Anexo A

Acronimos

e API: Application Programming Interface
e DEV: Developer

o IDE: Integrated Development Environment
e EC2: Elastic Compute Cloud

e DNS: Domain Name Server

e LTS: Long Term Support

e IP: Internet Protocol

e IoT: Internet of Things

e BTC: Bitcoin

e MTProto: Mobile Transport Protocol

e DB: Data Base

e LED: Light Emitting Diode

e FTP: File Transfer Protocol

e JSON: JavaScript Object Notation

49

50

FIFO: First In First Out

OAuth: Open Authorization

URL: Uniform Recurse Locator

UML: Unified Modeling Language

AWS: Amazon Web Services

SSH: Secure SHell

HTTP: HyperText Transfer Protocol
HTTPs: HyperText Transfer Protocol Secure
MPEG: Moving Picture Experts Group
VPS: Virtual Private Server

CPU: Central Processing Unit

ID: Identifier

REQ: Request

UTF-8: 8-bit Unicode Transformation Format
PIP: Python Package Index

SSL: Secure Sockets Layer

HTML: HyperText Markup Language

A AC: Advanced Audio Coding

ADTS: Audio Data Transport Stream

M3U8: M3U utf-8 codified

ASCII: American Standard Code for Information Interchange

RE: Regular Expresions

Anexo A. Acrénimos

o1

e E2E: End to End
e MAC: Message Authentication Code
e SHA-1: Secure Hash Algoritm

e PLN: Procesado del Lenguaje Natural

Anexo B

Guia de instalacion bot

Para poder utilizar la aplicacién de gestion de la cdmara de vigilancia es
necesario instalar y configurar diferentes médulos. (si se desea acceder al bot ya
implementado consultar paso 12). Los requisitos para poder correr la aplicacién y
que se dan por instalados son:

+ Tener una maquina con una distribucién Linux.
+ Tener instalado intérprete Python 2.7 o superior.
+ Tener una interfaz de red publica accesible con port 8443 abierto.

+ Tener configurado el software de control git.

Este tutorial estd orientado para la instalaciéon en una maquina Ubuntu 16.04

LTS:

e 1. (opcional) Instalar Dynamic Update Client No-IP

— wget http://www.no-ip.com/client/linux/noip-duc-linux.tar.gz
— tar xzf noip-duc-linux.tar.gz

— make install

e 2. Instalacién de la API Bot de Telegram :

— git clone https://github.com/eternnoir/pyTelegramBot API.git

23

54

3. Configurar cuenta de desarrollador en Netatmo, y desde el menit CREATE
YOR APP y configurar los campos segun interés. Asegurar que el campo read

camera esté activo. o

4. Descargar la traduccion a Python de Netatmo DEV API
— git@github.com:philippelt /netatmo-api-python.git

5. Instalar la librerfa de conversién ffmpeg3, la versién 2 no permite la

conversién de formatos m3uS:

— sudo add-apt-repository ppa:jonathonf/ffmpeg-3

— sudo apt update && sudo apt install ffmpeg libav-tools x264 x265
6. Crear certificados openssl

— openssl genrsa -out webhook_pkey.pem 2048

— openssl req -new -x509 -days 3650 -key webhook pkey.pem ?out

webhook_cert.pem

7. Dar de alta un bot en la aplicacién Telegram. Iniciar conversaciéon con
@botFather y enviar la peticién /newbot. Enviar nombre del bot y nombre

de usuario. El contacto devuelve el API token para su configuracion.

8. A partir de este momento el bot es accesible desde cualquier aplicacién
cliente Telegram. Si se desea acceder al bot ya implementado y operativo
que gestiona la cdmara del departamento de Telematica se puede acceder

directamente a través de https://telegram.me/netwelcomebot

Anexo C

MTProto

En este anexo se va a profundizar en el protocolo MTProto ampliando la
informacion sobre su funcionamiento y su implementacion en Telegram. Es
en definitiva el protocolo que usa el bot desarrollado para comunicarse con
el usuario.

Telegram implementa un protocolo propio, MTProto, que transmite los
mensajes de forma segura entre nuestro moévil y el servidor. Incluso permite
crear chats seguros entre dos clientes, con cifrado e2e para que ni siquiera
los propios servidores puedan acceder a la informacion.

Cada vez que se realiza una comunicacién se produce cifrado cliente-servidor,
cada mensaje conforma cuatro elementos:

+ Salt: 64 bits aleatorios, que se cambian en cada peticion al servidor para
evitar ataques de reply.

+ Session_id: 64 bits generados por el cliente, para identificar su instancia
de sesién.

+ Payload: Ademas de contener el contenido del mensaje, incluye la fecha,
longitud y nimero de secuencia del mensaje.

+ Padding: bytes de relleno.

Una vez conformado este mensaje se utiliza un MAC (Message

Authentication Code). Este cddigo se obtiene a partir del mensaje, y es

95

96

(casi) tnico. Si el mensaje cambia, aunque sélo sea en una tilde, el MAC

sera distinto, es similar a las funciones hash.

MTProto, part |
Cloud chats (server-client encryption)

to be encrypted
shared key (auth_key) Salt Session_id Payload » Padding
persistent, generated via DH | 54-Bit B4-Bit | 0-15 bytes

1 Note:
mSg'k_ey SHA-1 Payload always contains time,
128-Bu length and sequence number

to be checked by the receiving

party after decryption.
KDF
multiple SHA-1

AES key

256-Bit
AES IGE Encryption
AES IGE IV

256-Bit

auth_key_id msg key
64-Bit 128-Bit Encrypted data

embedded into transport protocol (TCP HTTR ..)

NB: after decryption, msg_key must be equal to SHA-1 of data thus obtained.

Figura C.1: Diagrama de funcionamiento del protocolo

Telegram obtiene su huella digital mediante el algoritmo SHA-1. El resultado
es una clave que identifica al mensaje (msg_key). Pero ademds ese resultado
se combina junto con la clave compartida entre cliente y servidor. Esta
clave compartida es intercambiada en el primer registro del cliente mediante
el algoritmo de intercambio Diffie-Hellman, que permite que ambas partes
lleguen a una clave comun secreta, sin tener que transmitirla. Asi, se obtiene
una nueva clave con la que cifrar el mensaje. Se ve en este momento que
la clave con la que se cifra el mensaje depende del contenido del mensaje

(algoritmo robusto).

Anexo C. MTProto 57

Tras cifrar el mensaje, se envia un paquete que contiene el mensaje cifrado
(Encrypted data), la huella digital SHA-1 del texto sin cifrar (msg_key) y un

numero que identifica la clave compartida que se usa (auth_key_id).

Al recibir el mensaje en el otro lado de la conexion, se recrea la clave de
cifrado usando la clave compartida y la huella del mensaje, se descifra el
texto y se comprueba que la huella digital concuerda. También se comprueba
que el salt sea correcto (igual al que el servidor haya definido), que la fecha
y hora sea razonable y que el niimero de secuencia sea el apropiado.

Asi, con esa comprobacion multiple, Telegram se asegura que nadie mas
puede leer el mensaje y que ademas ha llegado sin ningtin tipo de

modificacién [3][4].

Anexo D

OAuth?2

OAuth2 es un protocolo de autorizacién que permite a terceros (clientes)
acceder a contenidos propiedad de un usuario (alojados en aplicaciones de
confianza, servidor de recursos). Es decir, que aplicaciones de terceros pueden
acceder a contenidos propiedad del usuario, sin estas aplicaciones conozcan
las credenciales de autenticacién. Es el protocolo de funcionamiento que se ha
utilizado para acceder a los datos alojados en la camara. En nuestro escenario

OAuth2 hay tres partes claramente identificadas:

+ Usuario final: Entidad que se comunica con el cliente para lograr el
acceso a los recursos protegidos.

+ Cliente: La aplicacion bot integrada en Telegram es la que hace peticiones
a recursos protegidos en nombre del propietario de recursos (Usuario) con la
autorizacion del mismo.

+ Servidor de recursos: Es la entidad que tiene los recursos protegidos.
Es capaz de aceptar y responder peticiones (video, informacién, fotografias,
etc) usando el access token que debe venir en el cuerpo de la peticidn.

+ Servidor de autorizacion: El servidor de autenticacion es el responsable
de generar tokens de acceso y validar usuarios y credenciales.

Una vez definido el escenario, la aplicacién implementa tres funcionalidades

a través de este protocolo:

29

60

USUARIO PROVEEDOR
—
N
\[SERVICIO DE
1 AUTORIZACION

SERVIDOR DE
RECURSOS

CLIENTE

-

)
S

Figura D.1: Arquitectura Autorizacién Aplicacién

1. El cliente solicita autorizacién al propietario del recurso (en nuestro caso
no es necesario ya que el cliente es el propio usuario). 2. El propietario
del recurso devuelve un método de autentificacién valido (en nuestro caso
utilizaremos las credenciales de netatmo como método de autentificacion)
3. El cliente pide al servidor de autorizacién un token de acceso, presentando
las credenciales del paso 2.

4. El servidor de autorizaciéon devuelve un token de acceso valido.

5. El cliente y el servidor de recursos ya son capaces de intercambiar

peticiones seguras con el token de acceso para servir contenido protegido.

sectionObtencion del token Los token de acceso deben tener un periodo de
expiracion después del cual se consideran caducados y el proveedor debe

rechazarlos, obligando al cliente a obtener un nuevo token de acceso. Para

Anexo D. OAuth2 61

token acces request
7 auth
le acces token server
resource request + acces token
> resource
Protected resource server
| E

Figura D.2: Concesion del token

evitar tener que volver realizar todo el proceso de validacién necesario para
la obtencién del token, entra el mecanismo de Refresh Token. Cuando el
proveedor concede un token de acceso, puede incluir un token de refresco
asociado al token de acceso. Mediante este token de refresco se puede obtener

un nuevo token de acceso valido siguiendo el siguiente flujo:

token acces request

L
>

acces token + refresh token

acces token + resource request

protected resource

o acces token + resource request s| Resource

Authorization
Server

invalid token Server

refresh token request

acces token + refresh token

h

Figura D.3: Proceso de refresco del token

1. El cliente pide un token de acceso al servidor de autorizacién

2. El servidor valida la peticion y envia los token de acceso

3. El cliente pide los recursos al servidor de recursos identificando con el
token de acceso, si es valido, el servidor devuelve el contenido

4. Pasado un tiempo el servidor detecta el token de acceso con el timestamp

expirado o invélido. El servidor se lo indica al cliente

62

5. El cliente hace una peticién para obtener un nuevo token de acceso
presentado el token de refresco obtenido en el paso 1.

6. El servidor de autorizacion autentica al cliente validando el token de
refresco. Devuelve un acces token valido.

7. Se reanuda la y comunicacién con el servidor de recursos y se cursan las

peticiones.

Anexo E

API Netatmo

Netatmo es una empresa que comercializa productos como termostatos
inteligentes, estaciones meteorologicas y camaras de vigilancia. La camara
en el proyecto utilizada cuenta con las siguientes especificaciones:

+ Sensor de video de 4MP con resolucién de 1920x1080

+ Visiéon nocturna LED Infrarrojos.

+ Conexién Wi-Fi 802.11a/b/g/n,

+ Puerto Ethernet 10/100Mbits

+ Ranura microSD (méximo 32gb).

+ Dimensiones 45x45x155 mm

Dispone de una API oficial para el desarrollo de aplicaciones y estd traducida
parcialmente a Python. La API [5] funciona a través de 7scopes? que se
seleccionan segun el interés del usuario:

- 'read_camera’: permite acceder a eventos guardados y timelines.

- 'write_camera’: permite sets del estado de las personas grabadas en el
sistema

- 'acces_camera’: permite acceder a streamings en vivo, realizar capturas,
o descargar grabaciones almacenadas en la tarjeta microSD.

- Ademas, incluye informacién del usuario como las unidades métricas

utilizadas, el idioma, y el huso horario. También almacena informacion de

63

64

estado del dispositivo.

Para acceder a los datos que enmascaran dichos ’scopes’ es imprescindible
acceder con el parametro token de acceso. En el proyecto se hace uso de
un protocolo de autenticacién denominado OAuth2, (su funcionamiento esta

detallado en el Anexo D) que se encarga de expedir y renovar los token.

La API funciona a través de eventos, cada deteccion de sus sensores se
considera un evento, que esta clasificado en una tipologia concreta (persona,
movimiento, etc.). Cuando el programa detecta movimiento, crea un nuevo
evento y acciona una senal que activa la grabacién, este podra ser almacenado
localmente en una tarjeta microSD cifrada o también anadiendo redundancia
en servicios de alojamiento como Dropbox o servidores FTP. La gestion del
almacenamiento de la tarjeta microSD seguird un modelo de colas FIFO
donde los videos mas antiguos se eliminarédn periédicamente. Para cada
evento se generan metadatos que identifican todas sus propiedades y se

almacenan en estructuras JSON.

Anexo F

Modelos de Informacion

Como se ha visto en el Capitulo 3, el sistema utiliza cuatro registros JSON

para mantener la informacion ordenada de los usuarios activos en el sistema.

En detalle se organizan:

1. Registro listener que almacena la

interaccién de cualquier usuario:

f---ro history

| —-ro afio string
| ——rodia string
| ——ro mes string
| —-ro hora string
| —-ro nombre de usuario string
| ——ro identificadar int

| —-ro mensaje string

-= 2017

-= 15

== 10

-z 20:21:12

-= Arturo

-= 1679055044

- Muéstrame el video en directo

2. Registro cameras que almacena todas las camaras registradas en el bot y

los usuarios que tienen acceso:

f--TO CAIMETAS
| +-rwid camera string -> T(:ee:5:1d:54:8f
| | —-rw id user int -= 1679055044

3. Registro login que almacena las credenciales y la configuraciéon personal

de cada usuario registrado.

65

f--ro login

—-10 identificador string -> 1679055044
~--I'W Username string - stevegmail.com
—--1w password string - contrasegnal2d
——-rw client_id string - 8udsa898932dsaA. ..
—--1w client secret string -> fdsjhZNkd%jskx...

—--r'w acces_token string - 5438292039490423...
—--rw refresh token string - BRabfed4G9i7409e20...

|
|
|
|
|
|
|
|
| —--rw numeroAvisos int -= 1
|
|
|
|
|
|
|
|

—--1w expiration int - 12343233
—--r'w movimiento boal - True
—--1rw conocidos boal - False
—-—-rw desconocidos bool -= True
—--I'W Avisos

| +——nombre string - Alex

| +—-hora inicio int -= 17

| +——hora final int -z 20

| +—-visio boal - True

4. Registro que almacena un histérico de todos los eventos de una cdmara.
Ademas del objeto JSON se almacenan los archivos jpg de todos los eventos

identificados por el id de la cdmara y el timestamp de dicho evento:

~—T0 events

| +--ro timestamp® int -= 1502355815

| | +--rocategory string ->» human, animal

| | +4--ro video status string - available

| | +--rovideo id string - 9h9h8RfT-RTel-...

| | +--ro vignette

| | | -+—-version int -=1

| | | +—id string - 598c2bbc2bh2bdbER8cAhdbad
| | | +—key string - 07d27b72e1930bf119%...

| | +--ro snapshot

| | | +-version int -= 1

| | | + -id string - 598c2bbe2b2b4b6RB8cibdbad
| | | +—key string -= 07d27b72e1930b£119...

| | +-rocamera id string -z Tl:ee:50:1d:54:8f

| | +--rotime int -= 1302355815

| | +--ro message utf-& - Arturo visto

| | +-rotype string ->» person, sd, home away

| | +-rosub_type int -=1

||

+--ro id string - 598e3190b26ddfed(c8LRETT

Anexo G

Telebot

La libreria Telebot es uno de los elementos mas importante para
la gestion de nuestro programa y es el encargado de crear la
relaciéon entre nuestra aplicacion y el servidor de Telegram. Incluye los
métodos para la gestion de los mensajes recibidos, y las interacciones
por parte del usuario con el cliente. Las peticiones al servidor
de Telegram https://api.telegram.org/botjtokens; /METHOD_NAME deben
incluir el token del bot y el método al que llaman. Este método puede incluir

parametros, que deben ser informados en peticiones http GET o POST.

Para instanciar un objeto de la clase telebot necesitamos el mencionado token
de acceso, este token es un string tinico que Telegram utiliza para identificar
cada bot. Una vez la clase esta instanciada pasa a su funcionamiento normal

quedando encargada de las siguientes actividades:

— send_message: Elemento encargado de enviar al cliente los mensajes,
es necesario incluir el identificador del usuario al que van dirigidos y
el texto que contiene el mensaje. Si se quiere anadir formato al texto
es posible senalar la codificacién que utiliza. Permite anadir respuestas
con teclados a través del parametro reply_markup, que se utilizan en
funciones como la creacién de avisos o para listar usuarios (explicado

mas adelante).

67

68

— edit_text_message: Elemento encargado de editar los mensajes

dirigidos al cliente. Se utiliza para mantener la cohesion en la linea
temporal del programa. Se debe incluir el mensaje que modifica y el

usuario al que se dirige.

send_photo: El envio de archivos de imagen se hace a través de este

elemento. Permite descargar imagenes al usuario.

send_chat_action: Con el objetivo de mantener al usuario informado,
esta funcién permite notificar al usuario que el servidor esta procesando
informacion. El programa lo utiliza para senalar la conversion de

archivos de video y la descarga de imagenes.

send_video: Elemento que permite al usuario descargar los videos de
los eventos grabados por la caAmara. Cada peticion de video sobrescribe

la anterior con el fin de no degradar la capacidad de almacenamiento.

set_webhook: Método utilizado para indicar al servidor de Telegram
el URL al que debe notificar las actualizaciones. En la aplicacion se

establece la instancia virtual como receptor de estas peticiones.

set_update_listener: La forma de gestionar las peticiones del cliente
se gestiona con este método que llama a la funcién Listener cada vez

que recibe una actualizacion.

process_new_updates: Elemento que se encarga de recoger todas las
actualizaciones que llegan a través del webhook y servirse a través del

bot.

Anexo H

Reconocimiento Facial

En el hogar conectado, una camara es un elemento central. Cuidando de la
privacidad, puede resultar muy 1til si incluye funciones como la grabacién de
video o el reconocimiento facial. El reconocimiento facial actual se basa en
un proceso que consta de cuatro modulos principales que se apoyan en dos
bases de datos, la primera contiene imagenes de multiples caras con distintas
poses, la segunda se conforma de la galeria de aquellas caras que el sistema

detecta [2.4]:

1. Face Detection: El algoritmo proporciona la localizacion y la escala de

la cara en referencia a la fotografia.

2. Face Alignment: Se localizan las componentes de la cara y se normalizan
mediante propiedades geométricas, que incluyen la normalizaciéon de la

iluminacion.

3. Face Description: se extraen detalles como la distancia entre las pupilas

o la posicion de la nariz.

4. Face Classification: el vector de caracteristicas extraido se compara
con los vectores de caracteristicas extraidos de las caras de la base de datos.
Si encuentra uno con un porcentaje elevado de similitud, nos devuelve la

identidad de la cara; si no, nos indica que es una cara desconocida.

69

70

Face Detection

== Pose Compensation

Facial Feature Extraction f-=========== B
Face Alignment
Face Cropping f---=-======-- >
lllumination Compensation b===ccccccaas N R —
y
Face Description
i

Classifier

Face Classification

General Face DB

ake

Pose Estimator

Pose Estimation

Figura H.1: Diagrama de flujo Reconocimiento facial.

	Introducción
	Motivación
	Objetivos
	Requisitos Funcionales
	Requisitos No Funcionales

	Material y herramientas utilizadas
	Organización de la memoria

	Estado del Arte
	Arquitectura y desarrollo del sistema
	Arquitectura del sistema
	Cliente
	Dispatcher
	Inicio
	Logger
	Procesado
	Netatmo y Autenticación
	Notificaciones
	Servidor Web

	Diagrama de actividad
	Implementación

	Banco de Pruebas
	Rendimiento del sistema
	Tolerancia a peticiones
	Tolerancia a conversión de video
	Cliente Personalizado

	Conclusiones y líneas futuras
	Conlusiones
	Líneas de futuro

	Bibliografía
	Acrónimos
	 Guía de instalación bot
	MTProto
	OAuth2
	API Netatmo
	Modelos de Información
	Telebot
	Reconocimiento Facial

