

Trabajo Fin de Grado

 Tecnologías extendidas: integración de sensores
corporales e información cinestésica

Extended Technologies: integration of embodied

and kinesthetic information

Autor

Juan Carlos Chamorro Aranda

Director

Manuel González Bedia

ESCUELA DE INGENIERÍA Y ARQUITECTURA

2017

I

II

Tecnologías extendidas: integración de sensores
corporales e información cinestésica

RESUMEN

 La tecnología no es algo ajeno a nuestra naturaleza, nos ha acompañado desde el

descubrimiento del fuego y la invención de la rueda hasta nuestros días y aunque su propósito

principal es facilitarrnos las tareas cotidianas, también podemos usarla para nuestra diversión y

entretenimiento. Los artefactos técnicos pueden ser utilizados como medios para la

experimentación en el arte y la danza.

 El objetivo de este proyecto es el desarrollo de la pieza de baile ‘Pulse’, presentada en el

festival de Danza Trayectos y desarrollada en el Laboratorio de Danza y Nuevos Medios de

Etopía en colaboración con el ISAAC
1
 Lab. Para esta creación coreográfica, el equipo de

ingenieros ha integrado algunos sofisticados dispositivos que han sido acoplados a los bailarines

con el objetivo de permitirles bailar con ellos para desarrollar creaciones artísticas asociadas al

movimiento y que así puedan mostrarnos desde una perspectiva distinta el arte de bailar.

 Los sensores electrónicos han sido ajustados a través de complejos algoritmos que

facilitan la comunicación entre los distintos dispositivos y ordenadores que componen este

entorno con el propósito de que los bailarines puedan representar sus movimientos de una forma

distinta, una forma más plástica, más visual, una forma diferente.

 En cada una de las paredes que rodean la escena se proyectan en tiempo real imágenes

que llevan el pulso de su ritmo en forma de bits y la velocidad de sus movimientos a modo de

señales electrónicas.

 La tarea no ha sido sencilla pues aún no se ha inventado un dispositivo que sienta la

música como nosotros. Es por esto que el trabajo en equipo ha sido de suma importancia para

integrar los conocimientos técnicos de ingenieros, quienes hemos programado los diversos

algoritmos, con las habilidades artísticas de nuestro equipo de bailarines, quienes se han

encargado de orientar las imágenes proyectadas al conjunto de emociones que quieren

representar.

 El trabajo de bailarines e ingenieros ha permitido integrar dos visiones: una más

racional del espacio basado en coordenadas, con una noción del tiempo definida por el reloj de

un ordenador con otra centrada en los cuerpos al danzar, en la que los tiempos se basan en el

ritmo marcado de un compás.

 El esfuerzo del equipo ha tenido buenos resultados con lo que el "cuerpo en

movimiento" se puede ver como una herramienta de creación plástica y que permitirá llegar a

nuestros sentidos.

1 Grupo de investigación del Instituto de Investigación en Ingeniería de Aragón de la Universidad de
Zaragoza.

III

IV

Agradecimientos

 En primer lugar quiero agradecer a todas aquellas personas que tanto directa como

indirectamente me han apoyado durante el transcurso de la carrera. También quiero agradecer a

mis tutores del proyecto, Tomás y Manuel, su ayuda y dedicación, ya que he aprendido

muchísimo de ellos. No puedo dejar de agradecer a mi compañero Cesar, el cual me ha

enseñado tanto y ha sido una pieza fundamental en el desarrollo del trabajo.

 Especialmente quiero agradecer a mis padres Juan Carlos y Nieves, por apoyarme en

todo momento, ya que en definitiva son artífices de lo que soy hoy en día y por enseñarme

tanto. A mi hermana Marina, la más pequeña de la casa y a veces la más madura. Al resto de mi

familia que me ayudo tanto al llegar a una ciudad nueva y siempre han estado para todo. En

especial a mis tatitos que siempre han encontrado esas palabras de ánimo cuando más las

necesitaba y han sido y son, uno de mis principales apoyos.

 Me gustaría agradecer también a mis amigos del Carmelo donde pase dos años

increíbles, a los amigos de BBQ que hicisteis que me sintiera como en casa desde el primer

momento y a mis fratellos de Antonio Bordoni por hacerme ver la vida de otra manera.

 Una etapa que concluye y otra que empieza, pero siempre sin pausa.

V

VI

Índice general

Agradecimientos ... IV

Índice general .. VI

Índice de figuras .. IX

1. Introducción .. 1

1.1. Objetivo y alcance del proyecto ... 1

1.2. Contexto en el que se realiza el proyecto ... 1

1.3. Trabajo a realizar ... 2

1.4. Herramientas utilizadas .. 2

1.5. Estructura del documento .. 3

2. Estado del arte ... 5

2.1. Danza contemporánea .. 5

2.2. Danza y tecnología ... 6

3. Tecnologías utilizadas ... 9

3.1. Sensores ... 9

3.1.1. Xsens ... 9

3.1.1.1. Descripción .. 9

3.1.1.2. Componentes ... 10

3.1.1.3. Software ... 11

3.1.2. 5DT Data Glove .. 11

3.1.2.1. Descripción .. 11

3.1.2.2. Componentes ... 12

3.1.2.3. Software ... 12

3.1.3. Ubisense .. 13

3.2.Arquitectura laboratorio de Danza y Nuevos Medios ... 13

3.2.1. Broadcaster ... 15

3.2.2. TeamViewer .. 16

3.3. Processing .. 17

3.4. Microsoft Visual Studio ... 17

3.4.1. C++ (lenguaje de programación) .. 17

3.5. Matlab .. 17

3.6. Encuadre de las tecnologías durante el ciclo de vida del proyecto 18

4. Xsens: Lectura, análisis y utilización. ... 20

4.1. Software ... 20

4.2. Lectura de datos ... 20

4.2.1. Mecanismo de lectura de datos ... 21

4.3. Estudio estadístico de los datos recibidos .. 22

VII

4.3.1. Conclusiones del estudio de datos .. 24

4.3.1.1. Aceleración .. 24

4.3.1.2. Ángulos de rotación ... 24

5. Descripción de la aplicación ... 26

5.1. Estructura del código ... 26

5.2. Host .. 26

5.2.1. DanceHost ... 27

5.2.2. DisplaysHost ... 27

5.2.3. procesSignals .. 28

5.3. Display ... 28

6. Resultados ... 33

6.1."Pulse" .. 33

7. Conclusiones ... 41

7.1. Objetivos alcanzados ... 41

7.2. Trabajo futuro .. 42

Anexo I .. 43

Anexo II ... 54

II.1. Dance Host .. 54

II.2. Displays Host .. 62

II.3. Proces Signals ... 67

Anexo III ... 70

III.1. Pintar Dance ... 70

III.2. Bubble .. 81

III.3. Bubbles .. 84

III.4. Displays ... 86

III.5. Drop ... 87

III.6. Fade Curtain ... 89

III.7. Fan ... 90

III.8. Organic Mesh ... 92

III.9. Part ... 93

III.10. Rain .. 94

III.11. Smoke .. 95

III.12. Traces ... 97

III.13. Wave On Sphere .. 100

III.14. Wave Renderer .. 102

Anexo IV ... 103

VIII

IX

Índice de figuras

Fig 2.1 Zapatillas E - Trace ... 6
Fig. 3.1 Orientación Motion Tracker .. 10
Fig. 3.2 a) Motion Tracker; b) Awinda Station; c) Awinda USB Dongle y MTw Click- in 11
Fig. 3.3 Data Glove ... 11
Fig. 3.4 .. 12
Fig. 3.5 Sensor Ubisense ... 13
Fig. 3.6 Tags .. 13
Fig. 3.7 Arquitectura Laboratorio Danza y Nuevos Medios ... 14
Fig. 3.8 Interfaz Broadcaster ... 15
Fig. 5.1 Clases del Host ...27
Fig. 5.2 Laboratorio de Danza y Nuevos Medios .. 28
Fig. 5.3 Clases del Display .. 29
Fig. 5.4 Esquema de las presentaciones .. 30
Fig. 6.1 Rain a..33
Fig. 6.2 Rain b ... 34
Fig. 6.3 Fundido .. 34
Fig. 6.4 Bubbles .. 35
Fig. 6.5 Traces ... 36
Fig. 6.6 Barrido ... 37
Fig. 6.7 Smoke .. 37
Fig. 6.8 Organic Mesh a) ... 38
Fig. 6.9 Organic Mesh b) .. 38
Fig. 6.10 Wave on a sphere ... 39
Fig A. 1..103
Fig A. 2.. 104
Fig A. 3.. 104

file:///C:/Users/MI%20PC/Desktop/TFG/Memoria/Memoria%203.0.docx%23_Toc493359682
file:///C:/Users/MI%20PC/Desktop/TFG/Memoria/Memoria%203.0.docx%23_Toc493359673
file:///C:/Users/MI%20PC/Desktop/TFG/Memoria/Memoria%203.0.docx%23_Toc493359674
file:///C:/Users/MI%20PC/Desktop/TFG/Memoria/Memoria%203.0.docx%23_Toc493359675
file:///C:/Users/MI%20PC/Desktop/TFG/Memoria/Memoria%203.0.docx%23_Toc493359676
file:///C:/Users/MI%20PC/Desktop/TFG/Memoria/Memoria%203.0.docx%23_Toc493359677
file:///C:/Users/MI%20PC/Desktop/TFG/Memoria/Memoria%203.0.docx%23_Toc493359678
file:///C:/Users/MI%20PC/Desktop/TFG/Memoria/Memoria%203.0.docx%23_Toc493359679
file:///C:/Users/MI%20PC/Desktop/TFG/Memoria/Memoria%203.0.docx%23_Toc493359680
file:///C:/Users/MI%20PC/Desktop/TFG/Memoria/Memoria%203.0.docx%23_Toc493359498
file:///C:/Users/MI%20PC/Desktop/TFG/Memoria/Memoria%203.0.docx%23_Toc493359499
file:///C:/Users/MI%20PC/Desktop/TFG/Memoria/Memoria%203.0.docx%23_Toc493359500
file:///C:/Users/MI%20PC/Desktop/TFG/Memoria/Memoria%203.0.docx%23_Toc493359501
file:///C:/Users/MI%20PC/Desktop/TFG/Memoria/Memoria%204.0.docx%23_Toc493873688
file:///C:/Users/MI%20PC/Desktop/TFG/Memoria/Memoria%204.0.docx%23_Toc493873689
file:///C:/Users/MI%20PC/Desktop/TFG/Memoria/Memoria%204.0.docx%23_Toc493873690
file:///C:/Users/MI%20PC/Desktop/TFG/Memoria/Memoria%204.0.docx%23_Toc493873691
file:///C:/Users/MI%20PC/Desktop/TFG/Memoria/Memoria%204.0.docx%23_Toc493873692
file:///C:/Users/MI%20PC/Desktop/TFG/Memoria/Memoria%204.0.docx%23_Toc493873693
file:///C:/Users/MI%20PC/Desktop/TFG/Memoria/Memoria%204.0.docx%23_Toc493873694
file:///C:/Users/MI%20PC/Desktop/TFG/Memoria/Memoria%204.0.docx%23_Toc493873695
file:///C:/Users/MI%20PC/Desktop/TFG/Memoria/Memoria%204.0.docx%23_Toc493873696
file:///C:/Users/MI%20PC/Desktop/TFG/Memoria/Memoria%204.0.docx%23_Toc493629023
file:///C:/Users/MI%20PC/Desktop/TFG/Memoria/Memoria%204.0.docx%23_Toc493629024
file:///C:/Users/MI%20PC/Desktop/TFG/Memoria/Memoria%204.0.docx%23_Toc493629025

X

1

Capítulo 1

Introducción

1.1. Objetivo y alcance del proyecto

 El objeto del presente proyecto es el de unir tecnología, arte y movimiento. Esto se

tratará de conseguir mediante la introducción de artefactos técnicos que permitan mostrar una

perspectiva distinta del arte de la danza.

 La idea fundamental consiste en la introducción, comprensión y optimización de

diferentes sensores corporales en un entorno artístico, con la intención de acercarnos lo más

posible a una hibridación entre arte y tecnología, que nos permita avanzar en el camino del

diseño cyborg y, a su vez, nos permita también explorar y experimentar nuevas posibilidades

cognitivas y sensoriales.

 La línea de trabajo a seguir ha sido la del estudio en primer lugar de las distintas

tecnologías que se tienen a disposición, para luego poder analizar los pros y las contras, así

como plantear cuales podrían ser sus posibles utilidades en el entorno que nos concierne,

tratando de intervenir lo menos posible en el desarrollo artístico por parte de los bailarines. Una

vez decidido que sensores se van a utilizar, se ha procedido a realizar todos los pasos necesarios

para su correcta incorporación, como pueden ser estudios estadísticos de los datos que con ellos

se obtienen, desarrollo de procesos de lectura de esos datos para que nos sean de utilidad o

implementación de algoritmos para normalizar, filtrar o interpolar esos mismos datos para que

se ajusten a nuestras necesidades.

1.2. Contexto en el que se realiza el proyecto

 El proyecto se desarrolla en un entorno colaborativo entre la Universidad de Zaragoza,

más concretamente entre el ISAAC Lab
2
 (Interdisciplinary Studies in Adaptivity, Autonomy

and Cognition), y el Laboratorio de Danza y Nuevos Medios
3
 de ETOPÍA.

 El arte por definición siempre busca nuevas formas de sorprender o captar la atención,

formas con las que conseguir despertar diferentes emociones en el espectador que hasta el

momento no había experimentado. Ante esta naturaleza innovadora, los grandes avances

tecnológicos que han tenido lugar en las últimas décadas han hecho plantearse a los artistas

nuevas vías de comunicación valiéndose de las herramientas que esta nueva era pone a su

disposición. En este punto se sitúa el porqué de este proyecto.

2 http://isaaclab.unizar.es/
3 http://www.danzatrayectos.com/laboratorio-de-danza-y-nuevos-medios/

http://isaaclab.unizar.es/
http://www.danzatrayectos.com/laboratorio-de-danza-y-nuevos-medios/

2

 Todo lo anterior se enfoca en el marco de la creación de la pieza de baile

contemporáneo "Pulse", que fue presentada el pasado 22 de Junio en el festival Trayectos

(ETOPÍA). En esta pieza se unen los esfuerzos de ingenieros y bailarines para conseguir esa

nueva vía de expresión artística por medio del uso de las nuevas tecnologías.

1.3. Trabajo a realizar

 El trabajo a realizar consiste en primer lugar en la familiarización con los diferentes

sensores que se tiene a disposición, manejo básico del software controlador y conocimiento de

las diferentes magnitudes que se pueden conseguir de cada uno. Una vez se han decidido que

sensores se van a utilizar en el proyecto, se elabora una planificación en la que se sitúan las

diferentes etapas del mismo, que acciones se han de realizar en cada una de ellas y cuál va a ser

la estrategia a seguir para la consecución de los objetivos.

 En paralelo con el trabajo de ingeniería los bailarines comentan con el equipo técnico

sus ideas sobre cómo les gustaría que fuera la estética y los posibles efectos a incluir, que

respondan a determinados movimientos que puedan quedar registrados por los sensores. Y el

equipo de ingenieros intenta acoplarse lo máximo posible a estos requerimientos proponiendo

diferentes opciones y alternativas al equipo de baile, teniendo en cuenta las limitaciones

existentes. Este proceso de avance con retroalimentación ha tenido lugar durante todo el

proyecto, lo cual ha sido clave para la consecución del resultado final

 Por lo tanto se debe desarrollar un algoritmo que sea capaz de incluir los sensores,

seleccionando los datos que se necesiten de cada uno. Tratando adecuadamente estos mediante

posibles filtrados, para que representen fielmente los movimientos de los bailarines y

proporcionen una buena interacción con el entorno. Este código tambien se encargará de las

proyecciones pertinentes, organizando el orden en que aparecen, cuál es el efecto que en cada

una se produce y encargándose de todas las tareas que sean necesarias.

1.4. Herramientas utilizadas

 Las herramientas que se han utilizado quedan definidas más extensamente en el

apartado 3. Estas son básicamente herramientas informáticas y sensores.

 Con respecto a las herramientas informáticas se ha trabajado con diferentes

compiladores que utilizan distintos lenguajes de programación, además se ha trabajado en un

entorno en el que funciona un sistema empotrado o embedido. En este campo también se ha

trabajado con proyectores de imagen, pieza simple y a la vez fundamental.

 En cuanto a tecnología sensorial, se utilizan diferentes tipos de sensores capaces de

medir diversas magnitudes. En común tienen que todos deben ir acoplados al bailarín para su

correcto funcionamiento.

3

1.5. Estructura del documento

 La estructura de esta memoria está dividida en siete capítulos, incluyendo este capítulo

introductorio. En el capítulo 2 se desarrolla el contexto en el que se enmarca la creación del

proyecto y se exponen ejemplos de la influencia de las nuevas tecnologías en el mundo de la

danza. En el capítulo 3 se describe la tecnología empleada para la creación de la aplicación,

distinguiendo entre las distintas etapas del ciclo de vida del proyecto en el que se utilizó. El

capítulo 4 trata sobre los Xsens, su estudio y su implementación. En el capítulo 5 se describe la

estructura de la aplicación, parando a explicar cada una de las partes del código por separado.

Por otro lado en el capítulo 6 se muestran los resultados obtenidos a con la aplicación, usando

imágenes. En el capítulo 7 se recogen las conclusiones obtenidas durante el desarrollo del

proyecto así como posibles líneas de trabajo futuro.

4

5

Capítulo 2

Estado del arte

 En este capítulo se expone la situación en la que se enmarca el desarrollo del proyecto.

Se comentarán las nuevas tendencias en el entorno de la danza y como la progresiva

modernización del entorno artístico facilita nuevas formas de expresión, así como la aparición

de instrumentos especializados.

 En el caso concreto de nuestro proyecto se habla de danza contemporánea, por lo que se

explicarán sus orígenes e influencias fundamentales, así como el desarrollo experimentado en

los últimos años.

2.1. Danza contemporánea

 La danza contemporánea surge como alternativa a la estricta técnica del ballet clásico, a

finales del siglo XIX, en un comienzo del cuestionamiento de valores, y de la búsqueda de

nuevas formas. En un primer momento se la llamó danza moderna pero a mediados del siglo

XX paso a denominarse como se conoce hoy en día.

 En la danza contemporánea, el bailarín se expresa a través de las técnicas del ballet

clásico pero incorporando otros movimientos corporales más modernos. La mezcla de múltiples

influencias es una de las principales características de este tipo de danza, que puede incluir

formas de narración que no resultan lineales y hasta puede apostar por las herramientas

multimedia para complementar las coreografías. Se convierte, por tanto, en un nuevo medio

para que el hombre pueda hablar utilizando su cuerpo, para poder expresar sentimientos, ideas e

historias por medio del lenguaje del movimiento.

 La danza clásica se basa en pasos estructurados y ya codificados, poseyendo una

dramaturgia
4
 con principio, clímax y desenlace. Mientras que la danza contemporánea puede

seguir esta estructura o bien dejar paso a la innovación, permitiendo que tanto bailarín como

coreógrafo exploten su creatividad. Otra diferencia es que en la danza contemporánea no

siempre es necesario contar una historia, simplemente se puede transmitir un concepto o

proponer un ambiente con una estética particular. La danza contemporánea busca la conexión

con lo terrenal, con lo humano y sus pasiones, la no estructura, la transgresión.

 La música y la indumentaria de los bailarines se elige con especial interés, viendo cual

es su valor estético y musical, que sensaciones puede transmitir y como puede influir en los

movimientos de los bailarines y en la composición general de la obra.

 Se distinguen dos vertientes de la danza contemporánea, la escuela europea y la escuela

americana. Con relación a esta última, se encuentra la que según especialistas está considerada

como la precursora de este género, Isadora Duncan (1877 - 1927).

4 Arte y técnica de componer o poner en escena dramas teatrales u obras.

6

2.2. Danza y tecnología

 La danza al igual que el resto de las artes ha tenido grandes cambios estéticos durante

toda su historia. En los últimos cincuenta años la investigación y la búsqueda continua de las

nuevas formas de expresión ha conducido a la danza por diferentes caminos hacía la perfección

técnica y artística. Influida por los cambios de la vida social y política y también de otras artes,

la danza ha cambiado su forma de ser, su estética y su percepción.

 La tecnología se ha ido introduciendo en el mundo de la danza como la posibilidad de

experimentar nuevas formas escénicas o técnicas de expresión. Llegados a este punto, el público

ya no es considerado como simple espectador pasivo. En este sentido, las nuevas tecnologías se

centran en los procesos de comunicación, en la creación de nuevos entornos comunicativos y

expresivos que facilitan a los receptores la posibilidad de desarrollar nuevas experiencias

formativas, expresivas y educativas.

 En los últimos años se han ido incorporando diferentes técnicas al proceso creativo de la

danza contemporánea, en la mayor parte se trata de técnicas audiovisuales, lo que se conoce

como Videodanza o danza para la cámara. En este tipo de representaciones las coreografías

están diseñadas desde un punto de vista audiovisual, en las que el movimiento de los bailarines

es recogido y procesado por los diferentes medios de producción y postproducción. Según

Douglas Rosemberg, "la cámara y el método de grabación debe ser entendido como un espacio,

del mismo modo en que nos referimos al teatro como el lugar para un espectáculo de danza".

Esto ofrece la posibilidad de establecer otra visión, una visión imposible de representar en la

escena e imposible de captar por el ojo humano si no es a través de una pantalla.

 También el avance que ha tenido lugar en las últimas décadas en el campo tecnológico,

ha propiciado la aparición de instrumentos especializados del mundo de la danza. En este campo

nos encontramos con diferentes medios que permiten captar movimientos concretos del bailarín,

para su posterior evaluación, lo que puede ayudarle a mejorar su técnica, escenarios diseñados

específicamente con proyecciones en 3D que interactúan con los artistas o vestimenta que puede

emitir diferentes tonos en función de la música.

 Con respecto a los instrumentos que permiten la captura de movimientos cabe destacar

los E - Trace creados por la diseñadora y bailarina amateur Lesia Trubat. Este invento consiste

en acoplar un pequeño mecanismo digital a la suela y los laterales del zapato de los bailarines,

también conocidos como puntas. Las zapatillas electrónicas funcionan a través de la tecnología

Arduino Lilypad, que se activa al contacto con el suelo, registrando la presión y el movimiento

de los pies, mediante una aplicación que registra los datos exactos de forma gráfica. Con esto el

bailarín puede observar en formato video cuales han sido sus movimientos, y puede corregir

errores e imperfecciones.

Fig 2.1 Zapatillas E - Trace

7

 En relación con lo expuesto anteriormente se encuentra el entorno en el que se ha

desarrollado el trabajo. El proyecto ha aunado instrumentación tecnológica y medios

audiovisuales para crear una intersección entre danza e imagen en movimiento. El punto de

confluencia es muy amplio, ya que son tan diversas las formas de entender la danza como los

estilos, tecnologías y géneros audiovisuales desde los que plantear la aproximación.

 En el caso de los instrumentos utilizados, a diferencia de los E-Trace, no se trata de

material creado específicamente con fines artísticos, sino que se ha trabajado con tecnología de

sensores con diversas aplicaciones, que se han implementado para poder trabajar en el marco

artístico.

 Desde el punto de vista audiovisual no se ha procedido a grabar a los bailarines y

trabajar con esas imágenes como en el campo de la Videodanza. Pero si mediante proyecciones

interactivas, se ha tratado de buscar ese punto de comunicación que no sería posible compartir

con el espectador si no es a través de los medios audiovisuales.

8

9

Capítulo 3

Tecnologías utilizadas

3.1. Sensores

 Como se ha indicado con anterioridad el objetivo de este proyecto es el de la

hibridación entre arte y tecnología. Con este motivo, en el transcurso del proyecto se ha

trabajado con diferentes sensores que se especializan en distintos campos de percepción: En el

campo del movimiento en tres dimensiones tenemos los Xsens, en el de la percepción visual se

ha trabajado con Eye tracking, para el movimiento de abrir y cerrar la mano se ha usado los

Data Glove y por último con referencia a la percepción de las ondas cerebrales el

electroencefalograma (EEG), llamado Emotiv pro. Después de una primera toma de contacto

con los citados sensores, viendo las diferentes posibilidades que ofrecían cada uno de ellos, se

decidió que los sensores con mayores posibilidades de interacción con la danza y con los que,

por tanto, se iba a trabajar eran los XSENS y los Data Glove.

 Posteriormente se debatió con los bailarines acerca de la incorporación de ambos

sensores exponiendo ventajas y desventajas, limitaciones, carencias y posibilidades de los

mismos, obteniendo la conclusión de que el Data Glove interfería en exceso en el transcurso y

estética del baile, llegando a incomodar a los bailarines e impidiendo ciertos movimientos

técnicos de la danza como agarres o portés. Por todo esto se decidió trabajar únicamente con

Xsens.

 Además a los Xsens hay que añadir los UbiSense, que son unos sensores de localización

en el espacio, que ya estaban previamente implementados en ETOPÍA (empresa colaboradora)

en la zona correspondiente donde se ha realizado la función.

 A continuación se va a exponer una explicación básica de funcionamiento y

posibilidades de los Xsens y de los Data Glove, ya que son los sensores que han tenido más

relevancia en el proyecto.

3.1.1. Xsens

 3.1.1.1. Descripción

 Los sensores propiamente dichos de Xsens son los Motion Traker (MTw), estos son

unidades de medición inercial en miniatura que contienen acelerómetros lineales 3D,

giroscopios de velocidad 3D, magnetómetros 3D y un barómetro. En lo que viene a

continuación nos centraremos en las funciones que permiten recoger tanto el movimiento o

aceleración en las tres direcciones del espacio como la rotación en torno a estos, es decir, los

ángulos de alabeo, cabeceo y guiñada(siguiendo la terminología aérea) o también llamados

pitch, roll y yaw. En la siguiente figura se pueden observar los ángulos apenas citados:

10

3.1.1.2. Componentes

Se tiene disposición de:

1. Seis sensores, llamados Motion Tracker (MTw) , que ya hemos comentado.

2. Una central, Awinda Station que va conectada al ordenador mediante USB. Esta

estación controla la recepción de datos inalámbricos sincronizados de todos los MTw

conectados de forma inalámbrica y carga hasta 6 MTW simultáneamente. Puede recibir

datos inalámbricos de hasta 32.

3. Un sistema inalámbrico Awinda USB Dongle que consiste en un usb únicamente, por

lo que es muy fácil de transportar y montar. Tiene las mismas capacidades inalámbricas

que la Awinda Station (Controla la recepción de datos inalámbricos sincronizados de

todos los MTw conectados de forma inalámbrica. Puede recibir datos de hasta 32

MTw).

4. Un juego de correas MTw Click-in. Estas correas tienen un mecanismo especialmente

diseñado que permite que el MTw sea acoplado rápidamente y fácilmente mediante un

click y quitado otra vez para cargar. Las correas están hechas de material elástico

fuerte, respaldado con caucho de silicona para asegurar una fijación cómoda y ajustada

a la piel. A su vez se sujetan y permiten el ajuste usando Velcro.

Fig. 3.1 Orientación Motion Tracker

11

3.1.1.3. Software

 De la parte del software de los Xsens se hablará más adelante en el capítulo 4.

3.1.2. 5DT Data Glove

3.1.2.1. Descripción

 Los Data Glove son unos guantes que permiten medir la flexión de cada uno de los 5

dedos por separado. Están equipados con unas galgas extensiométricas , entonces lo que sucede

al flexionar los dedos es que varía la resistencia interna de las galgas por lo que si se mantiene

fijo el voltaje mediante la medición de la variación de la intensidad es posible obtener ese

cambio en la resistencia
5
, sabiendo esto, la aplicación ya es capaz de conocer y poder mostrar el

punto de flexión de cada dedo individualmente.

5 Ley de Ohm:

 a) b) c)

Fig. 3.2 a) Motion Tracker; b) Awinda Station; c) Awinda USB Dongle y MTw Click- in

Fig. 3.3 Data Glove

12

3.1.2.2. Componentes

 Contamos con un sensor para la mano derecha y otro para la izquierda, así como con

dos equipos:

1. Equipo inalámbrico

2. El segundo equipo está constituido únicamente por un cable con toma Rj12 (clavija

internet) que va conectado al guante y por el otro lado con salida USB (A) que se

conecta directamente al ordenador.

3.1.2.3. Software

En el CD de los sensores se suministran dos aplicaciones:

1. Glove Demo que permite realizar un test rápido para comporbar el correcto

funcionamiento de los data glove.

2. Glove Manager es un programa que te permite probar los guantes y acceder a

funciones de guantes avanzadas que pueden no estar disponibles en los plug-ins.

 El manejo de ambas aplicaciones es muy intuitivo, como ya hemos comentado primero

por medio de la demo podemos calibrar el aparato realizando simplemente un chequeo con la

mano abierta y otro con la mano cerrada. Luego ya dentro de la aplicación propiamente dicha (

Glove Manager) no es complicado lanzar la visualización en tiempo real de la posición de cada

dedo por separado así como de la toma de datos.

Fig. 3.4 Equipo Data Golves

13

3.1.3. Ubisense

 Los Ubisense son dispositivos de medición, de precisión de banda ultra-ancha

(ultra‐wideband, UWB), que contienen una serie de antenas y receptores de radio de banda ultra

ancha. Los sensores detectan pulsos UWB a partir de las medallas Ubisense (llamadas Tags)

que llevan colgadas los bailarines, lo que permite al sistema de localización Ubisense encontrar

las posiciones de estos con una imprecisión de 15 cm * en 3D. En el entorno en el que se ha

trabajado no se ha trabajado con la medición de la posición en el eje Z, pero si la situación en

los ejes X e Y del escenario.

 Ubisense utiliza una arquitectura celular para acoplarse desde a instalaciones pequeñas

hasta otras muy grandes. Miles de sensores pueden integrarse en un único sistema de toda la

empresa para monitorear un área ilimitada y administrar miles de Tags. Los sensores pueden

conectarse entre sí en una gran variedad de formas, en función de los requisitos de la aplicación

para que se usen.

 Los sensores funcionan dentro de un entorno Ethernet
6

 o wifi, utilizando una

infraestructura de red estándar, como conmutadores Ethernet, puntos de acceso Wi-Fi y cables

de red Cat5e para la comunicación entre sensores y servidores.

3.2.Arquitectura laboratorio de Danza y Nuevos Medios

 A continuación se va a proceder a describir en líneas generales el entorno en el que ha

sido realizado el proyecto a nivel informático y de telecomunicaciones. En el laboratorio de

Danza y Nuevos Medios nos encontramos con un sistema empotrado
7
 o embebido, cuya pieza

clave es el broadcaster y por el que pasan todas las ordenes y mensajes.

6 Ethernet es el protocolo por el cual se comunican ordenadores en un entorno de red local, es
decir, es el sistema que normalmente se utiliza para comunicar ordenadores entre sí dentro de una
industria. Este protocolo permite compartir la información y manejar completamente un ordenador
desde otro.
7 Es un sistema de computación diseñado para realizar una o algunas pocas funciones dedicadas,
frecuentemente en un sistema de computación en tiempo real. Se diseñan para cubrir necesidades
específicas.

Fig. 3.6 Tags
Fig. 3.5 Sensor Ubisense

14

 En primer lugar hay que exponer el orden de jerarquía del sistema y luego se pasará a

comentar las partes por separado (de más importante a menos): hardware, sensores y actuadores.

 Los sensores sirven para detectar lo que se produce en el entorno y los actuadores para

que el entorno intervenga. Los sensores que se han utilizado en el proyecto son los ubisense y

los xsens pero también se podría trabajar con cualquier otro sensor que sirva para captar otro

tipo de información. Todos esos sensores, lo que es el dispositivo, van asociados a un proceso, a

un algoritmo, que se ejecuta dentro de un ordenador o dentro de un microcontrolador. La

mayoría de los sensores, por ejemplo los ubisense, van conectados a un ordenador y ahí

funciona un programa (programado en el lenguaje de programación pertinente).

 Esos datos de los sensores en bruto se convierten en valores numéricos y posteriormente

se normalizan. Por ejemplo si se dispone de un micro, cuando no detecta audio es un cero y

cuando detecta audio es un uno. Cualquier sensor se normaliza entre cero y uno. Por otro lado

hay sensores que solo detectan si sí o si no, por ejemplo un botón. Otros sensores detectan un

rango de valores, por ejemplo el volumen de un micro (entre 0 y 1) eso es lo que se llama

sensor 1D, porque tiene una sola dimensión de medida. Por otro lado los Ubisense, detectan

valores de un vector bi o tridimensional mientras que Xsens lee aceleración y rotación en torno

a tres ejes, por lo que sería un sensor 6D, con seis dimensiones. Otra cosa es que se pueda

dividir y decidir trabajar solamente con el vector de las rotaciones, esta decisión de representar

un vector de 6D o dos de 3D es decisión del usuario.

 Esos valores los recibe el proceso asociado y crea una conexión osc
8

 con el

broadcaster, por ejemplo si se dispone de 20 sensores, se producirán 20 conexiones que se hacen

con el broadcaster.

8 Open Sound Control (OSC) es un protocolo para la comunicación entre ordenadores,
sintetizadores musicales y otros dispositivos multimedia inspirado en la moderna tecnología de las
redes. El protocolo tiene algunas ventajas como por ejemplo la independencia del medio de
transmisión y la flexibilidad para transportar cualquier tipo de datos.

Fig. 3.7 Arquitectura Laboratorio Danza y Nuevos Medios

15

3.2.1. Broadcaster

 El broadcaster sirve para la difusión de información o paquetes de datos a través de

redes informáticas, desde un nodo emisor a una multitud de nodos receptores. El broadcaster,

también llamado gestor de publicadores, mantiene conexión OSC individualizada con cada

proceso publicador. Cada conexión OSC con el gestor de publicadores está diferenciada del

resto de conexiones a través del número IP del ordenador o microcontrolador en el que corre el

proceso publicador, y de un número de puerto.

 El broadcaster acepta conexiones de tres tipos de procesos, cada uno de esos procesos

puede estar ejecutándose quizás en esa misma máquina donde está funcionando el broadcaster o

quizás en otras máquinas. Es por tanto posible que un mismo ordenador o microcontrolador

gestione varios dispositivos, corriendo varios gestores software y publicadores, usando puertos

de red distintos. En el entorno de trabajo hay una red wifi creada, a través de esa red wifi todos

los procesos de todos los sensores se conectan a un número IP y a un determinado puerto, que

es el broadcaster, quedando cuando se conectan listados como se muestra en la siguiente figura.

Los tres tipos de dispositivos que se pueden conectar son:

1. Sensores y actuadores: En el caso de los sensores volver a los ya citados y como

ejemplo de actuador tendríamos un foco
9
, al cual se le pueden mandar órdenes para que

se encienda y se apague (el foco también tiene asociado un proceso, no es un proceso

que capture datos del propio actuador porque el foco no captura datos, sino que recibe

datos que le manda el broadcaster, los interpreta y actúa según las ordenes obtenidas:

9 Actuador que se encuentra en el laboratorio de Danza y Nuevos Medios pero que no se utiliza para
el proyecto.

Fig. 3.8 Interfaz Broadcaster

16

que se ponga en verde, en rojo, etc.). Hay que explicar que donde pone "sensors" en la

pantalla del broadcaster en realidad se refiere a sensores y actuadores.

2. Displays: Son los dispositivos que permiten mostrar información visual y auditiva. Son

otro tipo de dispositivos que están conectados a un instrumento que es capaz de mostrar

imagen o de reproducir audio, como pueden ser los proyectores de las paredes, las

mesas interactivas... Cada uno de esos proyectores está conectado a un ordenador y en

ese ordenador corre un proceso que es llamado el pintor. El pintor es un proceso que lo

único que se encarga de hacer es dibujar en cualquiera de esos displays y siempre es el

mismo. A su vez ese proceso está conectado con el broadcaster para esperar órdenes:

pinta un círculo, pinta una partícula.... Se producen entonces N procesos para dibujar

porque hay n pantallas en las que dibujar, es decir un número indefinido de displays y

un número indefinido de sensores, actuadores.

3. Host: En el laboratorio por norma general siempre se trabaja con un Host, ya que el

algoritmo que desarrolla el usuario suele ser uno. El host es donde se ejecuta el

programa, donde se ejecuta su lógica. Recibe datos de los sensores, los interpreta y

según lo que ocurra ordena a los displays que pinte las cosas de una determinada

manera, reaccionando a lo que dicen los sensores o por otro lado diciéndole a un

actuador que realice una determinada acción, por ejemplo que el foco se encienda de

una determinada manera.

 Por otro lado hay situaciones donde interesaría disponer de un host distribuido,

por ejemplo si se tiene una excesiva saturación de tráfico de datos en los displays. En

los pintores, cuando se quiere pintar cosas con muchos detalles o muy intensivas, se

depende mucho de la capacidad para pintar sin que aparezcan retrasos o delays, que

creen el efecto de que la proyección va como a saltos. Entonces si por ejemplo es

necesario pintar 1000 partículas, pues implicaría 1000 mensajes que están enviándose,

por lo que el pintor además de pintar las partículas debería pararse a escuchar cada uno

de los mensajes.

 Una solución que se toma a menudo para evitar lo anterior es disponer de

varios hosts, que estén ejecutándose en alguna máquina que pinta y el host directamente

ya pinte, sin la necesidad de crear mensajes osc. Por ejemplo se podrían tener tres hosts,

uno en cada pantalla y que sea el host el que ya se dedicara a pintar, pero pintar cosas

muy intensivas, con esto se evitaría usar los displays para no tener mucho tráfico de

información y combatir posibles delays o desfases temporales.

3.2.2. TeamViewer

 El problema del sistema con el que se trabaja en el laboratorio es que existe un

ordenador por cada display, que están repartidos y ocultos por el espacio para que no se vean. A

veces se puede aprovechar y en un mismo ordenador acoger a un sensor, a un display y a un

host, pero esto no evita que haya múltiples máquinas. Si cada vez que se debe cambiar algo, que

instalar un programa nuevo, que ejecutar un programa o que hacer una prueba se debe ir

físicamente a ese ordenador, conllevaría un gasto innecesario de tiempo y además tendrían que

tener cada uno su ratón su teclado y su monitor. Esto se soluciona con la utilización del

programa TeamViewer, que permite la utilización de un escritorio remoto, es decir habilita al

usuario para poder manejar el ordenador desde cualquier otro lugar. En ETOPÍA concretamente

existen 5 máquinas distintas y se manejan por medio del TeamViewer desde la máquina que

recibe los datos de los sensores. Se podría decir que el TeamViewer es una ayuda, una

comodidad y no algo imprescindible, pero evita tener que trabajar con cada una de las máquinas

por separado.

17

3.3. Processing

 Processing es un lenguaje de programación y entorno de desarrollo integrado de código

abierto basado en Java, de fácil utilización, y que sirve como medio para la enseñanza y

producción de proyectos multimedia e interactivos de diseño digital. Fue iniciado por Ben Fry y

Casey Reas, ambos miembros de Aesthetics and Computation Group del MIT Media Lab

dirigido por John Maeda. Concretamente se ha utilizado la versión de Processing 3.3.3.

3.4. Microsoft Visual Studio

 Visual Studio es un entorno de desarrollo integrado (IDE, por sus siglas en inglés) para

sistemas operativos Windows. Soporta múltiples lenguajes de programación, tales como C++,

C#, Visual Basic .NET, F#, Java, Python, Ruby y PHP, al igual que entornos de desarrollo web,

como ASP.NET MVC, Django, etc. Permite a los desarrolladores crear sitios y aplicaciones

web, así como servicios web en cualquier entorno que soporte la plataforma .NET (a partir de la

versión .NET 2002). Así, se pueden crear aplicaciones que se comuniquen entre estaciones de

trabajo, páginas web, dispositivos móviles, dispositivos embebidos y consolas, entre otros.

 Cabe destacar que la versión que ha sido utilizada para el proyecto es la 2015 y se ha

usado el lenguaje de programación C++.

3.4.1. C++ (lenguaje de programación)

 C++ es un lenguaje de programación diseñado a mediados de los años 1980 por Bjarne

Stroustrup. La intención de su creación fue el extender al lenguaje de programación C

mecanismos que permiten la manipulación de objetos. En ese sentido, desde el punto de vista de

los lenguajes orientados a objetos, el C++ es un lenguaje híbrido. Una particularidad del C++ es

la posibilidad de redefinir los operadores, y de poder crear nuevos tipos que se comporten como

tipos fundamentales.

3.5. Matlab

 MATLAB (abreviatura de MATrix LABoratory) es una herramienta de software

matemático que ofrece un entorno de desarrollo integrado (IDE) con un lenguaje de

programación propio (lenguaje M). Está disponible para las plataformas Unix, Windows, Mac

OS X y GNU/Linux .

 Entre sus prestaciones básicas se hallan: la manipulación de matrices, la representación

de datos y funciones, la implementación de algoritmos, la creación de interfaces de usuario

(GUI) y la comunicación con programas en otros lenguajes y con otros dispositivos hardware.

18

3.6. Encuadre de las tecnologías durante el ciclo de vida

del proyecto

 Empezando por explicar la utilización que han tenido los diferentes sensores, hay que

destacar dos periodos de tiempo que tuvieron lugar durante la realización del proyecto. Un

primer periodo que transcurrió en el ISAAC Lab, en el que se tuvo una primera toma de

contacto con los sensores y en el que se decidió seguir adelante con la implementación de Xsens

y Data Glove. Y un segundo periodo donde se paso a trabajar en el entorno de Etopía, con el

equipo de danza, en el que se descarto la opción del trabajo con Data Glove y se incluyo en el

proyecto la utilización de los Ubisense.

 A nivel de herramientas informáticas no hay unos periodos tan claros, porque se trabajo

con los distintos programas y lenguajes tanto en un laboratorio como en el otro. Al igual que al

comienzo del proyecto, en su versión final se trabajo con Processing, también en este periodo

final se incluyó el programa Matlab como mecanismo de lectura de los datos de los Xsens. En el

tiempo que transcurrió al final de la etapa en el ISAAC Lab y el comienzo en Etopía, se utilizo

el entorno en C++ de Visual Studio. Las tecnologías que se han ido utilizando en el transcurso

del proyecto, están definidas de manera más detallada en el siguiente capítulo (punto 4.2 y

4.2.1). Es necesario destacar que de cada etapa del trabajo y de cada una de las herramientas

empleadas, se han ido extrayendo conceptos e ideas que finalmente se han puesto en conjunto

en la obra final.

19

20

Capítulo 4

Xsens: Lectura, análisis y utilización.

 Como ya hemos introducido anteriormente, los Xsens nos permiten medir diferentes

movimientos de manera inercial, siendo la aceleración y la rotación en torno a los tres ejes del

espacio tridimensional lo que ocupará nuestro estudio de ahora en adelante.

4.1. Software

 A continuación se va a hablar de la parte del software de los Xsens. El kit de desarrollo

MTw se suministra con un software suite que consta de MT Manager y un kit de desarrollo de

software. MT Manager se usa para visualizar y registrar datos, lo que facilita el uso rápido y

fácil de los MTw y la Awinda Master. En la aplicación MT Manager podemos destacar dos

utilidades:

- Impresión en pantalla de la posición del sensor, con respecto a sistema de ejes de referencia

que nosotros habremos establecido, y muestra de la aceleración en tiempo real

- Impresión de los ángulos que hemos mencionado con anterioridad en un rango entre 180 y -

180.

 Con respecto a la salida de datos en bruto, nos permite obtener gran cantidad de datos lo

que será nuestro objeto de estudio seleccionar los necesarios para el desarrollo de nuestra

aplicación.

 Por otro lado, el software también proporciona el kit de desarrollo de software de MT

(SDK), con códigos de ejemplo en C, C ++, MATLAB y Linux. MTK SDK tiene la intención

de hacer el desarrollo de aplicaciones de software para el MTw fácilmente accesible.

 Es precisamente este kit de desarrollo el que se implementará finalmente para obtener

los datos de los sensores en tiempo real y así poder trabajar con ellos para el desarrollo de la

pieza de baile.

4.2. Lectura de datos

 El primer problema con el que nos encontramos al utilizar los Xsens y quizás uno de los

que ha creado más complicaciones a lo largo del proyecto es el de la obtención de los datos

procedentes de los sensores en tiempo real, ya que con el software de los sensores, el MT

Manager, no los podemos obtener. El MT Manager nos permite grabar los movimientos en

21

periodos de tiempo, de duración a elección del usuario, y posteriormente una vez finalizada la

grabación obtener una lista de los diferentes datos que se han obtenido durante la misma como

pueden ser la aceleración en los diferentes ejes, el pitch, el roll ... que queda también a elección

del usuario.

 Para afrontar esta necesidad de la lectura y obtención de datos en bruto, en tiempo real,

se siguieron diferentes caminos en el transcurso del proyecto. En un primer lugar se empezó

utilizando el programa Processing, que utiliza un lenguaje de programación en Java. Después de

un periodo de aprendizaje en el entorno de processing se comenzó a profundizar en la búsqueda

de la solución al problema apenas expuesto. Dado la inexperiencia en este campo y ante las

complicaciones que se encontraron se decidió dejar apartada esta vía de desarrollo. Entonces se

optó por avanzar desde una versión beta que se había realizado tiempo atrás en el propio ISAAC

Lab. Esto supuso un nuevo cambio de entorno de programación ya que esta alternativa se

desarrollaba usando el programa Visual Studio, el cual usa un lenguaje de programación en

C++, a lo que hay que añadir la utilización de la extensión de openFrameworks
10

 del propio

Visual Studio, por lo que fue necesario otro periodo de aprendizaje en este nuevo marco.

 Los periodos de aprendizaje fueron largos y tediosos ya que la única experiencia previa

que tenía con la informática era la obtenida al cursar la asignatura que se imparte en primero

del Grado de Ingeniería de Tecnologías Industriales (basada en el lenguaje de programación

Pascal). Supuso comenzar desde cero, aprendiendo los comandos básicos, estructuras típicas de

la escritura informática, utilización de bubles y arrays... hasta llegar a la creación, modificación

y manejo de librerias, clases y demás estructuras complejas que se han utilizado para la

realización del código final.

 Utilizando esta nueva herramienta (Visual Studio) se consiguió una primera lectura e

interacción de los Xsens, pero posteriormente se descartaría esta propuesta dada su elevada

complicación y que gran parte del entorno tanto del laboratorio de Danza y Tecnología de

Etopía, como parte del código que ya se había desarrollado por parte del equipo de ingenieros

estaba realizado con Processing.

 Finalmente se decidió aprovechar la arquitectura del laboratorio, utilizando la existencia

del broadcaster y los demás medios de los que se tenía disposición. En este nuevo escenario se

desarrolló un método que permite la lectura de datos de los Xsens en tiempo real y su emisión

mediante un mensaje osc al broadcaster.

4.2.1. Mecanismo de lectura de datos

 Se partió de un código de ejemplo que era proporcionado por Xsens para ayudar a

realizar desarrollos con los sensores. En estos ejemplos se incluían demostraciones y librerías

para C++ y para Matlab. Se eligió el uso de Matlab por ser más sencillo de implementar.

 En el ejemplo se realizaba la conexión con los sensores, se configuraba la información

que se deseaba extraer y se seleccionaba el canal de comunicación y la frecuencia de envío de

datos. Se modificó el código de ejemplo para extraer los datos necesarios para el objetivo del

proyecto. Estos eran la aceleración de los sensores y la orientación o rotación en torno a los tres

ejes. El código modificado se incluye en el Anexo I.

10 OpenFrameworks es un conjunto de herramientas C ++ de código abierto diseñado para ayudar
al proceso creativo proporcionando un marco simple e intuitivo para la experimentación.

22

 Debido a la falta de librerías para hacer uso de la tecnología OSC en el lenguaje de

programación Matlab, se decidió enviar los datos a un servidor en Python que se encargaría de

recibir la información de Matlab, limpiarla y crear los mensajes de manera apropiada para su

uso con el protocolo OSC.

 Para la comunicación entre Matlab y Python se hizo uso de la tecnología más sencilla de

comunicación por red, los sockets
11

 (lineas 286 - 292). En Python se declaró un socket que

escuchaba en un determinado puerto. Desde Matlab se enviaban las medidas tomadas por los

sensores a ese servidor.

 Por último estos datos se envían al servidor central (broadcaster), desde el servidor

Python bajo el protocolo OSC. Los datos llegarán al broadcaster como mensaje entrante de

sensores y ya se podrán mandar a cualquier máquina que esté conectada a él y precise de estos.

4.3. Estudio estadístico de los datos recibidos

 Una vez se es capaz de manejar con soltura los mensajes que envían los sensores es

necesario evaluar cuales son los datos que vamos a utilizar en nuestra aplicación y cuáles no. En

primer lugar se ha estudiado cuales son las mediciones con las que mejor se puede representar el

movimiento de los bailarines y con cuales las interacción con el entorno se hará más visual.

 Después de esta primera experiencia se ha decidido que los valores que se utilizarán

serán, como se viene diciendo, la aceleración y las rotaciones en torno a los tres ejes del

espacio. Sin embargo llegados a este punto aparece la posibilidad de obtener lecturas de la

aceleración libre, es decir, aceleración sin contar los efectos de la gravedad. Por lo que se

tendrán que estudiar ambas aceleraciones para escoger la que más convenga.

 Una vez se han decidido las variables de interés se ha procedido a su estudio

estadístico
12

 para obtener, desde el punto de vista funcional, cuales son las variables más

estables y cuales pueden presentar menos problemas a la hora de incorporar los sensores al

espectáculo. A continuación se muestran las distribuciones de cada una de las variables que se

han estudiado:

11 Los sockets son un mecanismo que permite establecer un enlace entre dos programas que se
ejecutan independientes el uno del otro (generalmente un programa cliente y un programa
servidor). Cabe resaltar que tanto el cliente como el servidor solo deben conocer sus direcciones IP
y el puerto por el cual se comunicarán.
12 Anexo IV -- Estudio realizado a partir de los datos grabados mediante MT Manager durante un
ensayo de los bailarines

23

24

4.3.1. Conclusiones del estudio de datos

4.3.1.1. Aceleración

 Como se puede observar, las distribuciones de las aceleraciones libres aparecen

centradas en 0 m/s
2
 mientras que las de las aceleraciones reales están desplazadas hacia valores

positivos o negativos. Por lo tanto las aceleraciones reales pueden mandar datos erróneos

cuando los bailarines están en reposo sin embargo las aceleraciones libres al no tener en cuenta

la gravedad representan fielmente el movimiento de los artistas y se mantienen en 0 m/s
2
si estos

no se mueven. Por lo tanto se va a trabajar con la aceleración libre, ya que nos permite una

medición más fiel y consecuentemente una interacción con el entorno más real y con menos

errores.

4.3.1.2. Ángulos de rotación

 Como ya se ha comentado el rango en el que se representan los ángulos es desde 180 a -

180 grados. En este apartado tenemos un problema con los ángulos que superan tanto superior

como inferiormente ese rango, estos son el roll y el yaw. Una vez que cualquiera de estos dos

ángulos supera superior o inferiormente el rango de medición establecido pasa inmediatamente

al límite opuesto. Por ejemplo si el roll se va incrementando llegará un punto en el que pasará de

valer 180 grados a valer - 180 y continuará creciendo hacia 0 grados, creando un salto que nos

dará lugar a error. Este suceso podríamos corregirlo realizando lo que se llama un unwrapping.

Observando las distribuciones de roll y yaw vemos esos saltos representados con bastante

claridad, en cambio el pitch describe una curva casi perfecta. Esto se debe a que el pitch varía

en el rango de -90 a 90 grados y por lo tanto no excede los límites de medición.

 En una primera toma de contacto ya se había destacado el pitch como el ángulo más

representativo ya que si los bailarines llevan el sensor a la altura de su muñeca señaliza si el

brazo está arriba (pitch positivo) o si esta abajo (pitch negativo), lo que podría ser de mucha

utilidad a la hora de la interacción con el entorno. Los resultados del estudio corroboran esta

hipótesis previa, siendo claramente el pitch el ángulo más estable y el que menos lugar a error

deja y por lo tanto el ángulo con el que se ha decidido trabajar.

25

26

Capítulo 5

Descripción de la aplicación

 Como ya se ha explicado el objetivo de este proyecto es el de la unión de arte y

tecnología. Con este fin se ha creado un entorno que permite a los bailarines interactuar con él.

Esto es posible gracias a la incorporación de unos sensores (Xsens y Ubisense) que hacen

posible recoger de forma numérica las distintas variaciones (posición, aceleración...) que

experimentan los bailarines en el transcurso de la obra. Para la creación de este entorno

interactivo se ha usado el programa Processing v 3.3.3. En este capítulo se va a explicar la

estructura del código o algoritmo que se ha creado, así como destacar los puntos que se

consideran de mayor importancia.

5.1. Estructura del código

 En el punto 3.2 se ha expuesto cual es la arquitectura del sistema empotrado que

funciona en el Laboratorio de Danza y Nuevos Medios. Para el desarrollo del proyecto se ha

seguido esta misma estructura, es decir, se ha desarrollado un Host y unos Displays que son los

códigos sobre los que se va a hablar a continuación, además del código con el que leemos los

datos procedentes de los Xsens (punto 4.2.1) y pasando, a su vez, por el broadcaster todos los

mensajes tanto de sensores, actuadores, host.... A diferencia del esquema original del

Laborarorio de danza y nuevos medios no se cuenta con un nivel semántico, ya que se buscaba

una respuesta en tiempo real. Al no disponer de nivel semántico los mensajes desde la Api a los

displays se realizan de forma directa dentro del código sin hacer uso de los mensajes osc,

reduciendo el tiempo de respuesta de esta manera.

 Antes de pasar a comentar cada una de las partes por separado y con el motivo de hacer

más compresible su función, decir que las tres clases que se encargan de coordinar el

funcionamiento de la aplicación son Dance Host, que recibe todos los mensajes y decide

¿quién? debe recibirlos, Pintar Dance, que estipula ¿qué? y ¿cómo? se ha de actuar y Displays

Host que hace las funciones de mensajero.

5.2. Host

 En el Host se encuentra la parte más lógica del código. El Host se encarga del correcto

funcionamiento de todos los procesos que se están realizando al mismo tiempo, coordinando

cuando debe terminar uno y comenzar el siguiente, recibiendo los datos de los sensores,

filtrándolos e interpretándolos, junto con otras tareas. En definitiva sería como el cerebro del

conjunto. El Host está dividido en tres funciones DanceHost, Displays Host y procesSignals.

27

5.2.1. DanceHost

 En primer lugar en el DanceHost tiene lugar la inicialización de variables que van a ser

utilizadas, como por ejemplo el frame rate que se establece en 24 fotogramas por segundo

(como en el cine). Dentro del DanceHost se encuentran también diferentes funciones de test,

que se han ido utilizando conforme se iba avanzando en el proyecto para comprobar su correcto

funcionamiento. Además se establece un sistema para avanzar al punto que se desee de la

proyección en función de la tecla del teclado que se presione (líneas 307 - 348).

 El Dance Host se encarga de recibir los datos procedentes de los distintos sensores y

procesos, y redistribuirlos hacia las diferentes estructuras que precisen de estos, organizando así

en primera instancia el tráfico de mensajes. Haciendo analogía con la figura x el Dance Host

sería el corazón de la Api.

 Una de las funciones más importantes que se realizan en este apartado es la de asignar

los valores que se reciben de los Xsens a unas variables (líneas 139 - 305). Se puede observar

partes del código comentadas, ya que en un principio antes de la creación de procesSignals, se

hicieron pruebas filtrando los datos que se recogían directamente en DanceHost, para realizar

los primeros ajustes.

5.2.2. DisplaysHost

 Como ya se ha comentado anteriormente Displays Host hace las funciones de mensajero

dentro del código. En un principio se trabajo para que con una sola proyección general esta

parte del código supiera a que pantalla debía de mandar cada una de las partes de la simulación

por separado, permitiendo así una interacción global de los bailarines con el entorno, pero

aparecieron una serie de problemas (punto 5.3) por lo que esta parte no se llego a implementar.

 Otra de las utilidades del Displays Host es la selección del número IP y del puerto del

broadcaster que se va a escuchar (líneas 19 - 21).

Fig. 5.1 Clases del Host

28

5.2.3. procesSignals

 Esta parte del Host se encarga del procesado de las diferentes señales que a él llegan.

Concretamente se encarga de adecuar los datos recibidos de los Ubisense y de los Xsens para su

correcta utilización. En primer lugar, a partir del estudio estadístico realizado, se establecen

unos valores máximos y mínimos de las medidas que se admitirán validas (líneas 56- 63), es

decir, si se recibe un dato fuera de ese rango se estimará que ha sido un error de medición y se

descartará (líneas 67- 72; 93- 94). Así se evitará posibles cambios bruscos e imprecisiones que

no reflejen fielmente el movimiento de los bailarines. Posteriormente se realiza un mapeo para

convertir los datos obtenidos a un rango que haga más fácil su interpretación y manejo, así pues

se mapean los datos (líneas 74-79; 95- 96) desde un rango de -12 a 12 m/s
2
 , en el caso de la

aceleración, a un rango de -50 a 50. Con esto conseguimos que se observen mejor las

variaciones ya que los datos no se encontrarán tan próximos unos de otros.

 En el caso de los Xsens se reciben datos según la frecuencia que el usuario elija, en

nuestro caso se elige una frecuencia de 24 Hz ya que coincide con la velocidad con la que se

pinta la pantalla, 24 fotogramas por segundo. Con esto se consigue que en todo momento se

tengan datos actualizados de estos sensores. Sin embargo Ubisense manda sus mediciones una

vez por segundo, lo cual introduce un desfase de la posición de los bailarines de un segundo con

respecto a su posición real. Este problema no se ha podido afrontar desde el camino de intentar

que los Ubisense enviaran más datos por segundo, ya que estos estaban ya implementados en el

entorno del laboratorio por lo que se desarrollo una interpolación lineal tomando como datos las

dos últimas posiciones del bailarín e intentando predecir cuál sería la próxima.

5.3. Display

 El display es la parte que se encarga de la representación o proyección en las pantallas,

por medio de los proyectores. Cada proyector dispone de un gestor de software (uno por

pantalla) y de un publicador, que en el caso de nuestro proyecto se engloba en la misma clase.

Está dividido en tantas funciones como presentaciones o efectos diferentes aparecen durante la

obra. Antes de seguir comentando el display es necesario explicar la superficie y los medios que

se disponían para la proyección.

 El entorno que se disponía para la proyección está constituido por tres pantallas cada

una con un proyector independiente. Las pantallas poseen dimensiones irregulares y están

situadas en el espacio formando una especie de espacio tridimensional que rodea el lugar donde

tiene lugar el baile. Algunas de estas pantallas son simplemente paredes pintadas de blanco,

mientras que otras son estructuras expresamente diseñadas para el fin que nos atañe.

Fig. 5.2 Laboratorio de Danza y Nuevos Medios

29

 Inicialmente se trabajó en un único display, que funcionara en la misma máquina donde

corría el host y que unificara las tres pantallas en una sola a efectos de código. Sin embargo se

encontraron dos problemas: la aparición de un delay o retraso en la proyección, debido al gran

tráfico de información que tenía lugar y los problemas al ajustar el tamaño de proyección dadas

las dimensiones irregulares de las pantallas. Para corregir esto se optó por utilizar un código

display individual por cada pantalla, lo que evitaba el retraso debido al intercambio de datos ya

que el display se encuentra en la misma máquina que va a controlar, y a su vez permite ajustar

el tamaño de proyección de cada pantalla por separado. En definitiva a nivel de código es un

único display, salvo pequeñas variaciones, pero que se encuentra funcionando

independientemente en cada una de las tres máquinas (proyectores).

 La obra se divide en un conjunto de proyecciones que se van sucediendo unas a otras,

algunas de mayor duración y se podría decir más representativas, y otras con una función de

transición entre estas. Todas estas partes están coordinadas por la clase principal PintarDance.

Las simulaciones se separaron en distintas clases para facilitar el trabajo con el código.

 Pintar Dance tiene un papel fundamental en la coordinación de la aplicación. Se encarga

de coordinar que clase tiene que funcionar en un momento determinado y cuando debe dejar

paso a otra, actuando como un reloj con los tiempos de las simulaciones (líneas 36 - 46).

Además en el Pintar Dance asociado a cada pantalla se encuentran estipuladas las dimensiones

de la misma. Por lo tanto, Pintar Dance sería ese gestor de software de cada pantalla, que antes

hemos citado, y se encargaría tanto de gestionar la salida de audio como su proyección asociada.

 Todas las proyecciones principales interaccionan en tiempo real con los bailarines, por

medio de los sensores, siendo estas interacciones diferentes según el punto del espectáculo en el

que nos encontremos. Es importante destacar que no en las tres pantallas se produce este efecto,

únicamente la pantalla central reacciona con el movimiento de los bailarines. Esto se ha decido

en consenso con el equipo de baile para que no se desviara mucho la atención del público hacia

los laterales y hubiera un foco de atención centrado en ellos mismos y la pantalla central.

Algunas de estas proyecciones se han desarrollado a partir de ejemplos de código abierto que se

encuentran en la propia página de Processing y en otras librerías que se han incluido en la

bibliografía.

 A continuación se va a exponer el esquema principal de las proyecciones que se

suceden y posteriormente se comentarán sus características y cuál es el tipo de interacción de

cada una de ellas.

Fig. 5.3 Clases del Display

30

1. Rain: Simula una lluvia sobre los bailarines. Cuando estos se encuentran en reposo no

ocurre nada, pero conforme van acelerándose (Xsens) producen una especie de

paraguas que despeja la lluvia, más grande cuanto mayor sea la velocidad de sus

movimientos. La posición de este paraguas tiene dos componentes. Su posición en el eje

x de la pantalla depende de la posición de cada bailarín, que es recogida por los

Ubisense, y su posición en el eje y es función de si los brazos del bailarín se encuentran

hacia arriba o hacia abajo, esto se puede saber por medio del pitch obtenido por los

Xsens (positivo si los brazos se encuentran hacia arriba, negativo en el caso contrario).

Si los brazos del bailarín se encuentran completamente a 90º el paraguas estará en el

punto más alto de la pantalla, mientras que si se encuentran a -90º en el más bajo. Cabe

destacar que el punto de 0º se da cuando los brazos se sitúan perpendiculares al pecho.

1.1 Fundido: Cae una cortina blanca que transforma el fondo negro

progresivamente en un fondo blanco

2. Bubbles: Intenta crear la sensación de estar inmersos en un espacio acuático

tridimensional. Las burbujas tienen un movimiento aleatorio propio y además dos

movimientos diferentes. Uno de ellos tiene que ver con la velocidad de movimiento de

las burbujas, a medida que los bailarines se mueven más deprisa (Xsens) también lo

hacen ellas. El otro va en función del pitch (Xsens), es decir, si los brazos del bailarín se

encuentran inclinados hacia arriba las burbujas cambian su dirección hacia la parte

exterior de la pantalla, como si intentaran salir de esta hacia los bailarines. Mientras que

por el contrario si sus brazos se encuentran hacia abajo las burbujas se moverán en el

sentido contrario como hacia el interior de la pantalla.

2.1 Desaparición gradual: Las burbujas van desapareciendo poco a poco hasta

quedar un fondo blanco.

3. Traces: En esta animación se ha tratado de crear una interacción muy sutil que no

desvíe mucho la atención del público de los bailarines, ya que es una parte de la obra

con movimientos muy suaves y con bastantes detalles. Sobre un fondo blanco aparecen

tres trazos independientes, uno correspondiente a cada bailarín, con un movimiento

• Rain

Fundido

• Bubbles

Desaparición

Gradual

• Traces

Barrido

• Smoke

Difusión

• Organic
Mesh • Wave on

a sphere

Fig. 5.4 Esquema de las presentaciones

31

semialeatorio. La interacción consiste en que dentro del movimiento random de los

trazos, cada x tiempo (aleatorio no muy grande) los trazos buscan a su correspondiente

bailarín, se dirigen hacia su posición, que es transmitida por los Ubisense.

3.1 Barrido: La pantalla cambia gradualmente de blanco a negro, de izquierda a

derecha, borrando a su paso los restos de los trazos de la simulación previa. Para

entenderlo mejor se podría imaginar como si una brocha negra empezara a pintar

las pantallas de izquierda a derecha una detrás de otra.

4. Smoke: Trata de conseguir el efecto visual de que los bailarines son focos emisores de

humo. Estos focos se desplazarán en el espacio siguiendo los movimientos del bailarín

por medio de su posición (Ubisense).

4.1 Difusión: Conforme se acerca el final de la presentación anterior se deja de

producir humo, dejando que el que ya se había emitido ascienda y salga por la parte

superior de la pantalla quedando la pantalla completamente negra.

5. Organic Mesh: Partiendo de un fondo negro van apareciendo segmentos de diferente

orientación y longitud, desde diferentes posiciones de la pantalla y se dirigen a lugares

concretos con la intención de ir creando una malla que acabe por cubrir todo el espacio

de proyección. La interacción con esta proyección consiste en que los bailarines por

medio de su movimiento vayan rompiendo la malla en lugares concretos. Es una

situación parecida a la de Rain, se crea una zona que destruye la malla que depende

tanto de la posición de los bailarines en el espacio (Ubisense) como de si sus brazos se

encuentran hacia arriba o hacia abajo.

5.1 Aunque no aparezca en el esquema ya que no se ha realizado ningún efecto

especial, la transición consiste simplemente en que desaparece la malla que cubría

la pantalla y aparece instantáneamente la siguiente con forma de esfera.

6. Wave on a sphere: Se trata de una malla con forma de esfera, que se ha desplazado

hacia una esquina de la pantalla para que solo se vea un fragmento de esa esfera, ya que

se ha tratado de huir de formas geométricas a petición del equipo de baile, para adecuar

la estética a un estilo de danza contemporánea. La malla conforme pasa el tiempo va

haciéndose más compleja, dejando menos espacios sin rellenar. Esta esfera tiene un

movimiento de rotación propio e inalterable pero cada cierto tiempo se producen unos

pulsos que deforman esta estructura. Los pulsos aparecen en intervalos de tiempo

mayores conforme nos acercamos al final de la obra y presentan una deformación

mayor cuanto más se aleja el bailarín de la esfera (un solo bailarín en este caso),

tomando como referencia su posición (Ubisense). Como final simplemente cuando

termina la música desaparece la malla y se queda un fondo negro.

32

33

Capítulo 6

Resultados

 La finalidad del Trabajo de Fin de Grado ha sido la de la creación de la pieza de danza

contemporánea "Pulse". Como se ha ido explicando a lo largo del proyecto, se ha trabajado con

diferentes tecnologías sensoriales y entornos gráficos y de programación, para conseguir

transmitir una nueva idea de baile.

 En el presente capítulo se incluyen capturas tomadas durante el ensayo final
13

 de la

coreografía, para poder apreciar los resultados obtenidos.

6.1."Pulse"

 Se ha intentado plasmar lo mejor posible los diferentes detalles que tienen lugar durante

la obra. Una tarea que no es sencilla dado que es difícil poder representar una acción de

movimiento y reacción mediante capturas estáticas. Debido a que los detalles de cada

presentación ya han sido explicados en el capítulo anterior, se van a hacer referencias de las

diferentes funciones del display y comentando los detalles que se consideran más relevantes.

 En el inicio de la obra los bailarines se encuentran sentados en los bordes del escenario.

En el momento pactado, se acciona todo el proceso, la música comienza a sonar y los bailarines

se acercan a la pantalla central, mientras esta va cubriéndose con lluvia poco a poco (Rain),

hasta quedar como en la figura 6.1

Fig. 6.1 Rain a

13 No fue posible grabar la actuación debido a la gran afluencia de público.

34

 En la siguiente imagen se puede apreciar como varia la posición del "paraguas" en

función de hacia dónde apunten los brazos del bailarín.

 Al final de esta presentación tiene lugar la transición Fundido de la que se van a

exponer capturas graduales. El fondo poco a poco se tornará blanco y dará paso a la siguiente

parte.

Fig. 6.2 Rain b

Fig. 6.3 Fundido

35

 Para Bubbles no es posible escoger una instantánea que represente lo que sucede, ya que

no se puede apreciar la dirección ni velocidad de las burbujas. Por esto, se ha intentado por

medio de una sucesión de fotogramas captar el movimiento.

Fig. 6.4 Bubbles

36

 Los bailarines se encuentran de frente a la cámara con sus brazos inclinados hacia arriba

por los que las burbujas tienden a desplazarse hacia el exterior de las pantallas, aumentando de

tamaño y desapareciendo de las pantallas. Y su velocidad en ese tramo concreto es lenta ya que

los bailarines se encuentran prácticamente estáticos.

 Con respecto a la transición de Desaparición Gradual, no se van a incluir imágenes, ya

que únicamente las burbujas van desapareciendo poco a poco de la pantalla.

 La siguiente parte de la obra es la correspondiente a Traces. En la siguiente imagen 6.5

se puede observar que cada trazo sigue un movimiento independiente, desplazado más a la

izquierda o a la derecha según la posición del bailarín. Hasta que llega un momento en el que

todos los trazos buscan a su bailarín.

Fig. 6.5 Traces

37

 Una vez se ha llegado al final de Traces, comienza la transición de Barrido. Se puede

apreciar cómo va avanzando, pasando de una pantalla a otra, el barrido. No se pasa directamente

de blanco a negro, sino que sucede una coloración gradual pasando por tonos grises que se van

oscureciendo. Hasta quedar las tres pantallas completamente en negro.

 Partiendo de ese fondo negro comienza a funcionar Smoke. En la imagen que se expone

a continuación se puede observar como dos focos de humo se localizan sobre los dos bailarines

que se encuentran juntos en el centro, y otro se sitúa más a la derecha correspondiendo con la

situación del bailarín restante. De la transición posterior Difusión no se va a incluir imagen, ya

que únicamente deja de producir humo, mientras que el ya se ha emitido sigue ascendiendo en

la pantalla hasta desaparecer.

Fig. 6.6 Barrido

Fig. 6.7 Smoke

38

 Una vez se ha difuminado por completo el humo, comienza la creación de Organic

Mesh. La malla va formándose poco a poco hasta cubrir la totalidad de las pantallas.

 En la siguiente imagen se puede apreciar el efecto que producen los bailarines en la

malla según sea su localización y la posición de sus brazos. Se pueden observar dos grandes

zonas en las que la malla se ha roto (esquina superior izquierda de la pantalla central), una

encima de la otra. Esto se debe a que la posición de ambos bailarines es prácticamente idéntica,

mientras que los brazos del bailarín de más a la izquierda apunta hacia arriba y los del otro

bailarín más hacia abajo en una posición intermedia.

Fig. 6.8 Organic Mesh a)

Fig. 6.9 Organic Mesh b)

39

 Finalmente Organic Mesh deja paso a Wave On A Sphere. Se exponen a continuación

dos imágenes en las que se puede apreciar el estado normal de la esfera, mientras esta se

encuentra girando por su movimiento propio, y también el momento en el que se produce un

pulso. Este pulso buscará en este caso concreto al bailarín que en ese momento se encuentra más

alejado de la esfera.

Fig. 6.10 Wave on a sphere

40

41

Capítulo 7

Conclusiones

7.1. Objetivos alcanzados

 Con respecto a los objetivos alcanzados se podría decir que el resultado que se ha

obtenido es satisfactorio, ya que se ha demostrado que es posible la integración de las nuevas

tecnologías en el entorno del arte y que no es una tarea tan ardua como podría pensarse, si

pensamos en la gran cantidad de oportunidades que esto ofrece. Se ha conseguido llegar un

punto de hibridación en el que el bailarín, por medio de sus movimientos, es capaz de

modificar, en tiempo real, el desarrollo de las diferentes proyecciones que tienen lugar durante

la obra, permitiéndole experimentar nuevas vías de expresión que hasta ahora no se habían

considerado.

 Se ha trabajado con diferentes tipos de tecnologías, algunas ya conocidas y usadas en el

entorno de la danza como proyectores, y otras de carácter muy innovador como los sensores de

diferente tipo que se han empleado. En relación con estos últimos, los Ubisense son los que han

limitado un poco más el desarrollo del proyecto debido al gran tiempo que requieren entre

mediciones (1 segundo), ya que en un entorno dinámico como en el que nos encontramos es

fundamental que los movimientos se reflejen lo más fielmente posible. Además estos sensores

sufren un alto grado de imprecisión, que se ha intentado solucionar en la parte del código

correspondiente (procesSignals). Por su parte los Xsens no tienen el problema de la frecuencia

de las mediciones ya que el usuario puede seleccionar este intervalo a su gusto según el fin para

el que los use. Cuando se consiguió incluir los Xsens en el proyecto supuso un gran salto de

calidad, ya que no solo abría un gran abanico de posibilidades a nivel de interacciones bailarín-

entorno, sino que hacía mucho más tangible cual era el efecto que el bailarín estaba produciendo

con su danza.

 Ha sido fundamental el desarrollo en paralelo de la parte artística y de la parte de

ingeniería, así como el trabajo en equipo de bailarines e ingenieros. Se ha trabajado desde

ambas partes para conseguir adecuarse a necesidades, deseos y limitaciones de la otra. Por parte

del equipo de ingeniería se ha tratado de entorpecer lo menos posible el desarrollo artístico de la

obra, procurando que los sensores estuvieran colocados en puntos que no molestaran a los

bailarines pero que también captaran fielmente sus movimientos, al final se ha decidido que los

Xsens estén situados en la parte interior de las muñecas y los Ubisense colgados del cuello

como una medalla. También se ha intentado desarrollar presentaciones que cubrieran las

necesidades artísticas pero también adecuándose a las limitaciones de los medios y calendarios

establecidos. En cuanto al equipo de baile, se ha tratado de adecuar ciertas partes de la

coreografía para maximizar el respuesta que se podía obtener del entorno.

42

7.2. Trabajo futuro

 La línea de trabajo que se podría seguir es muy prometedora. Personalmente sólo he

aprendido un poco del complejo mundo de las nuevas tecnologías sensoriales y estas ya

representan una cantidad de posibilidades muy grande, no solo en el campo de la danza, sino

para otros entornos, como por ejemplo el de juegos educativos para niños o el estudio y

seguimiento a distancia de personas con movilidad reducida o diferentes enfermedades. La gran

diversidad de tecnología sensorial de la que se dispone hoy en día está haciendo que desde hace

unos años se empiecen a dar casos de ingeniería cyborg
14

, en los que personas con carencias

sensoriales acoplan a su cuerpo diversos aparatos que les permiten suplirlas.

 Desde el entorno del proyecto, el entorno artístico, las posibilidades que aportan las

nuevas tecnologías se podría decir que son casi ilimitadas. Solo hay que pensar que en el

proyecto se comenzó estudiando diferentes sensores y que únicamente se han utilizado los

Xsens, más los Ubisens. Y que además, no se han explotado todas las magnitudes que los Xsens

pueden medir.

 Por esto, en un próximo trabajo en este campo, se podría comenzar por aprovechar al

máximo los Xsens. También se podrían incluir más sensores, como los DataGlove, u otros

sensores que no fueran acoplados físicamente al bailarín, sino que fueran capaces de tomar las

medidas pertinentes a distancia, como los Kinect
15

 o unos sensores de temperatura. Con esto, se

conseguiría aumentar tremendamente las maneras en las que el bailarín podría transmitir lo que

quiere expresar, buscando otros puntos de vista y consiguiendo una interacción con el entorno

rica y cargada de detalles.

14 Neil Harbisson (Londres, Inglaterra, 27 de julio de 1984) es un artista vanguardista y activista
cíborg británico e irlandés residente en Nueva York. Es la primera persona en el mundo reconocida
como cíborg por un gobierno (2004) y la primera persona con una antena implantada en la cabeza.
La antena le permite escuchar los colores y percibir colores invisibles como infrarrojos y
ultravioletas así como recibir imágenes, videos, música o llamadas telefónicas directamente a su
cabeza desde aparatos externos como móviles o satélites.
15 Kinect es un dispositivo, inicialmente pensado como un simple controlador de juego, que gracias
a los componentes que lo integran: sensor de profundidad, cámara RGB, array de micrófonos y
sensor de infrarrojos (emisor y receptor), es capaz de capturar el esqueleto humano, reconocerlo y
posicionarlo en el plano.

43

Anexo I

Código de lectura de los Xsens

 A continuación se expone el código que se comenta en el apartado 4.2, que se ha

desarrollado a partir de librerías que incluían los sensores para el entorno de Matlab.

1 % Copyright (c) 2003-2016 Xsens Technologies B.V. or

subsidiaries worldwide.

2 % All

rights

reserved.

3

4 % Redistribution and use in source and binary forms,

with or without modification,

5 % are permitted provided that the following

conditions are met:

6

7 % 1. Redistributions of source code must retain the above

copyright notice,

8 % this list of conditions and the

following disclaimer.

9

10 % 2. Redistributions in binary form must reproduce the above

copyright notice,

11 % this list of conditions and the following disclaimer in

the documentation

12 % and/or other materials provided with

the distribution.

13

14 % 3. Neither the names of the copyright holders nor

the names of their contributors

15 % may be used to endorse or promote products derived

from this software without

16 % specific prior

written permission.

17

18 % THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

CONTRIBUTORS "AS IS" AND ANY

19 % EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED

TO, THE IMPLIED WARRANTIES OF

20 % MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL

21 % THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY

DIRECT, INDIRECT, INCIDENTAL,

22 % SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT LIMITED TO, PROCUREMENT

23 % OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

PROFITS; OR BUSINESS INTERRUPTION)

44

24 % HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

CONTRACT, STRICT LIABILITY OR

25 % TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

OUT OF THE USE OF THIS

26 % SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY

OF SUCH DAMAGE.

27

28

 29 function mainMTwRTdataViewer

30 %%-------

HELP

31 %

32 % This script allows the user to understand the step-wise

procedure to get data from devices connected to

33 % the Awinda station in wireless mode and collect data. It is also
possible

34 % to use this example with a wired

connected MTw device.

35 %

36 % The code is divided

into two parts:

37 %

38 % 1) The first part regards the situation in which the MTw are
docked to

39 % the Awinda

station. In this part:

40 %

41 % a) information about the MTw connected are provided

42 % b) a communication channel is opened making the Awinda

station

43 % enabled to receive MTw connections (the user is asked

to choose

44 % the channel number)

45 % c) at this point the user is asked to undock the MTw

devices from the

46 % Awinda station and wait for them to be

wireless connected

47 %

48 % 2) The second part regards the situation of using the MTw in
wireless

45

49 % mode, soon after the end of the part 1.

50 %

51 % a) operational mode is activated

52 % b) the user is asked to choose a specific update rate (this might

depend on the number of MTw used. See

53 % datasheet for this information)

54 % c) measurement mode is activated

55 % d) data are extracted from the devices and displayed live in

56 % graphs

57 % e) Awinda station is then disabled

58 % f) recorded data are saved in a log file

59 %

60 %%-------- IMPORTANT NOTES

61 %

62 % - For the code to work properly, make sure the code folder is your current

directory in Matlab.

63 %

64 % - This code supports multiple MTw devices connected at a time to one Awinda

station (although the suggested max number of connected devices is 4).

65 %

66 % - This code supports both 32 and 64 bits Matlab version.

67 %

68 % - The code requires xsensdeviceapi_com32.dll or xsensdeviceapi_com64.dll to be

registered in the Windows

69 % register (this is done automatically during the Xsens MT SDK installation)

70 %

71

72 %% Launching activex server

73 switch computer

74 case 'PCWIN'

75 serverName = 'xsensdeviceapi_com32.IXsensDeviceApi';

76 case 'PCWIN64'

77 serverName = 'xsensdeviceapi_com64.IXsensDeviceApi';

78 end

79 h = actxserver(serverName);

80 fprintf('\n ActiveXsens server - activated \n');

81

82 version = h.XsControl_version;

83 fprintf(' XDA version: %.0f.%.0f.%.0f\n',version{1:3})

84 if length(version)>3

85 fprintf(' XDA build: %.0f %s\n',version{4:5});

86 end

87

88 %% Scanning connection ports

89 % ports rescanned must be reopened

90 p_br = h.XsScanner_scanPorts(0, 100, true, true);

91 fprintf('\n Connection ports - scanned \n');

92

93 % check using device id's what kind of devices are connected.

94 isMtw = cellfun(@(x) h.XsDeviceId_isMtw(x),p_br(:,1));

95 isDongle = cellfun(@(x) h.XsDeviceId_isAwindaDongle(x),p_br(:,1));

96 isStation = cellfun(@(x) h.XsDeviceId_isAwindaStation(x),p_br(:,1));

97

98 if any(isDongle|isStation)

99 fprintf('\n Example dongle or station\n')

100 dev = find(isDongle|isStation);

101 isMtw = false; % if a station or a dongle is connected give priority to

46

it.

102 elseif any(isMtw)

103 fprintf('\n Example MTw\n')

104 dev = find(isMtw);

105 else

106 fprintf('\n No device found. \n')

107 h.XsControl_close();

108 delete(h);

109 return

110 end

111

112 % port scan gives back information about the device, use first device found.

113 deviceID = p_br{dev(1),1};

114 portS = p_br{dev(1),3};

115 baudRate = p_br{dev(1),4};

116

117 devTypeStr = '';

118 if any(isMtw)

119 devTypeStr = 'MTw';

120 elseif any(isDongle)

121 devTypeStr = 'dongle';

122 else

123 assert(any(isStation))

124 devTypeStr = 'station';

125 end

126 fprintf('\n Found %s on port %s, with ID: %s and baudRate: %.0f \n,'

devTypeStr, portS, dec2hex(deviceID), baudRate);

127

128 % open port

129 if ~h.XsControl_openPort(portS, baudRate, 0 ,true)

130 fprintf('\n Unable to open port %s. \n', portS);

131 h.XsControl_close();

132 delete(h);

133 return;

134 end

135

136 %% Initialize Master Device

137 % get device handle.

138 device = h.XsControl_device(deviceID);

139

140 % To be able to get orientation data from a MTw, the filter in the

141 % software needs to be turned on:

142 h.XsDevice_setOptions(device, h.XsOption_XSO_All, 0);

143 h.XsDevice_gotoConfig(device);

144

145 % Get the list of supported update rates and let the user choose the

146 % one to set

147 supportUpdateRates = h.XsDevice_supportedUpdateRates(device, h.

XsDataIdentifier_XDI_None);

148 upRateIndex = [];

149 while(isempty(upRateIndex))

150 fprintf('\n The supported update rates are: ');

151 fprintf('%i, ',supportUpdateRates{:});

152 fprintf('\n');

153 selectedUpdateRate = input(' Which update rate do you want to use ? ');

154 if (isempty(selectedUpdateRate))

155 continue;

47

156 end

157 upRateIndex = find([supportUpdateRates{:}] == selectedUpdateRate);

158 end

159

160 % set the choosen update rate

161 h.XsDevice_setUpdateRate(device, supportUpdateRates{upRateIndex});

162

163 if(any(isDongle|isStation))

164 % Let the user choose the desired radio channel

165 availableRadioChannels = [11 12 13 14 15 16 17 18 19 20 21 22 23 24 25];

166 upRadioChIndex = [];

167 while(isempty(upRadioChIndex))

168 fprintf('\n The available radio channels are: ');

169 fprintf('%i, ',availableRadioChannels);

170 fprintf('\n');

171 selectedRadioCh = input(' Which radio channel do you want to use ? ');

172 if (isempty(selectedRadioCh))

173 continue;

174 end

175 upRadioChIndex = find(availableRadioChannels == selectedRadioCh);

176 end

177

178 try

179 % enable radio

180 h.XsDevice_enableRadio(device, availableRadioChannels

(upRadioChIndex));

181 catch

182 fprintf(' Radio is still turned on, remove device from pc and try

again')

183 end % if radio is still on, this call will give an error

184

185 input('\n Undock the MTw devices from the Awinda station and wait until

the devices are connected (synced leds), then press enter... \n)';

186

187 % check which devices are found

188 children = h.XsDevice_children(device);

189

190 % make sure at least one sensor is connected.

191 devIdAll = cellfun(@(x) dec2hex(h.XsDevice_deviceId(x)),

children,'uniformOutput',false);

192 % check connected sensors, see which are accepted and which are

193 % rejected.

194 [devicesUsed, devIdUsed, nDevs] = checkConnectedSensors(devIdAll);

195 fprintf(' Used device: %s \n',devIdUsed{:});

196 else

197 assert(any(isMtw))

198 nDevs = 1; % only one device available

199 devIdUsed = {dec2hex(deviceID)};

200 devicesUsed = {device};

201 end

202

203 %% Entering measurement mode

204 fprintf('\n Activate measurement mode \n');

205 % goto measurement mode

206 output = h.XsDevice_gotoMeasurement(device);

207

208 % display radio connection information

48

209 if(any(isDongle|isStation))

210 fprintf('\n Connection has been established on channel %i with an update

rate of %i Hz\n', h.XsDevice_radioChannel(device), h.XsDevice_updateRate(device));

211 else

212 assert(any(isMtw))

213 fprintf('\n Connection has been established with an update rate of %i

Hz\n', h.XsDevice_updateRate(device));

214 end

215

216 % create figure for showing data

217 [t, dataPlot, linePlot, packetCounter] =

createFigForDisplay(nDevs, devIdUsed);

218

219 % check filter profiles

220 if ~isempty(devicesUsed)

221 availableProfiles = h.XsDevice_availableXdaFilterProfiles(devicesUsed{1});

222 usedProfile = h.XsDevice_xdaFilterProfile(devicesUsed{1});

223 number = usedProfile{1};

224 version = usedProfile{2};

225 name = usedProfile{3};

226 fprintf('\n Used profile: %s(%.0f), version %.0f.\n',name,number,version)

227 if any([availableProfiles{:,1}] ~= number)

228 fprintf('\n Other available profiles are: \n')

229 for iP=1:size(availableProfiles,1)

230 fprintf(' Profile: %s(%.0f), version %.0f.\n',availableProfiles

{iP,3},availableProfiles{iP,1},availableProfiles{iP,2})

231 end

232 end

233 end

234

235 if output

236 % create log file

237 h.XsDevice_createLogFile(device,'exampleLogfile.mtb');

238 fprintf('\n Logfile: %s

created\n',fullfile(cd,'exampleLogfile.mtb')); 239

240 % start recording

241 h.XsDevice_startRecording(device);

242 % register onLiveDataAvailable event

243 h.registerevent({'onLiveDataAvailable',@handleData});

244 h.setCallbackOption(h.XsComCallbackOptions_XSC_LivePacket,

h. XsComCallbackOptions_XSC_None);

245 % event handler will call stopAll when limit is reached

 input('\n Press enter to stop measurement.\n');

246

 247

248 else

249 fprintf('\n Problems with going to measurement\n')

250 end

251 stopAl;

252

253 %% Event handler

254 function handleData(varargin)

255 % callback function for event: onLiveDataAvailable

256 dataPacket = varargin{3}{2};

257 deviceFound =

varargin{3}{1};

258

49

259 iDev = find(cellfun(@(x) x==deviceFound, devicesUsed));

260 if isempty(t{iDev})

261 t{iDev} = 1;

262 else

263 t{iDev} = [t{iDev} t{iDev}(end)+1];

264 end

265 if dataPacket

266 if h.XsDataPacket_containsOrientation(dataPacket)

267 oriC = cell2mat(h.XsDataPacket_orientationEuler_1(dataPacket));

268 packetCounter(iDev) = packetCounter(iDev)+1;

269 dataPlot{iDev} = [dataPlot{iDev} oriC];

270 end

271

272 tst = cell2mat(h.XsDevice_children(device));

273 sup = cell2mat(cellfun(@(x)

dec2hex(h.XsDevice_deviceId(x)), children,'uniformOutput',false));

274 sup =str2num(sup);

275

276 id =sup(find(tst==deviceFound));

277

278 if h.XsDataPacket_containsOrientation(dataPacket)

279 %acc = cell2mat(h.XsDataPacket_calibratedData(dataPacket));

280 freeAcc = cell2mat(h.XsDataPacket_freeAcceleration(dataPacket));

281 %acc3 = cell2mat(h.XsDataPacket_rawAcceleration(dataPacket));

282 %acc4 = cell2mat(h.XsDataPacket_rawData(dataPacket));

283 socket = tcpip('localhost', 32000, 'NetworkRole', 'client');

284 fopen(socket);

285 sensorId = mod(id,100);

286 message =

[num2str(sensorId),';',num2str(oriC(1)),';',num2str(oriC

(2)),';',num2str(oriC(3)),';',num2str(freeAcc(1)),';',num2str(freeAcc(2)),';',num2str

(freeAcc(3))];

287 fwrite(socket, message,'char');

288 fclose(socket);

289 delete(socket);

290 clear socket

291 freeAcc'

292 fprintf('------');

293 end

294

295 h.liveDataPacketHandled(deviceFound,

dataPacket);

296

297 % draw

298 if packetCounter(iDev)>10

299 if length(t) > 1000

300 t{iDev}(1:end-990) = [];

301 dataPlot{iDev}(:,1:end-990) = [];

302 set(get(linePlot{iDev}(1),'parent'),'xlim',[t{iDev}(1)

t{iDev} (end)+10]);

303 end

304 for i=1:3

305 set(linePlot{iDev}(i),'xData',t{iDev},'ydata',dataPlot{iDev}

(i,:));

306 end

307 packetCounter(iDev) = 0;

308 end

50

309 end

310 end

311

312 function stopAll

313 % close everything in the right way

314 if ~isempty(h.eventlisteners)

315 h.unregisterevent({'onLiveDataAvailable',@handleData});

316 h.setCallbackOption(h.XsComCallbackOptions_XSC_None,

h. XsComCallbackOptions_XSC_LivePacket);

317 end

318 % stop recording, showing data

319 fprintf('\n Stop recording, go to config mode \n');

320 h.XsDevice_stopRecording(device);

321 h.XsDevice_gotoConfig(device);

322 % disable radio for station or dongle

323 if any(isStation|isDongle)

324 h.XsDevice_disableRadio(device);

325 end

326 % close log file

327 fprintf('\n Close log file \n');

328 h.XsDevice_closeLogFile(device);

329 % on close, devices go to config mode.

330 fprintf('\n Close port \n');

331 % close port

332 h.XsControl_closePort(portS);

333 % close handle

334 h.XsControl_close();

335 % delete handle

336 delete(h);

337 end

338

339 function [devicesUsed, devIdUsed, nDevs] = checkConnectedSensors(devIdAll)

340 childUsed = false(size(children));

341 if isempty(children)

342 fprintf('\n No devices found \n')

343 stopAll

344 error('MTw:example:devicdes','No devices found')

345 else

346 % check which sensors are connected

347 for ic=1:length(children)

348 if h.XsDevice_connectivityState(children{ic}) == h.

XsConnectivityState_XCS_Wireless

349 childUsed(ic) = true;

350 end

351 end

352 % show wich sensors are connected

353 fprintf('\n Devices rejected:\n')

354 rejects = devIdAll(~childUsed);

355 I=0;

356 for i=1:length(rejects)

357 I = find(strcmp(devIdAll, rejects{i}));

358 fprintf(' %d - %s\n', I,rejects{i})

359 end

360 fprintf('\n Devices accepted:\n')

361 accepted = devIdAll(childUsed);

362 for i=1:length(accepted)

363 I = find(strcmp(devIdAll, accepted{i}));

51

364 fprintf(' %d - %s\n', I,accepted{i})

365 end

366 str = input('\n Keep current status?(y/n) \n','s');

367 change = [];

368 if strcmp(str,'n')

369 str = input('\n Type the numbers of the sensors (csv list, e.g.

"1,2,3") from which status should be changed \n (if accepted than reject or the other

way around):\n','s');

370 change = str2double(regexp(str,',', 'split'));

371 for iR=1:length(change)

372 if childUsed(change(iR))

373 % reject sensors

374 h.XsDevice_rejectConnection(children{change(iR)});

375 childUsed(change(iR)) = false;

376 else

377 % accept sensors

378 h.XsDevice_acceptConnection(children{change(iR)});

379 childUsed(change(iR)) = true;

380 end

381 end

382 end

383 % if no device is connected, give error

384 if sum(childUsed) == 0

385 stopAll

386 error('MTw:example:devicdes','No devices connected')

387 end

388 % if sensors are rejected or accepted check blinking leds again

389 if ~isempty(change)

390 input('\n When sensors are connected (synced leds), press enter...

\n');

391 end

392 end

393 devicesUsed = children(childUsed);

394 devIdUsed = devIdAll(childUsed);

395 nDevs = sum(childUsed);

396 end

397 end

398

399 %% Helper function to create figure for display

400 function [t, dataPlot, linePlot, packetCounter] = createFigForDisplay(nDevs,

deviceIds)

401

402 [dataPlot{1:nDevs}] = deal([]);

403 [linePlot{1:nDevs}] = deal([]);

404 [t{1:nDevs}] =

deal([]); 405

406 %% not more than 6 devices per plot

407 nFigs = ceil(nDevs/6);

408 devPerFig = ceil(nDevs/nFigs);

409 m = ceil(sqrt(devPerFig));

410 n = ceil(devPerFig/m);

411 lDev = 0;

412 for iFig=1:nFigs

413 figure('name',['Example MTw_' num2str(iFig)])

414 iPlot = 0;

415 for iDev = lDev+1:min(iFig*devPerFig, nDevs)

416 iPlot = iPlot+1;

52

417 ax = subplot(m,n,iPlot);

418 linePlot{iDev} = plot(ax, 0,[NaN NaN NaN]);

419 title(['Orientation data ' deviceIds{iDev}]),

xlabel('sample'), ylabel('euler (deg)')

420 legend(ax, 'roll','pitch','yaw');

421 end

422 lDev = iDev;

423 end

424 packetCounter = zeros(nDevs,1);

425 end

53

54

 Anexo II

 Host

 II.1. Dance Host

1 public class Dance {

2 public String id;

3 public float x;

4 public float y;

5 public float destinoX;

6 public float destinoY;

7 }

8

9 DisplaysHost displaysClient;

10

11 float RATE = 24.0f;

12 int w = 1280;

13 int h = 768;

14 int l1 = 0;

15 int l2 = 0;

16 int l3 = 0;

17 int l4 = 0;

18 int fot = 0;

19 int display;

20 float tx=0;

21 float ty=0;

22

23 float rep = 1;

24 float movx;

25 float movy;

26

27 // tags de ubisense

28 PVector tag089=new PVector(0,0);

29 PVector tag143=new PVector(0,0);

30 PVector tag248=new PVector(0,0);

31

32 PVector d_tag089=new PVector(0,0,0); //x pared1, y pared2, z pared3 distancia tag

33 PVector d_tag143=new PVector(0,0,0);

34 PVector d_tag248=new PVector(0,0,0);

35 int pulso_tag089=30;

36 int pulso_tag143=60;

37 int pulso_tag248=60;

55

38 boolean p_tag089=true;

39 boolean p_tag143=true;

40 boolean p_tag248=true;

41

42

43 //tags de xSense

44 PVector xSens20=new PVector(0,0);

45 PVector xSens21=new PVector(0,0);

46 PVector xSens22=new PVector(0,0);

47 PVector xSens23=new PVector(0,0);

48 PVector xSens24=new PVector(0,0);

49 PVector xSens25=new PVector(0,0);

50

51 PVector d_xSens20=new PVector(0,0,0); //x pared1, y pared2, z pared3 distancia tag

52 PVector d_xSens21=new PVector(0,0,0);

53 PVector d_xSens22=new PVector(0,0,0);

54 PVector d_xSens23=new PVector(0,0,0);

55 PVector d_xSens24=new PVector(0,0,0);

56 PVector d_xSens25=new PVector(0,0,0);

57 int pulso_xSens20=30;

58 int pulso_xSens21=60;

59 int pulso_xSens22=90;

60 boolean p_xSens20=true;

61 boolean p_xSens21=true;

62 boolean

p_xSens22=true; 63

64

65 //float fltMaxX1=0.0f;

66 //float fltMinX1=1.0f;

67 //float fltMaxY1=0.0f;

68 //float

fltMinY1=1.0f; 69

70 int intCont = 0;

71 float fltSum = 0;

72 float fltMaxAcc=0.0f;

73 float fltMinAcc=1.0f;

74 float fltMaxRot=0.0f;

75 float fltMinRot=1.0f;

76 float fltMean =

0; 77

78 void setup() {

79 // Keystone will only work with P3D or OPENGL renderers,

80 // since it relies on texture mapping to

deform 81 size(640, 380, P3D);

82 frameRate(RATE);

83 background(100)

; 84

85 // virtual screens

86 displaysClient = new

DisplaysHost("host"); 87

88 movx = random(-6,6);

89 movy = random(-

6,6); 90

91 noStroke();

92 fill(0);

93 ellipseMode(RADIUS);

94 blendMode(ADD);

56

95 }

96

97 void draw() {

98 //Pintar dibujable

99 //setTestData();

100 //Ubisense

101 if (displaysClient.isDrawing){

102 displaysClient.dibujar("tag089",d_tag089.x,d_tag089.y,displaysClient.w,768,0,"

center");//Dancer 1

103 displaysClient.dibujar("tag143",d_tag143.x,d_tag143.y,displaysClient.w,768,0,"

center");//Dancer 2

104 displaysClient.dibujar("tag248",d_tag248.x,d_tag248.y,displaysClient.w,768,0,"

center");//Dancer 3

105 println("X1="+d_tag089.x+"\tY1="+d_tag089.y+"\tZ1="+d_tag089.z);

106 println("X2="+d_tag143.x+"\tY2="+d_tag143.y+"\tZ2="+d_tag143.z);

107 println("X3="+d_tag248.x+"\tY3="+d_tag248.y+"\tZ3="+d_tag248.z);

108 //display = 2;

109 //Xsense

110 //acceleration, rotation

111 displaysClient.dibujar("xSens20",d_xSens20.x,d_xSens20.y,displaysClient.w,

768,0,"center");//Dancer 1 hand A

112 displaysClient.dibujar("xSens21",d_xSens21.x,d_xSens21.y,displaysClient.w,

768,0,"center");//Dancer 1 hand B

113 displaysClient.dibujar("xSens22",d_xSens22.x,d_xSens22.y,displaysClient.w,

768,0,"center");//Dancer 2 hand A

114 displaysClient.dibujar("xSens23",d_xSens23.x,d_xSens20.y,displaysClient.w,

768,0,"center");//Dancer 2 hand B

115 displaysClient.dibujar("xSens24",d_xSens24.x,d_xSens21.y,displaysClient.w,

768,0,"center");//Dancer 3 hand A

116 displaysClient.dibujar("xSens25",d_xSens25.x,d_xSens22.y,displaysClient.w,

768,0,"center");//Dancer 3 hand B

117 println("A1a="+d_xSens20.x+"\tR1a="+d_xSens20.y);

118 println("A1b="+d_xSens21.x+"\tR1b="+d_xSens21.y);

119 println("A2a="+d_xSens22.x+"\tR2a="+d_xSens22.y);

120 println("A2b="+d_xSens23.x+"\tR2b="+d_xSens23.y);

121 println("A3a="+d_xSens24.x+"\tR3a="+d_xSens24.y);

122 println("A3b="+d_xSens25.x+"\tR3b="+d_xSens25.y);

123 }

124 } 125

126 void setTestData(){

127 d_tag089 = new PVector(mouseX*2, mouseY*2);

128 d_tag143 = new PVector((mouseX*2)+200, mouseY*2);

129 d_tag248 = new PVector((mouseX*2)+400, mouseY*2); 130

131 d_xSens20 = new PVector(random(1,100), random(1,100));

132 d_xSens21 = new PVector(random(1,100), random(1,100));

133 d_xSens22 = new PVector(random(80,100), random(80,100));

134 d_xSens23 = new PVector(random(1,80), random(1,80));

135 d_xSens24 = new PVector(random(1,100), random(1,100));

136 d_xSens25 = new PVector(random(1,100), random(1,100));

137 } 138

139 void mensajeRecibido(OscMessage theOscMessage){

140 //println("THE_OSC_MESSAGE=", theOscMessage.addrPattern());

141 if (theOscMessage.addrPattern().equals("/sensor/1D/xsens")) {

142 int id=theOscMessage.get(1).intValue();

143 //println("id=", id); 144

 if (id==20.0) {

145

57

146 //if (fltMinRot > theOscMessage.get(6).floatValue()){fltMinRot =

theOscMessage.get(3).floatValue();}

147 //if (fltMaxRot < theOscMessage.get(6).floatValue()){fltMaxRot =

theOscMessage.get(3).floatValue();}

148 //if (fltMinRot > theOscMessage.get(7).floatValue()){fltMinRot =

theOscMessage.get(4).floatValue();}

149 //if (fltMaxRot < theOscMessage.get(7).floatValue()){fltMaxRot =

theOscMessage.get(4).floatValue();}

150 //if (fltMinRot > theOscMessage.get(8).floatValue()){fltMinRot =

theOscMessage.get(5).floatValue();}

151 //if (fltMaxRot < theOscMessage.get(8).floatValue()){fltMaxRot =

theOscMessage.get(5).floatValue();}

152 //if (fltMinAcc > theOscMessage.get(6).floatValue()){fltMinAcc =

theOscMessage.get(6).floatValue();}

153 //if (fltMaxAcc < theOscMessage.get(6).floatValue()){fltMaxAcc =

theOscMessage.get(6).floatValue();}

154 //if (fltMinAcc > theOscMessage.get(7).floatValue()){fltMinAcc =

theOscMessage.get(7).floatValue();}

155 //if (fltMaxAcc < theOscMessage.get(7).floatValue()){fltMaxAcc =

theOscMessage.get(7).floatValue();}

156 //if (fltMinAcc > theOscMessage.get(8).floatValue()){fltMinAcc =

theOscMessage.get(8).floatValue();}

157 //if (fltMaxAcc < theOscMessage.get(8).floatValue()){fltMaxAcc =

theOscMessage.get(8).floatValue();}

158 //intCont += 3;

159 //fltSum += theOscMessage.get(6).floatValue();

160 //fltSum += theOscMessage.get(7).floatValue();

161 //fltSum += theOscMessage.get(8).floatValue();

162 //fltMean = fltSum/intCont;

163 //println("id="+id+"\tminAcc: "+fltMinAcc+"\tmaxAcc: "+fltMaxAcc);

164 //println("id="+id+"\tminRot: "+fltMinRot+"\tmaxRot: "+fltMaxRot);

165 //println("id="+id+"\tMean: "+fltMean);

166 //id=20 minAcc: -32.2936 maxAcc:

49.515

167 //id=20 minRot: -134.4615 maxRot: 73.4169

168 //id=20 Mean: -0.03960795

169

170 //float rotx=theOscMessage.get(3).floatValue();

171 //float roty=theOscMessage.get(4).floatValue();

172 //float

rotz=theOscMessage.get(5).floatValue(); 173

174 d_xSens20.x = accXsens

(theOscMessage.get(6).floatValue(),theOscMessage.get

(7).floatValue(),theOscMessage.get(8).floatValue());

175

176 //float accx=map(theOscMessage.get(6).floatValue(),-13,14,0,100);

177 //float accy=map(theOscMessage.get(7).floatValue(),-13,14,0,100);

178 //float accz=map(theOscMessage.get(8).floatValue(),-

13,14,0,100); 179

180 //println("id="+id+"\taccx="+accx+"\taccy="+accy+"\taccz="+accz);

181 //println("id="+id+"\trotx="+rotx+"\troty="+roty+"\trotz="+rotz);

182

183 //d_xSens20.x=(accx+accy+accz)/3;

184 //d_xSens20.x=clase.funcion(theOscMessage.get(6).floatValue(),theOscMessage.

get(7).floatValue(),theOscMessage.get(8).floatValue());

185

186 //logaritmo de la raiz cuadrada de la suma de los cuadrados de

58

las aceleraciones

187 //float sum=pow(rotx,2)+pow(roty,2)+pow(rotz,2);

188 //float raz=sqrt(sum);

189 //raz=log(raz);

190 d_xSens20.y=rotXsens(theOscMessage.get(4).floatValue());

191 //d_xSens20.y=clase.funcion2(theOscMessage.get(3).floatValue(),

theOscMessage.get(4).floatValue(),theOscMessage.get(5).floatValue());

192 }

193 if (id==21.0) {

194 //float rotx=theOscMessage.get(3).floatValue();

195 //float roty=theOscMessage.get(4).floatValue();

196 //float rotz=theOscMessage.get(5).floatValue();

197 //float accx=map(theOscMessage.get(6).floatValue(),-10,10,0,100);

198 //float accy=map(theOscMessage.get(7).floatValue(),-10,10,0,100);

199 //float accz=map(theOscMessage.get(8).floatValue(),-

10,10,0,100); 200

201 d_xSens21.x=accXsens

(theOscMessage.get(6).floatValue(),theOscMessage.get

(7).floatValue(),theOscMessage.get(8).floatValue());

202

203 //float sum=pow(rotx,2)+pow(roty,2)+pow(rotz,2);

204 //float raz=sqrt(sum);

205 //raz=log(raz);

206 d_xSens21.y=rotXsens(theOscMessage.get(4).floatValue());

207 }

208 if (id==22.0) {

209 //float rotx=theOscMessage.get(3).floatValue();

210 //float roty=theOscMessage.get(4).floatValue();

211 //float rotz=theOscMessage.get(5).floatValue();

212 //float accx=map(theOscMessage.get(6).floatValue(),-10,10,0,100);

213 //float accy=map(theOscMessage.get(7).floatValue(),-10,10,0,100);

214 //float accz=map(theOscMessage.get(8).floatValue(),-10,10,0,100);

215

216 d_xSens22.x=accXsens (theOscMessage.get(6).floatValue(),theOscMessage.get

(7).floatValue(),theOscMessage.get(8).floatValue());

217

218 //float sum=pow(rotx,2)+pow(roty,2)+pow(rotz,2);

219 //float raz=sqrt(sum);

220 //raz=log(raz);

221 d_xSens22.y=rotXsens(theOscMessage.get(4).floatValue());

222 }

223 if (id==23.0) {

224 //float rotx=theOscMessage.get(3).floatValue();

225 //float roty=theOscMessage.get(4).floatValue();

226 //float rotz=theOscMessage.get(5).floatValue();

227 //float accx=map(theOscMessage.get(6).floatValue(),-10,10,0,100);

228 //float accy=map(theOscMessage.get(7).floatValue(),-10,10,0,100);

229 //float accz=map(theOscMessage.get(8).floatValue(),-10,10,0,100);

230

231 d_xSens23.x=accXsens (theOscMessage.get(6).floatValue(),theOscMessage.get

(7).floatValue(),theOscMessage.get(8).floatValue());

232

233 //float sum=pow(rotx,2)+pow(roty,2)+pow(rotz,2);

234 //float raz=sqrt(sum);

235 //raz=log(raz);

236 d_xSens23.y=rotXsens(theOscMessage.get(4).floatValue());

237 }

59

238 if (id==24.0) {

239 //float rotx=theOscMessage.get(3).floatValue();

240 //float roty=theOscMessage.get(4).floatValue();

241 //float rotz=theOscMessage.get(5).floatValue();

242 //float accx=map(theOscMessage.get(6).floatValue(),-10,10,0,100);

243 //float accy=map(theOscMessage.get(7).floatValue(),-10,10,0,100);

244 //float accz=map(theOscMessage.get(8).floatValue(),-10,10,0,100);

245

246 d_xSens24.x=accXsens (theOscMessage.get(6).floatValue(),theOscMessage.get

(7).floatValue(),theOscMessage.get(8).floatValue());

247

248 //float sum=pow(rotx,2)+pow(roty,2)+pow(rotz,2);

249 //float raz=sqrt(sum);

250 //raz=log(raz);

251 d_xSens24.y=rotXsens(theOscMessage.get(4).floatValue());

252 }

253 if (id==19.0) {

254 //float rotx=theOscMessage.get(3).floatValue();

255 //float roty=theOscMessage.get(4).floatValue();

256 //float rotz=theOscMessage.get(5).floatValue();

257 //float accx=map(theOscMessage.get(6).floatValue(),-10,10,0,100);

258 //float accy=map(theOscMessage.get(7).floatValue(),-10,10,0,100);

259 //float accz=map(theOscMessage.get(8).floatValue(),-10,10,0,100);

260

261 d_xSens25.x=accXsens (theOscMessage.get(6).floatValue(),theOscMessage.get

(7).floatValue(),theOscMessage.get(8).floatValue());

262

263 //float sum=pow(rotx,2)+pow(roty,2)+pow(rotz,2);

264 //float raz=sqrt(sum);

265 //raz=log(raz);

266 d_xSens25.y=rotXsens(theOscMessage.get(4).floatValue());

267 }

268 }

269 if (theOscMessage.addrPattern().equals("/sensor/1D/gloves")) {

270 float glove=theOscMessage.get(3).floatValue();

271 //println("glove=", glove);

272 }

273 else if (theOscMessage.addrPattern().equals("/sensor/2D/ubisense")) {

274 String id=theOscMessage.get(1).stringValue();

275 //println("id=", id);

276 if (id.equals("089")) {

277 //println("tag 089 x=", theOscMessage.get(3).floatValue(), " y=",

theOscMessage.get(4).floatValue());

278 //if (fltMinX1 > theOscMessage.get(3).floatValue()){fltMinX1 =

theOscMessage.get(3).floatValue();}

279 //if (fltMaxX1 < theOscMessage.get(3).floatValue()){fltMaxX1 =

theOscMessage.get(3).floatValue();}

280 //if (fltMinY1 > theOscMessage.get(4).floatValue()){fltMinY1 =

theOscMessage.get(4).floatValue();}

281 //if (fltMaxY1 < theOscMessage.get(4).floatValue()){fltMaxY1 =

theOscMessage.get(4).floatValue();}

282 //println("minX: "+fltMinX1+"\tmaxX: "+fltMaxX1);

283 //println("minY: "+fltMinY1+"\tmaxY: "+fltMaxY1);

284 tag089.x=map(theOscMessage.get(3).floatValue(), 0.007, 0.91, 0, w);

285 tag089.y=map(theOscMessage.get(4).floatValue(), 0.79, 0.17, 0, h/2); 286

 d_tag089.x=tag089.x;

287 d_tag089.y=tag089.y;

60

288 //println("X1="+d_tag089.x+"\tY1="+d_tag089.y+"\tZ1="+d_tag089.z);

289 }

290 if (id.equals("143")) {

291 tag143.x=map(theOscMessage.get(3).floatValue(), 0.007, 0.91, 0, w);

292 tag143.y=map(theOscMessage.get(4).floatValue(), 0.79, 0.17, 0, h/2); 293

 d_tag143.x=tag143.x;

294 d_tag143.y=tag143.y;

295 //println("X2="+d_tag143.x+"\tY2="+d_tag143.y+"\tZ2="+d_tag143.z);

296 }

297 if (id.equals("248")) {

298 tag248.x=map(theOscMessage.get(3).floatValue(), 0.007, 0.91, 0, w);

299 tag248.y=map(theOscMessage.get(4).floatValue(), 0.79, 0.17, 0, h/2); 300

 d_tag248.x=tag248.x;

301 d_tag248.y=tag248.y;

302 //println("X3="+d_tag248.x+"\tY3="+d_tag248.y+"\tZ3="+d_tag248.z);

303 }

304 }

305 } 306

307 void keyPressed() {

308 switch(key) {

309 case 32:

310 if (displaysClient.isDrawing){ displaysClient.endDraw(); }

311 else { displaysClient.beginDraw(""); }

312 break;

313 case ESC:

314 if (displaysClient.isDrawing){ displaysClient.endDraw(); }

315 displaysClient.disconnect();

316 super.stop();

317 break;

318 case '1'://rain

319 displaysClient.beginDraw("1");

320 break;

321 case '2'://rainTransition

322 displaysClient.beginDraw("2");

323 break;

324 case '3'://bubbles

325 displaysClient.beginDraw("3");

326 break;

327 case '4'://camBubblesTransition

328 displaysClient.beginDraw("4");

329 break;

330 case '5'://traces

331 displaysClient.beginDraw("5");

332 break;

333 case '6'://fadeCurtain

334 displaysClient.beginDraw("6");

335 break;

336 case '7'://smoke

337 displaysClient.beginDraw("7");

338 break;

339 case '8'://createMesh

340 displaysClient.beginDraw("8");

341 break;

342 case '9'://meshSphere

343 displaysClient.beginDraw("9");

344 break;

345 default:

61

346 break;

347 }

348 }

62

 II.2. Displays Host

1 import oscP5.*;

2 import netP5.*;

3

4 class DisplaysHost { 5

6 public class Display {

7 public int x;

8 public int y;

9 public int w;

10 public int h; 11

 }

12

13 OscP5 oscP5;

14 NetAddress myBroadcastLocation;

15

16

17 //String ipAPI="155.210.155.229";

18 //String remoteIP="127.0.0.1";

19 String remoteIP="192.168.0.2";

20 //String remoteIP="155.210.155.229";

21 int listenPort=12000; // el puerto en el que se queda escuchando mensajes del

broadcaster

22

23 private XML file;

24 private int w, h;

25 public Display[] displayList;

26 private OscMessage myMessage; //Contiene el identificador del display que debe

pintarlo y el identificador, el color y la posicion x e y de la mariposa a pintar

27 private String idDisplay;

28 private String tipo; //Posibles valores: host, sensor o display

29 public int id;

30

31 public boolean isDrawing = false;

32

33 DisplaysHost(String tipo) {

34

35 this.tipo = tipo;

36

37 file = loadXML("displays.xml"); // Se abre el fichero

38 if (file==null) {

39 println("Fail to load displays.xml file");

40 } else {

41 println("displays.xml succesfully loaded"); 42 }

43 XML[] currentDisplays = file.getChildren("currentDisplay");

44 for (int i = 0; i<currentDisplays.length; i++) {

45 this.id=currentDisplays[i].getInt("id"); 46

 }

47 println("display actual=", this.id);

48

49 XML[] virtualDisplays = file.getChildren("virtualDisplay");

50

63

51 for (int i = 0; i<virtualDisplays.length; i++) {

52 println("virtualdisplay=", virtualDisplays[i].getInt("width"));

53 this.w=virtualDisplays[i].getInt("width");

54 this.h=virtualDisplays[i].getInt("height");

55 XML[] displays = virtualDisplays[i].getChildren"(display");

56 displayList=new Display[displays.length+1];

57

58 for (int j = 0; j<displays.length; j++) {

59 displayList[displays[j].getInt("id")]=new Display();

60 displayList[displays[j].getInt("id")].h=displays[j].getInt("height");

61 displayList[displays[j].getInt("id")].w=displays[j].getInt("width");

62 displayList[displays[j].getInt("id")].x=displays[j].getInt("x");

63 displayList[displays[j].getInt("id")].y=displays[j].getInt("y"); 64

 }

65 }

66

67 // OSC, aqui esta el puerto donde escucha mensajes

68 oscP5 = new OscP5(this,

listenPort); 69

70 // set the remote location to be the localhost on port

71 myBroadcastLocation = new NetAddress(remoteIP, 33000);

72 connect();

73 }

74

75 //Mandar

Osc 76

77 public void beginDraw(String strPart)

{ 78 for(int i =1;i<4;i++){

79 myMessage = new OscMessage("/display/BeginDrawDance");

80 isDrawing = true;

81 println(myMessage+"-"+strPart);

82 if(!strPart.isEmpty()){

83 myMessage.setAddrPattern("/display/BeginDrawDance");

84 idDisplay = str(i);

85 myMessage.add(idDisplay);

86 println(idDisplay);

87 myMessage.add(strPart);

88 }

89 mandarMensaje(myMessage);

90 }

91 }

92

93 public void endDraw() {

94 myMessage = new OscMessage("/display/EndDrawDance");

95 isDrawing = false;

96 println(myMessage);

97 mandarMensaje(myMessage);

98 }

99

100 public void dibujar(String id, float x, float y, int ancho, int alto,

float angle, String pivot) {

101 OscBundle myBundle = new OscBundle();

102 OscMessage mensajeTransformado = new OscMessage("/display/DibujarDance");

103 idDisplay = ""; //ninguna pantalla pinta el dibujable (fuera de

las coordenadas de la pantalla total)

104 //Identificar el display que debe pintar el dibujable

105 for (int j = 1; j < displayList.length; j++)

64

106 {

107 if (pivot.equals("center")) {

108 if ((x + ancho/2) >= displayList[j].x && (x -ancho/2) <= (displayList[j].x

+ displayList[j].w)

109 && (y + alto/2) >= displayList[j].y && (y-alto/2) <= (displayList[j].y

+ displayList[j].h))

110 {

111 idDisplay = str(j);

112 PVector postTrasformada = new

PVector(abs(x),abs(y));//cambioCoordenadas (j, x, y);

113 mensajeTransformado.setAddrPattern("/display/DibujarDance");

114 mensajeTransformado.add(idDisplay);

115 mensajeTransformado.add(id);

116 mensajeTransformado.add(postTrasformada.x);

117 mensajeTransformado.add(postTrasformada.y);

118 mensajeTransformado.add(ancho);

119 mensajeTransformado.add(alto);

120 mensajeTransformado.add(angle);

121 if (pivot.equals("center"))

122 mensajeTransformado.add("C");

123 else

124 mensajeTransformado.add("E");

125 myBundle.add(mensajeTransformado);

126 mensajeTransformado.clear();

127 }

128 } else {

129 if ((x + ancho) >= displayList[j].x && x <= (displayList[j].x

+ displayList[j].w)

130 && (y + alto) >= displayList[j].y && y <= (displayList[j].y

+ displayList[j].h))

131 {

132 idDisplay = str(j);

133 PVector postTrasformada = new

PVector(abs(x),abs(y));//cambioCoordenadas (j, x, y);

134 mensajeTransformado.setAddrPattern("/display/DibujarB");

135 mensajeTransformado.add(idDisplay);

136 mensajeTransformado.add(id);

137 mensajeTransformado.add(postTrasformada.x);

138 mensajeTransformado.add(postTrasformada.y);

139 mensajeTransformado.add(ancho);

140 mensajeTransformado.add(alto);

141 mensajeTransformado.add(angle);

142 if (pivot.equals("center"))

143 mensajeTransformado.add("C");

144 else

145 mensajeTransformado.add("E");

146 myBundle.add(mensajeTransformado);

147 mensajeTransformado.clear();

148 }

149 }

150 }

151 mandarPaquete(myBundle);

152 }

153

154 PVector cambioCoordenadas(int id, float x, float y){

155 PVector resul = new PVector(0, 0);

65

156 //println("**cambio coordenadas**");

157 //println("original X=", x, " **** ", "y=",y);

158 //println("el display es", id, "***** x=", displaysClient.displayList[id].x, "

y=", displaysClient.displayList[id].y);

159 resul.x = abs(x - displaysClient.displayList[id].x);

160 resul.y = abs(y - displaysClient.displayList[id].y);

161 //println("cambiado X=", resul.x, " **** ", "y=", resul.y);

162 return resul;

163 }

164

165 public void connect() {

166 OscMessage m;

167 println("conectar");

168 m = new OscMessage("/" + tipo + "/connect", new Object[0]);

169 m.add(listenPort);

170 mandarMensaje(m);

171 delay(1000);

172 }

173

174 public void disconnect() {

175 OscMessage m;

176 m = new OscMessage("/" + tipo + "/disconnect", new Object[0]);

177 m.add(listenPort);

178 mandarMensaje(m);

179 println("disconneted");

180 }

181

182 void mandarMensaje(OscMessage myMessage) {

183 // send the message

184 oscP5.send(myMessage, myBroadcastLocation);

185 }

186

187 void mandarPaquete(OscBundle myMessage) {

188 // send the message

189 oscP5.send(myMessage, myBroadcastLocation);

190 }

 191

192 /* incoming osc message are forwarded to the oscEvent method. */

193 void oscEvent(OscMessage theOscMessage) {

194 mensajeRecibido(theOscMessage); //es necesarioque esta funcion este

imprementada en el main

195 }

196 }

66

67

 II.3. Proces Signals

1 boolean modoDebug = true;

2 float ubisenseOrigTime = 0;

3 float[] ubisenseOrigVal = new float[2];

4 public float[] getUbisenseOrig() {

5 if (modoDebug) {

6 float t = getTimeStamp();

7 if (t>ubisenseOrigTime+1000) {

8 ubisenseOrigTime = t;

9 ubisenseOrigVal[0] = mouseX;

10 ubisenseOrigVal[1] = mouseY; 11 }

12 return ubisenseOrigVal; 13 }

14 // Valores de los sensores

15 return null; 16 }

17

18 //////////////////

19 float[] ubiTimes = new float [2];

20 float[] ubiVals0 = new float [2];

21 float[] ubiVals1 = new float [2];

22 float ubiDifTime = 0;

23 float[] ubiDifVals = new float [2]; 24

25

26 public float getTimeStamp() {

27 return millis()+1000*(second()+60*(minute()+60*hour())); 28 }

29

30

31 public float[] getUbisense() {

32 float[] inNew = getUbisenseOrig();

33 float t = getTimeStamp();

34 if (inNew[0]!=ubiVals1[0] || inNew[1]!=ubiVals1[1]) {

35 ubiTimes[0] = ubiTimes[1];

36 ubiTimes[1] = t;

37 ubiVals0[0] = ubiVals1[0];

38 ubiVals0[1] = ubiVals1[1];

39 ubiVals1[0] = inNew[0];

40 ubiVals1[1] = inNew[1];

41 ubiDifTime = ubiTimes[1]-ubiTimes[0];

42 ubiDifVals[0] = ubiVals1[0]-ubiVals0[0];

43 ubiDifVals[1] = ubiVals1[1]-ubiVals0[1]; 44 }

45 float[] res = new float[2];

46 float lambda = 2*(t-ubiTimes[1])/ubiDifTime;

47 if (lambda>1) { lambda=1; }

48 res[0] = (1-lambda)*ubiVals0[0] + lambda*ubiVals1[0];

49 res[1] = (1-lambda)*ubiVals0[1] + lambda*ubiVals1[1];

50 return res; 51 }

52

53

54 ///////////// Procesado Xsens 55

56 float maxAccX = 12;

57 float minAccX = -12;

58 float maxAccY = 12;

68

59 float minAccY = -12;

60 float maxAccZ = 12;

61 float minAccZ = -12;

62 float pitchMax = 85;

63 float pitchMin = -85;

64

65 public float accXsens(float accX, float accY, float accZ){ 66

67 if(accX < minAccX){accX = minAccX;} //Ajuste alos maximos y minimos

68 if(accX > maxAccX){accX = maxAccX;}

69 if(accY < minAccY){accY = minAccY;}

70 if(accY > maxAccY){accY = maxAccY;}

71 if(accZ < minAccZ){accZ = minAccZ;}

72 if(accZ > maxAccZ){accZ = maxAccZ;}

73

74 if(accX > 0){accX = map(accX,0,maxAccX,0,50);} //mapeo devalores

75 if(accX < 0){accX = map(accX,0,minAccX,0,-50);}

76 if(accY > 0){accY = map(accY,0,maxAccY,0,50);}

77 if(accY < 0){accY = map(accY,0,minAccY,0,-50);}

78 if(accZ > 0){accZ = map(accZ,0,maxAccZ,0,50);}

79 if(accZ < 0){accZ = map(accZ,0,minAccZ,0,-50);} 80

81

82

83 float deltaAcc = sqrt(pow(accX,2)+pow(accY,2)+pow(accZ,2)); //calculo de la

intensidad de la aceleracion

84 return deltaAcc;

85

86

87 }

88

89

90

91 public float rotXsens(float pitch){ 92

93 if(pitch > pitchMax){pitch = pitchMax;}

94 if(pitch < pitchMin){pitch = pitchMin;}

95 if(pitch > 0){pitch = map(pitch,0,pitchMax,0,100);}

96 if(pitch < 0){pitch = map(pitch,0,pitchMin,0,-100);} 97

98 return pitch;

99

100 }

101

102

103 //float[] listaPosicionesX = new float[24];

104 //float[] listaPosicionesY = new float[24];

105

106 //float pct = 0.0; // Percentage traveled (0.0 to 1.0)

107 //float step = 0.02; // Size of each step along the path

108 //float exponent = 4;

109

110 ////float distX = sensorX - beginX; // X-axis distanceto move

111 //float distY = sensorY - beginY; // Y-axis distanceto move

112

113 //public void procesadoUbiSens(float posX, float posY){ 114

115 //for (int i=0; i<24; i++){ 116

117 // pct += (1/(24-i));

118 // if (pct < 1.0) {

119 // listaPosicionesX[i] = posX + (pct * distX);

120 // listaPosicionesY[i] = posY + (pow(pct, exponent) * distY);

69

121 // }

122 // }

123 // beginX=listaPosicionesX[23];

124 // beginY=listaPosicionesX[23];

125

126 //}

70

 Anexo III

 Display

 III.1. Pintar Dance

1 import ddf.minim.*;

2 import deadpixel.keystone.*;

3 import netP5.*;

4 import oscP5.*; 5

6 int RATE = 24;

7 int intAudioPosition;

8 int intBackGround; 9

10 //Sound

11 Minim sound;

12 AudioPlayer audio;

13 AudioListener audLis;

14 WaveRenderer wavRen;

15

16 //Dancers

17 Fan fan1;

18 float posX1;

19 float posY1;

20 //hands

21 int intTamanio1A;

22 int intTamanio1B;

23 int intRota1A;

24 int intRota1B;

25 Boolean blnRota1 = true;//si la rotacion es positiva (brazos arriba) o negativa

(brazos abajo)

26 Fan fan2;

27 float posX2;

28 float posY2;

29 //hands

30 int intTamanio2A;

31 int intTamanio2B;

32 int intRota2A;

33 int intRota2B;

34 Boolean blnRota2 = true;

35 Fan fan3;

36 float posX3;

37 float posY3;

38 //hands

71

39 int intTamanio3A;

40 int intTamanio3B;

41 int intRota3A;

42 int intRota3B;

43 Boolean blnRota3 = true;

44

45 ArrayList<Part> arrPart;

46 int intDrops;

47 int intBubbles;

48 int intFadeFactorStart, intFadeFactorEnd;

49 ArrayList<PVector> arrStartEndPoints;

50 int intLines;

51 int intTreads;

52 // 1, 2, 3, 5, 8, 13, 21, 34

53

54 int[] intDeform = {515,516,518,521,526,534,547,555,568,578,590,602};

55 int[] intPulse = {2,3,5,8,13,21,34,55,89,144};

56 float fltFactorTam = 0.6f; 57

58 Rain rain;

59 Bubbles bubbles;

60 Traces traces1;

61 Traces traces2;

62 Traces traces3;

63 FadeCurtain fadeCurtain;

64 SmokeCA smoke1;

65 SmokeCA smoke2;

66 SmokeCA smoke3;

67 OrganicMesh organicMesh;

68 WaveOnSphere wave; 69

70 //virtual screen Draw

71 Displays displaysClient;

72 int ID=2;

73 Keystone ks;

74 CornerPinSurface surface;

75 PGraphics offscreen;

76 boolean calibration=false;

77 PImage calibrationSheet ; 78

79 void setup() 80 {

81 size(1280, 768, P3D);

82 frameRate(RATE);

83 smooth(); 84

85 displaysClient = new Displays("display");

86 displaysClient.id=ID; 87

88 ks = new Keystone(this);

89 surface = ks.createCornerPinSurface(width, height, 20);

90 // We need an offscreen buffer to draw the surface we

91 // want projected

92 // note that we're matching the resolution of the

93 // CornerPinSurface.

94 // (The offscreen buffer can be P2D or P3D)

95 offscreen = createGraphics(width, height, P2D);

96 // loads the saved layout

97 XML f = loadXML("keystoneDance2.xml"); 98

99 if (f != null) {

100 ks.load("keystoneDance2.xml");

101 }

102 else println("no existe");

72

103 calibrationSheet = loadImage("calibration.png"); 104

105 // Load a soundfile from the /data folder of the sketch and play it back

106 sound = new Minim(this);

107 audio = sound.loadFile("audio.mp3");

108 wavRen = new WaveRenderer(); 109

110 initialize(); 111

112 colorMode(RGB, 255);

113 } 114

115 void initialize(){

116 intAudioPosition=0;

117 intBackGround=0; 118

119 //Dancers

120 posX1=0;

121 posY1=0;

122 intTamanio1A=0;

123 intTamanio1B=0;

124 fan1 = new Fan(posX1,posY1);

125 posX2=0;

126 posY2=0;

127 intTamanio2A=0;

128 intTamanio2B=0;

129 fan2 = new Fan(posX2,posY2);

130 posX3=0;

131 posY3=0;

132 intTamanio3A=0;

133 intTamanio3B=0;

134 fan3 = new Fan(posX3,posY3);

135

136 arrPart = new ArrayList<Part>();

137 arrPart.add(new Part(1,"rain",1,147));//min-> 0:01 - 2:28

138 arrPart.add(new Part(2,"rainTransition",148,161));//min-> 2:29 - 2:55

139 arrPart.add(new Part(3,"bubbles",162,257));//min-> 2:56 - 4:17

140 arrPart.add(new Part(4,"camBubblesTransition",258,305));//min-> 4:18 - 4:45

141 //JCC

142 arrPart.add(new Part(5,"traces",306,395));//min-> 4:46 - 6:35

143 arrPart.add(new Part(6,"fadeCurtain",396,422));//min-> 6:36 - 7:02

144 arrStartEndPoints = new ArrayList<PVector>();

145 for(int i=1; i<= 3; i++){

146 Part p = arrPart.get(5);

147 intFadeFactorStart = p.intInitTime+(int((p.intEndTime-p.intInitTime)/3)*(i-

1));//396-404-412

148 intFadeFactorEnd = p.intInitTime+(int((p.intEndTime-p.intInitTime)/3)*i)+1;

//404-412-420

149 arrStartEndPoints.add(new PVector(i,intFadeFactorStart,intFadeFactorEnd));

150 }

151 //JCC

152 arrPart.add(new Part(7,"smoke",420,464));//min-> 7:03 - 7:44

153 arrPart.add(new Part(8,"createMesh",465,514));//min-> 7:45 - 8:34 154

 arrPart.add(new Part(9,"meshSphere",515,619));//min-> 8:35 - 10:19

155 rain = new Rain();

156 bubbles = new Bubbles();

157 traces1 = new Traces();

158 traces2 = new Traces();

159 traces3 = new Traces();

160 fadeCurtain = new FadeCurtain();

161 smoke1 = new SmokeCA();

162 smoke2 = new SmokeCA();

73

163 smoke3 = new SmokeCA();

164 organicMesh = new OrganicMesh();

165 wave = new WaveOnSphere();

166

167 intDrops=0;

168 intBubbles=0;

169 intFadeFactorStart=0;

170 intFadeFactorEnd=0;

171 intLines=0;

172 intTreads=0;

173 } 174

175 void draw(){

176 // Convert the mouse coordinate into surface coordinates

177 // this will allow you to use

mouse events inside the// surface from

your screen.

179

180 PVector surfaceMouse = surface.getTransformedMouse(); 181

182 // Draw the scene, offscreen

183 offscreen.beginDraw(); 184

185 receiveMessage();

186 intAudioPosition = int(audio.position()/1000);

187 //println("Audio time: "+intAudioPosition);

188 for(int i = 0; i<arrPart.size();i++){

189 Part p = arrPart.get(i);

190 if(p.intInitTime<=intAudioPosition && p.intEndTime>intAudioPosition){

191 switch(p.intId){

192 case 1:

193 //println("rain");

194 if(intDrops<rain.maxDrops){

195 intDrops = int(map(intAudioPosition, p.intInitTime, int(p.

intEndTime/2), 0, rain.maxDrops));

196 } else {

197 intDrops=rain.maxDrops;

198 }

199 rain.display(intDrops, false, fan1, fan2, fan3);//rain

200 if(displaysClient.id==2){//only central display

201 //Inlcuye el pulso de los fan

202 for(int k=0;k<intPulse.length;k++){

203 if(((intAudioPosition%intPulse[k])==0)&&intAudioPosition<p.

intEndTime){

204 if(frameCount%int(RATE)==0){

205 intTamanio1A += fan1.intMaxFanSize*fltFactorTam;

206 intTamanio1B += fan1.intMaxFanSize*fltFactorTam;

207 intTamanio2A += fan2.intMaxFanSize*fltFactorTam;

208 intTamanio2B += fan2.intMaxFanSize*fltFactorTam;

209 intTamanio3A += fan3.intMaxFanSize*fltFactorTam;

210 intTamanio3B += fan3.intMaxFanSize*fltFactorTam;

211 }

212 }

213 }

214 //Ajusta posiciones a la pantalla

215 posX1 = posX1-100;

216 posY1 = posY1 - ((posY1)*(((intRota1A+intRota1B)/2)/100.0));

217 posX2 = posX2-60;

218 posY2 = posY2 - ((posY2)*(((intRota2A+intRota2B)/2)/100.0));

219 posX3 = posX3-20;

74

220 posY3 = posY3 - ((posY3)*(((intRota3A+intRota3B)/2)/100.0));

221 //Envia los datos ajustados para pintar el objeto

222 fan1.display(posX1,posY1-100,int((intTamanio1A+intTamanio1B)/2));

223 fan1.update(posX1,posY1-100);

224 fan2.display(posX2,posY2-100,int((intTamanio2A+intTamanio2B)/2));

225 fan2.update(posX2,posY2-100);

226 fan3.display(posX3,posY3-100,int((intTamanio3A+intTamanio3B)/2));

227 fan3.update(posX3,posY3-100);

228 }

229 break;

230 case 2:

231 //println("rainTransition");

232 //Fade black to white backgroud

233 rain.display(int(rain.maxDrops*0.9), true, fan1, fan2, fan3);

234 break;

235 case 3://println("bubbles");

236 if(intBubbles<bubbles.intMaxBubbles){

237 intBubbles = int(map(intAudioPosition, p.intInitTime, int(p.

intInitTime+((p.intEndTime-p.intInitTime)/4)), bubbles.intMinBubbles, bubbles.

intMaxBubbles));

238 } else {

239 intBubbles=bubbles.intMaxBubbles;

241 }

242 //Si la rotacion es positiva (brazos arriba), zoomIn

243 //sino (brazos abajo), zoomOut

244 //Se cambia la velocidad de movimiento en funcion de la aceleracion

245 if(((intRota2A+intRota2B)/2)>0){

246 blnRota2 = true;

247 } else {

248 blnRota2 = false;

249 }

250 //ajusta los datos de la pantalla

251 //posY2 = posY2 - ((posY2)*(((intRota2A+intRota2B)/2)/100.0));

252 //envia los datos ajustados para pintar

253 bubbles.display(intBubbles, posX2, posY2, false, blnRota2, int

((intTamanio2A+intTamanio2B)/2));

254 break;

255 case 4:

256 //println("bubblesTransition");

257 if(intBubbles>0){

258 intBubbles = int(map(intAudioPosition, p.intInitTime, p.intEndTime-1,

bubbles.intMaxBubbles, 0));

259 } else {

260 intBubbles=0;//bubbles.intMinBubbles;

261 }

262 if(((intRota2A+intRota2B)/2)>0){

263 blnRota2 = true;

264 } else {

265 blnRota2 = false;

266 }

267 bubbles.display(intBubbles, posX2, posY2, false, blnRota2, int

((intTamanio2A+intTamanio2B)/2));

268 break;

269 case 5:

270 //println("traces");

271 if(displaysClient.id==2){//only central display

272 traces1.display(posX1+100, posY1+300);

75

273 traces2.display(posX2+200, posY2+300);

274 traces3.display(posX3+500, posY3+300);

275 } else {

276 offscreen.noStroke();

277 offscreen.fill(255,12);

278 offscreen.rect(0,0,width,height);

279 }

280 break;

281 case 6:

282 //println("fadeCurtain");

283 //Barrido De fondo blanco a fondo negro de 396 a 422 segundos

284 intFadeFactorStart = int(arrStartEndPoints.get(ID-1).y);

285 intFadeFactorEnd = int(arrStartEndPoints.get(ID-1).z);

286 switch(int(arrStartEndPoints.get(ID-1).x)){

287 case 2:

288 intFadeFactorStart -= 1;

289 break;

290 case 3:

291 intFadeFactorStart -= 2;

292 break;

293 default:

294 break;

295 }

296 if(intFadeFactorStart<=intAudioPosition &&

intFadeFactorEnd>intAudioPosition){

297 if(intLines<width){

298 intLines = int(map(intAudioPosition, intFadeFactorStart,

intFadeFactorEnd, 10, width));

299 } else {

300 intLines=width;

301 }

302 println(intLines);

303 fadeCurtain.display(intLines);

304 }

305 break;

306 case 7:

307 //println("smoke");

308 if(displaysClient.id==2){//only central display

309 if (intAudioPosition<(p.intEndTime-7)){

310 smoke1.display(posX1, posY1+400, false);

311 smoke2.display(posX2, posY2+400, false);

312 smoke3.display(posX3, posY3+400, false);

313 } else {

314 smoke1.display(posX1, posY1+400, true);

315 smoke2.display(posX2, posY2+400, true);

316 smoke3.display(posX3, posY3+400, true);

317 }

318 } else {

319 offscreen.noStroke();

320 offscreen.fill(5, 15);

321 offscreen.rect(0, 0, width, height);

322 }

323 break;

324 case 8:

325 //println("createMesh");

326 if(intTreads<organicMesh.intMaxTreads){

327 intTreads = int(map(intAudioPosition, p.intInitTime, p.intEndTime, 0,

76

organicMesh.intMaxTreads));

328 } else {

329 intTreads=organicMesh.intMaxTreads;

330 }

331 //ajusta los datos de la pantalla

332 posY2 = posY2 - ((posY2)*(((intRota2A+intRota2B)/2)/100.0));

333 //envia los datos ajustados para pintar

334 organicMesh.display(posX2, posY2, intTreads);

335 break;

336 case 9:

337 //println("meshSphere");

338 if(displaysClient.id==2){//only central display

339 wave.display(wave.intValor1, wave.intValor1);

340 for(int k=0;k<intDeform.length;k++){

341 if(((intAudioPosition%intDeform[k])==0)&&intAudioPosition<p.

intEndTime){

342 if(frameCount%int(RATE)==0){

343 wave.change(posX2, posY2);

344 }

345 }

346 }

347 } else {

348 offscreen.background(0) ;

349 }

350 break;

351 default:

352 supendAll();

353 break;

354 }

355 }

356 } 357

358 if(intAudioPosition>=618){

359 supendAll();

360 } 361

362 if (calibration) offscreen.image(calibrationSheet,0,0,width,height);

363 offscreen.endDraw(); 364

365 // most likely, you'll want a black background to minimize

366 // bleeding around your projection area

367 background(0); 368

369 // render the scene, transformed using the corner pin surface

370 surface.render(offscreen); 371

372 } 373

374 void supendAll(){

375 audio.removeListener(wavRen);

376 audio.pause();

377 audio.rewind();

378 initialize();

379 offscreen.fill(0,255);

380 offscreen.rect(0,0,width,height);

381 } 382

383 void changeTo(int intMillis){

384 if (audio.isPlaying()){

385 supendAll();

386 startIn(intMillis);

387 } else {

388 startIn(intMillis);

389 }

77

390 } 391

392 void startIn(int intMillis){

393 audio.play(intMillis);

394 audio.addListener(wavRen);

395 } 396

397 void stop(){

398 // always close Minim audio classes when you are done with them

399 audio.close();

400 sound.stop();

401 super.stop();

402 } 403

404 void receiveMessage(){

405 if((int(posX1)==0||int(posX1)==1280)&&int(posY1)==0){

406 //println("1 no play");

407 intTamanio1A=0;

408 intTamanio1B=0;

409 } else {

410 if(intTamanio1A>fan1.intMaxFanSize){intTamanio1A=fan1.intMaxFanSize;}

411 if(intTamanio1A<fan1.intMinFanSize){intTamanio1A=fan1.intMinFanSize;}

412 if(intTamanio1B>fan1.intMaxFanSize){intTamanio1B=fan1.intMaxFanSize;}

413 if(intTamanio1B<fan1.intMinFanSize){intTamanio1B=fan1.intMinFanSize;}

414 }

415 if((int(posX2)==0||int(posX2)==1280)&&int(posY2)==0){

416 //println("2 no play");

417 intTamanio2A=0;

418 intTamanio2B=0;

419 } else {

420 if(intTamanio2A>fan2.intMaxFanSize){intTamanio2A=fan2.intMaxFanSize;}

421 if(intTamanio2A<fan2.intMinFanSize){intTamanio2A=fan2.intMinFanSize;}

422 if(intTamanio2B>fan2.intMaxFanSize){intTamanio2B=fan2.intMaxFanSize;}

423 if(intTamanio2B<fan2.intMinFanSize){intTamanio2B=fan2.intMinFanSize;}

424 }

425 if((int(posX3)==0||int(posX3)==1280)&&int(posY3)==0){

426 //println("3 no play");

427 intTamanio3A=0;

428 intTamanio3B=0;

429 } else {

430 if(intTamanio3A>fan3.intMaxFanSize){intTamanio3A=fan3.intMaxFanSize;}

431 if(intTamanio3A<fan3.intMinFanSize){intTamanio3A=fan3.intMinFanSize;}

432 if(intTamanio3B>fan3.intMaxFanSize){intTamanio3B=fan3.intMaxFanSize;}

433 if(intTamanio3B<fan3.intMinFanSize){intTamanio3B=fan3.intMinFanSize;}

434 }

435 } 436

437 void mensajeRecibido(OscMessage theOscMessage){

438 //println("THE_OSC_MESSAGE=", theOscMessage.addrPattern());

439 if(theOscMessage.addrPattern().equals("/display/BeginDrawDance")){

440 println("Start draw: ", theOscMessage.addrPattern());

441 if (theOscMessage.get(0).stringValue().contains(str(displaysClient.id))) {

442 String strPart = theOscMessage.get(1).stringValue();

443 resolveKey(strPart.charAt(0));

444 }

445 }

446

447 if(theOscMessage.addrPattern().equals("/display/EndDrawDance")){

448 println("Stop draw: ", theOscMessage.addrPattern());

449 supendAll();

450 }

78

451 if (theOscMessage.addrPattern().equals("/display/DibujarDance")){

452 if (theOscMessage.get(0).stringValue().contains(str(displaysClient.id))) {

453 if(theOscMessage.get(1).stringValue().equals("tag089")){

454 posX1 = theOscMessage.get(2).floatValue();

455 posY1 = theOscMessage.get(3).floatValue();

456 //println(frameCount+" -> Dancer 1 posX: " + posX1 +" posY: " + posY1);

457 }

458 if(theOscMessage.get(1).stringValue().equals("tag143")){

459 posX2 = theOscMessage.get(2).floatValue();

460 posY2 = theOscMessage.get(3).floatValue();

461 println(frameCount+" -> Dancer 2 posX: " + posX2 +" posY: " + posY2);

462 }

463 if(theOscMessage.get(1).stringValue().equals("tag248")){

464 posX3 = theOscMessage.get(2).floatValue();

465 posY3 = theOscMessage.get(3).floatValue();

466 //println(frameCount+" -> Dancer 3 posX: " + posX3 +" posY: " + posY3);

467 }

468 if(theOscMessage.get(1).stringValue().equals("xSens20")){

469 //recibe valores entre 1 y 100, es decir, entre 1% y 100%

470 intTamanio1A = int(theOscMessage.get(2).floatValue());

471 intRota1A = int(theOscMessage.get(3).floatValue());

472 //println(frameCount+" -> Dancer 1 valor1: "+ theOscMessage.get(2).

floatValue()+ "\tTam=" +intTamanio1A);

473 }

474 if(theOscMessage.get(1).stringValue().equals("xSens21")){

475 intTamanio1B = int(theOscMessage.get(2).floatValue());

476 intRota1B = int(theOscMessage.get(3).floatValue());

477 //println(frameCount+" -> Dancer 1 valor2: "+ theOscMessage.get(2).

floatValue()+ "\tTam=" +intTamanio1B);

478 //println(frameCount+" -> Dancer 1 valor2: "+ theOscMessage.get(2).

floatValue()+ "\tTam=" +intTamanio1B);

479 }

480 if(theOscMessage.get(1).stringValue().equals("xSens22")){

481 intTamanio2A = int(theOscMessage.get(2).floatValue());

482 intRota2A = int(theOscMessage.get(3).floatValue());

483 //println(frameCount+" -> Dancer 2 valor1: "+ theOscMessage.get(2).

floatValue()+ "\tTam=" +intTamanio2A);

484 //println(frameCount+" -> Dancer 2 rota1: "+ theOscMessage.get(3).

floatValue()+ "\tTam=" +intRota2A);

485 }

486 if(theOscMessage.get(1).stringValue().equals("xSens23")){

487 intTamanio2B = int(theOscMessage.get(2).floatValue());

488 intRota2B = int(theOscMessage.get(3).floatValue());

489 //println(frameCount+" -> Dancer 2 valor2: "+ theOscMessage.get(2).

floatValue()+ "\tTam=" +intTamanio2B);

490 //println(frameCount+" -> Dancer 2 rota2: "+ theOscMessage.get(3).

floatValue()+ "\tTam=" +intRota2B);

491 }

492 if(theOscMessage.get(1).stringValue().equals("xSens24")){

493 intTamanio3A = int(theOscMessage.get(2).floatValue());

494 intRota3A = int(theOscMessage.get(3).floatValue());

495 //println(frameCount+" -> Dancer 3 valor1: "+ theOscMessage.get(2).

floatValue()+ "\tTam=" +intTamanio3A);

496 }

497 if(theOscMessage.get(1).stringValue().equals("xSens25")){

498 intTamanio3B = int(theOscMessage.get(2).floatValue());

499 intRota3B = int(theOscMessage.get(3).floatValue());

79

500 //println(frameCount+" -> Dancer 3 valor2: "+ theOscMessage.get(2).

floatValue()+ "\tTam=" +intTamanio3B);

501 }

502 }

503 }

504 } 505

506 void keyPressed() {

507 resolveKey(key);

508 } 509

510 void resolveKey(char cKey) {

511 switch(cKey) {

512 case 'c':

513 // enter/leave calibration mode, where surfaces can be warped

514 // and moved

515 calibration=!calibration;

516 ks.toggleCalibration();

517 if (calibration==false) {ks.save("keystoneDance2.xml");

518 supendAll();

519 noLoop();

520 } else {

521 loop();

522 intBackGround=0;

523 changeTo(1000);

525 }

526 break;

527 case ESC:

528 displaysClient.disconnect();

529 this.stop();

530 break;

531 case '1'://rain

532 intBackGround=0;

533 changeTo(1000);

534 break;

535 case '2'://rainTransition

536 intBackGround=0;

537 changeTo(148000);

538 break;

539 case '3'://bubbles

540 intBackGround=255;

541 changeTo(162000);

542 break;

543 case '4'://camBubblesTransition

544 intBackGround=255;

545 changeTo(258000);

546 break;

547 case '5'://traces

548 intBackGround=255;

549 changeTo(306000);

550 break;

551 case '6'://fadeCurtain

552 intBackGround=255;

553 changeTo(396000);

554 break;

555 case '7'://smoke

556 intBackGround=0;

557 changeTo(423000);

558 break;

80

559 case '8'://createMesh

560 intBackGround=0;

561 changeTo(465000);

562 break;

563 case '9'://meshSphere

564 intBackGround=0;

565 changeTo(515000);

566 break;

567 case 32:

568 intBackGround=0;

569 changeTo(0);

570 break;

571 }

572 }

81

 III.2. Bubble

1 class Bubble{

2 float ZSTEP = 0.008;

3 float RADIUS = height/10;

4 float SPEED = 0.001;

5 int intMaxSize=80;

6 int intMinSize=30;

7 PVector vecPosition;

8 PVector vecSpeed;

9 int intSize;

10 color colBubble;

11 color

colShaded; 12

13 Bubble(float x, float y, float z){

14 this.vecPosition = new PVector(x,y,z);

15 setColor();

16 this.vecSpeed = new PVector(random(-1.0, 1.0),random(-1.0, 1.0),random(-1.0,

1.0));

17 float magnitude = sqrt(pow(this.vecSpeed.x,2)+pow(this.vecSpeed.y,2)+pow(this.

vecSpeed.z,2));

18 this.vecSpeed.mult(SPEED/magnitude);

19 this.intSize = int(random(intMinSize,intMaxSize));

20 }

21

22 float getFltZ(){

23 return this.vecPosition.z;

24 }

25

26 void setColor() {

27 float shade = this.vecPosition.z;

28 float shadeinv = 1.0-shade;

29 this.colShaded = color((red(this.colBubble)*shade)+(red(255)*shadeinv),

30 (green(this.colBubble)*shade)+(green(255)*shadeinv),

31 (blue(this.colBubble)*shade)+(blue(255)*shadeinv)); 32 }

33

34 void display(float xoffs, float yoffs, int intZoom){

35 float a = pow(this.vecPosition.z,2);

36 float posX = (intZoom*this.vecPosition.x*width*(1+a))- intZoom*xoffs*width*a;

37 float posY = (intZoom*this.vecPosition.y*height*(1+a))-

intZoom*yoffs*height*a;

38 float radius = this.intSize+(this.vecPosition.z*RADIUS);

39 float diam =

RADIUS*2; 40

41 if (posX > -diam && posX < width+diam

42 && posY > -diam && posY < height+diam) {

43 blurred_circle(posX, posY, radius);

44 }

45 }

46

47 //void blurred_circle(){

82

48 void blurred_circle(float xx, float yy, float rr){

49 offscreen.noStroke();

50 offscreen.fill(50, 150);

51 offscreen.ellipse(xx, yy, rr, rr);

52 offscreen.fill(230, 50);

53 offscreen.pushMatrix();

54 offscreen.translate(xx, yy);

55 offscreen.rotate(radians(40));

56 offscreen.ellipse(-35, -15, 10, 30);

57 offscreen.popMatrix();

58 }

59

60 void zoomIn(float step) {

61 this.vecPosition.z += step;

62 if (this.vecPosition.z > 1.0) {

63 this.vecPosition.z = 0.0 + (this.vecPosition.z-1.0); 64

 }

65 }

66

67 void zoomOut(float step) {

68 this.vecPosition.z -= step;

69 if (this.vecPosition.z < 0.0) {

70 this.vecPosition.z = 1.0 - (0.0-this.vecPosition.z); 71

 }

72 }

73

74 void update(boolean doZoomIn, boolean doZoomOut, float fltAcceleration){

75 float fltzStep = ZSTEP + (5*(ZSTEP*(fltAcceleration)));

76 if (doZoomIn) {

77 zoomIn(fltzStep); 78

 }

79 if (doZoomOut) {

80 zoomOut(fltzStep); 81 }

82 if (this.vecPosition.x <= 0) {

83 this.vecSpeed.x = abs(this.vecSpeed.x);

84 this.vecPosition.x = 0.0f; 85

 }

86 if (this.vecPosition.x >= 1.0) {

87 this.vecSpeed.x = -1.0 * abs(this.vecSpeed.x);

88 this.vecPosition.x = 1.0; 89

 }

90 if (this.vecPosition.y <= 0) {

91 this.vecSpeed.y = abs(this.vecSpeed.y);

92 this.vecPosition.y = 0.0f; 93

 }

94 if (this.vecPosition.y >= 1.0) {

95 this.vecSpeed.y = -1.0 * abs(this.vecSpeed.y);

96 this.vecPosition.y = 1.0; 97

 }

98 if (this.vecPosition.z < 0 || this.vecPosition.z > 1.0) {

99 this.vecPosition.z = this.vecPosition.z% 1.0;

100 }

101 //this.vecPosition.add(this.vecSpeed);

102 this.vecPosition.x += this.vecSpeed.x;

103 this.vecPosition.y += this.vecSpeed.y;

104 this.setColor();

105 }

83

106

107 void move(){

108 float time = frameCount*0.0001f;

109 float cy = map(sin(time), -1, 1, -height / 4, height / 4);

110 //this.velocity.y = cy;

111 this.vecPosition.add(this.vecSpeed);

112 }

113

114 void wallCollide(){

115 int intRatio = int(this.intSize/2);

116 if(this.vecPosition.x-intRatio < 0 || this.vecPosition.x+intRatio > width){

117 this.vecSpeed.x *= -1;} else if(this.vecPosition.y-intRatio < 0 ||

this.vecPosition.y+intRatio > height){

118 this.vecSpeed.y *= -1;

120 }

121 }

122 }

84

 III.3. Bubbles

1 class Bubbles{

2 int intZoom = 2;

3 int intMinBubbles = 50;

4 int intMaxBubbles = 300;

5 ArrayList<Bubble> arrBubbles;

6 float xoffs = 0;

7 float yoffs = 0;

8 float fltFactor = 0.03;

9 int intDesfase = 300;

10 float fltAjusteX;

11 float fltAjusteY;

12 boolean zoomIn = false;

13 boolean zoomOut =

false; 14

15 Bubbles(){

16 arrBubbles = new ArrayList<Bubble>();

17 Bubble b;

18 float posX, posY, posZ;

19 for(int i = 0; i < intMaxBubbles; i++){

20 posX = random(1.0f);

21 posY = random(1.0f);

22 posZ = random(1.0f);

23 b = new Bubble(posX, posY, posZ);

24 arrBubbles.add(b);

25 }

26

 sortBubbles();

27 }

28

29 void sortBubbles() {

30 // Sort them (this ensures that they are drawn in the right order)

31 float last = 0;

32 ArrayList temp = new ArrayList();

33 for (int i=0; i<intMaxBubbles; i++) {

34 int index = 0;

35 float lowest = 100.0;

36 for (int j=0; j<intMaxBubbles; j++) {

37 Bubble current = (Bubble)arrBubbles.get(j);

38 if (current.getFltZ() < lowest && current.getFltZ() > last) {

39 index = j;

40 lowest = current.getFltZ(); 41

 }

42 }

43 temp.add(arrBubbles.get(index));

44 last = ((Bubble)arrBubbles.get(index)).getFltZ(); 45 }

46 arrBubbles =

temp; 47 }

48

49 void display(int numBubbles, float fltPosX, float fltPosY, boolean

85

blnTransition, boolean blnZoom, int intAcelera){

50 offscreen.fill(255,255);

51 offscreen.rect(0,0,width,height);

52

53 fltAjusteX = intDesfase*(sin(frameCount*fltFactor*PI/4));

54 fltAjusteY = intDesfase*(cos(frameCount*fltFactor*PI/4));

55 //if (numBubbles==intMaxBubbles){

56 //if(fltAjusteX<0&&fltAjusteY<0){

57 if(blnZoom){//Brazos arriba

58 zoomIn=true;

59 zoomOut=false;} else {

60 zoomIn=false;

61 zoomOut=true; 63 }

64 //}

65 fltPosX+=fltAjusteX;

66 fltPosY+=fltAjusteY; 67

68 xoffs = xoffs*0.9 + 0.1*fltPosX/width;

69 yoffs = yoffs*0.9 + 0.1*fltPosY/height;

70 //println("xoffs: "+ xoffs + "\tyoffs " +yoffs); 71

72 for (int i=0; i<intMaxBubbles; i++) {

73 Bubble current = (Bubble)arrBubbles.get(i);

74 //println("intAcelera: "+intAcelera);

75 current.update(zoomIn, zoomOut, intAcelera/100.0); 76 }

77

78 sortBubbles(); 79

80 for(int i = 0; i < numBubbles; i++){

81 Bubble b = arrBubbles.get(i); 82

 //b.move();

83 //b.wallCollide();

84 if(!blnTransition){

85 b.display(xoffs, yoffs, intZoom); 86 }

87 }

88 }

89 }

86

 III.4. Displays

1 class Displays{

2 OscP5 oscP5;

3 NetAddress myBroadcastLocation; 4

5 //String remoteIP="127.0.0.1";

6 String remoteIP="192.168.0.2";

7 int listenPort=12001; // el puerto en el que se queda escuchando mensajes del

broadcaster

8

9 private String tipo; //Posibles valores: host, sensor o display

10 public int id; 11

12 public class Display {

13 public int x;

14 public int y;

15 public int w;

16 public int h; 17 }

18

19 Displays(String tipo) {

20 this.tipo = tipo;

21 // OSC, aqui esta el puerto donde escucha mensajes 22

23 oscP5 = new OscP5(this,listenPort);

24 // set the remote location to be the localhost on port 25

26 myBroadcastLocation = new NetAddress(remoteIP,33000);

27 connect(); 28

 }

29

30 public void connect() {

31 OscMessage m;

32 println("conectar");

33 m = new OscMessage("/" + tipo + "/connect",new Object[0]);

34 m.add(listenPort);

35 OscP5.flush(m,myBroadcastLocation); 36

 }

37

38 public void disconnect() {

39 OscMessage m;

40 m = new OscMessage("/" + tipo + "/disconnect",new Object[0]);

41 m.add(listenPort);

42 OscP5.flush(m,myBroadcastLocation);

43 println("disconneted"); 44 }

45

46 void mandarMensaje(OscMessage myMessage) {

47 // send the message

48 oscP5.send(myMessage, myBroadcastLocation); 49 }

50

51 /* incoming osc message are forwarded to the oscEvent method. */

52 void oscEvent(OscMessage theOscMessage) {

53 mensajeRecibido(theOscMessage); //es necesarioque esta funcion este

imprementada en el main

54 }

55 }

87

 III.5. Drop

1 class Drop{

2 PVector vecOrigin = new PVector(0, 0);

3 PVector vecPosition;

4 PVector vecSpeed;

5 float speedFactor = 8.0f;

6 float z, onde, d, d1;

7 float accFactor = 0.01f;

8 float accFactor2 = 0.5f;

9 boolean s;

10 color myColor;

11

12 Drop(int x,int y, int z, int d){

13 this.vecOrigin = new PVector(x,y);

14 this.vecPosition = new PVector(x,y);

15 this.vecSpeed = new PVector(0,0);

16 this.d=d;

17 this.z=z;

18 onde=0;

19 d1=d;

20 myColor = color(255);

21 this.vecSpeed = new PVector(0,0);

22 }

23

24 void fall(Boolean blnWithOnde){

25 if(this.vecPosition.y > 0.0f){

26 if(blnWithOnde){

27 this.vecSpeed.y+=accFactor;

28 } else {

29 this.vecSpeed.y+=accFactor2; 30

 }

31 }

32 offscreen.stroke(myColor,map(z,0,height,0,255));

33 offscreen.strokeWeight(2);

34 if (this.vecPosition.y<z){

35 this.vecPosition.y=this.vecPosition.y+this.vecSpeed.y+speedFactor;

36 this.vecPosition.x=this.vecPosition.x+this.vecSpeed.x;

37 offscreen.line(this.vecPosition.x,this.vecOrigin.y,this.vecPosition.x,this.

vecPosition.y);

38 this.vecOrigin.y=this.vecPosition.y;

39 } else {

40 offscreen.noFill();

41 offscreen.stroke(175,175,175,175-map(onde,0,d,0,255));

42 offscreen.strokeWeight(map(onde,0,d,0,4));

43 d=d1+(this.vecPosition.y-height)*4;

44 //if(blnWithOnde){offscreen.ellipse(this.vecPosition.x,this.vecPosition.y,

onde/5,onde/20);}

45 onde=onde+7;

46 if(onde>d){

47 onde=0;

88

48 this.vecSpeed.x=0;

49 this.vecSpeed.y=0;

50 this.vecPosition.x=int(random(width));

51 this.vecPosition.y=-int(random(height*2));

52 this.vecOrigin.y=this.vecPosition.y; 53

 d=d1;

54 }

55 }

56 }

57

58 void wind(float fltPosX, float fltPosY, int fltFanSize, float fltFanSpeed){

59

60 float fltDistance = dist(fltPosX,fltPosY,this.vecPosition.x,this.vecPosition.

y);

61 float fltRat = atan2(fltPosY-this.vecPosition.y,fltPosX-this.vecPosition.x)+P;I

62

63 if(fltDistance < fltFanSize){

64 this.vecSpeed.x = this.vecSpeed.x + (fltDistance * cos(fltRat))/

(100/fltFanSpeed);

65 this.vecSpeed.y = this.vecSpeed.y + (fltDistance * sin(fltRat))/

(100/fltFanSpeed);

66 }

67 }

68 }

89

 III.6. Fade Curtain

1 class FadeCurtain{

2 int lines;

3 float fade;

4 int difAngle; //velocity

5 int num; //number of points in a row (or column)

6 color cor; //main color

7 int mX, mY; //variables used to allows changing the main color 8

9 FadeCurtain(){

10 difAngle = 9;

11 num = 10;

12 lines=0;

13 fade =0; 14 }

15

16 void display(int numLines){

17 cor = color(0);

18 lines += 9;

19 fade += 1.5f; 20

21 //draw background

22 offscreen.fill(255);

23 offscreen.rect(0,0,lines,height); 24

25 for (int i = 0; i < lines; i +=2){

26 offscreen.strokeWeight(2);

27 offscreen.stroke(cor, map(i, 0, lines, 255, fade));

28 offscreen.line(i, 0, i, height); 29 }

30

31 //draw the pattern

32 //float cellsize = lines / (num - 1);

33 float cellsize = height;

34 int circleNumber = 0;

35 for (int i=0; i<num; i++) 36 {

37 for (int j=0; j<num; j++)

38 {

39 circleNumber++; 40

41 float tx = cellsize * i;

42 float ty = cellsize * j; 43

44 movingCircle(tx, ty, cellsize, circleNumber); 45 }

46 }

47 }

48

49 void movingCircle(float x, float y, float size, int circleNum){

50 float finalAngle = millis()/100 + circleNum;

51 float tempX = x + (size / 2) * sin(PI / difAngle * finalAngle);

52 float tempY = y + (size / 2) * cos(PI / difAngle * finalAngle); 53

54 offscreen.noStroke();

55 offscreen.fill(cor, circleNum/10);

56 ellipse(tempX, tempY, 7, size*8); 57

58 offscreen.fill(cor, circleNum/6);

59 ellipse(tempX, tempY, 5, size*5); 60 }61 }

90

 III.7. Fan

1 class Fan {

2 private float fltFanSpeed = 1;//0.01;

3 private int intFanSize = 0;

4 private int intMinFanSize = 20;

5 private int intMaxFanSize = 70;

6 PVector vecPosition;

7 float fltRotation;

8 color myColor; 9

10

11 int intCount = 0;

12 PVector vecPosition2;

13 PVector vecNewPosition;

14 ArrayList<PVector> arrPositions;

15 int intConta;

16 float fltFrameRate = RATE;

17 boolean blnDebug = false; 18

19 Fan(float fltPosX, float fltPosY) {

20 this.vecPosition = new PVector(fltPosX, fltPosY);

21 vecPosition2 = new PVector(0,0);

22 arrPositions = new ArrayList<PVector>();

23 for (int a = 0; a<=int(fltFrameRate); a++){

24 arrPositions.add(new PVector(0,0)); 25 }

26 }

27

28 Fan(float fltPosX, float fltPosY, float r, float g, float b) {

29 this.vecPosition = new PVector(fltPosX, fltPosY);

30 this.myColor = color(r,g,b);

31 vecPosition2 = new PVector(0,0);

32 arrPositions = new ArrayList<PVector>();

33 for (int a = 0; a<=int(fltFrameRate); a++){

34 arrPositions.add(new PVector(0,0)); 35 }

36 }

37

38 void update(float fltPosX, float fltPosY) {

39 //this.vecPosition.x = fltPosX;

40 //this.vecPosition.y = fltPosY;

41 if(intCount%int(fltFrameRate)==0){

42 interpolar(fltPosX,fltPosY,true);

43 } else {

44 interpolar(0,0,false); 45 }

46 this.fltRotation += this.fltFanSpeed; 47 }

48

49 void display(float fltPosX, float fltPosY, int intSize){

50 if(intCount%int(fltFrameRate)==0){

51 interpolar(fltPosX,fltPosY,true);

52 } else {

53 interpolar(0,0,false); 54 }

55 this.intFanSize = intSize;

91

56 offscreen.noStroke();

57 offscreen.pushMatrix();

58 offscreen.translate(this.vecPosition.x, this.vecPosition.y);

59 offscreen.rotate(this.fltRotation);

60 drawObjetive();

61 offscreen.popMatrix();

62 }

63

64 void drawObjetive(){

65 offscreen.rect(-1, 0-(this.intFanSize/2), 3, this.intFanSize); 66 }

67

68 void interpolar(float fltPosX, float fltPosY, boolean blnInterpolate){

69 if(blnInterpolate){

70 println("interpolar");

71 asignarPosicion(this.intConta);

72 this.arrPositions = new ArrayList<PVector>(int(this.fltFrameRate));

73 for(int i = 0; i<int(fltFrameRate); i++){

74 this.vecNewPosition = new PVector(0,0);

75 this.vecNewPosition.x = lerp(this.vecPosition2.x, fltPosX, i/this.

fltFrameRate);

76 this.vecNewPosition.y = lerp(this.vecPosition2.y, fltPosY, i/this.

fltFrameRate);

77 this.arrPositions.add(vecNewPosition); 78 }

79 this.arrPositions.add(new PVector(fltPosX,fltPosY));

80 this.vecPosition2.x = fltPosX;

81 this.vecPosition2.y = fltPosY;

82 this.intConta =0;

83 } else {

84 asignarPosicion(this.intConta);

85 this.intConta++;

86 if(this.intConta==(this.arrPositions.size()-2)){

87 asignarPosicion(this.intConta);

88 }

89 }

90 }

91

92 void asignarPosicion(int intItem){

93 this.vecPosition.x = arrPositions.get(intItem).x;

94 this.vecPosition.y = arrPositions.get(intItem).y; 95 }

96 }

92

 III.8. Organic Mesh

1 class OrganicMesh{

2 ArrayList<PVector> arrOrigins;

3 ArrayList<PVector> arrEnds;

4 float easing = 0.03f;

5 float targetX=width/10;

6 float targetY=height/2;

7 int intMaxTreads=400; 8

9 OrganicMesh() {

10 this.arrOrigins = new ArrayList<PVector>();

11 this.arrEnds = new ArrayList<PVector>();

12 for (int i=0;i<this.intMaxTreads;i++) {

13 this.arrOrigins.add(new PVector(random(-60,width),random(-60,height)));

14 this.arrEnds.add(new PVector(0.0f,0.0f)); 15

 }

16 }

17

18 void display(float fltPosX, float fltPosY, int intNumTreads){

19 offscreen.noStroke();

20 offscreen.background(0);

21 for (int i=0;i<intNumTreads;i++) {

22 this.arrEnds.get(i).x = targetX - this.arrOrigins.get(i).x;

23 this.arrEnds.get(i).y = targetY - this.arrOrigins.get(i).y;

24 this.arrOrigins.get(i).x += this.arrEnds.get(i).x * easing;

25 this.arrOrigins.get(i).y += this.arrEnds.get(i).y * easing;

26 for (int j=0;j<intNumTreads;j++) {

27 float dist = dist(this.arrOrigins.get(i).x,this.arrOrigins.get(i).y,this.

arrOrigins.get(j).x,this.arrOrigins.get(j).y);

28 if(i!=j&&dist<=60.3) {

29 this.arrOrigins.get(j).x += this.arrEnds.get(i).x * easing/10;

30 this.arrOrigins.get(j).y += this.arrEnds.get(i).y * easing/10;

31 this.arrOrigins.get(i).x -= this.arrEnds.get(i).x * easing;

32 this.arrOrigins.get(i).y -= this.arrEnds.get(i).y * easing; 33

 }

34 if(i!=j&&dist<=135) {

35 offscreen.strokeWeight(2);

36 offscreen.stroke(255, 255, 255,50);

37 offscreen.line(this.arrOrigins.get(i).x,this.arrOrigins.get(i).y,this.

arrOrigins.get(j).x,this.arrOrigins.get(j).y);

38 }

39 dist = dist(this.arrOrigins.get(i).x,this.arrOrigins.get(i).y,fltPosX,

fltPosY);

40 if(i!=j&&dist<=90) {

41 arrOrigins.get(i).x -= arrEnds.get(i).x * easing;

42 arrOrigins.get(i).y -= arrEnds.get(i).y * easing; 43

 }

44 }

45 }

46 }

47 }

93

 III.9. Part

1 class Part{

2 int intId;

3 String strName;

4 int intInitTime;

5 int intEndTime; 6

7 Part(int id, String name, int intTime, int endTime){

8 this.intId = id;

9 this.strName = name;

10 this.intInitTime = intTime;

11 this.intEndTime = endTime; 12 }

13 }

94

 III.10. Rain

1 class Rain{

2 int maxDrops = 8000;

3 //int minDrops = 500;

4 int intFloor = 700;

5 //int h,h1;

6 int x1, y1, z1;

7 Drop[] drops=new Drop[maxDrops];

8

9 Rain(){

10 for (int i = 0; i < maxDrops; i++){

11 x1 = int(random(width));

12 y1 = -int(random(height*2));

13 z1 = int(random(intFloor, height));

14 drops[i] = new Drop(x1,y1,z1,width);

15 }

16 }

17

18 void display(int numDrops, boolean blnTransition, Fan fanA, Fan fanB, Fan fanC){

19 if(!blnTransition){

20 gradient();

21 }

22 for (int i=0;i<numDrops;i++){

23 drops[i].fall(!blnTransition);

24 if(!blnTransition){

25 drops[i].wind(fanA.vecPosition.x, fanA.vecPosition.y,fanA.intFanSize,fanA.

fltFanSpeed);

26 drops[i].wind(fanB.vecPosition.x, fanB.vecPosition.y,fanB.intFanSize,fanB.

fltFanSpeed);

27 drops[i].wind(fanC.vecPosition.x, fanC.vecPosition.y,fanC.intFanSize,fanC.

fltFanSpeed);

28 }

29 }

30 }

31

32 void gradient(){

33 offscreen.noStroke();

34 offscreen.beginShape(QUADS);

35 //fill(188,190,192);

36 //fill(0);

37 offscreen.vertex(0,0);

38 offscreen.vertex(width,0);

39 offscreen.fill(0,5,10);

40 offscreen.vertex(width,height);

41 offscreen.vertex(0,height);

42 offscreen.endShape(); 43

 }

44 }

95

 III.11. Smoke

1 PVector rootnCA = new PVector(random(123), random(123));//noise root

2 ArrayList<SmokePartCA> toAddCA = new ArrayList<SmokePartCA>();

3 class SmokeCA{

4 PVector speedn = new PVector(random(-.01, .01), random(-.01, .01));//noise speed

5 ArrayList<SmokePartCA> parts = new ArrayList<SmokePartCA>();//Parts

6 PVector m, pm;//mouse, previous mouse

7 float maxD = 10;//max distance between two smokes

8 int b = 10;

9

10 int intMinAge = 0;

11 int intMaxAge = 30;

12 int intMinLife = 50;

13 int intMaxLife = 180;

14

15 SmokeCA(){

16

17 }

18

19 void display(float posx, float posy, boolean blnTransition){

20 offscreen.noStroke();

21 offscreen.fill(5, 15);

22 offscreen.rect(0, 0, width, height);

23 for (SmokePartCA p : toAddCA)

24 {

25 parts.add(p);

26 }

27 toAddCA = new ArrayList<SmokePartCA>();

28

29 rootnCA.add(speedn);

30 m = new PVector(posx, posy);

31 int nb = parts.size()-1;

32 if (blnTransition){pm=null;}

33 if (!blnTransition && nb < 7000)

34 {

35 if (pm == null) pm = m.get();

36 else

37 {

38 float d = PVector.dist(pm, m);

39 if ((pm.x != m.x || pm.y != m.y) && d > maxD)

40 {

41 int n = int(d / maxD);

42 PVector tmp = PVector.sub(m, pm);

43 tmp.normalize();

44 tmp.mult(maxD);

45 PVector tmp2 = m.get();

46 for (int i = 0; i < n; i++)

47 {

48 tmp2.sub(tmp);

49 parts.add(new SmokePartCA(tmp2, (int)random(intMinAge, intMaxAge),

96

(int)random(intMinLife, intMaxLife), 0));

50 }

51 }

52 }

53 parts.add(new SmokePartCA(m, (int)random(intMinAge, intMaxAge), (int)random

(intMinLife, intMaxLife), 0));

54 pm = m.get();

55 }

56 nb = parts.size()-1;

57 for (int i = nb; i > -1; i--)

58 {

59 if (parts.get(i).display())

60 parts.remove(i); 61

 }

62 }

63 }

64

65 class SmokePartCA 66

{

67 float rad, nx, ny;//

68 float c = random(.6, .8);

69 float theta = random(TWO_PI);

70 int life;// = (int)random(300000, 400000);

71 int age;// = (int)random(300, 400);

72 int mod = (int)random (30,40);

73 PVector pos;

74 float fltNoiseXFactor = 40.0f;

75 float fltNoiseYFactor = 3.0f;

76

77 SmokePartCA(PVector p, int a, int l, float r)

78 {

79 pos = p.get();

80 age = a;

81 life = l;

82 rad = r;

83 }

84

85 Boolean display()

86 {

87 nx = noise(rootnCA.x + pos.x/500)-.5;

88 ny = -noise(rootnCA.y + pos.y/500)-.7;

89 pos.add(new PVector(random(-fltNoiseXFactor,fltNoiseXFactor)*nx,

fltNoiseYFactor*ny));

90 rad += cos(map(age, 0, life, 0, HALF_PI)) * c;

91 offscreen.stroke(200, 200 * sq(map(age, 0, life, 1, 0)));

92 offscreen.strokeWeight(rad);

93 offscreen.point(pos.x, pos.y);

94 if (age++ % mod == 0)//split the Part in two

95 {

96 toAddCA.add(new SmokePartCA(new PVector(pos.x + rad/2 * (cos(theta)), pos.y

+ rad/2 * (sin(theta))), age, life, rad * random(.6, .8)));

97 toAddCA.add(new SmokePartCA(new PVector(pos.x - rad/2 * cos(theta), pos.y -

rad/2 * (sin(theta))), age, life, rad * random(.6, .8)));//.6

98 age = life+1;

99 }

100 return age > life; 101 } 102 }

97

 III.12. Traces

1 class Traces{

2 int intLineSize = 80;

3 int intLineWeight = 20;

4 float PY, PX;

5 float[] x = new float[intLineSize];

6 float[] y = new float[intLineSize];

7 int segLength = 10;

8 float fltFactor = 0.03;

9 int intDesfase = 300;

10 float fltAjusteX;

11 float fltAjusteY;

12 int intCount = 0; 13

14 PVector vecPosition;

15 PVector vecNewPosition;

16 ArrayList<PVector> arrPositions;

17 int intConta;

18 float fltFrameRate = RATE;

19 boolean blnDebug = false; 20

21 Traces () {

22 //size(600, 600, P3D);

23 //background(255);

24 //createCanvas(windowWidth,windowHeight);

25 for(int i=0; i<intLineSize; i++) { 26

 x[i]=1;

27 y[i]=1;

28 }

29 vecPosition = new PVector(0,0);

30 arrPositions = new ArrayList<PVector>();

31 for (int a = 0; a<=int(fltFrameRate); a++){

32 arrPositions.add(new PVector(0,0)); 33 }

34 }

35

36 void segment(float x, float y, float a) {

37 //offscreen.strokeWeight(intLineWeight);

38 //offscreen.stroke(0, 0, 0,50);

39 offscreen.pushMatrix();

40 offscreen.translate(x, y);

41 offscreen.rotate(a);

42 offscreen.strokeWeight(intLineWeight);

43 offscreen.stroke(0,100);

44 offscreen.line(0, 0, segLength, 0);

45 offscreen.strokeWeight(intLineWeight-5);

46 offscreen.stroke(50,50);

47 offscreen.line(10, 10, segLength, 10);

48 offscreen.strokeWeight(intLineWeight-10);

49 offscreen.stroke(100,25);

50 offscreen.line(15, 15, segLength, 15);

51 offscreen.stroke(150,10);

52 offscreen.line(20, 20, segLength, 20);

98

53 offscreen.popMatrix(); 54 }

55

56 void dragSegment(int i, float xin, float yin){

57 float dx = xin - x[i];

58 float dy = yin - y[i];

59 float angle = atan2(dy, dx);

60 x[i] = xin - cos(angle) * segLength;

61 y[i] = yin - sin(angle) * segLength;

62 segment(x[i], y[i], angle); 63

 }

64

65 void display(float posX, float posY) {

66 offscreen.noStroke();

67 offscreen.fill(255,12);

68 offscreen.rect(0,0,width,height);

69

70 if(intCount%int(fltFrameRate)==0){

71 fltAjusteX=0;

72 fltAjusteY=0;

73 if((sin(intCount*fltFactor*PI/4))>0){

74 fltAjusteX += random(0,intDesfase);

75 } else {

76 fltAjusteX -= random(0,intDesfase); 77

 }

78 if((cos(intCount*fltFactor*PI/4))>0){

79 fltAjusteY += random(0,intDesfase);

80 } else {

81 fltAjusteY -= random(0,intDesfase); 82

 }

83 if(blnDebug)println(intCount+" -> posX: "+posX+"\tfltAjusteX: "+fltAjusteX);

84 if(blnDebug)println(intCount+" -> posY: "+posY+"\tfltAjusteY: "+fltAjusteY);

85 posX+=fltAjusteX;

86 posY+=fltAjusteY;

87

88 PX = posX;

89 PY = posY;

90

91 if(blnDebug)println("Entrada: [X="+PX+", Y="+PY+"]");

92 interpolar(PX,PY,true);

93 } else {

94 interpolar(0,0,false); 95

 }

96 //PX = posX;

97 //PY = posY;

98

99 dragSegment(0, PX, PY);

100 for(int i=0; i<x.length-1; i++) {

101 dragSegment(i+1, x[i], y[i]);

102 }

103

104 this.intCount++;

105 }

106

107 void interpolar(float fltPosX, float fltPosY, boolean blnInterpolate){

108 if(blnInterpolate){

109 asignarPosicion(this.intConta);

110 this.arrPositions = new ArrayList<PVector>(int(this.fltFrameRate));

99

111 for(int i = 0; i<int(fltFrameRate); i++){

112 this.vecNewPosition = new PVector(0,0);

113 this.vecNewPosition.x = lerp(this.vecPosition.x, fltPosX, i/this.

fltFrameRate);

114 this.vecNewPosition.y = lerp(this.vecPosition.y, fltPosY, i/this.

fltFrameRate);

115 this.arrPositions.add(vecNewPosition);

116 }

117 this.arrPositions.add(new PVector(fltPosX,fltPosY));

118 this.vecPosition.x = fltPosX;

119 this.vecPosition.y = fltPosY;

120 this.intConta =0;

121 //Imprimir lineas

122 for(int x = 0; x<this.arrPositions.size()-1;x++){

123 if(blnDebug)mostrarCoordenadas(x,false);

124 }

125 } else {

126 asignarPosicion(this.intConta);

127 if(blnDebug)mostrarCoordenadas(this.intConta,true);

128 this.intConta++;

129 if(this.intConta==(this.arrPositions.size()-2)){

130 asignarPosicion(this.intConta);

131 if(blnDebug)mostrarCoordenadas(this.intConta,true);

132 }

133 }

134 }

135 void mostrarCoordenadas(int intItem, boolean blnPinta){

136 if(blnPinta){print("Pinta ");}

137 print("LÃ-nea "+intItem);

138 print("\tdesde: [X"+intItem+"="+round(this.arrPositions.get(intItem).x)+", Y"

+intItem+"="+round(this.arrPositions.get(intItem).y)+"]");

139 println("\thasta: [X"+(intItem+1)+"="+round(this.arrPositions.get(intItem+1).

x)+", Y"+(intItem+1)+"="+round(this.arrPositions.get(intItem+1).y)+"]");

140 }

141

142 void asignarPosicion(int intItem){

143 PX = arrPositions.get(intItem).x;

144 PY = arrPositions.get(intItem).y;

145 }

146 }

100

 III.13. Wave On Sphere

1 class WaveOnSphere{

2 int intValor1 = 400;//radio

3 int intValor2 = 300;//centro

4 int intValor3 = 10000;//velocidad

5 float fltFactor = 1.2f;

6

7 int Nmax = 1000; float M = 50; float H = 0.99; float HH = 0.01;

8 float R = 2*sqrt((4*PI*(intValor1*intValor1)/Nmax)/(2*sqrt(3)));

9 float X[] = new float[Nmax+1] ; float Y[] = new float[Nmax+1] ; float Z[] = new

float[Nmax+1] ;

10 float V[] = new float[Nmax+1] ; float dV[] = new float[Nmax+1] ;

11 float L ;

12 float Lmin ; int N ; int NN ;

13 float KX ; float KY ; float KZ ;

14 float KV ; float KdV ; int K ;

15

16 WaveOnSphere(){

17 offscreen.stroke(255,255,255) ;

18 offscreen.fill(50,50,50) ;

19 for (N = 0 ; N <= Nmax ; N++){

20 X[N] = random(-intValor2,+intValor2) ;

21 Y[N] = random(-intValor2,+intValor2) ;

22 Z[N] = random(-intValor2,+intValor2) ;

23 }

24 }

25

26 void display(float posX, float posY){

27 offscreen.background(0) ;

28 for (N = 0 ; N <= Nmax ; N++){

29 for (NN = N+1 ; NN <= Nmax ; NN++){

30 L = sqrt(((X[N]-X[NN])*(X[N]-X[NN]))+((Y[N]-Y[NN])*(Y[N]-Y[NN]))) ;

31 L = sqrt(((Z[N]-Z[NN])*(Z[N]-Z[NN]))+(L*L)) ;

32 if (L < R){

33 X[N] = X[N] - ((X[NN]-X[N])*((R-L)/(2*L))) ;

34 Y[N] = Y[N] - ((Y[NN]-Y[N])*((R-L)/(2*L))) ;

35 Z[N] = Z[N] - ((Z[NN]-Z[N])*((R-L)/(2*L))) ;

36 X[NN] = X[NN] + ((X[NN]-X[N])*((R-L)/(2*L))) ;

37 Y[NN] = Y[NN] + ((Y[NN]-Y[N])*((R-L)/(2*L))) ;

38 Z[NN] = Z[NN] + ((Z[NN]-Z[N])*((R-L)/(2*L))) ;

39 dV[N] = dV[N] + ((V[NN]-V[N])/M) ;

40 dV[NN] = dV[NN] - ((V[NN]-V[N])/M) ;

41 offscreen.stroke(125+(Z[N]/2),125+(Z[N]/2),125+(Z[N]/2)) ;

42 float orgX = X[N]*fltFactor*(intValor1+V[N])/intValor1+intValor;2

43 float orgY = Y[N]*fltFactor*(intValor1+V[N])/intValor1+intValor;2

44 float destX = X[NN]*fltFactor*(intValor1+V[NN])/intValor1+intValor;2

45 float detsY = Y[NN]*fltFactor*(intValor1+V[NN])/intValor1+intValor;2

46 line(orgX, orgY, destX, detsY) ;

47 offscreen.line(orgX, orgY, destX, detsY) ;

48 }

101

49 if (Z[N] > Z[NN]){

50 KX = X[N] ; KY = Y[N] ; KZ = Z[N] ; KV = V[N] ; KdV = dV[N] ;

51 X[N] = X[NN] ; Y[N] = Y[NN] ; Z[N] = Z[NN] ; V[N] = V[NN] ; dV[N] = dV

[NN] ;

52 X[NN] = KX ; Y[NN] = KY ; Z[NN] = KZ ; V[NN] = KV ; dV[NN] = KdV ;

53 }

54 }

55 L = sqrt((X[N]*X[N])+(Y[N]*Y[N])) ;

56 L = sqrt((Z[N]*Z[N])+(L*L)) ;

57 X[N] = X[N] + (X[N]*(intValor1-L)/(2*L)) ;

58 Y[N] = Y[N] + (Y[N]*(intValor1-L)/(2*L)) ;

59 Z[N] = Z[N] + (Z[N]*(intValor1-L)/(2*L)) ;

60 KZ = Z[N] ; KX = X[N] ;

61 Z[N] = (KZ*cos((intValor2-posX)/intValor3))-(KX*sin((intValor2-posX)

/intValor3)) ;

62 X[N] = (KZ*sin((intValor2-posX)/intValor3))+(KX*cos((intValor2-posX)

/intValor3)) ;

63 KZ = Z[N] ; KY = Y[N] ;

64 Z[N] = (KZ*cos((intValor2-posY)/intValor3))-(KY*sin((intValor2-posY)

/intValor3)) ;

65 Y[N] = (KZ*sin((intValor2-posY)/intValor3))+(KY*cos((intValor2-posY)

/intValor3)) ;

66 dV[N] = dV[N] - (V[N]*HH) ;

67 V[N] = V[N] + dV[N] ; dV[N] = dV[N] * H ;

68 }

69 }

70

71 void change(float posX, float posY){ 72

 Lmin = 600 ; NN = 0 ;

73 for (N = 0 ; N <= Nmax ; N++){

74 L = sqrt(((posX-(intValor2+X[N]))*(posX-(intValor2+X[N])))+((posY-

(intValor2+Y[N]))*(posY-(intValor2+Y[N])))) ;

75 if (Z[N] > 0 && L < Lmin){ NN = N ; Lmin = L ; } 76 }

77 if (K == 0){ dV[NN] = -intValor1 ; K = 1 ; }

78 else{ dV[NN] = +intValor1 ; K = 0 ; } 79

80 }

81 }

102

 III.14. Wave Renderer

1 class WaveRenderer implements AudioListener 2 {

3 private float[] left;

4 private float[] right; 5

6 WaveRenderer() 7 {

8 left = null;

9 right = null; 10 }

11

12 public synchronized void samples(float[] samp) 13

 {

14 left = samp; 15 }

16

17 public synchronized void samples(float[] sampL, float[] sampR) 18 {

19 left = sampL;

20 right = sampR; 21 }

22

23 public synchronized int getSize(){

24 if (left != null && right != null){

25 if(left.length<right.length){return left.length;}

26 else{return right.length;}

27 }else{return 0;} 28

 }

29

30 public synchronized float getLeft(int pos){

31 if (pos>left.length-1){return 0;}

32 else{return left[pos];} 33 }

34 public synchronized float getRight(int pos){

35 if (pos>right.length-1){return 0;}

36 else{return right[pos];} 37 }

38 }

103

Anexo IV

Estudio estadístico Xsens

 Se ha realizado un estudio estadístico de las posibles magnitudes de interés que son

capaces de medir los Xsens. El MT Manager permite entre sus diferentes aplicaciones, grabar

los datos que se seleccionen, durante el periodo de tiempo que decida el usuario y

posteriormente exportar esos datos medidos, a un archivo de texto para su posible evaluación o

uso posterior. Lo que se ha llevado a cabo es medir estas variables durante un ensayo del baile y

proceder a su evaluación en una hoja excel. Debido a la gran cantidad de medidas que los

sensores graban por minuto no se va a incluir todos los datos con los que se realizó el estudio, se

explicará el procedimiento realizado incluyendo una serie de capturas de la hoja de cálculo

utilizada. Las gráficas donde se aprecían las distintas distribuciones de cada variable se exponen

en el apartado 4.3 por lo que no se encuentran otra vez en este anexo.

 En primer lugar una vez disponemos de los datos en el archivo de texto se ordenan en

una tabla. El packet Counter es simplemente un contador de las mediciones.

Fig A. 1

104

 El siguiente paso es obtener la media y la desviación estandar de cada variable, así

como los máximos y los mínimos para estimar a partir de que valores filtrar los datos, dando las

medidas fuera de este rango por erróneas.

 Por último a partir de la media y la desviación estándar obtenida, se porcede a calcular

la distribución normal de cada magnitud para posteriormente poder obtener las curvas

pertinentes.

Fig A. 2

Fig A. 3

105

Bibliografía

https://shop.xsens.com/

https://es.wikipedia.org/wiki/Sistema_embebido

http://huribroadcast.com/que-es-broadcast/

https://es.wikipedia.org/wiki/Processing

https://processing.org/

https://es.wikipedia.org/wiki/Java_(lenguaje_de_programaci%C3%B3n)

https://www.visualstudio.com/es/vs/

https://es.wikipedia.org/wiki/C%2B%2B

https://es.mathworks.com/products/matlab.html

https://es.wikipedia.org/wiki/MATLAB

http://processing.joan.cat/cs/

https://www.programarya.com/Cursos/Java-Avanzado/Sockets

http://openframeworks.cc/about/

https://www.openprocessing.org/

https://es.wikipedia.org/wiki/Neil_Harbisson

http://www.kinectfordevelopers.com/es/2012/11/06/que-es-el-dispositivo-kinect/

http://pdf.directindustry.com/pdf/ubisense/korean-certified-ip-sensors/124957-508109.html

https://ubisense.net/en/products/Dimension4

http://todoproductividad.blogspot.com.es/2008/04/aplicacin-de-ethernet-en-un-entorno.html

http://mlab.no/blog/wp-content/uploads/2009/11/ubisense-tag.png

https://www.researchgate.net/figure/304025734_fig2_Fig-5-Ubisense-UWB-Real-time-
Location-System-UWB-RTLS-consisting-of-4-sensors-UWB

https://es.wikipedia.org/wiki/Isadora_Duncan

http://pop-picture.blogspot.com/2015/03/asfixia--una-fusion-sorprendente-de-danza-y-
tecnologia-de-captura-de-movimiento-.html

http://www.margaritabali.com/prensa/EN%20MOVIMIENTO-
DANZA%20Y%20TECOLOG%C3%8DA.pdf

http://www.rehabilitacionblog.com/2011/05/xsens-analisis-del-movimiento-humano.html

https://shop.xsens.com/
https://es.wikipedia.org/wiki/Sistema_embebido
http://huribroadcast.com/que-es-broadcast/
https://es.wikipedia.org/wiki/Processing
https://processing.org/
https://es.wikipedia.org/wiki/Java_(lenguaje_de_programaci%C3%B3n)
https://www.visualstudio.com/es/vs/
https://es.wikipedia.org/wiki/C%2B%2B
https://es.mathworks.com/products/matlab.html
https://es.wikipedia.org/wiki/MATLAB
http://processing.joan.cat/cs/
https://www.programarya.com/Cursos/Java-Avanzado/Sockets
http://openframeworks.cc/about/
https://www.openprocessing.org/
https://es.wikipedia.org/wiki/Neil_Harbisson
http://www.kinectfordevelopers.com/es/2012/11/06/que-es-el-dispositivo-kinect/
http://pdf.directindustry.com/pdf/ubisense/korean-certified-ip-sensors/124957-508109.html
https://ubisense.net/en/products/Dimension4
http://todoproductividad.blogspot.com.es/2008/04/aplicacin-de-ethernet-en-un-entorno.html
http://mlab.no/blog/wp-content/uploads/2009/11/ubisense-tag.png
https://www.researchgate.net/figure/304025734_fig2_Fig-5-Ubisense-UWB-Real-time-Location-System-UWB-RTLS-consisting-of-4-sensors-UWB
https://www.researchgate.net/figure/304025734_fig2_Fig-5-Ubisense-UWB-Real-time-Location-System-UWB-RTLS-consisting-of-4-sensors-UWB
https://es.wikipedia.org/wiki/Isadora_Duncan
http://pop-picture.blogspot.com/2015/03/asfixia--una-fusion-sorprendente-de-danza-y-tecnologia-de-captura-de-movimiento-.html
http://pop-picture.blogspot.com/2015/03/asfixia--una-fusion-sorprendente-de-danza-y-tecnologia-de-captura-de-movimiento-.html
http://www.margaritabali.com/prensa/EN%20MOVIMIENTO-DANZA%20Y%20TECOLOG%C3%8DA.pdf
http://www.margaritabali.com/prensa/EN%20MOVIMIENTO-DANZA%20Y%20TECOLOG%C3%8DA.pdf
http://www.rehabilitacionblog.com/2011/05/xsens-analisis-del-movimiento-humano.html

106

http://www.danza.unam.mx/images/Curso/2016/Diplomado2016/diplomado-danza-
mediacion-teconologica-web.pdf

https://riunet.upv.es/bitstream/handle/10251/3838/tesisUPV2962.pdf

http://www.huffingtonpost.es/2014/11/20/zapatos-ballet-tecnologia_n_6186754.html

http://www.elfinanciero.com.mx/after-office/la-belleza-de-la-danza-se-fusiona-con-la-
tecnologia.html

http://publicaciones.zemos98.org/spip.php?article115

https://www.onysus.com/dance-technology/

http://www.exile.at/apparition/project.html

http://www.am-cb.net/en/projets/cinematique

https://es.wikipedia.org/wiki/Danza_contempor%C3%A1nea

https://definicion.de/danza-contemporanea/

http://www.ulima.edu.pe/departamento/vida-artistica-en-la-universidad/danza-
contemporanea

http://www.danza.unam.mx/images/Curso/2016/Diplomado2016/diplomado-danza-mediacion-teconologica-web.pdf
http://www.danza.unam.mx/images/Curso/2016/Diplomado2016/diplomado-danza-mediacion-teconologica-web.pdf
https://riunet.upv.es/bitstream/handle/10251/3838/tesisUPV2962.pdf
http://www.huffingtonpost.es/2014/11/20/zapatos-ballet-tecnologia_n_6186754.html
http://www.elfinanciero.com.mx/after-office/la-belleza-de-la-danza-se-fusiona-con-la-tecnologia.html
http://www.elfinanciero.com.mx/after-office/la-belleza-de-la-danza-se-fusiona-con-la-tecnologia.html
http://publicaciones.zemos98.org/spip.php?article115
https://www.onysus.com/dance-technology/
http://www.exile.at/apparition/project.html
http://www.am-cb.net/en/projets/cinematique
https://es.wikipedia.org/wiki/Danza_contempor%C3%A1nea
https://definicion.de/danza-contemporanea/
http://www.ulima.edu.pe/departamento/vida-artistica-en-la-universidad/danza-contemporanea
http://www.ulima.edu.pe/departamento/vida-artistica-en-la-universidad/danza-contemporanea

