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1 INTRODUCCIÓN

1. Introducción

La F́ısica de Sistemas Complejos [1] nace con el objetivo de explicar la naturaleza de las

interacciones y la emergencia de fenómenos colectivos en sistemas que estaban artificialmente

separados del campo de estudio de la F́ısica. Estos sistemas reciben su nombre por el alto grado

de no linealidad de las ecuaciones que gobiernan su dinámica y por los patrones de interacción

no triviales que aparecen entre sus componentes. Este último hecho imposibilita la descripción

precisa de sus interacciones mediante teoŕıas de campo medio, motivo por el cual dentro de la

F́ısica de Sistemas Complejos han adquirido gran importancia la F́ısica Estad́ıstica de Redes

complejas. Asimismo esta nueva rama de la F́ısica, que experimentó su auge durante el siglo

XX, destaca por su carácter interdisciplinar, puesto que su campo de estudio engloba diferentes

áreas como la economı́a [2], la propagación de rumores [3] o epidemias [4], sincronización [5]

etc. A pesar de esta interdisciplinaridad, la F́ısica Estad́ıstica aśı como la F́ısica de Sistemas

Dinámicos no Lineales constituyen herramientas muy poderosas para el estudio de todas estas

áreas, ya que permiten explicar la emergencia de los fenómenos colectivos en estas áreas como

la prevalencia de una epidemia o la sincronización total de una serie de osciladores a partir de

las interacciones microscópicas que se dan en el sistema a estudio.

Dentro de las múltiples aplicaciones de las redes complejas, en este trabajo nos hemos centra-

do en el modelado de la propagación de epidemias. Una de las v́ıas más comunes para caracterizar

el avance de una epidemia son los llamados modelos compartimentales, en los que cada indi-

viduo puede adoptar un estado de entre un conjunto discreto de ellos. Los primeros modelos

compartimentales [6] aparecidos en la primera mitad del siglo XX se abordaron mediante teoŕıas

de campo medio que no reflejaban las interacciones reales entre individuos. Para aumentar el

realismo de estos modelos, a finales del siglo pasado basándose en datos ya disponibles sobre

patrones de interacciones reales se propusieron formalismos [7, 8] en los que los patrones de in-

teracción veńıan determinados por redes complejas. Estos modelos tuvieron un gran impacto,

puesto que sus predicciones teóricas exhib́ıan un gran acuerdo con los resultados arrojados por

simulaciones numéricas basadas en agentes. Sin embargo, estas teoŕıas teńıan ciertas limitacio-

nes ya que fijaban los contactos de los individuos para todo instante temporal y además no

permit́ıan introducir algunos ingredientes importantes como la movilidad de los agentes.

Durante los últimos años hemos sido testigos de la propagación de varias enfermedades

autóctonas tales como el SARS en 2003, el virus H1N1 en 2009 o más recientemente el Zika o el

Ebola. Estas pandemias se generaron en pequeñas regiones del mundo y tras haber permanecido

confinado durante un pequeño intervalo de tiempo se convirtieron en enfermedades a escala glo-

bal. Debido a las limitaciones de las anteriores teoŕıas, era necesario introducir un formalismo

capaz de capturar este mecanismo de propagación de epidemias a partir del flujo de movilidad

de los humanos a diferentes escalas (regional, nacional, mundial etc.). De esta manera, desde

hace 10 años se han publicado múltiples trabajos [9–12] en los que se modela propagación de

epidemias haciendo uso de metapoblaciones donde, como explicaremos a lo largo del trabajo, la

información acerca de la movilidad de los individuos aparece codificada en los enlaces de una

red. En particular, nuestro grupo ha desarrollado un modelo usando metapoblaciones [13] que

exhibe un acuerdo total con simulaciones numéricas y nos permite comprender los efectos de la

movilidad en la propagación de pandemias.
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1 INTRODUCCIÓN

Por otro lado, recientemente se ha producido una revolución en el campo de las redes com-

plejas con la aparición de las redes multicapa [14]. En este tipo de arquitecturas cada capa es

una red compleja, de modo que se posibilita la coexistencia de diferentes patrones y v́ıas de

interacción dentro de un sistema. Hasta el momento se han utilizado la redes multicapa para

el estudio de una multitud de problemas reales entre los cuales se encuentran la optimización

de los desplazamientos en una ciudad con diferentes modos de transporte [15] o la propagación

de varias procesos epidémicos en la misma red [16,17]. Sin embargo, todav́ıa no se ha realizado

ningún modelo capaz de predecir fielmente la evolución de una epidemia en una red multicapa

en la que cada una de las capas sea una metapoblación.

El objetivo principal de este trabajo es solventar esa carencia y elaborar un modelo en el

que se ponga de manifiesto la influencia que tiene en la propagación de una epidemia la co-

existencia de diferentes metapoblaciones, cada una de ellas codificando un patrón de movilidad

y una distribución demográfica de los individuos diferentes. Para ello, explicaremos el marco

teórico necesario para sentar las bases fundamentales para el completo entendimiento del mode-

lo propuesto con posterioridad. De este modo, se explicarán los conceptos básicos acerca de las

redes complejas, las metapoblaciones y las redes multicapa. Por otro lado, para comprender los

procesos microscópicos que conducen a la propagación de la epidemia, se expondrán los rasgos

más caracteŕısticos de los modelos compartimentales enfatizando en dos de ellos, el modelo SIS

(Susceptible-Infectado-Susceptible) y el modelo SIR (Susceptible-Infectado-Recuperado). Una

vez comprendidos todos estos aspectos, propondremos una serie de ecuaciones basadas en cade-

nas de Markov [18] que nos permitan caracterizar el impacto de una epidemia sobre el sistema a

estudio dados unos parámetros relacionados con las interacciones microscópicas y con la dinámi-

ca de los agentes.

Para comprobar la validez de nuestro modelo, compararemos sus predicciones teóricas con

los resultados obtenidos a partir de realizar simulaciones numéricas basadas en agentes, muy

costosas desde el punto de vista computacional. Tras ello, linealizaremos las ecuaciones para

obtener la expresión anaĺıtica del umbral epidémico. Esta magnitud es una de las más relevantes

en epidemioloǵıa ya que constituye la separación entre la fase de ausencia de epidemia y la

de prevalencia de la misma. Asimismo, gracias a los datos reales de los que disponemos y a la

estratificación de la sociedad en Colombia que nos permite utilizar redes multicapa con facilidad,

aplicaremos nuestro formalismo en la ciudad de Medelĺın. Por último, a partir de las interacciones

que se producen entre individuos de diferentes clases sociales, propondremos un parámetro para

reflejar la distancia social entre estratos y comprobaremos la influencia de la movilidad sobre

esta distancia.
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2 MARCO TEÓRICO

2. Marco teórico

2.1. Redes complejas

Una red compleja en términos generales es un grafo formado por un conjunto de N nodos

unidos por L links que determinan la dinámica de los elementos que constituyen los nodos. En

una primera aproximación, los nodos de una red se pueden identificar con agentes mientras que

los links reflejan la interacción entre ellos. En este sentido, si dos nodos interaccionan entre śı

habrá al menos un link que los relacione, mientras que si no existe relación alguna entre dos

individuos tampoco habrá ninguna conexión que los una. Bajo estas premisas, la forma ideal

de representar matemáticamente una red compleja es mediante una matriz de adyacencia A,

cuyas entradas Aij contienen el número de links existentes entre los nodos i y j. Para obtener

una imagen más visual, se representa una red compleja junto a su matriz de adyacencia en la

Figura 1. Existen varias clasificaciones de las redes complejas en función de las propiedades de

sus matrices de adyacencia entre las que destacan:

Según el carácter simétrico o asimétrico de la matriz, se distinguen redes no dirigidas

(Aij = Aji) en las que la interacción de un nodo i con j es idéntica a la de j con i y

dirigidas (Aij 6= Aji) en las que la interacción i con j no implica la interacción de j con i

y viceversa.

Según el valor de las entradas de la matriz, se distinguen redes no pesadas en las que si

dos nodos i y j interactúan Aij = 1 ∀(i, j) y redes pesadas en las que los contactos de los

nodos no son equivalentes de modo que Aij = wij .

Otro de los parámetros relevantes de las redes complejas es el grado ki de cada uno de sus

nodos, definido como ki =
∑

j Aij . En concreto, como veremos más adelante, la distribución de

grado P (k) de los nodos de la red va a influir de manera notoria en la dinámica regulada por

la red compleja. En este sentido, se han construido sintéticamente varios tipos de redes con el

objeto de adaptar su distribución de grado a la observada en redes reales. Dos de los tipos de

redes históricamente más usadas son las redes Erdös-Renyi y las redes libres de escala.

Figura 1: Representación de una red compleja junto a su matriz de adyacencia. Imagen extráıda de

//www.stoimen.com/blog/2012/08/31/computer-algorithms-graphs-and-their-representation/.
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2 MARCO TEÓRICO

2.1.1. Redes Erdös-Renyi

Las redes Erdös-Renyi (ER) [19] son redes en las que hay una gran homogeneidad en torno

al grado de cada uno de sus nodos, tal y como se refleja en la Figura 2a. Para construirlas, se

parte de un número fijo de nodos N y de una probabilidad p de que dos nodos estén enlazados.

Con estos ingredientes, la distribución de grado de las redes ER u homogéneas es

P (k) =

(
N − 1

k

)
pk (1− p)N−1−k . (1)

Teniendo en cuenta que la probabilidad de que dos nodos estén enlazados se puede expresar

como p = 2L/N(N − 1) y tomando el ĺımite en el que el número de nodos es mucho mayor

que el grado medio (sparse network), la distribución binomial anterior se transforma en una

Poissoniana de la forma

P (k) = e−〈k〉
〈k〉−k

k!
. (2)

2.1.2. Redes libres de escala

Las redes Erdös-Renyi teńıan muchas carencias en relación con las redes reales. En primer

lugar, no se permit́ıa la posibilidad de incluir nuevos nodos en la red, lo cual está en clara

contraposición con el crecimiento que experimentan las mismas en la realidad. Por otro lado,

la aleatoriedad en los enlaces no reflejaba rasgos de redes utilizadas diariamente como la red

de Internet en las que hay una mayor probabilidad de unión a nodos altamente conectados en

la red (hubs) que a nodos residuales. Para solventar estas discordancias, Baràbasi y Albert [20]

abandonaron la estaticidad de las redes e introdujeron el concepto de unión preferencial a la

hora de crear las denominadas redes libres de escala (scale free o SF). La construcción de este

tipo de redes envuelve varias etapas:

En primer lugar, se parte de una red pequeña de n0 nodos conectados aleatoriamente entre

śı.

Posteriormente, se produce la fase de crecimiento en la que se incorporan nuevos nodos a

la red. Estos nodos poseen m links.

Para reflejar la unión preferente en términos de grado, la probabilidad de establecer uno

de esos links con un nodo i ya existente de la depende del grado del mismo v́ıa

Πi =
ki∑
j kj

(3)

De este modo, se obtiene una distribución de grado potencial de la forma

P (k) ∼ k−3, (4)

cuyo segundo momento de la distribución es divergente. Por este motivo estas redes se denominan

libres de escala, ya que el grado medio no constituye una escala representativa de las conexiones

de los nodos. Un ejemplo de red SF se representa en la Figura 2b.
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2 MARCO TEÓRICO

Figura 2: a) Red Erdös-Renýı. b) Red libre de escala en la que los hubs aparecen destacados. Imagen

extráıda de https://en.wikipedia.org/wiki/Scale-free network.

2.2. Metapoblaciones

Como ya hemos dicho en la introducción, la utilización de las redes complejas identificando

nodos con seres humanos y enlaces entre ellos con su interacción tiene ciertas limitaciones a la

hora de predecir el avance de algunas epidemias aparecidas recientemente. De hecho, la imposi-

bilidad de introducir en este marco cualquier información acerca de los flujos de los agentes aśı

como de su movilidad impide la monitorización de la evolución espacio-temporal de un proceso

epidémico que se propaga desde una pequeña región donde ha surgido hasta convertirse en una

pandemia a escala global.

Con el objeto de incluir los datos sobre la movilidad de los individuos, se introducen las me-

tapoblaciones. Desde el punto de vista de la teoŕıa de redes, una metapoblacion o una población

de poblaciones es una red compleja formada de nuevo por un conjunto de nodos entre los cuales

se establecen links. Sin embargo, a diferencia de la primera aproximación a las redes complejas,

en este caso los nodos se identifican con lugares1 donde se encuentran los agentes. Asimismo,

los links ya no determinan la interacción entre los agentes sino que contienen sus patrones de

movilidad a lo largo de la red, tal y como se refleja en la Figura 3. En este sentido, la matriz

de adyacencia A se convierte en una matriz de movilidad W, cuyos elementos Wij reflejan el

flujo de individuos que viajan desde el nodo i al nodo j. En función de la naturaleza de los

movimientos de los agentes que pueblan la red, se pueden distinguir dos tipos de procesos:

Procesos de difusión: En ellos los agentes se comportan como caminantes aleatorios a lo

largo de la red, eligiendo el destino de sus desplazamientos en función de los pesos de la

matriz de movilidad W.

Procesos recurrentes: En ellos todos los agentes tienen asociado un nodo de residencia i y

sus movimientos consisten en desplazarse a alguno de sus nodos vecinos, permanecer alĺı

un cierto tiempo τ y retornar a su nodo de residencia.

Debido a que los procesos recurrentes nos permiten reflejar una mayor proporción de movi-

mientos rutinarios tales como ir a la universidad o al trabajo, asociaremos esta naturaleza a los

desplazamientos de los agentes en nuestro modelo.

1En función de la escala a la cual se quiere simular la dinámica, estos lugares se pueden identificar con barrios,

ciudades, páıses etc.
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2 MARCO TEÓRICO

Figura 3: Representación esquemática de una metapoblación de tres nodos. Los colores de los agentes

reflejaŕıan su estado dinámico si se utiliza esta red para simular un modelo compartimental.

2.3. Redes multicapa

Como hemos dicho en la introducción, recientemente se ha producido la irrupción de las

redes multicapa. Esta irrupción se debe a su mayor grado de realismo respecto a las estructuras

complejas anteriores, puesto que las redes multicapa permiten albergar los diversos patrones

de interacción que los individuos exhiben en la realidad. De este modo, este tipo de estructura

es ideal para la representación de algunos sistemas tales como redes de transporte [21] en las

que cada capa se identifica con un medio de transporte o redes sociales [22] en las que cada

capa representa las conexiones de un agente en una determinada red social (Facebook, Twitter,

Linkedin etc.).

En términos matemáticos, la red multicapa se representa mediante la matriz supralaplaciana.

Esta matriz se construye a partir de las matrices de adyacencia que codifican los enlaces dentro

de cada una de las capas y a partir de la matriz que contienen la información acerca de los

enlaces entre capas. En concreto, si las matrices Aα determinan los enlaces dentro de cada capa

y la matriz C los enlaces intercapa, la matriz supralaplaciana A viene dada por

A =
⊕
α

Aα + C . (5)

Para obtener una mayor intuición acerca de estos conceptos, se representa una red sencilla de

dos capas en la Figura 4.

Uno de los tipos de redes multicapa sobre los que más se ha trabajado son las redes mul-

tiplexadas [23–25]. En este tipo de arquitecturas, los nodos son comunes para todas las capas,

de modo que hay una correspondencia uno a uno para cada uno de los nodos y cada una de las

capas. Asimismo, la introducción de diferentes patrones de interacción se realiza mediante el uso

de matrices de adyacencia que, aunque relacionan los mismos nodos, codifican diferentes enlaces

en función de la capa considerada. Estas caracteŕısticas hacen de las redes multiplexadas una

estructura ideal para elaborar un modelo en el que se tengan en cuenta los diferentes patrones

de movilidad que puedan tener los individuos que comparten lugares de residencia. Para obtener

una imagen más visual de este tipo de redes, representamos en la Figura 5 una red multiplexada

de tres capas.
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2 MARCO TEÓRICO

Debido a la correspondencia existente entre los nodos en todas las capas, la matriz de co-

nexión intercapa pierde toda la relevancia, de modo que ahora la matriz supralaplaciana se

construye como

A =
⊕
α

Aα . (6)

Figura 4: Representación de una red multicapa de 2 capas, en la que A1 y A2 son las matrices de

adyacencia de la capa 1 y la capa 2 respectivamente, mientras que C12 y C12 representan las conexiones

intercapa.

Figura 5: Representación de una red multiplexada formada por 3 capas y 7 nodos en cada una de

ellas. Cabe resaltar que cada capa está formada por una red diferente, de modo que varios patrones de

movilidad pueden reflejarse dentro de un mismo sistema.
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2.4. Modelos compartimentales

Una de las v́ıas más comunes para modelar la propagación de epidemias es el uso de los

llamados modelos compartimentales. Como ya hemos introducido, los modelos compartimentales

son modelos en los que los agentes adoptan para cada instante temporal t un estado de entre

un conjunto discreto de los mismos. En este trabajo, se van a utilizar dos de los modelos más

habituales para predecir el avance de epidemias como son el modelo SIS (Susceptible-Infectado-

Susceptible) o el modelo SIR (Susceptible-Infectado-Recuperado). Estos dos modelos han sido

ampliamente estudiados debido a que su pequeño número de compartimentos permite por un

lado realizar calculos anaĺıticos de los indicadores más relevantes para un proceso epidémico y

por otro lado adaptarse a la naturaleza de multitud de enfermedades que se dan en la realidad.

2.4.1. Modelo SIS

En este modelo, cada individuo puede adoptar únicamente dos estados (Susceptible e Infec-

tado). Desde un punto de vista microscópico, los individuos infectados en t pueden recuperarse

y pasar a ser susceptibles en t+ 1 con una probabilidad µ, mientras que los individuos sanos en

t al contactar con algún individuo infectado pueden convertirse en infectados en t + 1 con una

probabilidad λ. De forma esquemática, los procesos que se dan son

I
µ−→ S ,

(7)

S + I
λ−→ 2I .

El hecho de que los infectados, una vez recuperados, vuelvan a ser susceptibles de contraer

la enfermedad permite la aplicación de este tipo de modelos a enfermedades de trasmisión

sexual tales como Gonorrhea, Śıfilis etc. A su vez, provoca que el estado estacionario en caso

de prevalencia de la epidemia sea una situación de equilibrio entre la proporción de infectados

y la de sanos. Para obtener una intuición acerca de las ecuaciones de este modelo, utilizaremos

la aproximación en la que los nodos de la red se identifican con agentes y los links con su

interacción. Bajo todas estas premisas, se puede construir una cadena de Markov [18] en la que

la probabilidad de que un nodo i esté infectado pi en t+ 1 viene dada por

pi (t+ 1) = (1− µ) pi (t) + (1− pi (t)) (1− qi (t)) , (8)

donde qi (t), que denota la probabilidad de que un individuo sano no se infecte en ninguno de

sus contactos, se puede expresar como

qi (t) =

N∏
j=1

(1−Aijλpj (t)) , (9)

donde N es el número de nodos de la red.

2.4.2. Modelo SIR

El modelo SIR es algo más complejo que el anterior modelo puesto que para cada instan-

te temporal cada individuo puede adoptar tres estados (Susceptible-Infectado-Recuperado). De

nuevo, desde el punto de vista microscópico, un individuo susceptible en t puede pasar a in-

fectado en t + 1 v́ıa contacto con otro infectado con una probabilidad λ. Sin embargo, en este

8



3 MODELOS EPIDÉMICOS EN METAPOBLACIONES MULTIPLEXADAS

caso los infectados en t al superar la enfermedad con una probabilidad µ no se convierten en

susceptibles sino que pasan a ser recuperados en t+ 1, aislándose de esta forma de la dinámica.

Esquemáticamente los procesos que tienen lugar son

I
µ−→ R ,

(10)

S + I
λ−→ 2I .

Dado que los infectados al recuperarse están aislados de la dinámica, la epidemia alcanzará su

estado estacionario cuando toda la población de la red se reparta entre individuos susceptibles

y recuperados. Matemáticamente, las ecuaciones que gobiernan la evolución de la epidemia son

pi (t+ 1) = (1− µ) pi (t) + (1− pi (t)− ri (t)) (1− qi (t)) , (11)

ri (t+ 1) = ri (t) + µpi (t) , (12)

donde pi(t) denota la probabilidad de que el individuo i esté infectado en el instante de tiempo

t y ri(t) la probabilidad de que el individuo i esté recuperado en el instante de tiempo t. Debido

a la naturaleza de este modelo, es fácilmente adaptable a epidemias en las que se adquiere

inmunidad tras recuperarse como la gripe o a enfermedades letales como el SIDA.

3. Modelos epidémicos en metapoblaciones multiplexadas

En esta sección vamos a derivar las ecuaciones de nuestro modelo acerca de la propagación

de epidemias en una red multicapa compuesta de metapoblaciones. Para ello, en primer lugar

despreciaremos las correlaciones temporales más allá de un paso temporal, lo que permite expre-

sar nuestras ecuaciones como una cadena de Markov en la que el estado de un individuo en t+ 1

únicamente depende del estado del sistema en t. En términos epidémicos, esta aproximación se

traduce en que el agente no tiene memoria acerca de su estado epidémico en tiempos anteriores.

Por otro lado, utilizaremos una red multiplexada compuesta por L capas, correspondientes a

L patrones diferentes de movilidad coexistentes en la red. En este sentido, cada capa de la red

vendrá codificada por una matriz Wα, cuyos pesos Wα
ij indican el flujo de individuos del tipo α

entre los nodos i y j. Asimismo, la multiplexación de la red implica que cada una de las capas

están formadas por los mismos N nodos pudiendo expresar de esta forma la población total de

cada uno como ni =
∑

α n
α
i , donde α = 1, ..., L.

Desde el punto de vista de los procesos dinámicos de los agentes, consideraremos que cada

individuo tiene asociado un nodo i, identificado como su nodo de residencia. Asimismo, para cada

paso temporal, supondremos que todos los individuos tienen una probabilidad p de desplazarse

a uno de los nodos vecinos j de su residencia. Si se produce este movimiento, el vecino al que se

desplace un agente dependerá de la capa a la que pertenezca, puesto que cada capa contiene flujos

de movilidad diferentes. En este sentido, si el individuo pertenece a la capa α la probabilidad de

desplazarse al nodo j vendrá dada por

Rαij =
Wα
ij

sαi
, (13)

donde sα =
N∑
j=1

Wα
ij .

9
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Una vez que se han desplazado todos los agentes según los patrones de movilidad de su

capa, estableceremos la hipótesis de mezcla homogénea de los individuos que se encuentren en el

mismo nodo de modo que, para cada instante temporal, cada agente interactuará con el resto de

agentes que comparten su nodo de estancia en dicho instante. En cuanto a la evolución de la epi-

demia, tomaremos como base los modelos compartimentales previamente explicados, el modelo

SIS y el modelo SIR. De este modo, un agente sano de tipo α que contacta con un infectado β

puede contraer la enfermedad con un probabilidad λαβ, mientras que un agente infectado puede

superar la enfermedad con una probabilidad µ y convertirse en susceptible (SIS) o en recuperado

(SIR).

Por último, dado que queremos reflejar la recurrencia en los patrones de movilidad de los

seres humanos, forzaremos a todos los agentes a volver a su nodo de residencia.

3.1. Modelo SIS en metapoblaciones multiplexadas.

Dada la naturaleza de este modelo, un buen indicador acerca de la evolución de la epidemia

es la fracción de infectados asociados a cada nodo i de cada capa α denotada en adelante como

ραi . Puesto que tenemos en general N nodos y L capas, es necesario elaborar un sistema de N× L

ecuaciones para monitorizar el avance del proceso epidémico. En este sentido, podremos expresar

la evolución de la fracción de infectados de tipo α del nodo i como

ραi (t+ 1) = (1− µ)ραi (t) + (1− ραi (t)) Πα
i (t) , (14)

donde el primer término corresponde a los infectados en tiempo t que no se recuperan mientras

que el segundo se identifica como aquellos individuos sanos en tiempo t que se infectan. Asimismo,

Πα
i (t), que denota la probabilidad de que un individuo susceptible de tipo α asociado al nodo i

se infecte en t, viene dada por

Πα
i = (1− p)Pαi (t) + p

∑
j

RαijP
α
j (t) , (15)

donde el primer término denota la probabilidad de infectarse en su nodo de residencia y el

segundo corresponde a la de infectarse en cualquiera de sus vecinos dentro de la capa α. A su

vez, la probabilidad de que un individuo susceptible de tipo α se infecte en i, sea o no sea este

su nodo de residencia, en el instante t puede escribirse como

Pi(t) = 1−
N∏
j=1

L∏
β=1

(
1− λαβρβj (t)

)nβi→j
, (16)

donde se ha tenido en cuenta que los procesos de contagio son independientes entre śı. Por último

nβj→i, es decir, el número de individuos de la capa β asociados a j que se desplazan a i se expresa

como

nβj→i = (1− p)nβj δij + pRβjin
β
j . (17)

3.2. Modelo SIR en metapoblaciones multiplexadas

Las ecuaciones que describen el avance de la epidemia en caso de considerar como mode-

lo compartimental el modelo SIR son muy similares a las correspondientes al modelo SIS. Sin

10
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embargo, la introducción del compartimento adicional de los recuperados hace necesaria la in-

clusión de una ecuación por cada nodo y capa que tenga en cuenta su evolución temporal. En

este sentido, el conjunto de 2 × N × L ecuaciones que permiten caracterizar el avance de una

epidemia en una red multiplexada según el modelo SIR es

ραi (t+ 1) = (1− µ)ραi (t) + (1− ραi (t)− rαi (t)) Πα
i (t) , (18)

rαi (t+ 1) = rαi (t) + µραi (t) , (19)

donde los términos de la primera ecuación tienen la misma interpretación que en el caso del

modelo SIS y donde la segunda ecuación refleja el hecho de que ahora los infectados que superan

la enfermedad se recuperan y se áıslan de la dinámica.

4. Validación de los modelos propuestos

Una vez que hemos formulado los modelos que nos permiten monitorizar el avance de una

epidemia en una red multiplexada de metapoblaciones, debemos testear su validez. Para ello

compararemos las predicciones teóricas obtenidas a partir del cálculo iterativo de la ecuación

(14) para el caso del modelo SIS y de las ecuaciones (18-19) en el caso del SIR con resultados

numéricos procedentes de simulaciones basadas en agentes.

En cuanto a las estructuras de interacción usadas para simular la dinámica, haremos esta

comparación haciendo uso de redes multiplexadas de dos capas, utilizando para las capas me-

tapoblaciones creadas sintéticamente cuya topoloǵıa se ajuste a la de las redes explicadas en la

introducción. De este modo, crearemos 3 redes multiplexadas con N = 1000 nodos, una com-

puesta por dos redes Erdös-Renýı, otra por dos libres de escala y la última compuesta por una

Erdös-Renýı y una libre de escala, pudiendo observar de esta forma el efecto de las distintas

arquitecturas de redes multiplexadas en la propagación de una epidemia.

Por otro lado, supondremos que la población de individuos asociados a cada capa y a cada

nodo es homogénea. En concreto, consideraremos nαi = 500 ∀( i, α), de modo que nuestro sistema

estará compuesto por un total de 106 agentes. Las simulaciones numéricas necesarias para validar

nuestro modelo se realizan siguiendo los siguientes pasos:

En primer lugar, es necesario establecer una semilla inicial de la epidemia. Por este motivo,

consideramos que el 1 % de la población está infectada, de modo que para cada individuo

se lanza un número aleatorio generado de forma homogénea r entre [0, 1] infectando al

individuo si r < 0.01.

Para cada paso de tiempo, cada agente debe decidir si se mueve a otro nodo o permanece

en su nodo de residencia. Para ello, se lanza otro número aleatorio r′ ∈ [0, 1] y se compara

con p, de modo que si r′ < p el individuo se desplaza a alguno de los vecinos que su nodo

de residencia tenga en su capa. En concreto, para elegir el destino del desplazamiento si el

individuo pertenece a la capa α y está asociado al nodo i, se lanza otro número aleatorio

l ∈ (0, sαi ] tal que el individuo se desplazará al primer nodo k que cumpla
∑
k

Wα
ik >= l.

De este modo, se garantiza que los flujos de individuos reflejen la estructura de cada

metapoblación.

11
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Una vez que se han producido todos los procesos dinámicos, tiene lugar la interacción

entre agentes. Recordemos que hemos supuesto una hipótesis de mezcla homogénea, lo

que implica todos los agentes que comparten nodo en dicho instante interactúan entre

śı. Por ello, para cada individuo susceptible, se lanzan tantos números aleatorios como

individuos infectados hay en su nodo, infectándose si alguno de estos números es menor

que λ2. Asimismo, por cada individuo infectado se lanza un número aleatorio x ∈ [0, 1] de

forma que si x < µ este pasa a ser susceptible (SIS) o recuperado (SIR).

Cuando se ha actualizado el estado de todos los individuos del sistema, dado que se quieren

reflejar los patrones recurrentes en la realidad, se fuerza a todos los individuos a volver a

su nodo de residencia y comienza otro nuevo paso temporal.

Para medir la calidad de nuestro modelo, realizaremos la comparación entre los datos teóri-

cos y numéricos para dos indicadores, el valor parámetro de orden que nos permite cuantificar el

impacto de una epidemia sobre un sistema y la monitorización de la evolución espacio-temporal

del proceso epidémico. Debido al carácter estocástico de los procesos implicados en las simu-

laciones numéricas, será necesario promediar sobre diferentes realizaciones correspondientes a

diferentes condiciones iniciales de nuestro problema para adquirir valores representativos de los

indicadores.

4.1. Impacto de la epidemia

Para estimar el impacto de una epidemia en un sistema, es habitual realizar gráficas paráme-

tro de orden en función de un determinado parámetro de control. Debido a las premisas bajo las

cuales se construyen los modelos compartimentales usados, parece natural elegir como paráme-

tro de orden en el modelo SIS la fracción total de infectados en el estado estacionario mientras

que para el modelo SIR, dado que todos los infectados se recuperan, el parámetro relevante para

mostrar el impacto de una epidemia es la fracción total de individuos recuperados en el estado

estacionario. De este modo, los parámetros de orden elegidos se expresan como

I =

∑
i,α
nαi ρ

α
i∑

i,α
nαi

(20)

R =

∑
i,α
nαi r

α
i∑

i,α
nαi

(21)

Por otro lado, además de las topoloǵıas usadas en la red multiplexadas, el conjunto de

parámetros que va a influir en la propagación de una epidemia será la movilidad de los individuos

p, la tasa de contagio λ y la tasa de recuperación µ. Este último parámetro es un parámetro

intŕınseco de la enfermedad ya que su inverso es el tiempo t́ıpico de recuperación. Puesto que

es más relevante el diseño de estrategias sobre contagios, fijaremos este parámetro a µ = 0.2 3 y

representaremos el valor del parámetro de orden en función de la tasa de infección λ para ambos

modelos.

2Por simplicidad y para poder realizar gráficas más compactas, se ha supuesto λαβ = λ ∀ (α, β).
3Se trata de un valor completamente arbitrario, aunque una vez establecido fija la escala temporal del sistema.
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Figura 6: Diagramas epidémicos para el SIR, R(λ) y para el SIS I(λ) haciendo uso de tres redes

diferentes (ER-ER, SF-SF y ER-SF) multiplexadas con L = 2 capas. . En todos los casos cada capa de

la red tiene N = 103 nodos y cada nodo está poblado por 500 agentes de cada capa. Las ĺıneas sólidas

muestran las soluciones derivadas de la resolución de las ecuaciones del modelo, denotando su color el

valor de la movilidad de los individuos. Los puntos se corresponden con los resultados numéricos hallados

mediante simulaciones basadas en agentes (50 realizaciones por cada valor de (λ, p). Cabe notar que los

valores de λ han sido reescalados por el valor de λ para el caso estático, es decir, λc(p = 0) = µ/103. La

tasa de recuperación es µ = 0.2.

Para observar el efecto de la movilidad de los agentes, en la Figura 6 se representan la fracción

de infectados en el caso del modelo SIS y la de recuperados en el caso del modelo SIR en función

de λ para diferentes valores de p. Tal y como se observa en esta Figura, el acuerdo existente entre

las predicciones teóricas de nuestro modelo Markoviano y los resultados numéricos es perfecto.

Además cabe notar como en ambos modelos y para cualquier estructura de red multiplexada se

produce un adelanto del umbral epidémico conforme aumenta la movilidad de los agentes. Este

efecto puede explicarse teniendo en cuenta que los desplazamientos de los agentes producen una

inhomogeneización de la distribución de los agentes en la red, provocando que en algunos no-

dos la población efectiva vaya aumentando y por tanto el umbral epidémico vaya disminuyendo4.

4En el caso de p = 0, el umbral epidémico es el de un modelo SIS o SIR de campo medio con 1000 contactos,

es decir, λc = µ
1000

.
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Asimismo, cabe destacar la influencia de las diferentes arquitecturas con las que se constru-

yen las redes multiplexadas. En concreto, se produce un adelanto del umbral epidémico mucho

más notorio en la red de dos SF que en la red de dos ER. Este hecho se debe a que la gran

inhomogeneidad en cuanto a la conectividad de los nodos de la metapoblación provoca la acu-

mulación de agentes en aquellos nodos de gran conectividad o hubs, comportándose estos como

focos de infección. Sin embargo, en las redes ER donde hay una gran homogeneidad en cuanto

a la conexión de los nodos el reparto de los agentes por la red es más equitativo de modo que

no hay grandes focos de infección que faciliten los procesos de contagio.

4.2. Evolución espacio-temporal

Una vez que hemos comprobado que nuestro modelo es capaz de predecir el impacto de una

epidemia tras llegar esta a su estado estacionario, podemos ir más allá y comprobar su eficacia a

la hora de monitorizar la propagación espacio-temporal de la enfermedad aśı como la evolución

de su incidencia sobre cada una de las capas de la red. Este tipo de medidas son bastante rele-

vantes pues revelan la respuesta de una capa a una epidemia generada en otra capa y el perfil

de propagación de una epidemia cuya semilla está localizada en uno o pocos nodos de la red.

Para simular estos procesos, utilizaremos la arquitectura ER-SF y supondremos que las dos

capas interactúan de forma prácticamente residual de modo que λER−SF << λER−ER, λSF−SF .

En concreto, se han considerado los valores λER−ER = 1.5µ/500, λSF−SF = 1.1µ/500, λER−SF =

0.025µ/500, donde conviene recordar que µ/500 es el valor para el umbral epidémico en una

metapoblación aislada con una mezcla homogénea de agentes de una capa. Por otro lado, su-

pondremos que la semilla de la pandemia se encuentra localizada en un nodo de la capa ER.

Bajo estas premisas, y fijando el valor de (µ, p) = (0.2, 0.3), en la Figura 7a) se representa la

evolución temporal de la fracción de infectados en cada capa. Cabe notar que, de nuevo, las

predicciones teóricas son capaces de reproducir con gran acierto la evolución espacio-temporal

del proceso epidémico hallada mediantes simulaciones numéricas basadas en agentes.

Por otro lado, es importante resaltar la necesidad de tomar estrategias de contención de la

propagación de epidemias dentro de cada capa. Esta importancia radica en el hecho de que, a

pesar de que la capa SF está muy aislada5 de la capa ER donde se sitúa la semilla de la infección,

el impacto que tiene el proceso epidémico sobre ella es relevante. Este interesante fenómeno se

explica identificando el estado libre de epidemia de la red SF como un estado metaestable, cuya

estabilidad se rompe cuando una perturbación pequeña como es un único proceso de contagio

entre individuos de diferentes capas se produce. Este nuevo individuo infectado, debido al valor

de la tasa de contagio intracapa, provoca una cascada de infecciones en una capa que aparen-

temente por los valores elegidos en el espacio de parámetros debeŕıa estar libre de epidemia.

En este sentido, es importante destacar el hecho de que, a pesar de ser un fenómeno altamente

estocástico, vuelve a producirse un acuerdo entre la teoŕıa y las realizaciones de las simulaciones

numéricas.

5La tasa de infección entre ambas capas es 40 veces más pequeña que el umbral epidémico.
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Figura 7: Evolución espacio temporal de una epidemia utilizando el modelo SIR en una red multiplexada

formada por una metapoblación ER y una metapoblación SF. Cada capa tiene 103 nodos y 500 agentes

asociados a cada nodo. La semilla inicial de la epidemia se encuentra en un nodo de la capa ER. Este

hecho, junto a la elección de las tasas de contagio (ver texto para más detalles), da lugar a la aparición de

diferentes escalas temporales en cada capa como se ve en (a).En (b)-(d) se muestra la evolución temporal

de la fracción de recuperados en cada nodo. Concretamente, (b) y (c) muestran la evolución espacio-

temporal de la epidemia en la capa ER según las predicciones teóricas y las simulaciones numéricas

respectivamente, mientras que (d) y (e) se muestra dicha evolución para la capa SF según las ecuaciones

de nuestro modelo y las simulaciones basadas en agentes respectivamente.

Además de la incidencia por capas, en la Figura 7 b)-e) se representa el patrón que sigue la

fracción de recuperados en cada nodo de cada capa en función del tiempo. De nuevo, nuestro

modelo es capaz de reproducir la evolución espacio-temporal del proceso epidémico. Asimis-

mo, observamos como la mayor variedad en las conexiones de la capa SF conlleva una mayor

heterogeneidad en cuanto a la prevalencia de la epidemia en cada nodo.

5. Estimación del umbral epidémico

Uno de los parámetros más estudiados en el campo de la epidemioloǵıa matemática dada su

relevancia es el umbral epidémico. En términos generales, es habitual definir el umbral epidémico

como la mı́nima tasa de infección necesaria para provocar que en el estado estacionario la

epidemia considerada tenga un impacto no nulo sobre el sistema. En términos de teoŕıa sobre

transiciones de fases, dados unos valores en el espacio de parámetros, el umbral epidémico se

corresponde con la tasa de contagio para la cual la solución libre de epidemia deja de ser estable.

En concreto, este parámetro también ha sido calculado para el modelo SIS y el modelo SIR [8]

teniendo en cuenta diversas consideraciones:

Para el caso del modelo SIS, puesto que el impacto de la epidemia viene determinado por

la fracción de infectados en el estado estacionario, es necesario imponer que este número

es mucho menor que la unidad para cada uno de los nodos.
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5 ESTIMACIÓN DEL UMBRAL EPIDÉMICO

En el caso del modelo SIR los individuos infectados nunca van a estar presentes en el

estado estacionario, por lo que no se puede hacer el mismo razonamiento que en el caso

del modelo SIS. De este modo, la condición que hay que imponer es que la derivada de

la fracción inicial de infectados sea positiva ya que de este modo la fracción de infectados

crecerá respecto a la semilla inicial y por tanto se observará un valor del parámetro de

orden no nulo6.

Observando las ecuaciones (8-9) y (11-12) es fácil percatarse de que las consideraciones para

ambos modelos conducen a la misma expresión del umbral epidémico, que viene dado por

λc =
µ

Λmax (A)
, (22)

donde Λmax (A) denota el máximo autovalor de la matriz de adyacencia.

En nuestro caso, utilizaremos el modelo SIS sobre metapoblaciones multiplexadas para hallar

el valor del umbral epidémico. Como ya hemos dicho, lo primero que debemos hacer es suponer

que la epidemia ha alcanzado el estado estacionario por lo que

ραi (t+ 1) = ραi (t) ≡ ρα ∗i . (23)

Asumiendo esta condición, la ecuación (14) se transforma en

µρα ∗i = (1− ρα ∗i )

(1− p)Pα ∗i + p
N∑
j=1

RαijP
α ∗
j

 . (24)

Por otro lado, como hemos explicado anteriormente el umbral epidémico está caracterizado por

una fracción de individuos infectados en cada nodo despreciable frente a la unidad, por lo que

ρα ∗i = εα ∗i << 1 ∀ i , α. Esta aproximación nos permite linealizar las ecuaciones ya que podemos

despreciar los términos en órdenes superiores a ε, lo cual posibilita expresar la ecuación (16) como

Pα ∗i '
N∑
j=1

L∑
β=1

λαβεβj n
β
j→i . (25)

Introduciendo esta ecuación en (24) se obtiene

µεαi = (1− p)
L∑
β=1

N∑
j=1

λεβj n
β
j→i + p

N∑
j=1

Rαij

L∑
β=1

N∑
k=1

λεβkn
β
k→j , (26)

donde se ha supuesto λαβ = λ ∀ α , β. Por último, introduciendo el valor de nβj→i dado por la

ecuación (17), la expresión anterior puede ser reescrita después de reorganizar los términos como

µ

λ
εαi =

N∑
j=1

L∑
β=1

[
(1− p)2δijnβi + p(1− p)nβj (Rβji +Rαij) + p2nβj (Rα ·Rβ T )ij

]
︸ ︷︷ ︸

Mαβ
ij

εβj , (27)

6En el caso del modelo SIR es habitual definir como parámetro de orden la fracción de individuos recuperados

en el estado inicial que no conformaban la semilla, reflejándose de este modo las infecciones que se han producido

en la dinámica.
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donde se ha utilizado que
∑
j
RαijR

β
kj =

(
Rα ·Rβ T

)
ij

. Podemos identificar la ecuación anterior

como una ecuación de autovalores de la matriz M. Además, cabe resaltar que los elementos

Mαβ
ij nos dan toda la información acerca de los contactos entre un individuo asociado a i en

la capa α y todos los individuos asociados a j en la capa β. En concreto, el primer sumando

contiene el número de contactos entre dichos individuos cuando ambos permanecen en su nodo

de residencia. Por otro lado, el segundo término contiene la información acerca de los contactos

que se producen cuando uno de los individuos se desplaza al nodo del otro, habiendo este perma-

necido en su nodo de residencia. Por último, el tercer sumando muestra todos los interacciones

que tienen lugar entre ambos individuos en un tercer nodo distinto de sus nodos de residencia.

Dado que M es una matriz cuadrada de dimensión N × L, su espectro estará compuesto

por N × L autovalores que a su vez serán solución de la ecuación (27). De este modo, hay

N ×L valores de λ compatibles con las aproximaciones realizadas para la obtención del umbral

epidémico, es decir, valores para los cuales la fracción de individuos infectados en el estado de la

epidemia es despreciable pero no nulo. Puesto que el umbral epidémico se define como mı́nima

la tasa de infección para la cual el impacto de la epidemia no es nulo, este vendrá dado por el

mı́nimo valor de este conjunto de soluciones y por tanto podrá expresarse como

λc =
µ

Λmax (M)
, (28)

donde Λmax (M) denota el máximo autovalor de la matriz M. Para comprobar la validez de la

expresión obtenida, en la Figura 8 se representa, para cada arquitectura de red multiplexada, el

impacto de una epidemia según el modelo SIS para cada pareja de parámetros (p, λ) junto con

el valor del umbral epidémico λc(p) hallado mediante la expresión (28). Notamos que nuestra

estimación del umbral epidémico es muy precisa, puesto que la función λc(p) obtenida constituye

la frontera que separa las fases de ausencia y prevalencia de la epidemia.

De este modo, hemos obtenido una expresión que nos permite deducir cómo vaŕıa la inciden-

cia de una epidemia sobre una población en función de la movilidad de los agentes. Asimismo,

a diferencia de otros trabajos sobre propagación de epidemias en redes multiplexadas [26, 27]

en los que el umbral epidémico es el mı́nimo de los umbrales individuales de cada una de las

capas, en nuestro caso la multiplexación de la red es una propiedad fundamental para explicar

el comportamiento del umbral epidémico. Esta afirmación se sustenta en el hecho de que la

dependencia de este parámetro con la movilidad p en la arquitectura de red ER-SF es notoria-

mente distinta a la correspondiente a la red SF-SF, en contrapartida con lo que ocurŕıa en los

trabajos anteriormente citados en los que el comportamiento del umbral estaŕıa determinado

por el menor umbral de las dos capas, es decir, por el de la red SF.
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6 UN CASO REAL, MEDELLÍN

Figura 8: Diagramas epidémicos, I(λ, p) para la dinámica SIS de las tres redes multiplexadas mostradas

en Fig. (6). Arriba de izquierda a derecha se usan ER-ER, SF-SF, abajo ER-SF. El color indica la fracción

de individuos infectados en el estado estacionario según las simulaciones numéricas basadas en agentes.

Las curvas negras se corresponden con λc(p) hallado en la ecuación (28) a partir del máximo autovalor

de M. La tasa de recuperación para el modelo SIS se fija en µ = 0.2.

6. Un caso real, Medelĺın

En esta sección vamos a aplicar el formalismo desarrollado a lo largo del trabajo a una de

las ciudades más importantes de Colombia como es Medelĺın. Medelĺın es la segunda ciudad más

poblada de Colombia con una población total de alrededor de 2.5 millones de habitantes.

La elección de una ciudad de Colombia como un marco real sobre el cual desarrollar nuestro

modelo se debe a que la estructura de la sociedad colombiana facilita la adaptación de la arqui-

tectura multiplexada para obtener una descripción completa de la movilidad de los individuos.

Dicha estructura consiste en una estratificación de la sociedad en función de parámetros económi-

cos de cada individuo y de la calidad de sus viviendas. En concreto, la sociedad se encuentra

dividida en seis estratos, siendo el estrato 1 el correspondiente a aquellas personas cuyo nivel

de vida es más bajo y el estrato 6 aquel que engloba a los individuos con mayor poder económico.

18



6 UN CASO REAL, MEDELLÍN
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Figura 9: Diagramas epidémicos para el SIR, R(λ) y para el SIS I(λ) haciendo uso de la red multiplexada

de Medelĺın con L = 6 capas. Cada capa de la red tiene N = 413 nodos y cada nodo está poblado según

la distribución {nαi } generada por las encuestas. Las ĺıneas sólidas muestran las soluciones derivadas de la

resolución de las ecuaciones del modelo, denotando su color el valor de la movilidad de los individuos. Los

puntos se corresponden con los resultados numéricos hallados mediante simulaciones basadas en agentes

(50 realizaciones por cada valor de (λ, p). Cabe notar que los valores de λ han sido reescalados por el

valor de λ para el caso estático. La tasa de recuperación es µ = 0.2.

Desde el punto de vista de nuestro formalismo, asociaremos a cada estrato una capa de la

red multiplexada. De este modo, los enlaces dentro de cada capa reflejarán los flujos de agentes

de cada estrato por la ciudad. Para construir una red multiplexada que muestre la distribución

demográfica de los ciudadanos aśı como sus patrones de movilidad, colaboradores de la Univer-

sidad de Medelĺın realizaron encuestas a una muestra representativa de la población. En tales

encuestas, cada individuo era preguntado por el estrato α al que pertenećıa aśı como del lugar

en el que resid́ıa asociado con un nodo i de la red multiplexada. En este sentido, se dividió la

ciudad de Medelĺın en 413 cuadŕıculas cada una de ellas asociadas con un nodo en nuestra red.

Asimismo, se les preguntaba sobre sus desplazamientos rutinarios caracterizados por un alto

grado de recurrencia, de modo que si el individuo del tipo α y residente en i se desplazaba a j

se añad́ıa un enlace a Wα
ij .

La red construida bajo este proceso contiene información representativa tanto de los patrones

de movilidad de los habitantes de Medelĺın como de su distribución demográfica. Por otro lado

cabe destacar que, a diferencia de las redes sintéticas construidas en secciones anteriores, en

esta red hay una gran inhomogeneidad en cuanto a la distribución de los agentes, lo cual como

veremos a continuación va a dar lugar a una modificación en cuanto a la influencia de la movilidad

de los agentes en la propagación de un proceso epidémico. Para comprobar esta afirmación y

la validez de nuestro modelo en esta red, realizaremos un proceso análogo al hecho para redes

sintéticas y compararemos las predicciones de la teoŕıa con resultados numéricos de simulaciones

basadas en agentes.

De nuevo, para determinar el impacto de cada tipo de epidemia en nuestro sistema represen-

tamos gráficas parámetro de orden-parámetro de control para los modelos SIR y SIS simulados

sobre la red multiplexada de Medelĺın. En concreto, en la Figura 9 podemos comprobar que,

tanto para el diagrama R(λ) como para I(λ), nuestro modelo continúa exhibiendo un acuerdo

total con las simulaciones basadas en agentes.
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Figura 10: Diagrama epidémico, I(λ, p) para la dinámica SIS en la red de Medelĺın mostrada en la Figura

(9). El color indica la fracción de individuos infectados en el estado estacionario según las simulaciones

numéricas basadas en agentes. Las curvas negras se corresponden con λc(p) hallado en la ecuación (28)

a partir del máximo autovalor de M. La tasa de recuperación para el modelo SIS se fija en µ = 0.2

Por otro lado, para adquirir información acerca de la influencia de la movilidad de los agentes

en el umbral de la epidemia, aplicamos la ecuación (27) para obtener un valor de este parámetro

para cada valor de p, estando ahora la matrizM determinada por la red de Medelĺın que hemos

construido. Análogamente al caso de las redes sintéticas, a partir de los valores obtenidos repre-

sentamos en la Figura 10 λc(p) junto a la fracción de infectados en el estado estacionario para

cada (p, λ) y comprobamos como las aproximaciones realizadas nos dan una buena estimación

del umbral epidémico, pues λc(p) separa las fases de ausencia y prevalencia de epidemia.

Sin embargo, en este caso es interesante notar que a diferencia de los casos anteriores la

movilidad dificulta la propagación de la epidemia pues el umbral epidémico se retrasa conforme

aumenta la movilidad de los habitantes de la red. Para explicar este efecto, debemos tener en

cuenta que ahora ya no hay homogeneidad en torno a la distribución demográfica de los agentes,

de modo que para p = 0 puede haber nodos con una población muy alta y en los que, por tanto,

el umbral epidémico sea bajo. Conforme el valor de p aumenta, estos picos de población se van

suavizando en virtud de aumentar el número efectivo de habitantes del resto de nodos. Esta

disminución de la población efectiva del nodo que determina el umbral epidémico provoca que

sea necesario un mayor de λ para que aparezca la fase epidémica, lo que implica un retraso del

umbral.

6.1. Evolución temporal de la epidemia por capas

Hemos comprobado la capacidad de nuestro modelo para caracterizar el estado estacionario

de una epidemia que se propaga por la red de Medelĺın. Análogamente al caso de las redes sintéti-

cas, el siguiente paso es ganar intuición acerca de la propagación temporal de una epidemia en

esta red. Para ello, hemos realizado varias simulaciones en las cuales colocamos la semilla de la

interacción en cada una de las capas y monitorizamos la evolución temporal de la epidemia para

cada capa v́ıa el número de infectados en cada instante de tiempo t.
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Figura 11: Evolución temporal del número de infectados en cada capa para un modelo SIR en la red de

Medelĺın cuya semilla de infección se encuentra en la capa 1 (Arriba) o en la capa 5 (Abajo). Las ĺıneas

sólidas representan las predicciones teóricas de nuestro modelo para el número de infectados de cada capa,

las cuales se identifican mediante un color. Los puntos negros se corresponden con una realización de las

simulaciones númericas basadas en agentes. Los parámetros dinámicos utilizados para estas simulaciones

son p = 0.05, µ = 0.2 y λ = 0.4µ/〈n〉, siendo 〈n〉 el número promedio de habitantes.

En la Figura 11 hemos representado las dos epidemias, con semilla en el estrato 1 y en el

estrato 5, que exhib́ıan patrones de interacción más interesantes. En este sentido, cabe notar

como para ambas situaciones hay un buen acuerdo entre el modelo teórico y las simulaciones

numéricas, siendo nuestro modelo capaz de capturar las interacciones no arbitrarias que aparecen

entre individuos de diferentes estratos. Por ejemplo, en el caso en el que la semilla se encuentra

en el estrato 5, observamos que la primera capa infectada es la capa 4. A su vez el pico en la

capa 4 provoca la transmisión de la epidemia a las capas 3 y 2, cuyo aumento de infectados

repercute en un incremento en los infectados de la capa 1 y a su vez realimenta los infectados

de la capa 4.

En las siguientes páginas discutiremos algunos métodos para cuantificar los patrones de

interacción entre los 6 estratos y trataremos de hallar un indicador que revele en función de la

movilidad de los agentes la distancia social existente en las ciudades colombianas.
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6.2. Distancia social

En esta sección vamos a discutir posibles métodos para caracterizar las interacciones entre

estratos en la ciudad de Medelĺın. En primer lugar, una aproximación lógica a este problema

utilizando la dinámica SIS propuesta seŕıa contabilizar el número de infecciones en el estado

estacionario que cada individuo de cada capa provoca en los individuos del resto de capas Iβ→α,

ya que estas se producen v́ıa contacto. Recordando las ecuaciones (14-17), esta cantidad se puede

computar como

Iβ→α =

N∑
i=1

nαi (1− ραi ) Παβ
i , (29)

donde Παβ
i , que es la probabilidad de que un individuo asociado a i de la capa α sea infectado

por un individuo de la capa β, viene dada por

Παβ
i = (1− p)

1−
N∏
j=1

(
1− λρβj

)nβj→i

+ p
∑
j

Rαij

(
1−

N∏
k=1

(
1− λρβk

)nβk→j

)
, (30)

donde nβk→j vuelve a estar determinado por la ecuación (17). Aplicando este método para cada

una de las parejas de capas posibles, obtenemos una matriz 6 × 6 cuyas entradas muestran el

número de infecciones que la capa α recibe de la capa β. Estas cantidades, normalizadas por el

número total de infecciones llevadas a cabo por capa, vienen representadas en la Figura 12.

Sin embargo, este método depende de los parámetros de la dinámica considerados (λ, µ) y

a su vez del modelo considerado a la hora de simular las interacciones microscópicas, puesto

que requiere su simulación hasta alcanzar el estado estacionario. Por este motivo, consideramos

necesario encontrar otro indicador que nos muestre información similar al anterior pero en el que

únicamente influyan las condiciones relacionadas con los procesos de difusión de los individuos

como son la arquitectura de la red multiplexada o la movilidad de los agentes y que pueda ser

hallado sin necesidad de conocer las ecuaciones que gobiernan una dinámica concreta.

En este punto, es importante recordar que, haciendo el análisis de estabilidad lineal para

hallar el umbral epidémico, hemos obtenido una matrizM cuyos elementosMαβ
ij nos indicaban

el número de contactos que un individuo de la capa α asociado a i establećıa con individuos

de la capa β con residencia en j. A partir de esta cantidad, el número total de contactos entre

ambas capas Mαβpuede determinarse como

Mαβ =
N∑

i,j=1

nαiM
αβ
ij . (31)

De nuevo volvemos a obtener una matriz 6×6 que nos da información acerca de las interacciones

entre estratos. Para tener una imagen visual, representamos en la Figura 12 las entradas de esta

matriz normalizadas por el número total de contactos en los que interviene cada capa para

p = 0.05. En esta Figura se pone de manifiesto que ambos indicadores caracterizan de manera

prácticamente análoga la interacción entre los estratos. Asimismo, se refleja cómo las capas

más separadas en términos económicos prácticamente no interactúan mientras que cada estrato

influye de forma considerable en las capas contiguas, explicando de este modo los patrones

hallados en la Figura 11.
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Figura 12: Intensidad representada mediante un código de colores de la interacción entre estratos es-

timada mediante Iβ→α (Izquierda) y Mαβ (Derecha). Para ambas gráficas, se ha utilizado p = 0.05 y

se ha representado la intensidad de la interacción normalizada por columnas. Para el caso de Iβ→α se

han utilizado los mismos parámetros epidémicos que en el caso de la Figura 11, es decir, µ = 0.2 y

λ = 0.4µ/〈n〉.

En adelante, vamos a utilizar la matriz Mαβ para caracterizar la interacción entre estratos y

su dependencia con la movilidad. En concreto, en la Figura 13 aparecen las entradas de esta

matriz para el caso de agentes estáticos (p = 0) y para el caso en el que todos los individuos

se mueven (p = 1). En el caso estático, se aprecia cómo la matriz es altamente diagonal lo que

implica que casi todos los contactos de los individuos se producen con otros de su mismo estrato.

Sin embargo, para el caso de p = 1 aparecen términos no diagonales que reflejan la interacción

entre estratos. A ráız de la aparición de dos comportamientos tan opuestos en función de la

movilidad, nos planteamos la necesidad de definir un indicador que nos diese una idea acerca

de la distancia social entre estratos en la ciudad de Medelĺın. Para ello, definimos la magnitud

distancia social σ(p) como

σ(p) =
∑
α

σα(p) , (32)

donde σα(p) es la desviación t́ıpica de los contactos que establece el estrato α. Teniendo en

cuenta esta definición, σα(p) se define como

σα(p) =
1

N

∑
β

(
Mβα

)2
− 1

N2

∑
β

Mβα

2

(33)

Para ver el rango de definición de este indicador es necesario analizar los casos extremales,

que se corresponden con la situación en la interacción es equitativa entre estratos y la situación

en la que la interacción de cada individuo se restringe únicamente a los de su estrato. En el

primer caso se cumple que Mαβ = 1/N para cualquier pareja de estratos (α, β), por lo cual el

valor de nuestro indicador es

σ1(p) = 0 . (34)

En el segundo caso, las entradas de la matriz de conexiones cumplen que Mαβ = δαβ. Introdu-

ciendo estos valores en las ecuaciones (32-33) se obtiene

σ2(p) = 1− 1

N
. (35)
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Figura 13: Intensidad de la interacción entre estratos representada mediante un código de colores y

estimada v́ıa Mαβpara p = 0 (Izquierda), correspondiente con una situación estática de los agentes, y

para el caso p = 1 (Derecha), en el que todos los agentes se desplazan.

De esta forma, para obtener un indicador entre 0 y 1 renormalizamos nuestra magnitud σ(p) de

modo que finalmente se expresa como

σ(p) ≡ N

N − 1

∑
α

1

N

∑
β

(
Mβα

)2
− 1

N2

∑
β

Mβα

2 . (36)

Por último, para ver la dependencia de la distancia social en Medelĺın con la movilidad de sus

habitantes, representamos en la Figura 14 el valor de σ(p) para diferentes valores de p. En esta

gráfica se observa como para p = 0 la distancia social es considerable, debido a la distribución

demográfica de la que se parte. Sin embargo, al aumentar la movilidad de los individuos, se

favorecen los contactos entre estratos que están demográficamente aislados provocándose un

descenso acusado de la distancia social. No obstante, para valores de p en torno a p = 0.6 este

descenso se suaviza poniéndose de manifiesto que, aunque la movilidad favorece la mezcla entre

estratos, la distribución demográfica de partida y la existencia de diferentes redes que gobiernan

los movimientos de cada estrato impiden una mezcla homogénea de todos los estratos.
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Figura 14: Representación de la distancia social (σ(p)) en función de la movilidad de los individuos

estimada a partir de la ecuación (36), donde los elementos Mαβ son calculados para cada valor de p

mediante la ecuaciones (27,31).
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7. Conclusiones

En este trabajo se ha propuesto un formalismo que integra por primera vez dos de las ĺıneas

de investigación más productivas en los últimos años en la F́ısica de Redes Complejas, como son

la utilización de metapoblaciones para reflejar los flujos de movilidad humana y el uso de redes

multiplexadas para posibilitar la existencia de diferentes patrones de interacción entre los nodos

de una red. En concreto, se ha elaborado un modelo compuesto por una serie de ecuaciones

basadas en cadenas de Markov que permite caracterizar el avance de una epidemia en una red

multiplexada cuyas capas codifican los posibles diferentes patrones de movilidad recurrentes de

los individuos presentes en el sistema.

Asimismo, hemos comprobado la capacidad que tiene este nuevo modelo para capturar los

efectos de la movilidad de los agentes en la propagación de una epidemia ya que sus predic-

ciones teóricas tanto para el impacto macroscópico de una epidemia como para su propagación

espacio-temporal en el sistema exhiben un gran acuerdo con las simulaciones numéricas basadas

en agentes. De este modo, la existencia de un modelo anaĺıtico capaz de reproducir la propa-

gación de epidemias en esta clase de sistemas nos permite ahorrarnos un gasto computacional

importante ya que el alto número de componentes, aśı como la gran complejidad de este tipo

de redes, implican una extensa duración de las simulación numérica. A su vez, a partir de la

linealización de las ecuaciones, hemos sido capaces de estimar con gran precisión uno de los

parámetros más importantes en epidemioloǵıa como es el umbral epidémico, lo cual nos permite

conocer con exactitud las condiciones bajo las cuáles el impacto de la epidemia va a ser relevante

o no.

Por otro lado, gracias a nuestro modelo y a los datos reales de los que disponemos hemos

podido caracterizar el avance de una epidemia en una red real (Medelĺın). En este caso, se ha

observado que la movilidad de los individuos dificulta la propagación de la epidemias, lo cual

nos indica que no es productivo desde un punto de vista de prevención epidemiológica el aisla-

miento de las poblaciones infectadas. Además, el análisis de la evolución temporal del número

de infectados de cada estrato ha puesto de manifiesto la existencia de patrones de interacción no

arbitrarios entre cada uno de los estratos. En este sentido, mediante la matrizM hemos caracte-

rizado la relevancia de los contactos entre estratos y comprobado que el contenido de esta matriz

de mezcla entre estados depende fuertemente de la movilidad de los agentes. En concreto, para

tener una información acerca del grado de mezcla de los estratos, hemos propuesto un indicador

que refleje la distancia social entre los estratos de Medelĺın, notando como conforme aumenta

la movilidad se reduce la distancia social hasta alcanzar un valor prácticamente constante que

refleja la coexistencia de los diferentes patrones de movilidad de cada estrato.

Por último, creemos que el alto grado de realismo de las premisas de este modelo posibilita su

uso en teoŕıas de control para prevención de la propagación de epidemias. A su vez, este modelo

constituye el punto de partida de varias ĺıneas de investigación consistentes en la introducción

de patrones de movilidad recurrentes más complejos y en la aplicación de este formalismo a

enfermedades con mecanismos de contagio diferentes como enfermedades vectoriales, en las que

el responsable de la infección es un vector externo, de gran importancia en regiones de Latino-

América, África y Sudeste Asiático.
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