

Trabajo Fin de Grado

Estudio de la oxidación de H₂S para la minimización de contaminantes en el proceso Claus

Autor

Cristina Negro Cabrera

Directora

Dra. María Abián Vicén

Ponente

Dra. Mª Ujué Alzueta Anía

Escuela de Ingeniería y Arquitectura Departamento de Ingeniería Química y Tecnologías del Medio Ambiente 2017

Agradecimientos

En primer lugar me gustaría agradecer a Mº Ujué Alzueta la oportunidad de realizar este trabajo, la confianza depositada en mí y su dedicación.

A María Abián por ser la mejor directora que habría podido desear, por el tiempo, la paciencia, el buen humor y todo el apoyo que me ha brindado en la realización de este trabajo.

Del mismo modo a todas las personas que han trabajado a mi lado en el Grupo de Procesos Termoquímicos y al resto del personal del laboratorio, por hacer tan agradable el tiempo que he pasado a vuestro lado.

A mi familia y amigos, por tanto.

Estudio de la oxidación de H₂S para la minimización de contaminantes en el proceso Claus

RESUMEN

El azufre es uno de los principales contaminantes de la atmósfera generado en procesos de combustión y que es responsable de problemas medioambientales tales como la lluvia ácida. El SO_2 es el contaminante de azufre más abundante, y por tanto el más estudiado. Sin embargo, éste no es el único producto azufrado generado por la industria. Otros compuestos menos conocidos como el sulfuro de carbono (CS_2) o el sulfuro de carbonilo (COS), son compuestos intermedios generados a partir de la oxidación de azufre presente en el combustible o en las materias primas, normalmente en situaciones subestequiométricas, y pueden también ser emitidos a la atmósfera incrementando la cantidad de azufre presente en el aire. Así, es fundamental el estudio y conocimiento de los mecanismos de conversión a través de los cuales se produce la formación y reacción de estos compuestos, tanto para conocer las consecuencias que su emisión puede tener en el medio ambiente como para buscar métodos para reducir la cantidad emitida.

En este contexto, resulta de gran interés el estudio experimental, en condiciones de laboratorio controladas, de la oxidación de H_2S prestando especial atención a la generación de COS y CS₂.

En el presente trabajo se lleva a cabo un estudio desde un punto de vista experimental de la oxidación del H₂S a presión ambiental, analizando la influencia de la presencia y concentración de diversos gases típicamente presentes en la refinería del gas natural, como son el CO₂, CO, CH₄ y NH₃. Las diferentes condiciones de estequiometria (aire/combustible) estudiadas han sido reductoras (λ =0,7) y muy reductoras (λ =0,3). Además, se han considerado diferentes condiciones de temperatura (300-1500 K), que pueden resultar de interés en el proceso Claus. De este modo se busca determinar la influencia en la formación de COS, CS₂ y otros compuestos azufrados de los diferentes compuestos típicamente presentes durante la oxidación de H₂S en el proceso Claus como el CO₂, CO, CH₄ y NH₃, así como de la temperatura del proceso.

A partir del análisis de los resultados se observa que la formación de COS a partir de la conversión de H_2S está directamente relacionada con la presencia de CO en el sistema de reacción. Por otro lado, en el sistema H_2S -CH₄ se observa formación mayoritaria de CS₂.

Índice

1 INTE	RODUCCIÓN Y OBJETIVOS1
1.1	Introducción y objetivos1
1.2	Descripción de la memoria2
1.3	Objetivos
2 A	NTECEDENTES
2.1	El azufre
2.2	Proceso Claus
2.3	Disulfuro de carbono7
2.4	Sulfuro de carbonilo
2.5	Dióxido de azufre9
3 MET	ODOLOGÍA EXPERIMENTAL10
3.1	Sistema experimental para el estudio de la oxidación de sulfuro de hidrógeno 10
3.	2.1 Condiciones experimentales para el estudio de la oxidación de sulfuro de
hi	drógeno11
4 A	NÁLISIS DE RESULTADOS
4.11	Régimen de oxidación del H ₂ S13
4.2 0	Dxidación del H ₂ S en presencia de CO ₂ 15
4.	2.1 Influencia de la temperatura y la estequiometría en el sistema H ₂ S-CO ₂ 15
4.	2.2 Influencia de la concentración de CO ₂ en el sistema H ₂ S-CO ₂ 16
4.3 0	Dxidación del H ₂ S en presencia de CO18
4.	3.1 Influencia de la temperatura y la estequiometría
4.	3.2 Influencia de la concentración de CO en el sistema H ₂ S-CO 20
4.4 0	Dxidación del H_2S en presencia de CH_4
4.	4.1 Influencia de la temperatura
4.	4.2 Influencia de la concentración de CH_4 en el sistema H_2S - CH_4
4.5	Oxidación del H ₂ S en presencia de NH ₃ 24
4.	5.1 Influencia de la temperatura
5 C	ONCLUSIONES

6 BIBLIOGRAFÍA
ANEXOS Anexo A INSTALACIÓN EXPERIMENTAL
A.1 Sistema de alimentación de gases
A.1.1 Gases
A.1.2 Medidores de flujo másico
A.1.3 Flujómetro
A.1.4 Sistema de alimentación de vapor de agua35
A.1.5 Conducciones
A.2 Sistema de reacción
A.2.1 Reactor de flujo de cuarzo
A.3 Sistema de detección y análisis de gases
A.3.1 Analizador infrarrojo (IR) de CO/CO ₂ 40
A.3.2 Cromatógrafos41
A.3.3 Espectrómetro FTIR (Fourier Transform Infra-Red)
Anexo B PROCEDIMIENTO EXPERIMENTAL
B.1 Pasos previos
B.2 Realización de un experimento
Anexo C RESULTADOS EXPERIMENTALES

Índice de Figuras

Figura 1: Esquema de la instalación experimental para el estudio de procesos de oxidación en fase
gas10
Figura 2: Filtros antipartículas saturados de azufre a la salida del sistema de reacción14
Figura 3: Conversión H_2S y formación de SO_2 en función de la temperatura de reacción.
Experimento 1 en Tabla 2 14
Figura 4: Conversión H_2S -SO ₂ frente a la temperatura. H_2S en presencia de CO ₂ con λ =0,7.
Experimento 2 en Tabla 2 15
Figura 5:Conversión H_2S -SO ₂ frente a la temperatura. H_2S en presencia de 1000 ppm de CO ₂ con
λ=0,3. Experimento 3 en Tabla 2
Figura 6: Conversión H ₂ S-SO ₂ frente a la temperatura. H ₂ S en presencia de 100.000 ppm CO ₂
con λ =0,3. Experimento 4 en Tabla 2
Figura 7: Evolución de la formación de CO con la temperatura. H_2S en presencia de 100.000 ppm
de CO ₂ con λ =0,3 . Experimento 4 en Tabla 2
Figura 8: Evolución de la formación de CS2 y COS con la temperatura. H2S en presencia de
100.000 ppm de CO ₂ con λ =0,3. Experimento 4 en Tabla 2
Figura 9: Conversión H ₂ S-SO ₂ frente a la temperatura. H ₂ S en presencia de 2000 ppm de CO con
λ=0,3. Experimento 5 en Tabla 2
Figura 10: Evolución de CS2 y COS con la temperatura. H2S en presencia de 2000 ppm de CO
$con \lambda = 0,3$. Experimento 5 en Tabla 2
Figura 11: Evolución del C _s 2 y COS con la concentración de CO en el sistema H ₂ S-CO (λ =0,3)
a 1273 K. Experimento 6 en Tabla 2
Figura 12: Evolución del CS ₂ y COS con la concentración de CO en el sistema H ₂ S-CO (λ=0,7)
a 1273 K. Experimento 7 en Tabla 2
Figura 13: Conversión H ₂ S-SO ₂ frente a la temperatura. H ₂ S en presencia de 2000ppm de CH ₄ .
Experimento 8 en Tabla 2
Figura 14: Evolución del CS ₂ y COS con la temperatura. H ₂ S en presencia de 2000 ppm de CH ₄ .
Experimento 8 en Tabla 2
Figura 15: Evolución de la formación de CO con la temperatura. H ₂ S en presencia de 2000 ppm
de CH ₄ . Experimento 8 en Tabla 2
Figura 16: Evolución de CS ₂ y COS con la concentración de CH ₄ en el sistema H ₂ S-CH ₄ (λ =0,7)
Experimento 9 en Tabla 2
Figura 17: Conversión H ₂ S-SO ₂ frente a la temperatura. H ₂ S en presencia de 2000ppm de NH ₃ .
Experimento 10 en Tabla 2

Índice de Figuras Anexo A

Índice de Tablas Anexo C

Tabla C. 1: Experimento 1 Tabla 2	50
Tabla C. 2: Experimento 2 Tabla 2	50
Tabla C. 3: Experimento 3 Tabla 2	51
Tabla C. 4: Experimento 4 Tabla 2	51
Tabla C. 5: Experimento 5 Tabla 2	52
Tabla C. 6: Experimento 6 Tabla 2	53
Tabla C. 7: Experimento 7 Tabla 2	53
Tabla C. 8: Experimento 8 Tabla 2	53
Tabla C. 9: Experimento 9 Tabla 2	54
Tabla C. 10: Experimento 10 Tabla 2	54

Índice de Tablas

Tabla 1: Valores límite para la protección de la salud y nivel crítico para la protección de	e la
vegetación del dióxido de azufre [Real Decreto 102/2011, 28 de enero]	6
Tabla 2: Condiciones experimentales	12
Tabla 3: Relación de equipos de medida y gases de salida detectados en cada equipo	39
Tabla 4: Características de los módulos del Micgro-GC	42

1 INTRODUCCIÓN Y OBJETIVOS

1.1 Introducción y objetivos

El azufre tiene una amplia y creciente demanda internacional, como por ejemplo, para generar ácido sulfúrico o emplearlo en la industria farmacéutica, sin olvidar su uso en fertilizantes y pesticidas. Para extraerlo, se utiliza el llamado proceso Claus.

El proceso Claus se utiliza para recuperar azufre elemental a partir de sulfuro de hidrógeno (H₂S) presente en el gas natural y otros gases derivados del tratamiento del crudo en refinerías. Fue patentado en 1883 por el químico alemán Carl Friedrich Claus, aunque ha sido posteriormente adaptado y mejorado a medida que avanzaba la comprensión del mismo y el desarrollo tecnológico necesario para su implementación. Un gas se considera apto para someterlo al proceso Claus y recuperar azufre a partir de él si contienen un 25% o más de H₂S.

El disulfuro de carbono (CS₂) y el sulfuro de carbonilo (COS), son compuestos azufrados intermedios generados normalmente a partir de la oxidación de azufre presente en el combustible y que pueden también ser emitidos a la atmósfera pudiendo dar lugar a una posterior formación de SO₂. La formación tanto de CS₂ como de COS en este proceso es indeseada, no sólo desde el punto de vista medioambiental, sino también operacional, al disminuir la selectividad a azufre elemental durante la conversión del H₂S. En este contexto, se considera interesante el estudio de la formación de CS₂ y COS durante el proceso de conversión de sulfuro de hidrógeno en azufre elemental en condiciones habituales en plantas químicas.

El principal objetivo de este trabajo consiste en el estudio experimental en condiciones de laboratorio controladas, en un reactor de flujo de cuarzo a presión atmosférica, de la oxidación del H₂S para, de esta forma, determinar la relación entre la formación de contaminantes y las condiciones de operación más significativas, las cuales se comentan a continuación:

- Relación estequiométrica [aire/combustible]

Una de las variables fundamentales de operación para determinar el mecanismo de oxidación del H₂S es la disponibilidad de oxígeno en la zona de reacción. Se ha variado la concentración inicial de oxígeno en cada experimento para observar el comportamiento de los compuestos en diferentes condiciones reductoras, es decir, con menos oxígeno del necesario para su combustión completa.

- Temperatura

Se ha variado la temperatura del proceso para cómo procede la reacción, ya que afecta a la formación de productos y el consumo de reactivos, por lo que se considera interesante analizar la

variación de la concentración de las principales especies presentes en la corriente de salida del reactor en función de la temperatura. El rango de temperaturas establecido para el estudio va desde temperatura ambiente hasta 1500 K.

- Concentración de los reactivos

La formación de productos está fuertemente ligada a los compuestos presentes en el sistema de reacción y su concentración. Se ha estudiado el efecto de la presencia de CO, CO₂, CH₄ y NH₃ en diferentes concentraciones sobre la formación de CS₂ y COS.

1.2 Descripción de la memoria

En este apartado se pretende exponer de una manera clara y concisa el trabajo desarrollado a lo largo de la realización del presente trabajo de fin de grado, el cual se divide en seis capítulos.

El presente capítulo (capítulo 1) se compone de una breve introducción donde se expone la motivación del proyecto, una descripción del contenido de la memoria y los objetivos del trabajo.

En el segundo capítulo se desarrollan los antecedentes a través de los cuales se ha definido el tema y alcance del presente proyecto. Se realiza un estudio bibliográfico donde se comienza abordando la problemática de la contaminación causada por azufre, se explica el proceso Claus y su uso en la industria y por último se tratan los principales contaminantes derivados del proceso Claus: COS y CS₂.

La metodología experimental se presenta en el tercer capítulo, donde se explica la instalación experimental utilizada para la realización de los experimentos y el procedimiento seguido para la realización de los mismos.

En el cuarto capítulo, análisis de resultados, se exponen los principales resultados obtenidos acompañados de una interpretación de los mismos.

Posteriormente se halla el capítulo 5 donde se describen las conclusiones extraídas a partir de los resultados del capítulo cuatro y su relación con el objetivo del trabajo.

Finalmente, en el capítulo sexto se recoge la bibliografía consultada durante la relación del presente trabajo y que justifica su propósito y fundamentos.

1.3 Objetivos

El objetivo principal del presente trabajo de fin de grado es estudiar la oxidación del sulfuro de hidrógeno y su interacción con CO, CO_2 , CH_4 y NH_3 a presión atmosférica en un reactor de flujo de cuarzo, analizando la influencia de las principales variables del proceso sobre la conversión del H_2S y la formación de CS_2 y COS.

Para la consecución de este objetivo se han definido una serie de objetivos específicos:

- Estudiar la oxidación del sulfuro de hidrógeno, tanto en ausencia como presencia de los citados gases, analizando la influencia de la temperatura, la estequiometría de reacción, así como la concentración de los gases propuestos.
- 2. Identificar los principales productos de la oxidación de sulfuro de hidrógeno, en todas las condiciones propuestas, a través de la caracterización cualitativa y cuantitativa usando un cromatógrafo de gases, un microcromatógrafo de gases, un espectrofotómetro infrarrojo de gases por transformada de Fourier (FTIR) y un analizador infrarrojo de CO y CO₂.
- 3. Interpretar y analizar los resultados obtenidos en los experimentos, obteniendo las conclusiones del trabajo.

2 ANTECEDENTES

En este capítulo se presenta una breve introducción teórica sobre el tema que se va a tratar en este trabajo. Se hace referencia al proceso Claus y sus condiciones de operación habituales y también a los compuestos de azufre estudiados, CS_2 y COS.

2.1 El azufre

El azufre es un elemento químico con múltiples usos que abarcan desde la industria farmacéutica hasta la fabricación de pesticidas y fertilizantes. La demanda creciente de este gas, unido a los problemas que provoca su emisión a la atmosfera (fundamentalmente en forma de SO₂) hacen que maximizar la recuperación del mismo sea crucial para la industria química.

Después del carbono y el hidrógeno, el azufre es el elemento químico más abundante en el crudo, oscilando entre el 0.05 y 5 % en peso. Por otro lado, la calidad del crudo está disminuyendo, a medida que se van agotando los mejores yacimientos, [Kropp y Fedorak, 1998], extrayéndose crudos con mayor contenido en azufre.

En el petróleo, el azufre se encuentra, principalmente, en forma de compuestos orgánicos, tales como mercaptanos, sulfuros, o tiofenos. Además de estos compuestos, se ha detectado la presencia de pequeñas cantidades de azufre elemental. El contenido en azufre de los petróleos crudos varía de unas pocas ppm al 5 % en peso, se han citado algunos crudos con valores de hasta el 7%. [Larraz, R., 1998]

Los productos finales del refino del petróleo requieren, en muchas ocasiones, de procesos de disminución en el contenido de azufre que permitan su comercialización. El proceso más empleado es el hidrotratamiento que produce corrientes ricas en sulfuro de hidrógeno, que posteriormente son tratadas mediante el proceso Claus.

Además de los hidrocarburos, el gas natural y otros gases como el gas de fracking contiene cantidades de sulfuro de hidrógeno y compuestos orgánicos de azufre. El contenido en sulfuro de hidrógeno de los diferentes depósitos depende de la edad de los yacimientos donde se encuentre el gas. La presencia de rocas conteniendo $CaSO_4$ o FeS provocan el incremento de H₂S en el gas natural. La cantidad de H₂S en el gas natural varía desde trazas hasta valores del 50 % vol., en general la concentración usual se sitúa por debajo del 1 % vol.

Hoy en día, el uso de estos gases combustibles contaminados con H_2S pasa por el uso de procesos de purificación costosos y que pueden hacer la utilización del gas inviable económicamente. Por ello, se está planteando el posible uso directo de estos gases combustibles

que contienen H_2S sin limpieza previa. Para ello, se requiere conocer muy bien el comportamiento y evolución del H_2S en procesos de combustión.

2.2 Proceso Claus

El proceso Claus es el más significativo método para desulfurizar gases y recuperar azufre a partir de sulfuro de hidrógeno. Se lleva a cabo oxidando el H_2S para obtener SO_2 y azufre elemental como productos principales, y otros compuestos que varían según el resto de gases reactantes. Generalmente, la eficiencia de recuperación de azufre en plantas convencionales varía de 94 a 97% [Eow, 2002]

Este proceso fue patentado en 1883 por el químico alemán Carl Friedrich Claus, originalmente para recuperar el azufre consumido en la producción de carbonato sódico (Na₂CO₃). Desde el primer momento, se comprobó el efecto de operar a bajas temperaturas, a fin de maximizar la recuperación de azufre; el rango de temperaturas usuales se situaba entre 476 K y 588 K Debido a la gran exotermicidad de la reacción entre el O₂ y el H₂S, y a que el calor sólo se disipaba por radiación, el "horno Claus" estaba limitado a procesar pequeñas cantidades de H₂S. Con objeto de conseguir rendimientos del 80-90%, sólo se podían procesar pequeños volúmenes de sulfuro de hidrógeno. En 1938, la empresa alemana I.G.Farbenindustrie A.G., introduce el llamado Proceso Claus Modificado. La modificación no solo aumentaba la capacidad del proceso, sino que además permitía la recuperación energética del calor antes disipado.

La conversión de H_2S a azufre comienza con una etapa llamada térmica en la cual un 1/3 del H_2S se oxida a SO₂:

$$H_2S + 3/2 O_2 \rightarrow SO_2 + H_2O$$
 (r.2.1)

El SO₂ generado reacciona con el H_2S restante para formar azufre y vapor de agua en la llamada etapa catalítica, donde los catalizadores (habitualmente bauxita y alúminas) aumentan la eficiencia del proceso hasta el 96-98%, frente al 70-90% de la etapa anterior en solitario:

 $2 H_2S + SO_2 \rightarrow 3 S + 2 H_2O$ (r.2.2)

La reacción global puede escribirse como:

$$3 H_2S + 3/2 O_2 \rightarrow 3 S + 3H_2O$$
 (r.2.3)

El azufre presente en los reactivos es liberado en fase gas durante el proceso de combustión. Una vez liberado el azufre gaseoso es rápidamente oxidado a diferentes productos, mayoritariamente a dióxido de azufre, pero cuando existen, por ejemplo, hidrocarburos o CO_2 en la alimentación a la unidad Claus [Clark y cols., 2001], pueden ocurrir reacciones no deseadas [Chute, 1977] llegando a generarse CS_2 y COS.

$$CO_2 + H_2S \Leftrightarrow H_2O + COS$$
 (r.2.4)

 $CH_4 + 2S_2 \Leftrightarrow 2H_2S + CS_2$ (r.2.5)

El gas resultante, generalmente llamado "gas de cola", se envía a un horno para su incineración a SO2 o bien a un proceso para reducir aún más su concentración en compuestos de azufre.

Las cada vez más restrictivas regulaciones medioambientales hacen patente la necesidad de un control más riguroso de las emisiones de las plantas de azufre, tal y como se muestra en la Tabla 1 de acuerdo a los límites establecidos por la legislación vigente [Real Decreto 102/2011, 28 de enero].

Todo esto incrementa la necesidad de una mejor comprensión de la formación de contaminantes en el proceso Claus y un minucioso conocimiento de las variables que intervienen en el mismo.

	Período de promedio	Valor	Fecha de cumplimiento del valor límite
Valor límite horario	1 hora	350 μg/m ³ , valor que no podrá superarse en más de 24 ocasiones por año civil.	En vigor desde el 1 de enero de 2005.
Valor límite diario	24 horas	125 μg/m ³ , valor que no podrá superarse en más de 3 ocasiones por año civil.	En vigor desde el 1 de enero de 2005.
Nivel crítico	Año civil e invierno (del 1 de octubre al 31 de marzo).	20 µg/m ³	En vigor desde el 11 de junio de 2008.

Tabla 1: Valores límite para la protección de la salud y nivel crítico para la protección de la vegetación del dióxido de azufre [Real Decreto 102/2011, 28 de enero]

Los valores límite y el nivel crítico se expresarán en μg/m³. El volumen debe ser referido a una temperatura de 293 K y a una presión de 101,3 kPa.

Actualmente la formación de COS y CS_2 se disminuye mediante hidrólisis, r.2.6 y r.2.7 [Kerr y cols., 1976], no obstante, no es suficiente para eliminar eficazmente todos los gases generados por lo que es interesante tratar de reducir al mínimo estos compuestos.

$$COS + H_2O \Leftrightarrow H_2S + CO \qquad (r.2.6)$$
$$CS_2 + 2 H_2O \Leftrightarrow 2 H_2S + CO_2 \qquad (r.2.7)$$

Por otra parte, los catalizadores con alto contenido en titanio se han mostrado muy eficaces en la eliminación de COS y CS₂ [Grancher, 1978].

Otro contaminante que puede ocasionar múltiples problemas en la operación de una unidad Claus es el amoniaco (NH₃). La combustión del amoniaco en la etapa térmica provoca temperaturas superiores a 1500 K pudiendo ocasionar daños al inyector de gas ácido. El límite establecido para evitar estos problemas es del 2 o 3 % vol. [Chute, 1977] aunque se han registrado problemas a concentraciones del 0,1 % vol. en amoniaco.

2.3 Disulfuro de carbono

El disulfuro de carbono (CS_2) es un compuesto azufrado extraordinariamente inflamable que se puede formar en un proceso de combustión cuando se tiene concentración de oxígeno por debajo de las condiciones estequiométricas y compuestos de azufre en el medio de reacción.

En general el CS₂ y el COS se pueden consumir reaccionando con radicales, por disociación térmica o por reacción con especies estables como O_2 y H_2O .

Los primeros estudios realizados para conocer el comportamiento del CS_2 , fueron en ausencia de aire. Destaca la investigación de Wright (1960) en la que se estudió la fotólisis del CS_2 sin oxígeno mediante espectroscopía , y propuso las siguientes reacciones:

$$CS_2 + hv \rightarrow CS + S \quad (r.2.8)$$

$$S + CS_2 \rightarrow CS + S_2 \quad (r.2.9)$$

Se observa la formación de radicales S y O. Ambos compuestos al estudiarlos difieren notablemente. La molécula de S al añadir oxígeno desaparece rápidamente formando SO y SO₂. Por otra parte, no existe consenso en la literatura sobre si la reacción de oxidación del CS transcurre rápida o lentamente.

La interacción del CS_2 con moléculas de O_2 se da en ambientes muy ricos en oxígeno, y ha sido fundamentalmente estudiada en relación a combustiones explosivas para determinar los límites de explosión de la misma [Wood, 1971].

$$CS_2 + O_2 \Leftrightarrow CS + SO_2$$
 (r.2.10)

Los experimentos de oxidación de CS_2 llevados a cabo por Cullis y Mulcahy [1972] mostraron que la reacción se iniciaba con la interacción entre las especies y radicales oxígeno, a través de las siguientes reacciones:

$$\begin{array}{ll} CS_2 + O \Leftrightarrow CS + SO & (r.2.11) \\ CS_2 + O \Leftrightarrow COS + S & (r.2.12) \end{array}$$

Por otra parte, Abián y cols (2015), estudiaron la oxidación del CS_2 en atmósferas reductoras, donde la conversión del CS_2 era incompleta, estequiométricas y oxidantes. Se determinó que las dos reacciones anteriores son las más relevantes en este proceso, aunque existen

otras más, mostradas a continuación. Estas reacciones se mostraron más relevantes cuanto más reductoras eran las condiciones del experimento.

$$CS_2 + O \Leftrightarrow CO + S_2 \qquad (r.2.13)$$
$$CS_2 + S \Leftrightarrow CS + S_2 \qquad (r.2.14)$$

Así, la conclusión de los estudios anteriores sobre la oxidación del CS_2 es la formación de los compuestos intermedios S y CS que reaccionan con compuestos oxigenados como el O, O₂ y OH para dar los productos finales SO₂, CO, CO₂ y en casos específicos COS.

2.4 Sulfuro de carbonilo

El sulfuro de carbonilo (COS) por su parte ha sido estudiado en menor medida que el CS_2 . Además, el conocimiento del mecanismo de reacción, al igual que en el caso del CS_2 , se vio limitado por la necesidad de disponer de avanzadas técnicas espectroscópicas que permitieran la detección de las sustancias intermedias de reacción.

El mecanismo propuesto para el siguiente compuesto en condiciones de oxidación fotoquímica [Cullis y Mulcahy, 1972; McGarvey y McGrath, 1964] es el detallado a continuación:

 $COS + hv \rightarrow CO+S \qquad (r.2.15)$ $S + O_2 \rightarrow SO+O \qquad (r.2.16)$ Seguido por las reacciones (r.2.12, r.2.13): $SO + O_2 \rightarrow SO_2+O \qquad (r.2.17)$ $O + COS \rightarrow CO+SO \qquad (r.2.18)$

Posteriormente se añadió otra reacción:

 $O + COS \rightarrow CO_2 + S$ (r.2.19)

Cullis y Mulcahy (1972)] también estudiaron la oxidación del COS, y concluyeron que la reacción se iniciaba, al igual que en el caso del CS₂ con la interacción entre las especies y radicales oxígeno:

$$COS + O \Leftrightarrow CO + SO$$
 (r.2.20)

En el estudio de Abián y cols [2015], se mostró que el COS puede interaccionar con los radicales O, H y S mediante varias reacciones y genera directamente CO y CO₂, además de los compuestos azufrados intermedios como SO, S y S₂. Después, estos compuestos azufrados evolucionan para producir SO₂. Otro camino de reacción involucrado en el consumo de COS es su disociación térmica del COS genera radicales S y O, responsables estos últimos de la mayor parte del consumo de COS [Abián y cols., 2015]:

$$COS + M \Leftrightarrow CO + S + M \quad (r.2.21)$$
$$S + O2 \Leftrightarrow O + O \quad (r.2.22)$$
$$SO + O2 \Leftrightarrow SO2 + O \quad (r.2.23)$$

Además, los estudios de modelado indican que el mecanismo de reacción que sigue el COS generado a partir de la oxidación de CS_2 son los mismos que los relacionados con la oxidación directa del COS.

Por último, estableciendo una comparación entre el CS_2 con el COS, el CS_2 tiene una mayor reactividad (esto es, comienza a reaccionar a una menor temperatura), esto se debe principalmente a la mayor disponibilidad de los átomos de azufre [Cullis y Mulcahy, 1972].

2.5 Dióxido de azufre

El dióxido de azufre (SO₂) presente en la atmosfera terrestre proviene de dos fuentes principales: fuentes naturales como volcanes y vegetación en descomposición y el generado por el hombre. El SO₂ de origen antropogénico se genera principalmente en la combustión de carbón, que contiene azufre en su composición, aunque también proviene de ciertos procesos industriales, como la fabricación de papel y la fundición de metales. Así mismo, el dióxido de azufre es uno de los principales causantes de la lluvia ácida. Además, es un agente irritante de las mucosas del tracto respiratorio, pudiendo ocasionar enfermedades crónicas del sistema respiratorio, como bronquitis, enfisema pulmonar, etc. [Díez y cols., 1999].

En los últimos tiempos cada vez más sectores de la sociedad señalan los efectos adversos de las emisiones de compuestos de azufre en la salud humana, así como en la degradación de ecosistemas tales como: ríos, bosques, lagos e incluso edificios y monumentos históricos.

La lluvia ácida es un fenómeno que se refiere a una mezcla de sedimentación húmeda y seca de la atmósfera que contiene cantidades más altas de las normales de ácidos nítrico y sulfúrico. Cuando esos gases reaccionan en la atmósfera con el agua, el oxígeno y otras sustancias químicas se forman distintos compuestos ácidos. El resultado consiste en una solución relativamente suave de ácido sulfúrico y ácido nítrico. Cuando el dióxido de azufre y los óxidos de nitrógeno se emiten a la atmósfera, los vientos predominantes trasladan estos compuestos a través de las fronteras estatales y nacionales, algunas veces a cientos de kilómetros [Glynn, 1999].

Para intentar paliar este problema, actualmente existen numerosas tecnologías operativas y una creciente inversión en investigación y desarrollo de alternativas más eficientes y rentables para reducir al máximo las emisiones de este compuesto. Para favorecer la reducción de las emisiones existen unos estrictos límites de emisión, establecidos por la legislación vigente [Real Decreto 102/2011, 28 de enero] y detallados anteriormente en la Tabla 1.

3 METODOLOGÍA EXPERIMENTAL

La parte experimental del presente trabajo se ha llevado a cabo en el laboratorio de Reacciones en Combustión del Grupo de Procesos Termoquímicos del Instituto de Investigación en Ingeniería de Aragón (I3A), situado en el Edificio de Institutos de Investigación de la Universidad de Zaragoza. En este apartado se incluye una breve descripción de la instalación experimental utilizada (detallada más extensamente en el anexo A) para llevar a cabo los experimentos de oxidación del sulfuro de hidrógeno, junto con una breve descripción de las condiciones experimentales utilizadas en los mismos.

3.1 Sistema experimental para el estudio de la oxidación de sulfuro de hidrógeno

La instalación experimental utilizada para el estudio del proceso de oxidación del H_2S y su interacción con CO, CO₂, CH₄ y NH₃ consta de tres secciones principales: sistema de alimentación, sistema de reacción y sistema de análisis de gases. En la Figura 3. 1 se muestra un esquema de esta instalación.

Figura 1: Esquema de la instalación experimental para el estudio de procesos de oxidación en fase gas

- Sistema de alimentación: Se compone de las botellas a presión con los gases implicados en cada experimento, los controladores de flujo másico y un burbujímetro para medir los caudales. También dispone de un borboteador para alimentar vapor de agua al sistema de reacción.
- Sistema de reacción: La reacción se desarrolla en un reactor tubular de flujo hecho de cuarzo. El reactor se encuentra ubicado en el interior de un horno eléctrico para poder controlar la temperatura del sistema.
- Sistema de detección y análisis gases: En esta parte de la instalación se determina cuantitativamente la concentración de los gases de salida del reactor mediante distintos equipos. Los equipos con los que se ha trabajado son: analizador infrarrojo (IR) de CO/CO₂, espectrómetro FTIR (*Fourier Transform Infra-Red*), cromatógrafo de gases y microcromatógrafo de gases.

3.2.1 Condiciones experimentales para el estudio de la oxidación de sulfuro de hidrógeno

La finalidad de los experimentos de oxidación de sulfuro de hidrógeno es conocer el proceso de conversión del mismo e identificar los productos formados a diferentes temperaturas, relaciones estequiométricas y concentración de reactantes, haciendo especial énfasis en la formación de CS_2 y COS.

Los experimentos se han realizado entre temperatura ambiente y 1500 K, en todos los casos a presión atmosférica, y analizando principalmente dos relaciones estequiométricas.

El parámetro empleado para describir la estequiometría ha sido la relación de exceso de aire, λ , el cual se define como cociente entre la relación aire/combustible disponible para la reacción y la relación aire/combustible estequiométrica (Ec. 3.1).

$$\lambda = \frac{A / C}{(A / C) \text{ esteq}} = \frac{\text{aire real}}{\text{aire esteq}} \quad (\text{Ec. 3.1})$$

La cantidad de aire estequiométrica es la cantidad mínima necesaria para la oxidación completa. En estas condiciones los productos obtenidos del sulfuro de hidrógeno teóricamente son dióxido de azufre y agua (r.3.1).

$$H_2S + 3/2O_2 \rightarrow SO_2 + H_2O$$
 (r.3.1)

Así, considerando la estequiometría de la reacción r.3.1, λ se calcula (en nuestro caso) mediante la ecuación Ec.3.2..

$$\lambda = \frac{[02]disponible}{3/2[H2S]introducido} \quad (Ec. 3.2)$$

Se ha escogido trabajar en dos condiciones reductoras (λ =0,3 y λ =0,7), típicas del proceso Claus, para estudiar la formación de COS y CS₂, ya que ambos son compuestos intermedios de la oxidación del azufre.

En todos los experimentos de oxidación del H₂S se introduce una cantidad de vapor de agua junto con los reactantes, variable según el caso. En el Anexo A se incluyen las ecuaciones para determinar la corriente de nitrógeno que es necesario introducir al borboteador para alimentar al reactor con la concentración de vapor de agua deseada. En la Tabla 2 se muestran las condiciones experimentales de los experimentos llevados a cabo.

Experimento	H₂S (ppm)	Compuesto	[compuesto] (ppm)	H ₂ O	lambda	Temperatura (K)
EXP1	500	-	-	1%	0,7	300-2300
EXP2	EXP2 500 CO ₂ 1000		1%	0,7	300-1500	
EXP3	500	CO ₂	1000	1%	0,3	300-1500
EXP4	1500	CO ₂	100.000	0,50%	0,3	300-1500
EXP5	1000	CO	2000	0,50%	0,3	300-1500
EXP6	1000	CO	500-4500	0,50%	0,3	1275
EXP7	1000	CO	500-4500	0,50%	0,7	1275
EXP8	1000	CH ₄	2000	0,50%	0,3	300-1500
EXP9	1000	CH ₄	250-3000	0,50%	0,3	1475
EXP10	1000	NH₃	1000	0,50%	0,7	300-1500

Tabla 2: Condiciones experimentales

4 ANÁLISIS DE RESULTADOS

En este capítulo se analizan los principales resultados obtenidos en los distintos experimentos realizados. Se ha analizado la influencia de las variables de operación más importantes: temperatura, relación estequiométrica e influencia de la presencia y concentración de distintos compuestos típicamente presentes durante la oxidación de H₂S en el proceso Claus (CO, CO₂, CH₄ y NH₃), sobre el proceso de conversión de H₂S y la formación de COS y CS₂.

En la corriente de salida del reactor las especies que se han cuantificado para su posterior análisis han sido: sulfuro de hidrógeno (H₂S), disulfuro de carbono (CS₂), sulfuro de carbonilo (COS), dióxido de azufre (SO₂), monóxido de carbono (CO), dióxido de carbono (CO₂), hidrógeno (H₂), oxígeno (O₂) y sulfuro de hidrógeno (H₂S), así como el agua (H₂O). Por otro lado, también se ha identificado cualitativamente la formación de azufre elemental.

Para el análisis y compresión de las conclusiones obtenidas en el presente proyecto, en este capítulo se muestran los principales resultados obtenidos. Los resultados experimentales completos se pueden consultar en el Anexo C.

4.1 Régimen de oxidación del H₂S

En primer lugar se realizó una oxidación del sulfuro de hidrógeno, sin ningún otro compuesto reactante (a excepción del oxígeno y el vapor de agua), para observar el mecanismo de oxidación del mismo. La Figura 2 muestra el perfil de conversión del H₂S y la formación de SO₂ en función de la temperatura de reacción para $\lambda = 0,7$. Tanto en estas condiciones, como en el resto de condiciones analizadas en el presente trabajo, los principales productos de reacción han sido el SO₂ (determinado cuantitativamente) y el azufre elemental. El azufre elemental se ha observado en forma de polvo con tonalidad amarillenta a la salida del sistema de reacción, en concreto, depositado en la salida del reactor y retenido en el filtro antipartículas (Figura 2).

Figura 2: Filtros antipartículas saturados de azufre a la salida del sistema de reacción.

En lo concerniente a la temperatura de reacción se observa que, en ausencia de otros compuestos, la reacción de descomposición del H₂S comienza sobre los 698 K (Figura 3) y viene acompaña de la formación de SO₂. Alrededor de los 973 K el H₂S se ha consumido prácticamente en su totalidad y el SO₂ presenta una concentración más o menos contante hasta los 1273 K. A partir de esta temperatura la concentración del SO₂ vuelve a aumentar, lo cual puede indicar que se está favoreciendo la oxidación del azufre elemental a SO₂ con la temperatura.

Figura 3: Conversión H₂S y formación de SO₂ en función de la temperatura de reacción. Experimento 1 en Tabla 2.

4.2 Oxidación del H₂S en presencia de CO₂

A continuación se muestran los resultados de la oxidación del H_2S en presencia de CO_2 , y la influencia de la temperatura, estequiometria y concentración de CO_2 sobre el proceso. En este caso, debido a la presencia de carbono (en el CO_2), comienzan a cuantificarse los contaminantes de estudio, el COS y el CS₂, además del SO₂ y CO.

4.2.1 Influencia de la temperatura y la estequiometría en el sistema H₂S-CO₂

Las Figuras 4 y 5 muestran el perfil de conversión del H₂S y la formación de SO₂ en función de la temperatura para λ =0,7 y λ =0,3, respectivamente, en presencia de 1000 ppm de CO₂. Comparando los resultados mostrados en ambas figuras se observa que las condiciones menos reductoras (λ =0,7) adelantan el comienzo de la oxidación, a los 723 K frente a 798 K en el segundo caso (λ =0,3). Del mismo modo, la conversión total se alcanza antes para λ =0,7 (1173 K, Figura 4) frente a λ =0,3 (1273 K, Figura 5).

Figura 4: Conversión H_2S -SO₂ frente a la temperatura. H_2S en presencia de CO₂ con λ =0,7. Experimento 2 en Tabla 2.

Figura 5:Conversión H₂S-SO₂ frente a la temperatura. H₂S en presencia de 1000 ppm de CO₂ con $\lambda=0,3$. Experimento 3 en Tabla 2.

En la interacción de H₂S con 1000 ppm de CO₂ y λ =0,7 y λ =0,3, no se detectó la presencia de COS ni CS₂ a la salida del reactor para ninguna de las temperaturas de reacción analizadas.

4.2.2 Influencia de la concentración de CO₂ en el sistema H₂S-CO₂

Para analizar el efecto de la concentración de CO_2 en el perfil de oxidación del H_2S se consideraron condiciones muy reductoras (λ =0,3) y se introdujeron 100.000 ppm de CO_2 en el reactor junto con 1500 ppm de H_2S y un 0,5 % de agua. Como se puede ver en la Figura 6, donde se representa el perfil de conversión del H_2S y la formación de SO_2 en función de la temperatura.

Figura 6: Conversión H₂S-SO₂ frente a la temperatura. H₂S en presencia de 100.000 ppm CO₂ con λ =0,3. Experimento 4 en Tabla 2

Se observa un perfil de conversión del H_2S y de formación de SO_2 similar al caso en el que la concentración de CO_2 era 100 veces menor (experimento 3 en Tabla 2 – Figura 5). Sin embargo, para altas temperaturas, el H_2S no llega a consumirse en su totalidad.

Cabe destacar que a partir de 1300 K se comenzó a formar CO, como puede verse en la Figura 7, donde se representa la evolución en la cantidad de CO hallado a la salida del reactor para cada temperatura. Además, a partir de esta misma temperatura comienza a detectarse la presencia de aproximadamente una decena de ppm de COS (Figura 8). En este caso además, como en el resto de experimentos anteriores sobre la oxidación H_2S en presencia de CO₂, no se formó CS_2 .

Figura 7: Evolución de la formación de CO con la temperatura. H_2S en presencia de 100.000 ppm de CO₂ con $\lambda=0,3$. Experimento 4 en Tabla 2.

Figura 8: Evolución de la formación de CS₂ y COS con la temperatura. H2S en presencia de 100.000 ppm de CO₂ con λ =0,3. Experimento 4 en Tabla 2.

Estos resultados indican que la formación de COS a partir de la conversión de H_2S en presencia de CO₂ están directamente relacionada con la presencia de CO en el sistema de reacción.

4.3 Oxidación del H₂S en presencia de CO

En segundo lugar, se observa el efecto de introducir CO en la reacción, ya que es una especie habitual en las cámaras de combustión del proceso Claus. Además, los resultados del análisis del sistema H₂S-CO₂ (Apartado 4.2.2) indican un efecto potencial de la presencia de CO sobre la formación de COS. En este trabajo se han llevado a cabo tres sets de experimentos de conversión de H₂S en presencia de CO: uno con 2000 ppm de CO variando la temperatura de reacción para $\lambda = 0,3$, y otros dos a la temperatura fija de 1275 K variando la concentración de CO para $\lambda = 0,3$ y $\lambda = 0,7$, respectivamente. Los tres sets de experimentos han sido realizados con 1000 ppm de H₂S y un 0,5% de vapor de agua.

4.3.1 Influencia de la temperatura y la estequiometría

En la Figura 9 se puede observar el perfil de oxidación del H₂S y la generación de SO₂ en función de la temperatura. En ella se observa que la conversión comienza a los 798 K, y que va unida a la formación del SO₂, como en los casos anteriores. Además, en este experimento ($\lambda = 0,3$) el H₂S tampoco llega a consumirse en totalidad ni siquiera a la temperatura máxima analizada (1500 K).

Figura 9: Conversión H₂S-SO₂ frente a la temperatura. H₂S en presencia de 2000 ppm de CO con λ =0,3. Experimento 5 en Tabla 2.

En este caso, a partir de 923 K se observó la formación de COS (Figura 10). La máxima concentración de COS (47,87 ppm, como puede verse en el Anexo C) la encontramos a los 1273 K. A partir de ahí, la concentración de COS disminuye a la mitad en sólo 100 K y mantiene esa tendencia hasta el final del experimento. Por ello se decidió realizar dos sets de experimentos más en presencia de CO, uno con λ =0,3 y otro con λ =0,7 a 1275 K de temperatura fija, variando la concentración CO.

En la Figura 12 puede observarse la ausencia de formación de CS₂ en este experimento.

Figura 10: Evolución de CS₂ y COS con la temperatura. H₂S en presencia de 2000 ppm de CO con λ =0,3. Experimento 5 en Tabla 2.

4.3.2 Influencia de la concentración de CO en el sistema H₂S-CO

En las Figuras 11 y 13 se muestra la evolución en la concentración de COS y CS₂ a la salida del reactor frente a la variación de la concentración de CO a la entrada del mismo en dos casos: λ =0,3 y λ =0,7, respectivamente. Ambos experimentos se realizaron a 1275 K. En el caso de λ =0,3 (Figura 10) se observó que la formación de COS aumenta con la concentración de reactante de manera casi lineal, y no hay formación de CS₂.

Figura 11: Evolución del Cs2 y COS con la concentración de CO en el sistema H₂S-CO (λ =0,3) a 1273 K. Experimento 6 en Tabla 2.

En el siguiente experimento (Experimento 7 en Tabla 2 – Figura 12), con λ =0,7 se detecta la presencia de COS, aunque en menor concentración que en caso anterior, en el cual las condiciones eran más reductoras. Como se puede observar, el COS aumenta de manera casi lineal con la concentración. Para estas condiciones, tampoco se detectó la formación de CS₂.

Figura 12: Evolución del CS₂ y COS con la concentración de CO en el sistema H₂S-CO (λ =0,7) a 1273 K. Experimento 7 en Tabla 2.

4.4 Oxidación del H₂S en presencia de CH₄

En este apartado el H₂S es introducido al reactor con 2000 ppm de CH₄, para tratar de determinar cómo afecta la interacción entre ambos a la formación de COS y CS₂ con λ =0,3. Al mismo tiempo se analiza también su influencia en la conversión del H₂S a SO₂.

4.4.1 Influencia de la temperatura

En la Figura 13 se representa la conversión del H_2S a SO_2 en presencia de CH_4 . El CH_4 retrasa la descomposición del H_2S hasta los 873 K (en comparación con los sistemas H_2S - CO_2 y H_2S -CO) y la conversión no finaliza dentro del rango de temperaturas estudiado.

Figura 13: Conversión H₂S-SO₂ frente a la temperatura. H₂S en presencia de 2000ppm de CH₄. Experimento 8 en Tabla 2.

Como se puede observar en la Figura 14, donde se representa la concentración de contaminantes a la salida del reactor, a partir de 975 K, la formación de CS_2 aumenta exponencialmente con la temperatura. A 1475 K comienza a formarse COS, coincidiendo con un brusco aumento en la cantidad de CO a la salida (Figura 15).

Figura 14: Evolución del CS₂ y COS con la temperatura. H₂S en presencia de 2000 ppm de CH₄. Experimento 8 en Tabla 2

Figura 15: Evolución de la formación de CO con la temperatura. H₂S en presencia de 2000 ppm de CH₄. Experimento 8 en Tabla 2.

4.4.2 Influencia de la concentración de CH₄ en el sistema H₂S-CH₄

En la Figura 16 se observa la formación de COS y CS₂ frente a la concentración de CH₄ en el sistema H₂S-CH₄ a 1475 K con λ =0,3. La concentración de COS formada es muy baja, en torno a las 3-4 ppm, y se mantiene aproximadamente constante para concentraciones a partir de 500 ppm de CH₄. En cambio, el CS₂ se forma en grandes cantidades y su concentración aumenta casi linealmente con el aumento de la concentración del CH₄.

Figura 16: Evolución de CS₂ y COS con la concentración de CH₄ en el sistema H₂S-CH₄ (λ =0,7).. Experimento 9 en Tabla 2.

4.5 Oxidación del H₂S en presencia de NH₃

Por último, se analiza la influencia del NH₃ durante el proceso de conversión del H₂S. Para ello se han introducido en el reactor 1000 ppm de H₂S y 1000 ppm de NH₃ con una relación estequiométrica λ =0,7 y un 0,5 % de vapor de agua. Se han cuantificado las especies gaseosas a la salida del reactor en un intervalo de temperaturas de 300-1500 K.

4.5.1 Influencia de la temperatura

En la Figura 17 se representa la conversión del H_2S a SO_2 en presencia de NH_3 . Por debajo de 1200 K, el NH_3 inhibe fuertemente la formación de SO_2 , a pesar de que el H_2S se descompone paulatinamente a medida que aumenta la temperatura. Por otra parte, la reacción transcurre más lentamente en presencia de NH_3 , ya que en el experimento 1 de oxidación de H_2S en solitario este se había consumido por completo antes de los 1300 K y en este caso, a 1500 K aún no se ha descompuesto la totalidad del H_2S . Al no introducir carbono al reactor no se observó ninguno de los dos contaminantes principales de este estudio a la salida del reactor.

Figura 17: Conversión H₂S-SO₂ frente a la temperatura. H₂S en presencia de 2000ppm de NH₃. Experimento 10 en Tabla 2.

5 CONCLUSIONES

Se ha estudiado el proceso de oxidación del H₂S en condiciones de interés para el proceso Claus, prestando especial interés a la generación de las especies COS y CS₂. Para ello, se ha hecho uso de un reactor de cuarzo flujo pistón, a presión atmosférica, en un intervalo de temperaturas entre temperatura ambiente y 1500 K. Se ha analizado la influencia de diferentes condiciones reductoras (λ =0,7), (λ =0,3) y diferentes concentraciones de los reactivos CO₂, CO, CH₄ y NH₃.

Los resultados procedentes de los diferentes experimentos han sido analizados realizando balances de las principales especias a la salida del reactor.

Las conclusiones más relevantes extraídas de este proyecto son las siguientes:

- Los productos generados en la reacción varían en función de la mezcla de reactantes introducida en el reactor. La formación de COS a partir de la conversión de H₂S está directamente relacionada con la presencia de CO en el sistema de reacción. Además, se observa que la formación de COS se relaciona linealmente con la concentración de CO.
- En presencia de bajas concentraciones de CO₂ no se generaba ni disulfuro de carbono (CS₂) ni sulfuro de carbonilo (COS). Al aumentar la concentración de CO₂ hasta las 100.000 ppm a altas temperaturas el CO₂ comienza a descomponerse en CO, y se detecta la presencia de COS a la salida del reactor.
- En el sistema H₂S-CH₄ aparece CS₂ y su evolución se relaciona linealmente con la concentracoón de metano. A altas temperaturas, y coincidiendo una vez más con la formación de CO aparecen unas pocas ppm de COS que se mantienen constantes independientemente de la concentración de reactivos.
- La estequiometría influye directamente en la conversión del H₂S, y, por tanto, en la temperatura de inicio de la reacción, siendo esta mayor cuando menor es la estequiometría. En condiciones más reductoras la reacción es más lenta y genera mayor cantidad de COS y CS₂.
- En general, en todas las mezclas de reactantes la conversión aumenta conforme aumenta la temperatura.

Por tanto, para tratar de minimizar los contaminantes COS y CS₂, una planta que procese el sulfuro de hidrógeno mediante el proceso Claus debería trabajar en las condiciones menos reductoras posibles. En el caso del COS es importante tratar de evitar la presencia de CO en el sistema de reacción, tanto su presencia en el momento inicial como su formación a partir de la descomposición de otros compuestos, como se ha visto que puede ocurrir a partir del CO₂. Por último, dado que la alimentación del proceso Claus contiene metano en gran concentración (gas natural ácido), la temperatura debería mantenerse, en lo posible, lo más baja posible , por debajo de 1000 K, para evitar la formación de CS₂.

6 BIBLIOGRAFÍA

Abián, M., Cebrián, M., Millera, A., Bilbao, R, Alzueta, M.U., (2015), CS₂ and COS conversion under different combustion conditions, Combustion and Flame 162, 2119–2127.

Clark, P.C., Dowling, N.I., Huang, M., Svrcek, W.Y., Monnery, W.D, (2001), Mechanisms of CO and COS Formation in the Claus Furnance, Industrial and Engineering Chemistry Research, 40, 497-508.

Cullis, C.F., Mulcahy, M.F.R., (1972), The Kinetic of combustion of gaseous Sulphur compounds. Combustion and Flame, 18, 225-292.

Díez, F.B, Tenías, J.M, Hoyos, S.P, (1999), Efectos de la contaminación atmosférica sobre la salud: una introducción. Revista Española de Salud Pública, 73, 109-121.

Dyne, P.J., Ramsay, D.A., (1952), A new band system excited in acetylene. Canadian Journal of Physics, 30, 79-80.

Eow, **J.S**., (2002), Recovery of sulfur from sour acid gas: a review of the technology. Environmental progress, 21. 143-158.

Fleig, D., Alzueta, M.U., Normann, F., Abián, M., Andersson, K., Johnsson, F., (2013), Measurement and modeling of sulfur trioxide formation in a flow reactor under post-flame conditions, Combustion and Flame 160, 1142–1151.

Grancher, P., (1978), Advances in Claus Technology, Hydrocarbon Processing, 155-160.

Glynn, J.H., (1999), Ingenieria Ambiental. Pearson Educación, 2ª ed. México.

Henley E., Rosen E.D. (1973), "Cálculo de Balances de Materia y Energía". Ed.Reverté, Barcelona,

Karan, K., Behie, L.A., (2003), CS₂ Formation in the Claus Reaction Furnace: A Kinetic Study of Methane-Sulfur and Methane-Hydrogen Sulfide Reactions. Industrial and Engineering Chemistry Research, 43, 3304-3313.

Kerr R., Paskall H.G., Ballash N., (1976), Claus hns: Catalytic Kinetics Part I - Modified Claus Reaction, Energy Processing Canada, Septiembre-Octubre, 66-72.

Kropp K.G., Fedorak P.M., (1998), A review of the occurrence, toxicity, and biodegradation of condensed thiophenes found in petroleum. Canadian Journal of Microbiology 44: 605–622

Lapuerta M., Martínez E., Díaz de Mera Y., (2004), Contaminación atmosférica. Cuenca, Colección ciencia y técnica, 45, 208-211.

Larraz, R., (1998), Unidades Claus. La pumita como catalizador de la reacción de Claus. Tesis doctoral, Universidad de La Laguna.

Levenspiel, O., (2002), Ingeniería de las reacciones químicas. Ed. Reverté. 2ª ed. México.

McGarvey, J.J., McGrath, W.D., (1964), Kinetic Spectroscopy in the Vacuum Ultra-Violet Region. I. The Dissociation Energy of SO and the Combustion of Hydrogen Sulphide, Carbon Disulphide and Carbonyl Sulphide. Proceedings of the Royal Society of London, 278, 490-504. **Paskall, H.G.,** (1995),"Calculation Methods for Heat and Material Balances", Sulphur Recovery Seminar", Estambul.

Paskall, H.G., (1979), "Capability of the Modified Claus Process". A final report to the Dept.of Energy and Natural resources of the Province of Alberta.Western Research Development.

Perry, R.H., Chilton, C.H., (1982), Manual del ingeniero químico. Ed McGraw-Hill 2^a ed. México.

Real Decreto 102/2011, de 28 de enero, relativo a la mejora de la calidad del aire.

http://www.boe.es/boe/dias/2011/01/29/pdfs/BOE-A-2011-1645.pdf.

Smith, J.M., (1970), Chemical Engineering Kinetics, McGraw-Hill, , Nueva York.

Tuller, W.N., (1954), The Sulfur Data Book, McGraw-Hill, Nueva York.

Wood, W.P., Heicklen, J., (1971), Journal of Physical Chemistry 75, 861–866.

Wright, F.J, (1960), Flash photolysis of carbon disulfide and its photochemically initiated oxidation. Journal of Physical Chemistry, 64, 1648-1652.

ANEXOS

Anexo A INSTALACIÓN EXPERIMENTAL

Los experimentos se han llevado a cabo en el laboratorio de Reacciones en Combustión del Grupo de Procesos Termoquímicos del Instituto de Investigación en Ingeniería de Aragón (I3A), situados en el edificio I+D del campus Río Ebro de la Universidad de Zaragoza.

Se ha utilizado una instalación experimental para el estudio de la oxidación sulfuro de hidrógeno en fase gas (Figura A. 1). Dicha instalación dispone de tres partes principales que son el sistema de alimentación de gases, el sistema de reacción y el sistema de detección y análisis de gases. A continuación se va a detallar cada parte por separado.

Figura A. 1: Esquema del sistema experimental para el estudio de la oxidación de H₂S en fase gas.

A.1 Sistema de alimentación de gases

En este epígrafe se describen detalladamente los distintos elementos y equipos que componen el sistema de alimentación de gases de la instalación.

A.1.1 Gases

Los gases utilizados durante la experimentación son: nitrógeno, oxígeno, sulfuro de hidrógeno, monóxido de carbono, dióxido de carbono, metano y amoníaco, todos ellos diluidos

en nitrógeno excepto el amoniaco, diluido en Argón. Todos estos gases proceden de botellas a presión. Además, en todos los experimentos se ha introducido vapor de agua siguiendo el procedimiento descrito en el apartado A.1.4.

La presión de salida de las botellas es regulada haciendo uso de unos manorreductores como los de la figura A.2, formados por dos reguladores independientes cada uno con su indicador de presión correspondiente. El primero, de alta presión, mide la presión en el interior de la botella y el segundo, de baja presión, permite regular la presión deseada en la línea, que generalmente ronda los 4 o 5 bares.

Figura A. 2 Regulador de presión

El cálculo del caudal de gas necesario en cada experimento se obtiene mediante la ecuación A.1 una vez fijadas las concentraciones de entrada de cada uno de los gases:

$$Qg = \frac{Cg \cdot Qt}{Co}$$
(Ec.A.1)

Dónde:

Qg: caudal de gas en condiciones normales (mlN/min) Cg: concentración inicial del gas en cada experimento (ppm) Qt: caudal total de gases en condiciones normales (mlN/min) C0: concentración del gas en la botella (mlN/min)

El caudal total a la entrada del reactor se ha fijado en (1000 mlN/min). Para cerrar el balance se utiliza nitrógeno (gas inerte), en diferentes caudales según el resto de reactantes.

Los caudales se expresan en condiciones normales para poder utilizar un mismo sistema de referencia para todos los casos. Así pues, el caudal real introducido en el reactor se calcula según la Ecuación A.2.

$$Qgas(ml/min) = \frac{Qgas(ml/min) * Preal(mmHg) * Tn(K)}{Treal(K) * Pn(mmHg)}$$
(Ec. A.2)

Donde:

 T_{real} : Temperatura en las condiciones ambientales del laboratorio. P_{real} : Presión en las condiciones ambientales del laboratorio. T_N : Temperatura en condiciones normales ($T_N = 273$ K). P_N : Presión en condiciones normales ($P_N = 760$ mmHg).

Debido a que los controladores del flujo másico están calibrados para el nitrógeno, es necesario comprobar la apertura necesaria para conseguir el caudal de cada gas, con la ayuda de un flujometro como el descrito en el apartado A 1.3.

A.1.2 Medidores de flujo másico

En este trabajo se emplean medidores de flujo másico de la marca BROOKS como el que se muestra en la Figura A.3, que sirven para mantener constante el caudal suministrado a lo largo del experimento.

Figura A. 3: Medidor de flujo másico

Los controladores constan de un sensor de caudal y una válvula de control. En la Figura A.4 se muestra la disposición de los controladores en el laboratorio, los cuales proporcionan un caudal de entre 100 y 2000 mlN/min.

Figura A. 4: Instalación de los controladores de caudal

Para regular el porcentaje de apertura de la válvula del medidor se utiliza un software específico de control de caudales creado por el Servicio de Apoyo a la Investigación de la Universidad de Zaragoza, como el que se muestra en la Figura A.5.

Figura A. 5: Interfaz del programa

A.1.3 Flujómetro

Dado que los controladores están calibrados únicamente para el nitrógeno en condiciones normales de presión y temperatura, no pueden garantizar la medida real del caudal que proporciona cada porcentaje de apertura. Por ello, para determinar y poder suministra el caudal de gas deseado en cada experimento se utiliza un flujómetro con un rango de medida de 5 a 5000 ml/min, como el que se muestra en la Figura A.6.

Figura A. 6: Flujómetro digital.

El caudal volumétrico de gas se determina con un sensor que calcula el tiempo que tarda una burbuja de jabón en recorrer una determinada distancia.

En primer lugar, debe medirse el caudal individual de cada gas a la salida del controlador, pero también es imprescindible comprobar que la suma a la salida del reactor es la esperada, pues lo contrario es indicador de fugas. En estos experimentos además es recomendable comprobarlo también después del filtro, ya que cuando se satura de azufre no permite el flujo correcto de los gases de salida.

A.1.4 Sistema de alimentación de vapor de agua

El sistema de inyección de vapor de agua está formado por un borboteador lleno de agua destilada, por cuya parte inferior se hace pasar la corriente de N_2 . El gas se satura de agua y abandona el borboteador por la parte superior. El agua del borboteador está a temperatura ambiente. En la Figura A.7 se muestra la imagen real de este equipo.

Se ha borboteado un caudal variable en cada experimento en función del porcentaje de agua deseado.

Figura A. 7:Borboteador de agua

Utilizando el modelo de Amagat y teniendo en cuenta las condiciones ambientales del laboratorio es posible calcular la cantidad de vapor de agua arrastrada por el caudal de N2 introducido al borboteador. En este modelo se supone la saturación de la corriente de N2 y se basa en las ecuaciones siguientes:

$$\frac{QH2O}{Qtotal} = Yv \tag{Ec.A.3}$$

$$\frac{QH2O}{QH2O+QN2} = Y\nu \tag{Ec A.4}$$

$$QH_2(1 - Yv) = QN2^*Yv \qquad (Ec A.5)$$

$$QH2O = \frac{QN2}{\frac{(1-Yv)}{Yv}} = \frac{QN2}{\frac{Psr}{Pv} - 1}$$
 (Ec A.6)

 $QH_2O = Caudal de agua introducido (mlN/min).$

 $QN_2 = Caudal de nitrógeno que entra en el borboteador (mlN/min).$

Psr = Presión del sistema de reacción cuando se han introducido todos los gases en el reactor (mbar).

Pv = Presión de vapor de agua a la temperatura del borboteador (mbar).

Yv = Fracción molar de vapor de agua

La presión de vapor de agua se calcula a partir de la ecuación Ec. A.7 que recibe el nombre de la ecuación de Antoine.

$$Ln(Pv(mmHg)) = A - \frac{B}{Tborboteador(K)+c}$$

Dónde [Perry, 1982]:
A = 18,3036
B = 3816,44

C = -46,13

A.1.5 Conducciones

Los gases se conducen mediante tubos flexibles de 6mm de diámetro exterior y 4mm de diámetro interior, fabricados en poliuretano y teflón, y tuberías de acero inoxidable de 6 mm de diámetro externo. Las uniones se realizan con racores principalmente de plástico, aunque también se ha llegado a utilizar alguno de acero inoxidable, lineales o de tipo T. Las líneas se encargan de conducir los gases desde las botellas donde se encuentran almacenados los mismos, pasando por los controladores de flujo y un panel de válvulas de tres vías, para llegar al reactor y de éste a los equipos de análisis de gases.

El panel de válvulas de tres vías que se puede ver en la figura A.8 se encarga de dirigir los gases al reactor (parte superior) y enviarlos a la campana extractora o a los analizadores, según convenga (parte inferior).

Figura A. 8: Panel de válvulas. Instalación de oxidación de sulfuro de hidrógeno.

A.2 Sistema de reacción

(Ec.A.7)

El sistema de reacción está constituido por el reactor de cuarzo de flujo, el horno eléctrico y el sistema de control de la temperatura en el horno.

A.2.1 Reactor de flujo de cuarzo

El reactor utilizado en esta instalación es un reactor tubular de cuarzo. El cuarzo se considera inerte en relación a las reacciones que se llevan a cabo en su interior, por eso, a pesar de su elevado coste se consideró adecuado para el experimento. El Instituto de Investigación en Ingeniería de Aragón (I3A) ha llevado a cabo estudios previos en dicho reactor [e.g. Flieg y cols., 2013]. El diámetro interior del reactor es de 45.5 ± 0.5 mm y su longitud de 900 mm. La mezcla de gases es inyectada por la parte superior y las paredes del reactor son calentados mayoritariamente por convección forzada, aunque también se produce un pequeño intercambio de calor por radiación.

Figura A. 9: Reactor tubular de cuarzo

A.2.2 Horno eléctrico

En este trabajo se ha hecho uso de un horno eléctrico de tubo vertical de "alta temperatura" de la casa Horns Hobersal S.L, modelo ST16VC-1 que permite alcanzar una

temperatura de 1800 K. Posee una zona calefactora que proporciona la temperatura deseada en cada momento mediante una unidad de control de temperatura que se encuentra en una caja independiente, que incluye un módulo regulador de temperatura y un módulo que controla la potencia de trabajo del horno. En la Figura A.9 se muestra el horno eléctrico.

Figura A. 10: Horno eléctrico

A.3 Sistema de detección y análisis de gases

Los gases de salida del reactor se cuantifican con distintos equipos que integran el sistema de detección y análisis de gases.

Los equipos básicos que forman el sistema de detección y análisis de gases en continuo son:

- Analizador infrarrojo (IR) de CO/CO₂
- Cromatógrafo y microcromatógrafo de gases
- Espectrómetro FTIR (Fourier Transform Infra-Red)

A continuación (Tabla 3) se relaciona cada equipo con los compuestos que han sido cuantificados en él durante este trabajo.

Tabla 3: Relación de equipos de medida y gases de salida detectados en cada equipo

Analizadores de CO/CO ₂	Dióxido de carbono (CO ₂)		
	Monóxido de carbono (CO)		
Espectrómetro FTIR	Dióxido de azufre(SO ₂)		

	Sulfuro de hidrógeno (H ₂ S)			
	Agua (H ₂ O)			
	Dióxido de carbono (CO ₂)			
	Monóxido de carbono (CO)			
	Disulfuro de carbono (CS ₂)			
	Sulfuro de carbonilo (COS)			
	Metano (CH ₄)			
Cromatógrafo	Oxígeno (O ₂)			
	Sulfuro de carbonilo (COS)			
	Dióxido de carbono (CO ₂)			
	Monóxido de carbono (CO)			
Microcromatógrafo	Sulfuro de hidrógeno (H ₂ S)			
	Amoniaco (NH ₃)			
	Hidrogeno (H ₂)			
	Dióxido de carbono (CO ₂)			
	Monóxido de carbono (CO)			

A.3.1 Analizador infrarrojo (IR) de CO/CO₂

El analizador utilizado para determinar la concentración de CO/CO₂, a la salida del reactor, fabricado por la casa comercial ABB, modelo URAS14 de detección en el infrarrojo y que se muestran en la Figura A.10.

Figura A. 11: Analizador de CO/CO2

El equipo consta de una celda de análisis construida en aluminio con recubrimiento interior de oro y ventanas de fluoruro cálcico. Los gases introducidos en la celda son irradiados y absorben diferente energía dependiendo de la concentración de las especies. La energía restante es devuelta y transformada en corriente eléctrica, pudiéndose leer en forma de mA en el ordenador y en ppm en la pantalla del equipo. Las medidas de CO y CO₂ se toman con estos equipos debido a la rapidez y facilidad del análisis por estos equipos, ya que se muestran directamente en la pantalla el valor de concentración de estas especies en los gases de salida analizados. Cabe

destacar que con el FTIR o los cromatógrafos se podrían haber analizado también estos compuestos, pero los analizadores IR de CO/CO₂ se considera que dan una medidas más rápida y precisa.

A.3.2 Cromatógrafos

La cromatografía de gases es una técnica que consiste en volatilizar la muestra e inyectarla en la cabeza de una columna cromatográfica. La extracción se produce por el flujo de una fase móvil de gas inerte. En este tipo de cromatografía solamente transporta el analito a través de la columna sin interaccionar con las mismas.

A.3.2.1 Micro-cromatógrafo de gases (Micro-GC)

En este trabajo se utiliza el Micro-GC modelo 3000A de Agilent (Figura A.11). Su objetivo es detectar y cuantificar el sulfuro de hidrógeno (H_2S), hidrógeno (H_2), monóxido de carbono (CO) y dióxido de carbono (CO₂) y otras especies que pudieran estar presentes durante el experimento. Es necesario especificar en el software de control el número de mediciones que se desean en cada toma.

Para cada caso se realizan comúnmente entre 2 y 5 pinchazos para comprobar que las mediciones son estables y se registra la media entre los valores obtenidos, que habitualmente varia en unas pocas ppm. El Micro-Cromatógrafo de gases se controla a través de una conexión estándar directamente desde el ordenador. El software de control SOPRANE procesa todos los parámetros experimentales, la recogida y el análisis de datos.

Figura A. 12: Micro-GC

El aparato está compuesto por un inyector calentado, una columna de muestra, una columna de referencia, un micro-detector de conductividad térmica (TCD), un equipo de control

electrónico de presión (EPC), solenoides de flujo de gas y una tarjeta de control. El cromatógrafo dispone de tres módulos especificados en la Tabla 4, cada uno de los cuales sirven para determinar unos compuestos determinados y que trabajan a diferentes condiciones.

Módulo	Columna	Gas portador	Gases detectados
Α	Tamiz molecular. Con precolumna U.	Не	Gases permanentes: He, Ar, H ₂ , N ₂ , O ₂ , CH ₄ , CO.
В	Columna PPU. Con precolumna Plot Q	Не	CO ₂ e hidrocarburos ligeros como etileno, etano y acetileno.
С	Stabilwax DB.	Ar	Compuestos oxigenados.

7	Tak	510	14	• (a	rac	ter	ísti	cas	de	los	módulo	s del	Micoro	-GC
1	u	nu	$\iota \tau$		~u	ruc	$\iota c \iota$	isin	LUN	uc	$\iota O S$	mounio	suci	micgro	-00

En los módulos A y B se aplica la técnica backflush. Esta técnica consiste en usar una precolumna situada antes de la columna de separación que separa los compuestos que se deseen medir de aquellos que puedan interferir. De esta manera, después de separar los compuestos, y de acuerdo al tiempo de backflush seleccionado, se expulsan los gases no deseados mediante un giro que realiza la precolumna. El tiempo que tarda la precolumna en girar se denomina como tiempo de backflush. Es fundamental escoger correctamente el tiempo de backflush, ya que si escogemos un tiempo demasiado alto no veremos la señal de los analitos que nos interesan, y si es demasiado corto, entrarán analitos que pueden contaminar la columna favoreciendo una degradación más rápida de la misma.

El análisis se divide en tres etapas: inyección, separación y detección:

- Inyección: se introduce la muestra gaseosa en la cámara calentada del Micro-GC. La cámara regula la temperatura de la muestra y la dirige hacia el inyector. Acto seguido, el inyector introduce la muestra en la columna, mientras que una bomba de vacío permite trasladar la muestra por el sistema. Después de atravesar el inyector, el gas de muestra se introduce en la columna, que normalmente lo separa en los gases componentes en menos de 180 segundos.
- Separación: ocurre en el interior de la precolumna. Se separan todos aquellos compuestos que podrían contaminar la columna mediante la técnica
- Detección: el gas portador con la muestra fluye a través del detector de conductividad térmica (TCD). El gas portador con muestra y el gas portador puro alimentan por separado este detector, haciéndose pasar a cada uno de ellos por distintos filamentos calientes. La conductividad térmica variable de las moléculas presentes en la muestra produce un

cambio en la resistencia eléctrica de los filamentos de muestra en comparación con la referencia o los filamentos portadores. El control electrónico de la presión (EPC) controla electrónicamente y con exactitud la temperatura, la presión y el flujo durante el análisis y entre los gases sin intervención del operador.

Debido al diseño de los microcomponentes de los módulos del μ GC, es importante evitar introducir aerosoles, vapores condensables, líquidos y partículas sólidas. Se dispone de un filtro Genie G2817A (Figura A.12), para asegurarnos de que los gases producto que se están introduciendo están libres de dichos contaminantes para el μ GC.

Figura A. 13:Separador de gas/líquido G2817A

A.3.2.2 Cromatógrafo de gases

En este proyecto se ha utilizado el cromatógrafo de gases modelo 6980 N de la marca Agilent Technologies y se muestra en la Figura A.13.

Figura A. 14: Cromatógrafo de gases

Este cromatógrafo utiliza como gas portador el helio y contiene dos detectores: un detector de conductividad térmica (TCD) y un detector de ionización de llama (FID). El funcionamiento de estos detectores se explica a continuación:

- Detector TCD (Termal Conductivity Detector) es muy versátil y su uso se basa en la diferencia de conductividad térmica del gas portador según si está circulando el analito. El sensor del TCD está formado por una resistencia de hilo fino de platino, oro o wolframio, o un termistor semiconductor. Dependiendo del gas circundante la resistencia eléctrica del hilo toma un valor u otro. Con este detector se identifica el H₂, N₂ e hidrocarburos, pero a estos últimos no los cuantifica con precisión. Por esta razón se utiliza el detector FID, que cuantifica los hidrocarburos existentes en los gases a la salida del reactor. En este detector se hace uso de dos columnas en serie: una de 45 m x 530 µm x 50 µm y otra HP-PLOT Q (30 m x 40 µm x 0,53 nm).
- Detector FID o detector de ionización de llama está formado por un quemador hidrógeno/oxígeno, donde se mezclan el gas portador y el analito con hidrógeno. Una chispa prende la mezcla de gases generando una llama de alta temperatura. La mayoría de los compuestos orgánicos al someterse a altas temperaturas pirolizan y se producen iones y electrones, que son conductores eléctricos. A partir de este fenómeno se induce diferencia de potencial entre la parte inferior del quemador y el colector situado sobre la llama. Es necesario amplificar la corriente generada mediante un amplificador de alta impedancia. Este detector es el más empleado para el análisis de los compuestos orgánicos y es insensible a los gases no combustibles como H₂O, CO₂ y NO.

En este trabajo se utiliza principalmente para medir el oxígeno (O₂) y COS.

A.3.3 Espectrómetro FTIR (Fourier Transform Infra-Red)

El FTIR utilizado en este proyecto es el modelo PROTEA 204M de la marca Ati Mattson (Figura A.14). Se utiliza en los experimentos de oxidación del sulfuro de hidrógeno para detectar la presencia de compuestos carbono azufrados como el CS₂. También se ha utilizado para determinar la cantidad de agua sulfuro de hidrógeno y el resto de reactantes a la salida del reactor. El equipo, situado en un carrito con ruedas para facilitar su transporte. originalmente incluía una bomba de vacío situada a la salida de los gases que ha sido eliminada para permitir un caudal de gas de entrada variable.

Los espectros son procesados con un programa informático específico llamado "Protea Analyser Software". Para visualizarlos se utiliza Spectrum Viewer, un software capaz de abrir archivos en formato .spc, .dx, .jdx y .spectrum, por ejemplo espectros procedentes de la base de datos NIST, con el objetivo de identificar especies.

Figura A. 15: Espectrómetro FTIR

El FTIR trabaja en la parte infrarroja del espectro electromagnético y capta la absorción de la misma por las moléculas. Si la energía de un haz de luz infrarroja es lo suficientemente energética como para que la molécula experimente un cambio neto en el momento dipolar como consecuencia de su movimiento de vibración o rotación, la molécula absorberá radiación infrarroja. El espectrómetro detecta la frecuencia de vibración y la convierte en un espectro de picos a diferentes longitudes de onda únicos para cada molécula. La radiación infrarroja absorbida por las moléculas poliatómicas y diatómicas heteronucleares depende del número y tipo de átomos, de sus ángulos y fortaleza de enlace. Las especies homonucleares no pueden ser analizadas por esto método pues su momento dipolar no se altera durante la vibración o rotación y, en consecuencia, no absorben en el infrarrojo.

Según la ley de Lambert-Beer, la absorbancia que detecta el espectrómetro varía proporcionalmente con la concentración. Sin embargo, empíricamente se comprueba que esta variación no es lineal, especialmente en el caso de las moléculas ligeras (CO, NO, etc.). Esto es debido en gran parte a que las bandas de absorción en el infrarrojo son relativamente estrechas. Por este motivo, es imprescindible disponer de un calibrado de todas las especies que vayan a ser analizadas en los experimentos.

El FTIR es extremadamente sensible a las vibraciones, calor, humedad, etc., por lo que hay que tener cuidado y evitar trabajar en situaciones extremas de estas condiciones.

Anexo B PROCEDIMIENTO EXPERIMENTAL

En este anexo se muestra el procedimiento experimental llevado a cabo durante los experimentos de oxidación del sulfuro de hidrógeno con diferentes reactantes, en un rango de concentraciones o temperaturas concreto.

Antes de realizar un experimento es necesario seguir una serie de pasos que se detallan a continuación.

B.1 Pasos previos

Para llevar a cabo un experimento es necesario comprobar y preparar lo siguiente:

- Disponibilidad de botellas de gases: Es preciso conocer las concentraciones de los gases de las botellas a utilizar para calcular los caudales necesarios para cada experimento.
- Calibrado de los equipos: Tanto los cromatógrafos de gases como el FTIR tienen que estar calibrados para los gases que se pretende cuantificar con ellos. Para tal efecto se dispone de botellas patrón con diferentes concentraciones de los probables productos de reacción.
- Elección de controladores de flujo másico: Los distintos controladores tienen rangos de uso diferentes, por lo que es necesario elegir el controlador adecuado en función de los caudales a utilizar en cada experimento.
- Comprobación de fugas y limpieza del reactor: Se debe comprobar que los caudales de entrada y salida al reactor coincidan. En cualquier otro caso, la fuga deberá ser localizada y reparada. Por otra parte, el reactor debe de estar limpio antes de proceder a realizar un experimento. Comprobación del filtro a la salida del reactor: Cada cierto número de experimentos; dependiendo de la concentración de H₂S utilizada es preciso cambiar el filtro a la salida del reactor pues éste se satura de azufre elemental y puede llegar a bloquearse y fugar.

B.2 Realización de un experimento

A continuación se describe el procedimiento experimental seguido para la realización de los experimentos de oxidación de sulfuro de hidrógeno.

- 1. Calcular el caudal real de cada gas que se necesita introducir en función de las condiciones del experimento.
- 2. Encender todos los equipos que vayan a utilizarse y prepararlos para su uso. En el caso del FTIR, por ejemplo, necesita aproximadamente una hora para calentarse hasta la temperatura necesaria para funcionar correctamente. Así mismo, es necesario encender los ordenadores en los que está el software que hace funcionar los controladores de flujo másico, etc.
- Realizar limpiezas con nitrógeno en todos los analizadores para asegurar que los experimentos anteriores no hayan dejado compuestos residuales que puedan interferir en los datos obtenidos.
- 4. Verificar las conexiones de las botellas a los medidores.
- 5. Abrir las botellas de los gases reactantes, comprobando la ausencia de fugas.
- 6. Medir los caudales necesarios de cada gas reactante, para lo cual se ajusta la apertura de la válvula de control de flujo másico y se comprueba que el caudal suministrado es el deseado con el flujómetro digital. Medir el caudal total a la entrada del primer analizador para comprobar que no exista ninguna fuga.
- Conectar en serie los equipos necesarios, normalmente en el siguiente orden: FTIR, cromatógrafo, microcromatógrafo y por último analizadores de CO/CO₂. La salida de los gases en este caso es a la atmósfera.
- Una vez finalizada la calibración y asegurado que todas las conexiones están correctas se comienzan a registrar datos en el intervalo e temperaturas o concentraciones correspondiente.
- Para la toma de los datos se espera a que la temperatura proporcionada por el horno y la concentración de compuestos sean completamente estables para una condición determinada.
- 10. En el Micro-Cromatógrafo de gases se realizan varios pinchazos hasta que la concentración de los gases sea estable y los resultados obtenidos sean fiables. Cada análisis dura 100 segundos. En el cromatógrafo se realiza un solo pinchazo, ya que el tiempo de análisis es de 21 minutos.
- 11. Cuando ya se ha realizado el análisis para una temperatura o concentración, se modifican las condiciones del experimento y tras esperar a que se estabilicen se vuelve a empezar el proceso de toma de datos descrito.

12. Terminado el experimento, es imprescindible cerrar las botellas de los gases y vaciar las líneas, así como apagar el horno y el resto de equipos, dejando todo listo para la realización de otro experimento.

Anexo C RESULTADOS EXPERIMENTALES

T (ºC)	Т (К)	H ₂ S	H₂O	O ₂	SO ₂	CO ₂	СО	COS	CS ₂	H ₂
		(ppm)	(%)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
Amb	293	358	1,3		0					
400	673	246	1,4		6					
425	698	303	1,2		13				1	
450	723	291	1,3		20					
500	773	206	1,3		29				12	
550	823	206	1,3		29				4	
600	873	146	1,3		103				12	
700	973	27	1,4		343					
800	1073	26	1,3		369				2	
900	1173	0	1,4		381				3	
1000	1273	33	1,4		386					
1100	1373	0	1,4		446					
1150	1423	86	1,3		480	3	7		6	
2000	2273	0	1,3		501	3			1	

Tabla C. 1: Experimento 1 Tabla 2

Tabla C. 2: Experimento 2 Tabla 2

T (ºC)	Т (К)	H₂S	H ₂ O	O ₂	SO ₂	CO2	СО	COS	CS ₂	H ₂
		(ppm)	(%)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
Amb	292	362	1,6		0	961		0	0	
400	673	517	1,2		0	973		0	0	
425	698	480	1,2		6	972		0	0	
450	723	486	1,2		15	965		0	0	
475	748	428	1,3		37	963		0	0	
500	773	416	1,3		62	976		0	0	
550	823	329	1,2		144	953		0	0	
600	873	376	1,3		252	933		0	0	
650	923	127	1,3		315	945		0	0	
700	973	86	1,4		349	984		0	0	
750	1023	79	1,4		372	955		0	0	
800	1073	87	1,4		383	988		0	0	
850	1123	75	1,4		385	944	3	0	0	
900	1173	0	1,4		402	972	5	0	0	
950	1223	0			406	947	6	0	0	
1000	1273	0			412	954	4	0	0	
1100	1373	0			416	941	15	0	0	
1200	1473	0			421	941	17	0	0	

T (ºC)	Т (К)	H₂S	H₂O	02	SO ₂	CO ₂	CO	COS	CS ₂	H₂
		(ppm)	(%)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
Amb	294	364	1,0	329	0	959	2	0	0	
400	673	198	1,1	317	0	947		0	0	
425	698	337	1,1		0	983	1	0	0	
450	723	143	1,3	322	0	963		0	0	
475	748	151	1,1		0	959		0	0	
500	773	324	1,0	313	5	967	1	0	0	
525	798	150	0,9	304	12	966	1	0	0	
550	823	240	0,9	295	25	979	1	0	0	
575	848	174	1,5	271	38	981		0	0	
600	873	127	1,6	251	51	931	1	0	0	
625	898	107	1,4		64	938	1	0	0	
650	923	70	1,7	214	75	974		0	0	
675	948	8	1,9		89	950	0	0	0	
700	973	11	1,9	188	99	978	1	0	0	
725	998	69	2,1		106	931	2	0	0	
750	1023	20	2,2	158	112	963	1	0	0	
800	1073	0	2,2		119	946	1	0	0	
850	1123	0	2,1	139	127	963		0	0	
900	1173	0	2,0		133	961		0	0	
950	1223	0	1,9	128	138	983	1	0	0	
1000	1273	0	1,7	124	143	988		0	0	
1100	1373	0	1,5	124	310	936	3	0	0	219
1200	1473	0	1,5	123	365	917	31	0	0	354

Tabla C. 3: Experimento 3 Tabla 2

Tabla C. 4: Experimento 4 Tabla 2

T (ºC)	Т (К)	H₂S (ppm)	H₂O (%)	O₂ (ppm)	SO ₂ (ppm)	CO ₂ (ppm)	CO (ppm)	COS (ppm)	CS₂ (ppm)	H₂ (ppm)
Amb	293	1500	0,8	599	0	105000		0	0	
100	373	1500	0,8		4	103000	2	0	0	
150	423	1500	0,8		3	102411		0	0	
200	473	1494	0,7		6			0	0	
250	523	1313	0,7		6			0	0	
300	573	1533	0,7	454	5	106694	4	0	0	
400	673	1487	0,7		6			0	0	
500	773	1458	0,6		10	103030		0	0	
525	798	1428	0,7		30			0	0	

550	823	1415	0,7		39			0	0	
575	848	1337	0,7		74	101707	3	0	0	
600	873	1220	0,7	280	102	106587	2	0	0	
650	923	1114	0,7		144		2	0	0	
700	973	1000	0,7	158	171	106325	0	0	0	
725	998	1030	0,7		185		1	0	0	
750	1023	1060	0,7		193		3	0	0	
775	1048	1034	0,7		202		0	0	0	
800	1073	996	0,7		212	106648	3	0	0	
850	1123	1048	0,8		221		0	0	0	
900	1173	967	0,7		236		2	0	0	
1000	1273	891	0,8	61	250	106671	18	0	0	
1100	1373	689	0,8		370		668	8	0	289
1200	1473	574	0,8		824		1621	10	0	186

Tabla C. 5: Experimento 5 Tabla 2

T (≌C)	Т (К)	H₂S	H ₂ O	O ₂	SO ₂	CO ₂	СО	COS	CS ₂	H ₂
		(ppm)	(%)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
Amb	293	991	1,0	428	0	0	2130	0	0	
200	473	913	0,9	961	0	0	2102	0	0	
300	573	887	0,9	478	0	0	1999	0	0	
400	673	818	0,9	469	0	0	1877	0	0	
425	698	952	0,8	491	2	0	1045	0	0	
450	723	911	0,9	459	4	25	2076	0	0	
475	748	924	0,8		5	1	2152	0	0	
500	773	771	0,9		9	7	2157	0	0	
525	798	709	0,9		18	6	2153	0	0	
550	823	889	0,8	408	33	19	2109	3	0	
600	873	736	0,8	361	65	42	2092	0	0	
650	923	863	0,8		105	27	2042	0	0	
700	973	822	0,8	260	147	19	2106	12	0	
750	1023	612	0,8	296	183	18	2108	18	0	11
800	1073	563	0,8	147	202	21	2094	24	0	0
900	1173	722	0,9	110	216	22	2093	37	0	121
1000	1273	637	0,9	114	256	20	1777	48	0	228
1100	1373	470	0,8	96	272	20	1912	24	0	625
1150	1423	120	0,9	162	322	92	1628	20	0	825
1200	1473	188	0,8	1666	351	233	1440	12	0	561

CO inicial (ppm)	T (ºC)	Т (К)	H₂S (ppm)	H₂O (%)	O₂ (ppm)	SO ₂ (ppm)	CO₂ (ppm)	CO (ppm)	COS (ppm)	CS₂ (ppm)	H₂ (ppm)
500	Amb	293	943	0,5	678	0	4	595		0	0
500	1000	1273	656	0,6	169	306	9	602	6	0	139
1000	1000	1273	625	0,6	84	348	19	996	22	0	228
1500	1000	1273	549	0,7	91	356	28	1560	33	0	276
2000	1000	1273	507	0,9	90	359	38	2136	41	0	322
2500	1000	1273	573	0,7	102	368	43	2594	54	0	332
3000	1000	1273	560	0,7	108	361	50	2988	59	0	358
3500	1000	1273	556	0,8	116	370	58	3414	63	0	379
4000	1000	1273	456	0,8	122	368	69	3922	73	0	401
4500	1000	1273	564	0,7	0	361	77	4482		0	416

Tabla C. 6: Experimento 6 Tabla 2

Tabla C. 7: Experimento 7 Tabla 2

CO inicial (ppm)	T (ºC)	т (к)	H₂S (ppm)	H₂O (%)	O₂ (ppm)	SO₂ (ppm)	CO₂ (ppm)	CO (ppm)	COS (ppm)	CS₂ (ppm)	H₂ (ppm)
500	Amb	295	960	0,8	1000	0	0	504	0		0
500	1000	1273	81	1,0	85	731	32	495	4	2	239
1000	1000	1273	21	1,1	84	736	35	740	9	2	272
1500	1000	1273	5	1,1	103	730	57	1229	14	2	299
2000	1000	1273	38	1,3	101	731	89	1774	18	1	326
2500	1000	1273	38	1,3	101	731	89	1774	21	1	346
3000	1000	1273	219	1,2	107	732	99	2215	24	2	380
3500	1000	1273	149	1,2	124	727	138	3021	25	3	400
4000	1000	1273	156	1,2	0	722	171	3753	32	3	418

Tabla C. 8: Experimento 8 Tabla 2

T (ºC)	Т (К)	H₂S	H ₂ O	02	SO ₂	CH₄	, co	CO ₂	cos	CS₂	H ₂
		(ppm)	(%)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
Amb	298	818	1,5		0	2080	5		0	1	
400	673	933	0,9	500	0	2033	4		0	3	
425	698	724	0,9	460	0	1951	5		0	2	
450	723	662	0,8	441	0	1973			0	3	
475	748	899	0,9	441	0	1929			0	3	
500	773	799	0,9	436	0	1891			0	2	
525	798	981	0,8	444	0	1973	4		0	0	
550	823	879	0,8	454	0	1961	2		0	2	
575	848	815	0,8		0	2021	1		0	0	

600	873	769	0,8		20	2061	5	0	1	
650	923	717	0,9		11	1897	2	0	0	
700	973	822	0,8	489	31	1997	6	0	0	
800	1073	560	0,8	252	109	2022	9	0	6	
900	1173	534	0,8	214	152	1902		0	18	73
1000	1273	439	0,8		165	1912	18	0	43	205
1100	1373	213	0,9		156	1527	32	0	117	
1200	1473	150	0,9	249	118	1167	336	5	332	2389

Tabla C. 9: Experimento 9 Tabla 2

CH₄ inicial (ppm)	T (ºC)	Т (К)	H₂S (ppm)	H₂O (%)	O₂ (ppm)	SO ₂ (ppm)	CO ₂ (ppm)	CO (ppm)	COS (ppm)	CS₂ (ppm)	H₂ (ppm)
250	1200	298	38	0,8	360	182	31	158	0	170	984
500	1200	1473	41	0,8	82	139	20	167	3	166	1416
750	1200	1473	53	0,8	109	144	17	176	3	298	1131
1000	1200	1473	0	0,9	110	132	11	198	4	330	1761
1500	1200	1473	0	0,9	111	87	15	247	4	345	2200
2000	1200	1473	0	0,9	111	87	15	247	4	364	2820
2500	1200	1473	0	1,0	120	105	19	325	4	395	3627
3000	1200	1473	67	1,0	193	65	28	550	4	417	5186

Tabla C. 10: Experimento 10 Tabla 2

Т	Т	H₂S	H ₂ O	O ₂	SO ₂	H ₂	СО	NH₃
(ºC)	(K)	(ppm)	(%)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
425	698	480			6			
450	723	976			6			423
475	748	954			6			405
500	773	849			6			405
525	798	739			6			405
550	823	607			6			475
600	873	664			8			489
650	923	636	2,0		6	11		489
700	973	542	1,3		6	18		489
800	1073	342	1,2		19	56		473
900	1173	149	0,9		150	109	3	532
1000	1273	156	0,9		128	213	5	532
1100	1373	124			80	370	6	532
1200	1473	66			99	549	4	470