«as Universidad
181 Zaragoza

1542

Trabajo Fin de Grado

Tecnologias extendidas: integracion de sensores
corporales e informacion cinestésica

Extended Technologies: integration of embodied
and kinesthetic information

Autor

Juan Carlos Chamorro Aranda

Director

Manuel Gonzalez Bedia

ESCUELA DE INGENIERIA Y ARQUITECTURA
2017

Escuela de
Ingenieria y Arquitectura

Universidad Zaragoza

(Este documento debe acompafiar al Trabajo Fin de Grado (TFG)/Trabajo Fin de
Master (TFM) cuando sea depositado para su evaluacion).

D./D2. Juan Carlos Chamorro Aranda

con n2 de DNI 18458191R en aplicacién de lo dispuesto en el art.

14 (Derechos de autor) del Acuerdo de 11 de septiembre de 2014, del Consejo
de Gobierno, por el que se aprueba el Reglamento de los TFG y TFM de la

Universidad de Zaragoza,

Declaro que el presente Trabajo de Fin de (Grado/Master)

Grado , (Titulo del Trabajo)

Tecnologias extendidas: Integracion de Sensores corporales e informacion
cinestesica

s

es de mi autoria y es original, no habiéndose utilizado fuente sin ser citada

debidamente.

Zaragoza, 22 de septiembre de 2017

Fdo: Juan Carlos Chamorro Aranda

Tecnologias extendidas: integracion de sensores
corporales e informacion cinestésica

RESUMEN

La tecnologia no es algo ajeno a nuestra naturaleza, nos ha acompafiado desde el
descubrimiento del fuego y la invencién de la rueda hasta nuestros dias y aunque su propdsito
principal es facilitarrnos las tareas cotidianas, también podemos usarla para nuestra diversion y
entretenimiento. Los artefactos técnicos pueden ser utilizados como medios para la
experimentacion en el arte y la danza.

El objetivo de este proyecto es el desarrollo de la pieza de baile ‘Pulse’, presentada en el
festival de Danza Trayectos y desarrollada en el Laboratorio de Danza y Nuevos Medios de
Etopia en colaboracion con el ISAAC! Lab. Para esta creacion coreografica, el equipo de
ingenieros ha integrado algunos sofisticados dispositivos que han sido acoplados a los bailarines
con el objetivo de permitirles bailar con ellos para desarrollar creaciones artisticas asociadas al
movimiento y que asi puedan mostrarnos desde una perspectiva distinta el arte de bailar.

Los sensores electrénicos han sido ajustados a través de complejos algoritmos que
facilitan la comunicacion entre los distintos dispositivos y ordenadores que componen este
entorno con el propdsito de que los bailarines puedan representar sus movimientos de una forma
distinta, una forma mas pléastica, mas visual, una forma diferente.

En cada una de las paredes que rodean la escena se proyectan en tiempo real imagenes
que llevan el pulso de su ritmo en forma de bits y la velocidad de sus movimientos a modo de
sefiales electrdnicas.

La tarea no ha sido sencilla pues aln no se ha inventado un dispositivo que sienta la
masica como nosotros. Es por esto que el trabajo en equipo ha sido de suma importancia para
integrar los conocimientos técnicos de ingenieros, quienes hemos programado los diversos
algoritmos, con las habilidades artisticas de nuestro equipo de bailarines, quienes se han
encargado de orientar las imagenes proyectadas al conjunto de emociones que quieren
representar.

El trabajo de bailarines e ingenieros ha permitido integrar dos visiones: una mas
racional del espacio basado en coordenadas, con una nocién del tiempo definida por el reloj de
un ordenador con otra centrada en los cuerpos al danzar, en la que los tiempos se basan en el
ritmo marcado de un compas.

El esfuerzo del equipo ha tenido buenos resultados con lo que el "cuerpo en
movimiento" se puede ver como una herramienta de creacion pléstica y que permitira llegar a
nuestros sentidos.

1 Grupo de investigacion del Instituto de Investigacion en Ingenieria de Aragdén de la Universidad de
Zaragoza.

Agradecimientos

En primer lugar quiero agradecer a todas aquellas personas que tanto directa como
indirectamente me han apoyado durante el transcurso de la carrera. También quiero agradecer a
mis tutores del proyecto, Tomas y Manuel, su ayuda y dedicacién, ya que he aprendido
muchisimo de ellos. No puedo dejar de agradecer a mi compafiero Cesar, el cual me ha
ensefiado tanto y ha sido una pieza fundamental en el desarrollo del trabajo.

Especialmente quiero agradecer a mis padres Juan Carlos y Nieves, por apoyarme en
todo momento, ya que en definitiva son artifices de lo que soy hoy en dia y por ensefiarme
tanto. A mi hermana Marina, la mas pequefia de la casa y a veces la m&s madura. Al resto de mi
familia que me ayudo tanto al llegar a una ciudad nueva y siempre han estado para todo. En
especial a mis tatitos que siempre han encontrado esas palabras de &nimo cuando mas las
necesitaba y han sido y son, uno de mis principales apoyos.

Me gustaria agradecer también a mis amigos del Carmelo donde pase dos afios
increibles, a los amigos de BBQ que hicisteis que me sintiera como en casa desde el primer
momento y a mis fratellos de Antonio Bordoni por hacerme ver la vida de otra manera.

Una etapa que concluye y otra que empieza, pero siempre sin pausa.

Indice general

AGIadECTMIENTOS ...ttt ettt bbb e e stk b bbbttt eneebe e v
INQICE GENETAL ...t VI
TNAICE B FIGUIAS ...t IX
I 1 (0T (1 o{o] o] o SRR ROPSPOURRN 1

1.1. Objetivo y alcance del ProYECIO.......cccciviiiiiiiccc e e 1

1.2. Contexto en el que se realiza el ProyeCtO.........cccoviiiiiiiiieiceee e 1

1.3. Trabajo @ FEANIZATccveie et 2

1.4, Herramientas ULHHIZAd@S.cveiriiiriiie ettt st nne s 2

1.5, EStructura del dOCUMENTOciviieieieeiesie e sie ettt sttt re e e e e 3
2. EStado el artec.coiieieiiee s 5

2.1. DANZa CONTEIMPOTANEAcuviiveeieeitiiteeitesteatesteetee e ste e e e ste s e e stesteeseesbesseetesreeseestesneesresraesens 5

2.2. DANZA Y TECNOIOGIA. ... vttt 6
3. Tecnologias UtIIZAadas.........ccccveiieiiecie e 9

3.0 SEINSOIES ...ttt ettt b bt bkttt E e bt Rt R e e s bbb e e be e nE e e b e enneenneene e 9

0 I 0 L PPV OPRTRRTRTIN 9

00t I T I 11~] 1 o OSSR 9
3.1.1.2. COMPONENTES ...ttt ettt sb bbbt b bt ennesbe e nreereene 10
T O R TS 10 1 LT (SR RSR 11
1 B B BT L W €] [0SR 11
3.1.2.0. DESCIIPCION......ei ittt st s re et s re b e s be e e e sreerae e 11
3.1.2.2. COMPONENLES ...ttt ettt sttt b e b e bt e nesbe e nreereene 12
BLL.2.3. SOTEWANE.....ete e ettt et ne e 12

TR T U o =Y o S SRS S 13

3.2.Arquitectura laboratorio de Danza y NUeVOS MEdI0S.........ccccvevveiiiierieieesie e 13

T I = (T o [0]] SRS 15

3.2.2. TRAMVIBWEeiieeteiieete etttk sttt s ettt e s be e e e st e ne et e e s e besaenbente e eneenenrens 16

3.3 PIOCESSING ...tttk b bbbttt bbbt 17

3.4. MiIcrosoft Visual STUAIO........c.civeiiiiiiec e st 17

3.4.1. C++ (lenguaje de programacion)ccoeeererieeeieseeeseseseeseeeesesesesse e seeseeseeseesensens 17

TR AV - L o RSP S 17

3.6. Encuadre de las tecnologias durante el ciclo de vida del proyecto..........ccccoecevevieiennens 18
4. Xsens: Lectura, analisis y Utilizacion...........c.ccccceveiveie i, 20

T 1 V7 USSR 20

O - Tox N[W (=T - (0SS PR 20

4.2.1. Mecanismo de lectura de datoScccviviieieiieie e 21

4.3. Estudio estadistico de 10s datos recibidos..........ccoveviieiiineneicecese e 22

4.3.1. Conclusiones del eStUTIO A8 DALOSveeviiereeieiieeiie sttt st e e st e e s ere e e s sareees 24

B0 I Aot 1= - Tod o o USRS 24
4.3.1.2. ANQUIOS 08 TOLACION.........cooveveereieeseieeecie ettt 24

5. Descripcion de [a aplicacioncccceviieiiiiicie e 26
5.1, EStrUCtUra del COUIGOvoiiuiiiiieie et 26
LI o (0] S TSV P PP 26
5.2.0. DANCEHOSE......eiieieteie bbbt b bbbt 27
5.2.2. DISPIAYSHOSE ..ottt ettt 27
5.2.3. PrOCESSIGNALSvviiiiiiete e et 28
LIRS T T 1] o] - RSP 28
6. RESUITATOS ...t nnenreas 33
B. L. PUISE" ...ttt et bttt Rt Rt n et n e nn e nnns 33
7. CONCIUSIONESoeeiieeiiie ettt e s te e e nae e e nrnas 41
7.1. ODJEtIVOS AICANZAUDSeeveeeieiiiiiiteieeie et 41
7.2, TraDAJO TULUIO ...ttt ere s 42
ANBXO | 43
ANBXO Ll 54
L1 DANCE HOSL ...ttt ettt ettt et e sbe e e an e 54
L I 1Yo YA oL SR 62
[1.3. PrOCES SIQNAIS ..oovveiieie ettt ettt et e esreenaestenneenee e 67
ANEXO T e 70
L I - T g I o = PSSR 70
L =10 o]] SRR PRTRPP 81
1.3 BUBDIES ...ttt sttt neans 84
FHEA. DISPIAYS ...ttt bbbttt bbbt 86
T I3 o] o 87

F T = Uo (=3 @1 1o SR 89
L T TSSO 90
[11.8. OrganiC MESNo b 92
e TR T TSRS 93
THLLO. RAIN oottt et e ste e st e s e s be st e e b e e sbeesbseeabeebeesbeesbeesaeesaeenans 94
1 To TSRS 95
L I VoL SRR 97
I11.13. WAV ON SPNEIE ...t sttt nas 100
IT1L.14. WAVE RENUEIEN ...ttt sttt sb et e e staeneennas 102
ANBXO IV e 103

Vil

VI

Indice de figuras

Fig 2.1 Zapatillas E - TTACE.....uciiii ettt ettt st sbeesa et s e e snesreenae e 6
Fig. 3.1 Orientacion MOtioN TraCKErccooiiiiiiiice e 10
Fig. 3.2 a) Motion Tracker; b) Awinda Station; c) Awinda USB Dongle y MTw Click- in....... 11
Lol B L I €] [0 SRRSO 11
FEg. B bbb bbbttt et b 12
Fig. 3.5 SENSOT UDISENSE ..o e 13
T TR S I oSSR PSSRORN 13
Fig. 3.7 Arquitectura Laboratorio Danza y NUeVOS MEdIOSccccverieieeieiiiiese e 14
Fig. 3.8 Interfaz BroadCasterc.couiiiiiiierie e 15
T TR O - T T oo T I o oL PP 27
Fig. 5.2 Laboratorio de Danza y NUEVOS METI0S.........ccccveiiiieiieieciese e 28
Fig. 5.3 Clases del DISPIAYccucouiiiiiiiiiieieieeese e 29
Fig. 5.4 Esquema de 1aS PreSENntaCionNeSooveieieiriieriesie et 30
T TR0 - - VSO SRS PSUROSN 33
FIQ. 6.2 RAIN D ..o e e sttt re e re et et 34
FIQ. 6.3 FUNGITO ... bbbt 34
T TR 1] o] o] 1SS PSSR 35
T TR S T 1 =T USROS 36
FIQ. 6.6 BAITIOO ...ttt bbbt 37
FIQ. 6.7 SIMOKE ...ttt 37
Fig. 6.8 Organic IMESH @)........ccuiiiiiiiiiiiiic et st s e e s reera et 38
Fig. 6.9 0rganic MESN D) ..o s 38
Fig. 6.10 WAVE 0N @ SPNEIE ...ttt 39
FIG A L bbbt 103
FIg AL 2 bbbt 104
g A B e bbb R R bRt b et b et bbbt et 104

file:///C:/Users/MI%20PC/Desktop/TFG/Memoria/Memoria%203.0.docx%23_Toc493359682
file:///C:/Users/MI%20PC/Desktop/TFG/Memoria/Memoria%203.0.docx%23_Toc493359673
file:///C:/Users/MI%20PC/Desktop/TFG/Memoria/Memoria%203.0.docx%23_Toc493359674
file:///C:/Users/MI%20PC/Desktop/TFG/Memoria/Memoria%203.0.docx%23_Toc493359675
file:///C:/Users/MI%20PC/Desktop/TFG/Memoria/Memoria%203.0.docx%23_Toc493359676
file:///C:/Users/MI%20PC/Desktop/TFG/Memoria/Memoria%203.0.docx%23_Toc493359677
file:///C:/Users/MI%20PC/Desktop/TFG/Memoria/Memoria%203.0.docx%23_Toc493359678
file:///C:/Users/MI%20PC/Desktop/TFG/Memoria/Memoria%203.0.docx%23_Toc493359679
file:///C:/Users/MI%20PC/Desktop/TFG/Memoria/Memoria%203.0.docx%23_Toc493359680
file:///C:/Users/MI%20PC/Desktop/TFG/Memoria/Memoria%203.0.docx%23_Toc493359498
file:///C:/Users/MI%20PC/Desktop/TFG/Memoria/Memoria%203.0.docx%23_Toc493359499
file:///C:/Users/MI%20PC/Desktop/TFG/Memoria/Memoria%203.0.docx%23_Toc493359500
file:///C:/Users/MI%20PC/Desktop/TFG/Memoria/Memoria%203.0.docx%23_Toc493359501
file:///C:/Users/MI%20PC/Desktop/TFG/Memoria/Memoria%204.0.docx%23_Toc493873688
file:///C:/Users/MI%20PC/Desktop/TFG/Memoria/Memoria%204.0.docx%23_Toc493873689
file:///C:/Users/MI%20PC/Desktop/TFG/Memoria/Memoria%204.0.docx%23_Toc493873690
file:///C:/Users/MI%20PC/Desktop/TFG/Memoria/Memoria%204.0.docx%23_Toc493873691
file:///C:/Users/MI%20PC/Desktop/TFG/Memoria/Memoria%204.0.docx%23_Toc493873692
file:///C:/Users/MI%20PC/Desktop/TFG/Memoria/Memoria%204.0.docx%23_Toc493873693
file:///C:/Users/MI%20PC/Desktop/TFG/Memoria/Memoria%204.0.docx%23_Toc493873694
file:///C:/Users/MI%20PC/Desktop/TFG/Memoria/Memoria%204.0.docx%23_Toc493873695
file:///C:/Users/MI%20PC/Desktop/TFG/Memoria/Memoria%204.0.docx%23_Toc493873696
file:///C:/Users/MI%20PC/Desktop/TFG/Memoria/Memoria%204.0.docx%23_Toc493629023
file:///C:/Users/MI%20PC/Desktop/TFG/Memoria/Memoria%204.0.docx%23_Toc493629024
file:///C:/Users/MI%20PC/Desktop/TFG/Memoria/Memoria%204.0.docx%23_Toc493629025

Capitulo 1

Introduccion

1.1. Objetivo y alcance del proyecto

El objeto del presente proyecto es el de unir tecnologia, arte y movimiento. Esto se
tratard de conseguir mediante la introduccién de artefactos técnicos que permitan mostrar una
perspectiva distinta del arte de la danza.

La idea fundamental consiste en la introduccion, comprensién y optimizacion de
diferentes sensores corporales en un entorno artistico, con la intencién de acercarnos lo mas
posible a una hibridacién entre arte y tecnologia, que nos permita avanzar en el camino del
disefio cyborg y, a su vez, nos permita también explorar y experimentar nuevas posibilidades
cognitivas y sensoriales.

La linea de trabajo a seguir ha sido la del estudio en primer lugar de las distintas
tecnologias que se tienen a disposicion, para luego poder analizar los pros y las contras, asi
como plantear cuales podrian ser sus posibles utilidades en el entorno que nos concierne,
tratando de intervenir lo menos posible en el desarrollo artistico por parte de los bailarines. Una
vez decidido que sensores se van a utilizar, se ha procedido a realizar todos los pasos necesarios
para su correcta incorporacién, como pueden ser estudios estadisticos de los datos que con ellos
se obtienen, desarrollo de procesos de lectura de esos datos para que nos sean de utilidad o
implementacion de algoritmos para normalizar, filtrar o interpolar esos mismos datos para que
se ajusten a nuestras necesidades.

1.2. Contexto en el que se realiza el proyecto

El proyecto se desarrolla en un entorno colaborativo entre la Universidad de Zaragoza,
més concretamente entre el ISAAC Lab? (Interdisciplinary Studies in Adaptivity, Autonomy
and Cognition), y el Laboratorio de Danza y Nuevos Medios® de ETOPIA.

El arte por definicion siempre busca nuevas formas de sorprender o captar la atencidn,
formas con las que conseguir despertar diferentes emociones en el espectador que hasta el
momento no habia experimentado. Ante esta naturaleza innovadora, los grandes avances
tecnoldgicos que han tenido lugar en las Gltimas décadas han hecho plantearse a los artistas
nuevas vias de comunicacion valiéndose de las herramientas que esta nueva era pone a su
disposicién. En este punto se sitla el porque de este proyecto.

2 http://isaaclab.unizar.es/
3 http://www.danzatrayectos.com/laboratorio-de-danza-y-nuevos-medios/

1

http://isaaclab.unizar.es/
http://www.danzatrayectos.com/laboratorio-de-danza-y-nuevos-medios/

Todo lo anterior se enfoca en el marco de la creacion de la pieza de baile
contemporaneo "Pulse™, que fue presentada el pasado 22 de Junio en el festival Trayectos
(ETOPIA). En esta pieza se unen los esfuerzos de ingenieros y bailarines para conseguir esa
nueva via de expresion artistica por medio del uso de las nuevas tecnologias.

1.3. Trabajo a realizar

El trabajo a realizar consiste en primer lugar en la familiarizacién con los diferentes
sensores que se tiene a disposicion, manejo basico del software controlador y conocimiento de
las diferentes magnitudes que se pueden conseguir de cada uno. Una vez se han decidido que
sensores se van a utilizar en el proyecto, se elabora una planificacion en la que se situan las
diferentes etapas del mismo, que acciones se han de realizar en cada una de ellas y cual va a ser
la estrategia a seguir para la consecucién de los objetivos.

En paralelo con el trabajo de ingenieria los bailarines comentan con el equipo técnico
sus ideas sobre como les gustaria que fuera la estética y los posibles efectos a incluir, que
respondan a determinados movimientos que puedan quedar registrados por los sensores. Y el
equipo de ingenieros intenta acoplarse 1o maximo posible a estos requerimientos proponiendo
diferentes opciones y alternativas al equipo de baile, teniendo en cuenta las limitaciones
existentes. Este proceso de avance con retroalimentacion ha tenido lugar durante todo el
proyecto, lo cual ha sido clave para la consecucion del resultado final

Por lo tanto se debe desarrollar un algoritmo que sea capaz de incluir los sensores,
seleccionando los datos que se necesiten de cada uno. Tratando adecuadamente estos mediante
posibles filtrados, para que representen fielmente los movimientos de los bailarines vy
proporcionen una buena interaccién con el entorno. Este cddigo tambien se encargara de las
proyecciones pertinentes, organizando el orden en que aparecen, cual es el efecto que en cada
una se produce y encargandose de todas las tareas que sean necesarias.

1.4. Herramientas utilizadas

Las herramientas que se han utilizado quedan definidas méas extensamente en el
apartado 3. Estas son basicamente herramientas informaticas y sensores.

Con respecto a las herramientas informaticas se ha trabajado con diferentes
compiladores que utilizan distintos lenguajes de programacion, ademéas se ha trabajado en un
entorno en el que funciona un sistema empotrado o embedido. En este campo también se ha
trabajado con proyectores de imagen, pieza simple y a la vez fundamental.

En cuanto a tecnologia sensorial, se utilizan diferentes tipos de sensores capaces de
medir diversas magnitudes. En coman tienen que todos deben ir acoplados al bailarin para su
correcto funcionamiento.

1.5. Estructura del documento

La estructura de esta memoria esté dividida en siete capitulos, incluyendo este capitulo
introductorio. En el capitulo 2 se desarrolla el contexto en el que se enmarca la creacion del
proyecto y se exponen ejemplos de la influencia de las nuevas tecnologias en el mundo de la
danza. En el capitulo 3 se describe la tecnologia empleada para la creacion de la aplicacion,
distinguiendo entre las distintas etapas del ciclo de vida del proyecto en el que se utilizd. El
capitulo 4 trata sobre los Xsens, su estudio y su implementacion. En el capitulo 5 se describe la
estructura de la aplicacién, parando a explicar cada una de las partes del codigo por separado.
Por otro lado en el capitulo 6 se muestran los resultados obtenidos a con la aplicacién, usando
imagenes. En el capitulo 7 se recogen las conclusiones obtenidas durante el desarrollo del
proyecto asi como posibles lineas de trabajo futuro.

Capitulo 2

Estado del arte

En este capitulo se expone la situacion en la que se enmarca el desarrollo del proyecto.
Se comentaran las nuevas tendencias en el entorno de la danza y como la progresiva
modernizacion del entorno artistico facilita nuevas formas de expresién, asi como la aparicién
de instrumentos especializados.

En el caso concreto de nuestro proyecto se habla de danza contemporanea, por lo que se
explicaran sus origenes e influencias fundamentales, asi como el desarrollo experimentado en
los ultimos afios.

2.1. Danza contemporanea

La danza contemporanea surge como alternativa a la estricta técnica del ballet clésico, a
finales del siglo XIX, en un comienzo del cuestionamiento de valores, y de la bldsqueda de
nuevas formas. En un primer momento se la llamé danza moderna pero a mediados del siglo
XX paso a denominarse como se conoce hoy en dia.

En la danza contemporanea, el bailarin se expresa a través de las técnicas del ballet
clasico pero incorporando otros movimientos corporales mas modernos. La mezcla de multiples
influencias es una de las principales caracteristicas de este tipo de danza, que puede incluir
formas de narracion que no resultan lineales y hasta puede apostar por las herramientas
multimedia para complementar las coreografias. Se convierte, por tanto, en un nuevo medio
para que el hombre pueda hablar utilizando su cuerpo, para poder expresar sentimientos, ideas e
historias por medio del lenguaje del movimiento.

La danza clasica se basa en pasos estructurados y ya codificados, poseyendo una
dramaturgia® con principio, climax y desenlace. Mientras que la danza contemporéanea puede
seguir esta estructura o bien dejar paso a la innovacion, permitiendo que tanto bailarin como
coreografo exploten su creatividad. Otra diferencia es que en la danza contemporénea no
siempre es necesario contar una historia, simplemente se puede transmitir un concepto o
proponer un ambiente con una estética particular. La danza contemporanea busca la conexion
con lo terrenal, con lo humano y sus pasiones, la no estructura, la transgresion.

La masica y la indumentaria de los bailarines se elige con especial interés, viendo cual
es su valor estético y musical, que sensaciones puede transmitir y como puede influir en los
movimientos de los bailarines y en la composicion general de la obra.

Se distinguen dos vertientes de la danza contemporénea, la escuela europea y la escuela
americana. Con relacion a esta ultima, se encuentra la que segun especialistas esta considerada
como la precursora de este género, Isadora Duncan (1877 - 1927).

4 Arte y técnica de componer o poner en escena dramas teatrales u obras.

5

2.2. Danza y tecnologia

La danza al igual que el resto de las artes ha tenido grandes cambios estéticos durante
toda su historia. En los Gltimos cincuenta afios la investigacion y la basqueda continua de las
nuevas formas de expresion ha conducido a la danza por diferentes caminos hacia la perfeccion
técnica vy artistica. Influida por los cambios de la vida social y politica y también de otras artes,
la danza ha cambiado su forma de ser, su estética y su percepcion.

La tecnologia se ha ido introduciendo en el mundo de la danza como la posibilidad de
experimentar nuevas formas escénicas o técnicas de expresion. Llegados a este punto, el publico
ya no es considerado como simple espectador pasivo. En este sentido, las nuevas tecnologias se
centran en los procesos de comunicacion, en la creacion de nuevos entornos comunicativos y
expresivos que facilitan a los receptores la posibilidad de desarrollar nuevas experiencias
formativas, expresivas y educativas.

En los Gltimos afios se han ido incorporando diferentes técnicas al proceso creativo de la
danza contemporanea, en la mayor parte se trata de técnicas audiovisuales, lo que se conoce
como Videodanza o danza para la cdmara. En este tipo de representaciones las coreografias
estan disefiadas desde un punto de vista audiovisual, en las que el movimiento de los bailarines
es recogido y procesado por los diferentes medios de produccién y postproduccion. Segln
Douglas Rosemberg, "la cdmara y el método de grabacion debe ser entendido como un espacio,
del mismo modo en que nos referimos al teatro como el lugar para un espectaculo de danza".
Esto ofrece la posibilidad de establecer otra visién, una vision imposible de representar en la
escena e imposible de captar por el ojo humano si no es a través de una pantalla.

También el avance que ha tenido lugar en las Gltimas décadas en el campo tecnoldgico,
ha propiciado la aparicién de instrumentos especializados del mundo de la danza. En este campo
nos encontramos con diferentes medios que permiten captar movimientos concretos del bailarin,
para su posterior evaluacion, lo que puede ayudarle a mejorar su técnica, escenarios disefiados
especificamente con proyecciones en 3D que interactGan con los artistas o vestimenta que puede
emitir diferentes tonos en funcion de la musica.

Con respecto a los instrumentos que permiten la captura de movimientos cabe destacar
los E - Trace creados por la disefiadora y bailarina amateur Lesia Trubat. Este invento consiste
en acoplar un pequefio mecanismo digital a la suela y los laterales del zapato de los bailarines,
también conocidos como puntas. Las zapatillas electronicas funcionan a través de la tecnologia
Arduino Lilypad, que se activa al contacto con el suelo, registrando la presion y el movimiento
de los pies, mediante una aplicacion que registra los datos exactos de forma grafica. Con esto el
bailarin puede observar en formato video cuales han sido sus movimientos, y puede corregir
errores e imperfecciones.

-

Fig 2.1 Zapatillas E - Trace

En relacién con lo expuesto anteriormente se encuentra el entorno en el que se ha
desarrollado el trabajo. El proyecto ha aunado instrumentacion tecnoldgica y medios
audiovisuales para crear una interseccion entre danza e imagen en movimiento. El punto de
confluencia es muy amplio, ya que son tan diversas las formas de entender la danza como los
estilos, tecnologias y géneros audiovisuales desde los que plantear la aproximacién.

En el caso de los instrumentos utilizados, a diferencia de los E-Trace, no se trata de
material creado especificamente con fines artisticos, sino que se ha trabajado con tecnologia de
sensores con diversas aplicaciones, que se han implementado para poder trabajar en el marco
artistico.

Desde el punto de vista audiovisual no se ha procedido a grabar a los bailarines y
trabajar con esas imagenes como en el campo de la Videodanza. Pero si mediante proyecciones
interactivas, se ha tratado de buscar ese punto de comunicacion que no seria posible compartir
con el espectador si no es a través de los medios audiovisuales.

Capitulo 3

Tecnologias utilizadas

3.1. Sensores

Como se ha indicado con anterioridad el objetivo de este proyecto es el de la
hibridacion entre arte y tecnologia. Con este motivo, en el transcurso del proyecto se ha
trabajado con diferentes sensores que se especializan en distintos campos de percepcion: En el
campo del movimiento en tres dimensiones tenemos los Xsens, en el de la percepcion visual se
ha trabajado con Eye tracking, para el movimiento de abrir y cerrar la mano se ha usado los
Data Glove y por ultimo con referencia a la percepcion de las ondas cerebrales el
electroencefalograma (EEG), llamado Emotiv pro. Después de una primera toma de contacto
con los citados sensores, viendo las diferentes posibilidades que ofrecian cada uno de ellos, se
decidid que los sensores con mayores posibilidades de interaccion con la danza y con los que,
por tanto, se iba a trabajar eran los XSENS y los Data Glove.

Posteriormente se debatié con los bailarines acerca de la incorporacion de ambos
sensores exponiendo ventajas y desventajas, limitaciones, carencias y posibilidades de los
mismos, obteniendo la conclusion de que el Data Glove interferia en exceso en el transcurso y
estética del baile, llegando a incomodar a los bailarines e impidiendo ciertos movimientos
técnicos de la danza como agarres o portés. Por todo esto se decidié trabajar Gnicamente con
Xsens.

Ademas a los Xsens hay que afiadir los UbiSense, que son unos sensores de localizacion
en el espacio, que ya estaban previamente implementados en ETOPIA (empresa colaboradora)
en la zona correspondiente donde se ha realizado la funcién.

A continuacién se va a exponer una explicacién basica de funcionamiento vy
posibilidades de los Xsens y de los Data Glove, ya que son los sensores que han tenido mas
relevancia en el proyecto.

3.1.1. Xsens

3.1.1.1. Descripcion

Los sensores propiamente dichos de Xsens son los Motion Traker (MTw), estos son
unidades de medicion inercial en miniatura que contienen acelerometros lineales 3D,
giroscopios de velocidad 3D, magnetometros 3D y un bar6metro. En lo que viene a
continuacion nos centraremos en las funciones que permiten recoger tanto el movimiento o
aceleracion en las tres direcciones del espacio como la rotacion en torno a estos, es decir, los
angulos de alabeo, cabeceo y guifiada(siguiendo la terminologia aérea) o también llamados
pitch, roll y yaw. En la siguiente figura se pueden observar los angulos apenas citados:

Yaw

Roll
t 4

¥ Pitch

* X posiivo cuando se sefiala al Nortemagnéticolocal.
* Ydeacuerdoalaregla dela mano derecha (Oeste).
* Zpositivo al apuntar hacia arriba.

Fig. 3.1 Orientacion Motion Tracker

3.1.1.2. Componentes

Se tiene disposicion de:

1.

2.

Seis sensores, llamados Motion Tracker (MTw) , que ya hemos comentado.

Una central, Awinda Station que va conectada al ordenador mediante USB. Esta
estacion controla la recepcién de datos inalambricos sincronizados de todos los MTw
conectados de forma inalambrica y carga hasta 6 MTW simultdneamente. Puede recibir
datos inaldmbricos de hasta 32.

Un sistema inalambrico Awinda USB Dongle que consiste en un usb Unicamente, por
lo que es muy fécil de transportar y montar. Tiene las mismas capacidades inalambricas
que la Awinda Station (Controla la recepcion de datos inalambricos sincronizados de
todos los MTw conectados de forma inaldmbrica. Puede recibir datos de hasta 32
MTw).

Un juego de correas MTw Click-in. Estas correas tienen un mecanismo especialmente
disefiado que permite que el MTw sea acoplado rapidamente y facilmente mediante un
click y quitado otra vez para cargar. Las correas estdn hechas de material eléstico
fuerte, respaldado con caucho de silicona para asegurar una fijacion comoda y ajustada
a la piel. A su vez se sujetan y permiten el ajuste usando Velcro.

10

a) b) c)

Fig. 3.2 a) Motion Tracker; b) Awinda Station; c) Awinda USB Dongle y MTw Click- in

3.1.1.3. Software

De la parte del software de los Xsens se hablara mas adelante en el capitulo 4.

3.1.2. 5DT Data Glove

3.1.2.1. Descripcion

Los Data Glove son unos guantes que permiten medir la flexion de cada uno de los 5
dedos por separado. Estan equipados con unas galgas extensiométricas , entonces lo que sucede
al flexionar los dedos es que varia la resistencia interna de las galgas por lo que si se mantiene
fijo el voltaje mediante la medicion de la variacion de la intensidad es posible obtener ese
cambio en la resistencia’, sabiendo esto, la aplicacion ya es capaz de conocer y poder mostrar el
punto de flexién de cada dedo individualmente.

Fig. 3.3 Data Glove

5 Ley de Ohm: Voltaje = Resistencia X Intensidad

11

3.1.2.2. Componentes

Contamos con un sensor para la mano derecha y otro para la izquierda, asi como con
dos equipos:

1. Equipo inalambrico
2. El segundo equipo esta constituido Gnicamente por un cable con toma Rj12 (clavija

internet) que va conectado al guante y por el otro lado con salida USB (A) que se
conecta directamente al ordenador.

Fig. 3.4 Equipo Data Golves

3.1.2.3. Software
En el CD de los sensores se suministran dos aplicaciones:

1. Glove Demo que permite realizar un test rapido para comporbar el correcto
funcionamiento de los data glove.

2. Glove Manager es un programa que te permite probar los guantes y acceder a
funciones de guantes avanzadas que pueden no estar disponibles en los plug-ins.

El manejo de ambas aplicaciones es muy intuitivo, como ya hemos comentado primero
por medio de la demo podemos calibrar el aparato realizando simplemente un chequeo con la
mano abierta y otro con la mano cerrada. Luego ya dentro de la aplicacion propiamente dicha (
Glove Manager) no es complicado lanzar la visualizacion en tiempo real de la posicion de cada
dedo por separado asi como de la toma de datos.

12

3.1.3. Ubisense

Los Ubisense son dispositivos de medicién, de precision de banda ultra-ancha
(ultra-wideband, UWB), que contienen una serie de antenas y receptores de radio de banda ultra
ancha. Los sensores detectan pulsos UWB a partir de las medallas Ubisense (llamadas Tags)
que llevan colgadas los bailarines, lo que permite al sistema de localizacion Ubisense encontrar
las posiciones de estos con una imprecision de 15 cm * en 3D. En el entorno en el que se ha
trabajado no se ha trabajado con la medicion de la posicion en el eje Z, pero si la situacién en
los ejes X e Y del escenario.

Ubisense utiliza una arquitectura celular para acoplarse desde a instalaciones pequefias
hasta otras muy grandes. Miles de sensores pueden integrarse en un Unico sistema de toda la
empresa para monitorear un area ilimitada y administrar miles de Tags. Los sensores pueden
conectarse entre si en una gran variedad de formas, en funcion de los requisitos de la aplicacion
para que se usen.

Los sensores funcionan dentro de un entorno Ethernet® o wifi, utilizando una
infraestructura de red estandar, como conmutadores Ethernet, puntos de acceso Wi-Fi y cables
de red Cat5e para la comunicacion entre sensores y servidores.

Fig. 3.5 Sensor Ubisense
Fig. 3.6 Tags

3.2.Arquitectura laboratorio de Danza y Nuevos Medios

A continuacion se va a proceder a describir en lineas generales el entorno en el que ha
sido realizado el proyecto a nivel informético y de telecomunicaciones. En el laboratorio de
Danza y Nuevos Medios nos encontramos con un sistema empotrado’ o embebido, cuya pieza
clave es el broadcaster y por el que pasan todas las ordenes y mensajes.

6 Ethernet es el protocolo por el cual se comunican ordenadores en un entorno de red local, es
decir, es el sistema que normalmente se utiliza para comunicar ordenadores entre si dentro de una
industria. Este protocolo permite compartir la informacién y manejar completamente un ordenador
desde otro.

7 Es un sistema de computacién disefiado para realizar una o algunas pocas funciones dedicadas,
frecuentemente en un sistema de computacion en tiempo real. Se disefian para cubrir necesidades
especificas.

13

En primer lugar hay que exponer el orden de jerarquia del sistema y luego se pasara a
comentar las partes por separado (de mas importante a menos): hardware, sensores y actuadores.

Los sensores sirven para detectar lo que se produce en el entorno y los actuadores para
que el entorno intervenga. Los sensores que se han utilizado en el proyecto son los ubisense y
los xsens pero también se podria trabajar con cualquier otro sensor que sirva para captar otro
tipo de informacidn. Todos esos sensores, lo que es el dispositivo, van asociados a un proceso, a
un algoritmo, que se ejecuta dentro de un ordenador o dentro de un microcontrolador. La
mayoria de los sensores, por ejemplo los ubisense, van conectados a un ordenador y ahi
funciona un programa (programado en el lenguaje de programacion pertinente).

Esos datos de los sensores en bruto se convierten en valores numéricos y posteriormente
se normalizan. Por ejemplo si se dispone de un micro, cuando no detecta audio es un cero y
cuando detecta audio es un uno. Cualquier sensor se normaliza entre cero y uno. Por otro lado
hay sensores que solo detectan si si o si no, por ejemplo un botén. Otros sensores detectan un
rango de valores, por ejemplo el volumen de un micro (entre 0 y 1) eso es lo que se llama
sensor 1D, porgue tiene una sola dimension de medida. Por otro lado los Ubisense, detectan
valores de un vector bi o tridimensional mientras que Xsens lee aceleracion y rotacion en torno
a tres ejes, por lo que seria un sensor 6D, con seis dimensiones. Otra cosa es que se pueda
dividir y decidir trabajar solamente con el vector de las rotaciones, esta decision de representar
un vector de 6D o dos de 3D es decision del usuario.

Esos valores los recibe el proceso asociado y crea una conexion osc® con el
broadcaster, por ejemplo si se dispone de 20 sensores, se producirdn 20 conexiones gque se hacen
con el broadcaster.

Agentes Plataformas

Dispositivos: Tangibles Sistemas de captura sociales méviles Displays
' Smart 4 Localizadores A smartphon
Tabletops Objects Video/Audio Kinects Héptico EEG Biosensores 3D Ubisense Tabletops Proyeccion o0
Gestor Gestor Gestor Gestor Gestor Gestor Gestor Gestor Gestor Gestor Gestor Gestor Gestor Gestor
software || software software || software || software software J|software ||software || software software software software software | | coftyare
publicador || publicador | |publicadol [publicadur] publicador [publicadu] [publicad01 publicadol [publizador] publicador, |publicador] [publicador publicador] publicador]

0sC 0sC 0sC 0sC 0sC 0sC 0sC 0sC 0sC 0sC 0sC 0sC 0sC 0sC

Gestor publicadores

Nivel Semantico

Estado actualizado del

fichero 1
TUIML Espacio interactivo

Editor grafico

0sC
Ordenes
actuadores

0sC
Consultaestado

Fig. 3.7 Arquitectura Laboratorio Danza y Nuevos Medios

8 Open Sound Control (OSC) es un protocolo para la comunicaciéon entre ordenadores,
sintetizadores musicales y otros dispositivos multimedia inspirado en la moderna tecnologia de las
redes. El protocolo tiene algunas ventajas como por ejemplo la independencia del medio de
transmision y la flexibilidad para transportar cualquier tipo de datos.

14

3.2.1. Broadcaster

El broadcaster sirve para la difusion de informacién o paquetes de datos a través de
redes informaticas, desde un nodo emisor a una multitud de nodos receptores. El broadcaster,
también Ilamado gestor de publicadores, mantiene conexion OSC individualizada con cada
proceso publicador. Cada conexion OSC con el gestor de publicadores esta diferenciada del
resto de conexiones a través del numero IP del ordenador o microcontrolador en el que corre el
proceso publicador, y de un nimero de puerto.

El broadcaster acepta conexiones de tres tipos de procesos, cada uno de esos procesos
puede estar ejecutandose quizas en esa misma magquina donde esta funcionando el broadcaster o
quizas en otras maquinas. Es por tanto posible que un mismo ordenador o microcontrolador
gestione varios dispositivos, corriendo varios gestores software y publicadores, usando puertos
de red distintos. En el entorno de trabajo hay una red wifi creada, a través de esa red wifi todos
los procesos de todos los sensores se conectan a un nimero IP y a un determinado puerto, que
es el broadcaster, quedando cuando se conectan listados como se muestra en la siguiente figura.

i ! T
0o comunicacionOSCBroadcaster =0 §

| 192.168.0.171(12001)

ad Ubisense V2 - Get Locations =
Nombre Tipo X Y Z Fecha/Hora
» 1integration:: Tag 8.67 187 3.41 19/05/2017 10:48:53
nnamed 0 ULocationIntegration:: Tag 0.85 2,16 3.28 22/06/2017 10:38:08
unnamed 0 ULocationintegration:: Tag 2.05 7.97 221 22/06/2017 10:40:10
unnamed 0 ULocationIntegration:: Tag 10.39 2 345 22/06/2017 10:40:00
{unnamed 0 ULocationintegration:: Tag 1,88 5.87 243 22/06/2017 10:40:12

Fig. 3.8 Interfaz Broadcaster

Los tres tipos de dispositivos que se pueden conectar son:

1. Sensores y actuadores: En el caso de los sensores volver a los ya citados y como
ejemplo de actuador tendriamos un foco®, al cual se le pueden mandar 6rdenes para que
se encienda y se apague (el foco también tiene asociado un proceso, no es un proceso
que capture datos del propio actuador porque el foco no captura datos, sino que recibe
datos que le manda el broadcaster, los interpreta y actda segun las ordenes obtenidas:

9 Actuador que se encuentra en el laboratorio de Danza y Nuevos Medios pero que no se utiliza para
el proyecto.

15

gue se ponga en verde, en rojo, etc.). Hay que explicar que donde pone "sensors" en la
pantalla del broadcaster en realidad se refiere a sensores y actuadores.

2. Displays: Son los dispositivos que permiten mostrar informacion visual y auditiva. Son
otro tipo de dispositivos que estan conectados a un instrumento que es capaz de mostrar
imagen o de reproducir audio, como pueden ser los proyectores de las paredes, las
mesas interactivas... Cada uno de esos proyectores esta conectado a un ordenador y en
ese ordenador corre un proceso que es llamado el pintor. El pintor es un proceso que lo
Unico que se encarga de hacer es dibujar en cualquiera de esos displays y siempre es el
mismo. A su vez ese proceso esta conectado con el broadcaster para esperar Ordenes:
pinta un circulo, pinta una particula.... Se producen entonces N procesos para dibujar
porgue hay n pantallas en las que dibujar, es decir un nimero indefinido de displays y
un namero indefinido de sensores, actuadores.

3. Host: En el laboratorio por norma general siempre se trabaja con un Host, ya que el
algoritmo que desarrolla el usuario suele ser uno. El host es donde se ejecuta el
programa, donde se ejecuta su logica. Recibe datos de los sensores, los interpreta y
segun lo que ocurra ordena a los displays que pinte las cosas de una determinada
manera, reaccionando a lo que dicen los sensores o por otro lado diciéndole a un
actuador que realice una determinada accién, por ejemplo que el foco se encienda de
una determinada manera.

Por otro lado hay situaciones donde interesaria disponer de un host distribuido,
por ejemplo si se tiene una excesiva saturacion de trafico de datos en los displays. En
los pintores, cuando se quiere pintar cosas con muchos detalles o muy intensivas, se
depende mucho de la capacidad para pintar sin que aparezcan retrasos o delays, que
creen el efecto de que la proyeccién va como a saltos. Entonces si por ejemplo es
necesario pintar 1000 particulas, pues implicaria 1000 mensajes que estan enviandose,
por lo que el pintor ademas de pintar las particulas deberia pararse a escuchar cada uno
de los mensajes.

Una solucion que se toma a menudo para evitar lo anterior es disponer de
varios hosts, que estén ejecutandose en alguna maquina que pinta y el host directamente
ya pinte, sin la necesidad de crear mensajes osc. Por ejemplo se podrian tener tres hosts,
uno en cada pantalla y que sea el host el que ya se dedicara a pintar, pero pintar cosas
muy intensivas, con esto se evitaria usar los displays para no tener mucho trafico de
informacién y combatir posibles delays o desfases temporales.

3.2.2. TeamViewer

El problema del sistema con el que se trabaja en el laboratorio es que existe un
ordenador por cada display, que estan repartidos y ocultos por el espacio para que no se vean. A
veces se puede aprovechar y en un mismo ordenador acoger a un sensor, a un display y a un
host, pero esto no evita que haya multiples maquinas. Si cada vez que se debe cambiar algo, que
instalar un programa nuevo, que ejecutar un programa o que hacer una prueba se debe ir
fisicamente a ese ordenador, conllevaria un gasto innecesario de tiempo y ademas tendrian que
tener cada uno su ratén su teclado y su monitor. Esto se soluciona con la utilizacion del
programa TeamViewer, que permite la utilizacién de un escritorio remoto, es decir habilita al
usuario para poder manejar el ordenador desde cualquier otro lugar. En ETOPIA concretamente
existen 5 maquinas distintas y se manejan por medio del TeamViewer desde la maquina que
recibe los datos de los sensores. Se podria decir que el TeamViewer es una ayuda, una
comodidad y no algo imprescindible, pero evita tener que trabajar con cada una de las méaquinas
por separado.

16

3.3. Processing

Processing es un lenguaje de programacion y entorno de desarrollo integrado de codigo
abierto basado en Java, de facil utilizacion, y que sirve como medio para la ensefianza y
produccion de proyectos multimedia e interactivos de disefio digital. Fue iniciado por Ben Fry y
Casey Reas, ambos miembros de Aesthetics and Computation Group del MIT Media Lab
dirigido por John Maeda. Concretamente se ha utilizado la version de Processing 3.3.3.

3.4. Microsoft Visual Studio

Visual Studio es un entorno de desarrollo integrado (IDE, por sus siglas en inglés) para
sistemas operativos Windows. Soporta maltiples lenguajes de programacion, tales como C++,
C#, Visual Basic .NET, F#, Java, Python, Ruby y PHP, al igual que entornos de desarrollo web,
como ASP.NET MVC, Django, etc. Permite a los desarrolladores crear sitios y aplicaciones
web, asi como servicios web en cualquier entorno que soporte la plataforma .NET (a partir de la
version .NET 2002). Asi, se pueden crear aplicaciones que se comuniquen entre estaciones de
trabajo, paginas web, dispositivos moviles, dispositivos embebidos y consolas, entre otros.

Cabe destacar que la version que ha sido utilizada para el proyecto es la 2015 y se ha
usado el lenguaje de programacion C++.

3.4.1. C++ (lenguaje de programacion)

C++ es un lenguaje de programacién disefiado a mediados de los afios 1980 por Bjarne
Stroustrup. La intencion de su creacién fue el extender al lenguaje de programacion C
mecanismos que permiten la manipulacion de objetos. En ese sentido, desde el punto de vista de
los lenguajes orientados a objetos, el C++ es un lenguaje hibrido. Una particularidad del C++ es
la posibilidad de redefinir los operadores, y de poder crear nuevos tipos que se comporten como
tipos fundamentales.

3.5. Matlab

MATLAB (abreviatura de MATrix LABoratory) es una herramienta de software
matematico que ofrece un entorno de desarrollo integrado (IDE) con un lenguaje de
programacion propio (lenguaje M). Esta disponible para las plataformas Unix, Windows, Mac
0OS Xy GNU/Linux .

Entre sus prestaciones bésicas se hallan: la manipulacion de matrices, la representacion

de datos y funciones, la implementacion de algoritmos, la creacion de interfaces de usuario
(GUI) y la comunicacion con programas en otros lenguajes y con otros dispositivos hardware.

17

3.6. Encuadre de las tecnologias durante el ciclo de vida
del proyecto

Empezando por explicar la utilizacion que han tenido los diferentes sensores, hay que
destacar dos periodos de tiempo que tuvieron lugar durante la realizacion del proyecto. Un
primer periodo que transcurrio en el ISAAC Lab, en el que se tuvo una primera toma de
contacto con los sensores y en el que se decidio seguir adelante con la implementacion de Xsens
y Data Glove. Y un segundo periodo donde se paso a trabajar en el entorno de Etopia, con el
equipo de danza, en el que se descarto la opcion del trabajo con Data Glove y se incluyo en el
proyecto la utilizacién de los Ubisense.

A nivel de herramientas informéticas no hay unos periodos tan claros, porque se trabajo
con los distintos programas y lenguajes tanto en un laboratorio como en el otro. Al igual que al
comienzo del proyecto, en su versién final se trabajo con Processing, también en este periodo
final se incluy6 el programa Matlab como mecanismo de lectura de los datos de los Xsens. En el
tiempo que transcurrid al final de la etapa en el ISAAC Lab y el comienzo en Etopia, se utilizo
el entorno en C++ de Visual Studio. Las tecnologias que se han ido utilizando en el transcurso
del proyecto, estan definidas de manera mas detallada en el siguiente capitulo (punto 4.2 y
4.2.1). Es necesario destacar que de cada etapa del trabajo y de cada una de las herramientas
empleadas, se han ido extrayendo conceptos e ideas que finalmente se han puesto en conjunto
en la obra final.

18

19

Capitulo 4

Xsens: Lectura, analisis y utilizacion.

Como ya hemos introducido anteriormente, los Xsens nos permiten medir diferentes
movimientos de manera inercial, siendo la aceleracion y la rotacion en torno a los tres ejes del
espacio tridimensional lo que ocupara nuestro estudio de ahora en adelante.

4.1. Software

A continuacion se va a hablar de la parte del software de los Xsens. El kit de desarrollo
MTw se suministra con un software suite que consta de MT Manager y un kit de desarrollo de
software. MT Manager se usa para visualizar y registrar datos, lo que facilita el uso rapido y
facil de los MTw y la Awinda Master. En la aplicacion MT Manager podemos destacar dos
utilidades:

- Impresion en pantalla de la posicion del sensor, con respecto a sistema de ejes de referencia
gue nosotros habremos establecido, y muestra de la aceleracién en tiempo real

- Impresion de los dngulos que hemos mencionado con anterioridad en un rango entre 180 y -
180.

Con respecto a la salida de datos en bruto, nos permite obtener gran cantidad de datos lo
que sera nuestro objeto de estudio seleccionar los necesarios para el desarrollo de nuestra
aplicacion.

Por otro lado, el software también proporciona el kit de desarrollo de software de MT
(SDK), con codigos de ejemplo en C, C ++, MATLAB y Linux. MTK SDK tiene la intencion
de hacer el desarrollo de aplicaciones de software para el MTw facilmente accesible.

Es precisamente este kit de desarrollo el que se implementara finalmente para obtener
los datos de los sensores en tiempo real y asi poder trabajar con ellos para el desarrollo de la
pieza de baile.

4.2. Lectura de datos

El primer problema con el que nos encontramos al utilizar los Xsens y quizas uno de los
que ha creado mas complicaciones a lo largo del proyecto es el de la obtencién de los datos
procedentes de los sensores en tiempo real, ya que con el software de los sensores, el MT
Manager, no los podemos obtener. EI MT Manager nos permite grabar los movimientos en

20

periodos de tiempo, de duracion a eleccion del usuario, y posteriormente una vez finalizada la
grabacion obtener una lista de los diferentes datos que se han obtenido durante la misma como
pueden ser la aceleracion en los diferentes ejes, el pitch, el roll ... que queda también a eleccion
del usuario.

Para afrontar esta necesidad de la lectura y obtencion de datos en bruto, en tiempo real,
se siguieron diferentes caminos en el transcurso del proyecto. En un primer lugar se empez6
utilizando el programa Processing, que utiliza un lenguaje de programacion en Java. Despues de
un periodo de aprendizaje en el entorno de processing se comenz6 a profundizar en la busqueda
de la solucion al problema apenas expuesto. Dado la inexperiencia en este campo y ante las
complicaciones gque se encontraron se decidio dejar apartada esta via de desarrollo. Entonces se
opto por avanzar desde una version beta que se habia realizado tiempo atras en el propio ISAAC
Lab. Esto supuso un nuevo cambio de entorno de programacion ya que esta alternativa se
desarrollaba usando el programa Visual Studio, el cual usa un lenguaje de programacion en
C++, a lo que hay que afiadir la utilizacion de la extensién de openFrameworks™ del propio
Visual Studio, por lo que fue necesario otro periodo de aprendizaje en este nuevo marco.

Los periodos de aprendizaje fueron largos y tediosos ya que la Unica experiencia previa
gue tenia con la informatica era la obtenida al cursar la asignatura que se imparte en primero
del Grado de Ingenieria de Tecnologias Industriales (basada en el lenguaje de programacion
Pascal). Supuso comenzar desde cero, aprendiendo los comandos basicos, estructuras tipicas de
la escritura informatica, utilizacion de bubles y arrays... hasta llegar a la creacién, modificacion
y manejo de librerias, clases y demas estructuras complejas que se han utilizado para la
realizacion del codigo final.

Utilizando esta nueva herramienta (Visual Studio) se consiguié una primera lectura e
interaccion de los Xsens, pero posteriormente se descartaria esta propuesta dada su elevada
complicacién y que gran parte del entorno tanto del laboratorio de Danza y Tecnologia de
Etopia, como parte del codigo que ya se habia desarrollado por parte del equipo de ingenieros
estaba realizado con Processing.

Finalmente se decidi6 aprovechar la arquitectura del laboratorio, utilizando la existencia
del broadcaster y los demas medios de los que se tenia disposicidn. En este nuevo escenario se
desarroll6 un método que permite la lectura de datos de los Xsens en tiempo real y su emision
mediante un mensaje osc al broadcaster.

4.2.1. Mecanismo de lectura de datos

Se partié de un codigo de ejemplo que era proporcionado por Xsens para ayudar a
realizar desarrollos con los sensores. En estos ejemplos se incluian demostraciones y librerias
para C++y para Matlab. Se eligi6 el uso de Matlab por ser mas sencillo de implementar.

En el ejemplo se realizaba la conexidn con los sensores, se configuraba la informacion
que se deseaba extraer y se seleccionaba el canal de comunicacion y la frecuencia de envio de
datos. Se modificé el cédigo de ejemplo para extraer los datos necesarios para el objetivo del
proyecto. Estos eran la aceleracién de los sensores y la orientacion o rotacion en torno a los tres
ejes. El cddigo modificado se incluye en el Anexo |.

10 OpenFrameworks es un conjunto de herramientas C ++ de c6digo abierto disefiado para ayudar
al proceso creativo proporcionando un marco simple e intuitivo para la experimentacion.

21

Debido a la falta de librerias para hacer uso de la tecnologia OSC en el lenguaje de
programacion Matlab, se decidio enviar los datos a un servidor en Python que se encargaria de
recibir la informacion de Matlab, limpiarla y crear los mensajes de manera apropiada para su
uso con el protocolo OSC.

Para la comunicacion entre Matlab y Python se hizo uso de la tecnologia mas sencilla de
comunicacion por red, los sockets' (lineas 286 - 292). En Python se declaré un socket que
escuchaba en un determinado puerto. Desde Matlab se enviaban las medidas tomadas por los
sensores a ese servidor.

Por ultimo estos datos se envian al servidor central (broadcaster), desde el servidor
Python bajo el protocolo OSC. Los datos llegardn al broadcaster como mensaje entrante de
sensores y ya se podran mandar a cualquier maquina que esté conectada a €l y precise de estos.

4.3. Estudio estadistico de los datos recibidos

Una vez se es capaz de manejar con soltura los mensajes que envian los sensores es
necesario evaluar cuales son los datos que vamos a utilizar en nuestra aplicacién y cuéles no. En
primer lugar se ha estudiado cuales son las mediciones con las que mejor se puede representar el
movimiento de los bailarines y con cuales las interaccion con el entorno se hara mas visual.

Después de esta primera experiencia se ha decidido que los valores que se utilizaran
seran, como se viene diciendo, la aceleracion y las rotaciones en torno a los tres ejes del
espacio. Sin embargo llegados a este punto aparece la posibilidad de obtener lecturas de la
aceleracion libre, es decir, aceleracion sin contar los efectos de la gravedad. Por lo que se
tendran que estudiar ambas aceleraciones para escoger la que mas convenga.

Una vez se han decidido las variables de interés se ha procedido a su estudio
estadistico®? para obtener, desde el punto de vista funcional, cuales son las variables mas
estables y cuales pueden presentar menos problemas a la hora de incorporar los sensores al
espectaculo. A continuacion se muestran las distribuciones de cada una de las variables que se
han estudiado:

Acc X AccY

0,060 0,09

0,08
0,07

0,040 0,06
0,030 / 0.05 1
/ \ 0,04 -

0,020 0,03
/ \ 0,02
0,010 / \ 001
0,000 ‘ ‘ ‘ ‘ ‘ ‘ | 0
20 -10 0 10 20 30 40 50 -30 -20 -10 0 10 20 30

0,050

11 Los sockets son un mecanismo que permite establecer un enlace entre dos programas que se
ejecutan independientes el uno del otro (generalmente un programa cliente y un programa
servidor). Cabe resaltar que tanto el cliente como el servidor solo deben conocer sus direcciones IP
y el puerto por el cual se comunicaran.

12 Anexo IV -- Estudio realizado a partir de los datos grabados mediante MT Manager durante un
ensayo de los bailarines

22

Accl

Free Acc X

007 0,090
0,080
006 0,070
0.05 0,060
0,04 0,050
0,03 l \ 0,040
00 \ 0,030
o \ 0,020
\ 0,010
0 T T | 0,000
3 0 45 0 5 ¢ 5 W 15 w0 B 0,010 -40 0 20 10 o 10 20 20
Free AccY Free Acc Z
0,090
0,080

0,070

0,060

0,050

0,040

0,030

0,020
0,010

0,000

-0,010 -36 20

-0,010 -
Roll Yaw
0,005
a5
0.0 0,005
0,008 0,004
0,00 0,00 N
0,006 0,003 AN
0,005 0,003
0,004 0,002
0,003 0,002
0,002 0001 1
0,001 0.001
0,000 ‘ ‘ . . ‘ ‘ ‘ ‘ ‘
0,008 ‘ ‘ : :
200 150 100 50 o 50 100 150 200 250
200 S0 -100 50 0 50 00 150 200 250
Pitch
0,014
0,012 /\
0,010 / \
0,008 / \
0,006 / \
0,004 / \
o002 / \
0,000 : : ; ‘
-100 -50 0 50 100

23

4.3.1. Conclusiones del estudio de datos

4.3.1.1. Aceleracion

Como se puede observar, las distribuciones de las aceleraciones libres aparecen
centradas en 0 m/s® mientras que las de las aceleraciones reales estan desplazadas hacia valores
positivos o0 negativos. Por lo tanto las aceleraciones reales pueden mandar datos erréneos
cuando los bailarines estan en reposo sin embargo las aceleraciones libres al no tener en cuenta
la gravedad representan fielmente el movimiento de los artistas y se mantienen en 0 m/s’si estos
no se mueven. Por lo tanto se va a trabajar con la aceleracidn libre, ya que nos permite una
medicion més fiel y consecuentemente una interaccion con el entorno més real y con menos
errores.

4.3.1.2. Angulos de rotacion

Como ya se ha comentado el rango en el que se representan los angulos es desde 180 a -
180 grados. En este apartado tenemos un problema con los dngulos que superan tanto superior
como inferiormente ese rango, estos son el roll y el yaw. Una vez que cualquiera de estos dos
angulos supera superior o inferiormente el rango de medicion establecido pasa inmediatamente
al limite opuesto. Por ejemplo si el roll se va incrementando llegara un punto en el que pasara de
valer 180 grados a valer - 180 y continuara creciendo hacia 0 grados, creando un salto que nos
dard lugar a error. Este suceso podriamos corregirlo realizando lo que se llama un unwrapping.
Observando las distribuciones de roll y yaw vemos esos saltos representados con bastante
claridad, en cambio el pitch describe una curva casi perfecta. Esto se debe a que el pitch varia
en el rango de -90 a 90 grados y por lo tanto no excede los limites de medicion.

En una primera toma de contacto ya se habia destacado el pitch como el angulo mas
representativo ya que si los bailarines Ilevan el sensor a la altura de su mufieca sefializa si el
brazo esta arriba (pitch positivo) o si esta abajo (pitch negativo), lo que podria ser de mucha
utilidad a la hora de la interaccion con el entorno. Los resultados del estudio corroboran esta
hipétesis previa, siendo claramente el pitch el angulo méas estable y el que menos lugar a error
deja y por lo tanto el angulo con el que se ha decidido trabajar.

24

25

Capitulo 5

Descripcion de la aplicacion

Como ya se ha explicado el objetivo de este proyecto es el de la unién de arte y
tecnologia. Con este fin se ha creado un entorno que permite a los bailarines interactuar con él.
Esto es posible gracias a la incorporacion de unos sensores (Xsens y Ubisense) que hacen
posible recoger de forma numérica las distintas variaciones (posicion, aceleracion...) que
experimentan los bailarines en el transcurso de la obra. Para la creacién de este entorno
interactivo se ha usado el programa Processing v 3.3.3. En este capitulo se va a explicar la
estructura del cddigo o algoritmo que se ha creado, asi como destacar los puntos que se
consideran de mayor importancia.

5.1. Estructura del codigo

En el punto 3.2 se ha expuesto cual es la arquitectura del sistema empotrado que
funciona en el Laboratorio de Danza y Nuevos Medios. Para el desarrollo del proyecto se ha
seguido esta misma estructura, es decir, se ha desarrollado un Host y unos Displays que son los
codigos sobre los que se va a hablar a continuacion, ademas del cddigo con el que leemos los
datos procedentes de los Xsens (punto 4.2.1) y pasando, a su vez, por el broadcaster todos los
mensajes tanto de sensores, actuadores, host.... A diferencia del esquema original del
Laborarorio de danza y nuevos medios no se cuenta con un nivel semantico, ya que se buscaba
una respuesta en tiempo real. Al no disponer de nivel semantico los mensajes desde la Api a los
displays se realizan de forma directa dentro del codigo sin hacer uso de los mensajes osc,
reduciendo el tiempo de respuesta de esta manera.

Antes de pasar a comentar cada una de las partes por separado y con el motivo de hacer
mas compresible su funcién, decir que las tres clases que se encargan de coordinar el
funcionamiento de la aplicacion son Dance Host, que recibe todos los mensajes y decide
¢quién? debe recibirlos, Pintar Dance, que estipula ¢qué? y ;como? se ha de actuar y Displays
Host que hace las funciones de mensajero.

5.2. Host

En el Host se encuentra la parte mas Idgica del codigo. EI Host se encarga del correcto
funcionamiento de todos los procesos que se estan realizando al mismo tiempo, coordinando
cuando debe terminar uno y comenzar el siguiente, recibiendo los datos de los sensores,
filtrandolos e interpretandolos, junto con otras tareas. En definitiva seria como el cerebro del
conjunto. El Host esta dividido en tres funciones DanceHost, Displays Host y procesSignals.

26

© Dancetiost | Processing 33NN © W - —

Archivo Editar Sketch Depuracién Herramientas Ayuda

procesSignals J

Fig. 5.1 Clases del Host

5.2.1. DanceHost

En primer lugar en el DanceHost tiene lugar la inicializacién de variables que van a ser
utilizadas, como por ejemplo el frame rate que se establece en 24 fotogramas por segundo
(como en el cine). Dentro del DanceHost se encuentran también diferentes funciones de test,
gue se han ido utilizando conforme se iba avanzando en el proyecto para comprobar su correcto
funcionamiento. Ademas se establece un sistema para avanzar al punto que se desee de la
proyeccion en funcion de la tecla del teclado que se presione (lineas 307 - 348).

El Dance Host se encarga de recibir los datos procedentes de los distintos sensores y
procesos, y redistribuirlos hacia las diferentes estructuras que precisen de estos, organizando asi
en primera instancia el trafico de mensajes. Haciendo analogia con la figura x el Dance Host
seria el corazon de la Api.

Una de las funciones mas importantes que se realizan en este apartado es la de asignar
los valores que se reciben de los Xsens a unas variables (lineas 139 - 305). Se puede observar
partes del c6digo comentadas, ya que en un principio antes de la creacién de procesSignals, se
hicieron pruebas filtrando los datos que se recogian directamente en DanceHost, para realizar
los primeros ajustes.

5.2.2. DisplaysHost

Como ya se ha comentado anteriormente Displays Host hace las funciones de mensajero
dentro del codigo. En un principio se trabajo para que con una sola proyeccion general esta
parte del cédigo supiera a que pantalla debia de mandar cada una de las partes de la simulacion
por separado, permitiendo asi una interaccion global de los bailarines con el entorno, pero
aparecieron una serie de problemas (punto 5.3) por lo que esta parte no se llego a implementar.

Otra de las utilidades del Displays Host es la seleccion del nimero IP y del puerto del
broadcaster que se va a escuchar (lineas 19 - 21).

27

5.2.3. procesSignals

Esta parte del Host se encarga del procesado de las diferentes sefiales que a él Ilegan.
Concretamente se encarga de adecuar los datos recibidos de los Ubisense y de los Xsens para su
correcta utilizacion. En primer lugar, a partir del estudio estadistico realizado, se establecen
unos valores maximos y minimos de las medidas que se admitiran validas (lineas 56- 63), es
decir, si se recibe un dato fuera de ese rango se estimara que ha sido un error de medicién y se
descartara (lineas 67- 72; 93- 94). Asi se evitara posibles cambios bruscos e imprecisiones que
no reflejen fielmente el movimiento de los bailarines. Posteriormente se realiza un mapeo para
convertir los datos obtenidos a un rango que haga mas facil su interpretacién y manejo, asi pues
se mapean los datos (lineas 74-79; 95- 96) desde un rango de -12 a 12 m/s* , en el caso de la
aceleraciéon, a un rango de -50 a 50. Con esto conseguimos que se observen mejor las
variaciones ya que los datos no se encontraran tan proximos unos de otros.

En el caso de los Xsens se reciben datos segun la frecuencia que el usuario elija, en
nuestro caso se elige una frecuencia de 24 Hz ya que coincide con la velocidad con la que se
pinta la pantalla, 24 fotogramas por segundo. Con esto se consigue que en todo momento se
tengan datos actualizados de estos sensores. Sin embargo Ubisense manda sus mediciones una
vez por segundo, lo cual introduce un desfase de la posicion de los bailarines de un segundo con
respecto a su posicion real. Este problema no se ha podido afrontar desde el camino de intentar
que los Ubisense enviaran mas datos por segundo, ya que estos estaban ya implementados en el
entorno del laboratorio por lo que se desarrollo una interpolacion lineal tomando como datos las
dos ultimas posiciones del bailarin e intentando predecir cudl seria la proxima.

5.3. Display

El display es la parte que se encarga de la representacion o proyeccion en las pantallas,
por medio de los proyectores. Cada proyector dispone de un gestor de software (uno por
pantalla) y de un publicador, que en el caso de nuestro proyecto se engloba en la misma clase.
Esta dividido en tantas funciones como presentaciones o efectos diferentes aparecen durante la
obra. Antes de seguir comentando el display es necesario explicar la superficie y los medios que
se disponian para la proyeccion.

El entorno que se disponia para la proyeccion esta constituido por tres pantallas cada
una con un proyector independiente. Las pantallas poseen dimensiones irregulares y estan
situadas en el espacio formando una especie de espacio tridimensional que rodea el lugar donde
tiene lugar el baile. Algunas de estas pantallas son simplemente paredes pintadas de blanco,
mientras que otras son estructuras expresamente disefiadas para el fin que nos atafie.

Fig. 5.2 Laboratorio de Danza y Nuevos Medios

Inicialmente se trabajé en un Unico display, que funcionara en la misma maquina donde
corria el host y que unificara las tres pantallas en una sola a efectos de cddigo. Sin embargo se
encontraron dos problemas: la aparicion de un delay o retraso en la proyeccion, debido al gran
trafico de informacion que tenia lugar y los problemas al ajustar el tamafio de proyeccion dadas
las dimensiones irregulares de las pantallas. Para corregir esto se opt6 por utilizar un cédigo
display individual por cada pantalla, lo que evitaba el retraso debido al intercambio de datos ya
que el display se encuentra en la misma maquina que va a controlar, y a su vez permite ajustar
el tamafio de proyeccion de cada pantalla por separado. En definitiva a nivel de cddigo es un
Gnico display, salvo pequefias variaciones, pero que se encuentra funcionando
independientemente en cada una de las tres maquinas (proyectores).

PintarDance0 Bubble Bubbles Displays Drop FadeCurtain Fan OrganicMesh Part Rain SmokeCA SmokelC Traces WaveOnSphere

© ddf.minim.=*;
2 eadpixel.keystone.x;
3 port netP5.#*;

Fig. 5.3 Clases del Display

La obra se divide en un conjunto de proyecciones que se van sucediendo unas a otras,
algunas de mayor duracién y se podria decir mas representativas, y otras con una funcién de
transicion entre estas. Todas estas partes estan coordinadas por la clase principal PintarDance.
Las simulaciones se separaron en distintas clases para facilitar el trabajo con el codigo.

Pintar Dance tiene un papel fundamental en la coordinacién de la aplicacion. Se encarga
de coordinar que clase tiene que funcionar en un momento determinado y cuando debe dejar
paso a otra, actuando como un reloj con los tiempos de las simulaciones (lineas 36 - 46).
Ademas en el Pintar Dance asociado a cada pantalla se encuentran estipuladas las dimensiones
de la misma. Por lo tanto, Pintar Dance seria ese gestor de software de cada pantalla, que antes
hemos citado, y se encargaria tanto de gestionar la salida de audio como su proyeccion asociada.

Todas las proyecciones principales interaccionan en tiempo real con los bailarines, por
medio de los sensores, siendo estas interacciones diferentes segun el punto del espectaculo en el
gue nos encontremos. Es importante destacar que no en las tres pantallas se produce este efecto,
Unicamente la pantalla central reacciona con el movimiento de los bailarines. Esto se ha decido
en consenso con el equipo de baile para que no se desviara mucho la atencion del pablico hacia
los laterales y hubiera un foco de atencidn centrado en ellos mismos y la pantalla central.
Algunas de estas proyecciones se han desarrollado a partir de ejemplos de c6digo abierto que se
encuentran en la propia pagina de Processing y en otras librerias que se han incluido en la
bibliografia.

A continuacion se va a exponer el esquema principal de las proyecciones que se

suceden y posteriormente se comentaran sus caracteristicas y cudl es el tipo de interaccion de
cada una de ellas.

29

Desaparicion
Gradual

e Organic

» Smoke Mesh » Wave on
a sphere

e Traces

e Bubbles

Fig. 5.4 Esquema de las presentaciones

1. Rain: Simula una lluvia sobre los bailarines. Cuando estos se encuentran en reposo no
ocurre nada, pero conforme van acelerandose (Xsens) producen una especie de
paraguas que despeja la lluvia, mé&s grande cuanto mayor sea la velocidad de sus
movimientos. La posicion de este paraguas tiene dos componentes. Su posicién en el eje
x de la pantalla depende de la posicién de cada bailarin, que es recogida por los
Ubisense, y su posicion en el eje y es funcién de si los brazos del bailarin se encuentran
hacia arriba o hacia abajo, esto se puede saber por medio del pitch obtenido por los
Xsens (positivo si los brazos se encuentran hacia arriba, negativo en el caso contrario).
Si los brazos del bailarin se encuentran completamente a 90° el paraguas estara en el
punto mas alto de la pantalla, mientras que si se encuentran a -90° en el mas bajo. Cabe
destacar que el punto de 0° se da cuando los brazos se sitGan perpendiculares al pecho.

1.1 Fundido: Cae una cortina blanca que transforma el fondo negro
progresivamente en un fondo blanco

2. Bubbles: Intenta crear la sensacion de estar inmersos en un espacio acuatico
tridimensional. Las burbujas tienen un movimiento aleatorio propio y ademas dos
movimientos diferentes. Uno de ellos tiene que ver con la velocidad de movimiento de
las burbujas, a medida que los bailarines se mueven mas deprisa (Xsens) también lo
hacen ellas. El otro va en funcién del pitch (Xsens), es decir, si los brazos del bailarin se
encuentran inclinados hacia arriba las burbujas cambian su direccién hacia la parte
exterior de la pantalla, como si intentaran salir de esta hacia los bailarines. Mientras que
por el contrario si sus brazos se encuentran hacia abajo las burbujas se moveran en el
sentido contrario como hacia el interior de la pantalla.

2.1 Desaparicion gradual: Las burbujas van desapareciendo poco a poco hasta
quedar un fondo blanco.

3. Traces: En esta animacion se ha tratado de crear una interaccion muy sutil que no
desvie mucho la atencion del publico de los bailarines, ya que es una parte de la obra
con movimientos muy suaves y con bastantes detalles. Sobre un fondo blanco aparecen
tres trazos independientes, uno correspondiente a cada bailarin, con un movimiento

30

semialeatorio. La interaccion consiste en que dentro del movimiento random de los
trazos, cada x tiempo (aleatorio no muy grande) los trazos buscan a su correspondiente
bailarin, se dirigen hacia su posicion, que es transmitida por los Ubisense.

3.1 Barrido: La pantalla cambia gradualmente de blanco a negro, de izquierda a
derecha, borrando a su paso los restos de los trazos de la simulacion previa. Para
entenderlo mejor se podria imaginar como si una brocha negra empezara a pintar
las pantallas de izquierda a derecha una detras de otra.

4. Smoke: Trata de conseguir el efecto visual de que los bailarines son focos emisores de
humo. Estos focos se desplazaran en el espacio siguiendo los movimientos del bailarin
por medio de su posicién (Ubisense).

4.1 Difusion: Conforme se acerca el final de la presentacion anterior se deja de
producir humo, dejando gue el gue ya se habia emitido ascienda y salga por la parte
superior de la pantalla quedando la pantalla completamente negra.

5. Organic Mesh: Partiendo de un fondo negro van apareciendo segmentos de diferente
orientacion y longitud, desde diferentes posiciones de la pantalla y se dirigen a lugares
concretos con la intencion de ir creando una malla que acabe por cubrir todo el espacio
de proyeccién. La interaccion con esta proyeccion consiste en que los bailarines por
medio de su movimiento vayan rompiendo la malla en lugares concretos. Es una
situacion parecida a la de Rain, se crea una zona que destruye la malla que depende
tanto de la posicién de los bailarines en el espacio (Ubisense) como de si sus brazos se
encuentran hacia arriba o hacia abajo.

5.1 Aunqgue no aparezca en el esquema ya que no se ha realizado ningln efecto
especial, la transicion consiste simplemente en que desaparece la malla que cubria
la pantalla y aparece instantaneamente la siguiente con forma de esfera.

6. Wave on a sphere: Se trata de una malla con forma de esfera, que se ha desplazado
hacia una esquina de la pantalla para que solo se vea un fragmento de esa esfera, ya que
se ha tratado de huir de formas geométricas a peticion del equipo de baile, para adecuar
la estética a un estilo de danza contemporénea. La malla conforme pasa el tiempo va
haciéndose mas compleja, dejando menos espacios sin rellenar. Esta esfera tiene un
movimiento de rotacion propio e inalterable pero cada cierto tiempo se producen unos
pulsos que deforman esta estructura. Los pulsos aparecen en intervalos de tiempo
mayores conforme nos acercamos al final de la obra y presentan una deformacion
mayor cuanto méas se aleja el bailarin de la esfera (un solo bailarin en este caso),
tomando como referencia su posicion (Ubisense). Como final simplemente cuando
termina la musica desaparece la malla y se queda un fondo negro.

31

32

Capitulo 6

Resultados

La finalidad del Trabajo de Fin de Grado ha sido la de la creacion de la pieza de danza
contemporénea "Pulse". Como se ha ido explicando a lo largo del proyecto, se ha trabajado con
diferentes tecnologias sensoriales y entornos graficos y de programacion, para conseguir
transmitir una nueva idea de baile.

|l3

En el presente capitulo se incluyen capturas tomadas durante el ensayo final™ de la

coreografia, para poder apreciar los resultados obtenidos.

6.1."Pulse"

Se ha intentado plasmar lo mejor posible los diferentes detalles que tienen lugar durante
la obra. Una tarea que no es sencilla dado que es dificil poder representar una accion de
movimiento y reaccion mediante capturas estaticas. Debido a que los detalles de cada
presentacién ya han sido explicados en el capitulo anterior, se van a hacer referencias de las
diferentes funciones del display y comentando los detalles que se consideran mas relevantes.

En el inicio de la obra los bailarines se encuentran sentados en los bordes del escenario.
En el momento pactado, se acciona todo el proceso, la mdsica comienza a sonar y los bailarines
se acercan a la pantalla central, mientras esta va cubriéndose con lluvia poco a poco (Rain),
hasta quedar como en la figura 6.1

Fig. 6.1 Rain a

13 No fue posible grabar la actuacién debido a la gran afluencia de publico.

33

En la siguiente imagen se puede apreciar como varia la posicion del "paraguas” en
funcidn de hacia dénde apunten los brazos del bailarin.

Fig. 6.2 Rain b

Al final de esta presentacion tiene lugar la transicion Fundido de la que se van a
exponer capturas graduales. El fondo poco a poco se tornara blanco y dara paso a la siguiente
parte.

Fig. 6.3 Fundido

34

Para Bubbles no es posible escoger una instantanea que represente lo que sucede, ya que
no se puede apreciar la direcciéon ni velocidad de las burbujas. Por esto, se ha intentado por
medio de una sucesion de fotogramas captar el movimiento.

Fig. 6.4 Bubbles

Los bailarines se encuentran de frente a la cdmara con sus brazos inclinados hacia arriba
por los que las burbujas tienden a desplazarse hacia el exterior de las pantallas, aumentando de
tamarfio y desapareciendo de las pantallas. Y su velocidad en ese tramo concreto es lenta ya que
los bailarines se encuentran practicamente estaticos.

Con respecto a la transicion de Desaparicion Gradual, no se van a incluir imagenes, ya
gue Unicamente las burbujas van desapareciendo poco a poco de la pantalla.

La siguiente parte de la obra es la correspondiente a Traces. En la siguiente imagen 6.5
se puede observar que cada trazo sigue un movimiento independiente, desplazado mas a la
izquierda o a la derecha segun la posicidn del bailarin. Hasta que Ilega un momento en el que
todos los trazos buscan a su bailarin.

Fig. 6.5 Traces

Una vez se ha llegado al final de Traces, comienza la transicion de Barrido. Se puede
apreciar como va avanzando, pasando de una pantalla a otra, el barrido. No se pasa directamente
de blanco a negro, sino que sucede una coloracion gradual pasando por tonos grises que se van
oscureciendo. Hasta quedar las tres pantallas completamente en negro.

Fig. 6.6 Barrido

Partiendo de ese fondo negro comienza a funcionar Smoke. En la imagen que se expone
a continuacion se puede observar como dos focos de humo se localizan sobre los dos bailarines
que se encuentran juntos en el centro, y otro se sitia mas a la derecha correspondiendo con la
situacion del bailarin restante. De la transicion posterior Difusién no se va a incluir imagen, ya
que Unicamente deja de producir humo, mientras que el ya se ha emitido sigue ascendiendo en
la pantalla hasta desaparecer.

Fig. 6.7 Smoke

37

Una vez se ha difuminado por completo el humo, comienza la creacion de Organic
Mesh. La malla va formandose poco a poco hasta cubrir la totalidad de las pantallas.

Fig. 6.8 Organic Mesh a)

En la siguiente imagen se puede apreciar el efecto que producen los bailarines en la
malla segln sea su localizacion y la posicion de sus brazos. Se pueden observar dos grandes
zonas en las que la malla se ha roto (esquina superior izquierda de la pantalla central), una
encima de la otra. Esto se debe a que la posicion de ambos bailarines es practicamente idéntica,
mientras que los brazos del bailarin de mas a la izquierda apunta hacia arriba y los del otro
bailarin mas hacia abajo en una posicién intermedia.

Fig. 6.9 Organic Mesh b)

Finalmente Organic Mesh deja paso a Wave On A Sphere. Se exponen a continuacién
dos imagenes en las que se puede apreciar el estado normal de la esfera, mientras esta se
encuentra girando por su movimiento propio, y también el momento en el que se produce un
pulso. Este pulso buscara en este caso concreto al bailarin que en ese momento se encuentra mas
alejado de la esfera.

Fig. 6.10 Wave on a sphere

40

Capitulo 7

Conclusiones

7.1. Objetivos alcanzados

Con respecto a los objetivos alcanzados se podria decir que el resultado que se ha
obtenido es satisfactorio, ya que se ha demostrado que es posible la integracion de las nuevas
tecnologias en el entorno del arte y que no es una tarea tan ardua como podria pensarse, si
pensamos en la gran cantidad de oportunidades que esto ofrece. Se ha conseguido llegar un
punto de hibridacion en el que el bailarin, por medio de sus movimientos, es capaz de
modificar, en tiempo real, el desarrollo de las diferentes proyecciones que tienen lugar durante
la obra, permitiéndole experimentar nuevas vias de expresion que hasta ahora no se habian
considerado.

Se ha trabajado con diferentes tipos de tecnologias, algunas ya conocidas y usadas en el
entorno de la danza como proyectores, y otras de caracter muy innovador como los sensores de
diferente tipo que se han empleado. En relacién con estos Gltimos, los Ubisense son los que han
limitado un poco mas el desarrollo del proyecto debido al gran tiempo que requieren entre
mediciones (1 segundo), ya que en un entorno dinamico como en el que nos encontramos es
fundamental que los movimientos se reflejen lo mas fielmente posible. Ademas estos sensores
sufren un alto grado de imprecision, que se ha intentado solucionar en la parte del cédigo
correspondiente (procesSignals). Por su parte los Xsens no tienen el problema de la frecuencia
de las mediciones ya que el usuario puede seleccionar este intervalo a su gusto segun el fin para
el que los use. Cuando se consigui6 incluir los Xsens en el proyecto supuso un gran salto de
calidad, ya que no solo abria un gran abanico de posibilidades a nivel de interacciones bailarin-
entorno, sino que hacia mucho mas tangible cual era el efecto que el bailarin estaba produciendo
con su danza.

Ha sido fundamental el desarrollo en paralelo de la parte artistica y de la parte de
ingenieria, asi como el trabajo en equipo de bailarines e ingenieros. Se ha trabajado desde
ambas partes para conseguir adecuarse a necesidades, deseos y limitaciones de la otra. Por parte
del equipo de ingenieria se ha tratado de entorpecer lo menos posible el desarrollo artistico de la
obra, procurando que los sensores estuvieran colocados en puntos que no molestaran a los
bailarines pero que también captaran fielmente sus movimientos, al final se ha decidido que los
Xsens estén situados en la parte interior de las mufiecas y los Ubisense colgados del cuello
como una medalla. También se ha intentado desarrollar presentaciones que cubrieran las
necesidades artisticas pero también adecuandose a las limitaciones de los medios y calendarios
establecidos. En cuanto al equipo de baile, se ha tratado de adecuar ciertas partes de la
coreografia para maximizar el respuesta que se podia obtener del entorno.

41

7.2. Trabajo futuro

La linea de trabajo que se podria seguir es muy prometedora. Personalmente sélo he
aprendido un poco del complejo mundo de las nuevas tecnologias sensoriales y estas ya
representan una cantidad de posibilidades muy grande, no solo en el campo de la danza, sino
para otros entornos, como por ejemplo el de juegos educativos para nifios o el estudio y
seguimiento a distancia de personas con movilidad reducida o diferentes enfermedades. La gran
diversidad de tecnologia sensorial de la que se dispone hoy en dia esta haciendo que desde hace
unos afios se empiecen a dar casos de ingenieria cyborg™, en los que personas con carencias
sensoriales acoplan a su cuerpo diversos aparatos que les permiten suplirlas.

Desde el entorno del proyecto, el entorno artistico, las posibilidades que aportan las
nuevas tecnologias se podria decir que son casi ilimitadas. Solo hay que pensar que en el
proyecto se comenz6 estudiando diferentes sensores y que Unicamente se han utilizado los
Xsens, mas los Ubisens. Y que ademas, no se han explotado todas las magnitudes que los Xsens
pueden medir.

Por esto, en un proximo trabajo en este campo, se podria comenzar por aprovechar al
méaximo los Xsens. También se podrian incluir méas sensores, como los DataGlove, u otros
sensores que no fueran acoplados fisicamente al bailarin, sino que fueran capaces de tomar las
medidas pertinentes a distancia, como los Kinect" o unos sensores de temperatura. Con esto, se
conseguiria aumentar tremendamente las maneras en las que el bailarin podria transmitir lo que
quiere expresar, buscando otros puntos de vista y consiguiendo una interaccion con el entorno
rica y cargada de detalles.

14 Neil Harbisson (Londres, Inglaterra, 27 de julio de 1984) es un artista vanguardista y activista
ciborg britanico e irlandés residente en Nueva York. Es la primera persona en el mundo reconocida
como ciborg por un gobierno (2004) y la primera persona con una antena implantada en la cabeza.
La antena le permite escuchar los colores y percibir colores invisibles como infrarrojos y
ultravioletas asi como recibir imagenes, videos, musica o llamadas telefénicas directamente a su
cabeza desde aparatos externos como moviles o satélites.

15 Kinect es un dispositivo, inicialmente pensado como un simple controlador de juego, que gracias
a los componentes que lo integran: sensor de profundidad, cAmara RGB, array de micréfonos y
sensor de infrarrojos (emisor y receptor), es capaz de capturar el esqueleto humano, reconocerlo y
posicionarlo en el plano.

42

Anexo |

Caodigo de lectura de los Xsens

A continuacion se expone el cddigo que se comenta en el apartado 4.2, que se ha
desarrollado a partir de librerias que incluian los sensores para el entorno de Matlab.

15 Copyright (c) 2003-2016 Xsens Technologies B.V. or
subsidiaries worldwide.

2% All

rights

reserved.

3

4 % Redistribution and use in source and binary forms,
with or without modification,

5% are permitted provided that the following

conditions are met:

6

7% 1. Redistributions of source code must retain the above

copyright notice,

8 % this list of conditions and the

following disclaimer.

9
10 % 2. Redistributions in binary form must reproduce the above
copyright notice,
11 % this list of conditions and the following disclaimer in
the documentation
12 % and/or other materials provided with
the distribution.
13

14 % 3. Neither the names of the copyright holders nor

the names of their contributors

15 % may be used to endorse or promote products derived
from this software without

16 % specific prior

written permission.

17

18 % THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY

19 % EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF

20 % MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL

21 % THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL,

22 % SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT

23 % OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION)

43

24 % HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY OR

25 % TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS

26 % SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY

OF SUCH DAMAGE.

29 function mainMTwRTdataViewer

o
°
o
°

This script allows the user to understand the step-wise
procedure to get data from devices connected to
33 % the Awinda station in wireless mode and collect data. It is also
possible
34 % to use this example with a wired
connected MTw device.

35 %

36 % The code is divided
into two parts:

37

O o\

38 $ 1) The first part regards the situation in which the MTw are
docked to

39 $ the Awinda
station. In this part:

40 %

41 % a) information about the MTw connected are provided

42 % b) a communication channel is opened making the Awinda
station

43 % enabled to receive MTw connections (the user is asked
to choose

44 % the channel number)

45 % c) at this point the user is asked to undock the MTw

devices from the
46 % Awinda station and wait for them to be
wireless connected
47 %
48 % 2) The second part regards the situation of using the MTw in
wireless

44

a1 U1 >
= O

a1
N

mode, soon after the end of the part 1.

a) operational mode is activated
b) the user is asked to choose a specific update rate (this migh!’

o® o° d° oo

depend on the number of MTw used. See

53
54
55
56
57
58
59
60
61
62

datasheet for this information)

c) measurement mode is activated

d) data are extracted from the devices and displayed live in
graphs

e) Awinda station is then disabled

f) recorded data are saved in a log file

o® A o° o° o° o° oo

o
o

$5———————— IMPORTANT NOTES

o

o0 oo

- For the code to work properly, make sure the code folder is your curren®

directory in Matlab.

63
64

o° oo

- This code supports multiple MTw devices connected at a time to one Awinda

station (although the suggested max number of connected devices is 4).

65
66

[©2Ne)
o

- This code supports both 32 and 64 bits Matlab version.

o° o° o° oo

- The code requires xsensdeviceapi com32.dll or xsensdeviceapi com64.dll to be

registered in the Windows

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

register (this is done automatically during the Xsens MT SDK installation)

o° oo

%% Launching activex server
switch computer
case 'PCWIN'

serverName = 'xsensdeviceapi com32.IXsensDeviceApi’
case 'PCWING4'
serverName = 'xsensdeviceapi comb64.IXsensDeviceApi}

end
h = actxserver (serverName) ;
fprintf('\n ActiveXsens server - activated \n');

version = h.XsControl version;
fprintf (" XDA version: %$.0f.%.0f.%.0f\n',version{1:3})
if length(version) >3

fprintf (" XDA build: %.0f %s\n',version{4:5});
end

%% Scanning connection ports
% ports rescanned must be reopened
p_br = h.XsScanner scanPorts (0, 100, true, true);
fprintf ('\n Connection ports - scanned \n');
% check using device id's what kind of devices are connected.
isMtw = cellfun(@(x) h.XsDeviceId isMtw(x),p br(:,1));
isDongle = cellfun (@ (x) h.XsDeviceId isAwindaDongle(x),p br(:,1));
isStation = cellfun(@(x) h.XsDeviceld isAwindaStation(x),p br(:,1));

if any(isDongle|isStation)
fprintf ("\n Example dongle or station\n
dev = find(isDongle|isStation);
isMtw = false; $ if a station or a dongle is connected give priority to

45

it.

102 elseif any (isMtw)

103 fprintf ("\n Example MTw\n')

104 dev = find(isMtw) ;

105 else

106 fprintf ("\n No device found. \n')

107 h.XsControl close();

108 delete (h);

109 return

110 end

111

112 % port scan gives back information about the device, use first device found.
113 deviceID = p br{dev(l),1};

114 portS = p br{dev(1l),3};

115 baudRate = p br{dev(1l),4};

116

117 devTypeStr = '"';

118 if any (isMtw)

119 devTypeStr = 'MTw';

120 elseif any(isDongle)

121 devTypeStr = 'dongle';

122 else

123 assert (any(isStation))

124 devTypeStr = 'station';

125 end

126 fprintf ("\n Found %s on port %s, with ID: %s and baudRate: %.0f \n/
devTypeStr, portS, dec2hex(devicelID), baudRate);

127

128 % open port

129 if ~h.XsControl openPort (portS, baudRate, 0 ,true)

130 fprintf ("\n Unable to open port %s. \n' portS);

131 h.XsControl close();

132 delete (h);

133 return;

134 end

135

136 %% Initialize Master Device

137 % get device handle.

138 device = h.XsControl device (devicelD);

139

140 % To be able to get orientation data from a MTw, the filter in the
141 % software needs to be turned on:

142 h.XsDevice setOptions(device, h.XsOption XSO All, 0);

143 h.XsDevice gotoConfig(device);

144

145 % Get the list of supported update rates and let the user choose the
146 % one to set

147 supportUpdateRates = h.XsDevice supportedUpdateRates (device, h.
XsDataldentifier XDI None);

148 upRatelIndex = [];

149 while (isempty (upRateIndex))

150 fprintf ("\n The supported update rates are:);

151 fprintf ("%i, ', supportUpdateRates{:});

152 fprintf ("\n'");

153 selectedUpdateRate = input(Which update rate do you want to use ? });
154 if (isempty(selectedUpdateRate))

155 continue;

46

156 end

157 upRateIndex = find([supportUpdateRates{:}] == selectedUpdateRate);
158 end

159

160 % set the choosen update rate

161 h.XsDevice setUpdateRate (device, supportUpdateRates{upRatelIndex}) ;

162

163 if (any(isDongle|isStation))

164 % Let the user choose the desired radio channel

165 availableRadioChannels = [11 12 13 14 15 16 17 18 19 20 21 22 23 24 257];
166 upRadioChIndex = [];

167 while (isempty (upRadioChIndex))

168 fprintf (\n The available radio channels are: });

169 fprintf (%1, ',availableRadioChannels) ;

170 fprintf ('\n"'");

171 selectedRadioCh = input({ Which radio channel do you want to use ? };
172 if (isempty(selectedRadioCh))

173 continue;

174 end

175 upRadioChIndex = find(availableRadioChannels == selectedRadioCh) ;
176 end

177

178 try

179 % enable radio

180 h.XsDevice enableRadio (device, availableRadioChanneld
(upRadioChIndex)) ;

181 catch

182 fprintf (" Radio is still turned on, remove device from pc and try
again')

183 end % 1if radio is still on, this call will give an error

184

185 input ('\n Undock the MTw devices from the Awinda station and wait until
the devices are connected (synced leds), then press enter... \n)';

186

187 % check which devices are found

188 children = h.XsDevice children (device);

189

190 % make sure at least one sensor 1s connected.

191 devIdAll = cellfun (@ (x) dec2hex(h.XsDevice_deviceId(x))K’
children,'uniformOutput', false);

192 % check connected sensors, see which are accepted and which are
193 % rejected.

194 [devicesUsed, devIdUsed, nDevs] = checkConnectedSensors (devIdAll);
195 fprintf (" Used device: %s \n',devIdUsed{:});

196 else

197 assert (any (isMtw))

198 nDevs = 1; % only one device available

199 devIdUsed = {dec2hex (devicelD) };

200 devicesUsed = {device};

201 end

202

203 %% Entering measurement mode

204 fprintf ('\n Activate measurement mode \n";

205 % goto measurement mode

206 output = h.XsDevice gotoMeasurement (device);

207

208 % display radio connection information

47

209 if (any (isDongle|isStation))

210 fprintf ("\n Connection has been established on channel %i with an update
rate of %1 Hz\n', h.XsDevice radioChannel (device), h.XsDevice updateRate (device));
211 else

212 assert (any (isMtw))

213 fprintf ("\n Connection has been established with an update rate of %i
Hz\n', h.XsDevice updateRate (device)) ;

214 end

215

216 % create figure for showing data

217 [t, dataPlot, linePlot, packetCounter] =

createFigForDisplay (nDevs, devIdUsed) ;

218

219 % check filter profiles

220 if ~isempty (devicesUsed)

221 availableProfiles = h.XsDevice availableXdaFilterProfiles(devicesUsed{1});
222 usedProfile = h.XsDevice xdaFilterProfile (devicesUsed{1l}):;

223 number = usedProfile{l};

224 version = usedProfile{2};

225 name = usedProfile{3};

226 fprintf ("\n Used profile: %s(%.0f), version %.0f.\n;name,number,version)
227 if any([availableProfiles{:,1}] ~= number)

228 fprintf (\n Other available profiles are: \n)

229 for iP=1:size(availableProfiles, 1)

230 fprintf (Profile: %$s(%.0f), version %.0f.\n%availableProfiles
{iP,3},availableProfiles{iP,1},availableProfiles{iP,2})

231 end

232 end

233 end

234

235 if output

236 % create log file

237 h.XsDevice createLogFile(device,/exampleLogfile.mtb');

238 fprintf ("\n Logfile: %s

created\n', fullfile (cd,'exampleLogfile.mtb')); 239

240 % start recording

241 h.XsDevice startRecording(device);

242 % register onLiveDataAvailable event

243 h.registerevent ({'onLiveDataAvailable', @handleData}) ;

244 h.setCallbackOption (h.XsComCallbackOptions XSC LivePacket,

h. XsComCallbackOptions XSC None) ;

245 % event handler will call stopAll when limit is reached
input ('\n Press enter to stop measurement.\n);

246

247

248 else

249 fprintf ("\n Problems with going to measurement\n)

250 end

251 stopAl;

252

253 %% Event handler

254 function handleData (varargin)

255 % callback function for event: onLiveDataAvailable

256 dataPacket = varargin{3}{2};

257 deviceFound =

varargin{3}{1};

258

48

259 iDev = find(cellfun (@ (x) x==deviceFound, devicesUsed)) ;

260 if isempty(t{iDev})

261 t{iDev} = 1;

262 else

263 t{iDev} = [t{iDev} t{iDev} (end)+1];

264 end

265 if dataPacket

266 if h.XsDataPacket containsOrientation (dataPacket)

267 oriC = cellZmat (h.XsDataPacket orientationEuler 1 (dataPacket));
268 packetCounter (iDev) = packetCounter (iDev) +1;

269 dataPlot{iDev} = [dataPlot{iDev} oriC];

270 end

271

272 tst = cellZ2mat (h.XsDevice children (device));

273 sup = cell2mat (cellfun (@ (x)

dec2hex (h.XsDevice devicelId(x)), children,'uniformOutput', false));

274 sup =str2num(sup) ;

275

276 id =sup (find (tst==deviceFound)) ;

277

278 if h.XsDataPacket containsOrientation (dataPacket)

279 sacc = cell2mat (h.XsDataPacket calibratedData (dataPacket));
280 freeAcc = cellZ2mat (h.XsDataPacket freeAcceleration (dataPacket));
281 sacc3 = cellZmat (h.XsDataPacket rawAcceleration (dataPacket));
282 saccd4 = cellZmat (h.XsDataPacket rawData (dataPacket));

283 socket = tcpip(localhost', 32000, 'NetworkRole', 'client');
284 fopen (socket) ;

285 sensorId = mod (id, 100);

286 message =

[num2str (sensorId),;',num2str (oriC(1l)),"';"',num2str (oriC

(2)),"'; ", num2str (oriC(3)),'; "', num2str (freehAcc(l)),';"',num2str (freehAcc(2)),';"',num2str
(freeAcc (3))1;

287 fwrite (socket, message, 'char');

288 fclose (socket) ;

289 delete (socket);

290 clear socket

291 freeAcc'

292 fprintf (-———-- ")

293 end

294

295 h.liveDataPacketHandled (deviceFound,

dataPacket) ;

296

297 % draw

298 if packetCounter (iDev) >10

299 if length(t) > 1000

300 t{iDev} (1l:end-990) = [];

301 dataPlot{iDev} (:,1:end-990) = [];

302 set (get (linePlot{iDev} (1) ,parent'), "xlim', [t{iDev} (1)
t{iDev} (end)+101]);

303 end

304 for i=1:3

305 set (linePlot{iDev} (i) /xData',t{iDev},'ydata',dataPlot{iDev}
(i,:))

306 end

307 packetCounter (iDev) = 0;

308 end

49

3009 end

310 end

311

312 function stopAll

313 % close everything in the right way

314 if ~isempty(h.eventlisteners)

315 h.unregisterevent ({fonLiveDataAvailable', @GhandleData}) ;
316 h.setCallbackOption (h.XsComCallbackOptions XSC None,
h. XsComCallbackOptions XSC LivePacket);

317 end

318 % stop recording, showing data

319 fprintf ("\n Stop recording, go to config mode \n};
320 h.XsDevice stopRecording (device);

321 h.XsDevice gotoConfig(device);

322 % disable radio for station or dongle

323 if any(isStation]|isDongle)

324 h.XsDevice disableRadio (device);

325 end

326 % close log file

327 fprintf ("\n Close log file \n');

328 h.XsDevice closeLogFile(device);

329 % on close, devices go to config mode.

330 fprintf ("\n Close port \n'");

331 % close port

332 h.XsControl closePort (portS);

333 % close handle

334 h.XsControl close();

335 % delete handle

336 delete (h);

337 end

338

339 function [devicesUsed, devIdUsed, nDevs] = checkConnectedSensors (devIdAll)
340 childUsed = false(size(children));

341 if isempty(children)

342 fprintf ('\n No devices found \n')

343 stopAll

344 error (MIw:example:devicdes', 'No devices found')
345 else

346 % check which sensors are connected

347 for ic=1:length(children)

348 if h.XsDevice connectivityState(children{ic}) ==
XsConnectivityState XCS Wireless

349 childUsed (ic) = true;

350 end

351 end

352 % show wich sensors are connected

353 fprintf ("\n Devices rejected:\n'")

354 rejects = devIdAll (~childUsed) ;

355 I=0;

356 for i=1l:length (rejects)

357 I = find(strcmp (devIdAll, rejects{il}));
358 fprintf (%d - %s\n', I,rejects{i})

359 end

360 fprintf ("\n Devices accepted:\n')

361 accepted = devIdAll (childUsed) ;

362 for i=1:1length (accepted)

363 I = find(strcmp (devIdAll, accepted{il})):;

50

364 fprintf (%d - %s\n', I,accepted{i})

365 end

366 str = input (\n Keep current status?(y/n) \n'%)'s');

367 change = [];

368 if strcmp(str,'n')

369 str = input (\n Type the numbers of the sensors (csv list, e.g.¢

"1,2,3") from which status should be changed \n (if accepted than reject or the othe¥
way around) :\n', 's');

370 change = str2double (regexp(str,',', 'split'));

371 for iR=1:1length (change)

372 if childUsed (change (iR))

373 % reject sensors

374 h.XsDevice rejectConnection(children{change (iR)});
375 childUsed (change (iR)) = false;

376 else

377 % accept sensors

378 h.XsDevice acceptConnection(children{change (iR)});
379 childUsed (change (iR)) = true;

380 end

381 end

382 end

383 % if no device is connected, give error

384 if sum(childUsed) ==

385 stopAll

386 error (MTw:example:devicdes', '"No devices connected")

387 end

388 % 1f sensors are rejected or accepted check blinking leds again
389 if ~isempty (change)

390 input (\n When sensors are connected (synced leds), press enter..¥
\n');

391 end

392 end

393 devicesUsed = children (childUsed) ;

394 devIdUsed = devIdAll (childUsed) ;

395 nDevs = sum(childUsed) ;

396 end

397 end

398

399 %% Helper function to create figure for display

400 function [t, dataPlot, linePlot, packetCounter] = createFigForDisplay (nDevs ¥
devicelds)

401

402 [dataPlot{l:nDevs}] = deal([]):;

403 [linePlot{1l:nDevs}] = deal([]);

404 [t{l:nDevs}] =

deal ([]); 405

406 %% not more than 6 devices per plot

407 nFigs = ceil (nDevs/6);

408 devPerFig = ceil (nDevs/nFigs) ;

409 m = ceil (sqrt (devPerFiqg));

410 n = ceil (devPerFig/m) ;

411 1Dev = 0;

412 for iFig=1l:nFigs

413 figure('name', ['Example MTw ' num2str (iFig)])

414 iPlot = 0;

415 for iDev = lDev+l:min (iFig*devPerFig, nDevs)

416 iPlot = iPlot+1;

51

417 ax = subplot (m,n,iPlot);

418 linePlot{iDev} = plot(ax, 0, [NaN NaN NaN]) ;
419 title(['Orientation data ' devicelIds{iDev}]),
xlabel ("sample'), ylabel ('euler (deg)')

420 legend(ax, 'roll','pitch','yvaw');

421 end

422 1Dev = iDev;

423 end

424 packetCounter = zeros (nDevs,1);

425 end

52

53

O ~J o U b w DN -

W NDNDNDNDND OUONMNNDMNOMNMNNNRE R RPR R PR R e
O W oW O T d WNRFE O WO U™ WwWN PO

w W
[\l

w W w w w
~ o U b W

Anexo ||

Host

11.1. Dance Host

public class Dance {
public String id;
public float x;
public float y;
public float destinoX;
public float destinoY;

DisplaysHost displaysClient;

float RATE = 24.0f;
int w = 1280;
int h = 768;

int 11 = 0;
int 12 = 0;
int 13 = 0;
int 14 = 0;

int fot = 0;
int display;
float tx=0;
float ty=0;

float rep = 1;
float movx;

float movy;

// tags de ubisense

PVector tag089=new PVector (0,0);
PVector tagl43=new PVector (0,0);
PVector tag248=new PVector (0,0);

PVector d tag089=new PVector (0,0,0);
PVector d tagl43=new PVector (0,0,0);
PVector d tag248=new PVector (0,0,0);

int pulso tag089=30;
int pulso tagl43=60;
int pulso tag248=60;

//x paredl, z pared3 distancia tag

38
39
40
41
42
43
44
45

boolean p tag089=tr
boolean p tagl43=tr
boolean p tag248=tr

//tags de xSense

PVector xSens20=new
PVector
46 PVector
47 PVector

xSens2l=new
xSens22=new
xSens23=new

uey
uey
uey

PVector
PVector

PVector

48 PVector
49PVector
50

51PVector
52 PVector
53 PVector
54 PVector
55 PVector
56 PVector
57 int pulso xSens20=30;

PVector
PVector

(

(
PVector (
(
xSens24=new (
(

xSens25=new

d xSens2l=new
d xSens22=new
d xSens23=new
PVector
PVector

(

(
PVector (
d xSens24=new (
(

d xSens25=new

58 int pulso xSens21=60;
59int pulso xSens22=90;
60 boolean p xSensZ0=true;
61 boolean p xSens2l=true;

//x paredl, y pared2,

62 boolean

p_xSens22=true; 63

64

65 //float fltMaxX1=0.0f;

66 //float fltMinX1=1.0f;

67 //float fltMaxY1=0.0f;

68 //float

f1tMinY1=1.0f; 69

70 int intCont = 0;

71 float fltSum = 0;

72 float fltMaxAcc=0.0f;

73 float fltMinAcc=1.0f;

74 float fltMaxRot=0.0f;

75 float fltMinRot=1.0f;

76 float fltMean =

0; 77

78 void setup () {

79 // Keystone will only work with P3D or OPENGL renderers,
80 // since it relies on texture mapping to
deform 81 size (640, 380, P3D);
82 frameRate (RATE) ;

83 background (100)

; 84

85 // virtual screens

86 displaysClient = new

DisplaysHost (host"); 87

88 movx = random(-6,6) ;
89 movy = random (-
6,6); 90

91 noStroke () ;

92 £111(0);

93 ellipseMode (RADIUS) ;
94 blendMode (ADD) ;

55

z pared3 distancia tag

95
96
97
98
99
100
101
102

void draw () {
//Pintar dibujable
//setTestData () ;
//Ubisense
if (displaysClient.isDrawing) {
displaysClient.dibujar ('tag089",d tag089.x,d tag089.y,displaysClient.w,768,0/

center");//Dancer 1

103

displaysClient.dibujar ('tagl43",d tagl43.x,d tagl43.y,displaysClient.w,768,0/

center");//Dancer 2

104

displaysClient.dibujar ('tag248",d tag248.x,d tag248.y,displaysClient.w,768,0/

center");//Dancer 3

105
106
107
108
109
110
111

768,

112

768,

113

768,

114

768,

115

768,

116

768,

117
118
119
120
121
122
123
124
126
127
128
129
131
132
133
134
135
136
137
139
140
141
142
143

145

println ("X1="+d tag089.x+"\tY1l="+d tag089.y+"\tZ1="+d tag089.z);
println ("X2="+d_tagl43.x+"\tY2="+d tagl43.y+"\tz2="+d tagld3.z);
println ("X3="+d_tag248.x+"\tY3="+d tag248.y+"'\tz3="+d tag248.z);
//display = 2;
//Xsense
//acceleration, rotation
displaysClient.dibujar ('xSens20",d xSens20.x,d xSens20.y,displaysClient.w,
0,"center");//Dancer 1 hand A
displaysClient.dibujar ('xSens21",d xSens2l.x,d xSens2l.y,displaysClient.w,
0,"center");//Dancer 1 hand B
displaysClient.dibujar ('xSens22",d xSens22.x,d xSens22.y,displaysClient.w,
0,"center");//Dancer 2 hand A
displaysClient.dibujar ('xSens23",d xSens23.x,d xSens20.y,displaysClient.w,
0, "center");//Dancer 2 hand B
displaysClient.dibujar ('xSens24",d xSens24.x,d xSens2l.y,displaysClient.w,
0, "center");//Dancer 3 hand A
displaysClient.dibujar ('xSens25",d xSens25.x,d xSens22.y,displaysClient.w,
0, "center");//Dancer 3 hand B

println("Ala="+d_xSensZO.x+"\tR1a="+d_xSensZO.y);
println("Alb="+d_xSenle.x+"\tR1b="+d_xSenle.y);
println("A2a="+d_xSen322.x+"\tR2a="+d_xSensZZ.y);
println("A2b="+d_xSen323.x+"\tR2b="+d_xSensZ3.y);
println("A3a="+d_xSensZ4.x+"\tR3a="+d_xSensZ4.y);
println("A3b="+d_xSen325.x+"\tR3b="+d_xSen525.y);

}

} 125

void setTestData () {

d tag089 = new PVector (mouseX*2, mouseY*2);

d tagli4s3 ((mouseX*2)+200, mouse¥Y*2);

d tag248 = new PVector ((mouseX*2)+400, mouseY*2); 130

d xSens20 = new PVector
r

new PVector

random(1l,100), random(1l,100));
d xSens2l = new PVecto 1,100), random(1l,100));
d xSens22 = new PVector (random(80,100), random(80,100));

d xSens23 = new PVector (random(1l,80), random(1l,80));
1,100), random(1l,100));

1,100), random(1l,100));

random

(
(
(
(random
(
(

d xSens24 = new PVector (

(

Py

d xSens25 = new PVector (random
} 138
void mensajeRecibido (OscMessage theOscMessage) {
//println ("THE OSC MESSAGE=", theOscMessage.addrPattern());
if (theOscMessage.addrPattern () .equals{/sensor/1D/xsens")) {
int id=theOscMessage.get (1) .intValue ()
//println ("id=", id); 144
if (1d==20.0) {

56

146 //if (fltMinRot > theOscMessage.get (6).floatValue()) {fltMinRot =
theOscMessage.get (3) . floatValue () ;}

147 //if (fltMaxRot < theOscMessage.get (6).floatValue()) {fltMaxRot =
theOscMessage.get (3) . floatValue () ;}

148 //if (fltMinRot > theOscMessage.get (7).floatValue()) {fltMinRot =
theOscMessage.get (4) . floatValue () ;}

149 //if (fltMaxRot < theOscMessage.get (7).floatValue()) {fltMaxRot =
theOscMessage.get (4) . floatValue () ;}

150 //if (fltMinRot > theOscMessage.get (8) .floatValue()) {fltMinRot =
theOscMessage.get (5) . floatValue () ;}

151 //if (fltMaxRot < theOscMessage.get (8).floatValue()) {fltMaxRot =
theOscMessage.get (5) . floatValue () ;}

152 //if (fltMinAcc > theOscMessage.get (6).floatValue()) {fltMinAcc =
theOscMessage.get (6) .floatValue () ;}

153 //if (fltMaxAcc < theOscMessage.get (6) .floatValue()) {fltMaxAcc =
theOscMessage.get (6) .floatValue () ;}

154 //if (fltMinAcc > theOscMessage.get (7) .floatValue()) {fltMinAcc =
theOscMessage.get (7) .floatValue () ;}

155 //if (fltMaxAcc < theOscMessage.get (7).floatValue()) {fltMaxAcc =
theOscMessage.get (7) . floatValue() ;}

156 //if (fltMinAcc > theOscMessage.get (8).floatValue()) {fltMinAcc =
theOscMessage.get (8) .floatValue () ;}

157 //if (fltMaxAcc < theOscMessage.get (8).floatValue()) {fltMaxAcc =
theOscMessage.get (8) .floatValue () ;}

158 //intCont += 3;

159 //fltSum += theOscMessage.get (6) .floatValue () ;

160 //f1ltSum += theOscMessage.get (7) .floatValue () ;

161 //fltSum += theOscMessage.get (8).floatValue () ;

162 //fltMean = fltSum/intCont;

163 //println ("id="+id+"\tminAcc: "+fltMinAcc+"\tmaxAcc: "+fltMaxAcc) ;
164 //println ("id="+id+"\tminRot: "+fltMinRot+"\tmaxRot: "+fltMaxRot) ;
165 //println ("id="+id+"\tMean: "+fltMean) ;

166 //1d=20 minAcc: -32.2936 maxAcc:

49.515

167 //1d=20 minRot: -134.4615 maxRot: 73.4169

168 //id=20 Mean: -0.03960795

169

170 //float rotx=theOscMessage.get (3).floatValue () ;

171 //float roty=theOscMessage.get (4).floatValue();

172 //float

rotz=theOscMessage.get (5).floatValue(); 173

174 d xSens20.x = accXsens
(theOscMessage.get (6) .floatValue (), theOscMessage.get
(7) .floatValue (), theOscMessage.get (8) .floatvValue())

175

176 //float accx=map (theOscMessage.get (6) .floatValue(),-13,14,0,100);
177 //float accy=map (theOscMessage.get (7) .floatValue(),-13,14,0,100) ;
178 //float accz=map (theOscMessage.get (8) .floatValue (), -

13,14,0,100); 179

180 //println ("id="+id+"\taccx="+accx+"\taccy="+accy+"\taccz="+accz) ;

181 //println ("id="+id+"\trotx="+rotx+"\troty="+roty+"\trotz="+rotz);

182

183 //d_xSens20.x=(accxt+accytaccz) /3;

184 //d_xSens20.x=clase.funcion (theOscMessage.get (6) .floatValue (), theOscMessage.

get (7) .floatValue (), theOscMessage.get (8) .floatValue()):;

185
186

//logaritmo de la raiz cuadrada de la suma de los cuadrados de

57

las
187
188
189
190
191

aceleraciones
//float sum=pow (rotx, 2) +pow (roty, 2) +pow (rotz,2) ;
//float raz=sqgrt (sum) ;
//raz=log(raz) ;
d xSens20.y=rotXsens (theOscMessage.get (4) .floatValue());
//d_xSens20.y=clase.funcion2 (theOscMessage.get (3) .floatValue(),

theOscMessage.get (4) .floatValue (), theOscMessage.get (5) .floatvValue());

192
193
194
195
196
197
198
199

}

if (id==21.0) {
//float rotx=theOscMessage.get (3).floatValue () ;
//float roty=theOscMessage.get (4) .floatValue();
//float rotz=theOscMessage.get (5).floatValue();
//float accx=map (theOscMessage.get (6) .floatvalue(),-10,10,0,100) ;
//float accy=map (theOscMessage.get (7) .floatvalue(),-10,10,0,100);
//float accz=map (theOscMessage.get (8) .floatValue (), -

10,10,0,100); 200

201

d xSens2l.x=accXsens

(theOscMessage.get (6) .floatValue (), theOscMessage.get

(7)
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

(7)
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

(7)
232
233
234
235
236
237

.floatValue () ,theOscMessage.get (8) .floatValue());

//float sum=pow (rotx, 2) +pow (roty, 2) +pow (rotz, 2) ;
//float raz=sqgrt (sum) ;
//raz=log(raz) ;
d xSens2l.y=rotXsens (theOscMessage.get (4) .floatValue());
}
if (id==22.0) {
//float rotx=theOscMessage.get (3).floatValue();
//float roty=theOscMessage.get (4) .floatValue () ;
//float rotz=theOscMessage.get (5).floatValue();
//float accx=map (theOscMessage.get (6) .floatvalue(),-10,10,0,100) ;
//float accy=map (theOscMessage.get (7) .floatvalue(),-10,10,0,100) ;
//float accz=map (theOscMessage.get (8) .floatvalue(),-10,10,0,100);

d xSens22.x=accXsens (theOscMessage.get(6).floatValue(),theOscMessage.geﬁ/
.floatValue (), theOscMessage.get (8) .floatValue());

//float sum=pow (rotx, 2) +pow (roty, 2) +pow (rotz, 2) ;
//float raz=sqrt (sum) ;
//raz=log(raz) ;
d xSens22.y=rotXsens (theOscMessage.get (4) .floatValue());
}
if (1id==23.0) {
//float rotx=theOscMessage.get (3).floatValue () ;
//float roty=theOscMessage.get (4).floatValue () ;
//float rotz=theOscMessage.get (5).floatValue();
//float accx=map (theOscMessage.get (6) .floatValue(),-10,10,0,100) ;
//float accy=map (theOscMessage.get (7) .floatValue(),-10,10,0,100) ;
//float accz=map (theOscMessage.get (8) .floatvValue(),-10,10,0,100);

d xSens23.x=accXsens (theOscMessage.get (6) .floatValue (), theOscMessage.get
.floatValue () ,theOscMessage.get (8) .floatValue());

//float sum=pow (rotx, 2) +pow (roty, 2) +pow (rotz,2) ;

//float raz=sqgrt (sum) ;

//raz=log(raz) ;

d xSens23.y=rotXsens (theOscMessage.get (4) .floatValue());

58

238 if (id==24.0) {

239 //float rotx=theOscMessage.get (3).floatValue () ;

240 //float roty=theOscMessage.get (4) .floatValue();

241 //float rotz=theOscMessage.get (5).floatValue();

242 //float accx=map (theOscMessage.get (6) .floatValue(),-10,10,0,100) ;

243 //float accy=map (theOscMessage.get (7) .floatvValue(),-10,10,0,100) ;

244 //float accz=map (theOscMessage.get (8) .floatvalue(),-10,10,0,100);

245

246 d xSens24.x=accXsens (theOscMessage.get (6) .floatValue (), theOscMessage.get

(7) .floatvValue (), theOscMessage.get (8) .floatValue ()),

247

248 //float sum=pow (rotx, 2) +pow (roty, 2) +pow (rotz, 2) ;

249 //float raz=sqgrt (sum) ;

250 //raz=log(raz) ;

251 d xSens24.y=rotXsens (theOscMessage.get (4) .floatValue());

252 }

253 if (1d==19.0) {

254 //float rotx=theOscMessage.get (3).floatValue () ;

255 //float roty=theOscMessage.get (4) .floatValue () ;

256 //float rotz=theOscMessage.get (5).floatValue();

257 //float accx=map (theOscMessage.get (6) .floatvalue(),-10,10,0,100) ;

258 //float accy=map (theOscMessage.get (7) .floatvalue(),-10,10,0,100) ;

259 //float accz=map (theOscMessage.get (8) .floatvalue(),-10,10,0,100);

260

261 d xSens25.x=accXsens (theOscMessage.get (6) .floatValue (), theOscMessage.get

(7) .floatValue (), theOscMessage.get (8) .floatValue())

262

263 //float sum=pow (rotx, 2) +pow (roty, 2) +pow (rotz, 2) ;

264 //float raz=sqrt (sum) ;

265 //raz=log(raz) ;

266 d xSens25.y=rotXsens (theOscMessage.get (4) .floatValue());

267 }

268 }

269 if (theOscMessage.addrPattern () .equals(/sensor/1D/gloves")) {

270 float glove=theOscMessage.get (3) .floatValue ()

271 //println ("glove=", glove);

272 }

273 else 1f (theOscMessage.addrPattern () .equals(/sensor/2D/ubisense")) {

274 Stringid=theOscMessage.get (1) .stringValue ()}

275 //println ("id=", id);

276 if (id.equals ("089")) {

277 //println ("tag 089 x=", theOscMessage.get (3).floatValue()," y=",

theOscMessage.get (4) . floatValue()) ;

278 //if (f1tMinX1 > theOscMessage.get (3).floatValue()) {fltMinX1l =

theOscMessage.get (3) . floatValue () ;}

279 //if (fltMaxX1l < theOscMessage.get (3).floatValue()) {fltMaxXl =

theOscMessage.get (3) .floatValue () ;}

280 //if (f1tMinY1l > theOscMessage.get (4).floatValue()) {f1ltMinYl =

theOscMessage.get (4) .floatValue() ;}

281 //if (fltMaxY1l < theOscMessage.get (4).floatValue()) {fltMaxYl =

theOscMessage.get (4) .floatValue() ;}

282 //println ("minX: "+£f1tMinX1+"\tmaxX: "+fltMaxX1l) ;

283 //println ("minY: "+f1tMinY1+"\tmaxY: "+fltMaxY1l) ;

284 tag089.x=map (theOscMessage.get (3) .floatValue(), 0.007, 0.91, 0, w);

285 tag089.y=map (theOscMessage.get (4) .floatValue(), 0.79, 0.17, 0, h/2); 286
d tag089.x=tag089.x;

287 d tag089.y=tag089.y;

59

288
289
290
291
292

294
295
296
297
298
299

301
302
303
304
305
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345

}

}

if

}

if

} 306
void keyPressed () {
switch (key) {

//println ("X1="+d tag089.x+"\tY1l="+d tag089.y+"\tzl="+d tag089.z);

(id.equals ("143")) {
tagl4d3.x=map (theOscMessage.get (3) .floatValue(), 0.007, 0.91, 0, w);

tagl43.y=map (theOscMessage.get (4) .floatValue(), 0.79, 0.17, 0, h/2); 293

d tagl43.x=tagl4d3.x;
d tagl43.y=tagl43.y;
//println ("X2="+d tagl43.x+"\tY2="+d tagl43.y+"\tZ2="+d tagl4d3.z);

(id.equals ("248")) {
tag248.x=map (theOscMessage.get (3) .floatvValue(), 0.007, 0.91, 0, w);

tag248.y=map (theOscMessage.get (4) .floatValue(), 0.79, 0.17, 0, h/2); 300

d tag248.x=tag248.x;
d tag248.y=tag248.y;
//println ("X3="+d tag248.x+"\tY3="+d tag248.y+"\tZ3="+d tag248.z);

case 32:

if (displaysClient.isDrawing){ displaysClient.endDraw(); }
else { displaysClient.beginDraw('"); }
break;

case ESC:

if (displaysClient.isDrawing){ displaysClient.endDraw(); }
displaysClient.disconnect () ;

super.stop () ;

break;

case 'l'://rain

displaysClient.beginDraw{'1") ;
break;

case '2'://rainTransition

displaysClient.beginDraw{'2") ;
break;

case '3'://bubbles

displaysClient.beginDraw{'3");
break;

case '4'://camBubblesTransition

displaysClient.beginDraw ('4") ;
break;

case '5'://traces

displaysClient.beginDraw{'5") ;
break;

case '6'://fadeCurtain

displaysClient.beginDraw{'6") ;
break;

case '7'://smoke

displaysClient.beginDraw{'7") ;
break;

case '8'://createMesh

displaysClient.beginDraw({'8") ;
break;

case '9'://meshSphere

displaysClient.beginDraw{'9") ;
break;

default:

60

346
347
348 }

}

break;

61

11.2. Displays Host

1 import oscP5.*;
2 import netP5.%*;

4 class DisplaysHost { 5
6 public class Display {
7 public int x;
8 public int y;
9 public int w;
0 public int h; 11
}

13 OscP5 oscP5;
14 NetAddress myBroadcastLocation;

15
16
17 //String ipAPI=155.210.155.229";
18 //String remoteIP=127.0.0.1";
19 String remoteIP="192.168.0.2"
20 //String remoteIP=155.210.155.229";
21 int listenPort=12000; // el puerto en el que se queda escuchando mensajes del
broadcaster
22
23 private XML file;
24 private int w, h;

25 public Display([] displayList;

26 private OscMessage myMessage; //Contiene el identificador del display que debe v
pintarlo y el identificador, el color y la posicion x e y de la mariposa a pintar

27 private String idDisplay;

28 private String tipo; //Posibles valores: host, sensoro display
29 public int id;

30
31 public boolean isDrawing = false;

32
33 DisplaysHost (String tipo) {
34
35 this.tipo = tipo;

36

37 file = loadXML ("displays.xml"); // Se abre el fichero

38 if (file==null) {

39 println ("Fail to load displays.xml filé');

40 } else {

41 println ("displays.xml succesfully loaded'); 42}

43 XML[] currentDisplays = file.getChildren'{currentDisplay");
44 for (int i = 0; i<currentDisplays.length; i++) {

45 this.id=currentDisplays[i].getInt(id"); 46

}

47 println ("display actual=", this.id);

48

49 XML[] virtualDisplays = file.getChildren{virtualDisplay");
50

62

51 for (int 1 = 0; i<virtualDisplays.length; i++) {

52 println ("virtualdisplay=", virtualDisplays[i].getInt ('width"));
53 this.w=virtualDisplays[i].getInt{width") ;
54 this.h=virtualDisplays[i].getInt(height");
55 XML[] displays = virtualDisplays[i].getChildren'ldisplay")
56 displayList=new Display[displays.length+1];
57
58 for (int j = 0; j<displays.length; j++) {
59 displayList[displays[j].getInt{(id")]=new Display () :;
60 displayList[displays[j].getInt(id")].h=displays[]j].getInt ("height");
ol displayList[displays[j].getInt(id")].w=displays[j].getInt ("'width")
62 displayList[displays[j].getInt(id")].x=displays[j].getInt ('x");
63 displayList[displays[j].getInt{id")].y=displays|[j].getInt('y"); 64
}
65 }
66
67 // OSC, aqui esta el puerto donde escucha mensajes
68 oscP5 = new OscP5(this,
listenPort); 69
70 // set the remote location to be the localhost on port
71 myBroadcastLocation = new NetAddress (remoteIP, 33000) ;
72 connect () ;
73 }
74
75 //Mandar
Osc 76
77 public void beginDraw (String strPart)
{78 for(int 1 =1;i<4;i++) {
79 myMessage = new OscMessage ('/display/BeginDrawDance") ;
80 isDrawing = true;
81 println (myMessaget'-"+strPart);
82 if (!strPart.isEmpty()) {
83 myMessage.setAddrPattern(/display/BeginDrawDance') ;
84 idDisplay = str(i);
85 myMessage.add (idDisplay) ;
86 println (idDisplay) ;
87 myMessage.add (strPart);
88 }
89 mandarMensaje (myMessage) ;
90 }
91 }
92
93 public void endDraw () {
94 myMessage = new OscMessage ('/display/EndDrawDance") ;
95 isDrawing = false;
96 println (myMessage) ;
97 mandarMensaje (myMessage) ;
98 }
99

100 public void dibujar (String id, float x, float y, int ancho, int alto,
float angle, String pivot) {

101 OscBundle myBundle new OscBundle ();

102 OscMessage mensajeTransformado = new OscMessage ("/display/DibujarDance");
103 idDisplay =""; //ninguna pantalla pinta el dibujable (fuera de

las coordenadas de la pantalla total)

104 //Identificar el display que debe pintar el dibujable

105 for (int j = 1; j < displayList.length; Jj++)

63

106
107
108

{

if (pivot.equals ("center")) {

if ((x + ancho/2) >= displayList[j].x && (x —ancho/2) <= (displayList[j].x

+ displayList[]].w)

109 && (y + alto/2) >= displayList[jl.y && (y-alto/2) <= (displayList[j]
+ displayList[j].h))

110 {

111 idDisplay = str(j);

112 PVector postTrasformada = new

PVector (abs (x),abs (y)) ;//cambioCoordenadas (j, X, y);

113 mensajeTransformado.setAddrPattern(/display/DibujarDance") ;
114 mensajeTransformado.add (idDisplay) ;

115 mensajeTransformado.add (id) ;

116 mensajeTransformado.add (postTrasformada.x) ;
117 mensajeTransformado.add (postTrasformada.y) ;
118 mensajeTransformado.add (ancho) ;

119 mensajeTransformado.add (alto) ;

120 mensajeTransformado.add (angle) ;

121 if (pivot.equals ("center"))

122 mensajeTransformado.addlC") ;

123 else

124 mensajeTransformado.addlE") ;

125 myBundle.add (mensajeTransformado) ;

126 mensajeTransformado.clear();

127 }

128 } else {

129 if ((x + ancho) >= displaylList[j].x && x <= (displayList[]j].x
+ displayList[j].w)

130 && (y + alto) >= displayList[j].y && y <= (displayList[j].y
+ displayList[j].h))

131 {

132 idDisplay = str(j);

133 PVector postTrasformada = new

PVector (abs (x) ,abs (y)) ;//cambioCoordenadas (j, x, Vy);:

134 mensajeTransformado.setAddrPattern(/display/DibujarB") ;
135 mensajeTransformado.add(idDisplay);

136 mensajeTransformado.add (id

137 mensajeTransformado.add(postTrasformada xX);
138 mensajeTransformado.add(postTrasformada V)
139 mensajeTransformado.add(ancho

140 mensajeTransformado.add (alto) ;

141 mensajeTransformado.add (angle) ;

142 if (pivot.equals ("center"))

143 mensajeTransformado.addlC") ;

144 else

145 mensajeTransformado.addlE") ;

146 myBundle.add (mensajeTransformado) ;

147 mensajeTransformado.clear () ;

148 }

149 }

150 }

151 mandarPaquete (myBundle) ;

152 1}

153

154 PVector cambioCoordenadas (int id, float x, float y) {

155 PVector resul = new PVector (0, 0);

64

‘Y

156 //println ("**cambio coordenadas**') ;

157 //println ("original X=", x, " **x*k*x U _wy=0 y),;

158 //println ("el display es", id, "***** x=" displaysClient.displayList[id].x, "
y=", displaysClient.displayList[id].y);

159 resul.x = abs(x - displaysClient.displayList[id].x);

160 resul.y = abs(y - displaysClient.displayList[id].y):

161 //println ("cambiado X=", resul.x, " **** " vy="_ resul.y);
162 return resul;

163 }

164

165 public void connect () {

166 OscMessage m;

167 println ("conectar");

168 m = new OscMessage ('/" + tipo + "/connect", new Object[0]);
169 m.add (listenPort) ;

170 mandarMensaje (m) ;

171 delay (1000) ;

172 }

173

174 public void disconnect () {

175 OscMessage m;

176 m = new OscMessage ('/" + tipo + "/disconnect", new Object[0]);
177 m.add (listenPort) ;

178 mandarMensaje (m) ;

179 println ("disconneted") ;

180 }

181

182 void mandarMensaje (OscMessage myMessage) {

183 // send the message

184 oscP5.send (myMessage, myBroadcastLocation) ;

185 }

186

187 void mandarPaquete (OscBundle myMessage) {

188 // send the message

189 oscP5.send (myMessage, myBroadcastLocation) ;

190 }

191

192 /* incoming osc message are forwarded to the oscEvent method. */
193 void oscEvent (OscMessage theOscMessage) {

194 mensajeRecibido (theOscMessage); //es necesarioque esta funcion este
imprementada en el main

195 }

196 }

65

66

o J oy U b W N

W W NN dNDND NN R PR e P
B O W g U0WwNDE O wo®IJo DN o o

32
33
34
35
36
37
38
39
40
41
42
43
45
46
47
48
49
50
52
53
54
56
57
58

I1.3. Proces Signals

boolean modoDebug = true;
float ubisenseOrigTime = 0;
float[] ubisenseOrigVal = new float|[2]
public float[] getUbisenseOrig() {
if (modoDebug) {
float t = getTimeStamp();
if (t>ubisenseOrigTime+1000) {
ubisenseOrigTime = t;
ubisenseOrigval[0] = mouseX;
ubisenseOrigVal[l] = mouseY; 11 }
return ubisenseOrigVal; 13 }
// Valores de los sensores
return null; 16 }

/17777 777777777777

float[] ubiTimes = new float [2];
float[] ubivalsO new float [2];
float[] ubivValsl = new float [2];
float upbiDifTime = 0;

float[] ubiDifVals = new float [2]; 24

public float getTimeStamp () {

returnmillis()+1000* (second()+60* (minute ()+60*hour())); 28

public float[] getUbisense () {
float[] inNew = getUbisenseOrig();
float t = getTimeStamp ();

if (inNew[0]!=ubiValsl1[0] || inNew[1]'!=ubivValsl[1])
ubiTimes[0] = ubiTimes[1];
ubiTimes[1] = t;
ubivals0[0] = ubivalsl[O0];
ubivalsO[1] = ubivalsl[1];
ubivalsl[0] = inNew([O0];
ubivalsl[1l] = inNew([1];

ubiDifTime = ubiTimes[1l]-ubiTimes [0

ubiDifVals[0] = ubivalsl[0]-ubiVals
ubiDifVals[1l] = ubiValsl[1l]-ubiValsO |
float[] res = new float[2];

float lambda = 2* (t-ubiTimes[1l]) /ubiDifTime

if (lambda>1) { lambda=1l; }

res[0] = (1-lambda) *ubivalsO0[0] + lambda*ubiValsl[0];
res[1l] = (1-lambda) *ubivalsO[1l] + lambda*ubiValsl[1l];

return res; 51 }

///////////// Procesado Xsens 55
float maxAccX = 12;
float minAccX -12;
float maxAccY = 12;

’

17
0r
1]

67

0]

’

44

{

}

59 float minAccY =
60 float maxAccZ =
61 float minAcc?Z =
62 float pitchMax =
63 float pitchMin =

64

-12;

12;

-12;
85;
-85;

65 public float accXsens (float

67
68
69
70
71
72
73
74
75
76
77
78
79
81
82
83

if (accX <
if (accX >
if (accY <
if (accYy >
if (accz <
if (accz >

accX

accX

>
<
accy >
<
accz >
<

if(
if(
if(
if (accy
if(
1f(

acciz

float deltaAcc = sqrt (pow (accX, 2) +pow (accY, 2) +pow (accZ,2))k

minAccX) {accX
maxAccX) {accX
minAccY) {accY
{accY
{accz

{accZ

)
)
maxAccY)
minAcc?Z)

)

maxAccz

©
Q
Q
P
Il

= map

intensidad de la aceleracion
return deltalAcc;

84
85
86
87
88
89
90
91
93
94
95
96
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
115
117
118
119

120

accX,

float
minAccX; }

accy,

maxAccX; }

minAccY; }

= maxAccY; }
= minAccZ; }

maxAccZ; }

map (accX, 0,maxAccX,0,50) ;}
map (accX, 0, minAccX,0,-50) ;}
map (accY, 0, maxAccY,0,50) ;}
accY, 0,minAccY,0,-50);}
= map (accZ,0,maxAccZ,0,50);}
map (accZ, 0,minAccZ, 0,

public float rotXsens (float pitch) { 92
if (pitch > pitchMax) {pitch = pitchMax;}
if(pitch < pitchMin) {pitch = pitchMin;}

//
//

/7

//float step =
//float exponent =

////float distX =
//float distY =

//public void procesadoUbiSens (float posX,
i++){ 116

//
//
//
//

//

if (pitch > 0) {pitch =

float accZ){ 66
//Ajuste alos maximos y minimos

//mapeo devalores

-50);1} 80

//calculo de 1a¥

map (pitch,0,pitchMax, 0,100);}

if(pitch < 0) {pitch = map(pitch,0,pitchMin,0,-100);} 97
return pitch;

float[] listaPosicionesX
float[] listaPosicionesY
float pct = 0.0; //

for
pct +=
if (pct

(int 1=0;

0.02;
4;

i1<24;
(1/(24-1));
< 1.0) ¢{

listaPosicionesX[i]

listaPosicionesY[i]

//

= new float[24];
= new float[24];

Percentage traveled

(0.0 to 1.0)

Size ofeach step along the path

sensorX - beginX;
sensorY - beginY¥;

posX +
posY +

// X-axis distanceto move

// Y-axis distanceto move

(pct * distX);
(pow (pct,

68

exponent)

float posY){ 114

* distY);

121
122
123
124
125
126

// }

//)

// beginX=listaPosicionesX[23];
// beginY=listaPosicionesX[23];

/7}

69

Anexo |1

Display

I11.1. Pintar Dance

import ddf.minim.*;

import deadpixel.keystone.*;
import netP5.%*;

import oscP5.%*; 5

int RATE = 24;

int intAudioPosition;

8 int intBackGround; 9

10 //Sound

11 Minim sound;

~ oD W N

12 AudioPlayer audio;

13 AudioListener audLis;
14 WaveRenderer wavRen;
15

16 //Dancers

17 Fan fanl;

18 float posXl;

19 float pos¥Yl;

20 //hands

21 int intTamaniolA;

22 int intTamaniolB;

23 int intRotalA;

24 int intRotalB;

25 Boolean blnRotal = true;//si la rotacion es positiva (brazos arriba) o negativa v
(brazos abajo)

26 Fan fan2;

27 float posX2;

28 float posY2;

29 //hands

30 int intTamanio2A;

31 int intTamanio?2B;

32 int intRota2A;

33 int intRota2B;

34 Boolean blnRota2 = true;
35 Fan fan3;

36 float posX3;

37 float posY3;

38 //hands

70

39 int intTamanio3A;

40 int intTamanio3B;

41 int intRota3A;

42 int intRota3B;

43 Boolean blnRota3 = true;

44

45 ArrayList<Part> arrPart;

46 int intDrops;

47 int intBubbles;

48 int intFadeFactorStart, intFadeFactorEnd;
49 ArraylList<PVector> arrStartEndPoints;
50 int intLines;

51 int intTreads;

52 // 1, 2, 3, 5, 8, 13, 21, 34

53

54 int[] intDeform = {515,516,518,521,526,534,547,555,568,578,590,602};
55 int[] intPulse = {2,3,5,8,13,21,34,55,89,144};

56 float fltFactorTam = 0.6f; 57
58 Rain rain;

59 Bubbles bubbles;

60 Traces tracesl;

61 Traces traces?;

62 Traces traces3;

63 FadeCurtain fadeCurtain;

64 SmokeCA smokel;

65 SmokeCA smoke?2;

66 SmokeCA smoke3;

67 OrganicMesh organicMesh;

68 WaveOnSphere wave; 69

70 //virtual screen Draw

71 Displays displaysClient;

72 int ID=2;

73 Keystone ks;

74 CornerPinSurface surface;

75 PGraphics offscreen;

76 boolean calibration=false;
77 PImage calibrationSheet ; 78
79 void setup () 80 {

81 size (1280, 768, P3D);

82 frameRate (RATE) ;

83 smooth (); 84

85 displaysClient = new Displays{'display");
86 displaysClient.id=ID; 87

88 ks = new Keystone (this);
89 surface = ks.createCornerPinSurface (width, height, 20);
90 // We need an offscreen buffer to draw the surface we

91 // want projected

92 // note that we're matching the resolution of the
93 // CornerPinSurface.

94 // (The offscreen buffer can be P2D or P3D)

95 offscreen = createGraphics (width, height, P2D);
96 // loads the saved layout

97 XML f = loadXML ('keystoneDance2.xml"); 98

99 if (f != null) {

100 ks.load ("keystoneDance2.xml") ;
101 }
102 else println("no existe");

71

103 calibrationSheet = loadImage{'calibration.png"); 104
105 // Load a soundfile from the /data folder of the sketch and play it back
106 sound = new Minim(this);
107 audio = sound.loadFile ("audio.mp3") ;
108 wavRen = new WaveRenderer(); 109
110 initialize(); 111
112 colorMode (RGB, 255);
113 } 114
115 void initialize () {
116 intAudioPosition=0;
117 intBackGround=0; 118
119 //Dancers
120 posX1=0;
121 posY1=0;
122 intTamaniolA=0;
123 intTamaniolB=0;
124 fanl = new Fan (posXl,posYl);
125 posX2=0;
126 posY2=0;
127 intTamanio2A=0;
128 intTamanio2B=0;
129 fan2 = new Fan (posX2,pos¥Y2);
130 pPosX3=0;
131 posY3=0;
132 intTamanio3A=0;
133 intTamanio3B=0;
134 fan3 = new Fan (posX3,posY3);
135
136 arrPart = new ArrayList<Part>();
137 arrPart.add (new Part (1l,'rain",1,147));//min-> 0:01 - 2:28
138 arrPart.add (new Part (2,'rainTransition",148,161));//min-> 2:29 - 2:55
139 arrPart.add (new Part (3,'bubbles",162,257));//min-> 2:56 - 4:17
140 arrPart.add (new Part (4,'camBubblesTransition",258,305));//min-> 4:18 - 4:45
141 //3Jcc
142 arrPart.add (new Part (5,'traces",306,395));//min-> 4:46 - 6:35
143 arrPart.add (new Part (6,'fadeCurtain", 396,422));//min-> 6:36 - 7:02
144 arrStartEndPoints = new ArrayList<PVector>();

145 for(int i=1; i<= 3; 1i++){
146 Part p = arrPart.get (5);
147 intFadeFactorStart = p.intInitTime+ (int ((p.intEndTime-p.intInitTime) /3) * (i-
1));//396-404-412
148 intFadeFactorEnd = p.intInitTime+ (int ((p.intEndTime-p.intInitTime) /3) *i)+1;
//404-412-420
149 arrStartEndPoints.add (new PVector (i, intFadeFactorStart, intFadeFactorEnd)) ;
150 }

151 //JccC

152 arrPart.add (new Part (7,"smoke",420,464));//min-> 7:03 - 7:44

153 arrPart.add (new Part (8,'createMesh",465,514));//min-> 7:45 - 8:34 154
arrPart.add (new Part (9,"meshSphere",515,619));//min-> 8:35 - 10:19

155 rain = new Rain();

156 bubbles = new Bubbles();

157 tracesl = new Traces();
158 traces?2 = new Traces|();
159 traces3 = new Traces|();
160 fadeCurtain = new FadeCurtain();

161 smokel = new SmokeCA() ;
162 smoke?2 = new SmokeCA () ;

72

163
164
165
166
167
168
169
170
171
172
173
175
176

177

smoke3 = new SmokeCA () ;
organicMesh = new OrganicMesh() ;
wave = new WaveOnSphere () ;

intDrops=0;
intBubbles=0;
intFadeFactorStart=0;
intFadeFactorEnd=0;
intLines=0;
intTreads=0;

} 174
void draw () {

// Convert the mouse coordinate into surface coordinates
// this will allow you to use

mouse events inside the// surface from

your screen.

179

180 PVector surfaceMouse = surface.getTransformedMouse (); 181

182 // Draw the scene, offscreen

183 offscreen.beginDraw(); 184

185 receiveMessage () ;

186 intAudioPosition = int (audio.position()/1000);

187 //println ("Audio time: "+intAudioPosition);

188 for(int 1 = 0; i<arrPart.size();i++) {

189 Part p = arrPart.get (i);

190 if(p.intInitTime<=intAudioPosition && p.intEndTime>intAudioPosition) {
191 switch(p.intId) {

192 case 1:

193 //println ("rain") ;

194 if (intDrops<rain.maxDrops) {

195 intDrops = int (map (intAudioPosition, p.intInitTime, int(pk’
intEndTime/2), 0, rain.maxDrops));

196 } else {

197 intDrops=rain.maxDrops;

198 }

199 rain.display (intDrops, false, fanl, fan2, fan3);//rain

200 if (displaysClient.id==2) {//only central display

201 //Inlcuye elpulso de los fan

202 for (int k=0;k<intPulse.length; k++) {

203 if(((intAudioPositiontintPulse[k])==0) &&intAudioPosition<p.
intEndTime) {

204 if (frameCount%int (RATE)==0) {

205 intTamaniolA+= fanl.intMaxFanSize*fltFactorTam

206 intTamaniolB+= fanl.intMaxFanSize*fltFactorTam

207 intTamanio2A+= fan2.intMaxFanSize*fltFactorTam

208 intTamanio2B+= fan2.intMaxFanSize*fltFactorTam

209 intTamanio3A+= fan3.intMaxFanSize*fltFactorTam

210 intTamanio3B+= fan3.intMaxFanSize*fltFactorTam

211 }

212 }

213 }

214 //Ajusta posicionesa la pantalla

215 posXl = posX1-100;

216 posYl = posYl - ((posYl)* (((intRotalA+intRotalB)/2)/100.0));
217 posX2 = posX2-60;

218 posY2 = posY2 - ((posY2)* (((intRota2A+intRota2B)/2)/100.0)) ;
219 posX3 = posX3-20;

73

220 posY3 = posY3 - ((pos¥3)*(((intRota3A+intRota3B)/2)/100.0));

221 //Envia los datos ajustados para pintar el objeto

222 fanl.display (posX1l,posY1-100, int ((intTamaniolA+intTamaniolB)/2));
223 fanl.update (posXl,posY1-100) ;

224 fan2.display (posX2,posY2-100, int ((intTamanio2A+intTamanio2B) /2)) ;
225 fan2.update (posX2,pos¥Y2-100) ;

226 fan3.display (posX3,posY3-100, int ((intTamanio3A+intTamanio3B) /2)) ;
227 fan3.update (posX3,pos¥Y3-100) ;

228 }

229 break;

230 case 2:

231 //println ("rainTransition") ;

232 //Fade black to white backgroud

233 rain.display(int(rain.maxDrops*0.9), true, fanl, fan2, fan3);

234 break;

235 case 3://println ("bubbles") ;

236 if (intBubbles<bubbles.intMaxBubbles) {

237 intBubbles = int (map (intAudioPosition, p.intInitTime, int (p.

intInitTime+ ((p.intEndTime-p.intInitTime) /4)), bubbles.intMinBubbles, bubbles.
intMaxBubbles)) ;

238 } else {

239 intBubbles=bubbles.intMaxBubbles;

241 }

242 //S1 la rotacion es positiva (brazos arriba), zoomIn

243 //sino (brazos abajo), zoomOut

244 //Se cambia la velocidad de movimiento en funcion de la aceleracion
245 if (((intRota2A+intRota2B) /2)>0) {

246 blnRota2 = true;

247 } else {

248 blnRota2 = false;

249 }

250 //ajusta los datos de la pantalla

251 //posY2 = posY2 - ((posY2)* (((intRota2A+intRota2B)/2)/100.0));
252 //envia los datos ajustados para pintar

253 bubbles.display (intBubbles, posX2, posY¥2, false, blnRota2, int
((intTamanio2A+intTamanio2B) /2));

254 break;

255 case 4:

256 //println ("bubblesTransition") ;

257 if (intBubbles>0) {

258 intBubbles = int (map (intAudioPosition, p.intInitTime, p.intEndTime-1,
bubbles.intMaxBubbles, 0));

259 } else {

260 intBubbles=0;//bubbles.intMinBubbles;

261 }

262 if (((intRota2A+intRota2B) /2)>0) {

263 blnRota2 = true;

264 } else {

265 blnRota2 = false;

266 }

267 bubbles.display (intBubbles, posX2, posY2, false, blnRota2, int
((intTamanio2A+intTamanio2B) /2));

268 break;

269 case 5:

270 //println ("traces") ;

271 if (displaysClient.id==2) {//only central display

272 tracesl.display (posX1+100, posY1+300);

74

273 traces2.display (posX2+200, posY2+300) ;

274 traces3.display (posX3+500, posY3+300);

275 } else {

276 offscreen.noStroke () ;

277 offscreen.fill (255,12);

278 offscreen.rect (0,0,width, height);

279 }

280 break;

281 case 6:

282 //println ("fadeCurtain") ;

283 //Barrido De fondo blanco a fondo negro de 396 a 422 segundos
284 intFadeFactorStart = int (arrStartEndPoints.get (ID-1) .vy);
285 intFadeFactorkEnd = int (arrStartEndPoints.get (ID-1).z);
286 switch (int (arrStartEndPoints.get (ID-1) .x)) {

287 case 2:

288 intFadeFactorStart-= 1;

289 break;

290 case 3:

291 intFadeFactorStart-= 2;

292 break;

293 default:

294 break;

295 }

296 if (intFadeFactorStart<=intAudioPosition &&
intFadeFactorEnd>intAudioPosition) {

297 if (intLines<width) {

298 intLines = int (map (intAudioPosition, intFadeFactorStart%’
intFadeFactorEnd, 10, width));

299 } else {

300 intLines=width;

301 }

302 println (intLines) ;

303 fadeCurtain.display(intLines);

304 }

305 break;

306 case 7:

307 //println ("smoke") ;

308 if (displaysClient.id==2) {//only central display
309 if (intAudioPosition<(p.intEndTime-7)) {

310 smokel.display(posXl, posY1+400, false);
311 smoke?2.display (posX2, posY¥2+400, false);
312 smoke3.display (posX3, pos¥3+400, false);
313 } else {

314 smokel.display(posXl, posY1+400, true);

315 smoke2.display (posX2, posY2+400, true);

316 smoke3.display (posX3, posY¥3+400, true);

317 }

318 } else {

319 offscreen.noStroke () ;

320 offscreen.fill (5, 15);

321 offscreen.rect (0, 0, width, height);

322 }

323 break;

324 case 8:

325 //println ("createMesh") ;

326 if (intTreads<organicMesh.intMaxTreads) {

327 intTreads = int (map (intAudioPosition, p.intInitTime, p.intEndTime, Of

75

organicMesh.intMaxTreads)) ;

328 } else {

329 intTreads=organicMesh.intMaxTreads;

330 }

331 //ajusta los datos de la pantalla

332 posY2 = posY2 - ((pos¥Y2)* (((intRota2A+intRota2B)/2)/100.0));
333 //envia los datos ajustados para pintar

334 organicMesh.display(posX2, posY¥2, intTreads);
335 break;

336 case 9:

337 //println ("'meshSphere") ;

338 if(displaysClient.id==2) {//only central display
339 wave.display(wave.intValorl, wave.intValorl);
340 for (int k=0;k<intDeform.length; k++) {

341 if(((intAudioPositiomsintDeform[k])==0) &&intAudioPosition<p.
intEndTime) {

342 if (frameCount%int (RATE)==0) {

343 wave.change (posX2, posY2);

344 }

345 }

346 }

347 } else {

348 offscreen.background(0) ;

349 }

350 break;

351 default:

352 supendAll () ;

353 break;

354 }

355 }

356 } 357

358 if (intAudioPosition>=618) {

359 supendAll () ;

360 } 361

362 if (calibration) offscreen.image (calibrationSheet,0,0,width,height);

363 offscreen.endDraw(); 364
365 // most likely, you'll wanta black background to minimize

366 // bleeding around your projection area

367 background(0); 368

369 // render the scene, transformed using the corner pin surface
370 surface.render (offscreen); 371

372 } 373

374 void supendAll () {

375 audio.removelListener (wavRen) ;

376 audio.pause () ;

377 audio.rewind() ;

378 initialize();

379 offscreen.fill (0,255);

380 offscreen.rect (0,0,width, height);
381 } 382

383 void changeTo (int intMillis) {

384 if (audio.isPlaying()) {

385 supendAll () ;

386 startIn(intMillis);
387 } else {

388 startIn(intMillis);
389 }

76

390
392
393
394
395
397
398
399
400
401
402
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
437
438
439
440
441
442
443
444
445
446
447
448
449
450

} 391

void startIn(int intMillis) {

audio.play(intMillis);
audio.addListener (wavRen);
} 396
void stop () {

// always close Minim audio classes when you are done with them

audio.close();
sound.stop () ;
super.stop () ;

} 403

void receiveMessage () {

if ((int (posX1l)==0]||int (posX1l)==1280) &&int (pos¥l)==0) {
//println ("1 no play");

intTamaniolA=0;
intTamaniolB=0;
} else {

if (intTamaniolA>fanl.
if (intTamaniolA<fanl.
if (intTamaniolB>fanl.
if (intTamaniolB<fanl.

}

intMaxFanSize)
intMinFanSize)
intMaxFanSize)
)

intMinFanSize

if ((int (posX2)==0]]1int (posX2)==1280) &&int (pos¥2)==0) {
//println ("2 no play");

intTamanio2A=0;
intTamanio2B=0;
} else {

if (intTamanio2A>fan2.
intTamanio2A<fan?2.

if(
if (intTamanio2B>fan2.
if (intTamanio2B<fan2.

}

intMaxFanSize
intMinFanSize
intMaxFanSize
intMinFanSize

)
)
)
)

{intTamanio2B=fan2

1f ((int (posX3)==0]||int (posX3)==1280) &&int (pos¥Y3)==0) {
//println ("3 no play");

intTamanio3A=0;
intTamanio3B=0;
} else {

if (intTamanio3A>fan3.
if (intTamanio3A<fan3.
if (intTamanio3B>fan3.
if (intTamanio3B<fan3.

}
} 436

intMaxFanSize
intMinFanSize

intMaxFanSize) {intTamanio3B=fan3

—_— — — ~—

intMinFanSize

void mensajeRecibido (OscMessage theOscMessage) {
//println ("THE OSC MESSAGE=", theOscMessage.addrPattern());

if (theOscMessage.addrPattern () .equals{'/display/BeginDrawDance")) {

println ("Start draw: ", theOscMessage.addrPattern()):;

if (theOscMessage.get (0) .stringValue () .contains (str(displaysClient.id)))

String strPart = theOscMessage.get (1) .stringValue ()

resolveKey (strPart.charAt (0));

{intTamaniolA=fanl.
{intTamaniolA=fanl.
{intTamaniolB=fanl.
{intTamaniolB=fanl.

{intTamanio2A=fan2.
{intTamanio2A=fan2.
{intTamanio2B=fan2.

{intTamanio3A=fan3.
{intTamanio3A=fan3.

{intTamanio3B=fan3.

intMaxFanSize; }
intMinFanSize; }
intMaxFanSize; }
intMinFanSize; }

intMaxFanSize; }
intMinFanSize; }
intMaxFanSize; }

.intMinFanSize; }

intMaxFanSize; }
intMinFanSize; }

.intMaxFanSize; }

intMinFanSize; }

if (theOscMessage.addrPattern () .equals (' /display/EndDrawDance")) {
println ("Stop draw: ", theOscMessage.addrPattern());

supendAll () ;

77

{

451 if (theOscMessage.addrPattern() .equals(/display/DibujarDance")) {

452 if (theOscMessage.get (0) .stringValue () .contains (str(displaysClient.id))) {
453 if (theOscMessage.get (1) .stringValue () .equals(tag089")) {

454 posX1l = theOscMessage.get (2) .floatValue () ;

455 posYl = theOscMessage.get (3) .floatValue();

456 //println (frameCount+ -> Dancer 1 posX: " + posXl +" posY: " + posYl);
457 }

458 if (theOscMessage.get (1) .stringValue () .equals(tagl4d3")) {

459 posX2 = theOscMessage.get (2) .floatValue () ;

460 posY2 = theOscMessage.get (3) .floatValue () ;

461 println (frameCount+ -> Dancer 2 posX: " + posX2 +" posY: " + pos¥Y2);
462 }

463 if (theOscMessage.get (1) .stringValue () .equals(tag248")) {

464 posX3 = theOscMessage.get (2) .floatValue () ;

465 posY3 = theOscMessage.get (3) .floatValue() ;

466 //println (frameCount+ -> Dancer 3 posX: " + posX3 +" posY: " + pos¥3);
467 }

468 if (theOscMessage.get (1) .stringValue () .equals({xSens20")) {

469 //recibe valoresentre 1 y 100, es decir, entre 1% y 100%

470 intTamaniolA = int (theOscMessage.get (2) .floatValue());

471 intRotalA = int (theOscMessage.get (3) .floatValue());

472 //println (frameCount+ -> Dancer 1 valorl: "+ theOscMessage.get(Z).(
floatValue () + "\tTam=" +intTamaniolA) ;

473 }

474 if (theOscMessage.get (1) .stringValue () .equals{xSens21")) {

475 intTamaniolB = int (theOscMessage.get (2) .floatValue());

476 intRotalB = int (theOscMessage.get (3) .floatValue());

477 //println (frameCount+ -> Dancer 1 valor2: "+ theOscMessage.get(2).lZ
floatValue () + "\tTam=" +intTamaniolB) ;

478 //println (frameCount+ -> Dancer 1 valor2: "+ theOscMessage.get (2).¢
floatValue () + "\tTam=" +intTamaniolB) ;

479 }

480 if (theOscMessage.get (1) .stringValue () .equalsxSens22")) {

481 intTamanio2A = int (theOscMessage.get (2) .floatValue())

482 intRota2A = int (theOscMessage.get (3) .floatValue());

483 //println (frameCount+ -> Dancer 2 valorl: "+ theOscMessage.get (2).¢
floatValue () + "\tTam=" +intTamanio2A) ;

484 //println (frameCount+ -> Dancer 2 rotal: "+ theOscMessage.get (3).V¢
floatValue () + "\tTam=" +intRota2A);

485 }

486 if (theOscMessage.get (1) .stringValue () .equals{xSens23")) {

487 intTamanio2B = int (theOscMessage.get (2) .floatValue());

488 intRota2B = int (theOscMessage.get (3) .floatValue());

489 //println (frameCount+ -> Dancer 2 valor2: "+ theOscMessage.get (2).¢
floatValue () + "\tTam=" +intTamanio2B) ;

490 //println (frameCount+ -> Dancer 2 rota2: "+ theOscMessage.get(B).lZ
floatValue ()+ "\tTam=" +intRota?2B) ;

491 }

492 if (theOscMessage.get (1) .stringValue () .equals{xSens24")) {

493 intTamanio3A = int (theOscMessage.get (2) .floatValue())

494 intRota3A = int (theOscMessage.get (3) .floatValue());

495 //println (frameCount+ -> Dancer 3 valorl: "+ theOscMessage.get (2).¢
floatValue () + "\tTam=" +intTamanio3A) ;

496 }

497 if (theOscMessage.get (1) .stringValue () .equals{xSens25")) {

498 intTamanio3B = int (theOscMessage.get (2) .floatValue()) ;

499 intRota3B = int (theOscMessage.get (3) .floatValue());

78

500 //println (frameCount+ -> Dancer 3 valor2: "+ theOscMessage.get (2).¢
floatValue () + "\tTam=" +intTamanio3B) ;

501 }
502 }
503 }

504 } 505

506 void keyPressed() {

507 resolveKey (key) ;

508 } 509

510 void resolveKey (char cKey) {
511 switch (cKey) {

512 case 'c':

513 // enter/leave calibrationmode, where surfaces can be warped
514 // and moved

515 calibration=lcalibration;
516 ks.toggleCalibration() ;
517 if (calibration==false) {ks.save ("keystoneDance2.xml") ;
518 supendAll () ;

519 noLoop () ;

520 } else {

521 loop ()

522 intBackGround=0;

523 changeTo (1000) ;

525 }

526 break;

527 case ESC:

528 displaysClient.disconnect () ;
529 this.stop();

530 break;

531 case 'l'://rain

532 intBackGround=0;

533 changeTo (1000) ;

534 break;

535 case '2'://rainTransition
536 intBackGround=0;

537 changeTo (148000) ;

538 break;

539 case '3'://bubbles

540 intBackGround=255;

541 changeTo (162000) ;

542 break;

543 case '4'://camBubblesTransition
544 intBackGround=255;

545 changeTo (258000) ;

546 break;

547 case '5'://traces

548 intBackGround=255;

549 changeTo (306000) ;

550 break;

551 case '6'://fadeCurtain

552 intBackGround=255;

553 changeTo (396000) ;

554 break;

555 case '7'://smoke

556 intBackGround=0;

557 changeTo (423000) ;

558 break;

79

559
560
561
562
563
564
565
566
567
568
569
570
571
572 }

case '8'://createMesh
intBackGround=0;
changeTo (465000) ;
break;

case '9'://meshSphere
intBackGround=0;
changeTo (515000) ;
break;

case 32:
intBackGround=0;
changeTo (0) ;
break;

80

I11.2. Bubble

1 class Bubble{

2 float ZSTEP = 0.008;

3 float RADIUS = height/10;
4 float SPEED = 0.001;

5 int intMaxSize=80;

6 int intMinSize=30;

7 PVector vecPosition;

8 PVector vecSpeed;

9 int intSize;
10 color colBubble;
11 color

colShaded; 12
13 Bubble (float x, float y, float z){

14 this.vecPosition = new PVector (x,v,z);

15 setColor () ;

16 this.vecSpeed = new PVector (random(-1.0, 1.0),random(-1.0, 1.0),random(-1.0¥¢
1.0));

17 float magnitude = sqrt (pow (this.vecSpeed.x,2)+pow (this.vecSpeed.y, 2) +pow (this .¢
vecSpeed.z,2));

18 this.vecSpeed.mult (SPEED/magnitude) ;

19 this.intSize = int (random(intMinSize, intMaxSize)) ;

20 }

21

22 float getFltZ () {

23 return this.vecPosition.z;

24 }

25

26 void setColor () {

27 float shade = this.vecPosition.z

28 float shadeinv = 1.0-shade;

29 this.colShaded = color((red(this.colBubble)*shade)+ (red(255) *shadeinv),
30 (green(this.colBubble) *shade) + (green (255) *shadeinv),

31 (blue (this.colBubble) *shade) + (blue (255) *shadeinv)); 32 }

33

34 void display(float xoffs, float yoffs, int intZoom) {

35 float a = pow(this.vecPosition.z,2);

36 float posX = (intZoom*this.vecPosition.x*width* (1+a)) - intZoom*xoffs*width*gz;
37 float posY = (intZoom*this.vecPosition.y*height* (1+a))- ¢
intZoom*yoffs*height*g

38 float radius = this.intSize+ (this.vecPosition.z*RADIUS)

39 float diam =

RADIUS*2; 40

41 if (posX > -diam && posX < width+diam

42 && posY > -diam && posY < height+diam) {

43 blurred circle(posX, posY, radius);

44 }

45 }

46

47 //void blurred circle () {
81

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

65

66
67
68
69
70

72

73
74
75
76
77

79
80
82
83
84

86
87
88

90
91
92

94
95
96

98

99
100
101
102
103
104
105

void blurred circle(float xx, float yy, float rr){
offscreen.noStroke () ;
offscreen.fill (50, 150);
offscreen.ellipse (xx, yy, rr, rr);
offscreen.fi11 (230, 50);
offscreen.pushMatrix();
offscreen.translate (xx, yy):;
offscreen.rotate (radians (40)) ;
offscreen.ellipse(-35, -15, 10, 30);
offscreen.popMatrix () ;

void zoomIn (float step) {
this.vecPosition.z += step;
if (this.vecPosition.z > 1.0) {
this.vecPosition.z = 0.0 + (this.vecPosition.z-1.0); 64

}

void zoomOut (float step) {
this.vecPosition.z -= step;
if (this.vecPosition.z < 0.0) {
this.vecPosition.z = 1.0 - (0.0-this.vecPosition.z); 71

}

void update (boolean doZoomIn, boolean doZoomOut, float fltAcceleration){

float fltzStep = ZSTEP + (5* (ZSTEP* (fltAcceleration)));
if (doZoomIn) {
zoomIn (fltzStep); 78
}
if (doZoomOut) {
zoomOut (fltzStep); 81 }
if (this.vecPosition.x <= 0) {
this.vecSpeed.x = abs (this.vecSpeed.x);
this.vecPosition.x = 0.0f; 85
}
if (this.vecPosition.x >= 1.0) {
this.vecSpeed.x = -1.0 * abs(this.vecSpeed.x);
this.vecPosition.x = 1.0; 89
}
if (this.vecPosition.y <= 0) {
this.vecSpeed.y = abs (this.vecSpeed.y);
this.vecPosition.y = 0.0£f; 93
}
if (this.vecPosition.y >= 1.0) {
this.vecSpeed.y = -1.0 * abs(this.vecSpeed.y);
this.vecPosition.y = 1.0; 97
}
if (this.vecPosition.z < 0 || this.vecPosition.z > 1.0)
this.vecPosition.z = this.vecPosition.z% 1.0;
}
//this.vecPosition.add (this.vecSpeed) ;
this.vecPosition.x += this.vecSpeed.x;
this.vecPosition.y += this.vecSpeed.y;
this.setColor () ;

82

106

107 void move () {

108 float time = frameCount*0.0001f;

109 float cy = map(sin(time), -1, 1, -height / 4, height / 4}

110 //this.velocity.y = cy;

111 this.vecPosition.add (this.vecSpeed);

112 }

113

114 void wallCollide () {

115 int intRatio = int(this.intSize/2);

116 if (this.vecPosition.x—-intRatio < 0 || this.vecPosition.x+intRatio > width) {
117 this.vecSpeed.x *= -1;} else if (this.vecPosition.y-intRatio < 0 |
this.vecPosition.y+intRatio > height) {

118 this.vecSpeed.y *= -1;

120 }

121 }

122 }

83

111.3. Bubbles

1 class Bubbles/{

2 int intZoom = 2;

3 int intMinBubbles = 50;

4 int intMaxBubbles = 300;

5 ArrayList<Bubble> arrBubbles;

6 float xoffs = 0;

7 float yoffs = 0;

8 float fltFactor = 0.03;

9 int intDesfase = 300;

10 float fltAjusteX;

11 float fl1tAjusteY;

12 boolean zoomIn = false;

13 boolean zoomOut =

false; 14

15 Bubbles () {

16 arrBubbles = new ArrayList<Bubble> () ;

17 Bubble b;

18 float posX, posY, posZ;

19 for(int 1 = 0; 1 < intMaxBubbles; 1i++) {
20 posX = random(1l.0f);
21 posY = random(1l.0f);
22 posZ = random(1.0f);
23 b = new Bubble (posX, posY, posZ);
24 arrBubbles.add(b) ;
25 }

26

sortBubbles () ;

27 }

28

29 void sortBubbles () {

30 // Sort them (this ensures that they are drawn in the right order)
31 float last = 0;

32 ArrayList temp = new ArrayList();

33 for (int i=0; i<intMaxBubbles; i++) {

34 int index = 0;

35 float lowest = 100.0;

36 for (int j=0; j<intMaxBubbles; j++) {

37 Bubble current = (Bubble)arrBubbles.get (j);
38 if (current.getFltZ () < lowest && current.getFltZ () > last) {
39 index = j;

40 lowest = current.getFltZ(); 41

}

42 }

43 temp.add (arrBubbles.get (index)) ;

44 last = ((Bubble)arrBubbles.get (index)) .getF1ltZ (); 45}
46 arrBubbles =

temp; 47 }

48

49 void display (int numBubbles, float fltPosX, float fltPosY, boolean

84

blnTransition, boolean blnZoom, int intAcelera) {

50 offscreen.fill (255,255);
51 offscreen.rect (0,0,width, height);
52
53 fltAjusteX = intDesfase* (sin (frameCount*fltFactor*PI/4));
54 fltAjusteY = intDesfase* (cos (frameCount*fltFactor*PI/4));
55 //if (numBubbles==intMaxBubbles) {
56 //if (fltAjusteX<0&&fltAjusteY<0) {
57 if (blnZoom) {//Brazos arriba
58 zoomIn=true;
59 zoomOut=false;} else {
60 zoomIn=false;
61l zoomOut=true; 63 }
64 //}
65 fltPosX+=fltAjusteX;
66 fltPosY+=fltAjusteY; 67
68 xoffs = xoffs*0.9 + 0.1*fltPosX/width;
69 yoffs = yoffs*0.9 + 0.1*fltPosY/height;
70 //println ("xoffs: "+ xoffs + "\tyoffs " +yoffs); 71
72 for (int 1=0; i<intMaxBubbles; 1i++) {
73 Bubble current = (Bubble)arrBubbles.get (i);
74 //println ("intAcelera: "+intAcelera) ;
75 current.update (zoomIn, zoomOut, intAcelera/100.0); 76
77
78 sortBubbles(); 79
80 for(int 1 = 0; 1 < numBubbles; 1++) {
81 Bubble b = arrBubbles.get (i); 82
//b.move () ;
83 //b.wallCollide () ;
84 if (!blnTransition) {
85 b.display(xoffs, yoffs, intZoom); 86 }
87 }
88 }
89 }

85

I11.4. Displays

1 class Displays/{

2 OscPb5 oscPb;

3 NetAddress myBroadcastLocation; 4
5 //String remoteIP='127.0.0.1";

6 String remoteIP="192.168.0.2";

7 int listenPort=12001; // el puerto en el que se queda escuchando mensajes del ¢
broadcaster
8

9 private String tipo; //Posibles valores: host, sensoro display
10 public int id; 11
12 public class Display {

13 public int x;
14 public int y;
15 public int w;
16 public int h; 17 '}
18
19 Displays (String tipo) {
20 this.tipo = tipo;
21 // 0OSC, aqui esta el puerto donde escucha mensajes 22
23 oscP5 = new OscP5(this, listenPort);
24 // set the remote location to be the localhost on port 25
26 myBroadcastLocation = new NetAddress (remoteIP, 33000) ;
27 connect (); 28
}
29
30 public void connect () {
31 OscMessage m;
32 println ("conectar") ;
33 m = new OscMessage ('/" + tipo + "/connect",new Object[0]);
34 m.add (listenPort) ;

35 OscP5.flush (m,myBroadcastLocation); 36
}

37

38 public void disconnect () {

39 OscMessage m;

40 m = new OscMessage ('/" + tipo + "/disconnect",new Object[0]);
41 m.add (listenPort) ;

42 OscP5.flush (m,myBroadcastLocation) ;

43 println ("disconneted"); 44}

45

46 void mandarMensaje (OscMessage myMessage) {

47 // send the message

48 oscP5.send (myMessage, myBroadcastLocation); 49 }

50

51 /* incoming osc message are forwarded to the oscEvent method. */
52 void oscEvent (OscMessage theOscMessage) {

53 mensajeRecibido (theOscMessage); //es necesarioque esta funcion este ¢
imprementada en el main

54 }

55 1}

86

111.5. Drop

1 class Dropf{

2 PVector vecOrigin = new PVector (0, 0);
3 PVector vecPosition;

4 PVector vecSpeed;

5 float speedFactor = 8.0f;

[float z, onde, d, dl;

7 float accFactor = 0.01f;

8 float accFactor2 = 0.5f;

9 boolean s;

10 color myColor;
11
12 Drop (int x,int y, int z, int d) {
13 this.vecOrigin = new PVector(x,Vy);
14 this.vecPosition = new PVector (x,V);
15 this.vecSpeed = new PVector(0,0);
16 this.d=d;
17 this.z=z;
18 onde=0;
19 dl=d;
20 myColor = color (255);
21 this.vecSpeed = new PVector (0,0);
22 }
23
24 void fall (Boolean blnWithOnde) {
25 if(this.vecPosition.y > 0.0f) {
26 if (blnWithOnde) {
27 this.vecSpeed.y+=accFactor;
28 } else {
29 this.vecSpeed.yt=accFactor2; 30
}
31 }
32 offscreen.stroke (myColor,map(z,0,height, 0,255));
33 offscreen.strokeWeight (2) ;
34 if (this.vecPosition.y<z) {
35 this.vecPosition.y=this.vecPosition.y+this.vecSpeed.y+speedFactor;
36 this.vecPosition.x=this.vecPosition.x+this.vecSpeed.x;
37 offscreen.line(this.vecPosition.x,this.vecOrigin.y,this.vecPosition.x, this.
vecPosition.y);
38 this.vecOrigin.y=this.vecPosition.y;
39 } else {
40 offscreen.noFill () ;
41 offscreen.stroke(175,175,175,175-map (onde,0,d, 0,255)) ;
42 offscreen.strokeWeight (map (onde, 0,d,0,4));
43 d=dl+ (this.vecPosition.y-height) *4;
44 //if (blnWithOnde) {offscreen.ellipse(this.vecPosition.x,this.vecPosition.y,
onde/5,onde/20) ;}
45 onde=onde+7;
46 if (onde>d) {
47 onde=0;

87

48 this.vecSpeed.x=0;

49 this.vecSpeed.y=0;

50 this.vecPosition.x=int (random (width)) ;

51 this.vecPosition.y=-int (random (height*2));

52 this.vecOrigin.y=this.vecPosition.y; 53
d=di;

54 }

55 }

56 }

57

58 void wind (float fltPosX, float fltPosY, int fltFanSize, float fltFanSpeed) {
59

60 float fltDistance==dist(fltPosX,fltPosY,this.VecPosition.x,this.vecPosition.(
V)i

61l float fl1tRat = atan2 (fltPosY-this.vecPosition.y, fltPosX-this.vecPosition.x) +PiL
62

63 if (fltDistance < fltFanSize) {

64 this.vecSpeed.x = this.vecSpeed.x + (fltDistance * cos (fltRat)) ¥
(100/fltFanSpeed) ;

65 this.vecSpeed.y = this.vecSpeed.y + (fltDistance * sin (f1ltRat)) ¥
(100/fltFanSpeed) ;

66 }

67 }

68 1}

88

111.6. Fade Curtain

1 class FadeCurtain{

2 int lines;

3 float fade;

4 int difAngle; //velocity

5 int num; //number of points in a row (or column)

6 color cor; //main color

7 int mX, mY; //variables used to allows changing the main color 8
9 FadeCurtain () {

10 difAngle = 9;

11 num = 10;

12 lines=0;

13 fade =0; 14 }

15

16 void display (int numLines) {

17 cor = color(0);

18 lines += 9;

19 fade += 1.5f; 20

21 //draw background

22 offscreen.fill (255);

23 offscreen.rect(0,0,lines,height); 24

25 for (int 1 = 0; 1 < lines; 1 +=2){

26 offscreen.strokeWeight (2) ;

27 offscreen.stroke(cor, map(i, 0, lines, 255, fade));
28 offscreen.line(i, 0, i, height); 29 }

30

31 //draw the pattern

32 //float cellsize = lines / (num - 1);

33 float cellsize = height;

34 int circleNumber = 0;

35 for (int 1=0; i<num; i++) 36 {

37 for (int j=0; Jj<num; Jj++)

38 {

39 circleNumber++; 40

41 float tx = cellsize * i;

42 float ty = cellsize * j; 43

44 movingCircle (tx, ty, cellsize, circleNumber); 45}
46 }

47 }

48

49 void movingCircle (float x, float y, float size, int circleNum) {
50 float finalAngle = millis () /100 + circleNum;

51 float tempX = x + (size / 2) * sin(PI / difAngle * finalAngle);
52 float tempY = y + (size / 2) * cos(PI / difAngle * finalAngle); 53
54 offscreen.noStroke () ;

55 offscreen.fill (cor, circleNum/10) ;

56 ellipse (tempX, tempY, 7, size*8); 57

58 offscreen.fill (cor, circleNum/6) ;

59 ellipse(tempX, tempY, 5, size*5); 60}61 }

89

111.7. Fan

class Fan {
private float fltFanSpeed = 1;//0.01;
private int intFanSize = 0;

private int intMaxFanSize = 70;
PVector vecPosition;

1
2
3
4 private int intMinFanSize = 20;
5
6
7 float fltRotation;

8 color myColor; 9

10

11 int intCount = 0;

12 PVector vecPosition?2;
13 PVector vecNewPosition;

14 ArrayList<PVector> arrPositions;

15 int intConta;

16 float fltFrameRate = RATE;

17 boolean blnDebug = false; 18

19 Fan (float fltPosX, float fltPosY) {

20 this.vecPosition = new PVector (fltPosX, fltPosY);
21 vecPosition2 = new PVector(0,0);

22 arrPositions = new ArrayList<PVector>();

23 for (int a = 0; a<=int (fltFrameRate); a++) {

24 arrPositions.add (new PVector (0,0)); 25 }

26 }

27

28 Fan(float fltPosX, float fltPosY, float r, float g, float b) {
29 this.vecPosition = new PVector (fltPosX, fltPosY);
30 this.myColor = color(r,qg,b);

31 vecPosition2 = new PVector(0,0);

32 arrPositions = new ArrayList<PVector>();

33 for (int a = 0; a<=int (fltFrameRate); a++) {

34 arrPositions.add (new PVector (0,0)); 35 }

36 }

37

38 void update (float fltPosX, float fltPosY) {

39 //this.vecPosition.x = fltPosX;

40 //this.vecPosition.y = fltPosY;

41 if (intCount%int (fltFrameRate)==0) {

42 interpolar (fltPosX, f1tPosY, true);

43 } else {

44 interpolar (0,0, false); 45 }

46 this.fltRotation += this.fltFanSpeed; 47}

48

49 void display(float fltPosX, float fltPosY, int intSize) {
50 if (intCount%int (fltFrameRate)==0) {

51 interpolar (fltPosX, f1tPosY, true);

52 } else {

53 interpolar (0,0, false); 54 }

55 this.intFanSize = intSize;

90

56
57
58
59
60

61

62
63
64
65
67
68
69
70
71
72
73
74
75

offscreen.noStroke () ;
offscreen.pushMatrix () ;
offscreen.translate(this.vecPosition.x, this.vecPosition.y);
offscreen.rotate(this.fltRotation);
drawObjetive () ;

offscreen.popMatrix () ;

}

void drawObjetive () {
offscreen.rect (-1, 0-(this.intFanSize/2), 3, this.intFanSize); 66 }

void interpolar (float fltPosX, float fltPosY, boolean blnInterpolate) {
if(blnInterpolate) {
println ("interpolar") ;
asignarPosicion (this.intConta);
this.arrPositions = new ArrayList<PVector> (int (this.fltFrameRate));
for(int 1 = 0; i<int (fltFrameRate); 1i++) {
this.vecNewPosition = new PVector(0,0);
this.vecNewPosition.x = lerp(this.vecPosition2.x, fltPosX, i/this¥¢

fltFrameRate) ;

76

this.vecNewPosition.y = lerp(this.vecPosition2.y, fltPosY, i/this¢

fltFrameRate) ;

77
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
96

this.arrPositions.add (vecNewPosition); 78 }
this.arrPositions.add (new PVector (fltPosX, f1tPosY));
fltPosX;

this.vecPosition2.y = fltPosY;

this.intConta =0;
} else {

this.vecPosition2.x

asignarPosicion (this.intConta);

this.intConta++;

if (this.intConta==(this.arrPositions.size ()-2)) {
asignarPosicion (this.intConta);

}

void asignarPosicion (int intItem) {
this.vecPosition.x = arrPositions.get (intItem) .x;
this.vecPosition.y = arrPositions.get (intItem) .y; 95 }

91

I11.8. Organic Mesh

1 class OrganicMesh{

2 ArrayList<PVector> arrOrigins;
3 ArraylList<PVector> arrEnds;

4 float easing = 0.03f;

5 float targetX=width/10;

6 float targetY=height/2;

7 int intMaxTreads=400; 8

9 OrganicMesh () {

10 this.arrOrigins = new ArrayList<PVector>();
11 this.arrEnds = new ArrayList<PVector>();
12 for (int 1=0;i<this.intMaxTreads;i++) {
13 this.arrOrigins.add (new PVector (random(-60,width), random (-60,height)));
14 this.arrEnds.add (new PVector (0.0£,0.0£f)); 15
}
16 }
17

18 void display(float fltPosX, float fltPosY, int intNumTreads) {
19 offscreen.noStroke () ;

20 offscreen.background(0) ;
21 for (int i=0;i<intNumTreads;i++) {
22 this.arrEnds.get (i) .x = targetX - this.arrOrigins.get (i) .x;
23 this.arrEnds.get (i) .y = targetY - this.arrOrigins.get (i) .y;
24 this.arrOrigins.get (i) .x += this.arrEnds.get (i) .x * easing;
25 this.arrOrigins.get (i) .y += this.arrEnds.get (i) .y * easing;
26 for (int j=0;j<intNumTreads;j++) {
27 float dist = dist(this.arrOrigins.get(i).x,this.arrOrigins.get(i).y,this.'Z
arrOrigins.get (j) .x,this.arrOrigins.get (j) .v}
28 if(i!=j&&dist<=60.3) {
29 this.arrOrigins.get(j) .x += this.arrEnds.get (i).x * easing/10;
30 this.arrOrigins.get(j) .y += this.arrEnds.get(i).y * easing/10;
31 this.arrOrigins.get (i) .x -= this.arrEnds.get (i) .x * easing;
32 this.arrOrigins.get (i) .y -= this.arrEnds.get (i) .y * easing; 33
}
34 if(i!=j&&dist<=135) {
35 offscreen.strokeWeight (2) ;
36 offscreen.stroke (255, 255, 255,50);
37 offscreen.line(this.arrOrigins.get (i) .x,this.arrOrigins.get (i) .y, this. v
arrOrigins.get(j) .x,this.arrOrigins.get (J) .vy);
38 }
39 dist = dist (this.arrOrigins.get (i).x,this.arrOrigins.get (i).y, fltPosXy¥
fltPosY);
40 if(i!'=j&&dist<=90) {
41 arrOrigins.get (i) .x —-= arrEnds.get (i) .x * easing;
42 arrOrigins.get (i) .y —-= arrEnds.get (i) .y * easing; 43
}
44 }
45 }
46 }
47 '}

92

I11.9. Part

1 class Part{
int intId;
String strName;

int intEndTime; 6
Part (int id, String name, int intTime, int endTime) {

2

3

4 int intInitTime;

5

7

8 this.intId = id;

9 this.strName = name;
10 this.intInitTime = intTime;
11 this.intEndTime = endTime; 12 }
13 }

93

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26
27

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

44

111.10.

class Rain{
int maxDrops

Rain

= 8000;

//int minDrops = 500;

int intFloor
//int h,hl;

= 700;

int x1, y1, zl;

Drop[] drops

Rain () {
for (int 1

x1l = int

vyl =

z1l = int
drops[i] =

}

void display

gradient ()
}

=new Drop[maxDrops];

= 0; i < maxDrops; i++) {
(random (width)) ;

-int (random (height*2));

(random (intFloor, height));
new Drop(x1l,yl,zl,width);

(int numDrops, boolean blnTransition, Fan fanA, Fan fanB, Fan fanC) {
if(!blnTransition) {

’

for (int i=0;i<numDrops;i++) {

drops[i]

.fall(blnTransition);

if (!blnTransition) {

drops[i] .wind (fanA.vecPosition.x,
fltFanSpeed) ;

drops[i] .wind(fanB.vecPosition.x,
fltFanSpeed) ;

drops[i] .wind(fanC.vecPosition.x,
fltFanSpeed) ;

}

void gradient () {

offscreen.

noStroke () ;

offscreen.beginShape (QUADS) ;

//£111(188
//£111(0);
offscreen
offscreen.
offscreen.
offscreen
offscreen.

,190,192);

.vertex (0,0);

vertex (width, 0) ;
£i11(0,5,10);

.vertex (width,height) ;

vertex (0, height) ;

offscreen.endShape(); 43

}

94

fanA.vecPosition.y,fanA.intFanSize,fanAK’
fanB.vecPosition.y,fanB.intFanSize,fanB(

fanC.vecPosition.y,fanC.intFanSize,fanCK’

I11.11. Smoke

1 PVector rootnCA = new PVector (random(123), random(123));//noise root
2 ArrayList<SmokePartCA> toAddCA = new ArrayList<SmokePartCA>();
3 class SmokeCA{
4 PVector speedn = new PVector (random(-.01, .01), random(-.01, .01)}//noise speed
5 ArrayList<SmokePartCA> parts = new ArrayList<SmokePartCA>();//Parts
6 PVector m, pm;//mouse, previous mouse
7 float maxD = 10;//max distance between two smokes
8 int b = 10;
9

10 int intMinAge = 0;

11 int intMaxAge = 30;

12 int intMinLife = 50;

13 int intMaxLife = 180;

14

15 SmokeCA () {

16

17 }

18

19 void display(float posx, float posy, boolean blnTransition) {
20 offscreen.noStroke();

21 offscreen.fill (5, 15);

22 offscreen.rect (0, 0, width, height);

23 for (SmokePartCA p : toAddCA)

24 {

25 parts.add(p);

26 }

27 toAddCA = new ArrayList<SmokePartCA> () ;

28

29 rootnCA.add (speedn) ;

30 m = new PVector (posx, posy):;

31 int nb = parts.size()-1;

32 if (blnTransition) {pm=null;}

33 if (!blnTransition && nb < 7000)

34 {

35 if (pm == null) pm = m.get();

36 else

37 {

38 float d = PVector.dist (pm, m);

39 if ((pm.x !'= m.x || pm.y !'= m.y) && d > maxD)

40 {

41 int n = int(d / maxD);

42 PVector tmp = PVector.sub(m, pm);

43 tmp.normalize () ;

44 tmp.mult (maxD) ;

45 PVector tmp2 = m.get();

46 for (int i = 0; i < n; i++)

47 {

48 tmp2.sub (tmp) ;

49 parts.add (new SmokePartCA (tmp2, (int)random(intMinAge, intMaxAge)%’

95

(int) random (intMinLife, intMaxLife), 0));

50 }
51 }
52 }
53 parts.add (new SmokePartCA(m, (int)random(intMinAge, intMaxAge), (int) randoM
(intMinLife, intMaxLife), 0));
54 pm = m.get ()
55 }
56 nb = parts.size()-1;
57 for (int 1 = nb; 1 > -1; i--)
58 {
59 if (parts.get (i) .display())
60 parts.remove (i); 61
}
62 }
63 }
64

65 class SmokePartCA 66

{

67 float rad, nx, ny;//

68 float ¢ = random (.6, .8);

69 float theta = random(TWO_PI);

70 int life;// = (int)random (300000, 400000) ;
71 int age;// = (int)random (300, 400);
72 int mod = (int)random (30,40);

73 PVector pos;
74 float fltNoiseXFactor 40.0f;
75 float fltNoiseYFactor = 3.0f;

76

77 SmokePartCA (PVector p, int a, int 1, float r)

78 {

79 pos = p.get();

80 age = a;

81 life = 1;

82 rad = r;

83 }

84

85 Boolean display ()

86 {

87 nx = noise (rootnCA.x + pos.x/500)-.5;

88 ny = -noise(rootnCA.y + pos.y/500)-.7;

89 pos.add(newPvector(random(—fltNoiseXFactor,fltNoiseXFactor)*nx%’
fltNoiseYFactor*ny)) ;

90 rad += cos(map(age, 0, life, 0, HALF PI)) * c;

91 offscreen.stroke (200, 200 * sg(map(age, 0, life, 1, 0Q0)));

92 offscreen.strokeWeight (rad) ;

93 offscreen.point (pos.x, pos.y);

94 if (age++ % mod == 0)//split the Part in two

95 {

96 toAddCA.add (new SmokePartCA (new PVector (pos.x + rad/2 * (cos(theta)), pos.{
+ rad/2 * (sin(theta))), age, life, rad * random(.6, .8)));

97 toAddCA.add (new SmokePartCA (new PVector (pos.x - rad/2 * cos(theta), pos.y "4
rad/2 * (sin(theta))), age, life, rad * random(.6, .8)));//.6

98 age = life+l;

99 }

100 return age > life; 101 } 102 }

96

I11.12. Traces

1 class Traces/{
2 int intLineSize = 80;
3 int intLineWeight = 20;
4 float PY, PX;
5 float[] x = new float[intLineSize];
6 float[] vy = new float[intLineSize];
7 int segLength = 10;
8 float fltFactor = 0.03;
9 int intDesfase = 300;
10 float fltAjusteX;
11 float fltAjusteY;
12 int intCount = 0; 13
14 PVector vecPosition;
15 PVector vecNewPosition;
16 ArrayList<PVector> arrPositions;
17 int intConta;
18 float fltFrameRate = RATE;
19 boolean blnDebug = false; 20

21 Traces () {

22 //size (600, 600, P3D);

23 //background (255) ;

24 //createCanvas (windowWidth, windowHeight) ;

25 for(int 1=0; i<intLineSize; i++) { 26
x[1]=1;

27 y[i]l=1;

28 }

29 vecPosition = new PVector (0,0);

30 arrPositions = new ArrayList<PVector>();

31 for (int a = 0; a<=int (fltFrameRate); a++) {

32 arrPositions.add (new PVector (0,0)); 33 }

34 }

35

36 void segment (float x, float y, float a) {

37 //offscreen.strokeWeight (intLineWeight) ;

38 //offscreen.stroke (0, 0, 0,50);

39 offscreen.pushMatrix () ;

40 offscreen.translate(x, vy);

41 offscreen.rotate (a);

42 offscreen.strokeWeight (intLineWeight) ;

43 offscreen.stroke (0,100) ;

44 offscreen.line (0, 0, seglLength, 0);

45 offscreen.strokeWeight (intLineWeight-5);

46 offscreen.stroke (50,50);

47 offscreen.line (10, 10, segLength, 10);

48 offscreen.strokeWeight (intLineWeight-10) ;

49 offscreen.stroke (100,25);

50 offscreen.line (15, 15, segLength, 15);

51 offscreen.stroke (150,10) ;

52 offscreen.line (20, 20, segLength, 20);

97

53
55
56
57
58
59
60
61
62

64
65
66
67
68
69
70
71
72
73
74
75
76

78
79
80
81

83
84
85
86
87
88
89
90
91
92
93
94

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110

offscreen.popMatrix(); 54}

void dragSegment (int i, float xin, float yin) {

float dx = xin - x[1];

float dy = yin - y[i];

float angle = atan2(dy, dx);

x[1] = xin - cos(angle) * seglLength;
y[i] = yin - sin(angle) * segLength;

segment (x[1i], y[i], angle); 63

}

void display(float posX, float posY) {

offscreen.noStroke () ;
offscreen.fill(255,12);
offscreen.rect (0,0,width, height) ;

if (intCount%int (fltFrameRate)==0) {

fltAjusteX=0;

fltAjusteY=0;

if ((sin(intCount*fltFactor*PI/4))>0) {
fltAjusteX += random (0, intDesfase);

} else {

fltAjusteX -= random (0, intDesfase); 77

}

if ((cos (intCount*fltFactor*PI/4))>0) {
fltAjusteY += random (0, intDesfase);

} else {

fltAjusteY -= random (0, intDesfase); 82

}

if (blnDebug)println (intCount+ -> posX:

if (blnDebug)println (intCount+' -> posY:

posX+=fltAjusteX;

posY+=fltAjusteY;

PX = posX;
PY = posYy;

if (blnDebug)println ("Entrada: [X="+PX+",

interpolar (PX, PY, true);
} else {
interpolar (0,0, false); 95
}
//PX = posX;
//PY = posY;

dragSegment (0, PX, PY);

for(int i=0; i<x.length-1; i++) {
dragSegment (i+1, x[1i], vyI[i]):

this.intCount++;

"+posX+"\tfltAjusteX:
"+posY+"\tfltAjusteY:

Y:"+PY+"] H) ;

"+fltAjusteX) ;
"+fltAjusteY) ;

void interpolar (float fltPosX, float fltPosY, boolean blnInterpolate) {

if (blnInterpolate) {
asignarPosicion (this.intConta);

this.arrPositions = new ArrayList<PVector> (int (this.fltFrameRate));

98

111 for(int 1 = 0; i<int (fltFrameRate); 1i++) {

112 this.vecNewPosition = new PVector(0,0);

113 this.vecNewPosition.x = lerp(this.vecPosition.x, fltPosX, i/this¥
fltFrameRate) ;

114 this.vecNewPosition.y = lerp(this.vecPosition.y, fltPosY, i/this¥¢
fltFrameRate) ;

115 this.arrPositions.add (vecNewPosition) ;

116 }

117 this.arrPositions.add (new PVector (fltPosX, f1tPosY)) ;

118 this.vecPosition.x = fltPosX;

119 this.vecPosition.y = fltPosY;

120 this.intConta =0;

121 //Imprimir lineas

122 for(int x = 0; x<this.arrPositions.size ()-1;x++) {

123 if (blnDebug)mostrarCoordenadas (x, false) ;

124 }

125 } else {

126 asignarPosicion(this.intConta);

127 if (blnDebug)mostrarCoordenadas (this.intConta, true) ;

128 this.intConta++;

129 if (this.intConta==(this.arrPositions.size ()-2)) {

130 asignarPosicion (this.intConta);

131 if (blnDebug)mostrarCoordenadas (this.intConta, true);

132 }

133 }

134 }

135 void mostrarCoordenadas (int intItem, boolean blnPinta) {

136 if (blnPinta) {print ("Pinta ") ;}

137 print ("LA-nea "+intItem) ;

138 print ("\tdesde: [X"+intItem+"="+round (this.arrPositions.get (intItem).x)+, Y" 4
+intItem+"="+round (this.arrPositions.get (intItem) .y)+]1");

139 println ("\thasta: [X"+ (intItem+1) +"="+round (this.arrPositions.get (intItem+1) .¢
x)+", Y"+ (intItem+1) +"="+round (this.arrPositions.get (intItem+1l).y)¥]1");

140 }

141

142 void asignarPosicion (int intItem) {

143 PX = arrPositions.get (intItem) .x;

144 PY = arrPositions.get (intItem) .y;

145 }

146 }

99

I11.13. Wave On Sphere

1 class WaveOnSphere({

2 int intvValorl = 400;//radio

3 int intValor2 = 300;//centro

4 int intvValor3 = 10000;//velocidad

5 float fltFactor = 1.2f;

6

7 int Nmax = 1000; float M = 50; float H = 0.99; float HH = 0.01;

8 float R = 2*sqrt ((4*PI* (intValorl*intValorl) /Nmax) / (2*sqrt(3)));

9 float X[] = new float[Nmax+1l] ; float Y[] = new float[Nmax+1l] ; float Z[] = new 4
float [Nmax+1] ;

10 float V[] = new float[Nmax+1l] ; float dV[] = new float[Nmax+1l] ;

11 float L ;

12 float Lmin ; int N ; int NN ;

13 float KX ; float KY ; float Kz ;

14 float KV ; float KdV ; int K ;

15

16 WaveOnSphere () {

17 offscreen.stroke (255,255, 255) ;

18 offscreen.fill (50,50,50) ;

19 for (N =0 ; N <= Nmax ; N++) {
20 X[N] = random(-intValor2,+intValor2) ;
21 Y[N] = random(-intValor2,+intValor2) ;
22 Z[N] = random(-intValor2,+intValor2) ;
23
24 }

25

26 void display (float posX, float posY) {

27 offscreen.background(0) ;

28 for (N =0 ; N <= Nmax ; N++) {

29 for (NN = N+1 ; NN <= Nmax ; NN++) {

30 L = sgrt (((X[N]-X[NN])* (X[N]-X[NN]))+ ((Y[N]-Y[NN])* (Y[N]-Y[NN]))) ;
31 L = sqrt (((Z[N]-Z[NN])*(Z2[N]-Z2[NN]))+(L*L)) ;

32 if (L < R){

33 X[N] = X[N] - ((X[NN]-X[N])* ((R-L)/(2*L))) ;

34 Y [N] Y[N] - ((Y[NN]-Y[N])*((R-L)/(2*L))) ;

35 Z[N] = Z[N] - ((Z[NN]J-Z[N])*((R-L)/(2*L))) ;

36 X[NN] = X[NN] + ((X[NN]-X[N])* ((R-L)/(2*L))) ;

37 YINN] = Y[NN] + ((Y[NN]-Y[N])* ((R-L)/(2*L))) ;

38 Z[NN] = Z[NN] + ((Z[NN]-Z[N])* ((R-L)/(2*L))) ;

39 dV[N] = dV[N] + ((V[NN]-V[N])/M) ;

40 dV[NN] = dV[NN] - ((V[NN]-V[N])/M) ;

41 offscreen.stroke (125+(Z[N]/2),125+(Z[N]/2),125+(Z2[N]/2)) ;

42 float orgX = X[N]*fltFactor* (intValorl+V[N])/intValorl+intValor?
43 float orgY¥ = Y[N]*fltFactor* (intValorl+V[N]) /lntValorl+lntValor2
44 float destX = X[NN] *fltFactor* (intValorl+V[NN]) /intValorl+intValor2
45 float detsY = Y[NN] *fltFactor* (intValorl+V[NN])/intValorl+intValor2
46 line (orgX, orgY¥Y, destX, detsY) ;

47 offscreen.line(orgX, org¥Y, destX, detsY) ;

48 }

100

49 if

50

51

[NN] ;

52

53 }
54
55
56
57
58
59
60 KZ
61 /
/intValor3)
62 X
/intValor3)
63 KZ
64 /
/intValor3)
65 Y
/intValor3)
66

67

68 }

69 }

70

N KX e

—_ — — —
~

]

[N
)

[N
)
av
VI

[
N

71 void change (float posX, float posY){ 72

Z

] =

ILmin = 600

73 for (N

78
80 }
81 }

1)~

(Y[N]*Y[N]))

intValorl-L)/ (2*L))
intValorl-L)/ (2*L))
intValorl-L)/ (2*L))

—~ o~ —~ + +

(KZ*sin ((intValor2-posX) /intValor3))+

(KZ*cos ((intValor2-posY)/intValor3))
(KZ*sin ((intValor2-posY)/intValor3))+

(V[N] *HH)

; N <= Nmax ;
74 L = sgrt (((posX-
(intValor2+Y [N
75 if (Z[N] > 0 && L < Lmin)
77 if | ==

(intValor2+X[N
- (intValor2+Y [N

-intValorl
+intValorl

o

else{ dV[NN]

= V[N] ; Kdv = dV[N] ;
Z[NN] ; V[N] = V[NN] ; dV[N]
; VI[NN] = KV ; dV[NN] = KdV ;

- (KX*sin ((intValor2-posX¥

(KX*cos((intValor2—posX¥'

—(KY*sin((intValorZ—posYV’

(KY*cos((intValor2—posY¥'

- (intValor2+X[N])))+ ((posY¥

;176 }

} 79

111.14. Wave Renderer

1 class WaveRenderer implements AudioListener 2 {
3 private float[] left;

4 private float[] right; 5

6 WaveRenderer () 7 {

8 left = null;

9 right = null; 10 }

1

1
12 public synchronized void samples (float[] samp) 13
{
14 left = samp; 15 }
16
17 public synchronized void samples (float[] samplL, float[] sampR) 18 {
19 left = sampLl;
20 right = sampR; 21 }
22
23 public synchronized int getSize () {
24 if (left !'= null && right != null){
25 if (left.length<right.length) {return left.length;}
26 else{return right.length;}

27 telse{return 0;} 28
}

29

30 public synchronized float getLeft (int pos) {
31 if (pos>left.length-1) {return 0;}

32 else{return left[pos];} 33 }

34 public synchronized float getRight (int pos) {
35 if (pos>right.length-1) {return 0;}

36 else{return right[pos];} 37 }

38 }

102

Anexo IV

Estudio estadistico Xsens

Se ha realizado un estudio estadistico de las posibles magnitudes de interés que son

capaces de medir los Xsens. EI MT Manager permite entre sus diferentes aplicaciones, grabar
los datos que se seleccionen, durante el periodo de tiempo que decida el usuario vy
posteriormente exportar esos datos medidos, a un archivo de texto para su posible evaluacién o
uso posterior. Lo que se ha llevado a cabo es medir estas variables durante un ensayo del baile y
proceder a su evaluacion en una hoja excel. Debido a la gran cantidad de medidas que los
sensores graban por minuto no se va a incluir todos los datos con los que se realizd el estudio, se
explicara el procedimiento realizado incluyendo una serie de capturas de la hoja de calculo
utilizada. Las gréficas donde se aprecian las distintas distribuciones de cada variable se exponen
en el apartado 4.3 por lo que no se encuentran otra vez en este anexo.

una tabla. El packet Counter es simplemente un contador de las mediciones.

En primer lugar una vez disponemos de los datos en el archivo de texto se ordenan en

Packet Counter EalAccx ___BlAccy Bz EFree AccXBlFree Accy BlFree AcczBlRoll___Bllpitch __BJvaw (3

18781
18782
18783
18784
18785
18786
18787
18788
18789
18750
18791
18792
18793
18754
18795
18796
18797
18798
18799
18800
18801
18802

-0.66953

-0.71700
-0.754758

-0.82163
-0.849172
-0.768337
-0.859858
-0.818753
-0.772246
-0.828663

-0.82395
-0.758193
-0.669642
-0.491147
-1.453909
-1.948543
-2.563373
-2.884387
-3.694817
-4.111133

-3.60337
-3.723374

-2.01992
-1.879793
-1.891764

-1.50847
-2.065934
-2.026757
-2.058861
-1.969421
-2.046662
-2.004453
-1.856834

-1.90389
-1.556219
-3.218776

-2.97722
-3.774313
-3.461089
-3.488424
-3.011717
-2.008642
-1.455032

0.317923

9.716392
9.797754
9.677196
9.73591
9.657749
9.662242
9.669273
9.646426
9.632645
9.671886
9.682912
9.838826
10.197559
10.472673
10.521287
10.435676
10.311833
9.341973
8.588505
8.626801
8.229683
9.408555

-0.181185
-0.021703
-0.017867
0.029084
-0.118525
-0.084234
-0.0997938
-0.01529
-0.081673
-0.009049
0.185442
0.282617
1.041845
-0.316833
-0.016546
-1.183622
-1.271359
-1.881222
-1.922171
-1.42471
-1.426969
-0.118034
FigA. 1

103

-0.077156
-0.098766
-0.086415
-0.049259
0.001734
-0.085531
0.010654
-0.044983
-0.080357
-0.046688
-0.098835
-0.217145
-0.505935
-0.621809
0.052116
0.435947
0.691737
0.913544
1.527467
1.591163
0.963307
0.955485

0.132044
0.18398
0.076125
0.142303
0.099285
0.088957
0.110167
0.066597
0.064554
0.099306
0.078784
0.23093
0.459213
1.131959
1.21768
1.382895
1.267319
0.354037
-0.303368
-0.285523
-0.600316
0.263908

-10.706781
-10.803109
-10.974726
-11.20079
-11.33402
-11.423496
-11.436765
-11.482865
-11.577474
-11.667802
-11.907804
-12.433268
-14.114327
-15.451971
-15.589808
-14.148442
-12.222104
-9.987549
-7.355685
-4.67667
-1.84185
0.645585

4.410975
4.597984
4.792669
4.917798
5.000987
5.02266
5.025463
5.027554
5.033497
5.059078
5.104133
5.181111
5.278509
5.81725
6.824047
8.341853
10.225457
12.231214
14.107266
15.552084
16.331736
16.249161

92.6245
92.460386
92.312485

92.22433
92.190785
92.190808
92.185618
92.179943
92.173076
92.179353
92.167653
92.089363
92.024489
91.990496
91.810682

91.68194

92.00553
93.127065
95.341911
98.761969

103.192183
108.47721

El siguiente paso es obtener la media y la desviacion estandar de cada variable, asi
como los maximos y los minimos para estimar a partir de que valores filtrar los datos, dando las

medidas fuera de este rango por erréneas.

54727439 7.279602 33.610386 -9.0572
-4.571088 5219101 20.975487 -25.772122
3.081231 6.235729 19.090963 -22.797124
-0.280457 5157196 24.173292 -33.918068
-0.216841 5.552531 32.750066 -23.727958
-0.183611 5.332864 28.963514 -19.096668
-39.275031 52955055 172.610241 -171.809665
-9.133554 33.427515 85.001673 -BB.976736
-33.150023 93.127112 179.411548 -179.858524

FigA.2

Por altimo a partir de la media y la desviacidn estandar obtenida, se porcede a calcular
la distribucion normal de cada magnitud para posteriormente poder obtener las curvas

pertlnentes.
T4 - Jfe | =DISTR.NORM(Tabla3[Acc X1;30$6;3P$6;FALSO)
o] P Q R 5 T u v w X Y z AA AB

1

2

3 - = = - - - - = =
a | 0.0383890] 0.06783115 0.03632166 0.0773421 0.0718260 0.074577323 0.006513 0.010594 0.001721
5 0.0381775 0.06692266 0.03581782 0.0772591 0.0718325 0.074625892 0.006520 0.010969 0.001725
6 5.472749 7.279602 38.610386 -9.0572 0.0380090 0.06700169 0.03656468 0.0772562 0.0718289 0.074719578 0.006531 0.010%43 0.001729
7 -4.571088 5.219101 20.975487 -25.772122 0.0377099 0.06711153 0.03620071 0.0772172 0.0718160 0.074668682 0.006546 0.010925 0.001731
8 3.081231 6.235729 19.090963 -22.797124 0.0375865 0.0681215 0.03668533 0.0773183 0.0717931 0.074703071 0.006555 0.010914 0.001732
9 -0.280457 5.157196 24.173292 -33.918068| 0.0379483 0.06787458 0.03665745 0.0773005 0.0718286 0.074710606 0.006560 0.010911 0.001732
10 -0.216841 5.552531 32.756066 -23.727958| 0.0375385 0.06807714 0.03661383 0.0773090 0.0717884 0.07469483 0.006561 0.010911 0.001732
11 -0.183611 5.332864 28.963514 -19.096668| 0.0377228 0.06750797 0.03675559 0.0772542 0.0718143 0.074725961 0.006564 0.010910 0.001732
12| -39.275031 52.955055 172.610241 -171.809665 0.0379309 0.06800041 0.03684112 0.0772990 0.0718270 0.074727299 0.006570 0.010309 0.001732
13 -9.133554 32.427515 85.061673 -88.976736 0.0376784 0.06773271 0.03655762 0.0772494 0.0718150 0.074703055 0.006576 0.010506 0.001732
14| -33.150029 93.127112 179.411548 -179.858524 0.0376995 0.06677038 0.03652923 0.0770414 0.0718325 0.074717755 0.006592 0.010900 0.001732
15 0.0379937 0.06708147 0.03556385 0.0768967 0.0718487 0.074582582 0.006629 0.010889 0.001734
16 0.0383885 0.06469253 0.03335913 0.0748550 0.0717514 0.074266745 0.006729 0.010875 0.001736
17 0.0391792 0.07391554 0.03169025 0.0773545 0.0716579 0.072566253 0.006809 0.010799 0.001737
18 Acc X 0.0348499 0.07295623 0.03139779 0.0772552 0.0717645 0.072269736 0.006817 0.010649 0.001741
19 cc 0.0325926 0.07555328 0.03191334 0.0761792 0.0713539 0.071649412 0.006732 0.010410 0.001744
20 0.0297973 0.07472952 0.03266323 0.0759416 0.0708932 0.072090068 0.006612 0.010091 0.001736
21 0.0283539 0.07481178 0.03864827 0.0737183 0.0703752 0.074429034 0.006465 0.009730 0.001708
22 0.0247979 0.07310205 0.0433158 0.0735345 0.0683895 0.0747893%4 0.006282 0.009372 0.001654

FigA.3

104

Bibliografia

https://shop.xsens.com/

https://es.wikipedia.org/wiki/Sistema embebido

http://huribroadcast.com/que-es-broadcast/

https://es.wikipedia.org/wiki/Processing

https://processing.org/

https://es.wikipedia.org/wiki/Java (lenguaje de programaci%C3%B3n)

https://www.visualstudio.com/es/vs/

https://es.wikipedia.org/wiki/C%2B%2B

https://es.mathworks.com/products/matlab.html

https://es.wikipedia.org/wiki/MATLAB

http://processing.joan.cat/cs/

https://www.programarya.com/Cursos/Java-Avanzado/Sockets

http://openframeworks.cc/about/

https://www.openprocessing.org/

https://es.wikipedia.org/wiki/Neil Harbisson

http://www.kinectfordevelopers.com/es/2012/11/06/que-es-el-dispositivo-kinect/

http://pdf.directindustry.com/pdf/ubisense/korean-certified-ip-sensors/124957-508109.html

https://ubisense.net/en/products/Dimension4

http://todoproductividad.blogspot.com.es/2008/04/aplicacin-de-ethernet-en-un-entorno.html

http://mlab.no/blog/wp-content/uploads/2009/11/ubisense-tag.png

https://www.researchgate.net/figure/304025734 fig2 Fig-5-Ubisense-UWB-Real-time-
Location-System-UWB-RTLS-consisting-of-4-sensors-UWB

https://es.wikipedia.org/wiki/lsadora Duncan

http://pop-picture.blogspot.com/2015/03/asfixia--una-fusion-sorprendente-de-danza-y-
tecnologia-de-captura-de-movimiento-.html

http://www.margaritabali.com/prensa/EN%20MOVIMIENTO-
DANZA%20Y%20TECOLOG%C3%8DA.pdf

http://www.rehabilitacionblog.com/2011/05/xsens-analisis-del-movimiento-humano.html

105

https://shop.xsens.com/
https://es.wikipedia.org/wiki/Sistema_embebido
http://huribroadcast.com/que-es-broadcast/
https://es.wikipedia.org/wiki/Processing
https://processing.org/
https://es.wikipedia.org/wiki/Java_(lenguaje_de_programaci%C3%B3n)
https://www.visualstudio.com/es/vs/
https://es.wikipedia.org/wiki/C%2B%2B
https://es.mathworks.com/products/matlab.html
https://es.wikipedia.org/wiki/MATLAB
http://processing.joan.cat/cs/
https://www.programarya.com/Cursos/Java-Avanzado/Sockets
http://openframeworks.cc/about/
https://www.openprocessing.org/
https://es.wikipedia.org/wiki/Neil_Harbisson
http://www.kinectfordevelopers.com/es/2012/11/06/que-es-el-dispositivo-kinect/
http://pdf.directindustry.com/pdf/ubisense/korean-certified-ip-sensors/124957-508109.html
https://ubisense.net/en/products/Dimension4
http://todoproductividad.blogspot.com.es/2008/04/aplicacin-de-ethernet-en-un-entorno.html
http://mlab.no/blog/wp-content/uploads/2009/11/ubisense-tag.png
https://www.researchgate.net/figure/304025734_fig2_Fig-5-Ubisense-UWB-Real-time-Location-System-UWB-RTLS-consisting-of-4-sensors-UWB
https://www.researchgate.net/figure/304025734_fig2_Fig-5-Ubisense-UWB-Real-time-Location-System-UWB-RTLS-consisting-of-4-sensors-UWB
https://es.wikipedia.org/wiki/Isadora_Duncan
http://pop-picture.blogspot.com/2015/03/asfixia--una-fusion-sorprendente-de-danza-y-tecnologia-de-captura-de-movimiento-.html
http://pop-picture.blogspot.com/2015/03/asfixia--una-fusion-sorprendente-de-danza-y-tecnologia-de-captura-de-movimiento-.html
http://www.margaritabali.com/prensa/EN%20MOVIMIENTO-DANZA%20Y%20TECOLOG%C3%8DA.pdf
http://www.margaritabali.com/prensa/EN%20MOVIMIENTO-DANZA%20Y%20TECOLOG%C3%8DA.pdf
http://www.rehabilitacionblog.com/2011/05/xsens-analisis-del-movimiento-humano.html

http://www.danza.unam.mx/images/Curso/2016/Diplomado2016/diplomado-danza-
mediacion-teconologica-web.pdf

https://riunet.upv.es/bitstream/handle/10251/3838/tesisUPV2962.pdf

http://www.huffingtonpost.es/2014/11/20/zapatos-ballet-tecnologia n 6186754.html

http://www.elfinanciero.com.mx/after-office/la-belleza-de-la-danza-se-fusiona-con-la-
tecnologia.html

http://publicaciones.zemos98.org/spip.php?article115

https://www.onysus.com/dance-technology/

http://www.exile.at/apparition/project.html

http://www.am-cb.net/en/projets/cinematique

https://es.wikipedia.org/wiki/Danza contempor%C3%Alnea

https://definicion.de/danza-contemporanea/

http://www.ulima.edu.pe/departamento/vida-artistica-en-la-universidad/danza-
contemporanea

106

http://www.danza.unam.mx/images/Curso/2016/Diplomado2016/diplomado-danza-mediacion-teconologica-web.pdf
http://www.danza.unam.mx/images/Curso/2016/Diplomado2016/diplomado-danza-mediacion-teconologica-web.pdf
https://riunet.upv.es/bitstream/handle/10251/3838/tesisUPV2962.pdf
http://www.huffingtonpost.es/2014/11/20/zapatos-ballet-tecnologia_n_6186754.html
http://www.elfinanciero.com.mx/after-office/la-belleza-de-la-danza-se-fusiona-con-la-tecnologia.html
http://www.elfinanciero.com.mx/after-office/la-belleza-de-la-danza-se-fusiona-con-la-tecnologia.html
http://publicaciones.zemos98.org/spip.php?article115
https://www.onysus.com/dance-technology/
http://www.exile.at/apparition/project.html
http://www.am-cb.net/en/projets/cinematique
https://es.wikipedia.org/wiki/Danza_contempor%C3%A1nea
https://definicion.de/danza-contemporanea/
http://www.ulima.edu.pe/departamento/vida-artistica-en-la-universidad/danza-contemporanea
http://www.ulima.edu.pe/departamento/vida-artistica-en-la-universidad/danza-contemporanea

