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1 INTRODUCCION

1. Introduccion

La Fisica de Sistemas Complejos [1] nace con el objetivo de explicar la naturaleza de las
interacciones y la emergencia de fenémenos colectivos en sistemas que estaban artificialmente
separados del campo de estudio de la Fisica. Estos sistemas reciben su nombre por el alto grado
de no linealidad de las ecuaciones que gobiernan su dinamica y por los patrones de interaccién
no triviales que aparecen entre sus componentes. Este ultimo hecho imposibilita la descripcién
precisa de sus interacciones mediante teorias de campo medio, motivo por el cual dentro de la
Fisica de Sistemas Complejos han adquirido gran importancia la Fisica Estadistica de Redes
complejas. Asimismo esta nueva rama de la Fisica, que experiment6 su auge durante el siglo
XX, destaca por su caracter interdisciplinar, puesto que su campo de estudio engloba diferentes
areas como la economia [2|, la propagacién de rumores [3] o epidemias [4], sincronizacién [5]
etc. A pesar de esta interdisciplinaridad, la Fisica Estadistica asi como la Fisica de Sistemas
Dinamicos no Lineales constituyen herramientas muy poderosas para el estudio de todas estas
areas, ya que permiten explicar la emergencia de los fendémenos colectivos en estas areas como
la prevalencia de una epidemia o la sincronizacién total de una serie de osciladores a partir de

las interacciones microscopicas que se dan en el sistema a estudio.

Dentro de las multiples aplicaciones de las redes complejas, en este trabajo nos hemos centra-
do en el modelado de la propagacion de epidemias. Una de las vias més comunes para caracterizar
el avance de una epidemia son los llamados modelos compartimentales, en los que cada indi-
viduo puede adoptar un estado de entre un conjunto discreto de ellos. Los primeros modelos
compartimentales |6] aparecidos en la primera mitad del siglo XX se abordaron mediante teorias
de campo medio que no reflejaban las interacciones reales entre individuos. Para aumentar el
realismo de estos modelos, a finales del siglo pasado basdndose en datos ya disponibles sobre
patrones de interacciones reales se propusieron formalismos |7,/8] en los que los patrones de in-
teraccién venian determinados por redes complejas. Estos modelos tuvieron un gran impacto,
puesto que sus predicciones tedricas exhibian un gran acuerdo con los resultados arrojados por
simulaciones numéricas basadas en agentes. Sin embargo, estas teorias tenian ciertas limitacio-
nes ya que fijaban los contactos de los individuos para todo instante temporal y ademés no

permitian introducir algunos ingredientes importantes como la movilidad de los agentes.

Durante los ultimos anos hemos sido testigos de la propagacién de varias enfermedades
autéctonas tales como el SARS en 2003, el virus HIN1 en 2009 o maés recientemente el Zika o el
Ebola. Estas pandemias se generaron en pequenas regiones del mundo y tras haber permanecido
confinado durante un pequeno intervalo de tiempo se convirtieron en enfermedades a escala glo-
bal. Debido a las limitaciones de las anteriores teorias, era necesario introducir un formalismo
capaz de capturar este mecanismo de propagacién de epidemias a partir del flujo de movilidad
de los humanos a diferentes escalas (regional, nacional, mundial etc.). De esta manera, desde
hace 10 afios se han publicado miiltiples trabajos [9H12] en los que se modela propagacién de
epidemias haciendo uso de metapoblaciones donde, como explicaremos a lo largo del trabajo, la
informacién acerca de la movilidad de los individuos aparece codificada en los enlaces de una
red. En particular, nuestro grupo ha desarrollado un modelo usando metapoblaciones [13| que
exhibe un acuerdo total con simulaciones numéricas y nos permite comprender los efectos de la

movilidad en la propagacién de pandemias.
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Por otro lado, recientemente se ha producido una revolucién en el campo de las redes com-
plejas con la aparicién de las redes multicapa [14]. En este tipo de arquitecturas cada capa es
una red compleja, de modo que se posibilita la coexistencia de diferentes patrones y vias de
interaccion dentro de un sistema. Hasta el momento se han utilizado la redes multicapa para
el estudio de una multitud de problemas reales entre los cuales se encuentran la optimizacién
de los desplazamientos en una ciudad con diferentes modos de transporte [15] o la propagacién
de varias procesos epidémicos en la misma red [16}/17]. Sin embargo, todavia no se ha realizado
ningun modelo capaz de predecir fielmente la evolucién de una epidemia en una red multicapa
en la que cada una de las capas sea una metapoblacion.

El objetivo principal de este trabajo es solventar esa carencia y elaborar un modelo en el
que se ponga de manifiesto la influencia que tiene en la propagaciéon de una epidemia la co-
existencia de diferentes metapoblaciones, cada una de ellas codificando un patrén de movilidad
y una distribucién demografica de los individuos diferentes. Para ello, explicaremos el marco
tedrico necesario para sentar las bases fundamentales para el completo entendimiento del mode-
lo propuesto con posterioridad. De este modo, se explicaran los conceptos bésicos acerca de las
redes complejas, las metapoblaciones y las redes multicapa. Por otro lado, para comprender los
procesos microscopicos que conducen a la propagacion de la epidemia, se expondran los rasgos
més caracteristicos de los modelos compartimentales enfatizando en dos de ellos, el modelo SIS
(Susceptible-Infectado-Susceptible) y el modelo SIR (Susceptible-Infectado-Recuperado). Una
vez comprendidos todos estos aspectos, propondremos una serie de ecuaciones basadas en cade-
nas de Markov [18] que nos permitan caracterizar el impacto de una epidemia sobre el sistema a
estudio dados unos pardmetros relacionados con las interacciones microscopicas y con la dindmi-

ca de los agentes.

Para comprobar la validez de nuestro modelo, compararemos sus predicciones tedricas con
los resultados obtenidos a partir de realizar simulaciones numéricas basadas en agentes, muy
costosas desde el punto de vista computacional. Tras ello, linealizaremos las ecuaciones para
obtener la expresion analitica del umbral epidémico. Esta magnitud es una de las més relevantes
en epidemiologia ya que constituye la separacion entre la fase de ausencia de epidemia y la
de prevalencia de la misma. Asimismo, gracias a los datos reales de los que disponemos y a la
estratificacién de la sociedad en Colombia que nos permite utilizar redes multicapa con facilidad,
aplicaremos nuestro formalismo en la ciudad de Medellin. Por tltimo, a partir de las interacciones
que se producen entre individuos de diferentes clases sociales, propondremos un parametro para
reflejar la distancia social entre estratos y comprobaremos la influencia de la movilidad sobre
esta distancia.
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2. Marco teorico

2.1. Redes complejas

Una red compleja en términos generales es un grafo formado por un conjunto de N nodos
unidos por L links que determinan la dindmica de los elementos que constituyen los nodos. En
una primera aproximacién, los nodos de una red se pueden identificar con agentes mientras que
los links reflejan la interaccion entre ellos. En este sentido, si dos nodos interaccionan entre si
habra al menos un link que los relacione, mientras que si no existe relacién alguna entre dos
individuos tampoco habra ninguna conexién que los una. Bajo estas premisas, la forma ideal
de representar matemadticamente una red compleja es mediante una matriz de adyacencia A,
cuyas entradas A;; contienen el nimero de links existentes entre los nodos ¢ y j. Para obtener
una imagen mas visual, se representa una red compleja junto a su matriz de adyacencia en la
Figura 1. Existen varias clasificaciones de las redes complejas en funcién de las propiedades de
sus matrices de adyacencia entre las que destacan:

= Segin el caracter simétrico o asimétrico de la matriz, se distinguen redes no dirigidas
(Aij = Aji) en las que la interaccién de un nodo i con j es idéntica a la de j con i y
dirigidas (A;; # Aji) en las que la interaccién ¢ con j no implica la interaccién de j con i

y viceversa.

= Segun el valor de las entradas de la matriz, se distinguen redes no pesadas en las que si
dos nodos i y j interactian A;; =1 V(i,7) y redes pesadas en las que los contactos de los

nodos no son equivalentes de modo que A;; = wj;.

Otro de los parametros relevantes de las redes complejas es el grado k; de cada uno de sus
nodos, definido como k; =) j A;j. En concreto, como veremos més adelante, la distribucién de
grado P(k) de los nodos de la red va a influir de manera notoria en la dindmica regulada por
la red compleja. En este sentido, se han construido sintéticamente varios tipos de redes con el
objeto de adaptar su distribucién de grado a la observada en redes reales. Dos de los tipos de
redes histéricamente mas usadas son las redes Erdos-Renyi y las redes libres de escala.
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Figura 1: Representacion de una red compleja junto a su matriz de adyacencia. Imagen extraida de
//www.stoimen.com/blog/2012/08/31/computer-algorithms-graphs-and-their-representation/.
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2.1.1. Redes Erdos-Renyi

Las redes Erdos-Renyi (ER) [19] son redes en las que hay una gran homogeneidad en torno
al grado de cada uno de sus nodos, tal y como se refleja en la Figura 2a. Para construirlas, se
parte de un nimero fijo de nodos N y de una probabilidad p de que dos nodos estén enlazados.
Con estos ingredientes, la distribucion de grado de las redes ER u homogéneas es

P(k) = < N; ! )p’“ 1-p)N " (1)

Teniendo en cuenta que la probabilidad de que dos nodos estén enlazados se puede expresar
como p = 2L/N(N — 1) y tomando el limite en el que el nimero de nodos es mucho mayor
que el grado medio (sparse network), la distribucién binomial anterior se transforma en una
Poissoniana de la forma

P(k) = e~ ® B (2)

2.1.2. Redes libres de escala

Las redes Erdos-Renyi tenfan muchas carencias en relacién con las redes reales. En primer
lugar, no se permitia la posibilidad de incluir nuevos nodos en la red, lo cual estd en clara
contraposicion con el crecimiento que experimentan las mismas en la realidad. Por otro lado,
la aleatoriedad en los enlaces no reflejaba rasgos de redes utilizadas diariamente como la red
de Internet en las que hay una mayor probabilidad de unién a nodos altamente conectados en
la red (hubs) que a nodos residuales. Para solventar estas discordancias, Barabasi y Albert [20]
abandonaron la estaticidad de las redes e introdujeron el concepto de unién preferencial a la
hora de crear las denominadas redes libres de escala (scale free o SF). La construccién de este
tipo de redes envuelve varias etapas:

= En primer lugar, se parte de una red pequena de ng nodos conectados aleatoriamente entre

si.

= Posteriormente, se produce la fase de crecimiento en la que se incorporan nuevos nodos a
la red. Estos nodos poseen m links.

= Para reflejar la unién preferente en términos de grado, la probabilidad de establecer uno
de esos links con un nodo i ya existente de la depende del grado del mismo via

k;

II; =
Zj kj

3)

De este modo, se obtiene una distribucién de grado potencial de la forma
P(k) ~ k72, (4)

cuyo segundo momento de la distribucién es divergente. Por este motivo estas redes se denominan
libres de escala, ya que el grado medio no constituye una escala representativa de las conexiones
de los nodos. Un ejemplo de red SF se representa en la Figura 2b.
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(a) ER (b) SF

Figura 2: a) Red Erdos-Renyi. b) Red libre de escala en la que los hubs aparecen destacados. Imagen
extraida de hitps://en.wikipedia.org/wiki/Scale-free_network.

2.2. Metapoblaciones

Como ya hemos dicho en la introduccion, la utilizacion de las redes complejas identificando
nodos con seres humanos y enlaces entre ellos con su interaccién tiene ciertas limitaciones a la
hora de predecir el avance de algunas epidemias aparecidas recientemente. De hecho, la imposi-
bilidad de introducir en este marco cualquier informacién acerca de los flujos de los agentes asi
como de su movilidad impide la monitorizacién de la evolucién espacio-temporal de un proceso
epidémico que se propaga desde una pequena regién donde ha surgido hasta convertirse en una

pandemia a escala global.

Con el objeto de incluir los datos sobre la movilidad de los individuos, se introducen las me-
tapoblaciones. Desde el punto de vista de la teoria de redes, una metapoblacion o una poblacién
de poblaciones es una red compleja formada de nuevo por un conjunto de nodos entre los cuales
se establecen links. Sin embargo, a diferencia de la primera aproximacion a las redes complejas,
en este caso los nodos se identifican con lugaresﬂ donde se encuentran los agentes. Asimismo,
los links ya no determinan la interaccién entre los agentes sino que contienen sus patrones de
movilidad a lo largo de la red, tal y como se refleja en la Figura 3. En este sentido, la matriz
de adyacencia A se convierte en una matriz de movilidad W, cuyos elementos W;; reflejan el
flujo de individuos que viajan desde el nodo i al nodo j. En funcién de la naturaleza de los
movimientos de los agentes que pueblan la red, se pueden distinguir dos tipos de procesos:

= Procesos de difusién: En ellos los agentes se comportan como caminantes aleatorios a lo
largo de la red, eligiendo el destino de sus desplazamientos en funcién de los pesos de la

matriz de movilidad W.

= Procesos recurrentes: En ellos todos los agentes tienen asociado un nodo de residencia ¢ y
sus movimientos consisten en desplazarse a alguno de sus nodos vecinos, permanecer alli

un cierto tiempo 7 y retornar a su nodo de residencia.

Debido a que los procesos recurrentes nos permiten reflejar una mayor proporcion de movi-
mientos rutinarios tales como ir a la universidad o al trabajo, asociaremos esta naturaleza a los

desplazamientos de los agentes en nuestro modelo.

'En funcién de la escala a la cual se quiere simular la dindmica, estos lugares se pueden identificar con barrios,
ciudades, paises etc.
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Figura 3: Representacién esquemadtica de una metapoblacién de tres nodos. Los colores de los agentes

reflejarian su estado dinamico si se utiliza esta red para simular un modelo compartimental.

2.3. Redes multicapa

Como hemos dicho en la introduccion, recientemente se ha producido la irrupcién de las
redes multicapa. Esta irrupcién se debe a su mayor grado de realismo respecto a las estructuras
complejas anteriores, puesto que las redes multicapa permiten albergar los diversos patrones
de interaccién que los individuos exhiben en la realidad. De este modo, este tipo de estructura
es ideal para la representacién de algunos sistemas tales como redes de transporte [21] en las
que cada capa se identifica con un medio de transporte o redes sociales [22] en las que cada
capa representa las conexiones de un agente en una determinada red social (Facebook, Twitter,
Linkedin etc.).

En términos matemaéticos, la red multicapa se representa mediante la matriz supralaplaciana.
Esta matriz se construye a partir de las matrices de adyacencia que codifican los enlaces dentro
de cada una de las capas y a partir de la matriz que contienen la informacion acerca de los
enlaces entre capas. En concreto, si las matrices A® determinan los enlaces dentro de cada capa
y la matriz C los enlaces intercapa, la matriz supralaplaciana A viene dada por

A=EPA“+cC. (5)

Para obtener una mayor intuicién acerca de estos conceptos, se representa una red sencilla de
dos capas en la Figura 4.

Uno de los tipos de redes multicapa sobre los que mas se ha trabajado son las redes mul-
tiplexadas [23-25]. En este tipo de arquitecturas, los nodos son comunes para todas las capas,
de modo que hay una correspondencia uno a uno para cada uno de los nodos y cada una de las
capas. Asimismo, la introduccién de diferentes patrones de interaccién se realiza mediante el uso
de matrices de adyacencia que, aunque relacionan los mismos nodos, codifican diferentes enlaces
en funcién de la capa considerada. Estas caracteristicas hacen de las redes multiplexadas una
estructura ideal para elaborar un modelo en el que se tengan en cuenta los diferentes patrones
de movilidad que puedan tener los individuos que comparten lugares de residencia. Para obtener
una imagen mas visual de este tipo de redes, representamos en la Figura 5 una red multiplexada
de tres capas.
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Debido a la correspondencia existente entre los nodos en todas las capas, la matriz de co-
nexion intercapa pierde toda la relevancia, de modo que ahora la matriz supralaplaciana se
construye como

A=PAa~. (6)

Figura 4: Representacién de una red multicapa de 2 capas, en la que A' y A? son las matrices de
adyacencia de la capa 1 y la capa 2 respectivamente, mientras que C'? y C'? representan las conexiones
intercapa.

Figura 5: Representaciéon de una red multiplexada formada por 3 capas y 7 nodos en cada una de
ellas. Cabe resaltar que cada capa esta formada por una red diferente, de modo que varios patrones de
movilidad pueden reflejarse dentro de un mismo sistema.
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2.4. Modelos compartimentales

Una de las vias mas comunes para modelar la propagacién de epidemias es el uso de los
llamados modelos compartimentales. Como ya hemos introducido, los modelos compartimentales
son modelos en los que los agentes adoptan para cada instante temporal ¢ un estado de entre
un conjunto discreto de los mismos. En este trabajo, se van a utilizar dos de los modelos més
habituales para predecir el avance de epidemias como son el modelo SIS (Susceptible-Infectado-
Susceptible) o el modelo SIR (Susceptible-Infectado-Recuperado). Estos dos modelos han sido
ampliamente estudiados debido a que su pequeno ntmero de compartimentos permite por un
lado realizar calculos analiticos de los indicadores mas relevantes para un proceso epidémico y
por otro lado adaptarse a la naturaleza de multitud de enfermedades que se dan en la realidad.

2.4.1. Modelo SIS

En este modelo, cada individuo puede adoptar inicamente dos estados (Susceptible e Infec-
tado). Desde un punto de vista microscopico, los individuos infectados en ¢ pueden recuperarse
y pasar a ser susceptibles en ¢ 4+ 1 con una probabilidad p, mientras que los individuos sanos en
t al contactar con algin individuo infectado pueden convertirse en infectados en ¢ + 1 con una
probabilidad A. De forma esquematica, los procesos que se dan son

I 5 g,
(7)
S+I1 X 9of.

El hecho de que los infectados, una vez recuperados, vuelvan a ser susceptibles de contraer
la enfermedad permite la aplicacion de este tipo de modelos a enfermedades de trasmision
sexual tales como Gonorrhea, Sifilis etc. A su vez, provoca que el estado estacionario en caso
de prevalencia de la epidemia sea una situacién de equilibrio entre la proporcién de infectados
y la de sanos. Para obtener una intuiciéon acerca de las ecuaciones de este modelo, utilizaremos
la aproximacién en la que los nodos de la red se identifican con agentes y los links con su
interaccién. Bajo todas estas premisas, se puede construir una cadena de Markov [18] en la que
la probabilidad de que un nodo i esté infectado p; en ¢t + 1 viene dada por

pit+1) =0 —p)pi )+ 1 —pi (1) (1 —ql(t) , (8)

donde ¢; (t), que denota la probabilidad de que un individuo sano no se infecte en ninguno de

sus contactos, se puede expresar como

N
= | LRV AGE (9)

J=1

donde N es el nimero de nodos de la red.

2.4.2. Modelo SIR

El modelo SIR es algo mas complejo que el anterior modelo puesto que para cada instan-
te temporal cada individuo puede adoptar tres estados (Susceptible-Infectado-Recuperado). De
nuevo, desde el punto de vista microscopico, un individuo susceptible en ¢ puede pasar a in-
fectado en t 4+ 1 via contacto con otro infectado con una probabilidad A. Sin embargo, en este
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caso los infectados en t al superar la enfermedad con una probabilidad p no se convierten en
susceptibles sino que pasan a ser recuperados en t + 1, aislandose de esta forma de la dinamica.

Esquematicamente los procesos que tienen lugar son

I & R,
(10)
S+I N or.

Dado que los infectados al recuperarse estan aislados de la dindmica, la epidemia alcanzara su
estado estacionario cuando toda la poblacién de la red se reparta entre individuos susceptibles

y recuperados. Mateméaticamente, las ecuaciones que gobiernan la evolucién de la epidemia son

pit+1) = A-wWpi®)+A=pi()—m@#)A-q(), (11)
ri(t+1) = 1 (t) 4+ ppi(t) , (12)

donde p;(t) denota la probabilidad de que el individuo i esté infectado en el instante de tiempo
t y r;(t) la probabilidad de que el individuo i esté recuperado en el instante de tiempo t. Debido
a la naturaleza de este modelo, es facilmente adaptable a epidemias en las que se adquiere

inmunidad tras recuperarse como la gripe o a enfermedades letales como el SIDA.

3. Modelos epidémicos en metapoblaciones multiplexadas

En esta seccion vamos a derivar las ecuaciones de nuestro modelo acerca de la propagacion
de epidemias en una red multicapa compuesta de metapoblaciones. Para ello, en primer lugar
despreciaremos las correlaciones temporales mas allad de un paso temporal, lo que permite expre-
sar nuestras ecuaciones como una cadena de Markov en la que el estado de un individuo en t+ 1
unicamente depende del estado del sistema en ¢t. En términos epidémicos, esta aproximaciéon se
traduce en que el agente no tiene memoria acerca de su estado epidémico en tiempos anteriores.
Por otro lado, utilizaremos una red multiplexada compuesta por L capas, correspondientes a
L patrones diferentes de movilidad coexistentes en la red. En este sentido, cada capa de la red
vendra codificada por una matriz W<, cuyos pesos W5 indican el flujo de individuos del tipo «
entre los nodos i y j. Asimismo, la multiplexacién de la red implica que cada una de las capas
estan formadas por los mismos N nodos pudiendo expresar de esta forma la poblacion total de

cada uno como n; = ) nf, donde « =1, ..., L.

Desde el punto de vista de los procesos dindmicos de los agentes, consideraremos que cada
individuo tiene asociado un nodo i, identificado como su nodo de residencia. Asimismo, para cada
paso temporal, supondremos que todos los individuos tienen una probabilidad p de desplazarse
a uno de los nodos vecinos j de su residencia. Si se produce este movimiento, el vecino al que se
desplace un agente dependerd de la capa a la que pertenezca, puesto que cada capa contiene flujos
de movilidad diferentes. En este sentido, si el individuo pertenece a la capa « la probabilidad de

desplazarse al nodo j vendra dada por

a

o Wi
R = ER (13)

N
donde s* = 3 Wg.
j=1
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Una vez que se han desplazado todos los agentes segin los patrones de movilidad de su
capa, estableceremos la hipdtesis de mezcla homogénea de los individuos que se encuentren en el
mismo nodo de modo que, para cada instante temporal, cada agente interactuard con el resto de
agentes que comparten su nodo de estancia en dicho instante. En cuanto a la evolucion de la epi-
demia, tomaremos como base los modelos compartimentales previamente explicados, el modelo
SIS y el modelo SIR. De este modo, un agente sano de tipo a que contacta con un infectado 3
puede contraer la enfermedad con un probabilidad A*?, mientras que un agente infectado puede
superar la enfermedad con una probabilidad p y convertirse en susceptible (SIS) o en recuperado

(SIR).

Por dltimo, dado que queremos reflejar la recurrencia en los patrones de movilidad de los

seres humanos, forzaremos a todos los agentes a volver a su nodo de residencia.

3.1. Modelo SIS en metapoblaciones multiplexadas.

Dada la naturaleza de este modelo, un buen indicador acerca de la evolucion de la epidemia
es la fraccién de infectados asociados a cada nodo 7 de cada capa a denotada en adelante como
ps. Puesto que tenemos en general N nodos y L capas, es necesario elaborar un sistema de Nx L
ecuaciones para monitorizar el avance del proceso epidémico. En este sentido, podremos expresar

la evolucién de la fraccién de infectados de tipo a del nodo ¢ como

pi(t+1) = (1= p)pi () + (1 = pf* (1)) I (2) (14)

donde el primer término corresponde a los infectados en tiempo ¢ que no se recuperan mientras
que el segundo se identifica como aquellos individuos sanos en tiempo ¢ que se infectan. Asimismo,
I1%(t), que denota la probabilidad de que un individuo susceptible de tipo a asociado al nodo 4

se infecte en t, viene dada por

e = (1— +pZRO‘PO‘ (15)

donde el primer término denota la probabilidad de infectarse en su nodo de residencia y el
segundo corresponde a la de infectarse en cualquiera de sus vecinos dentro de la capa a. A su
vez, la probabilidad de que un individuo susceptible de tipo « se infecte en 4, sea 0 no sea este

su nodo de residencia, en el instante ¢ puede escribirse como

O | (T oo

Jj=1p=1

donde se ha tenido en cuenta que los procesos de contagio son independientes entre si. Por dltimo

nj_y;s €8 decir, el nimero de individuos de la capa § asociados a j que se desplazan a i se expresa
como
B
nfﬁi =(1 —p)nféij +pR;n j’B . (17)

3.2. Modelo SIR en metapoblaciones multiplexadas

Las ecuaciones que describen el avance de la epidemia en caso de considerar como mode-
lo compartimental el modelo SIR son muy similares a las correspondientes al modelo SIS. Sin
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4 VALIDACION DE LOS MODELOS PROPUESTOS

embargo, la introduccién del compartimento adicional de los recuperados hace necesaria la in-
clusién de una ecuacién por cada nodo y capa que tenga en cuenta su evoluciéon temporal. En
este sentido, el conjunto de 2 x N x L ecuaciones que permiten caracterizar el avance de una

epidemia en una red multiplexada segin el modelo SIR es

pr(t+1) = (1—wpi @)+ (1= pf(t) —ri () 7 () , (18)
ri(t+1) = () + pi ) (19)

donde los términos de la primera ecuacion tienen la misma interpretacion que en el caso del
modelo SIS y donde la segunda ecuacién refleja el hecho de que ahora los infectados que superan
la enfermedad se recuperan y se aislan de la dindmica.

4. Validacion de los modelos propuestos

Una vez que hemos formulado los modelos que nos permiten monitorizar el avance de una
epidemia en una red multiplexada de metapoblaciones, debemos testear su validez. Para ello
compararemos las predicciones tedricas obtenidas a partir del calculo iterativo de la ecuacién
para el caso del modelo SIS y de las ecuaciones en el caso del SIR con resultados

numéricos procedentes de simulaciones basadas en agentes.

En cuanto a las estructuras de interaccion usadas para simular la dindmica, haremos esta
comparacién haciendo uso de redes multiplexadas de dos capas, utilizando para las capas me-
tapoblaciones creadas sintéticamente cuya topologia se ajuste a la de las redes explicadas en la
introduccién. De este modo, crearemos 3 redes multiplexadas con N = 1000 nodos, una com-
puesta por dos redes Erdos-Renyi, otra por dos libres de escala y la tltima compuesta por una
Erdos-Renyi y una libre de escala, pudiendo observar de esta forma el efecto de las distintas
arquitecturas de redes multiplexadas en la propagacién de una epidemia.

Por otro lado, supondremos que la poblacién de individuos asociados a cada capa y a cada
nodo es homogénea. En concreto, consideraremos n$* = 500 V( 7, ), de modo que nuestro sistema
estard compuesto por un total de 10® agentes. Las simulaciones numéricas necesarias para validar
nuestro modelo se realizan siguiendo los siguientes pasos:

= En primer lugar, es necesario establecer una semilla inicial de la epidemia. Por este motivo,
consideramos que el 1% de la poblacién esté infectada, de modo que para cada individuo
se lanza un ndmero aleatorio generado de forma homogénea r entre [0, 1] infectando al
individuo si r < 0.01.

= Para cada paso de tiempo, cada agente debe decidir si se mueve a otro nodo o permanece
en su nodo de residencia. Para ello, se lanza otro nimero aleatorio r’ € [0,1] y se compara
con p, de modo que si 7’ < p el individuo se desplaza a alguno de los vecinos que su nodo
de residencia tenga en su capa. En concreto, para elegir el destino del desplazamiento si el
individuo pertenece a la capa « y esta asociado al nodo ¢, se lanza otro nimero aleatorio
I € (0,s] tal que el individuo se desplazara al primer nodo k£ que cumpla Zk: 2 >=1

De este modo, se garantiza que los flujos de individuos reflejen la estructura de cada
metapoblacién.

11



4 VALIDACION DE LOS MODELOS PROPUESTOS

= Una vez que se han producido todos los procesos dindmicos, tiene lugar la interaccion
entre agentes. Recordemos que hemos supuesto una hipdtesis de mezcla homogénea, lo
que implica todos los agentes que comparten nodo en dicho instante interactiian entre
si. Por ello, para cada individuo susceptible, se lanzan tantos niuimeros aleatorios como
individuos infectados hay en su nodo, infectdndose si alguno de estos nimeros es menor
que /\ﬂ Asimismo, por cada individuo infectado se lanza un nimero aleatorio z € [0, 1] de
forma que si < p este pasa a ser susceptible (SIS) o recuperado (SIR).

= Cuando se ha actualizado el estado de todos los individuos del sistema, dado que se quieren
reflejar los patrones recurrentes en la realidad, se fuerza a todos los individuos a volver a
su nodo de residencia y comienza otro nuevo paso temporal.

Para medir la calidad de nuestro modelo, realizaremos la comparacién entre los datos tedri-
cos y numéricos para dos indicadores, el valor pardmetro de orden que nos permite cuantificar el
impacto de una epidemia sobre un sistema y la monitorizacién de la evolucién espacio-temporal
del proceso epidémico. Debido al caracter estocdstico de los procesos implicados en las simu-
laciones numéricas, serd necesario promediar sobre diferentes realizaciones correspondientes a
diferentes condiciones iniciales de nuestro problema para adquirir valores representativos de los
indicadores.

4.1. Impacto de la epidemia

Para estimar el impacto de una epidemia en un sistema, es habitual realizar graficas pardme-
tro de orden en funcién de un determinado parametro de control. Debido a las premisas bajo las
cuales se construyen los modelos compartimentales usados, parece natural elegir como parame-
tro de orden en el modelo SIS la fraccién total de infectados en el estado estacionario mientras
que para el modelo SIR, dado que todos los infectados se recuperan, el parametro relevante para
mostrar el impacto de una epidemia es la fraccién total de individuos recuperados en el estado

estacionario. De este modo, los parametros de orden elegidos se expresan como

> g oy

" .
2 ngr

R = X (21)

2.y
7,00

Por otro lado, ademas de las topologias usadas en la red multiplexadas, el conjunto de
parametros que va a influir en la propagacién de una epidemia serd la movilidad de los individuos
p, la tasa de contagio A y la tasa de recuperacion p. Este tltimo pardmetro es un parametro
intrinseco de la enfermedad ya que su inverso es el tiempo tipico de recuperacién. Puesto que
es mas relevante el disenio de estrategias sobre contagios, fijaremos este parametro a p = 0.2 E| y
representaremos el valor del parametro de orden en funcién de la tasa de infeccién A para ambos
modelos.

2Por simplicidad y para poder realizar graficas mas compactas, se ha supuesto A*? = AV (a, §).
3Se trata de un valor completamente arbitrario, aunque una vez establecido fija la escala temporal del sistema.
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Figura 6: Diagramas epidémicos para el SIR, R()A) y para el SIS I(\) haciendo uso de tres redes
diferentes (ER-ER, SF-SF y ER-SF) multiplexadas con L = 2 capas. . En todos los casos cada capa de
la red tiene N = 10% nodos y cada nodo estd poblado por 500 agentes de cada capa. Las lineas sélidas
muestran las soluciones derivadas de la resolucién de las ecuaciones del modelo, denotando su color el
valor de la movilidad de los individuos. Los puntos se corresponden con los resultados numéricos hallados
mediante simulaciones basadas en agentes (50 realizaciones por cada valor de (A, p). Cabe notar que los
valores de A han sido reescalados por el valor de ) para el caso estdtico, es decir, A.(p = 0) = u/10. La
tasa de recuperacion es p = 0.2.

Para observar el efecto de la movilidad de los agentes, en la Figura 6 se representan la fraccion
de infectados en el caso del modelo SIS y la de recuperados en el caso del modelo SIR en funcién
de X\ para diferentes valores de p. Tal y como se observa en esta Figura, el acuerdo existente entre
las predicciones tedricas de nuestro modelo Markoviano y los resultados numeéricos es perfecto.
Ademsds cabe notar como en ambos modelos y para cualquier estructura de red multiplexada se
produce un adelanto del umbral epidémico conforme aumenta la movilidad de los agentes. Este
efecto puede explicarse teniendo en cuenta que los desplazamientos de los agentes producen una
inhomogeneizacién de la distribucion de los agentes en la red, provocando que en algunos no-
dos la poblacién efectiva vaya aumentando y por tanto el umbral epidémico vaya disminuyendcﬂ

4En el caso de p = 0, el umbral epidémico es el de un modelo SIS o SIR de campo medio con 1000 contactos,

es decir, A\ = ﬁ.
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Asimismo, cabe destacar la influencia de las diferentes arquitecturas con las que se constru-
yen las redes multiplexadas. En concreto, se produce un adelanto del umbral epidémico mucho
méas notorio en la red de dos SF que en la red de dos ER. Este hecho se debe a que la gran
inhomogeneidad en cuanto a la conectividad de los nodos de la metapoblacién provoca la acu-
mulacién de agentes en aquellos nodos de gran conectividad o hubs, comportandose estos como
focos de infeccion. Sin embargo, en las redes ER donde hay una gran homogeneidad en cuanto
a la conexion de los nodos el reparto de los agentes por la red es mas equitativo de modo que
no hay grandes focos de infeccién que faciliten los procesos de contagio.

4.2. Evolucién espacio-temporal

Una vez que hemos comprobado que nuestro modelo es capaz de predecir el impacto de una
epidemia tras llegar esta a su estado estacionario, podemos ir mas alld y comprobar su eficacia a
la hora de monitorizar la propagacion espacio-temporal de la enfermedad asi como la evolucién
de su incidencia sobre cada una de las capas de la red. Este tipo de medidas son bastante rele-
vantes pues revelan la respuesta de una capa a una epidemia generada en otra capa y el perfil

de propagacién de una epidemia cuya semilla esté localizada en uno o pocos nodos de la red.

Para simular estos procesos, utilizaremos la arquitectura ER-SF y supondremos que las dos
capas interactiian de forma practicamente residual de modo que AFF=5F << \FR-ER \SF=SF
En concreto, se han considerado los valores A\PR=FR — 1.5,,/500, \SF=5F = 1.14/500, \FR=SF —
0.0251/500, donde conviene recordar que /500 es el valor para el umbral epidémico en una
metapoblacién aislada con una mezcla homogénea de agentes de una capa. Por otro lado, su-
pondremos que la semilla de la pandemia se encuentra localizada en un nodo de la capa ER.
Bajo estas premisas, y fijando el valor de (u,p) = (0.2,0.3), en la Figura 7a) se representa la
evolucién temporal de la fraccién de infectados en cada capa. Cabe notar que, de nuevo, las
predicciones tedricas son capaces de reproducir con gran acierto la evolucién espacio-temporal

del proceso epidémico hallada mediantes simulaciones numéricas basadas en agentes.

Por otro lado, es importante resaltar la necesidad de tomar estrategias de contencion de la
propagacion de epidemias dentro de cada capa. Esta importancia radica en el hecho de que, a
pesar de que la capa SF estd muy aisladaﬂ de la capa ER donde se sitia la semilla de la infeccién,
el impacto que tiene el proceso epidémico sobre ella es relevante. Este interesante fenémeno se
explica identificando el estado libre de epidemia de la red SF como un estado metaestable, cuya
estabilidad se rompe cuando una perturbacién pequena como es un tnico proceso de contagio
entre individuos de diferentes capas se produce. Este nuevo individuo infectado, debido al valor
de la tasa de contagio intracapa, provoca una cascada de infecciones en una capa que aparen-
temente por los valores elegidos en el espacio de pardmetros deberia estar libre de epidemia.
En este sentido, es importante destacar el hecho de que, a pesar de ser un fenémeno altamente
estocastico, vuelve a producirse un acuerdo entre la teoria y las realizaciones de las simulaciones

numéricas.

®La tasa de infeccién entre ambas capas es 40 veces mas pequeiia que el umbral epidémico.
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Figura 7: Evolucién espacio temporal de una epidemia utilizando el modelo SIR en una red multiplexada
formada por una metapoblacién ER y una metapoblacién SF. Cada capa tiene 10% nodos y 500 agentes
asociados a cada nodo. La semilla inicial de la epidemia se encuentra en un nodo de la capa ER. Este
hecho, junto a la eleccién de las tasas de contagio (ver texto para més detalles), da lugar a la aparicién de
diferentes escalas temporales en cada capa como se ve en (a).En (b)-(d) se muestra la evolucién temporal
de la fraccién de recuperados en cada nodo. Concretamente, (b) y (c¢) muestran la evolucién espacio-
temporal de la epidemia en la capa ER segin las predicciones tedricas y las simulaciones numéricas
respectivamente, mientras que (d) y (e) se muestra dicha evolucién para la capa SF segin las ecuaciones
de nuestro modelo y las simulaciones basadas en agentes respectivamente.

Ademis de la incidencia por capas, en la Figura 7 b)-e) se representa el patrén que sigue la
fraccién de recuperados en cada nodo de cada capa en funcién del tiempo. De nuevo, nuestro
modelo es capaz de reproducir la evolucién espacio-temporal del proceso epidémico. Asimis-
mo, observamos como la mayor variedad en las conexiones de la capa SF conlleva una mayor

heterogeneidad en cuanto a la prevalencia de la epidemia en cada nodo.

5. Estimacion del umbral epidémico

Uno de los parametros mas estudiados en el campo de la epidemiologia matematica dada su
relevancia es el umbral epidémico. En términos generales, es habitual definir el umbral epidémico
como la minima tasa de infeccién necesaria para provocar que en el estado estacionario la
epidemia considerada tenga un impacto no nulo sobre el sistema. En términos de teoria sobre
transiciones de fases, dados unos valores en el espacio de pardmetros, el umbral epidémico se
corresponde con la tasa de contagio para la cual la solucion libre de epidemia deja de ser estable.
En concreto, este pardmetro también ha sido calculado para el modelo SIS y el modelo SIR

teniendo en cuenta diversas consideraciones:

= Para el caso del modelo SIS, puesto que el impacto de la epidemia viene determinado por
la fraccion de infectados en el estado estacionario, es necesario imponer que este nimero

es mucho menor que la unidad para cada uno de los nodos.
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= En el caso del modelo SIR los individuos infectados nunca van a estar presentes en el
estado estacionario, por lo que no se puede hacer el mismo razonamiento que en el caso
del modelo SIS. De este modo, la condicién que hay que imponer es que la derivada de
la fraccién inicial de infectados sea positiva ya que de este modo la fraccion de infectados
crecerd respecto a la semilla inicial y por tanto se observara un valor del parametro de

orden no nul(ﬂ

Observando las ecuaciones (8-9) y (11-12) es facil percatarse de que las consideraciones para

ambos modelos conducen a la misma expresion del umbral epidémico, que viene dado por

I
= TA) 22)

donde Apax (A) denota el méximo autovalor de la matriz de adyacencia.

En nuestro caso, utilizaremos el modelo SIS sobre metapoblaciones multiplexadas para hallar
el valor del umbral epidémico. Como ya hemos dicho, lo primero que debemos hacer es suponer

que la epidemia ha alcanzado el estado estacionario por lo que

pi(t+1) = pi(t) = pi"" . (23)
Asumiendo esta condicién, la ecuacién se transforma en

N

wot s = (1=t [ =P +p 3 REP | (24)
7j=1

Por otro lado, como hemos explicado anteriormente el umbral epidémico esté caracterizado por
una fraccion de individuos infectados en cada nodo despreciable frente a la unidad, por lo que
Pt = €' << 1V 1,o. Esta aproximacion nos permite linealizar las ecuaciones ya que podemos
despreciar los términos en 6rdenes superiores a €, lo cual posibilita expresar la ecuacién como

N L
¥~ ZZ)\O‘ﬁefn?_ﬂ . (25)

j=1p=1

Introduciendo esta ecuacién en ([24) se obtiene

Z Z)‘GJ Tjsi +pZR ZZ)‘eknk—n ’ (26)

B=1j=1 =1k=1

donde se ha supuesto A*? = \V « , 3. Por tltimo, introduciendo el valor de n? . dado por la

j—)l
ecuaciéon ., la expresién anterior puede ser reescrita después de reorganizar los términos como

N L

/‘I’ « o (8%

G zzz[ p)2oin] + p(1 — p)n (R}, + R%) + p*n] (R 'RBT)U} e, (27
j=1p=1

B
M

5En el caso del modelo SIR es habitual definir como pardmetro de orden la fraccién de individuos recuperados
en el estado inicial que no conformaban la semilla, reflejdndose de este modo las infecciones que se han producido
en la dindmica.
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donde se ha utilizado que R%Rf ;= (Ra ‘RP T)ij. Podemos identificar la ecuacién anterior
J

como una ecuacién de autovalores de la matriz M. Ademads, cabe resaltar que los elementos
M%ﬁ nos dan toda la informacién acerca de los contactos entre un individuo asociado a i en
la capa « y todos los individuos asociados a j en la capa . En concreto, el primer sumando
contiene el nimero de contactos entre dichos individuos cuando ambos permanecen en su nodo
de residencia. Por otro lado, el segundo término contiene la informacién acerca de los contactos
que se producen cuando uno de los individuos se desplaza al nodo del otro, habiendo este perma-
necido en su nodo de residencia. Por 1ltimo, el tercer sumando muestra todos los interacciones

que tienen lugar entre ambos individuos en un tercer nodo distinto de sus nodos de residencia.

Dado que M es una matriz cuadrada de dimensién N X L, su espectro estard compuesto
por N x L autovalores que a su vez seran solucién de la ecuacién ([27]). De este modo, hay
N x L valores de A compatibles con las aproximaciones realizadas para la obtenciéon del umbral
epidémico, es decir, valores para los cuales la fraccién de individuos infectados en el estado de la
epidemia es despreciable pero no nulo. Puesto que el umbral epidémico se define como minima
la tasa de infeccion para la cual el impacto de la epidemia no es nulo, este vendra dado por el
minimo valor de este conjunto de soluciones y por tanto podra expresarse como

1

)\C:AmaX<M)7

(28)
donde Apax (M) denota el maximo autovalor de la matriz M. Para comprobar la validez de la
expresién obtenida, en la Figura 8 se representa, para cada arquitectura de red multiplexada, el
impacto de una epidemia segin el modelo SIS para cada pareja de pardmetros (p, A) junto con
el valor del umbral epidémico A.(p) hallado mediante la expresién . Notamos que nuestra
estimacién del umbral epidémico es muy precisa, puesto que la funcién A.(p) obtenida constituye
la frontera que separa las fases de ausencia y prevalencia de la epidemia.

De este modo, hemos obtenido una expresién que nos permite deducir cémo varia la inciden-
cia de una epidemia sobre una poblacién en funcién de la movilidad de los agentes. Asimismo,
a diferencia de otros trabajos sobre propagacién de epidemias en redes multiplexadas [26,27]
en los que el umbral epidémico es el minimo de los umbrales individuales de cada una de las
capas, en nuestro caso la multiplexacién de la red es una propiedad fundamental para explicar
el comportamiento del umbral epidémico. Esta afirmacion se sustenta en el hecho de que la
dependencia de este parametro con la movilidad p en la arquitectura de red ER-SF es notoria-
mente distinta a la correspondiente a la red SF-SF, en contrapartida con lo que ocurria en los
trabajos anteriormente citados en los que el comportamiento del umbral estaria determinado
por el menor umbral de las dos capas, es decir, por el de la red SF.
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Figura 8: Diagramas epidémicos, I(\, p) para la dindmica SIS de las tres redes multiplexadas mostradas
en Fig. @ Arriba de izquierda a derecha se usan ER-ER, SF-SF, abajo ER-SF. El color indica la fraccién
de individuos infectados en el estado estacionario segin las simulaciones numéricas basadas en agentes.
Las curvas negras se corresponden con A.(p) hallado en la ecuacién a partir del maximo autovalor
de M. La tasa de recuperacién para el modelo SIS se fija en p = 0.2.

6. Un caso real, Medellin

En esta seccién vamos a aplicar el formalismo desarrollado a lo largo del trabajo a una de
las ciudades mas importantes de Colombia como es Medellin. Medellin es la segunda ciudad maés
poblada de Colombia con una poblacién total de alrededor de 2.5 millones de habitantes.

La eleccion de una ciudad de Colombia como un marco real sobre el cual desarrollar nuestro
modelo se debe a que la estructura de la sociedad colombiana facilita la adaptacion de la arqui-
tectura multiplexada para obtener una descripciéon completa de la movilidad de los individuos.
Dicha estructura consiste en una estratificacion de la sociedad en funcién de parametros econémi-
cos de cada individuo y de la calidad de sus viviendas. En concreto, la sociedad se encuentra
dividida en seis estratos, siendo el estrato 1 el correspondiente a aquellas personas cuyo nivel
de vida es méas bajo y el estrato 6 aquel que engloba a los individuos con mayor poder econémico.
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Figura 9: Diagramas epidémicos para el SIR, R(A) y para el SIS I()\) haciendo uso de la red multiplexada
de Medellin con L = 6 capas. Cada capa de la red tiene N = 413 nodos y cada nodo estd poblado segin
la distribucién {n¢} generada por las encuestas. Las lineas sélidas muestran las soluciones derivadas de la
resolucién de las ecuaciones del modelo, denotando su color el valor de la movilidad de los individuos. Los
puntos se corresponden con los resultados numéricos hallados mediante simulaciones basadas en agentes
(50 realizaciones por cada valor de (A, p). Cabe notar que los valores de A han sido reescalados por el
valor de \ para el caso estatico. La tasa de recuperacién es p = 0.2.

Desde el punto de vista de nuestro formalismo, asociaremos a cada estrato una capa de la
red multiplexada. De este modo, los enlaces dentro de cada capa reflejaran los flujos de agentes
de cada estrato por la ciudad. Para construir una red multiplexada que muestre la distribucién
demogréfica de los ciudadanos asi como sus patrones de movilidad, colaboradores de la Univer-
sidad de Medellin realizaron encuestas a una muestra representativa de la poblacién. En tales
encuestas, cada individuo era preguntado por el estrato a al que pertenecia asi como del lugar
en el que residia asociado con un nodo ¢ de la red multiplexada. En este sentido, se dividié la
ciudad de Medellin en 413 cuadriculas cada una de ellas asociadas con un nodo en nuestra red.
Asimismo, se les preguntaba sobre sus desplazamientos rutinarios caracterizados por un alto
grado de recurrencia, de modo que si el individuo del tipo « y residente en ¢ se desplazaba a j
se anadia un enlace a Wg

La red construida bajo este proceso contiene informacion representativa tanto de los patrones
de movilidad de los habitantes de Medellin como de su distribucién demogréfica. Por otro lado
cabe destacar que, a diferencia de las redes sintéticas construidas en secciones anteriores, en
esta red hay una gran inhomogeneidad en cuanto a la distribucién de los agentes, lo cual como
veremos a continuacién va a dar lugar a una modificacién en cuanto a la influencia de la movilidad
de los agentes en la propagacion de un proceso epidémico. Para comprobar esta afirmacién y
la validez de nuestro modelo en esta red, realizaremos un proceso andlogo al hecho para redes
sintéticas y compararemos las predicciones de la teoria con resultados numéricos de simulaciones

basadas en agentes.

De nuevo, para determinar el impacto de cada tipo de epidemia en nuestro sistema represen-
tamos gréficas parametro de orden-pardmetro de control para los modelos SIR y SIS simulados
sobre la red multiplexada de Medellin. En concreto, en la Figura 9 podemos comprobar que,
tanto para el diagrama R(\) como para I(\), nuestro modelo contintia exhibiendo un acuerdo
total con las simulaciones basadas en agentes.
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Figura 10: Diagrama epidémico, I(\, p) para la dindmica SIS en la red de Medellin mostrada en la Figura
@D. El color indica la fraccién de individuos infectados en el estado estacionario segun las simulaciones
numeéricas basadas en agentes. Las curvas negras se corresponden con A.(p) hallado en la ecuacién
a partir del médximo autovalor de M. La tasa de recuperacién para el modelo SIS se fija en u = 0.2

Por otro lado, para adquirir informacién acerca de la influencia de la movilidad de los agentes
en el umbral de la epidemia, aplicamos la ecuacién (27) para obtener un valor de este parametro
para cada valor de p, estando ahora la matriz M determinada por la red de Medellin que hemos
construido. Andlogamente al caso de las redes sintéticas, a partir de los valores obtenidos repre-
sentamos en la Figura 10 A.(p) junto a la fraccién de infectados en el estado estacionario para
cada (p,\) y comprobamos como las aproximaciones realizadas nos dan una buena estimacién

del umbral epidémico, pues A.(p) separa las fases de ausencia y prevalencia de epidemia.

Sin embargo, en este caso es interesante notar que a diferencia de los casos anteriores la
movilidad dificulta la propagacion de la epidemia pues el umbral epidémico se retrasa conforme
aumenta la movilidad de los habitantes de la red. Para explicar este efecto, debemos tener en
cuenta que ahora ya no hay homogeneidad en torno a la distribucién demografica de los agentes,
de modo que para p = 0 puede haber nodos con una poblacién muy alta y en los que, por tanto,
el umbral epidémico sea bajo. Conforme el valor de p aumenta, estos picos de poblacién se van
suavizando en virtud de aumentar el nimero efectivo de habitantes del resto de nodos. Esta
disminucioén de la poblacién efectiva del nodo que determina el umbral epidémico provoca que
sea necesario un mayor de A para que aparezca la fase epidémica, lo que implica un retraso del
umbral.

6.1. Evolucién temporal de la epidemia por capas

Hemos comprobado la capacidad de nuestro modelo para caracterizar el estado estacionario
de una epidemia que se propaga por la red de Medellin. Analogamente al caso de las redes sintéti-
cas, el siguiente paso es ganar intuicién acerca de la propagacién temporal de una epidemia en
esta red. Para ello, hemos realizado varias simulaciones en las cuales colocamos la semilla de la
interaccion en cada una de las capas y monitorizamos la evolucién temporal de la epidemia para

cada capa via el namero de infectados en cada instante de tiempo ¢.
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Figura 11: Evolucién temporal del niimero de infectados en cada capa para un modelo SIR en la red de
Medellin cuya semilla de infeccién se encuentra en la capa 1 (Arriba) o en la capa 5 (Abajo). Las lineas
sOlidas representan las predicciones teéricas de nuestro modelo para el nimero de infectados de cada capa,
las cuales se identifican mediante un color. Los puntos negros se corresponden con una realizacion de las
simulaciones nimericas basadas en agentes. Los parametros dinamicos utilizados para estas simulaciones
son p=0.05, u =0.2 y A =0.4u/(n), siendo (n) el nimero promedio de habitantes.

En la Figura 11 hemos representado las dos epidemias, con semilla en el estrato 1 y en el
estrato 5, que exhibian patrones de interaccién mas interesantes. En este sentido, cabe notar
como para ambas situaciones hay un buen acuerdo entre el modelo tedrico y las simulaciones
numéricas, siendo nuestro modelo capaz de capturar las interacciones no arbitrarias que aparecen
entre individuos de diferentes estratos. Por ejemplo, en el caso en el que la semilla se encuentra
en el estrato 5, observamos que la primera capa infectada es la capa 4. A su vez el pico en la
capa 4 provoca la transmisiéon de la epidemia a las capas 3 y 2, cuyo aumento de infectados
repercute en un incremento en los infectados de la capa 1 y a su vez realimenta los infectados
de la capa 4.

En las siguientes péginas discutiremos algunos métodos para cuantificar los patrones de

interaccion entre los 6 estratos y trataremos de hallar un indicador que revele en funcién de la
movilidad de los agentes la distancia social existente en las ciudades colombianas.
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6.2. Distancia social

En esta secciéon vamos a discutir posibles métodos para caracterizar las interacciones entre
estratos en la ciudad de Medellin. En primer lugar, una aproximacién légica a este problema
utilizando la dindmica SIS propuesta seria contabilizar el nimero de infecciones en el estado
estacionario que cada individuo de cada capa provoca en los individuos del resto de capas I#¢,
ya que estas se producen via contacto. Recordando las ecuaciones , esta cantidad se puede

computar como

N
70 =N "0 (1— p) 17 (29)
=1

donde H?ﬁ , que es la probabilidad de que un individuo asociado a i de la capa « sea infectado
por un individuo de la capa 3, viene dada por

N 8 N 8
e = (1 - p) 1—H<1—Ap§3)J +pZjo<1—H(1—Apf)’”> . (30)
j=1 g k=1
donde n'g s vuelve a estar determinado por la ecuacién . Aplicando este método para cada

una de las parejas de capas posibles, obtenemos una matriz 6 x 6 cuyas entradas muestran el
numero de infecciones que la capa « recibe de la capa . Estas cantidades, normalizadas por el
numero total de infecciones llevadas a cabo por capa, vienen representadas en la Figura 12.

Sin embargo, este método depende de los pardmetros de la dindmica considerados (A, ) y
a su vez del modelo considerado a la hora de simular las interacciones microscépicas, puesto
que requiere su simulacion hasta alcanzar el estado estacionario. Por este motivo, consideramos
necesario encontrar otro indicador que nos muestre informacién similar al anterior pero en el que
unicamente influyan las condiciones relacionadas con los procesos de difusién de los individuos
como son la arquitectura de la red multiplexada o la movilidad de los agentes y que pueda ser
hallado sin necesidad de conocer las ecuaciones que gobiernan una dinamica concreta.

En este punto, es importante recordar que, haciendo el andlisis de estabilidad lineal para
hallar el umbral epidémico, hemos obtenido una matriz M cuyos elementos ijﬁ nos indicaban
el nimero de contactos que un individuo de la capa « asociado a i establecia con individuos
de la capa B con residencia en j. A partir de esta cantidad, el ntimero total de contactos entre
ambas capas M*puede determinarse como

N
MP = Z nf‘/\/lf“jﬁ : (31)
ij=1

De nuevo volvemos a obtener una matriz 6 x 6 que nos da informacién acerca de las interacciones
entre estratos. Para tener una imagen visual, representamos en la Figura 12 las entradas de esta
matriz normalizadas por el numero total de contactos en los que interviene cada capa para
p = 0.05. En esta Figura se pone de manifiesto que ambos indicadores caracterizan de manera
practicamente andloga la interaccién entre los estratos. Asimismo, se refleja cémo las capas
mas separadas en términos econdmicos practicamente no interactian mientras que cada estrato
influye de forma considerable en las capas contiguas, explicando de este modo los patrones
hallados en la Figura 11.
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Figura 12: Intensidad representada mediante un cédigo de colores de la interaccién entre estratos es-
timada mediante 157 (Izquierda) y M*? (Derecha). Para ambas gréficas, se ha utilizado p = 0.05 y
se ha representado la intensidad de la interaccién normalizada por columnas. Para el caso de 57 se
han utilizado los mismos pardmetros epidémicos que en el caso de la Figura 11, es decir, p = 0.2 y

A=0.4p/(n).

En adelante, vamos a utilizar la matriz M®? para caracterizar la interaccién entre estratos y
su dependencia con la movilidad. En concreto, en la Figura 13 aparecen las entradas de esta
matriz para el caso de agentes estaticos (p = 0) y para el caso en el que todos los individuos
se mueven (p = 1). En el caso estético, se aprecia cémo la matriz es altamente diagonal lo que
implica que casi todos los contactos de los individuos se producen con otros de su mismo estrato.
Sin embargo, para el caso de p = 1 aparecen términos no diagonales que reflejan la interaccién
entre estratos. A raiz de la aparicién de dos comportamientos tan opuestos en funcién de la
movilidad, nos planteamos la necesidad de definir un indicador que nos diese una idea acerca
de la distancia social entre estratos en la ciudad de Medellin. Para ello, definimos la magnitud
distancia social o(p) como

a(p) =Y o%p), (32)

donde 0“(p) es la desviacién tipica de los contactos que establece el estrato a. Teniendo en
cuenta esta definicién, c%(p) se define como

2

o (p) = ;Zﬁj (M)~ Zﬁjwa (33)

Para ver el rango de definicién de este indicador es necesario analizar los casos extremales,
que se corresponden con la situacién en la interaccién es equitativa entre estratos y la situacion
en la que la interaccién de cada individuo se restringe tnicamente a los de su estrato. En el
primer caso se cumple que M*? =1 /N para cualquier pareja de estratos (a, ), por lo cual el
valor de nuestro indicador es

oi1(p) =0. (34)

En el segundo caso, las entradas de la matriz de conexiones cumplen que M = §*#, Introdu-
ciendo estos valores en las ecuaciones (32133 se obtiene

oa(p)=1——. (35)
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Figura 13: Intensidad de la interaccion entre estratos representada mediante un cédigo de colores y
estimada via M®Ppara p = 0 (Izquierda), correspondiente con una situacién estatica de los agentes, y
para el caso p = 1 (Derecha), en el que todos los agentes se desplazan.

De esta forma, para obtener un indicador entre 0 y 1 renormalizamos nuestra magnitud o(p) de
modo que finalmente se expresa como
2
o) = | Z e 3 (M) o (e | (36)
N -1 N N2

o B B

Por ultimo, para ver la dependencia de la distancia social en Medellin con la movilidad de sus
habitantes, representamos en la Figura 14 el valor de o(p) para diferentes valores de p. En esta
grafica se observa como para p = 0 la distancia social es considerable, debido a la distribucion
demogréfica de la que se parte. Sin embargo, al aumentar la movilidad de los individuos, se
favorecen los contactos entre estratos que estdn demograficamente aislados provocandose un
descenso acusado de la distancia social. No obstante, para valores de p en torno a p = 0.6 este
descenso se suaviza poniéndose de manifiesto que, aunque la movilidad favorece la mezcla entre
estratos, la distribuciéon demografica de partida y la existencia de diferentes redes que gobiernan
los movimientos de cada estrato impiden una mezcla homogénea de todos los estratos.

0.5

a(p)

p

Figura 14: Representacién de la distancia social (o(p)) en funcién de la movilidad de los individuos
estimada a partir de la ecuacién (36)), donde los elementos M®? son calculados para cada valor de p

mediante la ecuaciones 1,'

24



7 CONCLUSIONES

7. Conclusiones

En este trabajo se ha propuesto un formalismo que integra por primera vez dos de las lineas
de investigacién més productivas en los ultimos anos en la Fisica de Redes Complejas, como son
la utilizacién de metapoblaciones para reflejar los flujos de movilidad humana y el uso de redes
multiplexadas para posibilitar la existencia de diferentes patrones de interaccién entre los nodos
de una red. En concreto, se ha elaborado un modelo compuesto por una serie de ecuaciones
basadas en cadenas de Markov que permite caracterizar el avance de una epidemia en una red
multiplexada cuyas capas codifican los posibles diferentes patrones de movilidad recurrentes de
los individuos presentes en el sistema.

Asimismo, hemos comprobado la capacidad que tiene este nuevo modelo para capturar los
efectos de la movilidad de los agentes en la propagacién de una epidemia ya que sus predic-
ciones tedricas tanto para el impacto macroscépico de una epidemia como para su propagacion
espacio-temporal en el sistema exhiben un gran acuerdo con las simulaciones numéricas basadas
en agentes. De este modo, la existencia de un modelo analitico capaz de reproducir la propa-
gacion de epidemias en esta clase de sistemas nos permite ahorrarnos un gasto computacional
importante ya que el alto nimero de componentes, asi como la gran complejidad de este tipo
de redes, implican una extensa duracién de las simulacién numérica. A su vez, a partir de la
linealizacién de las ecuaciones, hemos sido capaces de estimar con gran precision uno de los
parametros més importantes en epidemiologia como es el umbral epidémico, lo cual nos permite
conocer con exactitud las condiciones bajo las cuales el impacto de la epidemia va a ser relevante

O no.

Por otro lado, gracias a nuestro modelo y a los datos reales de los que disponemos hemos
podido caracterizar el avance de una epidemia en una red real (Medellin). En este caso, se ha
observado que la movilidad de los individuos dificulta la propagaciéon de la epidemias, lo cual
nos indica que no es productivo desde un punto de vista de prevencion epidemiolédgica el aisla-
miento de las poblaciones infectadas. Ademés, el andlisis de la evolucién temporal del nimero
de infectados de cada estrato ha puesto de manifiesto la existencia de patrones de interaccion no
arbitrarios entre cada uno de los estratos. En este sentido, mediante la matriz M hemos caracte-
rizado la relevancia de los contactos entre estratos y comprobado que el contenido de esta matriz
de mezcla entre estados depende fuertemente de la movilidad de los agentes. En concreto, para
tener una informacion acerca del grado de mezcla de los estratos, hemos propuesto un indicador
que refleje la distancia social entre los estratos de Medellin, notando como conforme aumenta
la movilidad se reduce la distancia social hasta alcanzar un valor practicamente constante que
refleja la coexistencia de los diferentes patrones de movilidad de cada estrato.

Por tdltimo, creemos que el alto grado de realismo de las premisas de este modelo posibilita su
uso en teorias de control para prevencién de la propagacion de epidemias. A su vez, este modelo
constituye el punto de partida de varias lineas de investigacién consistentes en la introduccién
de patrones de movilidad recurrentes mas complejos y en la aplicacién de este formalismo a
enfermedades con mecanismos de contagio diferentes como enfermedades vectoriales, en las que
el responsable de la infeccién es un vector externo, de gran importancia en regiones de Latino-

América, Africa y Sudeste Asiatico.
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