
Anexo A

Acrónimos

• API: Application Programming Interface

• DEV: Developer

• IDE: Integrated Development Environment

• EC2: Elastic Compute Cloud

• DNS: Domain Name Server

• LTS: Long Term Support

• IP: Internet Protocol

• IoT: Internet of Things

• BTC: Bitcoin

• MTProto: Mobile Transport Protocol

• DB: Data Base

• LED: Light Emitting Diode

• FTP: File Transfer Protocol

• JSON: JavaScript Object Notation

49

50

• FIFO: First In First Out

• OAuth: Open Authorization

• URL: Uniform Recurse Locator

• UML: Unified Modeling Language

• AWS: Amazon Web Services

• SSH: Secure SHell

• HTTP: HyperText Transfer Protocol

• HTTPs: HyperText Transfer Protocol Secure

• MPEG: Moving Picture Experts Group

• VPS: Virtual Private Server

• CPU: Central Processing Unit

• ID: Identifier

• REQ: Request

• UTF-8: 8-bit Unicode Transformation Format

• PIP: Python Package Index

• SSL: Secure Sockets Layer

• HTML: HyperText Markup Language

• AAC: Advanced Audio Coding

• ADTS: Audio Data Transport Stream

• M3U8: M3U utf-8 codified

• ASCII: American Standard Code for Information Interchange

• RE: Regular Expresions

Anexo A. Acrónimos 51

• E2E: End to End

• MAC: Message Authentication Code

• SHA-1: Secure Hash Algoritm

• PLN: Procesado del Lenguaje Natural

Anexo B

Gúıa de instalación bot

Para poder utilizar la aplicación de gestión de la cámara de vigilancia es

necesario instalar y configurar diferentes módulos. (si se desea acceder al bot ya

implementado consultar paso 12). Los requisitos para poder correr la aplicación y

que se dan por instalados son:

+ Tener una máquina con una distribución Linux.

+ Tener instalado intérprete Python 2.7 o superior.

+ Tener una interfaz de red pública accesible con port 8443 abierto.

+ Tener configurado el software de control git.

Este tutorial está orientado para la instalación en una máquina Ubuntu 16.04

LTS:

• 1. (opcional) Instalar Dynamic Update Client No-IP

– wget http://www.no-ip.com/client/linux/noip-duc-linux.tar.gz

– tar xzf noip-duc-linux.tar.gz

– make install

• 2. Instalación de la API Bot de Telegram :

– git clone https://github.com/eternnoir/pyTelegramBotAPI.git

53

54

• 3. Configurar cuenta de desarrollador en Netatmo, y desde el menú CREATE

YOR APP y configurar los campos según interés. Asegurar que el campo read

camera esté activo. o

• 4. Descargar la traducción a Python de Netatmo DEV API

– git@github.com:philippelt/netatmo-api-python.git

• 5. Instalar la libreŕıa de conversión ffmpeg3, la versión 2 no permite la

conversión de formatos m3u8:

– sudo add-apt-repository ppa:jonathonf/ffmpeg-3

– sudo apt update && sudo apt install ffmpeg libav-tools x264 x265

• 6. Crear certificados openssl

– openssl genrsa -out webhook pkey.pem 2048

– openssl req -new -x509 -days 3650 -key webhook pkey.pem ?out

webhook cert.pem

• 7. Dar de alta un bot en la aplicación Telegram. Iniciar conversación con

@botFather y enviar la petición /newbot. Enviar nombre del bot y nombre

de usuario. El contacto devuelve el API token para su configuración.

• 8. A partir de este momento el bot es accesible desde cualquier aplicación

cliente Telegram. Si se desea acceder al bot ya implementado y operativo

que gestiona la cámara del departamento de Telemática se puede acceder

directamente a través de https://telegram.me/netwelcomebot

Anexo C

MTProto

En este anexo se va a profundizar en el protocolo MTProto ampliando la

información sobre su funcionamiento y su implementación en Telegram. Es

en definitiva el protocolo que usa el bot desarrollado para comunicarse con

el usuario.

Telegram implementa un protocolo propio, MTProto, que transmite los

mensajes de forma segura entre nuestro móvil y el servidor. Incluso permite

crear chats seguros entre dos clientes, con cifrado e2e para que ni siquiera

los propios servidores puedan acceder a la información.

Cada vez que se realiza una comunicación se produce cifrado cliente-servidor,

cada mensaje conforma cuatro elementos:

+ Salt: 64 bits aleatorios, que se cambian en cada petición al servidor para

evitar ataques de reply.

+ Session id: 64 bits generados por el cliente, para identificar su instancia

de sesión.

+ Payload: Además de contener el contenido del mensaje, incluye la fecha,

longitud y número de secuencia del mensaje.

+ Padding: bytes de relleno.

Una vez conformado este mensaje se utiliza un MAC (Message

Authentication Code). Este código se obtiene a partir del mensaje, y es

55

56

(casi) único. Si el mensaje cambia, aunque sólo sea en una tilde, el MAC

será distinto, es similar a las funciones hash.

Figura C.1: Diagrama de funcionamiento del protocolo

Telegram obtiene su huella digital mediante el algoritmo SHA-1. El resultado

es una clave que identifica al mensaje (msg key). Pero además ese resultado

se combina junto con la clave compartida entre cliente y servidor. Esta

clave compartida es intercambiada en el primer registro del cliente mediante

el algoritmo de intercambio Diffie-Hellman, que permite que ambas partes

lleguen a una clave común secreta, sin tener que transmitirla. Aśı, se obtiene

una nueva clave con la que cifrar el mensaje. Se ve en este momento que

la clave con la que se cifra el mensaje depende del contenido del mensaje

(algoritmo robusto).

Anexo C. MTProto 57

Tras cifrar el mensaje, se env́ıa un paquete que contiene el mensaje cifrado

(Encrypted data), la huella digital SHA-1 del texto sin cifrar (msg key) y un

número que identifica la clave compartida que se usa (auth key id).

Al recibir el mensaje en el otro lado de la conexión, se recrea la clave de

cifrado usando la clave compartida y la huella del mensaje, se descifra el

texto y se comprueba que la huella digital concuerda. También se comprueba

que el salt sea correcto (igual al que el servidor haya definido), que la fecha

y hora sea razonable y que el número de secuencia sea el apropiado.

Aśı, con esa comprobación múltiple, Telegram se asegura que nadie más

puede leer el mensaje y que además ha llegado sin ningún tipo de

modificación [3][4].

Anexo D

OAuth2

OAuth2 es un protocolo de autorización que permite a terceros (clientes)

acceder a contenidos propiedad de un usuario (alojados en aplicaciones de

confianza, servidor de recursos). Es decir, que aplicaciones de terceros pueden

acceder a contenidos propiedad del usuario, sin estas aplicaciones conozcan

las credenciales de autenticación. Es el protocolo de funcionamiento que se ha

utilizado para acceder a los datos alojados en la cámara. En nuestro escenario

OAuth2 hay tres partes claramente identificadas:

+ Usuario final: Entidad que se comunica con el cliente para lograr el

acceso a los recursos protegidos.

+ Cliente: La aplicación bot integrada en Telegram es la que hace peticiones

a recursos protegidos en nombre del propietario de recursos (Usuario) con la

autorización del mismo.

+ Servidor de recursos: Es la entidad que tiene los recursos protegidos.

Es capaz de aceptar y responder peticiones (video, información, fotograf́ıas,

etc) usando el access token que debe venir en el cuerpo de la petición.

+ Servidor de autorización: El servidor de autenticación es el responsable

de generar tokens de acceso y validar usuarios y credenciales.

Una vez definido el escenario, la aplicación implementa tres funcionalidades

a través de este protocolo:

59

60

Figura D.1: Arquitectura Autorización Aplicación

1. El cliente solicita autorización al propietario del recurso (en nuestro caso

no es necesario ya que el cliente es el propio usuario). 2. El propietario

del recurso devuelve un método de autentificación válido (en nuestro caso

utilizaremos las credenciales de netatmo como método de autentificación)

3. El cliente pide al servidor de autorización un token de acceso, presentando

las credenciales del paso 2.

4. El servidor de autorización devuelve un token de acceso válido.

5. El cliente y el servidor de recursos ya son capaces de intercambiar

peticiones seguras con el token de acceso para servir contenido protegido.

sectionObtención del token Los token de acceso deben tener un periodo de

expiración después del cual se consideran caducados y el proveedor debe

rechazarlos, obligando al cliente a obtener un nuevo token de acceso. Para

Anexo D. OAuth2 61

Figura D.2: Concesión del token

evitar tener que volver realizar todo el proceso de validación necesario para

la obtención del token, entra el mecanismo de Refresh Token. Cuando el

proveedor concede un token de acceso, puede incluir un token de refresco

asociado al token de acceso. Mediante este token de refresco se puede obtener

un nuevo token de acceso válido siguiendo el siguiente flujo:

Figura D.3: Proceso de refresco del token

1. El cliente pide un token de acceso al servidor de autorización

2. El servidor valida la petición y env́ıa los token de acceso

3. El cliente pide los recursos al servidor de recursos identificando con el

token de acceso, si es válido, el servidor devuelve el contenido

4. Pasado un tiempo el servidor detecta el token de acceso con el timestamp

expirado o inválido. El servidor se lo indica al cliente

62

5. El cliente hace una petición para obtener un nuevo token de acceso

presentado el token de refresco obtenido en el paso 1.

6. El servidor de autorización autentica al cliente validando el token de

refresco. Devuelve un acces token válido.

7. Se reanuda la y comunicación con el servidor de recursos y se cursan las

peticiones.

Anexo E

API Netatmo

Netatmo es una empresa que comercializa productos como termostatos

inteligentes, estaciones meteorológicas y cámaras de vigilancia. La cámara

en el proyecto utilizada cuenta con las siguientes especificaciones:

+ Sensor de video de 4MP con resolución de 1920x1080

+ Visión nocturna LED Infrarrojos.

+ Conexión Wi-Fi 802.11a/b/g/n,

+ Puerto Ethernet 10/100Mbits

+ Ranura microSD (máximo 32gb).

+ Dimensiones 45x45x155 mm

Dispone de una API oficial para el desarrollo de aplicaciones y está traducida

parcialmente a Python. La API [5] funciona a través de ?scopes? que se

seleccionan según el interés del usuario:

- ’read camera’: permite acceder a eventos guardados y timelines.

- ’write camera’: permite sets del estado de las personas grabadas en el

sistema

- ’acces camera’: permite acceder a streamings en vivo, realizar capturas,

o descargar grabaciones almacenadas en la tarjeta microSD.

- Además, incluye información del usuario como las unidades métricas

utilizadas, el idioma, y el huso horario. También almacena información de

63

64

estado del dispositivo.

Para acceder a los datos que enmascaran dichos ’scopes’ es imprescindible

acceder con el parámetro token de acceso. En el proyecto se hace uso de

un protocolo de autenticación denominado OAuth2, (su funcionamiento está

detallado en el Anexo D) que se encarga de expedir y renovar los token.

La API funciona a través de eventos, cada detección de sus sensores se

considera un evento, que está clasificado en una tipoloǵıa concreta (persona,

movimiento, etc.). Cuando el programa detecta movimiento, crea un nuevo

evento y acciona una señal que activa la grabación, este podrá ser almacenado

localmente en una tarjeta microSD cifrada o también añadiendo redundancia

en servicios de alojamiento como Dropbox o servidores FTP. La gestión del

almacenamiento de la tarjeta microSD seguirá un modelo de colas FIFO

donde los v́ıdeos más antiguos se eliminarán periódicamente. Para cada

evento se generan metadatos que identifican todas sus propiedades y se

almacenan en estructuras JSON.

Anexo F

Modelos de Información

Como se ha visto en el Caṕıtulo 3, el sistema utiliza cuatro registros JSON

para mantener la información ordenada de los usuarios activos en el sistema.

En detalle se organizan:

1. Registro listener que almacena la interacción de cualquier usuario:

2. Registro cameras que almacena todas las cámaras registradas en el bot y

los usuarios que tienen acceso:

3. Registro login que almacena las credenciales y la configuración personal

de cada usuario registrado.

65

66

4. Registro que almacena un histórico de todos los eventos de una cámara.

Además del objeto JSON se almacenan los archivos jpg de todos los eventos

identificados por el id de la cámara y el timestamp de dicho evento:

Anexo G

Telebot

La libreŕıa Telebot es uno de los elementos más importante para

la gestión de nuestro programa y es el encargado de crear la

relación entre nuestra aplicación y el servidor de Telegram. Incluye los

métodos para la gestión de los mensajes recibidos, y las interacciones

por parte del usuario con el cliente. Las peticiones al servidor

de Telegram https://api.telegram.org/bot¡token¿/METHOD NAME deben

incluir el token del bot y el método al que llaman. Este método puede incluir

parámetros, que deben ser informados en peticiones http GET o POST.

Para instanciar un objeto de la clase telebot necesitamos el mencionado token

de acceso, este token es un string único que Telegram utiliza para identificar

cada bot. Una vez la clase está instanciada pasa a su funcionamiento normal

quedando encargada de las siguientes actividades:

– send message: Elemento encargado de enviar al cliente los mensajes,

es necesario incluir el identificador del usuario al que van dirigidos y

el texto que contiene el mensaje. Si se quiere añadir formato al texto

es posible señalar la codificación que utiliza. Permite añadir respuestas

con teclados a través del parámetro reply markup, que se utilizan en

funciones como la creación de avisos o para listar usuarios (explicado

más adelante).

67

68

– edit text message: Elemento encargado de editar los mensajes

dirigidos al cliente. Se utiliza para mantener la cohesión en la ĺınea

temporal del programa. Se debe incluir el mensaje que modifica y el

usuario al que se dirige.

– send photo: El env́ıo de archivos de imagen se hace a través de este

elemento. Permite descargar imágenes al usuario.

– send chat action: Con el objetivo de mantener al usuario informado,

está función permite notificar al usuario que el servidor está procesando

información. El programa lo utiliza para señalar la conversión de

archivos de video y la descarga de imágenes.

– send video: Elemento que permite al usuario descargar los videos de

los eventos grabados por la cámara. Cada petición de video sobrescribe

la anterior con el fin de no degradar la capacidad de almacenamiento.

– set webhook: Método utilizado para indicar al servidor de Telegram

el URL al que debe notificar las actualizaciones. En la aplicación se

establece la instancia virtual como receptor de estas peticiones.

– set update listener: La forma de gestionar las peticiones del cliente

se gestiona con este método que llama a la función Listener cada vez

que recibe una actualización.

– process new updates: Elemento que se encarga de recoger todas las

actualizaciones que llegan a través del webhook y servirse a través del

bot.

Anexo H

Reconocimiento Facial

En el hogar conectado, una cámara es un elemento central. Cuidando de la

privacidad, puede resultar muy útil si incluye funciones como la grabación de

video o el reconocimiento facial. El reconocimiento facial actual se basa en

un proceso que consta de cuatro módulos principales que se apoyan en dos

bases de datos, la primera contiene imágenes de múltiples caras con distintas

poses, la segunda se conforma de la galeŕıa de aquellas caras que el sistema

detecta [2.4]:

1. Face Detection: El algoritmo proporciona la localización y la escala de

la cara en referencia a la fotograf́ıa.

2. Face Alignment: Se localizan las componentes de la cara y se normalizan

mediante propiedades geométricas, que incluyen la normalización de la

iluminación.

3. Face Description: se extraen detalles como la distancia entre las pupilas

o la posición de la nariz.

4. Face Classification: el vector de caracteŕısticas extráıdo se compara

con los vectores de caracteŕısticas extráıdos de las caras de la base de datos.

Si encuentra uno con un porcentaje elevado de similitud, nos devuelve la

identidad de la cara; si no, nos indica que es una cara desconocida.

69

70

Figura H.1: Diagrama de flujo Reconocimiento facial.

	Introducción
	Motivación
	Objetivos
	Requisitos Funcionales
	Requisitos No Funcionales

	Material y herramientas utilizadas
	Organización de la memoria

	Estado del Arte
	Arquitectura y desarrollo del sistema
	Arquitectura del sistema
	Cliente
	Dispatcher
	Inicio
	Logger
	Procesado
	Netatmo y Autenticación
	Notificaciones
	Servidor Web

	Diagrama de actividad
	Implementación

	Banco de Pruebas
	Rendimiento del sistema
	Tolerancia a peticiones
	Tolerancia a conversión de video
	Cliente Personalizado

	Conclusiones y líneas futuras
	Conlusiones
	Líneas de futuro

	Bibliografía
	Acrónimos
	 Guía de instalación bot
	MTProto
	OAuth2
	API Netatmo
	Modelos de Información
	Telebot
	Reconocimiento Facial

