)1≤i, j≤n se define de la siguiente forma:

mi j =

{
|ai j| si j = i,
−|ai j| si j 6= i.

Definición 2.13. Una matriz A = (ai j)1≤i, j≤n compleja se dice H-matriz si su matriz de com-
paración es una M-matriz no singular.

Observemos que una matriz de comparación M(A) es una Z-matriz con diagonal no negati-
va cuyas entradas tienen los mismos valores absolutos que los de las entradas correspondientes
de A. Por tanto, la estructura de signos de la matriz de comparación es la de una Z-matriz con
diagonal no negativa. Una H-matriz es M-matriz si y solo si su matriz de comparación coincide
con ella misma. En el caso de las M-matrices no singulares hemos visto numerosas caracteri-
zaciones. Para las H-matrices, existe una caracterización (véase p. 124 de [17]) que también
las relaciona con las matrices estrictamente diagonalmente dominantes (SDD).

Teorema 2.14. Sea A = (ai j)1≤i, j≤n. Entonces, A es H-matriz si y solo si existe una matriz
diagonal D tal que AD es una matriz estrictamente diagonalmente dominante por filas.

A partir del capítulo cuatro consideraremos una subclase de las H-matrices llamadas ma-
trices de Nekrasov.



Capítulo 3

Eliminación Gaussiana y M-matrices
diagonalmente dominantes

En el capítulo anterior hemos introducido la clase formada por las M-matrices, y hemos
expuesto la relación de la misma con el concepto de positividad. Ya era conocido hace tiempo
que la dominancia diagonal tenía ventajas en el estudio clásico del error de la resolución de
sistemas (véase [24]). En este capítulo, se muestra que también tienen ventajas de cara a la
obtención de algoritmos con alta precisión relativa (HRA). En particular, vamos a ver cómo
el algoritmo de eliminación Gaussiana, empleado de forma adecuada, es clave para lograr re-
solver varios problemas del álgebra lineal numérica logrando HRA para las M-matrices d.d.
(diagonalmente dominantes). La forma de lograrlo será obtener una factorización LDU asegu-
rando la HRA.

Por tanto, en la primera sección se recuerda el algoritmo de eliminación Gaussiana, los
pivotajes parcial y total, así como el método de Gauss-Jordan para calcular inversas. Después,
se describen dos técnicas de pivotaje para M-matrices diagonalmente dominantes que, emplea-
das en el proceso de eliminación Gaussiana partiendo de una parametrización adecuada de la
M-matriz d.d., dan lugar a una factorización LDU calculada con HRA. Por último, se concluye
el capítulo con un apartado dedicado a la experimentación numérica que ilustra las diferentes
consecuencias de aplicar las dos técnicas de pivotaje descritas.

3.1. Eliminación Gaussiana, pivotaje y método de
Gauss-Jordan

Dada A = (ai j)1≤i, j≤n matriz no singular, la eliminación Gaussiana es un procedimiento
de eliminación matricial empleado para hacer ceros debajo de su diagonal. Consiste en una
sucesión de n−1 pasos que dan lugar a una sucesión de matrices de la forma:

A = A(1)→ Ã(1)→ A(2)→ Ã(2)→ . . .→ A(n) = Ã(n) = DU,

donde A(k) tiene ceros por debajo de la diagonal en las primeras k−1 columnas y DU es trian-
gular superior. Habiendo calculado A(k), reordenamos sus filas y/o columnas para obtener Ã(k)

mediante una estrategia de pivotaje. Una estrategia de pivotaje en el proceso de eliminación
Gaussiana consiste en una reordenación de las filas y/o columnas de A en cada paso para selec-
cionar cuál será el elemento pivote que emplearemos para hacer ceros en la siguiente iteración.

11
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En el esquema, su aplicación se produce en el paso de A(k) a Ã(k). Dos estrategias muy utili-
zadas son el pivotaje parcial (reordenación solamente de filas, consiste en buscar un elemento
de mayor módulo en la columna A(k)[k, . . . ,n|k]en la que haremos ceros en el siguiente paso) y
el pivotaje total o completo (reordenación de filas y columnas, se busca un elemento pivote de
módulo máximo en toda la submatriz A(k)[k, . . . ,n]). Sea cual sea la estrategia elegida, necesita-
mos que el elemento pivote, ã(k)kk , sea no nulo. Cuando en una estrategia de pivotaje utilizamos
siempre el mismo índice de filas y columnas decimos que usamos un pivotaje simétrico.

Aplicando la permutación adecuada según la estrategia de pivotaje que elijamos, llegamos
a Ã(k). El elemento ã(k)kk será el pivote elegido por la estrategia de pivotaje, y se empleará para
hacer ceros en la columna k. Para ello, restaremos múltiplos de la fila k a las filas de debajo,
obteniendo así la matriz A(k+1) = (a(k+1)

i j )1≤i, j≤n

a(k+1)
i j =


ã(k)i j , si 1≤ i≤ k,

ã(k)i j −
ã(k)ik

ã(k)kk

ã(k)k j , si k < i≤ n.

Si nuestro objetivo es calcular la inversa de una matriz no singular, se puede emplear el
bien conocido método de Gauss-Jordan. El método de Gauss-Jordan sin pivotaje da lugar a
una sucesión de matrices de la forma:

A = A(1)→ A(2)→ . . .→ A(n) = DU → A(n+1)→ . . .→ A(2n−1) = D→ A(2n) = I,

donde en los primeros n− 1 pasos hemos empleado eliminación Gaussiana sin pivotaje para
hacer ceros por debajo de la diagonal de la matriz, y en los k−1 pasos siguientes hemos utili-
zado de nuevo eliminación Gaussiana sin pivotaje para hacer ceros por encima de la diagonal
de la matriz. El último paso consiste en reescalar la matriz para lograr la matriz identidad. Si
aplicamos las mismas operaciones elementales a la matriz identidad (es decir, B = B(1) = I),
al obtener la matriz A(2n) = I lograremos también la matriz B(2n) = A−1. Análogamente a la
eliminación Gaussiana, el método de Gauss-Jordan también se puede aplicar con estrategias de
pitovaje.

3.2. Descomposiciones reveladoras del rango,
parametrización y pivotaje

Volviendo a nuestro problema de aplicar algoritmos de forma precisa, recordemos que mu-
chas veces la clave consiste en buscar distintas factorizaciones o parametrizaciones del pro-
blema. Para hallar los valores singulares de una matriz, se emplea la llamada descomposición
reveladora del rango (o rank revealing decomposition, RRD). Esta consiste en una descompo-
sición de la matriz de la forma A = XDY T , donde X ,Y son matrices bien condicionadas y D es
una matriz diagonal. En [10] se presenta un algoritmo que realiza O(n3) operaciones elemen-
tales para obtener con HRA los valores singulares de una matriz n×n a partir de su RRD.

En el caso de las M-matrices, se considera como RRD la descomposición LDU obtenida
tras una adecuada estrategia de pivotaje, en la que L es una matriz triangular inferior y U
una matriz triangular superior. Además, los elementos diagonales de D son positivos, y tanto
los de L como los de U son todos unos. Podemos obtener esta descomposición con HRA
logrando unas matrices L y U bien condicionadas, por lo que habremos calculado una RRD
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que podremos emplear para calcular los valores singulares de la matriz de forma precisa. Para
calcular la descomposición emplearemos la eliminación Gaussiana con una adecuada estrategia
de pivotaje.

En esta descripción de la eliminación Gaussiana no hemos tenido en cuenta la estructura
de la matriz. Para obtener una factorización LDU de una M-matriz diagonalmente dominante
(d.d.), con L y U bien condicionadas, es necesario realizar cambios en el planteamiento des-
crito. Por un lado, al trabajar directamente con los elementos de la M-matriz, el algoritmo de
eliminación Gaussiana puede dar lugar a errores por cancelaciones debido a las restas que se
llevan a cabo. Para evitar este fenómeno, en vez de trabajar directamente con los elementos
de la matriz se utiliza una parametrización de la misma. Para las M-matrices diagonalmente
dominantes, unos parámetros adecuados son las sumas de los elementos de cada fila y sus
elementos extradiagonales. Estos parámetros pueden tener una interpretación física natural [2].

Además, si elegimos sin cuidado la estrategia de pivotaje, podemos perder la estructura
de M-matriz en el desarrollo del algoritmo. Con el fin de evitar este problema, se utilizan las
llamadas estrategias de pivotaje simétrico. La idea consiste en realizar en cada paso la misma
permutación tanto de filas como de columnas. Así, teniendo en cuenta que estas permutaciones
simultáneas de filas y de columnas preservan la propiedad de ser M-matriz y que por [12] el
complemento de Schur de M-matrices también preserva la propiedad, concluimos que todas las
submatrices Ã(k)[k, . . . ,n] con k ∈ {1, . . . ,n−1} serán M-matrices. Obtendremos una factoriza-
ción de la forma PAPT = LDU con P una matriz de permutación. A continuación introducimos
dos estrategias de pivotaje simétrico que pueden servir para obtener una RRD de la forma ya
descrita.

La primera estrategia de pivotaje simétrico se denomina pivotaje simétrico total, y con-
siste en elegir un elemento de módulo máximo en la diagonal. En el caso de las M-matrices
diagonalmente dominantes, esta estrategia coincide con pivotaje total. En [11] se presenta un
algoritmo que emplea esta estrategia para lograr una descomposición LDU de una M-matriz
d.d. Dados los elementos extradiagonales ai j, con i 6= j, y el vector de sumas de filas s, con
si = ∑

n
j=1 ai j, el Algoritmo 1 da la factorización LDU de una M-matriz d.d. usando pivotaje

simétrico total, sin hacer uso de restas (SF). Las salidas del algoritmo son la matriz P, la ma-
triz L y la matriz DU (estas dos últimas almacenadas en A) de la factorización PAPT = LDU
mediante pivotaje simétrico total. Si necesitamos factorizar una M-matriz diagonalmente do-
minante por columnas, bastaría con aplicar el algoritmo a AT . En ese caso, tendríamos como
parámetros los elementos extradiagonales de A así como la suma de los elementos de cada
columna, que se corresponderían con las sumas de las entradas de las filas de AT .

La segunda técnica de pivotaje simétrico que presentamos para hallar una factorización
LDU de una M-matriz diagonalmente dominante con L y U bien condicionadas se encuentra
descrita de forma detallada en [25]. Aquí introduciremos esta técnica de pivotaje y el algoritmo
para obtener una factorización LDU de una M-matriz diagonalmente dominante por columnas.

La estrategia de pivotaje simétrico se denomina maximal absolute diagonal dominance
(m.a.d.d.) y se basa en elegir como pivote en el paso k (k ∈ {1, . . . ,n−1}) una fila ik ≥ k que
cumpla:

|a(k)ikik |− ∑
j≥k, j 6=ik

|a(k)ik j |= máx
k≤i≤n

{|a(k)ii |− ∑
j≥k, j 6=i

|a(k)i j |}.

Por el Teorema 2 de [1] una M-matriz A siempre tiene un elemento diagonal aii que verifica
|aii|> ∑ j 6=i |ai j|. Por tanto, el pivote que elijamos cumplirá aikik 6= 0 (será un pivote válido).
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Algoritmo 1 Eliminación Gaussiana para M-matrices d.d. utilizando pivotaje simétrico total

Entradas: A = (ai j)(i 6= j), s . s es el vector de sumas de las filas de A
P = In . la matriz de permutación
for k = 1 : n−1

for i = k : n
aii = si−∑

n
j≥k, j 6=i ai j

end for
Buscar t tal que att = máxi≥k{aii}
Elegir Pk matriz de permutación que intercambia la fila t y la fila k.
Actualizar P = PkP, A = PkAPT

k , s = Pks
for i = k+1 : n

aik = aik/akk
si = si−aiksk
for j = k+1 : n

if i 6= j
ai j = ai j−aikak j

end if
end for

end for
end for

Dados los elementos extradiagonales ai j, con i 6= j, y el vector de sumas de columnas c,
con ci = ∑

n
i=1 ai j, el Algoritmo 2 es también SF y da la factorización LDU de una M-matriz

diagonalmente dominante por columnas empleando la estrategia de pivotaje m.a.d.d. Las sali-
das del algoritmo son la matriz P, la matriz L y la matriz DU (estas dos últimas almacenadas
en A) de la factorización PAPT = LDU mediante pivotaje m.a.d.d.

Hemos presentado dos estrategias para obtener una factorización LDU que sirve como
RRD de una M-matriz diagonalmente dominante. No obstante, el siguiente teorema muestra
una importante diferencia entre ambas (Proposition 3.2 de [25]):

Teorema 3.1. Sea A = (ai j)1≤i, j≤n una M-matriz diagonalmente dominante por filas o colum-
nas y sea P una matriz de permutación asociada a aplicar la estrategia de pivotaje m.a.d.d.
de A o AT , respectivamente. Entonces PAPT = LDU, donde L es una matriz triangular infe-
rior de diagonal dominante por columnas y U es una matriz triangular superior de diagonal
dominante por filas.

Si utilizamos pivotaje simétrico total con una M-matriz d.d. por columnas obtendremos
una factorización LDU en la que la matriz L es d.d. por columnas. No obstante, no podremos
asegurar que U sea d.d. por filas, sino solo que el elemento diagonal es mayor en módulo que
los restantes de su fila. En la siguiente sección se muestran ejemplos en los cuales la matriz
U obtenida empleando pivotaje simétrico total no es d.d. por filas, y su número de condición
es considerablemente mayor que el de la U obtenida empleando pivotaje m.a.d.d. Para una
M-matriz d.d. por filas, considerando su matriz traspuesta se deduce que solamente tendremos
asegurada la dominancia diagonal por filas de U en el caso de estar utilizando pivotaje simé-
trico total. La dominancia diagonal de las matrices L y U implica que ambas están muy bien
condicionadas (Proposition 2.1 de [25]).
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Algoritmo 2 Eliminación Gaussiana para M-matrices d.d. utilizando pivotaje m.a.d.d.

Input: A = (ai j)(i 6= j), c . c es el vector de sumas de las columnas de A
P = In . la matriz de permutación
for i = 1 : n

si = ∑
n
j=1, j 6=i a ji

aii = ci− si
pi = ∑

n
j=1 ai j

end for
for k = 1 : n−1

Buscar t tal que pt = máxi≥k{pi}
Elegir Pk matriz de permutación que intercambia la fila t y la fila k.
Actualizar P = PkP, A = PkAPT

k , c = Pkc, p = Pk p
for i = k+1 : n

aik = aik/akk
ci = ci−akick/akk
pi = pi−aik pk
for j = k+1 : n

if i 6= j
ai j = ai j−aikak j

end if
end for

end for
for j = k+1 : n

s j = ∑
n
i≥k+1,i6= j ai j

a j j = c j− s j
end for

end for

Teorema 3.2. Sea T = (ti j)1≤i, j≤n una matriz triangular diagonalmente dominante por filas
(respectivamente columnas) cuyos elementos diagonales son todo unos. Entonces κ∞(T )≤ n2

(respectivamente κ∞(T )≤ 2n).

De nuevo, tenemos que tener en cuenta la eficiencia del algoritmo que emplee una de
estas estrategias de pivotaje. La implementación de cualquiera de las dos estrategias supone
un aumento de O(n3) operaciones elementales sobre el coste computacional del algoritmo de
eliminación Gaussiana. No obstante, la estrategia de pivotaje m.a.d.d. se puede implementar
para esta clase de matrices de modo que podamos obtener una factorización LDU con un
coste computacional aún menor y conseguir L y U matrices diagonalmente dominantes. En
[3], se presenta cómo se realiza la implementación de la estrategia de forma que añada O(n2)
operaciones elementales al coste computacional de la eliminación Gaussiana.

3.3. Experimentación numérica

En esta sección vamos a mostrar resultados obtenidos empleando una implementación en
MATLAB de los algoritmos presentados en este capítulo. Para ello, vamos a comenzar defi-
niendo una familia de matrices que nos servirá de batería de ejemplos. Dado n ∈ N, definimos
la matriz An de la siguiente manera:



16 Capítulo 3. Eliminación Gaussiana y M-matrices diagonalmente dominantes

An =



2n −2n 0 · · · · · · 0
0 2n+1 −2 · · · −2 −3
... −2n 2n 0 · · · 0
...

... 0 . . . ...
...

...
... 2n 0

0 −2n 0 · · · 0 2n


.

En la Tabla 3.1 vemos el condicionamiento en norma infinito de la matriz L obtenida em-
pleando eliminación Gaussiana sin pivotaje, así como los dos pivotajes específicos para M-
matrices presentados en este capítulo.

n sin piv. total madd
5 7.2511 7.2511 2.89

10 18.463 18.463 3.4225
15 31.1346 31.1346 3.61
20 44.7616 44.7616 3.7056
25 59.102 59.102 3.7636
30 74.0121 74.0121 3.8025
35 89.3968 89.3968 3.8304
40 105.1883 105.1883 3.8514
45 121.3356 121.3356 3.8678
50 137.7993 137.7993 3.8809

Tabla 3.1: Condicionamiento en norma infinito de L

En este caso, emplear pivotaje total da el mismo resultado que no emplear una estrategia de
pivotaje, lo que ocasiona que el condicionamiento empeore a medida que crece n. No obstante,
utilizando el pivotaje m.a.d.d. obtenemos siempre un condicionamiento muy bueno.

A continuación vamos a estudiar también el comportamiento de la matriz U (cabe esperar
que sea muy bueno en todos los casos).

n sin piv. total madd
5 5.6652 2.9988 4

10 6.8759 4.4115 4
15 7.6249 5.262 4
20 8.1686 5.8677 4
25 8.5957 6.3371 4
30 8.9475 6.7197 4
35 9.2465 7.0424 4
40 9.5066 7.3212 4
45 9.7367 7.5667 4
50 9.9431 7.7858 4

Tabla 3.2: Condicionamiento en norma infinito de U

En la Tabla 3.2 vemos que efectivamente el resultado obtenido es muy bueno en cual-
quier caso. La diferencia radica en la matriz L, como se observa en la Tabla 3.1. No obstante,
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empleando el pivotaje m.a.d.d. el condicionamiento de la matriz U también se mantiene prác-
ticamente constante al aumentar n. En las siguientes gráficas se muestra el comportamiento del
condicionamiento de L y U según la estrategia de pivotaje empleada:

κ∞(L) κ∞(U)





Capítulo 4

Matrices de Nekrasov

En este capítulo introducimos el concepto de matriz de Nekrasov, que jugará un importan-
te papel en el resto de la memoria. Se trata de una clase de matrices que generaliza la de las
estrictamente diagonalmente dominantes. Al parecer, la condición que caracteriza a las matri-
ces de Nekrasov fue introducida por el matemático ruso Pavel Nekrasov en el año 1892 en [22].

Comenzamos el capítulo definiendo el concepto de matriz de Nekrasov, proponiendo una
parametrización adecuada para HRA y recopilando propiedades conocidas de estas matrices.
En la sección 4.2 encontramos una matriz diagonal sencilla que transforma una Z-matriz de
Nekrasov con diagonal positiva en una M-matriz diagonalmente dominante. También, en la
última sección, se explica cómo obtener la parametrización adecuada (vista en el capítulo 3)
de esta matriz transformada con HRA a partir de la parametrización que hemos introducido en
este capítulo para una matriz de Nekrasov.

4.1. Definición y parametrización
Vamos a introducir las matrices de Nekrasov (véase [27]). Para ello necesitamos una no-

tación previa: Sea A = (ai j)1≤i, j≤n una matriz compleja tal que aii 6= 0. Se define hi(A) con
i = 1, ...,n de la siguiente forma:

hi(A) =



n

∑
j=2
|a1 j|, si i = 1,

i−1

∑
j=1
|ai j|

h j(A)
|a j j|

+
n

∑
j=i+1

|ai j|, si 2≤ i≤ n,

n−1

∑
j=1
|an j|

h j(A)
|a j j|

, si i = n.

(4.1)

Definición 4.1. Una matriz compleja A = (ai j)1≤i, j≤n se llama matriz de Nekrasov si cumple
la condición |aii|> hi(A) para i = 1, ...,n.

Esta es una condición suficiente para que una matriz sea no singular [27], por lo que tendrá
sentido plantear el cálculo de A−1.

Algunas aplicaciones recientes de las matrices de Nekrasov pueden consultarse en los si-
guientes artículos: [6, 14, 19, 20, 26, 29, 30].
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Existe una clase de matrices muy relacionada con las matrices de Nekrasov y que la gene-
raliza, la clase compuesta por las matrices de Gudkov. Una matriz se dice de Gudkov si existe
una permutación simultánea de filas y de columnas tal que al actúar sobre ella la lleva a forma
de matriz de Nekrasov. Es decir, una matriz A es una matriz de Gudkov si existe una matriz de
permutación P tal que PAPT es una matriz de Nekrasov. En particular, una matriz de Gudkov
también es no singular. No obstante, el método de alta precisión relativa que vamos a desarro-
llar para Z-matrices de Nekrasov con diagonal positiva no puede extenderse en general a las
matrices de Gudkov con la misma estructura de signos. Esto es debido a que la definición de
matriz de Nekrasov depende del orden de filas, y nuestra parametrización lleva intrínseca dicha
dependencia. En general, al permutar una matriz de Nekrasov su parametrización variará. Para
ver más propiedades de las matrices de Gudkov puede consultarse [27].

Para lograr alta precisión relativa al trabajar con Z-matrices de Nekrasov n×n con diagonal
positiva, emplearemos los siguientes n2 parámetros:{

ai j, i 6= j,
∆ j(A) := a j j−h j(A), j = 1, ...,n. (4.2)

Observemos que, a partir de los n2 signos dados en (4.2), podemos caracterizar las Z-
matrices de Nekrasov con diagonal positiva. De hecho, A cumple dicha propiedad si y solo si
los n2−n primeros parámetros (los elementos extradiagonales, ai j con i 6= j) son no positivos
y los n últimos parámetros (∆ j(A) con j = 1, ...,n) son positivos.

4.2. Escalado para dominancia diagonal
Las matrices de Nekrasov están íntimamente relacionadas con las matrices d.d. Nos vamos

a aprovechar de esta relación para resolver nuestro problema del cálculo de la inversa con
HRA. Es conocido que una matriz de Nekrasov A es una H-matriz (por el corolario 2 de [27])
y, por tanto, por el Teorema 2.14, existe una matriz D diagonal tal que AD es estrictamente
diagonalmente dominante (SDD). Con objeto de tener una matriz diagonal S sencilla, nosotros
nos conformaremos con que AS sea diagonalmente dominante. Esta matriz S es la siguiente:

S =


h1(A)
|a11|

h2(A)
|a22|

. . .
hn(A)
|ann|

 . (4.3)

Lema 4.2. Sea A = (ai j)1≤i, j≤n una matriz de Nekrasov y S la matriz dada por (4.3). Entonces,
la matriz AS es una matriz diagonalmente dominante por filas.

Demostración. Llamemos B := AS a nuestra matriz en estudio. Tenemos que los elementos de
B = (bi j)1≤i, j≤n son:

bi j =

{
ai j

h j(A)
|a j j| , si i 6= j,

hi(A), si i = j.

Para ver que B es diagonalmente dominante, veamos que la propiedad de dominancia dia-
gonal se cumple para la fila i-ésima, con i = 1, . . . ,n:
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hi(A) =
i−1

∑
j=1
|ai j|

h j(A)
|a j j|

+
n

∑
j=i+1

|ai j| ≥
i−1

∑
j=1
|ai j|

h j(A)
|a j j|

+
n

∑
j=i+1

|ai j|
h j(A)
|a j j|

,

puesto que h j(A)< |a j j| por ser A matriz de Nekrasov, y así queda demostrada la dominancia
diagonal.

La matriz S nos permite transformar una matriz de Nekrasov en una matriz diagonalmente
dominante. Pero además, si la matriz tiene la estructura de signos de una Z-matriz con diagonal
positiva, el escalado por S mantendrá dicha estructura, lo cual será clave para la resolución de
nuestro problema. Esta afirmación se corresponde con el siguiente Corolario, consecuencia del
Lema 4.2.

Corolario 4.3. Sea A = (ai j)1≤i, j≤n una Z-matriz de Nekrasov con entradas diagonales po-
sitivas y S la matriz dada por (4.3). Entonces, la matriz AS es una Z-matriz diagonalmente
dominante por filas con entradas diagonales no negativas.

Demostración. Aplicando el Lema 4.2 a la matriz A obtenemos que B := AS es una matriz
diagonalmente dominante, por lo que solamente queda estudiar los signos de dicha matriz. No-
temos que hi(A)

aii
≥ 0 para i= 1, ...,n, y, por tanto, S≥ 0. Entonces, al hacer el producto B = AS

se conserva la estructura de signos de A, y tenemos que los elementos de B = (bi j)1≤i, j≤n son
de nuevo:

bi j =

{
ai j

h j(A)
a j j

, si i 6= j,
hi(A), si i = j.

Como A es Z-matriz, los elementos extradiagonales de B son no positivos. Por definición,
hi(A) ≥ 0, por lo que los elementos diagonales de B son no negativos y B es una Z-matriz de
diagonal no negativa.

Gracias a este corolario, vamos a poder apoyarnos en los resultados conocidos para M-
matrices diagonalmente dominantes a la hora de afrontar la resolución de nuestro problema del
cálculo de inversas utilizando la Z-matriz d.d. AS (y por el Teorema 2.11 M-matriz d.d.). Como
hemos mencionado previamente, la clave para aplicar algoritmos con HRA a estas matrices
se encontraba en utilizar una parametrización adecuada de las mismas, que en este caso se
correspondía con los elementos extradiagonales y la suma de los elementos de cada una de
sus filas. Por tanto, buscaremos hallar estos parámetros de AS de una forma que nos asegure
su obtención con alta precisión relativa, y así estaremos ya en condiciones de resolver nuestro
problema. Además, no nos hará falta usar estrategias de pivotaje.

4.3. HRA para matrices de Nekrasov

Dada una Z-matriz de Nekrasov con diagonal positiva, A, nuestro objetivo es obtener la
parametrización adecuada (vista en el capítulo 3) con HRA de la matriz escalada B := AS,
donde S es la matriz dada por (4.3), a partir de los parámetros (4.2). En el siguiente resultado
se muestra que es posible lograr los parámetros necesarios de B con HRA dando una demos-
tración constructiva que permite obtener los mismos con un coste computacional del orden de
n2 operaciones elementales.
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Teorema 4.4. Sea A = (ai j)1≤i, j≤n una Z-matriz de Nekrasov con entradas diagonales posi-
tivas y S la matriz dada por (4.3). Entonces, podemos hallar las sumas de las entradas de
cada fila y los elementos extradiagonales de AS a partir de los n2 parámetros dados por (4.2)
mediante un algoritmo libre de restas (SF) que realiza 3n(n−1)

2 sumas, 2n(n− 1) productos y
2n−1 cocientes.

Demostración. Observemos que por (4.2),

a j j = ∆ j(A)+h j(A), j = 1, ...,n. (4.4)

Así, tras calcular con SF h1(A) con la fórmula de (4.1) procedemos a calcular a11 con SF
mediante (4.4) para j=1. A continuación, seguimos calculando h2(A), a22, h3(A), a33, . . .,hn(A),
ann con SF mediante (4.1) y (4.2). Como el elemento extradiagonal (i, j), i 6= j, de AS es
ai j

h j(A)
a j j

, podemos calcularlo con SF. Finalmente, para cada i= 1, ...,n la suma de los elementos
de la fila i-ésima de AS es

i−1

∑
j=1

ai j
h j(A)

a j j
+hi(A)+

n

∑
j=i+1

ai j
h j(A)

a j j
,

que al sustituir hi(A) por su valor en (4.1) y tener en cuenta que A es Z-matriz toma el valor

n

∑
j=i+1

(−ai j)

(
1−

h j(A)
a j j

)
=

n

∑
j=i+1

|ai j|
a j j−h j(A)

a j j
=

n

∑
j=i+1

|ai j|
∆ j(A)

a j j
, (4.5)

que de nuevo se puede calcular con SF.
Veamos cuántas operaciones elementales son necesarias para calcular los parámetros. Co-

mo todos los cálculos descritos son SF, se realizarán cero restas. El cálculo de los elementos
diagonales aii con i= 1, . . . ,n supone la realización de n sumas. Para cada hi(A), con i= 1, . . . ,n
necesitaremos realizar n−2 sumas además de un número de productos y cocientes que depen-
de del índice i. Notemos, eso sí, que el cálculo h j(A)

a j j
se empleará tanto para calcular los hi(A)

con j < i ≤ n así como para obtener los elementos extradiagonales de la columna j-ésima de
AS, por lo que los calcularemos una vez y los emplearemos cuando sea necesario. Esto supone
realizar n cocientes, ∑

n−1
i=1 i = (n−1)n

2 productos y n(n− 2) sumas. Para obtener los elementos

extradiagonales (i, j) con i 6= j de AS, ai j
h j(A)

a j j
, bastará con realizar un producto. Por tanto,

se añade el realizar n(n− 1) productos. Ahora solo queda calcular la suma de los elementos
de cada fila de AS. Primero, calcularemos los cocientes ∆ j(A)

a j j
para j = 2, . . . ,n, lo que añade

n− 1 cocientes al coste computacional. Finalmente, realizaremos n(n−1)
2 sumas y n(n−1)

2 pro-
ductos para obtener el valor de los últimos n parámetros. En total, necesitamos 3n(n−1)

2 sumas,
2n(n−1) productos y 2n−1 cocientes.

En el siguiente capítulo veremos cómo utilizar el Teorema 4.4 para calcular la inversa de
A con HRA y también cómo resolver con HRA sistemas de ecuaciones lineales de la forma
Ax = b, siendo b un vector de componentes no negativas.



Capítulo 5

Inversas precisas de Z-matrices de
Nekrasov

El objetivo de este capítulo es dar una metodología para resolver el problema de hallar
la inversa con HRA de una clase concreta de matriz estructurada: una Z-matriz de Nekra-
sov con elementos diagonales positivos. Para lograrlo, vamos a seguir una estrategia que se
apoya en las descritas para trabajar con M-matrices diagonalmente dominantes. Utilizando la
parametrización introducida en el capítulo anterior logramos relacionarlas con las M-matrices
diagonalmente dominantes y podemos aprovecharnos de las técnicas conocidas en este caso
para lograr nuestro objetivo. Además, podremos resolver también con HRA el sistema lineal
de ecuaciones Ax = b, con la condición de que ninguna componente del vector b sea negativa
(b≥ 0). Aseguraremos que trabajamos con HRA viendo que los algoritmos descritos satisfacen
la condición NIC.

Comenzamos el capítulo demostrando varios resultados que serán fundamentales para el
cálculo de la matriz inversa, logrando con ellos obtener la misma en un caso particular. El
siguiente paso consiste en generalizar este resultado gracias al estudio de la estructura de ceros
asociada a una matriz de Nekrasov. Por último, se incluye en pseudocódigo la implementación
de las rutinas desarrolladas durante el capítulo.

5.1. Inversas precisas: caso particular
Comencemos viendo que dada una Z-matriz d.d. de la que conocemos sus sumas de filas

y elementos extradiagonales, podemos obtener su inversa mediante Gauss-Jordan (véase la
sección 3.1) sin usar restas y sin uso de estrategias de pivotaje, a diferencia de como se hacía
en [11, 25] (véase sección 3.2).

Proposición 5.1. Sea A = (ai j)1≤i, j≤n una Z-matriz d.d. no singular con entradas diagonales
positivas. Si conocemos con HRA las sumas de los elementos de cada fila de A así como sus
elementos extradiagonales, podemos calcular A−1 y la solución del sistema de ecuaciones
lineales Ax = b con b ≥ 0 con un algoritmo libre de restas (SF, y así con HRA) de O(n3)
operaciones elementales.

Demostración. Como A es una Z-matriz d.d. con diagonal positiva cumple que A+D es SDD
para cualquier matriz diagonal D > 0, por lo que A+D es no singular. Por la equivalencia de
viii) con i) en el Teorema 2.9, deducimos que A es por tanto una M-matriz no singular. Veamos
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que podemos calcular A−1 con HRA. Para ello usaremos el método de Gauss-Jordan sin pi-
votaje (véase sección 3.1). Construimos la matriz ampliada M̃ := (A|I|s), donde I es la matriz
identidad y s es el vector de las sumas de las filas de A, es decir, si es la suma de los elementos
de la fila i-ésima de A. Aplicaremos la eliminación Gaussiana de A realizando las operaciones
por filas en toda la matriz ampliada M̃. El primer pivote es a11, que se calcula sumando a s1
el valor absoluto de los elementos extradiagonales de la primera fila. Comenzamos haciendo
ceros en la primera columna debajo de éste empleando múltiplos de la primera fila, y, excepto
los elementos diagonales de A(2)[2, ...,n], todo elemento de M̃ se calcula con HRA. No obs-
tante, estos elementos los calcularemos con HRA solo cuando necesitemos emplearlos como
pivote (y el último, a(n)nn , cuando hayamos terminado de hacer ceros por debajo de la diagonal).
Así, para la siguiente iteración, solo queda calcular el elemento a(2)22 . Para lograrlo con HRA
basta sumar s(2)2 y los valores absolutos de los elementos extradiagonales de la segunda fila de
A(2). Notemos que por la estructura de signos se corresponderá con sumar los opuestos de los
elementos.

Para realizar el segundo paso, tenemos que A(2)[2, ...,n] vuelve a ser M-matriz por ser el
complemento de Schur de una M-matriz (véase [12] ). Por tanto, utilizando la misma estrategia
que en el paso 1 sobre A(2)[2, ...,n] haremos ceros en la segunda columna. Repetimos hasta
llegar a U = A(n) con HRA, que será triangular superior, y la estructura de signos de M̃ será la
siguiente:

M̃(n) =


+ − − . . . − 1

+ − . . . − + 1

+
. . . ... + + 1
. . . − ...

... . . . . . .

︸ ︷︷ ︸
U = A(n)

+ ︸ ︷︷ ︸
C

+ + . . . + 1 ︸︷︷︸
s(n)



En esta matriz, “+” quiere decir que el elemento correspondiente de M̃ es ≥ 0, y “−”, que
es ≤ 0. Los elementos diagonales de U son positivos (> 0). A partir de ahora el vector s(n) ya
no es necesario, así que lo omitiremos al representar M̃(n).

Para llegar desde aquí hasta A−1 basta con repetir el proceso empleando como fila pivote
la fila inferior para hacer ceros por encima de la diagonal de U : (U |C)→ (D|DA−1), con D
matriz diagonal.

En este procedimiento, en el paso k se emplea como pivote u(k)n−k,n−k, que es siempre mayor
que 0 (puesto que en los pasos de esta eliminación no se ven afectados). Al ser los extra-
diagonales no positivos y los pivotes positivos, no se han realizado restas al calcular DA−1 .
Solamente queda realizar el producto D−1DA−1 para obtener A−1. Por tanto, hemos llevado a
cabo todo el proceso sin llevar a cabo restas (condición SF).

El siguiente resultado es consecuencia del Lema 4.3 y la Proposición 5.1.

Corolario 5.2. Sea A = (ai j)1≤i, j≤n una Z-matriz de Nekrasov con entradas diagonales po-
sitivas que cumpla hi(A) 6= 0 para i = 1, . . . ,n y sea S la matriz diagonal dada por (4.3). Si
conocemos con HRA las sumas de los elementos de cada fila y los elementos extradiagonales
de AS con HRA entonces podemos calcular A−1 y la solución del sistema de ecuaciones linea-
les Ax = b con b ≥ 0 con un algoritmo libre de restas (y así con HRA) de O(n3) operaciones
elementales.
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Demostración. Comencemos recordando que A es una matriz no singular por ser matriz de
Nekrasov. Además, por el Lema 4.3 la matriz B := AS será una Z-matriz d.d., y, por la hipótesis
de no anulación de los parámetros hi(A), S será no singular, y, por tanto, B también será no
singular. Así, estamos en condiciones de aplicar la Proposición 5.1 a B y calcular la matriz
B−1 con HRA. Con esta matriz, basta realizar el cálculo A−1 = SB−1 para obtener la inversa
de A. La resolución del sistema de ecuaciones lineales se obtiene de forma análoga realizando
el producto x = SB−1b = A−1b.

El siguiente resultado consecuencia del Teorema 4.4 y el Corolario 5.2 nos asegura, a partir
de los parámetros (4.2), el cálculo con HRA de la inversa y de la resolución de ciertos sistemas
lineales cuando tenemos una Z-matriz de Nekrasov con diagonal positiva y una condición
adicional. Posteriormente veremos que podemos prescindir de esta condición añadida.

Corolario 5.3. Sea A = (ai j)1≤i, j≤n una Z-matriz de Nekrasov con entradas diagonales posi-
tivas que cumpla hi(A) 6= 0 para i = 1, . . . ,n. Si conocemos (4.2) con HRA entonces podemos
calcular A−1 y la solución del sistema de ecuaciones lineales Ax = b con b ≥ 0 con un algo-
ritmo libre de restas (y así con HRA) de O(n3) operaciones elementales.

Demostración. Sea S la matriz diagonal dada por (4.3). Por el Teorema 4.4 podemos calcular
con HRA los elementos extradiagonales de B := AS así como la suma de los elementos de cada
una de sus filas. Así, estamos en condiciones de aplicar el Corolario 5.2 y obtener el resultado
buscado empleando un algoritmo libre de restas (SF).

5.2. Inversas precisas: caso general
Hemos conseguido resolver con HRA el problema descrito al comienzo de la sección ante-

rior con la condición adicional de que hi(A) 6= 0 para i= 1, . . . ,n. El problema que se presentaba
si no imponíamos esta condición es que el producto AS, con S la matriz dada en 4.3, da lugar
a una matriz singular si hi(A) = 0 para algún i = 1, . . . ,n. No obstante, podemos suprimir esta
imposición y el resultado seguirá siendo cierto. Para demostrarlo, conviene comenzar estudian-
do la estructura de ceros intrínseca a una matriz de Nekrasov que satisface hi(A) = 0 para algún
i = 1, . . . ,n.

Lema 5.4. Sea A = (ai j)1≤i, j≤n una matriz de Nekrasov, y sea J = {i1, . . . , ik} ⊆ {1, . . . ,n} el
conjunto ordenado de menor a mayor de todos los índices tales que hi j(A) = 0. Entonces para
cada j = 1, . . . ,k la fila de índice i j tiene al menos n− j ceros entre sus elementos extradiago-
nales.

Demostración. Comenzamos estudiando la fila de índice i1:

hi1(A) =
i1−1

∑
k=1
|ai1k|

hk(A)
|akk|

+
n

∑
k=i1+1

|ai1k|= 0. (5.1)

Como hk(A) 6= 0 para k < i1 debido a que k /∈ J, tiene que ocurrir por (5.1) que ai1k = 0 siempre
que k 6= i1. Es decir, todos los elementos extradiagonales de la fila son nulos. En el caso de la
fila de índice i j, con i j ∈ J:

i j−1

∑
k=1
|ai jk|

hk(A)
|akk|

+
n

∑
k=i j+1

|ai jk|=
i j−1

∑
k=1, k/∈J

|ai jk|
hk(A)
|akk|

+
n

∑
k=i j+1

|ai jk|= 0.
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En este caso, se tiene que ai jk = 0 siempre que k /∈ {i1, . . . , i j}. De aquí se deduce que en la fila
de índice i j hay al menos n− j ceros situados en las columnas de índice k, con k /∈ {i1, . . . , i j}.

Observemos que en el Lema 5.4 también se demuestra que la fila de índice i1 tiene exacta-
mente n− 1 ceros. Este lema juega un papel fundamental en el resultado principal que bus-
camos demostrar. En su demostración denotaremos por IC al conjunto complementario en
N := {1, . . . ,n} a un conjunto de índices I contenido en N.

Teorema 5.5. Sea A = (ai j)1≤i, j≤n una Z-matriz de Nekrasov con entradas diagonales positi-
vas. Si conocemos (4.2) con HRA entonces podemos calcular con HRA y O(n3) operaciones
elementales A−1 y la solución del sistema de ecuaciones lineales Ax = b con b ≥ 0 mediante
un algoritmo libre de restas (SF).

Demostración. Comenzamos calculando h1(A),a11, . . . ,hn(A),ann. Definimos I ⊆ N como el
conjunto de índices para los que se verifica hi(A) 6= 0. Si I = N basta con aplicar el Corolario
5.3. En caso contrario comenzamos definiendo S como la matriz diagonal dada por (4.3). For-
mamos la submatriz Â := A[I] y B := (AS)[I]. Esta segunda matriz es diagonalmente dominante
(d.d.) debido a que AS ya lo era y hemos construido la submatriz utilizando los mismos índices
de filas y columnas. Así, B es una Z-matriz d.d. con entradas diagonales no negativas, y, por el
Teorema 2.11, es una M-matriz. Por la Proposición 5.1 podemos calcular su inversa mediante
un algoritmo libre de restas si conocemos una parametrización adecuada con HRA. En este
caso los parámetros que necesitamos obtener son los elementos extradiagonales y la suma de
los elementos de cada fila. Los primeros son de la forma ai j

h j(A)
a j j

. Las sumas de los elementos
de cada fila presentan la forma:

∑
j∈I, j 6=i

ai j
h j(A)

a j j
+hi(A) =

i−1

∑
j=1

ai j
h j(A)

a j j
+hi(A)+

n

∑
j=i+1

ai j
h j(A)

a j j
=

n

∑
j=i+1

|ai j|
∆ j(A)

a j j
.

La primera igualdad es debida a que los sumandos que incluimos son 0, ya que h j(A) = 0
cuando j ∈ Ic. La segunda se obtiene al sustituir hi(A) en (4.1) teniendo en cuenta (4.2) y
que A es Z-matriz. En ambos casos, tenemos la expresión obtenida en el Teorema 4.4, por lo
que podemos lograr con alta precisión relativa los parámetros necesarios para poder aplicar
la Proposición 5.1 y hallar la inversa de B = (AS)[I], M-matriz d.d., y a partir de la misma
obtener Â−1 = S[I]B−1. Recordemos que por la equivalencia i)⇔ v) del Teorema 2.9 B−1 es
no negativa, y así, Â−1 también es no negativa.

A partir de la submatriz Â−1 podemos construir A−1. Para ello vamos a realizar n− |I|
pasos, que consistirán en añadir la fila y columna de mayor índice de IC que aún no hayamos
incluido en Â (en el lugar que corresponda) y obtener la inversa de esta nueva submatriz:

Â = Â(1)→ Â(2)→ . . .→ Â(n−|I|+1) = A. (5.2)

Como en cada paso añadiremos una fila y columna, y obtendremos la inversa de la matriz
que hemos construido, al añadir la última fila y columna y continuar el proceso obtendremos
la inversa de la matriz A. Para llevar a cabo el primer paso elegimos el mayor índice k ∈ Ic (es
decir, el mayor k tal que hk(A) = 0). Entonces, formamos la matriz (n−|I|+1)× (n−|I|+1)
Â(2) añadiendo la fila y columna k-ésima de A a Â (en el lugar correspondiente). Para obtener
la inversa de esta nueva submatriz a partir de C = Â−1 nos apoyamos en el Lema 5.4, por el
cual la nueva fila añadida a Â tiene al menos |I| ceros, los cuales aparecen como elementos
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extradiagonales en la fila correspondiente de Â(2). Por tanto, en esa fila el único elemento no
nulo es el de la diagonal, akk. Los elementos de C(2) = (Â(2))−1 son los siguientes:

c(2)i j =


ci j, i, j ∈ I,
1

akk
, i = j = k,

0, i = k, j ∈ I,
c(2)ik , i ∈ I, j = k.

Comprobemos que estos son los elementos de C(2) y deduzcamos una expresión para los que
faltan por determinar. Tiene que cumplirse Â(2)C(2) = I|I|+1. Si i, j ∈ I, el elemento (i, j) del
producto matricial es cero o uno cuando corresponde ya que la inversa de Â es C, y la operación
que se realiza es

∑
s∈I

aiscs j +aik ·0 =

{
0, i 6= j,
1, i = j.

Si i = k, j ∈ I, se tiene

∑
s∈I

akscs j +akkck j = ∑
s∈I

0 · cs j +akk ·0 = 0.

Si i = j = k, obtenemos

∑
s∈I

akscsk +akkckk = ∑
s∈I

0 · csk +
akk

akk
= 1.

Queda el caso i ∈ I, j = k, que determina los valores que nos faltan.

∑
s∈I

aisc
(2)
sk +

aik

akk
= 0, i ∈ I.

Considerando el vector c =
(

c(2)ik

)
i∈I

que queremos calcular podemos reformular el sistema
anterior en forma matricial:

Âc =−(aik)i∈I

(
1

akk

)
y, como conocemos la matriz no negativa Â−1 con alta precisión relativa, y el término de la
derecha es también no negativo, obtenemos c con alta precisión relativa. Para ello basta con
hacer el siguiente producto:

c =C (aik)i∈I

(
−1
akk

)
= Â−1(aik)i∈I

(
−1
akk

)
.

Una vez calculados estos elementos ya tenemos C(2). Si se tenía que Â(2) = A ya habremos
obtenido A−1. En caso contrario, procedemos de forma análoga. Es decir, seleccionamos el
mayor índice k ∈ Ic de fila y columna que aún no hayamos incluido en nuestra submatriz,
y formamos Â(3) añadiendo a Â(2) la fila y columna de índice k en el lugar correspondiente.
La fila añadida tiene al menos |I|+ 1 ceros en la matriz original, los cuales aparecen como
elementos extradiagonales en la submatriz construida. Para usar una notación más compacta,
definimos I(2) como el conjunto de índices ordenado de filas y columnas de A que aparecían
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en Â(2). Buscamos hallar C(3) = (Â(3))−1. Razonando de forma análoga al anterior paso, los
elementos de C(3) serán:

c(3)i j =


c(2)i j , i, j ∈ I(2),

1
akk

, i = j = k,
0, i = k, j ∈ I(2),

c(3)ik , i ∈ I(2), j = k.

De nuevo, conocemos todos los elementos menos los últimos, que podemos calcular de
forma análoga. Si c =

(
c(3)ik

)
i∈I(2)

, se tiene:

c =C(2) (aik)i∈I(2)
−1
akk

=
(

Â(2)
)−1

(aik)i∈I(2)

(
−1
akk

)
.

En general, tras realizar esta operación p− 1 veces podemos obtener A−1 y terminar el
procedimiento, o tener que reiterarlo añadiendo la fila y columna de mayor índice k ∈ Ic tal
que no haya sido añadida en ningún paso anterior. Una vez más, la fila añadida tiene al menos
|I|+ p−1 ceros en la matriz original, los cuales aparecen como elementos extradiagonales en
la fila correspondiente de la submatriz construida. También definimos I(p) como el conjunto
de índices ordenado de filas y columnas de A que aparecían en Â(p). Entonces realizamos el
producto c = C(p) (aik)i∈I(p)

(
−1
akk

)
para obtener los elementos de la matriz inversa C(p+1) =

(Â(p+1))−1 a calcular y construimos la misma. Sus elementos serán de la forma:

c(p+1)
i j =


c(p)

i j , i, j ∈ I(p),
1

akk
, i = j = k,

0, i = k, j ∈ I(p),

c, i ∈ I(p), j = k.

La demostración del teorema da una idea de cómo se puede llevar a cabo una implemen-
tación de un algoritmo para calcular la inversa de una Z-matriz de Nekrasov de elementos
diagonales positivos. En cualquier caso, no es necesario ir construyendo la sucesión de matri-
ces Â; basta con ir realizando los productos matriciales de la forma c =C(p) (aik)i∈I(p)

(
−1
akk

)
y

construir la matriz C(p+1) a partir de la matriz C(p) y el vector c.

5.3. Algoritmos
A continuación se recogen todos los algoritmos necesarios para resolver nuestro proble-

ma con HRA. El primer algoritmo que presentamos, el Algoritmo 3, lleva nuestra Z-matriz
de Nekrasov inicial a la forma necesaria para calcular su inversa con HRA. En el caso de que
hi(A) 6= 0 para i = 1, . . . ,n el procedimiento que se realiza se corresponde con el descrito en
el Teorema 4.4. Si alguno de estos parámetros se anula, se trabaja con la submatriz descrita
en la demostración del Teorema 5.5. Las salidas del algoritmo son la matriz A, en la que se
almacenan los parámetros de la matriz AS en la submatriz A(I, I), el conjunto de índices I y la
matriz S cuando el conjunto de índices está compuesto por más de un índice.

Una vez obtenida la parametrización de la M-matriz d.d. AS, nuestro objetivo es calcular
su inversa con HRA. Para ello, emplearemos el Algoritmo 4 (este método se corresponde con
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Algoritmo 3 nektoddgen - Preparar Z-matriz de Nekrasov para obtener su inversa con HRA

Input: A = (ai j)(i 6= j), ∆ . ∆ es el vector de los parámetros ∆ j(A)
for i = 1 : n

hi = ∑
i−1
j=1 ai jk j +∑

n
j=i+1 ai j

aii = ∆i +hi
ki = hi/aii

end for
Construir I, lista de índices ordenados tales que hi 6= 0.
if |I|> 1

for i = I
aii = ∑

n
j=i+1 ai j∆ j/a j j

for j = I r{i}
ai j = ai jk j

end for
end for
Construir S, matriz diagonal I× I con los elementos k j, j ∈ I.

else if |I|== 1
aII = 1/aII

else
ann = 1/ann
I = [n]

end if

el descrito en la demostración de la Proposición 5.1). Así obtenemos la inversa de la submatriz
de AS correspondiente a los índices de filas tales que hi 6= 0, es decir, las filas de índices I.

A continuación buscamos construir la matriz inversa de AS a partir de esta submatriz. Como
entradas necesitaremos la matriz A en la que se ha sustituido A(I, I) por A−1(I, I) e I (bastará
con multiplicar antes a izquierda por S(I) al output de inversadd). Este procedimiento es el que
se muestra en el Algoritmo 5.

Con las rutinas que hemos descrito, podemos dar una expresión compacta del método que
hemos desarrollado para calcular la matriz inversa con HRA de una Z-matriz de Nekrasov con
elementos diagonales positivos partiendo de la parametrización propuesta:
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Algoritmo 4 inversadd - Calcular inversa de una M-matriz d.d.

Input: A = (ai j)(i 6= j), s . s es el vector de sumas de elementos de cada fila de A
P = In
for k = 1 : n−1

akk = ∑
n
j=k+1 ak j

for i = k+1 : n
piv = aik/akk
si = si− pivsk
aik = 0
A(i, :) = A(i, :)− pivA(k, :)
P(i, :) = P(i, :)− pivP(k, :)

end for
end for
ann = sn
for k = n :−1 : 2

for i = k−1 :−1 : 1
piv = aik/akk
P(i, :) = P(i, :)− pivP(k, :)

end for
end for
for i = 1 : n

P(i, :) = P(i, :)∗1/aii
end for

Algoritmo 5 buildnekinv - construir inversa

Input: A, I . en A(I, I) está almacenada la inversa de la submatriz original
Construir el conjunto de índices J, compuesto por los índices de Ic ordenados de mayor a
menor.
for i = J

aii = 1/aii
A(I, i) =−A(I, I)(A(I, i)./aii) . ./ denota que la operación es elemento a elemento
I = I∪{i} ordenado

end for

Algoritmo 6 Calcular inversa de una Z-matriz de Nekrasov con elementos diagonales positivos

Input: A = (ai j)(i 6= j), ∆ . ∆ es el vector de los parámetros ∆ j(A)
[A, I,S] = nektoddgen(A = (ai j)(i 6= j), ∆)
if |I|> 1

A(I, I) = S∗ inversadd(A(I, I))
end if
A−1 = buildnekinv(A)



Capítulo 6

Experimentación numérica para inversas
y sistemas

En este capítulo vamos a comparar los resultados de una implementación en MATLAB de
los algoritmos descritos en el capítulo anterior con el de las rutinas ya implementadas en dicho
software. En particular, se van a estudiar dos problemas.

El primero es el cálculo de la inversa de una Z-matriz de Nekrasov, problema al que se de-
dica la primera sección de este capítulo. La segunda sección tratará de la resolución de sistemas
lineales de ecuaciones cuya matriz de coeficientes pertenezca a esta clase. Aunque la HRA solo
se garantiza cuando b≥ 0, veremos en los experimentos numéricos que nuestro método siem-
pre da soluciones precisas para cualesquiera términos independientes. En ambos apartados, se
comparan los resultados con los obtenidos empleando las rutinas implementadas en MATLAB
para resolver dichos problemas. Los errores mostrados se han obtenido considerando como
solución exacta la obtenida empleando cálculo simbólico de MATLAB.

6.1. Cálculo de inversas

El primer problema que hemos abordado es el cómputo de la matriz inversa. Vamos a
comparar los resultados obtenidos al calcular una matriz inversa siguiendo el procedimiento
con HRA que hemos descrito y utilizando la orden inv(A) implementada en MATLAB en
diversos ejemplos de Z-matrices de Nekrasov con elementos diagonales positivos.

A continuación vamos a fijarnos en el comportamiento del error en casos concretos. Co-
menzamos estudiando 10 casos de matrices con entradas generadas aleatoriamente, en los que
la primera fila es muy dominante. Los resultados obtenidos se incluyen en la Tabla 6.1. En
este caso, el algoritmo que se utiliza es en la mayoría de los casos el descrito en la sección
5.1. Aunque se observa una mejoría en los resultados obtenidos, los ejemplos generados no
son muy mal condicionados. Una forma de obtener matrices peor condicionadas dentro de esta
clase será imponer que alguna de las primeras filas cumpla hi = 0, para que los elementos de
la columna i-ésima sean arbitrariamente grandes, y la matriz esté lejos de ser diagonalmente
dominante. Además, así pondremos a prueba el método desarrollado en el Teorema 5.5. Ca-
be destacar que en el caso de inv de MATLAB, se presenta el máximo error relativo de las
componentes no nulas (puesto que el error relativo no está definido para una entrada nula). En
el algoritmo propuesto las entradas nulas de la matriz inversa se fijan a 0, por lo que no se
introduce ningún error en las mismas. Los resultados se muestran en la Tabla 6.2.

31
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no condición inv HRA
3.6714e+04 1.5308e-12 3.6475e-15
5.4599e+04 8.3304e-13 6.6024e-15
5.8606e+04 3.2871e-13 6.6759e-15
3.8833e+04 7.651e-13 3.5972e-15
4.2645e+04 9.3474e-13 5.5312e-15
8.8803e+04 1.1321e-14 1.5372e-15
8.2928e+04 1.533e-12 6.9976e-15
4.9831e+04 3.9542e-13 6.3254e-15
9.9321e+04 7.6187e-13 1.4831e-15
6.4873e+04 4.8123e-14 2.0905e-15

Tabla 6.1: Máximo error relativo cometido al calcular la inversa.

no condición inv HRA
8.6088e+09 1.7700e-06 1.1907e-15
1.0732e+10 1.1087e+07 8.2809e-16
2.4392e+10 4.0486e-07 5.6175e-16
4.1714e+10 1.8978e+00 8.2015e-16
3.0772e+10 6.2672e-07 5.6761e-16
2.1360e+10 7.9297e-07 1.2172e-15
1.8158e+10 1.3845e+13 6.9970e-16
6.2268e+10 2.9948e-01 1.0738e-15
1.2966e+11 1.8669e-06 1.0067e-15
2.2980e+07 6.2546e-08 7.2895e-16

Tabla 6.2: Máximo error relativo cometido al calcular la inversa con hi = 0 para algún i.

6.2. Resolución de sistemas lineales

Con el cálculo de la inversa, podemos también resolver sistemas de ecuaciones lineales de
la forma Ax = b. A continuación, vamos a comparar el resultado que obtendríamos calculando
A−1 con HRA y realizando el producto A−1b con la rutina implementada en MATLAB para la
resolución de sistemas de ecuaciones lineales. Vamos a estudiar tanto el efecto de variar la ma-
triz de coeficientes, como el de cambiar simplemente el término independiente manteniendo la
matriz. Comenzamos generando una matriz 30×30 que cumple la condición hi = 0 para algu-
nos valores de i ∈ N. Su número de condición es de 2,1334e+09. Con esta matriz, resolvemos
10 sistemas de ecuaciones lineales en los que b tienen todas las componentes no negativas, y
10 sistemas en los que b presenta tanto componentes positivas como negativas.
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A \ b HRA
1.1721e-08 7.4861e-16
3.8531e-09 8.0188e-16
1.9166e-08 1.0915e-15
7.6172e-09 9.0263e-16
2.7821e-08 8.0516e-16
1.2423e-08 6.2222e-16
4.1265e-09 8.7997e-16
1.4059e-08 7.5829e-16
4.5942e-09 6.8648e-16
1.0882e-08 6.6262e-16

Tabla 6.3: Máximo error relativo cuando b≥ 0

A \ b HRA
7.6517e-09 7.6183e-16
4.7859e-08 9.2650e-14
4.4467e-09 9.7674e-16
4.8492e-09 1.3250e-15
1.4603e-08 7.7579e-16
6.5952e-09 7.3791e-16
1.5348e-08 8.2503e-16
4.0365e-09 2.0006e-15
2.2514e-08 1.1452e-15
3.4846e-08 1.5119e-15

Tabla 6.4: Máximo error relativo con b cualquiera

b≥ 0 b cualquiera

Aunque el método de HRA es superior en ambos casos, a simple vista no se observa un
cambio al imponer la condición b≥ 0. No obstante, si representamos gráficamente estos resul-
tados, podemos observar que cuando no se exige la condición b ≥ 0 hemos obtenido un error
mayor en un caso al utilizar el método con HRA para calcular A−1b. El caso b ≥ 0 se corres-
ponde con la Tabla 6.3, y el caso en el que b puede presentar componentes de ambos signos se
recoge en la Tabla 6.4. También se incluye una gráfica en la que se compara el error obtenido
en ambos casos.

Ahora vamos a cambiar la forma de proceder. Vamos a fijar un término independien-
te y cambiaremos la matriz de coeficientes. Primero, comenzamos con un vector positivo:
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b = (1,1, . . . ,1,1)T . Para dicho vector generamos 10 matrices 20× 20 y resolvemos el siste-
ma. Los resultados aparecen reflejados en la Tabla 6.5. También, procedemos de forma análoga,
pero esta vez con el vector b = (bi)1≤i≤n tal que bi = (−1)i+1. Los resultados se corresponden
con la Tabla 6.6.

no condición A \ b HRA
2.3319e+10 7.8736e-07 5.1521e-16
7.5491e+10 1.9843e-06 6.7465e-16
2.7086e+09 1.427e-14 6.2988e-16
1.0107e+10 9.7238e-15 6.0401e-16
5.8361e+10 4.7639e-07 4.7223e-16
9.6114e+09 5.5802e-14 5.318e-16
1.4918e+10 2.2768e-08 3.9299e-16
2.2116e+10 1.6766e-06 9.8126e-16
1.5419e+10 3.4e-14 9.2892e-16
1.4407e+11 1.6289e-06 4.5371e-16

Tabla 6.5: Máximo error relativo con b = (1, . . . ,1)

no condición A \ b HRA
1.1381e+10 1.0735e-06 1.9298e-15
2.5795e+10 2.0074e-14 7.6335e-16
2.4822e+11 3.5413e-12 1.8627e-14
4.1003e+10 1.8994e-06 3.837e-16
3.9208e+10 1.4595e-14 1.4025e-15
1.3225e+10 1.4073e-14 1.8282e-15
1.5134e+18 17.8615 6.1444e-16
4.9096e+11 1.3033e-06 8.2058e-16
9.5209e+09 6.1324e-14 1.5654e-14
3.6935e+10 1.9329e-13 3.6418e-15

Tabla 6.6: Máximo error relativo con bi = (−1)i+1

Para concluir la sección de experimentación numérica, vamos a estudiar el comportamiento
de todas las componentes calculadas para un caso particular. El vector de término independien-
te será b = (1,1, . . . ,1,1)T , y la matriz A es la que hemos empleado anteriormente. La Tabla
6.7 muestra el resultado obtenido.
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i A \ b HRA
1 5.3216e-09 3.9245e-17
2 4.2614e-09 1.3142e-17
3 2.6467e-14 1.3924e-16
4 3.2771e-09 4.6722e-16
5 2.6950e-09 4.1587e-16
6 3.3957e-09 1.0395e-15
7 3.4720e-09 2.5815e-17
8 3.5137e-09 2.3178e-16
9 3.2675e-09 8.6618e-16
10 2.3871e-13 2.3388e-16
11 3.4203e-09 3.2448e-16
12 3.2456e-09 2.2012e-16
13 3.4487e-09 1.4569e-16
14 3.4492e-09 1.0272e-15
15 3.3465e-09 2.1040e-16
16 3.2992e-09 2.0365e-16
17 4.7102e-13 3.5679e-17
18 3.4396e-09 2.1671e-16
19 3.2488e-09 4.4854e-17
20 6.8877e-13 1.1473e-16
21 3.2574e-09 3.5262e-16
22 4.9279e-17 8.8495e-17
23 3.3460e-09 3.1197e-16
24 3.3794e-09 4.4262e-16
25 3.3693e-09 6.5713e-16
26 4.2728e-18 4.2728e-18
27 7.6104e-18 7.6104e-18
28 3.2768e-09 8.7506e-16
29 1.0341e-16 1.0341e-16
30 2.4571e-17 2.4571e-17

Tabla 6.7: error relativo componente a componente con b = e





Capítulo 7

Escalado para dominancia diagonal
estricta

En un capítulo anterior hemos desarrollado un método para calcular la inversa de una Z-
matriz de Nekrasov con elementos diagonales positivos empleando un escalado (AS, donde S
es una matriz diagonal) que daba lugar a una matriz diagonalmente dominante. No obstante,
las matrices de Nekrasov son H-matrices, por lo que podríamos buscar matrices de escalado
que las lleven a forma estrictamente diagonalmente dominante. En [7, 13] se dan matrices de
escalado que logran este fin imponiendo condiciones similares a la que hemos exigido inicial-
mente al calcular la inversa (hi(A) 6= 0 para todo i = 1, . . . ,n, o que en cada fila, excepto en la
última, exista un elemento no nulo a derecha de la diagonal). Como aplicación de la matriz de
escalado, se obtendrán cotas superiores para la norma de la inversa de una matriz de Nekrasov.
Estas cotas se podrán aplicar al estudio del condicionamiento de dichas matrices y también a
la obtención de cotas para el error del problema de complementariedad lineal comentado en la
sección 2.1.

En el primer apartado de este capítulo vamos a presentar unas matrices de escalado que
no requieren la imposición de ninguna condición adicional y llevan una matriz de Nekrasov
a forma estrictamente diagonalmente dominante. A continuación, se deduce una cota para la
norma de la inversa de una matriz de esta clase a partir de dichas matrices de escalado. La
cota es válida para cualquier matriz de Nekrasov y no requiere una parametrización de la
matriz. En la tercera sección de presentan otras cotas para el mismo problema que se han
publicado recientemente, y se concluye el capítulo haciendo una comparación de todas las
cotas presentadas.

7.1. Matrices de escalado

Comenzamos este apartado obteniendo una matriz de escalado S que transforma cualquier
matriz de Nekrasov en una matriz SDD. Después obtendremos otra matriz de escalado que
aprovecha la existencia de elementos no nulos en A para reducir el coste computacional de la
obtención de S.

37
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Teorema 7.1. Sea A = (ai j)1≤i, j≤n una matriz de Nekrasov. Entonces la matriz

S =


h1(A)+ε1
|a11|

. . .
hn(A)+εn
|ann|

 ,

con

{
ε1 > 0,
0 < εi ≤ |aii|−hi, εi > ∑

i−1
j=1
|ai j|ε j
|a j j| para i = 2, . . . ,n.

es una matriz diagonal positiva tal que AS es estrictamente diagonalmente dominante.

Demostración. Comenzamos viendo que existen (ε1, . . . ,εn) tales que satisfacen el enuncia-
do del teorema anterior. Tomamos εi = |aii| − hi(A) para i = 2, . . . ,n. Elegimos ε1 tal que
ε2 >

|a21|ε1
|a11| . Comprobamos si ε3 > ∑

2
j=1
|a3 j|ε j
|a j j| . Si se verifica la desigualdad continuamos. En

caso contrario, sustituimos ε1 y ε2 por ε1
M̂3

y ε2
M̂3

respectivamente, donde M̂3 es un número po-
sitivo lo suficientemente grande, de forma que se verifique la desigualdad. Notemos que al
dividir tanto el valor de ε1 como el de ε2 por el mismo número se seguirá satisfaciendo la
desigualdad que relaciona a ε1 y ε2. En el caso de εi, comprobamos si εi > ∑

i−1
j=1
|ai j|ε j
|a j j| . Si se

cumple, continuamos. Si no, sustituimos el valor de ε j por el de ε j

M̂i
para j = 1, . . . , i−1 de for-

ma que se verifique la desigualdad y, al igual que antes, se sigan cumpliendo las desigualdades
que habíamos comprobado previamente. Por tanto, reiteramos el proceso hasta comprobar la
desigualdad εn > ∑

n−1
j=1
|ai j|ε j
|a j j| . Si se satisface, tendremos ya los valores de (ε1, . . . ,εn) buscados.

Si no, basta con sustituir el valor actual de ε j por el de ε j

M̂n
para j = 1, . . . ,n−1, eligiendo M̂n

de forma que los nuevos valores de (ε1, . . . ,εn) verifiquen la desigualdad.
La matriz diagonal S es positiva puesto que hi(A) ≥ 0 y εi > 0 por hipótesis. El elemen-

to (i, j) de la matriz AS viene dado por la expresión ai j
h j(A)+ε j
|a j j| . Para comprobar que AS es

estrictamente diagonal dominante se comienza comprobando que se cumple la condición de
dominancia diagonal estricta en la fila n-ésima:

n−1

∑
j=1
|an j|

h j(A)+ ε j

|a j j|
=

n−1

∑
j=1
|an j|

h j(A)
|a j j|︸ ︷︷ ︸

hn(A)

+
n−1

∑
j=1
|an j|

ε j

|a j j|
< hn(A)+ εn = |(AS)(n,n)|

Del mismo modo, se comprueba la fila n−1:

n−2

∑
j=1
|an−1, j|

h j(A)+ ε j

|a j j|
+ |an−1,n|

hn(A)+ εn

|ann|︸ ︷︷ ︸
≤1

≤ hn−1(A)+
n−2

∑
j=1
|an−1, j|

ε j

a j j
< hn−1(A)+ εn−1 =

= |(AS)(n−1,n−1)|

La primera desigualdad es debida a la hipótesis εn ≤ |ann| − hn(A), por la que se tiene
hn(A)+εn
|ann| ≤ 1. En general, para la fila i-ésima:

i−1

∑
j=1
|ai j|

h j(A)+ ε j

|a j j|
+

n

∑
j=i+1

|ai j|
h j(A)+ ε j

|a j j|
≤ hi(A)+

i−1

∑
j=1
|ai j|

ε j

|a j j|
< hi(A)+ εi
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y, cuando i = 1:
n

∑
j=2
|a1 j|

h j(A)+ ε j

|a j j|
≤ h1(A)< h1(A)+ ε1.

En el estudio de la fila i-ésima se utiliza la hipótesis ε j ≤ |a j j| − h j(A) para j = i+ 1, . . . ,n,
así como que εi > ∑

i−1
j=1
|ai j|ε j
|a j j| . Cuando i = 1, esta última hipótesis se reduce a que ε1 sea

estrictamente positivo.

En el Teorema 7.1 damos una matriz de escalado S que sirve para cualquier matriz de
Nekrasov. No obstante, teniendo en cuenta su estructura de ceros, podemos dar una matriz que
en muchos de los casos será más sencilla y su producto dará lugar también a una matriz SDD.
La clave consiste en buscar la primera fila k(≤ n) para la cual no exista ningún elemento no nulo
a la derecha del elemento diagonal. Entonces, podremos imponer ε j = 0 para j = 1, . . . ,k−1
y el producto AS será también SDD con alguna pequeña matización sobre la elección de los
demás ε j, j = k, . . . ,n. Si k = 1, el resultado se corresponde con el Teorema anterior.

Teorema 7.2. Sea A = (ai j)1≤i, j≤n una matriz de Nekrasov, y sea k ∈ {1, . . . ,n} el primer
índice tal que no existe ak j 6= 0 con j > k. Entonces, la matriz

S =


h1(A)+ε1
|a11|

. . .
hn(A)+εn
|ann|

 , (7.1)

con

{
εi = 0, i = 1, . . . ,k−1,
0 < εi < |aii|−hi, εi > ∑

i−1
j=k
|ai j|ε j
|a j j| para i = k, . . . ,n.

es una matriz diagonal positiva tal que AS es estrictamente diagonalmente dominante.

Demostración. La demostración de este resultado es similar a la del Teorema 7.1. Comenza-
mos razonando que existen (ε1, . . . ,εn) tales que satisfacen el enunciado del resultado. Dado
que A es una matriz de Nekrasov, se tiene que |aii| > hi(A) para i = 1, . . . ,n, lo cual sumado
a la forma constructiva dada en la demostración del Teorema anterior asegura que podemos
encontrar tales (ε1, . . . ,εn). Notemos además que siempre se cumplirá que εn 6= 0, dado que k
tomará como mucho el valor n. Veamos que en cualquier caso la matriz AS es también SDD.

Consideramos primero el caso de la fila i-ésima, cuando i < k:

i−1

∑
j=1
|ai j|

h j(A)+ ε j

|a j j|
+

n

∑
j=i+1

|ai j|
h j(A)+ ε j

|a j j|
< hi(A)+

i−1

∑
j=1
|ai j|

ε j

|a j j|
= hi(A).

En este caso, se tiene la relación de dominancia diagonal estricta debido a que el Lema 5.4 nos
asegura que hi(A) 6= 0 y a la cota superior estricta que satisface por hipótesis ε j cuando j > i.
Veamos ahora que también se tiene dominancia diagonal estricta en la fila k-ésima:

k−1

∑
j=1
|ak j|

h j(A)+ ε j

|a j j|
+

n

∑
j=k+1

|ak j|
h j(A)+ ε j

|a j j|
=

k−1

∑
j=1
|ak j|

h j(A)
|a j j|

= hk(A)< hk(A)+ εk.

En esta fila, dado que ak j = 0 siempre que j > k, se tiene que necesitamos elegir un εk > 0
para lograr dominancia estricta. Además, la elección de εk > 0 implicará que necesitemos que
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ε j > 0 siempre que j > k. Por último, comprobemos que también se da la relación de forma
estricta para la fila i-ésima cuando i > k:

i−1

∑
j=1
|ai j|

h j(A)+ ε j

|a j j|
+

n

∑
j=i+1

|ai j|
h j(A)+ ε j

|a j j|
≤ hi(A)+

i−1

∑
j=k
|ai j|

ε j

|a j j|
< hi(A)+ εi.

En particular, si para todo i = 1, . . . ,n−1 existe al menos un elemento ai j 6= 0 para algún
índice j > i, en la matriz S podremos anular todos los εi excepto εn. Este caso particular es el
que aparece ya recogido en [13].

En cualquier caso, el tener una matriz de escalado que nos permita llevar una matriz de
Nekrasov a forma estrictamente diagonalmente dominante nos da una forma rápida de dar
una cota de la norma de su inversa, sin tener que proceder a calcular dicha inversa como en
capítulos anteriores. Este procedimiento se mostrará en el siguiente apartado.

7.2. Cota para la norma de la inversa
Comenzamos esta sección recordando un resultado clásico presentado por Varah en [28]

para acotar la norma de la inversa de una matriz SDD. Este resultado se utiliza también con
frecuencia para obtener cotas de la norma de las inversas de matrices pertenecientes a clases
relacionadas con las SDD. Se corresponde con el Teorema 1 de [28]:

Teorema 7.3. Sea A = (ai j)1≤i, j≤n una matriz estrictamente diagonalmente dominante por
filas. Entonces

‖A−1‖∞ <
1

mı́ni (|aii|−∑ j 6=i |ai j|)
. (7.2)

En el Teorema 7.3 se aprecia que la bondad de la cota que obtengamos al llevar nuestra
matriz de Nekrasov a forma SDD depende de la “holgura” que logremos en cada fila al realizar
el escalado AS. A continuación, enunciamos la cota de la inversa de una matriz de Nekrasov.
Una vez definida la matriz S según el Teorema 7.1 o el Teorema 7.2 podemos conseguir una cota
u otra de la norma infinito de la inversa de una matriz de Nekrasov. Posteriormente usaremos
la que utiliza el Teorema 7.2 por tener menor coste computacional.

Teorema 7.4. Sea A = (ai j) una matriz de Nekrasov. Entonces

‖A−1‖∞ <
máxi∈N

(
hi(A)+εi
|aii|

)
mı́ni∈N(εi−wi + pi)

, (7.3)

donde (ε1, . . . ,εn) vienen dados por el Teorema 7.1 o el Teorema 7.2, wi = ∑
i−1
j=1 |ai j|

ε j
|a j j|

y pi = ∑
n
j=i+1 |ai j|

|a j j|−h j(A)−ε j
|a j j| .

Demostración. Observemos que:

‖A−1‖∞ = ‖S(S−1A−1)‖∞ = ‖S(AS)−1‖∞ ≤ ‖S‖∞‖(AS)−1‖∞.

En esta expresión, podemos obtener la norma infinito de S fácilmente ya que es una matriz
diagonal, y aplicar el Teorema 7.3 a ‖(AS)−1‖∞, que por el Teorema 7.1 o 7.2 (según la matriz
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S que utilicemos) es SDD. Entonces, queda solamente estudiar cómo de dominante es la fila
i-ésima de la matriz AS:

hi(A)+ εi−∑
j 6=i
|ai j|

h j(A)+ ε j

|a j j|
= εi−

i−1

∑
j=1
|ai j|

ε j

|a j j|
+

n

∑
j=i+1

|ai j|
|a j j|−h j(A)− ε j

|a j j|

= εi−wi + pi,

donde simplemente hemos utilizado la definición de hi(A), (4.1).

Como la matriz S cumple que ‖S‖∞ ≤ 1, podemos dar la siguiente simplificación de la fór-
mula anterior para la cota de la inversa de una matriz de Nekrasov apoyándonos en el Teorema
7.4:

Corolario 7.5. Sea A = (ai j) una matriz de Nekrasov. Entonces

‖A−1‖∞ <
1

mı́ni∈N(εi−wi + pi)
,

donde (ε1, . . . ,εn) vienen dados por el Teorema 7.1 o el Teorema 7.2, wi = ∑
i−1
j=1 |ai j|

ε j
|a j j|

y pi = ∑
n
j=i+1 |ai j|

|a j j|−h j(A)−ε j
|a j j| .

A continuación vamos a presentar el Algoritmo 7, que permite conseguir todos los paráme-
tros necesarios para obtener la matriz S del Teorema 7.2 y las sumas de filas de la matriz AS,
necesarias para dar la cota 7.3 que hemos definido anteriormente, con los εi i = 1, . . . ,n como
en el Teorema 7.2. Si repasamos la forma de obtener la matriz S en este caso observamos que
hay cierta libertad a la hora de elegir los valores de (ε1, . . . ,εn). En el siguiente algoritmo, el
valor al que se inicializa εi será 0 o t∆i(A), siendo t un parámetro que podemos elegir en el
intervalo (0,1). También podríamos dar una mayor libertad eligiendo un ti para cada εi no nulo.
No obstante, el criterio para elegir cada uno no es claro, por lo que dado que muchas veces se
tendrá que εi = 0 para i = 1, . . . ,n− 1, podemos utilizar esta elección simplificada. Eso sí, la
bondad de la cota obtenida depende de la buena elección del valor de t ∈ (0,1). Partiendo de la
parametrización de la matriz M(A) (dada en (4.2)) calculamos los valores de hi(A), |aii|, εi y si
para i = 1, . . . ,n. En si se obtienen los valores necesarios para aplicar el Teorema 7.4 y obtener
nuestra cota de ‖A−1‖∞.

7.3. Cotas alternativas para la norma de la inversa
En la sección anterior hemos dado un procedimiento para obtener una cota de la norma

de la inversa de una matriz de Nekrasov basándonos en utilizar una matriz de escalado. En
diversos artículos recientes, se ha abordado el mismo problema desde otro punto de vista, que
se apoya también en el resultado de Varah (Teorema 7.3). Por tanto, a continuación vamos a
introducir la base que se utiliza en los mismos para obtener esas cotas para así después proceder
a realizar una comparación de ambas técnicas.

El punto de partida de esas cotas se basa en expresar la matriz A como A=D−L−U , donde
D es la diagonal de A, L su parte triangular inferior (sin la diagonal) y U su parte triangular
superior (también sin la diagonal). Es decir, las matrices L = (li j)1≤i, j≤n, D = (di j)1≤i, j≤n,
U = (ui j)1≤i, j≤n en este caso son:

li j =

{
ai j si i > j
0 si i≤ j , di j =

{
ai j si i = j
0 si i 6= j , ui j =

{
ai j si i < j
0 si i≥ j .
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Algoritmo 7 nektoSDD - Obtención de la cota 7.3

Input: A = (ai j)(i 6= j), ∆,t . ∆ es el vector de los parámetros ∆ j(M(A))
for i = 1 : n

hi = ∑
i−1
j=1 |ai j|k j

r = ∑
n
j=i+1 |ai j|

if r == 0,J == 0 . Detección de la primera fila para la que εi > 0
J=i;

end if
hi = hi + r
aii = ∆i +hi
ki = hi/|aii|

end for
εK = t∆K
w1 = . . .= wK = 0 . Cuando i≤ K, se tiene que wi = 0
for i = K +1 : n

εi = t∆i
p j = ε j/|a j j|
wi = ∑

i−1
j=K |ai j|p j

if wi− εi > 0
M = 1/2wi
for j = K : i−1

ε j = ε jεiM
w j = w jεiM

end for
wi = εi/2

end if
end for
for i=n:-1:2

si = εi−wi +∑
n
j=i+1 |ai j| f j

fi = (∆i− εi)/|aii|
end for
s1 = ε1−w1 +∑

n
j=2 |a1 j| f j

Cálculo de la cota utilizando la fórmula (7.3). . Utilizando que si = εi−wi + pi

Con esta descomposición, se tiene el siguiente Lema:

Lema 7.6. Dada una matriz A = (ai j)1≤i, j≤n compleja tal que aii 6= 0 para i = 1, . . . ,n, enton-
ces

hi(A) = |aii|
(
(|D|− |L|)−1|U |e

)
i (7.4)

donde e es el vector de todo unos.

Apoyándose en el Lema 7.6, en [27] (Remark 3.3) se consigue una caracterización de
matriz de Nekrasov:

Teorema 7.7. Una matriz compleja A = (ai j)1≤i, j≤n es de Nekrasov si y solo si

(|D|− |L|)−1|U |e < e,

es decir, si y solo si In− (|D|− |L|)−1|U | es una matriz SDD, donde In es la matriz identidad
n×n.
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Vemos que la caracterización de que una matriz sea de Nekrasov viene dada por la do-
minancia diagonal estricta de la matriz In− (|D|− |L|)−1|U |. La base de las cotas que se han
obtenido en el artículo [5] y en artículos en los que se intentan mejorar éstas (véase [18],[21]) se
basan en utilizar adecuadamente el Teorema 7.3 en una matriz obtenida a partir de la expresión
In− (|D|− |L|)−1|U |. Las cotas obtenidas de esta forma emplean los siguientes parámetros:

zi(A) =

{
1, i = 1,

∑
i−1
j=1
|ai j|
|a j j|z j(A)+1, i = 2, . . . ,n.

(7.5)

Con dichos parámetros, estamos en condiciones de introducir las siguientes cotas, presen-
tadas en [5]:

Teorema 7.8. Sea A = (ai j)1≤i, j≤n una matriz de Nekrasov. Entonces,

‖A−1‖∞ ≤
máxi∈N

zi(A)
|aii|

1−máxi∈N
hi(A)
|aii|

, (7.6)

y

‖A−1‖∞ ≤
máxi∈N zi(A)

mı́ni∈N(|aii|−hi(A))
. (7.7)

7.4. Comparación de cotas
Como hemos mencionado anteriormente, estas cotas del apartado anterior se han obtenido

mediante un planteamiento distinto al que hemos seguido al comienzo del capítulo. Por tanto,
es de interés comparar la bondad de ambos tipos de cota. Comencemos estudiando el coste
computacional que acarrea el cálculo de cada una de las cotas. Obtener la cotas (7.6) o (7.7)
supone realizar 3

2n(n−1) sumas y n(n−1) productos. Por otro lado, están las cotas dadas en
esta memoria. Si echamos un vistazo al Algoritmo 7, vemos que hay unas condiciones if que
aumentan el coste en algún ejemplo. Por tanto, aquí consideraremos el peor caso, en el que
siempre se realicen todos los cálculos dentro de estas condiciones. Además, hay que tener en
cuenta que el coste del algoritmo depende del índice K definido en el mismo. En el contexto
del Teorema 7.2, este índice representa la primera fila para la que hay que tomar un ε j no
nulo. El Teorema 7.1 puede verse como un caso particular a la hora de contar las operaciones
realizadas, si tomamos siempre K = 1.

A continuación vamos a mostrar el coste computacional dependiendo tanto de n como del
índice K. No obstante, los casos particulares K = 1 y K = n son los que se presentan en muchos
ejemplos, así que mostraremos también el coste en estos casos particulares:

Operaciones general K = n K = 1
sumas/restas 3n2+n+2

2 + (n−K−1)(n−K)
2

3n2+n+2
2 2n2−n+2

multiplicaciones 7n2+9n+4
2 + 5K2−10Kn−11K

2 n(n−1) 7n2−n−2
2

divisiones 2n−1+2(n−K) 2n−1 4n−3

Tabla 7.1: Coste computacional de la cota (7.3)

Con este objetivo, vamos a contar todas las operaciones llevadas a cabo y comparar el
término T de mayor grado del coste de las cotas:
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(7.6) , (7.7) K = n K = 1
T 5

2n2 5
2n2 11

2 n2

Tabla 7.2: Término de mayor grado del coste computacional de las cotas de ‖A−1‖∞

En esta tabla vemos que el utilizar la matriz dada en el Teorema 7.1 puede acarrear en el
peor de los casos un poco más del doble de operaciones. En cualquier caso, el algoritmo para
obtener la cota es de orden cuadrático.

Una vez comprobado que el coste computacional es similar, nuestro interés radica en com-
parar la bondad de la acotación obtenida en cada caso. Para comenzar tal comparación, vamos
a utilizar la batería de ejemplos utilizada en [5] y en los artículos posteriores:

A1 =


−7 1 −0,2 2
7 88 2 −3
2 0,5 13 −2

0,5 3 1 6

 , A2 =


8 1 −0,2 3,3
7 13 2 −3
−1,3 6,7 13 −2
0,5 3 1 6

 ,

A3 =


21 −9,1 −4,2 −2,1
−0,7 9,1 −4,2 −2,1
−0,7 −0,7 4,9 −2,1
−0,7 −0,7 −0,7 2,8

 , A4 =


5 1 0,2 2
1 21 1 −3
2 0,5 6,4 −2

0,5 −1 1 9

 ,

A5 =

 6 −3 −2
−1 11 −8
−7 −3 10

 , A6 =


8 −0,5 −0,5 −0,5
−9 16 −5 −5
−6 −4 15 −3
−4,9 −0,9 −0,9 6

 .

En la siguiente tabla comparamos los resultados obtenidos empleando las cotas (7.6),(7.7),
la cota (7.4) obtenida en este capítulo y, cuando la matriz es SDD, la cota de Varah (Teorema
7.3). En la fórmula (7.4), utilizamos los parámetros εi i = 1, . . . ,n de la forma del Teorema 7.2.
Para esta batería de ejemplos, elegir una matriz como la del Teorema 7.2 supone tener todos
los parámetros epsilon nulos salvo εn. Las celdas coloreadas contienen la mejor cota obtenida
para cada matriz.

Matriz Norma (exacta) Varah (7.6) (7.7) (7.3)
A1 0.1921 0.6667 0.3805 0.5263 0.3521
A2 0.2390 1 0.8848 0.6885 0.9015
A3 0.8759 1.4286 1.8076 0.9676 1.3563
A4 0.2707 0.5556 0.6200 0.7937 0.4484
A5 1.1519 - 1.4909 2.4848 1.1658
A6 0.4474 - 1.1557 0.5702 1.0850

Tabla 7.3: Cota superior de ‖A−1‖∞, (7.3) usa el Teorema 7.2

En la Tabla 7.3, mirando la columna (7.3) vemos la cota obtenida imponiendo εi = 0 en
todas las filas excepto en la última. El resultado logrado mejora las cotas obtenidas en el otro
artículo en varios casos, pero no siempre es mejor. A continuación vamos a estudiar las co-
tas obtenidas empleando de nuevo el Teorema 7.2, inicializando los valores de εi como 0 o
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∆i(A)/2, según corresponda, y compararemos las cotas con las obtenidas empleando las fór-
mulas (7.6) y (7.7). Las matrices sobre las que utilizaremos las cotas son matrices 20× 20.
Los resultados se incluyen en la Tabla 7.4. En ella, las celdas coloreadas también contienen la
mejor cota obtenida para esa matriz.

Norma (exacta) (7.6) (7.7) (7.3)
6.7500e+03 6.2740e+06 7.0302e+06 4.6267e+06
4.9663e+03 7.5983e+05 3.1374e+06 1.9948e+06
4.9565e+03 9.6626e+05 1.8445e+07 1.9506e+07
6.5044e+03 1.4000e+06 5.2040e+06 3.1536e+06
5.2081e+03 4.0631e+06 6.7523e+06 2.7879e+05
5.9789e+03 2.9510e+05 5.3717e+05 5.0178e+06
6.0290e+03 1.3081e+06 2.0881e+06 1.2653e+06
4.1255e+03 3.7089e+06 1.7445e+07 1.5422e+05
4.9070e+03 1.8392e+06 3.7896e+06 1.6405e+06
5.2453e+03 3.0964e+06 2.9300e+06 1.6907e+07

Tabla 7.4: Cota superior de ‖A−1‖∞, (7.3) usa el Teorema 7.2

En la mitad de los casos, la cota obtenida mediante escalado es mejor que las demás. Y
cabe intentar mejorar la misma estudiando la forma óptima de inicializar los parámetros. El
problema reside en discernir la forma óptima de los mismos. Por ejemplo, si volvemos a las
matrices de la batería de ejemplos, podemos representar la cota obtenida según el valor de
εn ∈ (0,∆n(A)). En las siguientes gráficas representamos el valor de la cota obtenida según los
valores iniciales de εn. El valor mínimo aparece resaltado, y es el que se ha incluido en la Tabla
7.3.

A1 A2 A3

A4 A5 A6

Hasta ahora, hemos elegido los parámetros εi i = 1, . . . ,n siguiendo el Teorema 7.2. Las
razones para esta elección son el menor coste computacional, y la facilidad para elegir unos
valores iniciales para εi i = 1, . . . ,n. No obstante, también es de interés ver qué ocurre em-
pleando la otra elección. En la Tabla 7.5 comparamos los resultados obtenidos sobre la batería
de ejemplos utilizando una matriz S de la forma dada en el Teorema 7.1.
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Matriz Norma (exacta) Varah (7.6) (7.7) (7.3)
A1 0.1921 0.6667 0.3805 0.5263 0.2354
A2 0.2390 1 0.8848 0.6885 0.5260
A3 0.8759 1.4286 1.8076 0.9676 0.9273
A4 0.2707 0.5556 0.6200 0.7937 0.3168
A5 1.1519 - 1.4909 2.4848 1.1588
A6 0.4474 - 1.1557 0.5702 0.4527

Tabla 7.5: Cota superior de ‖A−1‖∞, (7.3) usa el Teorema 7.1

A primera vista, parece que esta elección es superior a las demás: podemos lograr valores
muy próximos al valor exacto de la norma, siendo las estimaciones mejores que las dadas por
cualquier otra fórmula en todos los casos. No obstante, la cota presenta un problema subyacen-
te: la inicialización de los parámetros ε . Dados con el valor adecuado, la cota obtenida es muy
buena. No obstante, una mala elección de los mismos da lugar a cotas desastrosas. Por ilustrar
este hecho con un ejemplo sencillo fijémonos en A5. Utilizando el mismo criterio empleado
en la Tabla 7.4, es decir, escoger como valor inicial de εi = ∆i/2 para i = 1, . . . ,n da lugar a
la cota: 2,1392e+ 15. Para rellenar los datos de la columna AS(2) de la Tabla anterior lo que
hemos hecho ha sido probar distintos datos de los parámetros y quedarnos con la mejor cota.
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