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Summary

Information Geometry (IG) is a branch of mathematics that uses differential geometry of manifolds
in the field of probability and statistics. We consider a family of probability distributions specified by
parameters such that it satisfies certain regularity conditions. These parameters are used as a coordinate
system that allows to give the family a manifold structure that we call statistical manifold. In this way
each point of the manifold represents a probability distribution. The objective of this work is to study
the geometry of these manifolds, namely, metrics and connections taking into account their statistical
nature, that is, each point of the manifold represents a probability distribution and show an application.

A metric is used to measure distances between points of a manifold, in our case, between probability
distributions. Statistics has developed measures of distancing between probability distributions called
divergences. Divergences can be defined in any manifold and are not necessarily metric, since among
other things they are not asked for symmetry, but give an idea of the degree of separation between points
of the manifold. The divergences are used in hypothesis contrast because their asymmetry allows to
capture the fact of protecting more a hypothesis than other alternative. Derivatives of a divergence induce
metrics and connections in the manifold. Taking into account the statistical nature of these manifolds
and the estimation of parameters we can establish natural conditions to impose on divergences, metrics
and connections in statistical manifolds. These conditions are known as monotonicity of information
and invariance and are related to the ability of a statistician to take advantage of information that has
a sample on an unknown parameter. These conditions restrict the study of divergences, metrics and
connections to those that are statistically useful.

The first objective in the studies of the geometry of a statistical manifold is to find a metric that
allows us to measure distances between probability distributions. The Fisher information matrix provi-
des a metric in the statistical manifolds, called the Fisher information metric. The existence of a single
invariant metric, except multiplicative constant, which is given precisely by Fisher’s information me-
tric, is a fundamental result in information geometry. This result shows the importance and singularity
of the Fisher information metric, since it is not just an ordinary metric, it is the only reasonable metric
in statistical manifolds taking into account their statistical nature.

A connection in a manifold allows to differentiate similarly to Rn. Between the different connections
that we can consider there is an important one, the connection of Levi-Civita. This connection always
exists and is unique in any manifold equipped with a metric. The Levi-Civita connection is the most
used because it has the distance minimization property. However for statistical manifolds, there is a
family of invariant connections that depend on a parameter α ∈ R called α-connections. If α = 0 we
obtain the Levi-Civita connection in the statistical manifolds.

An important class of divergences in statistical manifolds is f -divergences, which depend on the
choice of a convex function f . The f -divergences are invariant and induce the Fisher information metric.
The Kullback-Leibler divergence is a particular case.

One of the applications of information geometry is given in the area of optimization. Given a mi-
nimization problem in Rn we transform it into another equivalent minimization problem in a statistical
manifold to choose. We solve the problem obtained by an iterative method based on the gradient descent
method. The gradient depends on the chosen metric, which according to the theory will be the metric of
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the Fisher information. The proposed method uses the geodesics of the chosen statistical manifold that
are usually calculated numerically. In the case of normal distributions, the geodesics can be calculated
exactly.

Below, we detail the contents of the chapters. In the first chapter, we present the results of Rieman-
nian geometry needed to study statistical manifolds. We define the concept of tensor, in particular, define
the Riemannian metric. A manifold equipped with a Riemannian metric is called Riemannian manifold.
In manifolds we do not have a natural notion of derivative, so we need to define the connections that
allow to derive tensor fields on manifolds. A connection is said to be isometric if the covariant derivative
of the metric is zero. Moreover a connection defines two tensors: torsion and curvature. When the tor-
sion of a connection is zero we say that the connection is simetric. When the curvature of a connection
is zero we say that the connection is flat. We prove that there is a unique isometric and symetric con-
nection known as the Levi-Civita connection. This connection allows to minimize distances as already
mentioned. Finally we present an important example of Riemanniana manifold, hyperbolic space and
give its geodesics.

In the second chapter, we introduce statistical models as families of probability distributions spe-
cified by parameters. These parameters are used as a coordinate system and then we have a manifold
structure. We define divergences in manifolds and show that derivatives of a divergence induce metrics.
Next, we prove that the Fisher information matrix defines Riemannian metric in statistical manifolds.
Using statistical arguments we find the conditions of monotonicity of information and invariance. We
define a family of divergences in statistical manifolds, the f-divergences, and prove that they are inva-
riant. We prove that Fisher’s metric is the only invariant metric, except multiplicative constant. We then
calulated the Fisher’s metric in some of the most important statistical models as binomial or normal
among others. We emphasize that a normal model with multiple covariance matrix of the identity has
the hyperbolic space geometry. In the penultimate, section we show that the divergences induce con-
nections and we study with special attention to those induced by f-divergences. Finally we present an
application of the theory in the area of optimization showing an iterative algorithm based on the des-
cent of the gradient in statistical manifolds and using Fisher’s metric and the geodesics of the chosen
statistical manifold. If we choose the normal distributions we get exact solutions for the geodesics.
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Capítulo 1

Preliminares: geometría Riemanniana

Este capítulo contiene una introducción a la geometría Riemanniana. Consideramos variedades di-
ferenciables de dimensión finita, sin borde y cuya topología sea Hausdorff y segundo numerable. Por
«diferenciable» entenderemos siempre infinitamente diferenciable, es decir, de clase C∞. Utilizaremos
el convenio de suma de Einstein que funciona sumando solo en los índices que aparecen simultánea-
mente como subíndices y superíndices desde 1 hasta la dimensión n.

Sea M una tal variedad de dimensión finita n, A un atlas para M y x ∈A una carta. Concretamente
para cada punto p ∈ M fijo existe una carta x : U ⊂M → Rn con U abierto de M, p ∈ U con xi :
U ⊂M→ R, i = 1, . . . ,n que llamamos funciones coordenadas o simplemente coordenadas (locales).
Nos referimos a (x1, . . . ,xn) como sistema de coordenadas locales. Denotamos por F (M) = { f : M→
R | f diferenciable} y por TpM y T ∗p M al espacio tangente y cotangente de M en un punto p ∈ M
respectivamente. Recordamos que TpM es un espacio vectorial de dimensión finita n y T ∗p M es su dual.
Los elementos de TpM se llaman vectores tangentes y son aplicaciones con valores reales que actúan
sobre funciones de F (M) verificando linealidad y la regla de Leibniz, es decir, actúan sobre funciones
como derivación. Una base de TpM viene dada por {∂1 |p, . . . ,∂n |p} donde ∂i |p= ∂

∂xi |p. La familia de
aplicaciones {dx1 |p, . . . ,dxn |p} de T ∗p M verifican dxi |p (∂ j |p) = δi j donde δi j es la delta de Kronecker
luego {dx1 |p, . . . ,dxn |p} es la base dual de {∂1 |p, . . . ,∂n |p} y viceversa. Sea V ∈ TpM entonces su
expresión local es V = ∑

n
i=1V i∂i |p =V i∂i |p donde V i =V (xi) ∈ R.

Definición 1.1. Un campo vectorial X en M es una aplicación diferenciable que asigna a cada punto
p ∈ M un vector Xp ∈ TpM donde diferenciable significa que si f ∈ F (M) entonces X f ∈ F (M).
Denotamos por X (M) al conjunto de todos los campos vectoriales en M.

Si X ∈X (M) entonces definimos (X f )p = Xp f y la expresión local de X es X = ∑
n
i=1 X i∂i donde

X i = X(xi) ∈F (M). Adoptamos la siguiente notación estándar:

(T ∗p M)r = T ∗p M×·· ·×T ∗p M︸ ︷︷ ︸
r veces

, (TpM)s = TpM×·· ·×TpM︸ ︷︷ ︸
s veces

, r,s ∈ N. (1.1)

Definición 1.2. Un tensor de tipo (r,s) en un punto p ∈ M es una aplicación R-multilineal (lineal en
todos sus argumentos) T : (T ∗p M)r× (TpM)s→R. Un campo tensorial T de tipo (r,s) es una aplicación
diferenciable que asigna a cada punto p ∈ M un tensor de tipo (r,s) en el punto p, equivalentemente,
es una aplicación F (M)-multilineal T : X (M)∗r×X (M)s→F (M). Un tensor o un campo tensorial
de tipo (r,s) diremos que es s-covariante y r-contravariante.

Definición 1.3. Una métrica Riemanniana g en una variedad diferenciable M es un campo tensorial
g : X (M)×X (M)→F (M) de tipo (0,2) simétrico y definido positivo. Una variedad Riemanniana
es una variedad diferenciable dotada de una métrica Riemanniana y la denotamos por (M,g).

Se puede demostrar que toda variedad diferenciable puede dotarse de una métrica Riemanniana.
Una métrica Riemanniana g nos proporciona un producto escalar gp : TpM×TpM→R en cada punto p
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2 Capítulo 1. Preliminares: geometría Riemanniana

que depende diferenciablemente del punto p ∈M. En un sistema de coordenadas locales tenemos

g = gi jdxi⊗dx j, (1.2)

donde gi j = g(∂i,∂ j) y ⊗ indica producto tensorial.

Definición 1.4. El corchete de Lie se define como la aplicación [ , ] : X (M)×X (M)→X (M) dada
por

[X ,Y ]p f = Xp(Y f )−Yp(X f ), ∀ f ∈F (M), p ∈M. (1.3)

El corchete de Lie satisface las siguientes propiedades:

1. R-bilineal: [aX +bY,Z] = a[X ,Y ]+b[Y,Z], [Z,aX +bY ] = a[Z,X ]+b[Z,Y ] ∀a,b ∈ R.

2. Antisimetría: [X ,Y ] =−[Y,X ].

3. Identidad de Jacobi: [X , [Y,Z]]+ [Y, [Z,X ]]+ [Z, [X ,Y ]] = 0.

4. [ f X ,gY ] = f g[X ,Y ]+ f (Xg)Y −g(Y f )X , ∀ f ,g ∈F (M).

El corchete de Lie mide la no conmutatividad entre los flujos de los campos vectoriales. Si [X ,Y ] = 0
entonces los campos vectoriales X ,Y conmutan. La expresión del corchete de Lie en coordenadas locales
viene dada por

[X ,Y ] =
n

∑
i, j=1

(
∂Y i

∂x j X j− ∂X i

∂x j Y j)
∂

∂xi . (1.4)

En variedades no tenemos una noción natural de derivada como en Rn. Con el propósito de tener
una teoría de diferenciación en variedades similar a la de Rn se introduce el concepto de conexión, que
puede verse como una extensión de la derivada direccional en Rn. Una conexión permite diferenciar
funciones, campos vectoriales y en general campos tensoriales respecto de un campo vectorial. Las
conexiones dan lugar al transporte paralelo y permiten relacionar la geometría local en distintos puntos
de la variedad.

Definición 1.5. Una conexión lineal o simplemente conexión ∇ en M es una aplicación ∇ : X (M)×
X (M)→X (M) verificando:

1. ∇XY es F (M)-lineal en X .

2. ∇XY es R-lineal en Y .

3. Regla de Leibniz: ∇X( fY ) = (X f )Y + f ∇XY , ∀ f ∈F (M).

La definición anterior es global. La expresión de una conexión en un sistema de coordenadas locales
viene dada por

∇∂i∂ j = Γ
k
i j∂k, (1.5)

donde Γk
i j ∈F (M) se denominan componentes de la conexión respecto de la base local {∂k}. Como X =

X i∂i, Y = Y j∂ j entonces ∇XY = (∇XY )k∂k donde (∇XY )k = X i(∂iY k +Y jΓk
i j). Una conexión permite

diferenciar campos tensoriales. Sea T un tensor r-covariante entonces

∇X T (Y1, . . . ,Yr) = XT (Y1, . . . ,Yr)−
n

∑
i=1

T (Y1, . . . ,∇XYi, . . . ,Yr). (1.6)

Sean ∇,∇′ dos conexiones entonces para todo α ∈ R la combinación convexa α∇+(1−α)∇′ define
otra conexión. La diferencia de dos conexiones es un campo tensorial de tipo (1,2).

Definición 1.6. Sea (M,g) una variedad Riemanniana. Una conexión ∇ se dice isométrica si verifica

∇Zg = 0, ∀Z ∈X (M). (1.7)
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Equivalentemente, usando (1.6) y (1.7), una conexión isométrica queda caracterizada por la fórmula

Zg(X ,Y ) = g(∇ZX ,Y )+g(X ,∇ZY ), ∀X ,Y,Z ∈X (M). (1.8)

Eligiendo X = ∂i,Y = ∂ j, Z = ∂k y tras unos cálculos la fórmula (1.8) se transforma en

∂kgi j = Γ
p
kigp j +Γ

r
k jgir. (1.9)

Una conexión define dos campos tensoriales: la torsión y la curvatura.

Definición 1.7. La torsión de una conexión ∇ se define como el campo tensorial T : X (M)×X (M)→
X (M) de tipo (1,2) dado por

T (X ,Y ) = ∇XY −∇Y X− [X ,Y ]. (1.10)

La torsión cumple la propiedad antisimétrica T (X ,Y ) = −T (Y,X). La expresión de la torsión en
coordenadas locales viene dada por

Ti j = T (∂i,∂ j) = ∇∂i∂ j−∇∂ j ∂i− [∂i,∂ j] = (Γk
i j−Γ

k
ji)∂k, (1.11)

ya que [∂i,∂ j] = 0. Por tanto las componentes de la torsión son T k
i j = Γk

i j−Γk
ji. Una conexión se dice

libre de torsión o simétrica si T = 0 o equivalentemente si Γk
i j = Γk

ji.

Definición 1.8. La curvatura de una conexión ∇ se define como el campo tensorial R : X (M)×
X (M)×X (M)→X (M) de tipo (1,3) dado por

R(X ,Y,Z) = ∇X ∇Y Z−∇Y ∇X Z−∇[X ,Y ]Z. (1.12)

La curvatura también puede escribirse como

R(X ,Y,Z) = ([∇X ,∇Y ]−∇[X ,Y ])Z. (1.13)

La expresión de la curvatura en coordenadas locales viene dada por

R(∂i,∂ j,∂k) = Rp
i jk∂p donde Rp

i jk = ∂iΓ
p
jk−∂ jΓ

p
ik +Γ

p
ihΓ

h
jk−Γ

p
jhΓ

h
ik. (1.14)

Una conexión simétrica se dice plana si R = 0. Es evidente que si existe un sistema de coordenadas
locales en el que las componentes de la conexión son Γk

i j = 0 entonces por (1.14) las componentes de la
curvatura son nulas y como la curvatura es un tensor entonces las componentes son nulas en cualquier
sistema de coordenadas, es decir, R = 0. Recíprocamente, se puede demostrar que si R = 0 entonces
existe un sistema de coordenadas locales en el que las componentes de la conexión son Γk

i j = 0.

El siguiente teorema es un resultado fundamental en geometría Riemanniana. Demuestra la existen-
cia de una única conexión isométrica y simétrica y proporciona una fórmula explícita. Esta conexión se
conoce como la conexión de Levi-Civita.

Teorema 1.1. Sea (M,g) una variedad Riemanniana entonces existe una única conexión ∇ isométrica
y simétrica. Explícitamente, ∇ queda determinada por la fórmula de Koszul:

2g(∇XY,Z) = Xg(Y,Z)+Y g(X ,Z)−Zg(X ,Y )+g([X ,Y ],Z)−g([X ,Z],Y )−g([Y,Z],X). (1.15)

Demostración. Supongamos que existe una conexión ∇ isométrica y simétrica. Escribimos la condición
de isometría para tres campos vectoriales X ,Y,Z

Xg(Y,Z) = g(∇XY,Z)+g(Y,∇X Z), (1.16)

con ecuaciones análogas para las permutaciones cíclicas de X ,Y,Z. Sumando dos de las ecuaciones de
la forma (1.16) y restando la tercera

Xg(Y,Z)+Y g(Z,X)−Zg(X ,Y )

= g(∇XY,Z)+g(Y,∇X Z)+g(∇Y Z,X)+g(Z,∇Y X)−g(∇ZX ,Y )−g(X ,∇ZY ).
(1.17)
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Por la linealidad y simetría de la métrica g tenemos

Xg(Y,Z)+Y g(Z,X)−Zg(X ,Y ) = g(∇XY,Z)+g(∇Y X ,Z)+g(∇Y Z−∇ZY,X)+g(∇X Z−∇ZX ,Y ).
(1.18)

Como ∇ es simétrica (torsión T = 0)

T (X ,Y ) = ∇XY −∇Y X− [X ,Y ] = 0, o equivalentemente, ∇XY −∇Y X = [X ,Y ], (1.19)

con ecuaciones similares para T (Y,Z),T (Z,X), las permutaciones cíclicas de X ,Y,Z. Utilizando las
ecuaciones de la forma (1.19) para T (Y,Z),T (Z,X) en (1.18)

Xg(Y,Z)+Y g(Z,X)−Zg(X ,Y ) = g(∇XY,Z)+g(∇Y X ,Z)+g([Y,Z],X)+g(−[Z,X ],Y ). (1.20)

Por la propiedad antisimétrica del corchete de Lie

Xg(Y,Z)+Y g(Z,X)−Zg(X ,Y ) = g(∇XY,Z)+g(∇Y X ,Z)+g([Y,Z],X)+g([X ,Z],Y ). (1.21)

En definitiva tenemos

Xg(Y,Z)+Y g(Z,X)−Zg(X ,Y )−g([X ,Z],Y )−g([Y,Z],X) = g(∇XY,Z)+g(∇Y X ,Z). (1.22)

Despejando ∇Y X = ∇XY − [X ,Y ] en la ecuación (1.19) y sustituyendo en (1.22)

Xg(Y,Z)+Y g(Z,X)−Zg(X ,Y )−g([X ,Z],Y )−g([Y,Z],X) = g(∇XY,Z)+g(∇XY − [X ,Y ],Z). (1.23)

Finalmente por la linealidad de g obtenemos la fórmula de Koszul

Xg(Y,Z)+Y g(Z,X)−Zg(X ,Y )+g([X ,Y ],Z)−g([X ,Z],Y )−g([Y,Z],X) = 2g(∇XY,Z). (1.24)

El procedimiento anterior garantiza la unicidad de tal conexión, supuesta su existencia. Para probar la
existencia vemos que en efecto la fórmula de Koszul define una conexión, esto es comprobar las tres
propiedades de la definición de conexión.

1. En primer lugar, ∇ es F (M)-lineal en el primer argumento. Por la fórmula de Koszul

2g(∇ f XY,Z)= f Xg(Y,Z)+Y g( f X ,Z)−Zg( f X ,Y )+g([ f X ,Y ],Z)−g([ f X ,Z],Y )−g([Y,Z], f X).
(1.25)

Por la F (M)-linealidad de g y la propiedad número 4 del corchete de Lie queda

2g(∇ f XY,Z) = f Xg(Y,Z)+Y ( f g(X ,Z))−Z( f g(X ,Y ))

+g( f [X ,Y ]− (Y f )X ,Z)−g( f [X ,Z]− (Z f )X ,Y )− f g([Y,Z],X).
(1.26)

De nuevo por la F (M)-linealidad de g y la actuación de los campos vectoriales Y,Z como deri-
vación

2g(∇ f XY,Z) = f Xg(Y,Z)+(Y f )g(X ,Z)+ fY g(X ,Z)− (Z f )g(X ,Y )− f Zg(X ,Y )

+ f g([X ,Y ],Z)− (Y f )g(X ,Z)− f g([X ,Z],Y )+(Z f )g(X ,Y )− f g([Y,Z],X).

(1.27)

Eliminando los sumandos que se cancelan, sacando f factor común y usando la fórmula de Koszul

2g(∇ f XY,Z) = f [Xg(Y,Z)+Y g(X ,Z)−Zg(X ,Y )+g([X ,Y ],Z)−g([X ,Z],Y )−g([Y,Z],X)]

= 2 f g(∇XY,Z).
(1.28)

En definitiva tenemos

2g(∇ f XY,Z) = 2 f g(∇XY,Z) = 2g( f ∇XY,Z), ∀X ,Y,Z ∈X (M), (1.29)

luego ∇ f XY = f ∇XY, ∀X ,Y ∈X (M), es decir, ∇ es F (M)-lineal en el primer argumento.
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2. En segundo lugar, ∇ es R-lineal en el segundo argumento. Esta propiedad se sigue del hecho de
que la fórmula de Koszul viene dada en términos de la métrica, el corchete de Lie y los campos
vectoriales que son todos R-lineales en todos sus argumentos.

3. En tercer lugar, ∇ cumple la regla de Leibniz. Por la fórmula de Koszul

2g(∇X( fY ),Z) = Xg( fY,Z)+ fY g(X ,Z)−Zg(X , fY )

+g([X , fY ],Z)−g([X ,Z], fY )−g([ fY,Z],X).
(1.30)

Por la F (M)-linealidad de g y la propiedad número 4 del corchete de Lie

2g(∇X( fY ),Z) = X( f g(Y,Z))+ fY g(X ,Z)−Z( f g(X ,Y ))

+g( f [X ,Y ]+ (X f )Y,Z)− f g([X ,Z],Y )−g( f [Y,Z]− (Z f )Y,X).
(1.31)

Por la actuación de los campos vectoriales X ,Z como derivación

2g(∇X( fY ),Z) = (X f )g(Y,Z)+ f Xg(Y,Z)+ fY g(X ,Z)− (Z f )g(X ,Y )− f Zg(X ,Y )

+ f g([X ,Y ],Z)+(X f )g(Y,Z)− f g([X ,Z],Y )− f g([Y,Z],X)+(Z f )g(Y,X).

(1.32)

Por la simetría de g dos sumandos se cancelan y utilizando la fórmula de Koszul

2g(∇X( fY ),Z) = 2(X f )g(Y,Z)+ f 2g(∇XY,Z) = 2g((X f )Y + f ∇XY,Z), (1.33)

donde la última igualdad se obtiene por la F (M)-linealidad de g. En definitiva tenemos

2g(∇X( fY ),Z) = 2g((X f )Y + f ∇XY,Z), ∀X ,Y,Z ∈X (M), ∀ f ∈F (M), (1.34)

luego ∇X fY = (X f )Y + f ∇XY, ∀X ,Y ∈ X (M),∀ f ∈ F (M), es decir, ∇ cumple la regla de
Leibniz.

Las componentes de la conexión de Levi-Civita se llaman símbolos de Christoffel que vienen dados
por

Γ
p
i j =

1
2

gpk(∂ig jk +∂ jgik−∂kgi j), (1.35)

donde (gpk) denota la matriz inversa de la métrica (gi j). Recíprocamente si las componentes de una
conexión en una variedad Riemanniana (M,g) vienen dadas por la fórmula (1.35) entonces se trata de
la conexión de Levi-Civita. Si la conexión de Levi-Civita es plana entonces por (1.9) tenemos ∂kgi j = 0
y por tanto gi j son constantes. Intuitivamente esto dice que localmente la variedad se comporta como el
espacio euclídeo Rn, que tiene R = 0 y por tanto podemos interpretar la curvatura como una forma de
medir cuanto se desvía la variedad de ser euclídea.

Sea γ : I→M una curva C∞ y ∇ una conexión en una variedad M. Decimos que γ es una geodésica
para la conexión ∇ si ∇γ̇ γ̇ = 0. Sean Γk

i j las componentes de ∇ en un sistema de coordenadas locales
entonces las geodésicas para dicha conexión son la solución del sistema de ecuaciones diferenciales
ordinarias de segundo orden

ẍk +Γ
k
i jẋ

iẋ j = 0, (1.36)

donde γ(t)= (x1(t), . . . ,xn(t)). La conexión más utilizada es la de Levi-Civita, esto se debe a la siguiente
propiedad: una curva que conecta dos puntos en una variedad por distancia mínima es una geodésica
para la conexión de Levi-Civita. El recíproco es cierto para puntos suficientemente cercanos.

Presentamos a continuación un ejemplo importante de variedad Riemanniana que nos aparecerá en
el siguiente capítulo, el espacio hiperbólico.
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Ejemplo 1. El espacio hiperbólico de dimensión n es la variedad Riemanniana formada por el conjunto
Hn = {(x1, . . . ,xn−1,y) ∈ Rn | y > 0} dotado de la métrica dada por la matriz diagonal de dimensión n

1
y2 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0
0 · · · 0 1

y2

 . (1.37)

Si n = 2 se denomina plano hiperbólico. Un resultado conocido en geometría diferencial es que las
geodésicas del plano hiperbólico están dadas por [10]

γ : t→ (Re(z(t)), Im(z(t))), (1.38)

donde

z(t) =
aievt +b
cievt +d

(1.39)

con ad− bc = 1, v > 0, a,b,c,d ∈ R. Utilizando el teorema de Noether [10] se demuestra que cada
geodésica del espacio hiperbólico permanece en un plano perpendicular al hiperplano y = 0, y que
contiene a la velocidad inicial. La métrica inducida en dicho plano es la del plano hiperbólico, esto
permite conocer las geodésicas del espacio hiperbólico, que están dadas por

γ : t→ (x1(t), . . . ,xn−1(t),y(t)) = (x(t),y(t)), (1.40)

donde

x(t) = x0 +
ẋ0

‖ẋ0‖
x̃(t), y(t) = Im(γC(t)), con x0 = x(0), x̃(t) = Re(γC(t)), (1.41)

y

γC(t) =
aievt +b
cievt +d

, (1.42)

con a,b,c,d ∈ R tal que ad − bc = 1, v > 0. Los valores de a,b,c,d,v, se determinan mediante la
posición y velocidad iniciales de la geodésica.



Capítulo 2

Geometría de la información

2.1. Variedades estadísticas y divergencias

Sea X una variable aleatoria discreta o continua, escalar o vectorial que toma valores en un conjunto
X ⊂ Rm llamado espacio muestral y cuya distribución de probabilidad es p : X → R con

p(x)≥ 0,
∫

X
p(x)dx = 1. (2.1)

Consideramos de forma unificada los casos discreto y continuo mediante notación integral, así
∫
X p(x)dx

en el caso discreto significa ∑x∈X p(x). En el caso vectorial entendemos la notación anterior como su-
mas e integrales múltiples. Utilizamos la notación ∂i =

∂

∂ξ i , salvo que haya que considerar distintos

sistemas de coordenadas, en tal caso usaremos ∂ξ i = ∂

∂ξ i .

Un modelo estadístico M es una familia de distribuciones de probabilidad en X tal que cada
distribución está parametrizada por n valores reales

M = {p(x;ξ ) | ξ = (ξ 1, . . . ,ξ n) ∈ Ξ}, (2.2)

donde Ξ es un subconjunto de Rn que llamamos espacio paramétrico y la aplicación parametrización
φ : Ξ→ M dada por ξ → p(x;ξ ) es inyectiva. La aplicación ϕ : M → Rn dada por ϕ(p(x;ξ )) = ξ

permite considerar ξ = (ξ 1, . . . ,ξ n) como un sistema de coordenadas para M, luego M es una variedad
denominada variedad estadística. La aplicación entre variedades φ es diferenciable y de rango dim Ξ=
n, es un encaje. En este trabajo estudiamos variedades estadísticas con varias suposiciones adicionales
que facilitan su estudio y se cumplen en los modelos y aplicaciones sencillas:

1. El espacio paramétrico Ξ es un subconjunto abierto de Rn. Como φ es diferenciable entonces
diferenciamos libremente respecto de los parámetros.

2. El orden de integración y diferenciación se puede intercambiar. Por ejemplo, a menudo utilizare-
mos el intercambio ∫

X
∂i p(x;ξ )dx = ∂i

∫
X

p(x;ξ )dx = ∂i1 = 0. (2.3)

3. El soporte de p(x;ξ ) dado por {x | p(x;ξ )> 0} no depende de ξ . Esto significa que M es un
subconjunto de

P(X ) =

{
p : X → R | p(x)≥ 0,

∫
X

p(x)dx = 1
}
, (2.4)

que es un espacio de funciones de dimensión infinita. La condición de rango n se entiende como
que {∂1 p(x;ξ ), . . . ,∂n p(x;ξ )} es un sistema de funciones linealmente independientes.

7
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En una variedad estadística cada punto representa una distribución de probabilidad. Teniendo en cuenta
la naturaleza estadística de estas variedades veremos que es natural estudiarlas bajo la llamada propiedad
de invariancia. La geometría de la información estudia la geometría de las variedades estadísticas bajo
la invariancia.

Ejemplo 2 (Distribuciones normales). El conjunto de todas las distribuciones de probabilidad normales
X = N(µ,σ) es una variedad estadística donde

X = R, n = 2, ξ = (µ,σ), Ξ = {(µ,σ) | −∞ < µ < ∞, 0 < σ < ∞}, M ' R×R+, (2.5)

p(x;ξ ) = p(x; µ,σ) =
1

σ
√

2π
e−

1
2(

x−µ

σ )
2

. (2.6)

Ejemplo 3 (Distribuciones finitas). Sea X una variable aleatoria que toma valores en el conjunto X =
{0,1, . . . ,n}, n ∈ N. Su distribución de probabilidad está determinada por n+1 probabilidades

pi = P(X = i) ∈ (0,1), i = 0,1, . . . ,n, (2.7)

que representamos mediante el vector de probabilidades p = (p0, p1, . . . , pn) tal que ∑
n
i=0 pi = 1. Lla-

mamos simplex de dimensión n y lo denotamos por Sn al conjunto de todas las distribuciones de proba-
bilidad con valores en {0,1, . . . ,n}

Sn = {p = (p0, . . . , pn) ∈ Rn+1 | pi > 0,
n

∑
i=0

pi = 1}. (2.8)

Entonces Sn es una variedad estadística de dimensión n donde un sistema de coordenadas viene dado
por

ξ = (p1, . . . , pn) con p0 = 1−
n

∑
i=1

pi. (2.9)

Nota 1. Si permitimos pi ∈ [0,1] entonces la variedad Sn tiene borde. En este trabajo nos limitamos al
estudio de variedades sin borde.

El primer objetivo es encontrar una métrica Riemanniana en las variedades estadísticas que nos per-
mita medir distancias entre distribuciones de probabilidad. La Estadística ha desarrollado medidas de
distanciamiento entre distribuciones de probabilidad que usualmente no son métricas y que muestran
como de distintas son dos distribuciones de probabilidad. Estas medidas reciben el nombre de diver-
gencias y pueden definirse en variedades generales.

Definición 2.1. Una divergencia en una variedad M es una función diferenciable D(· || ·) : M×M→ R
tal que para todo par de puntos P,Q ∈M verifica:

1. D(P || Q)≥ 0.

2. D(P || Q) = 0 si y solo si P = Q.

3. Para dos puntos suficientemente cerca, el desarrollo de Taylor de D es

D(ξP || ξP +δ ) =
1
2

n

∑
i, j=1

gi j(ξP)δ
i
δ

j +O(|δ |3), (2.10)

donde ξP son las coordenadas de P en un sistema de coordenadas locales ξ , δ ∈ Rn y (gi j(ξP))
es una matriz definida positiva que depende de ξP.
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Usamos indistintamente D(P || Q) o D(ξP || ξQ) dependiendo del uso que se va a hacer. Una diver-
gencia es una medida del grado de separación entre dos puntos en una variedad, es decir, una medida
de distinción o disparidad. Aunque se parece a una distancia ni ella ni su raíz cuadrada son una métrica
en general, ya que no necesariamente satisface las propiedades simétrica y desigualdad triangular. Una
métrica es un caso particular de divergencia. La asimetría de las divergencias es importante en estadís-
tica en problemas de contraste de hipótesis. Al enfrentar dos hipótesis alternativas la hipótesis nula se
protege más que la alternativa dándole una mayor importancia y esto es captado por la asimetría de estas
medidas. La tercera propiedad de la definición 2.1 nos dice que una divergencia induce una métrica en
la variedad por derivación mediante la fórmula para sus componentes

g(D)
i j (ξ1) = ∂ξ i

2
∂

ξ
j

2
D(ξ1 || ξ2)|ξ2=ξ1 , (2.11)

que llamamos métrica inducida. Una divergencia también induce conexiones en las variedades por
derivación, tal como veremos en la sección 2.7, denominadas conexiones inducidas.

2.2. Métrica de la información de Fisher

El objetivo de esta sección es demostrar que la matriz de la información de Fisher dota a las va-
riedades estadísticas de una métrica Riemanniana que llamamos métrica de la información de Fisher
o simplemente métrica de Fisher. La importancia y singularidad de esta métrica se verá en secciones
posteriores.

Definición 2.2. Sea M = {p(x;ξ )} un modelo estadístico parametrizado por ξ . La matriz de la in-
formación de Fisher o simplemente matriz de Fisher de M en un punto ξ que denotamos por GF =
(gF

i j(ξ ))i, j=1,...,n está definida por

gF
i j(ξ ) = Ep[∂i log p(x;ξ )∂ j log p(x;ξ )] =

∫
X

∂i log p(x;ξ )∂ j log p(x;ξ ) · p(x;ξ )dx, (2.12)

donde Ep denota la esperanza respecto de p(x;ξ ), es decir, Ep[ f ] =
∫
X f (x)p(x;ξ )dx.

Consideramos modelos en los que la esperanza (2.12) es finita.

Lema 2.1. La matriz de la información de Fisher admite las siguientes expresiones alternativas:

gF
i j(ξ ) = 4

∫
X

∂i
√

p(x;ξ )∂ j
√

p(x;ξ )dx, (2.13)

gF
i j(ξ ) =−Ep[∂i∂ j log p(x;ξ )]. (2.14)

Demostración. Para la primera fórmula, derivando en la definición de matriz de Fisher

gF
i j(ξ ) =

∫
X

∂i log p(x;ξ )∂ j log p(x;ξ ) · p(x;ξ )dx =
∫

X

∂i p(x;ξ )

p(x;ξ )

∂ j p(x;ξ )

p(x;ξ )
p(x;ξ )dx

= 4
∫

X

∂i p(x;ξ )

2
√

p(x;ξ )

∂ j p(x;ξ )

2
√

p(x;ξ )
dx = 4

∫
X

∂i
√

p(x;ξ )∂ j
√

p(x;ξ )dx.
(2.15)

Para la segunda fórmula, teniendo en cuenta (2.3) tenemos

Ep[∂i log p(x;ξ )] =
∫

X
∂i log p(x;ξ ) · p(x;ξ )dx =

∫
X

∂i p(x;ξ )dx = 0. (2.16)

Derivando respecto de ξ j en (2.16) y usando (2.3) tenemos

∂ j

∫
X

∂i log p(x;ξ ) · p(x;ξ )dx =
∫

X
∂ j∂i log p(x;ξ ) · p(x;ξ )dx+

∫
X

∂i log p(x;ξ )∂ j p(x;ξ )dx = 0,

(2.17)
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si y solo si ∫
X

∂ j∂i log p(x;ξ ) · p(x;ξ )dx+
∫

X
∂i log p(x;ξ )∂ j log p(x;ξ ) · p(x;ξ )dx = 0, (2.18)

o equivalentemente

Ep[∂ j∂i log p(x;ξ )]+Ep[∂i log p(x;ξ )∂ j log p(x;ξ )] = 0. (2.19)

Teorema 2.1. La matriz de la información de Fisher se transforma como un tensor 2-covariante bajo
cambios de coordenadas.

Demostración. Consideramos dos sistemas de coordenadas locales ξ = (ξ 1, . . . ,ξ n), θ = (θ 1, . . . ,θ n)
relacionados mediante el cambio de variable ξ = ξ (θ) con ξ j = ξ j(θ 1, . . . ,θ n). Sea p̄(x;θ)= p(x;ξ (θ)),
derivando con la regla de la cadena tenemos

∂θ i p̄(x;θ) =
∂ξ k

∂θ i ∂ξ k p(x;ξ ), ∂θ j p̄(x;θ) =
∂ξ r

∂θ j ∂ξ r p(x;ξ ). (2.20)

Entonces

ḡF
i j(θ) =

∫
X

∂θ i log p̄(x;θ)∂θ j log p̄(x;θ) · p̄(x;θ)dx =
∫

X

1
p̄(x;θ)

∂θ i p̄(x;θ)∂θ j p̄(x;θ)dx

=

[∫
X

1
p(x;ξ (θ))

∂ξ k p(x;ξ )∂ξ r p(x;ξ )dx
]

∂ξ k

∂θ i
∂ξ r

∂θ j = gF
kr(ξ )

∂ξ k

∂θ i
∂ξ r

∂θ j .

(2.21)

Teorema 2.2. La matriz de la información de Fisher es una métrica Riemanniana en toda variedad
estadística.

Demostración. Comprobamos que la matriz de Fisher es simétrica y definida positiva. La simetría es
evidente por la propia definición (2.12), veamos que es definida positiva. Sea M una variedad estadística,
para todo punto ξ y vector tangente v ∈ Tξ M con v 6= 0 por (2.13) tenemos

g(v,v) =
n

∑
i, j=1

gF
i jv

iv j = 4
n

∑
i, j=1

(∫
X

vi
∂i
√

p(x;ξ )v j
∂ j
√

p(x;ξ )dx
)

= 4
∫

X

(
n

∑
i=1

vi
∂i
√

p(x;ξ )

)(
n

∑
j=1

v j
∂ j
√

p(x;ξ )

)
dx = 4

∫
X

(
n

∑
i=1

vi
∂i
√

p(x;ξ )

)2

dx≥ 0,

(2.22)

por tanto la matriz de Fisher es semidefinida positiva. Veamos que es definida positiva

g(v,v) = 0⇔
∫

X

(
n

∑
i=1

vi
∂i
√

p(x;ξ )

)2

dx = 0⇔

(
n

∑
i=1

vi
∂i
√

p(x;ξ )

)2

= 0

⇔
n

∑
i=1

vi
∂i
√

p(x;ξ ) = 0⇔
n

∑
i=1

vi
∂i p(x;ξ ) = 0⇔ vi = 0, ∀i = 1, . . . ,n,

(2.23)

ya que {∂1 p(x;ξ ), . . . ,∂n p(x;ξ )} es un sistema de funciones linealmente independientes. Así la matriz
de Fisher es definida positiva y en definitiva una métrica Riemanniana.



Geometría de la información - Ángel Palacios Polo 11

2.3. Monotonía de la información e invariancia

En esta sección consideramos condiciones que son naturales de imponer a las divergencias, métricas
y en general a la geometría de las variedades estadísticas. Dichas condiciones se conocen como mono-
tonía de la información e invariancia y se obtienen teniendo en cuenta la naturaleza estadística de estas
variedades en las que cada punto representa una distribución de probabilidad.

Sea X una variable aleatoria con distribución de probabilidad paramétrica p(x;ξ ) que describe una
población, X̃ una muestra aleatoria y T una función medible entonces Y = T (X) es otra variable alea-
toria y T = T (X̃) se denomina estadístico. Para hacer inferencias sobre el parámetro desconocido ξ

partimos de la información que suministra la muestra aleatoria X̃ resumiendo esta información muestral
en un estadístico T (X̃). El resumen que hace cualquier estadístico T (X̃) supone mantener o reducir la
información que suministra la muestra acerca del parámetro desconocido ξ . Una propiedad deseable de
un estadístico T (X̃) es que no pierda información, esta propiedad se conoce como suficiencia. Un esta-
dístico es suficiente si aprovecha toda la información que suministra la muestra respecto al parámetro ξ .
Formalmente un estadístico T (X̃) es suficiente respecto del parámetro ξ si dado el valor del estadístico
T (X̃) la distribución condicional de la muestra aleatoria X̃ no depende de ξ , es decir,

P(X̃ = x̃ | T (X̃) = t) = P(X̃ = x̃ | T (X̃) = t;ξ ). (2.24)

Para determinar si un estadístico es suficiente contamos con un criterio más simple y eficaz que la
definición anterior: el teorema de factorización. Sea f (x̃;ξ ) la distribución de probabilidad conjunta
de una muestra X̃ . Un estadístico T (X̃) es suficiente para ξ si y solo si existen funciones g(t;ξ ) y h(x̃)
tal que para toda muestra x̃ ∈X y todo valor del parámetro ξ se tiene

f (x̃;ξ ) = g(T (x̃);ξ )h(x̃). (2.25)

El término información está relacionado con la idea de disparidad. Cuanto mayor sea la variabilidad,
es decir, las discrepancias en la población, mayor información debe contener la muestra aleatoria. Es
evidente que si todos los resultados de un fenómeno aleatorio son equiprobables tenemos menos in-
formación para decidir sobre alguno de ellos que si sabemos que algunos tienen mayor probabilidad de
suceder que otros, es decir, mayor variabilidad implica mayor información y menor información implica
menor variabilidad. A continuación formulamos esta idea usando divergencias.

Sea M = {p(x;ξ )} una variedad estadística donde p(x;ξ ) es la distribución de probabilidad de una
variable aleatoria X . Un estadístico T define otra variedad estadística MT = {q(y;ξ )} = {q(T (x);ξ}
donde q(y;ξ ) es la distribución de probabilidad de la variable aleatoria Y = T (X) dada por

q(y;ξ ) =
∫

K
p(x;ξ )dx, (2.26)

con K = {x | T (x) = y}. Sean D,DT dos divergencias en M,MT respectivamente. Conviene recordar que
una divergencia en una variedad mide la discrepancia entre sus puntos. Como a través de un estadístico
la información se mantiene o se reduce y menor información implica menor variabilidad, es decir, menor
discrepancia, entonces

DT (ξ1 || ξ2)≤ D(ξ1 || ξ2). (2.27)

La desigualdad (2.27) se conoce como monotonía de la información. Por definición, un estadístico es
suficiente si y solo si no pierde información, entonces

DT (ξ1 || ξ2) = D(ξ1 || ξ2) ⇔ T es suficiente. (2.28)

Una divergencia se dice invariante si cumple (2.27) y (2.28). Se puede demostrar [1] que dada una
variedad Riemanniana con conexiones existe una divergencia canónica que induce la métrica y las cone-
xiones dadas por derivación mediante las fórmulas de la métrica inducida y de las conexiones inducidas.
Entonces una métrica o una conexión se dice invariante si está inducida por una divergencia invariante.
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Por otro lado un estadístico T genera una partición del espacio muestral. Sea el espacio muestral
X = {x | x muestra observable de X}, su imagen por T es T = {t | t = T (x) para algún x ∈X }. En-
tonces el estadístico T genera una partición de X en subconjuntos At = {x | T (x) = t} con t ∈ T y
así T (x) = t es equivalente a x ∈ At . En términos de la particiones del espacio muestral, T es suficiente
respecto del parámetro ξ si basta con conocer a que conjunto de la partición generada por T condu-
ce la muestra obtenida, no añadiendo más información saber cual es la muestra concreta. Prestaremos
especial atención a las variedades Sn, por lo que conviene detallar lo estudiado en esta sección para Sn.

Si X toma valores en el espacio muestral X = {0,1, . . . ,n} su distribución de probabilidad es p =
(p0, p1, . . . , pn) con pi = P(X = i), i = 0,1, . . . ,n. Un estadístico T genera una partición {A j} j=0,...,m de
{0,1, . . . ,n} con m≤ n y una variable aleatoria Y = T (X) con valores en {0,1, . . . ,m} y distribución de
probabilidad p̄ = (p̄0, p̄1, . . . , p̄m) con

p̄ j = P(Y = j) = ∑
i∈A j

pi, (2.29)

ya que una variable aleatoria discreta (finita) solo puede transformarse en otra discreta (finita). El es-
tadístico T nos conduce de Sn a Sm. Sean p,q ∈ Sn y D una divergencia en Sn entonces la invariancia
queda

DT (p̄ || q̄)≤ D(p || q), (2.30)

satisfaciendo la igualdad si y solo si T es suficiente. Como Y es función de X y usando la descomposición
de la distribución conjunta en producto de la marginal por la condicional se tiene

p(x;ξ ) = p(x,y;ξ ) = p(y;ξ )p(x | y;ξ ), equivalentemente, p(x | y;ξ ) =
p(x;ξ )

p(y;ξ )
, (2.31)

con ξ un sistema de coordenadas en Sn. Por definición T es suficiente si y solo si la distribución condi-
cional no depende de ξ , es decir,

p(x | y;ξ ) = p(x | y;ξ
′), (2.32)

y por tanto
p(x;ξ )

p(y;ξ )
=

p(x;ξ ′)

p(y;ξ ′)
. (2.33)

2.4. Divergencias invariantes: f -divergencias

Una clase importante de divergencias en una variedad estadística son las f -divergencias. En esta
sección estudiamos las métricas que inducen y su relación con la invariancia.

Definición 2.3. Sea M una variedad estadística y f : (0,∞)→ R una función diferenciable y convexa
tal que f (1) = 0 y f ′′(1) = 1. Llamamos f -divergencia a la función D f : M×M→ R definida por

D f (p || q) = Ep

[
f
(

q(x)
p(x)

)]
=
∫

X
p(x) f

(
q(x)
p(x)

)
dx. (2.34)

Se ha omitido la dependencia en ξ para simplificar la lectura. Para demostrar que toda f -divergencia
es en efecto divergencia necesitamos recordar la desigualdad de Jensen de análisis convexo. Una función
f : R→ R es convexa si y solo si

f (λ1x1 + · · ·+λnxn)≤ λ1 f (x1)+ · · ·+λn f (xn), (2.35)

para cualesquiera λi ≥ 0 tal que ∑
n
i=1 λi = 1. La igualdad se satisface si y solo si f es lineal o xi = x j

para todo i, j = 1, . . . ,n. Además si f convexa y E[| f (X)|]< ∞ entonces

f (E[X ])≤ E[ f (X)]. (2.36)
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Proposición 2.1. Toda f -divergencia es divergencia.

Demostración. Comprobamos las tres propiedades de la definición de divergencia. Recordar que para
simplificar usamos p(x) = p(x;ξ1), q(x) = q(x;ξ2). Entonces:

1. Por la desigualdad de Jensen se tiene

D f (p || q) = Ep

[
f
(

q(x)
p(x)

)]
≥ f

(
Ep

[
q(x)
p(x)

])
= f

(∫
X

p(x)
q(x)
p(x)

dx
)
= f (1) = 0. (2.37)

2. Si p = q entonces se tiene

D f (p || p) = Ep

[
f
(

p(x)
p(x)

)]
= Ep[ f (1)] = Ep[0] = 0. (2.38)

Recíprocamente si p 6= q como f ′′(1) = 1, es decir, f es estrictamente convexa en 1 entonces

D f (p || q) = Ep

[
f
(

q(x)
p(x)

)]
> f

(
Ep

[
q(x)
p(x)

])
= f (1) = 0. (2.39)

3. Derivando respecto de los parámetros ξ1,ξ2 ∈ Ξ⊂ Rn se tiene

∂
ξ

j
1

(
p(x) f

(
q(x)
p(x)

))
= ∂

ξ
j

1
p(x) f

(
q(x)
p(x)

)
− p(x) f ′

(
q(x)
p(x)

) q(x)∂
ξ

j
1

p(x)

p(x)2 , (2.40)

∂
ξ

j
2

(
p(x) f

(
q(x)
p(x)

))
= p(x) f ′

(
q(x)
p(x)

)
∂

ξ
j

2
q(x)

p(x)
= f ′

(
q(x)
p(x)

)
∂

ξ
j

2
q(x), (2.41)

∂ξ i
2
∂

ξ
j

2

(
p(x) f

(
q(x)
p(x)

))
= p(x) f ′′

(
q(x)
p(x)

)
∂ξ i

2
q(x)

p(x)

∂
ξ

j
2
q(x)

p(x)
+ p(x) f ′

(
q(x)
p(x)

)
∂ξ i

2
∂

ξ
j

2
q(x)

p(x)

= f ′′
(

q(x)
p(x)

)
q(x)2

p(x)
∂ξ i

2
logq(x)∂

ξ
j

2
logq(x)+ f ′

(
q(x)
p(x)

)
∂ξ i

2
∂

ξ
j

2
q(x).

(2.42)

Usando (2.3), igualando ξ1 = ξ2, es decir, p(x) = q(x) y como f (1) = 0 y f ′′(1) = 1 entonces

∂
ξ

j
1
D f (ξ1 || ξ2)|ξ2=ξ1 = f (1)

∫
X

∂
ξ

j
1

p(x)dx− f ′(1)∂
ξ

j
1

∫
X

p(x)dx = 0, (2.43)

∂
ξ

j
2
D f (ξ1 || ξ2)|ξ2=ξ1 = f ′(1)∂

ξ
j

2

∫
X

q(x)dx = 0, (2.44)

∂ξ i
2
∂

ξ
j

2
D f (ξ1 || ξ2)|ξ2=ξ1 = f ′′(1)

∫
X

∂ξ i
2
logq(x)∂

ξ
j

2
logq(x) ·q(x)dx+ f ′(1)∂ξ i

2
∂

ξ
j

2

∫
X

q(x)dx

= Eq[∂ξ i
2
logq(x)∂

ξ
j

2
logq(x)] = gF

i j(ξ2),

(2.45)

y como la matriz de Fisher es definida positiva, el resultado queda demostrado.

Proposición 2.2. Toda f -divergencia en Sn es invariante.
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Demostración. Sea D f una f -divergencia en Sn, T un estadístico que genera la partición {0}, {1,2},
{3},. . . ,{n} del espacio muestral {0,1, . . . ,n} y DT

f una f -divergencia inducida por T en Sn−1. Basta de-
mostrar el resultado para la partición mencionada porque en Sn cualquier otra partición es composición
de estas. Las divergencias D f , DT

f son de la forma

D f (p || q) = p0 f
(

q0

p0

)
+ p1 f

(
q1

p1

)
+ p2 f

(
q2

p2

)
+ p3 f

(
q3

p3

)
+ · · ·+ pn f

(
qn

pn

)
, (2.46)

DT
f (p || q) = p0 f

(
q0

p0

)
+(p1 + p2) f

(
q1 +q2

p1 + p2

)
+ p3 f

(
q3

p3

)
+ · · ·+ pn f

(
qn

pn

)
, (2.47)

por tanto para demostrar la monotonía de la información, DT
f (p || q)≤ D f (p || q) hay que demostrar

(p1 + p2) f
(

q1 +q2

p1 + p2

)
≤ p1 f

(
q1

p1

)
+ p2 f

(
q2

p2

)
. (2.48)

Introducimos la siguiente notación
u1 =

q1

p1
, u2 =

q2

p2
, (2.49)

y por la desigualdad de Jensen

(p1 + p2) f
(

q1 +q2

p1 + p2

)
= (p1 + p2) f

(
p1

p1 + p2
u1 +

p2

p1 + p2
u2

)
≤ (p1 + p2)

(
p1

p1 + p2
f (u1)+

p2

p1 + p2
f (u2)

)
= p1 f (u1)+ p2 f (u2) = p1 f

(
q1

p1

)
+ p2 f

(
q2

p2

)
.

(2.50)

Para demostrar la invariancia hay que ver que (2.48) se satisface con igualdad si y solo si T es suficiente.
Como estamos en el caso Sn, por (2.33), T es suficiente si y solo si u1 = u2, o equivalentemente, la
desigualdad de Jensen se verifica con igualdad. Por tanto T es suficiente si y solo si

(p1 + p2) f
(

q1 +q2

p1 + p2

)
= p1 f

(
q1

p1

)
+ p2 f

(
q2

p2

)
, (2.51)

y entonces T es suficiente si y solo si D f = DT
f . Así las f -divergencias son invariantes en Sn.

Nota 2. Tomando f (u) = − logu obtenemos la divergencia de Kullback-Leibler. El tercer apartado
de la proposición 2.1 demuestra que toda f -divergencia induce la métrica de Fisher. El resultado de
la proposición 2.2 se mantiene en cualquier variedad estadística [3]. Por tanto la métrica de Fisher es
invariante en cualquier variedad estadística.

2.5. Unicidad de la métrica invariante: la métrica de Fisher

La importancia y singularidad de la métrica de Fisher reside en el hecho de que es la única mé-
trica invariante, salvo constante multiplicativa, en una variedad estadística, es decir, la única métrica
razonable en estas variedades teniendo en cuenta su naturaleza estadística. Chentsov [7] demostró este
resultado usando teoría de categorías, nosotros lo demostramos para el caso particular de las variedades
Sn mediante una reformulación de la invariancia.

Consideramos Sn, es decir, una variable aleatoria X que toma valores en {0,1, . . . ,n} y distribución
de probabilidad p = (p0, p1, . . . , pn) ∈ Sn ⊂ Rn+1

+ con pi = P(X = i), i = 0,1, . . . ,n. Un estadístico T
genera una partición {A j} j=0,1,...,m del conjunto {0,1, . . . ,n} con m ≤ n y una variable aleatoria Y =
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T (X) que toma valores en {0,1, . . . ,m} y distribución de probabilidad q = (q0,q1, . . . ,qm)∈ Sm ⊂Rm+1
+

con
q j = P(Y = j) = ∑

i∈A j

pi, j = 0,1, . . . ,m. (2.52)

La partición {A j} permite definir la aplicación

f : Sn→ Sm; f : p→ f (p) = q; q j = ∑
i∈A j

pi, (2.53)

que no es inyectiva, no tiene inversa. Una aplicación más interesante se puede definir en sentido contra-
rio. Sea (ri j)i=0,1,...,n; j=0,1,...,m una distribución de probabilidad condicionada cualquiera

ri j = P(X = i | Y = j) =

{
P(X = i | Y = j), si i ∈ A j,

0, si i /∈ A j,
(2.54)

que cumple ∑
n
i=0 ri j = ∑i∈A j P(X = i | Y = j) = 1. Entonces podemos definir la aplicación

h : Sm→ Sn; h : q→ h(q) = p; pi =
m

∑
j=0

ri jq j = ri jq j, (2.55)

donde la última igualdad se debe a que ri j = 0 a no ser que i ∈ A j, es decir, en la suma solo hay un
término no nulo. Por tanto la aplicación h es inyectiva, tiene inversa. Las aplicaciones h se denominan
aplicaciones de Markov y son inmersiones de la variedad Sm en Sn. Las aplicaciones de Markov tienen
la siguiente propiedad

n

∑
i=0

pi =
n

∑
i=0

m

∑
j=0

ri jq j =
m

∑
j=0

q j

n

∑
i=0

ri j =
m

∑
j=0

q j = 1. (2.56)

Consideramos ahora los espacios tangentes TpSn, TqSm y sus respectivas bases {en
i }i=1,...,n, {em

j } j=1,...,m

donde en
i = ∂i =

∂

∂ pi
, em

j = ∂ j =
∂

∂q j
. Si U,V ∈ TqSm, u,v ∈ TpSn entonces son combinación lineal de la

base

V =V jem
j =

m

∑
j=1

V jem
j , v = vien

i =
n

∑
i=1

vien
i . (2.57)

El producto escalar viene dado por

〈U,V 〉q = gm
rk(q)U

rV k, 〈u,v〉p = gn
rk(p)urvk, (2.58)

donde
gm

rk(q) = 〈em
r ,e

m
k 〉q, gn

rk(p) = 〈en
r ,e

n
k〉p. (2.59)

Dada una aplicación de Markov h : Sm→ Sn, por teoría de variedades tenemos asociada una aplicación
lineal entre los correspondientes espacios tangentes denominada aplicación diferencial definida por

dhq : TqSm→ TpSn; dhq(em
j ) =

n

∑
i=1

∂ pi

∂q j
en

i , (2.60)

Las variedades Sm, Sn son combinaciones convexas de puntos, luego combinaciones lineales y por tanto
las variedades y sus correspondientes espacios tangentes coindicen. Entonces

dhq(em
j ) =

n

∑
i=1

∂ pi

∂q j
en

i =
n

∑
i=1

ri jen
i , (2.61)

y
dhq(V ) = v con vi = ri jV j. (2.62)



16 Capítulo 2. Geometría de la información

Reformulamos la invariancia de las métricas en las variedades Sn mediante la siguiente expresión que
involucra aplicaciones de Markov

〈U,V 〉q = 〈dhq(U),dhq(V )〉p = 〈u,v〉p. (2.63)

Demostraremos que existe una única métrica invariante bajo aplicaciones de Markov en Sn, salvo cons-
tante multiplicativa, que es la métrica de Fisher. La reformulación se basa en que fijada una distribución
condicional {ri j}, fijada una aplicación de Markov h, las distribuciones q∈ Sm y su imagen h(q)= p∈ Sn

representan la misma información. La imagen del simplex Sm en Sn por una aplicación de Markov h es
idéntica estadísticamente a Sm, en el sentido que es tan fácil o difícil distinguir dos distribuciones en Sm

como distinguir sus respectivas imágenes en Sn. Cuales sean las relaciones geométricas en Sm deben ser
exactamente las mismas que en h(Sm). Para demostrar el teorema de Chentsov, necesitamos calcular la
métrica de Fisher en Sm−1. Sea q = (q0, . . . ,qm−1) ∈ Sm−1, donde qk = P(X = k;ξ ), con k = 0, . . . ,m y
ξ = (q1, . . . ,qm−1) un sistema de coordenadas. Derivamos respecto q1, . . . ,qm y tenemos

∂iq0 = ∂i(1−
m−1

∑
j=1

q j) =−1, i = 1, . . . ,m−1, ∂iq j = δi j =

{
0, si i 6= j
1, si i = j

para i, j = 1, . . . ,m−1.

(2.64)
Entonces para todo i, j = 1, . . . ,m−1, la métrica de la información de Fisher es la matriz

gi j(ξ ) = E[∂i logP(X = k;ξ )∂ j logP(X = k;ξ )] = E[∂i logqk∂ j logqk] =
m−1

∑
k=0

qk∂i logqk∂ j logqk

=
m−1

∑
k=0

∂iqk

qk

∂ jqk

qk
qk =

∂iq0∂ jq0

q0
+

m−1

∑
k=1

∂iqk

qk

∂ jqk

qk
qk =

1
q0

+
m−1

∑
k=1

δikδ jk

qk
=

1
q0

+
δi j

q j
.

(2.65)

Teorema 2.3. Existe una única métrica invariante en Sn salvo constante multiplicativa que viene dada
por la métrica de la información de Fisher.

Demostración. Consideramos el simplex Sn−1 como subconjunto de Rn
+ = {(x1, . . . ,xn) ∈ Rn | xi >

0, i = 1, . . . ,n}. Si m = n entonces las aplicaciones f , h son permutaciones, que son producto de tras-
posiciones. Fijamos a,b ∈ {1, . . . ,n} y consideramos la trasposición que intercambia los lugares a,b.
Entonces la matriz ri j de h es una matriz de trasposición y utilizando (2.61) tenemos

dhq(en
a) = en

b, dhq(en
b) = en

a y dhq(en
j) = en

j , ∀ j 6= a,b. (2.66)

La hipótesis de invarianza se escribe para n = m como

〈en
j1 ,e

n
j2〉= 〈dhq(en

j1),dhq(en
j2)〉, (2.67)

y por tanto llegamos a las expresiones

gn
a j(q) = gn

b j(p) y gn
b j(q) = gn

a j(p), ∀ j 6= a,b, (2.68)

gn
aa(q) = gn

bb(p) y gn
bb(q) = gn

aa(p), (2.69)

gn
i j(q) = gn

i j(p), ∀i, j 6= a,b. (2.70)

Las condiciones anteriores son útiles en el baricentro de Sn−1 que es el punto

p̄ =

(
1
n
, . . . ,

1
n

)
∈ Rn

+, (2.71)

ya que este punto p̄ es invariante bajo permutaciones de sus componentes. Así para todas las elecciones
posibles de pares (a,b) tenemos

〈ei,e j〉np̄ = gn
i j(p̄) = B(n), ∀i 6= j, (2.72)
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〈ei,ei〉np̄ = gn
ii(p̄) =C(n), ∀i. (2.73)

En definitiva la expresión de la métrica en p̄ viene dada por la matriz Gn = (gn
i j(p̄))i, j=1,...,n con

gn
i j(p̄) = A(n)δi j +B(n), ∀i, j = 1, . . . ,n, (2.74)

donde A(n) =C(n)−B(n), con A(n),B(n),C(n) ∈ R dependen de n y δi j es la Delta de Kronecker. En
forma matricial

Gn = A(n)


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

+B(n)

1 . . . 1
...

. . .
...

1 . . . 1

 . (2.75)

Definimos la función φ : Rn
+→ R dada por

φ(p1, . . . , pn) =
n

∑
i=1

pi−1. (2.76)

Como φ es diferenciable y la matriz Jacobiana de φ en un punto p = (p1, . . . , pn) es

Φ = (
∂φ

∂ p1
, . . . ,

∂φ

∂ pn
)|p = (1, . . . ,1), (2.77)

que tiene rango 1 entonces por teoría de varieades Sn−1 = φ−1(0) es una variedad diferenciable de
dimensión n− 1. Tomando las cartas identidad, Φ es la matriz de la aplicación diferencial dφp. Sea
z = (z1, . . . ,zn) ∈ TpSn−1 un vector tangente a Sn−1 en un punto p entonces dφp(z) = 0, es decir,

(
1 1 · · · 1

)


z1
z2
...

zn

= 0. (2.78)

Por tanto al aplicar la métrica Gn a vectores tangentes de Sn−1 el segundo sumando se anula

B(n)
(
z1 · · · zn

)1 . . . 1
...

. . .
...

1 . . . 1


z1

...
zn

= 0, (2.79)

luego podemos escribir la métrica Gn así

gn
i j(p̄) = A(n)δi j. (2.80)

Consideramos puntos con coordenadas racionales

q = (q1, . . . ,qm) =

(
k1

n
,
k2

n
, . . . ,

km

n

)
∈ Sm−1, (2.81)

donde k j ∈ Z+ tal que ∑
m
j=1 k j = n. Sea la aplicación de Markov h definida mediante la distribución

condicional

ri j =

{
1
k j
, si i ∈ A j,

0, si i /∈ A j,
(2.82)

donde {A j} j=1,...,m es la partición del conjunto de valores {1, . . . ,n} dada por

A1 = {1,2, . . . ,k1}, A2 = {k1 +1, . . . ,k1 + k2}, . . . , Am = {k1 + · · ·+ km−1 +1, . . . ,k1 + · · ·+ km = n},
(2.83)
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y cada A j contiene exactamente k j elementos. Entonces h aplica todo punto q en p̄

h(q) = (p1, . . . , pn) = (r1 jq j, . . . ,rn jq j) =

(
1
k j

k j

n
, . . . ,

1
k j

k j

n

)
=

(
1
n
, . . . ,

1
n

)
= p̄. (2.84)

Sea em
1 ∈ Rm

+ un vector básico del espacio tangente de Sm−1 entonces

dhq(em
1 ) =

n

∑
i=1

ri1en
i =

1
k1

en
1 + · · ·+

1
k1

en
k1
=

1
k1
(en

1 + · · ·+ en
k1
). (2.85)

De forma similar para cada j = 2, . . . ,m

dhq(em
j ) =

n

∑
i=1

ri jen
i =

1
k j
(en

k1+···+k j−1+1 + · · ·+ en
k1+···+k j

). (2.86)

Por tanto aplicando la hipótesis de invariancia y utilizando (2.80) tenemos

gm
11(q) = 〈em

1 ,e
m
1 〉= 〈h∗(em

1 ),h∗(e
m
1 )〉=

〈
1
k1

k1

∑
i=1

en
i ,

1
k1

k1

∑
i=1

en
i

〉

=
1
k2

1

(
〈en

1,e
n
1〉+ · · ·+ 〈en

1,e
n
k1
〉+ 〈en

2,e
n
1〉+ · · ·+ 〈en

2,e
n
k1
〉+ · · ·+ 〈en

k1
,en

1〉+ · · ·+ 〈en
k1
,en

k1
〉
)

=
k1A(n)

k1
2 =

A(n)
k1

=
nc
k1

=
c
q1

,

(2.87)

donde la constante multiplicativa c ∈ R determina la escala de la métrica. Análogamente para cada
j = 2, . . . ,m

gm
j j(q) = 〈em

j ,e
m
j 〉= 〈h∗(em

j ),h∗(e
m
j )〉=

〈
1
k j

∑
i∈A j

en
i ,

1
k j

∑
i∈A j

en
i

〉
=

k jA(n)
k j

2 =
A(n)

k j
=

nc
k j

=
c
q j
. (2.88)

Hemos demostrado que toda métrica invariante en Sm−1 es de la forma

gm
i j(q) =

{
c
q j
, si i = j,

0, si i 6= j.
(2.89)

que coincide con la métrica obtenida en (2.65) salvo la constante multiplicativa c ∈ R. El teorema
queda demostrado para puntos racionales de la forma (2.81). Como Q es denso en R, por continuidad
el resultado se mantiene para todo punto q ∈ Sm−1.

2.6. Ejemplos de la métrica de Fisher

En esta sección calculamos la métrica de Fisher para algunos de los modelos estadísticos más impor-
tantes. Utilizamos en los cálculos la fórmula (2.14). La métrica de Fisher de un modelo finito general es
la matriz de la fórmula (2.65). Presentamos la métrica de Fisher para los modelos binomial, geométrico,
Poisson, normal y exponencial.

2.6.1. Modelo binomial

La distribución de probabilidad de una variable aleatoria X = B(n,x) binomial de parámetros n ∈N,
x ∈ (0,1) viene dada por

P(X = k;x) =

{(n
k

)
xk(1− x)n−k, si k ∈ {0, . . . ,n},

0, si k /∈ {0, . . . ,n}.
(2.90)



Geometría de la información - Ángel Palacios Polo 19

Tomamos el logaritmo y derivamos dos veces respecto del parámetro x

logP(X = k;x) = log
(

n
k

)
+ logxk +(n− k) log(1− x), (2.91)

∂x logP(X = k;x) =
k
x
− n− k

1− x
, ∂

2
x logP(X = k;x) =− k

x2 −
n− k

(1− x)2 . (2.92)

Entonces la métrica de Fisher de un modelo binomial es el escalar

gF
11(x) =−E[∂ 2

x log p(X = k;x)] =
n

∑
k=0

(
k
x2 +

n− k
(1− x)2

)
P(X = k;x)

=
1
x2

n

∑
k=0

kP(X = k;x)+
1

(1− x)2

(
n

n

∑
k=0

P(X = k;x)−
n

∑
k=0

kP(X = k;x)

)
=

n
x(1− x)

,

(2.93)

donde se ha usado que la media de X es E[X ] = ∑
n
k=0 kP(X = k;x) = nx. En particular para n = 1

tenemos el modelo Bernoulli y su correspondiente métrica de Fisher.

2.6.2. Modelo geométrico

La distribución de probabilidad de una variable aleatoria X = G(p) geométrica de parámetro p ∈
(0,1) viene dada por

P(X = k; p) =

{
p(1− p)k−1, si k ∈ {1,2, . . .},
0, si k /∈ {1,2, . . .}.

(2.94)

Tomamos el logaritmo y derivamos dos veces respecto del parámetro p

logP(X = k; p) = log p+(k−1) log(1− p), (2.95)

∂p logP(X = k; p) =
1
p
+

k−1
p−1

, ∂
2
p logP(X = k; p) =− 1

p2 −
k−1

(p−1)2 . (2.96)

Entonces la métrica de Fisher de un modelo geométrico es el escalar

gF
11(p) =−E[∂ 2

p logP(X = k; p)] =
∞

∑
k=1

(
1
p2 +

k−1
(p−1)2

)
P(X = k; p)

=
1
p2 +

1
(1− p)2

(
1− p

p

)
=

1
p2(1− p)

,

(2.97)

donde se ha usado que la media E[X ] = ∑
∞
k=1 kP(X = k; p) = 1

p .

2.6.3. Modelo de Poisson

La distribución de probabilidad de una variable aleatoria X = P(λ ) de Poisson de parámetro λ > 0
viene dada por

P(X = k;λ ) =

{
e−λ λ k

k! , si k ∈ {0,1, . . .},
0, si k /∈ {0,1, . . .}.

(2.98)

Tomamos el logaritmo y derivamos dos veces respecto del parámetro λ

logP(X = k;λ ) =−λ + k logλ − logk!, ∂λ logP(X = k;λ ) =−1+
k
λ
, ∂

2
λ

logP(X = k;λ ) =− k
λ 2 .

(2.99)
Entonces la métrica de Fisher de un modelo de Poisson es el escalar

gF
11(λ ) =−E[∂ 2

λ
logP(X = k;λ )] =

∞

∑
k=0

k
λ 2 P(X = k;λ ) =

1
λ 2

∞

∑
k=0

kP(X = k;λ ) =
1
λ
, (2.100)

donde se ha usado que la media de X es E[X ] = ∑
∞
k=0 kP(X = k;λ ) = λ .



20 Capítulo 2. Geometría de la información

2.6.4. Modelo normal

La distribución de probabilidad de una variable aleatoria X = N(µ,σ) normal de parámetros µ ∈R,
σ > 0 viene dada por la función de densidad

p(x;ξ ) = p(x; µ,σ) =
1

σ
√

2π
e−

1
2 (

x−µ

σ
)2
, x ∈ R. (2.101)

Tomamos el logaritmo y derivamos parcialmente respecto de µ y σ :

log p(x; µ,σ) =− logσ − log(
√

2π)− 1
2

(
x−µ

σ

)2

, (2.102)

∂µ log p(x; µ,σ) =
x−µ

σ2 , ∂σ log p(x; µ,σ) =
−1
σ

+
(x−µ)2

σ3 , (2.103)

∂
2
µ log p(x; µ,σ) =− 1

σ2 , ∂σ ∂µ log p(x; µ,σ) =−2(x−µ)

σ3 , ∂
2
σ log p(x; µ,σ) =

1
σ2 −

3
σ2

(
x−µ

σ

)2

.

(2.104)
Entonces la métrica de Fisher de un modelo normal es la matriz cuyas entradas son

gF
11(µ,σ) =−E[∂ 2

µ log p(x; µ,σ)] =
∫

∞

−∞

1
σ2

1
σ
√

2π
e−

1
2(

x−µ

σ )
2

dx =
1

σ2 . (2.105)

gF
12(µ,σ) = gF

21(µ,σ) =−E[∂µ∂σ log p(x; µ,σ)] =
∫

∞

−∞

−2(x−µ)

σ3
1

σ
√

2π
e−

1
2(

x−µ

σ )
2

dx

=
∫

∞

−∞

− 2y
σ3

1
σ
√

2π
e−

1
2(

y
σ )

2

dy = 0,
(2.106)

ya que es la integral de una función impar en un intervalo simétrico.

gF
22(µ,σ) =−E[∂ 2

σ log p(x; µ,σ)] =−
∫

∞

−∞

(
1

σ2 −
3

σ2

(
x−µ

σ

)2
)

1
σ
√

2π
e−

1
2(

x−µ

σ )
2

dx

=− 1
σ2 +

3
σ2

∫
∞

−∞

z2 1√
2π

e−
1
2 z2

dz =
2

σ2 ,

(2.107)

donde hemos usado el cambio de variable z = x−µ

σ
y
∫

∞

−∞
z2 1√

2π
e−

1
2 z2

dz = 1. En efecto, el integrando es

función par en un intervalo simétrico y aplicando los cambios de variable y = z2, t = 1
2 y, tenemos∫

∞

−∞

z2 1√
2π

e−
1
2 z2

dz =
2√
π

∫
∞

0
t

3
2−1e−tdt =

2√
π

Γ

(
3
2

)
=

2√
π

1
2

Γ

(
1
2

)
= 1, (2.108)

ya que Γ(n+1) = nΓ(n) y Γ
(1

2

)
=
√

π . En definitiva la métrica de Fisher es la matriz(
gF

11(µ,σ) gF
12(µ,σ)

gF
21(µ,σ) gF

22(µ,σ)

)
=

( 1
σ2 0
0 2

σ2

)
. (2.109)

Haciendo el cambio de parametrización µ → µ√
2

la métrica (2.109) se transforma en 2
σ2 I, que es un

múltiplo positivo de la métrica del plano hiperbólico. Análogamente la métrica de Fisher de un modelo
N(µ,Σ) normal multivariante de dimensión n con µ vector de medias y Σ = σ2I matriz de covarianzas
múltiplo de la identidad es 

1
σ2 0 · · · 0

0
. . . . . .

...
...

. . . 1
σ2 0

0 · · · 0 2n
σ2

 . (2.110)

Haciendo el cambio de parametrización µ → µ√
2n

la métrica (2.110) se transforma en 2n
σ2 I, que es un

múltiplo positivo de la métrica del espacio hiperbólico. Por tanto con una parametrización adecuada, el
modelo estadístico normal con matriz de covarianzas múltiplo de la identidad dotado de la métrica de
Fisher tiene la geometría del espacio hiperbólico y por tanto las mismas geodésicas.
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2.6.5. Modelo exponencial

La distribución de probabilidad de una variable aleatoria X = E(λ ) exponencial de parámetro λ > 0
viene dada por la función de densidad

p(x;λ ) =

{
λe−λx, si x > 0,
0, si x≤ 0.

(2.111)

Tomamos el logaritmo y derivamos dos veces respecto del parámetro λ

log p(x;λ ) = logλ −λx, ∂λ log p(x;λ ) =
1
λ
− x, ∂

2
λ

log p(x;λ ) =− 1
λ 2 . (2.112)

Entonces la métrica de Fisher de un modelo exponencial es el escalar

gF
11(λ ) =−Ep[∂

2
λ

p(x;λ )] =− 1
λ 2

∫
∞

0
−λe−λxdx =− 1

λ 2

[
e−λx

]∞

x=0
=

1
λ 2 . (2.113)

2.7. Geometría invariante

Una vez estudiadas las divergencias y métricas invariantes en variedades estadísticas, es el momento
de estudiar conexiones invariantes en estas variedades. Utilizaremos la siguiente notación

Di,(ξ ) = ∂ξ i
1
D(ξ1 || ξ2)|ξ1=ξ2≡ξ , D,i(ξ ) = ∂ξ i

2
D(ξ1 || ξ2)|ξ1=ξ2≡ξ , (2.114)

Di j,k(ξ ) = ∂ξ i
1
∂

ξ
j

1
∂

ξ k
2
D(ξ1 || ξ2)|ξ1=ξ2≡ξ . (2.115)

Sabemos que una divergencia D en una variedad M induce una métrica g(D) cuyas componentes son

g(D)
i j (ξ ) = D,i j(ξ ). (2.116)

Las divergencias verifican D(P || Q) = 0 si y solo si P = Q y por tanto g(D) admite las siguientes
expresiones alternativas para sus componentes

g(D)
i j (ξ ) = Di j,(ξ ) = D,i j(ξ ) =−Di, j(ξ ) =−D j,i(ξ ). (2.117)

Si Γ
p
i j son las componentes de una conexión ∇ en una variedad Riemanniana (M,g), denotamos por

Γi jk = Γ
p
i jgkp que dependen del punto ξ . Se puede demostrar que D induce dos conexiones ∇(D), ∇(D∗)

en M por derivación mediante la fórmula para sus componentes en un sistema de coordenadas locales

Γ
(D)
i jk (ξ ) =−Di j,k(ξ ) =−∂ξ i

1
∂

ξ
j

1
∂

ξ k
2
D(ξ1 || ξ2)|ξ2=ξ1≡ξ , (2.118)

Γ
(D∗)
i jk (ξ ) =−Dk,i j(ξ ) =−∂

ξ k
1
∂ξ i

2
∂

ξ
j

2
D(ξ1 || ξ2)|ξ2=ξ1≡ξ , (2.119)

que llamamos conexiones inducidas. Las conexiones inducidas ∇(D), ∇(D∗) son simétricas

Γ
(D)
i jk (ξ ) =−Di j,k(ξ ) =−D ji,k(ξ ) = Γ

(D)
jik (ξ ) luego Γ

p
i j(ξ ) = Γ

p
ji(ξ ), (2.120)

ya que las derivadas parciales son intercambiables. Análogamente para los Γ
(D∗)
i jk (ξ ).

Definición 2.4. Sea (M,g) una variedad Riemanniana. Dos conexiones ∇,∇∗ en M se dicen duales
respecto de la métrica g si

Zg(X ,Y ) = g(∇ZX ,Y )+g(X ,∇∗ZY ), ∀X ,Y,Z ∈X (M). (2.121)
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Eligiendo X = ∂i, Y = ∂ j, Z = ∂k y tras unos cálculos la fórmula (2.121) se transforma en

∂kgi j = Γ
p
kigp j +Γ

r∗
k jgir = Γki j +Γ

∗
k ji. (2.122)

En la definición 2.4 dada una conexión ∇ el miembro de la izquierda y el primer sumando del miembro
de la derecha son conocidos. El segundo sumando del miembro de la derecha determina totalmente la
conexión ∇∗, luego dada ∇ existe una única conexión dual ∇∗.

Proposición 2.3. Sean ∇, ∇∗ dos conexiones simétricas y duales en una variedad Riemanniana (M,g).
Entonces la conexión de Levi-Civita que denotamos por ∇(0) viene dada por

∇
(0) =

1
2
(∇+∇

∗). (2.123)

Demostración. Es evidente que ∇(0) es conexión porque es combinación convexa de dos conexiones.
Si ∇, ∇∗ son duales respecto de g, utilizando la relación de dualidad

Xg(Y,Z) =
1
2

Xg(Y,Z)+
1
2

Xg(Y,Z) =
1
2
[g(∇XY,Z)+g(Y,∇∗X Z)]+

1
2
[g(∇∗XY,Z)+g(Y,∇X Z)]

= g
(

∇XY +∇∗XY
2

,Z
)
+g
(

Y,
∇X Z +∇∗X Z

2

)
= g(∇(0)

X Y,Z)+g(Y,∇(0)
X Z),

(2.124)

luego ∇(0) es isométrica. Sean T,T ∗,T (0) las torsiones de ∇,∇∗,∇(0) respectivamente. Entonces

T (0)(X ,Y ) = ∇
(0)
X Y −∇

(0)
Y X− [X ,Y ] =

∇XY +∇∗XY
2

− ∇Y X +∇∗Y X
2

− [X ,Y ]

=
1
2
(∇XY −∇Y X− [X ,Y ])+

1
2
(∇∗XY −∇

∗
Y X− [X ,Y ]) =

1
2

T (X ,Y )+
1
2

T ∗(X ,Y ) = 0,

(2.125)

ya que ∇, ∇∗ son simétricas, sus torsiones son T = T ∗ = 0, luego ∇(0) es simétrica.

Teorema 2.4. Las conexiones inducidas ∇(D), ∇(D∗) son duales respecto de la métrica inducida g(D).

Demostración. Las componentes de la métrica inducida g(D) son

g(D)
i j (ξ ) =−Di, j(ξ ). (2.126)

Derivando respecto de ξ k obtenemos la relación de dualidad

∂kg(D)
i j (ξ ) =−Dki, j(ξ )−Di,k j(ξ ) = Γ

(D)
ki j (ξ )+Γ

(D∗)
k ji (ξ ). (2.127)

Proposición 2.4. Sea D f una f -divergencia. Las componentes de las conexiones inducidas por D f en
un sistema de coordenadas locales son

Γ
(D f )
i jk (ξ ) = Ep

[(
∂i∂ j log p(x;ξ )+

1−α

2
∂i log p(x;ξ )∂ j log p(x;ξ )

)
(∂k log p(x;ξ ))

]
, (2.128)

Γ
(D∗f )
i jk (ξ ) = Ep

[(
∂i∂ j log p(x;ξ )+

1+α

2
∂i log p(x;ξ )∂ j log p(x;ξ )

)
(∂k log p(x;ξ ))

]
, (2.129)

con α = 3+2 f ′′′(1) ∈ R.
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Demostración. La técnica de la demostración es análoga a la de proposición 2.1. Apoyándonos en los
cálculos de la proposición 2.1, derivamos respecto de ξ k

1

∂
ξ k

1
∂ξ i

2
∂

ξ
j

2

(
p(x) f

(
q(x)
p(x)

))
= ∂

ξ k
1

p(x) f ′′
(

q(x)
p(x)

)
∂ξ i

2
q(x)∂

ξ
j

2
q(x)

p(x)2

− f ′′′
(

q(x)
p(x)

) q(x)∂
ξ k

1
p(x)∂ξ i

2
q(x)∂

ξ
j

2
q(x)

p(x)3

− f ′′
(

q(x)
p(x)

) 2∂ξ i
2
q(x)∂

ξ
j

2
q(x)∂

ξ k
1

p(x)

p(x)2

+∂
ξ k

1
p(x) f ′

(
q(x)
p(x)

)
∂ξ i

2
∂

ξ
j

2
q(x)

p(x)

− f ′′
(

q(x)
p(x)

) q(x)∂
ξ k

1
p(x)∂ξ i

2
∂

ξ
j

2
q(x)

p(x)2

− f ′
(

q(x)
p(x)

)
∂ξ i

2
∂

ξ
j

2
q(x)∂

ξ k
1

p(x)

p(x)
.

(2.130)

Usando el intercambio (2.3), igualando ξ1 = ξ2, es decir, p(x) = q(x) y como f (1) = 0 y f ′′(1) = 1
entonces

Γ
(D∗f )
i jk (ξ ) =−∂

ξ k
1
∂ξ i

2
∂

ξ
j

2
D f (ξ1 || ξ2)|ξ1=ξ2≡ξ

=
∫

X

(
(1+ f ′′′(1))∂i p(x)∂ j p(x)∂k p(x)

p(x)2 +
∂k p(x)∂i∂ j p(x)

p(x)

)
dx,

(2.131)

que coincide con (2.129) para α = 3+2 f ′′′(1). Se procede análogamente para Γ
(D f )
i jk (ξ ).

Por el teorema 2.4, la proposición 2.3 y la proposición 2.4 las componentes de la conexión de Levi-
Civita en una variedad estadística son

Γ
(D f )
i jk (ξ )+Γ

(D∗f )
i jk (ξ )

2
= Ep

[(
∂i∂ j log p(x;ξ )+

1
2

∂i log p(x;ξ )∂ j log p(x;ξ )

)
∂k log p(x;ξ )

]
, (2.132)

que coincide con (2.128) y (2.129) para α = 0. Denotamos por ∇(α) = ∇(D f ), ∇(−α) = ∇
(D∗f ) y se

denominan α-conexiones. En resumen, las α-conexiones forman una familia de conexiones simétricas,
invariantes y duales respecto de la métrica de Fisher en las variedades estadísticas, obteniéndose la
conexión de Levi-Civita para α = 0.

2.8. Aplicación en optimización

La geometría de la información tiene aplicación en el área de la optimización. Sea una función
objetivo diferenciable f : Rn→ R y consideramos el problema de minimización

(P) mı́n
x∈Rn

f (x). (2.133)

Para resolver (P) elegimos una familia de distribuciones de probabilidad paramétrica M = {p(x;ξ )}
tal que formen una variedad estadística. Resultados de estadística [10, 11, 12] permiten reemplazar el
problema original (P) por el siguiente problema equivalente llamado relajación estocástica,

(R) mı́n
ξ∈Ξ

F(ξ ), (2.134)
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donde F : Ξ→ R es F(ξ ) = Ep[ f (x)]. Los problemas (P), (R), son equivalentes en determinadas con-
diciones, tienen el mismo valor mínimo y podemos recuperar la solución de (P) a partir de la solución
de (R) y viceversa. Resolvemos el problema (R) utilizando el método de descenso del gradiente en la
variedad M. Este método consiste en seguir la dirección dada por el vector gradiente que es la de má-
xima variación para encontrar óptimos locales. Como el objetivo es minimizar tomaremos el gradiente
cambiado de signo para encontrar un mínimo local. Podemos plantearlo de forma continua mediante un
problema de valor inicial como sistema de ecuaciones diferenciales ordinarias{

ξ̇ =−∇ξ F(ξ )

ξ̇ (0) = ξ0.
(2.135)

Por el teorema de exitencia y unicidad de solución de problemas de valor inicial existe una única solu-
ción local ξ (t), que es la curva que nos conduce desde ξ0 a un mínimo local. Por un lado en el plantea-
miento anterior la resolución exacta no siempre es posible, por lo que daremos un método iterativo. Por
otro lado el gradiente de una función f se define como el vector ∇ f (x) tal que

〈∇ f (x),v〉= d f (x)v, (2.136)

donde d f (x)v es la diferencial de f en el punto x aplicada al vector v y 〈 , 〉 es un producto escalar, luego
el gradiente depende de la métrica. Por el teorema de Chentsov existe una única métrica razonable en
las variedades estadísticas, la métrica de la información de Fisher, que por tanto es la que elegimos.
Entonces tenemos el siguiente gradiente, llamado gradiente natural

∇̃ξ =
(
GF)−1

(ξ )
∂

∂ξ
. (2.137)

Discretizamos t proponiendo el siguiente método iterativo conocido como IGO, basado en el descenso
del gradiente natural

ξt+1 = ξt −λt∇̃ξt F(ξt), λt > 0, t = 0,1,2 . . . (2.138)

Dado un punto inicial ξ0 calculamos el gradiente natural ∇̃ξ0F(ξ0) que nos da una dirección para una
recta. Sobre dicha recta siguiendo la dirección de descenso del gradiente, el valor de la función objetivo
mejora hasta un cierto punto en que puede empeorar y calculamos ese punto. Se trata de encontrar el
mínimo de una función sobre una recta, es decir, el mínimo de una función de una variable que puede
resolverse de forma exacta o numérica mediante bisección o Newton-Raphson. Esto determina el valor
de λ0 y volviendo a (2.138) tenemos lo necesario para obtener el siguiente punto ξ1 y seguir iterando.

El método IGO busca el siguiente punto sobre la recta determinada por el vector gradiente natural,
pero las rectas no son una noción intrínseca de la variedad, dependen de la parametrización, del sistema
de coordenadas. Sin embargo la generalización de las rectas, es decir, las geodésicas sí son intrínse-
cas a la variedad, no dependen de la parametrización. Cambiamos en IGO las rectas por geodésicas
y obtenemos el método conocido como GIGO. Necesitamos definir la aplicación exponencial de una
variedad.

Definición 2.5. Sea M una variedad, p ∈M un punto y v ∈ TpM un vector tangente a M en p. Entonces
existe una única geodésica γ = (x1(t), . . . ,xn(t)) que pasa por el punto p con vector tangente v dada por
la solución del sistema {

ẍk +Γk
i jẋ

iẋ j = 0,
x(0) = p, ẋ(0) = v.

(2.139)

Entonces llamamos aplicación exponencial en M a

expp : TpM→M; v→ expp(v) = γ(1). (2.140)
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Una vez definida la aplicación exponencial, el método iterativo GIGO viene dado por

ξt+1 = expξt
(λtY ) donde Y =−∇̃ξt F(ξt), λt > 0, t = 0,1,2 . . . (2.141)

El cálculo exacto de geodésicas en general es complicado y recurrimos a resoluciones numéricas, sin
embargo, para la variedad de las distribuciones normales, podemos calcularlas de forma exacta. De-
notamos por Gn la variedad estadística de distribuciones de probabilidad normales multivariantes de
dimensión n dotada con la métrica de Fisher y por G̃n la variedad estadística de distribuciones de pro-
babilidad normales multivariantes de dimensión n con matriz de covarianzas múltiplo de la identidad
dotada con la métrica de Fisher. Por la sección 2.6.4 las geodésicas de G̃n coinciden con las del espacio
hiperbólico que vimos en el primer capítulo. El siguiente resultado es ahora inmediato:

Teorema 2.5 (Geodésicas en G̃n). Sea γ : t → N(µ(t),σ(t)2I) una geodésica en G̃n. Entonces existen
a,b,c,d ∈ R con ad−bc = 1, v > 0 tal que

µ(t) = µ(0)+
√

2n
µ̇0

‖µ̇0‖
r(t), σ(t) = Im(γC(t)), r(t) = Re(γC(t)), γC(t) =

aievt +b
cievt +d

. (2.142)

Para las geodésicas de Gn, usando el teorema de Noether se demuestra que si γ : t → N(µt ,Σt) es
una geodésica en Gn entonces las cantidades

Jµ = Σ
−1
t µ̇t , JΣ = Σ

−1(µ̇t µ
T
t + Σ̇t), (2.143)

no dependen de t, son constantes a lo largo de las geodésicas. Esto permite reducir el orden de las
ecuaciones de las geodésicas de 2 a 1, llegando a que γ : t→ N(µt ,Σt) es una geodésica en Gn si y solo
si µ : t→ µt y Σ : t→ Σt satisfacen las ecuaciones con condiciones iniciales:

µ̇t = ΣtJµ ,

Σ̇t = Σt(JΣ− Jµ µT
t ) = ΣtJΣ− µ̇t µ

T
t ,

Jµ = Σ
−1
0 µ̇0, JΣ = Σ

−1
0 (µ̇0µT

0 + Σ̇0).

(2.144)

Las ecuaciones (2.144) se pueden resolver analíticamente. Usando la factorización de Cholesky de la
matriz de covarianzas Σt = AtAT

t , las ecuaciones (2.144) se reescribien en términos de At y se pueden
resolver de forma exacta, obteniéndose el siguiente resultado:

Teorema 2.6 (Geodésicas en Gn). La geodésica en Gn con punto inicial N(µ0,Σ0 = A0AT
0 ) y velocidad

inicial (µ̇0, Σ̇0) ∈ TN(µ0,A0AT
0 )
Gn viene dada por

expN(µ0,A0AT
0 )
(sµ̇0,sΣ̇0) = N(µ1,A1AT

1 ), (2.145)

con

µ1 = 2A0R(s)sinh
(

sG
2

)
G−A−1

0 µ̇0 +µ0, A1 = A0R(s), (2.146)

donde exp es la aplicación exponencial de Gn y G es una matriz que satisface

G2 = A−1
0 (Σ̇0Σ

−1
0 Σ̇0 +2µ̇0µ̇

T
0 )(A

−1
0 )T , (2.147)

R(s) =

((
cosh

(
sG
2

)
−A−1

0 Σ̇0(A−1
0 )T G− sinh

(
sG
2

))−1
)T

, (2.148)

y G− es una pseudo-inversa de G.

Los detalles se pueden consultar en [10].

En conclusión, el método de optimización GIGO utiliza geodésicas, que en general son compli-
cadas de calcular y se suele recurrir a resoluciones numéricas. Eligiendo las distribuciones normales
encontramos expresiones exactas para las geodésicas. La geometría de G̃n es la del espacio hiperbólico
y por tanto tienen las mismas geodésicas, que son bien conocidas en geometría diferencial. Para las
geodésicas en Gn obtenemos expresiones exactas pero de una complejidad mayor.
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