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Summary

Information Geometry (IG) is a branch of mathematics that uses differential geometry of manifolds
in the field of probability and statistics. We consider a family of probability distributions specified by
parameters such that it satisfies certain regularity conditions. These parameters are used as a coordinate
system that allows to give the family a manifold structure that we call statistical manifold. In this way
each point of the manifold represents a probability distribution. The objective of this work is to study
the geometry of these manifolds, namely, metrics and connections taking into account their statistical
nature, that is, each point of the manifold represents a probability distribution and show an application.

A metric is used to measure distances between points of a manifold, in our case, between probability
distributions. Statistics has developed measures of distancing between probability distributions called
divergences. Divergences can be defined in any manifold and are not necessarily metric, since among
other things they are not asked for symmetry, but give an idea of the degree of separation between points
of the manifold. The divergences are used in hypothesis contrast because their asymmetry allows to
capture the fact of protecting more a hypothesis than other alternative. Derivatives of a divergence induce
metrics and connections in the manifold. Taking into account the statistical nature of these manifolds
and the estimation of parameters we can establish natural conditions to impose on divergences, metrics
and connections in statistical manifolds. These conditions are known as monotonicity of information
and invariance and are related to the ability of a statistician to take advantage of information that has
a sample on an unknown parameter. These conditions restrict the study of divergences, metrics and
connections to those that are statistically useful.

The first objective in the studies of the geometry of a statistical manifold is to find a metric that
allows us to measure distances between probability distributions. The Fisher information matrix provi-
des a metric in the statistical manifolds, called the Fisher information metric. The existence of a single
invariant metric, except multiplicative constant, which is given precisely by Fisher’s information me-
tric, is a fundamental result in information geometry. This result shows the importance and singularity
of the Fisher information metric, since it is not just an ordinary metric, it is the only reasonable metric
in statistical manifolds taking into account their statistical nature.

A connection in a manifold allows to differentiate similarly to R”. Between the different connections
that we can consider there is an important one, the connection of Levi-Civita. This connection always
exists and is unique in any manifold equipped with a metric. The Levi-Civita connection is the most
used because it has the distance minimization property. However for statistical manifolds, there is a
family of invariant connections that depend on a parameter @ € R called o-connections. If o = 0 we
obtain the Levi-Civita connection in the statistical manifolds.

An important class of divergences in statistical manifolds is f-divergences, which depend on the
choice of a convex function f. The f-divergences are invariant and induce the Fisher information metric.
The Kullback-Leibler divergence is a particular case.

One of the applications of information geometry is given in the area of optimization. Given a mi-
nimization problem in R” we transform it into another equivalent minimization problem in a statistical
manifold to choose. We solve the problem obtained by an iterative method based on the gradient descent
method. The gradient depends on the chosen metric, which according to the theory will be the metric of
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v Capitulo 0. Summary

the Fisher information. The proposed method uses the geodesics of the chosen statistical manifold that
are usually calculated numerically. In the case of normal distributions, the geodesics can be calculated
exactly.

Below, we detail the contents of the chapters. In the first chapter, we present the results of Rieman-
nian geometry needed to study statistical manifolds. We define the concept of tensor, in particular, define
the Riemannian metric. A manifold equipped with a Riemannian metric is called Riemannian manifold.
In manifolds we do not have a natural notion of derivative, so we need to define the connections that
allow to derive tensor fields on manifolds. A connection is said to be isometric if the covariant derivative
of the metric is zero. Moreover a connection defines two tensors: torsion and curvature. When the tor-
sion of a connection is zero we say that the connection is simetric. When the curvature of a connection
is zero we say that the connection is flat. We prove that there is a unique isometric and symetric con-
nection known as the Levi-Civita connection. This connection allows to minimize distances as already
mentioned. Finally we present an important example of Riemanniana manifold, hyperbolic space and
give its geodesics.

In the second chapter, we introduce statistical models as families of probability distributions spe-
cified by parameters. These parameters are used as a coordinate system and then we have a manifold
structure. We define divergences in manifolds and show that derivatives of a divergence induce metrics.
Next, we prove that the Fisher information matrix defines Riemannian metric in statistical manifolds.
Using statistical arguments we find the conditions of monotonicity of information and invariance. We
define a family of divergences in statistical manifolds, the f-divergences, and prove that they are inva-
riant. We prove that Fisher’s metric is the only invariant metric, except multiplicative constant. We then
calulated the Fisher’s metric in some of the most important statistical models as binomial or normal
among others. We emphasize that a normal model with multiple covariance matrix of the identity has
the hyperbolic space geometry. In the penultimate, section we show that the divergences induce con-
nections and we study with special attention to those induced by f-divergences. Finally we present an
application of the theory in the area of optimization showing an iterative algorithm based on the des-
cent of the gradient in statistical manifolds and using Fisher’s metric and the geodesics of the chosen
statistical manifold. If we choose the normal distributions we get exact solutions for the geodesics.
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Capitulo 1

Preliminares: geometria Riemanniana

Este capitulo contiene una introduccién a la geometria Riemanniana. Consideramos variedades di-
ferenciables de dimension finita, sin borde y cuya topologia sea Hausdorff y segundo numerable. Por
«diferenciable» entenderemos siempre infinitamente diferenciable, es decir, de clase C~. Utilizaremos
el convenio de suma de FEinstein que funciona sumando solo en los indices que aparecen simultdnea-
mente como subindices y superindices desde 1 hasta la dimensién n.

Sea M una tal variedad de dimension finita n, <7 un atlas para M y x € &/ una carta. Concretamente
para cada punto p € M fijo existe una carta x : U C M — R" con U abierto de M, p € U con x' :
UCM—R,i=1,...,n que llamamos funciones coordenadas o simplemente coordenadas (locales).
Nos referimos a (x!,...,x") como sistema de coordenadas locales. Denotamos por . (M) = {f : M —
R | fdiferenciable} y por T,M y T, M al espacio tangente y cotangente de M en un punto p € M
respectivamente. Recordamos que 7),M es un espacio vectorial de dimension finita n'y 7,/M es su dual.
Los elementos de T,M se llaman vectores tangentes y son aplicaciones con valores reales que actian
sobre funciones de .7 (M) verificando linealidad y la regla de Leibniz, es decir, actiian sobre funciones
como derivacién. Una base de T,M viene dada por {d, |,,...,9, |,} donde d; |,= % |p- La familia de
aplicaciones {dx' |,,...,dx" |,} de T M verifican dx' |, (9; |,) = &;; donde ;; es la delta de Kronecker
luego {dx' |,,...,dx" |,} es la base dual de {0 |p,..., 0 |} y viceversa. Sea V € T,M entonces su
expresion locales V =Y V'0; |, =V'd; |, donde V' =V (x') € R.

Definicion 1.1. Un campo vectorial X en M es una aplicacion diferenciable que asigna a cada punto
p € M un vector X, € T,M donde diferenciable significa que si f € .# (M) entonces X f € .#(M).
Denotamos por 2 (M) al conjunto de todos los campos vectoriales en M.

Si X € 27 (M) entonces definimos (X f), = X,,f y la expresion local de X es X =Y/ | X'0; donde
X! =X(x') € #(M). Adoptamos la siguiente notacién estdndar:

(T;M) =T;M % - x T;M, (T,M)* =T,M x---xT,M, rs€N. (1.1)
N
r veces § veces

Definicion 1.2. Un tensor de tipo (r,s) en un punto p € M es una aplicacién R-multilineal (lineal en
todos sus argumentos) T : (7, M)" x (T,M)* — R. Un campo tensorial 7 de tipo (r,s) es una aplicacién
diferenciable que asigna a cada punto p € M un tensor de tipo (r,s) en el punto p, equivalentemente,
es una aplicacién .% (M )-multilineal .7 : 2" (M)*" x & (M)* — % (M). Un tensor o un campo tensorial
de tipo (r,s) diremos que es s-covariante y r-contravariante.

Definicion 1.3. Una métrica Riemanniana g en una variedad diferenciable M es un campo tensorial
g: X' (M) x X (M) — F(M) de tipo (0,2) simétrico y definido positivo. Una variedad Riemanniana
es una variedad diferenciable dotada de una métrica Riemanniana y la denotamos por (M, g).

Se puede demostrar que toda variedad diferenciable puede dotarse de una métrica Riemanniana.
Una métrica Riemanniana g nos proporciona un producto escalar g, : T,M x T,M — R en cada punto p
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2 Capitulo 1. Preliminares: geometria Riemanniana

que depende diferenciablemente del punto p € M. En un sistema de coordenadas locales tenemos
g= g,'jdxi ®dxj, (1.2)
donde g;; = g(d;,d;) y ® indica producto tensorial.

Definiciéon 1.4. El corchete de Lie se define como la aplicacion [, | : 2 (M) x (M) — 2 (M) dada
por

El corchete de Lie satisface las siguientes propiedades:

1. R-bilineal: [aX +bY,Z] = a[X,Y]+D[Y,Z], [Z,aX +bY]=a[Z,X]|+b[Z,Y] Va,b € R.
2. Antisimetria: [X,Y] = —[Y,X].

3. Identidad de Jacobi: [X,[Y,Z]]| +[Y,[Z,X]]|+[Z,[X,Y]] = 0.

4. [fX,gY] = felX, Y]+ f(Xg)Y —g(Y )X, Vf,g € .F(M).

El corchete de Lie mide la no conmutatividad entre los flujos de los campos vectoriales. Si [X,Y] =0
entonces los campos vectoriales X, Y conmutan. La expresion del corchete de Lie en coordenadas locales
viene dada por

L) ) ¢ d
_ J _ J
X,Y] = 2 (axjx axjy )a . (1.4)

ij=1

En variedades no tenemos una nocién natural de derivada como en R". Con el propdsito de tener
una teoria de diferenciacién en variedades similar a la de R” se introduce el concepto de conexién, que
puede verse como una extension de la derivada direccional en R”. Una conexién permite diferenciar
funciones, campos vectoriales y en general campos tensoriales respecto de un campo vectorial. Las
conexiones dan lugar al transporte paralelo y permiten relacionar la geometria local en distintos puntos
de la variedad.

Definicién 1.5. Una conexion lineal o simplemente conexion V en M es una aplicacién V : 2" (M) x
(M) — Z (M) verificando:

1. VxY es .%#(M)-lineal en X.
2. VxY es R-linealen Y.
3. Reglade Leibniz: Vx(fY) = (Xf)Y + fVxY,Vf € .F(M).

La definicién anterior es global. La expresion de una conexién en un sistema de coordenadas locales
viene dada por

V5,0; =T}0k, (1.5)

donde Ff-‘j € .# (M) se denominan componentes de la conexion respecto de la base local {Jy }. Como X =
X'0;,Y = Y/9; entonces VxY = (VxY )0, donde (VxY)* = X'(9;Y* + Yfl“f»‘j). Una conexién permite
diferenciar campos tensoriales. Sea 7 un tensor r-covariante entonces

n
VxT(Y1,....Y,) =XT(1,....Y,) = Y, T(11,..
i=1

Yi... Yy, (1.6)
Sean V.V’ dos conexiones entonces para todo o € R la combinacién convexa aV + (1 — a)V’ define
otra conexion. La diferencia de dos conexiones es un campo tensorial de tipo (1,2).

Definiciéon 1.6. Sea (M, g) una variedad Riemanniana. Una conexién V se dice isométrica si verifica

Vzg=0, VZe2(M). (1.7)
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Equivalentemente, usando (1.6) y (1.7), una conexién isométrica queda caracterizada por la férmula
Zg(X,Y)=g(VzX,Y)+g(X,VzY), VX,Y,.Z€ X (M). (1.8)
Eligiendo X = d;,Y = d;,Z = J y tras unos célculos la férmula (1.8) se transforma en
ohgij = Upgpj+Tk;8ir (1.9)
Una conexion define dos campos tensoriales: la torsién y la curvatura.

Definicién 1.7. La torsién de una conexién V se define como el campo tensorial 7 : 2 (M) x Z (M) —
Z (M) de tipo (1,2) dado por

T(X,Y) =VxY —VyX — [X,Y]. (1.10)

La torsién cumple la propiedad antisimétrica T(X,Y) = —T(¥,X). La expresion de la torsién en
coordenadas locales viene dada por

T;j =T(0;,0;) = V4,0 — V5,0 — [0;,9)] = (T} — ;) 0k, (1.11)

ya que [d;,d;] = 0. Por tanto las componentes de la torsién son Tl'j< =r fj — F’;l-. Una conexion se dice
libre de torsion o simétrica si 7 = 0 o equivalentemente si Ff.‘j =TI ’;l

Definicion 1.8. La curvatura de una conexién V se define como el campo tensorial R : 2" (M) x
X (M) x Z (M) — Z (M) de tipo (1,3) dado por
R(X,Y,Z) = VxVyZ—VyVxZ—Vx yZ. (1.12)
La curvatura también puede escribirse como
R(X,Y,Z) = ([Vx,Vy] = Vix y))Z. (1.13)
La expresion de la curvatura en coordenadas locales viene dada por

R(9;,0;,0) =R, 9, donde Rl =T —a,T% + T4 —T" T} (1.14)

Una conexion simétrica se dice plana si R = 0. Es evidente que si existe un sistema de coordenadas
locales en el que las componentes de la conexidn son Fffj = 0 entonces por (1.14) las componentes de la
curvatura son nulas y como la curvatura es un tensor entonces las componentes son nulas en cualquier
sistema de coordenadas, es decir, R = 0. Reciprocamente, se puede demostrar que si R = 0 entonces
existe un sistema de coordenadas locales en el que las componentes de la conexién son Ffj =0.

El siguiente teorema es un resultado fundamental en geometria Riemanniana. Demuestra la existen-
cia de una Unica conexién isométrica y simétrica y proporciona una férmula explicita. Esta conexién se
conoce como la conexién de Levi-Civita.

Teorema 1.1. Sea (M,g) una variedad Riemanniana entonces existe una tinica conexion V isométrica
y simétrica. Explicitamente, V queda determinada por la formula de Koszul:

24(VxY,Z) = Xg(¥,2) +Yg(X,Z) — Zg(X.¥) +5([X.¥],Z) —g(1X.Z].Y) —g([V.Z].X).  (L.15)

Demostracion. Supongamos que existe una conexion V isométrica y simétrica. Escribimos la condicién
de isometria para tres campos vectoriales X,Y,Z

con ecuaciones andlogas para las permutaciones ciclicas de X,Y,Z. Sumando dos de las ecuaciones de
la forma (1.16) y restando la tercera

(1.17)



4 Capitulo 1. Preliminares: geometria Riemanniana

Por la linealidad y simetria de la métrica g tenemos

Xg(Y,Z)+Yg(Z,X)—Zg(X,Y) =g(VxY,Z) +g(VyX,Z)+g(VyZ—VzY,X) + g(VxZ—VX.,Y).
(1.18)
Como V es simétrica (torsion T = 0)

T(X,Y)=VxY—-VyX—[X,Y]=0, oequivalentemente, VxY —VyX =[X,Y], (1.19)

con ecuaciones similares para T(Y,Z),T(Z,X), las permutaciones ciclicas de X,Y,Z. Utilizando las
ecuaciones de la forma (1.19) para T'(Y,Z),T(Z,X) en (1.18)

Xg(Y,Z)+Yg(Z,X)—Zg(X,Y) = g(VxY,Z) + g(VyX,Z) + g([V,Z),X) + g(—[Z,X],Y).  (1.20)
Por la propiedad antisimétrica del corchete de Lie
Xg(Y,Z)+Yg(Z,X)—Zg(X,Y) =g(VxY,Z)+g(VyX,Z) +g([Y,Z],X) +¢([X,Z],Y).  (1.21)
En definitiva tenemos
Xg(Y.Z)+Yg(Z,X)—Zg(X,Y) —g([X.Z].Y) —g([Y,Z],X) = g(VxY,Z) +g(VyX,Z).  (1.22)
Despejando VyX = VxY — [X,Y] en la ecuacién (1.19) y sustituyendo en (1.22)
Xg(Y,2)+Yg(Z,X) ~Zg(X,Y) —g([X,Z].Y) — g([V.Z].X) = g(Vx¥,Z) + g(Vx¥ —[X,¥],Z). (1.23)
Finalmente por la linealidad de g obtenemos la férmula de Koszul
Xg(Y,2)+Yg(Z,X) - Zg(X.Y) +g([X,Y],Z) —g([X,Z],Y) — g([V, 2], X) = 25(VxY,Z).  (1.24)

El procedimiento anterior garantiza la unicidad de tal conexién, supuesta su existencia. Para probar la
existencia vemos que en efecto la formula de Koszul define una conexién, esto es comprobar las tres
propiedades de la definicién de conexién.

1. En primer lugar, V es .# (M)-lineal en el primer argumento. Por la férmula de Koszul

28(VyxY,2) = fXg(Y,Z)+Yg(fX,Z)—Zg(fX.Y)+8([fX.Y], Z) - g([fX,Z].Y) - g([Y, 2], fX).
(1.25)
Por la .% (M)-linealidad de g y la propiedad nimero 4 del corchete de Lie queda

28(VixY,Z) = fXg(Y,Z) + Y (fe(X,2)) = Z(fe(X,Y))
+e(fIX,Y] = (Y )X, Z) = g(f1X,Z] = (Z)X,Y) — fe([Y,Z],X).
De nuevo por la .% (M)-linealidad de g y la actuacién de los campos vectoriales Y,Z como deri-
vacion
28(VyxY,2) = fXg(Y,2) + (Y /)g(X,2) + fY8(X,Z) — (Zf)g(X,Y) — fZg(X,Y)

+fg([X7Y]7Z> - (Yf)g(X,Z)—fg([X,Z],Y)+(Zf>g(X,Y) _fg([sz]7X)'
(1.27)

(1.26)

Eliminando los sumandos que se cancelan, sacando f factor comin y usando la férmula de Koszul

Zg(VfXY7Z) :f[Xg(Y7Z)+Yg(X7Z) —Zg(X,Y)—i—g([X,Y],Z)—g([X,Z},Y) —g([Y,Z],X)]

(1.28)
En definitiva tenemos

luego VyxY = fVxY, VX,Y € Z (M), es decir, V es .7 (M)-lineal en el primer argumento.
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2. En segundo lugar, V es R-lineal en el segundo argumento. Esta propiedad se sigue del hecho de
que la férmula de Koszul viene dada en términos de la métrica, el corchete de Lie y los campos
vectoriales que son todos R-lineales en todos sus argumentos.

3. En tercer lugar, V cumple la regla de Leibniz. Por la férmula de Koszul

28(Vx(fY),2) = Xg(fY,2) + fYg(X,Z) — Zg(X, fY)

(1.30)
Por la .% (M)-linealidad de g y la propiedad ndimero 4 del corchete de Lie
26(Vx(fY),2) = X(f3(¥,2)) + fY8(X.2) ~Z(f3(X.Y)) w3

—I—g(f[X,Y]—l—(Xf)Y,Z) _fg([sz]’Y) —g(f[Y,Z] _(Zf)Y7X)'

Por la actuacién de los campos vectoriales X, Z como derivacion

28(Vx (1Y), 2) = (Xf)g(Y,Z) + fXg(Y,Z) + fY8(X,Z) = (2f)g(X,Y) — fZg(X,Y)
—|—fg([X,Y],Z)—|— (Xf)g(Y,Z) —fg([X,Z],Y) —fg([Y,Z],X) +(Zf)g(Y7X)'

(1.32)
Por la simetria de g dos sumandos se cancelan y utilizando la férmula de Koszul
29(Vx(£Y),2) = 2(X f)g(Y,Z) + f28(VxY,Z) = 25((X f)Y + fVxY,2Z), (1.33)
donde la dltima igualdad se obtiene por la .% (M)-linealidad de g. En definitiva tenemos
28(Vx(fY),Z2) =2g((Xf)Y + fVxY,Z), VX, Y, Zc€ X (M), Vfe.F (M), (1.34)

luego Vx fY = (Xf)Y + fVxY, VXY € & (M),Vf € % (M), es decir, V cumple la regla de
Leibniz.

O

Las componentes de la conexion de Levi-Civita se llaman simbolos de Christoffel que vienen dados
por

1
= Egpk(aigjk+ajgik—akgij)7 (1.35)

donde (g”*) denota la matriz inversa de la métrica (g;;). Reciprocamente si las componentes de una
conexién en una variedad Riemanniana (M, g) vienen dadas por la férmula (1.35) entonces se trata de
la conexién de Levi-Civita. Si la conexion de Levi-Civita es plana entonces por (1.9) tenemos dig;; = 0
y por tanto g;; son constantes. Intuitivamente esto dice que localmente la variedad se comporta como el
espacio euclideo R", que tiene R = 0 y por tanto podemos interpretar la curvatura como una forma de
medir cuanto se desvia la variedad de ser euclidea.

Sea y: I — M una curva C* y V una conexién en una variedad M. Decimos que 7y es una geodésica
para la conexién V si V7 = 0. Sean Ffj las componentes de V en un sistema de coordenadas locales
entonces las geodésicas para dicha conexion son la solucidn del sistema de ecuaciones diferenciales
ordinarias de segundo orden

T =0, (1.36)

donde y(t) = (x'(¢),...,x"(t)). La conexién mds utilizada es la de Levi-Civita, esto se debe a la siguiente
propiedad: una curva que conecta dos puntos en una variedad por distancia minima es una geodésica
para la conexién de Levi-Civita. El reciproco es cierto para puntos suficientemente cercanos.

Presentamos a continuacién un ejemplo importante de variedad Riemanniana que nos aparecerd en
el siguiente capitulo, el espacio hiperbdlico.
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Ejemplo 1. El espacio hiperbdlico de dimensién 7 es la variedad Riemanniana formada por el conjunto

H, ={(x1,...,%:—1,y) € R" | y > 0} dotado de la métrica dada por la matriz diagonal de dimensién n
}% 0O --- 0
0 (1.37)
: .. 0
0O --- 0 yiz

Si n = 2 se denomina plano hiperbdlico. Un resultado conocido en geometria diferencial es que las
geodésicas del plano hiperbdlico estdn dadas por [10]

y:t — (Re(z(t)),Im(z(1))), (1.38)

donde

aie” +b
(1) = —

cie" +d

conad —bc=1,v >0, a,b,c,d € R. Utilizando el teorema de Noether [10] se demuestra que cada
geodésica del espacio hiperbdlico permanece en un plano perpendicular al hiperplano y = 0, y que
contiene a la velocidad inicial. La métrica inducida en dicho plano es la del plano hiperbdlico, esto
permite conocer las geodésicas del espacio hiperbdlico, que estdn dadas por

(1.39)

Y= (xa(0),. . x1(0),5(0)) = (x(1),¥(2)), (1.40)
donde
X(t)zxw”jznf(t), y(t) =Im(yc(r)), con xp=x(0), () =Re(1c(r)), (1.41)
y
Ye(t) = w, (1.42)

con a,b,c,d € R tal que ad —bc = 1, v > 0. Los valores de a,b,c,d,v, se determinan mediante la
posicién y velocidad iniciales de la geodésica.



Capitulo 2

Geometria de la informacion

2.1. Variedades estadisticas y divergencias

Sea X una variable aleatoria discreta o continua, escalar o vectorial que toma valores en un conjunto
Z C R™ llamado espacio muestral y cuya distribucién de probabilidad es p : 2" — R con

P20, [ pdr=1. @.1)

Consideramos de forma unificada los casos discreto y continuo mediante notacién integral, asi [, p(x)dx
en el caso discreto significa ), - p(x). En el caso vectorial entendemos la notacién anterior como su-
mas e integrales miltiples. Utilizamos la notacién d; = a%i’ salvo que haya que considerar distintos

sistemas de coordenadas, en tal caso usaremos 8&- = 3%,-.

Un modelo estadistico M es una familia de distribuciones de probabilidad en 2~ tal que cada
distribucién estd parametrizada por n valores reales

M={p(x:§)|E=(E",....8") € E}, (2.2)

donde & es un subconjunto de R” que llamamos espacio paramétrico y la aplicacidon parametrizacion
¢ : E — M dada por & — p(x;&) es inyectiva. La aplicacién ¢ : M — R” dada por ¢(p(x;§)) =&
permite considerar & = (E!,... &™) como un sistema de coordenadas para M, luego M es una variedad
denominada variedad estadistica. La aplicacion entre variedades ¢ es diferenciable y de rango dim & =
n, es un encaje. En este trabajo estudiamos variedades estadisticas con varias suposiciones adicionales
que facilitan su estudio y se cumplen en los modelos y aplicaciones sencillas:

1. El espacio paramétrico £ es un subconjunto abierto de R". Como ¢ es diferenciable entonces
diferenciamos libremente respecto de los pardmetros.

2. El orden de integracién y diferenciacion se puede intercambiar. Por ejemplo, a menudo utilizare-
mos el intercambio

/ dip(x;&)dx = 3i/ p(x;§)dx =01 =0. (2.3)
A Fa

3. El soporte de p(x;&) dado por {x| p(x;&) > 0} no depende de . Esto significa que M es un
subconjunto de

@(%)—{p:%—>R|p(x)20,/{%p(x)dx—l}, 2.4)

que es un espacio de funciones de dimensidn infinita. La condicién de rango n se entiende como
que {d1p(x;&),...,d,p(x;&)} es un sistema de funciones linealmente independientes.

7
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En una variedad estadistica cada punto representa una distribucién de probabilidad. Teniendo en cuenta
la naturaleza estadistica de estas variedades veremos que es natural estudiarlas bajo la llamada propiedad
de invariancia. La geometria de la informacién estudia la geometria de las variedades estadisticas bajo
la invariancia.

Ejemplo 2 (Distribuciones normales). El conjunto de todas las distribuciones de probabilidad normales
X = N(u, o) es una variedad estadistica donde

2 =R, n=2, E=(u,0), E={(l,0)| o< U <0, 0<0<o0}, M~RxR,, (2.5)

1 1 2
p(x:§) = plxi,0) = 2ﬂe—ﬁ). 2.6)

Ejemplo 3 (Distribuciones finitas). Sea X una variable aleatoria que toma valores en el conjunto 2 =
{0,1,...,n}, n € N. Su distribucién de probabilidad estd determinada por n+ 1 probabilidades

pi=P(X=i)€(0,1), i=0,1,...,n, Q2.7)

que representamos mediante el vector de probabilidades p = (po, p1,...,ps) tal que Y7o p; = 1. Lla-
mamos simplex de dimension n y lo denotamos por S, al conjunto de todas las distribuciones de proba-
bilidad con valores en {0, 1,...,n}

Se={p=(po,---.pn) ER" | p;>0, ¥ pi=1}. (2.8)
i=0

Entonces §,, es una variedad estadistica de dimension n donde un sistema de coordenadas viene dado

por
n

52(171:-'-71%) con POZI—ZPz (29)
i=1

Nota 1. Si permitimos p; € [0, 1] entonces la variedad S, tiene borde. En este trabajo nos limitamos al
estudio de variedades sin borde.

El primer objetivo es encontrar una métrica Riemanniana en las variedades estadisticas que nos per-
mita medir distancias entre distribuciones de probabilidad. La Estadistica ha desarrollado medidas de
distanciamiento entre distribuciones de probabilidad que usualmente no son métricas y que muestran
como de distintas son dos distribuciones de probabilidad. Estas medidas reciben el nombre de diver-
gencias y pueden definirse en variedades generales.

Definicién 2.1. Una divergencia en una variedad M es una funcién diferenciable D(- || ) : M x M — R
tal que para todo par de puntos P,Q € M verifica:

1. D(P|| Q) >0.
2. D(P||Q)=0siysolosiP=0Q.

3. Para dos puntos suficientemente cerca, el desarrollo de Taylor de D es

n

1 -

D(r|16p+8) =7 ) 8ij(8p)8'87 +0(|5]), (2.10)
i.j=1

donde &p son las coordenadas de P en un sistema de coordenadas locales &, 6 € R" y (g;;(&p))

es una matriz definida positiva que depende de &p.
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Usamos indistintamente D(P || Q) o D(&p || &) dependiendo del uso que se va a hacer. Una diver-
gencia es una medida del grado de separacién entre dos puntos en una variedad, es decir, una medida
de distincién o disparidad. Aunque se parece a una distancia ni ella ni su raiz cuadrada son una métrica
en general, ya que no necesariamente satisface las propiedades simétrica y desigualdad triangular. Una
métrica es un caso particular de divergencia. La asimetria de las divergencias es importante en estadis-
tica en problemas de contraste de hipdtesis. Al enfrentar dos hipdtesis alternativas la hipétesis nula se
protege mds que la alternativa ddndole una mayor importancia y esto es captado por la asimetria de estas
medidas. La tercera propiedad de la definicién 2.1 nos dice que una divergencia induce una métrica en
la variedad por derivacién mediante la férmula para sus componentes

g,J (&) = 99 D(G1 |] &2) 1=, (2.11)

que llamamos métrica inducida. Una divergencia también induce conexiones en las variedades por
derivacion, tal como veremos en la seccion 2.7, denominadas conexiones inducidas.

2.2. Meétrica de la informacion de Fisher

El objetivo de esta seccion es demostrar que la matriz de la informacién de Fisher dota a las va-
riedades estadisticas de una métrica Riemanniana que llamamos métrica de la informacion de Fisher
o simplemente métrica de Fisher. La importancia y singularidad de esta métrica se verd en secciones
posteriores.

Definicion 2.2. Sea M = {p(x;&)} un modelo estadistico parametrizado por &. La matriz de la in-
formacién de Fisher o simplemente matriz de Fisher de M en un punto & que denotamos por G =

.....

gi/(&) = Epldilog p(x:&)djlog p(x:&)] = /} dilog p(x;&)d;log p(x; &) - p(x; € )dx, (2.12)

donde E,, denota la esperanza respecto de p(x; &), es decir, E,[f] = [ f(x)p(x;§)dx.
Consideramos modelos en los que la esperanza (2.12) es finita.

Lema 2.1. La matriz de la informacion de Fisher admite las siguientes expresiones alternativas:

€& =4 [ a/p(wE)o,/p(wEar, @13

g1;(&) = —Ep[0i9;log p(x;§)]. (2.14)

Demostracion. Para la primera férmula, derivando en la definicién de matriz de Fisher

dip(x;€) dip(x:€)

gi;(8) =/%%logp(x;é)ajlogp(x;é)‘p(x;é‘)dX=/ﬂ_ P8 p(GE) p(x;§)dx s
Iip(x;€) 8 '
=4 d =4[ o £)o;
/%2\/11( 2\/p / Vp(x:§)9;\/plx
Para la segunda férmula, teniendo en cuenta (2.3) tenemos
E,[d/log p(x / dlog p(x:E) - p(x; & )dx = /} p(x:E)dx = 0. (2.16)

Derivando respecto de éj en (2.16) y usando (2.3) tenemos

9//% 8i10gp(x;5)~p(x;§)dx=/% 3jf9i10gp(X;§)-p(X;é)dij/% dilog p(x;§)djp(x; G)dx =0,
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siy solo si

/y d;dilogp(x;§) - p(x;§)dx + /% dilog p(x;§)d;log p(x; &) - p(x;§)dx =0, (2.18)

0 equivalentemente
Ep[9;9ilog p(x;§)] + Ep|[dilog p(x; §)djlog p(x; )] = 0. (2.19)
O

Teorema 2.1. La matriz de la informacion de Fisher se transforma como un tensor 2-covariante bajo
cambios de coordenadas.

Demostracion. Consideramos dos sistemas de coordenadas locales & = (E!,....E"), 6 = (8!,...,6")
relacionados mediante el cambio de variable £ = £(8) con &/ =E/(91,...,0™). S ea
derivando con la regla de la cadena tenemos

&k dE"
dup(x:0) = 2o 0pup(1:8). duypl0) = 90 Oz plx:E). .20
Entonces
1
glj / dgilog p(x;0)dgilog p(x;0) - p(x;0)dx = /%_Mc?@iﬁ(x;e)aejﬁ(x;e)dx

N ’ (2.21)

_ ! : . 08¥ 98" p . 0¥ 0E"

= {/% p()ﬁé(e))agkp(x’é)aérp(x’é)dx} 96 96/ —gkr(é)aei 007
0

Teorema 2.2. La matriz de la informacion de Fisher es una métrica Riemanniana en toda variedad
estadistica.

Demostracion. Comprobamos que la matriz de Fisher es simétrica y definida positiva. La simetria es
evidente por la propia definicion (2.12), veamos que es definida positiva. Sea M una variedad estadistica,
para todo punto & y vector tangente v € T:M con v # 0 por (2.13) tenemos

_ Y =4y (/ vion/p(x; v-’&j\/p(x;é)dX)

i,j=1 i,j=1

—4/ (Zmﬁ) (ZVJB\/i>dx—4/ (Zva\/i;) dx >0,

(2.22)
por tanto la matriz de Fisher es semidefinida positiva. Veamos que es definida positiva
gvy)=0s / <Z v'oi\/p(x; 5)) dx=0& (Z v'oi\/p(x; 5)) =
ra i=1 i=1
(2.23)
n n
&Y Voi/p(x:&) =05 )Y Vop(xE) =01V =0, Vi=1,...,n,
i=1 i=1
yaque {d1p(x;€),...,d,p(x;€)} es un sistema de funciones linealmente independientes. Asi la matriz

de Fisher es definida positiva y en definitiva una métrica Riemanniana. O
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2.3. Monotonia de la informacion e invariancia

En esta seccién consideramos condiciones que son naturales de imponer a las divergencias, métricas
y en general a la geometria de las variedades estadisticas. Dichas condiciones se conocen como mono-
tonfa de la informacidn e invariancia y se obtienen teniendo en cuenta la naturaleza estadistica de estas
variedades en las que cada punto representa una distribucién de probabilidad.

Sea X una variable aleatoria con distribucién de probabilidad paramétrica p(x;&) que describe una
poblacién, X una muestra aleatoria y T una funcién medible entonces ¥ = T (X) es otra variable alea-
toria y T = T(X) se denomina estadistico. Para hacer inferencias sobre el pardmetro desconocido &
partimos de la informacién que suministra la muestra aleatoria X resumiendo esta informacién muestral
en un estadistico 7'(X). El resumen que hace cualquier estadistico 7'(X) supone mantener o reducir la
informacion que suministra la muestra acerca del parametro desconocido &. Una propiedad deseable de
un estadistico T(X) es que no pierda informacién, esta propiedad se conoce como suficiencia. Un esta-
distico es suficiente si aprovecha toda la informacién que suministra la muestra respecto al parametro &.
Formalmente un estadistico 7'(X) es suficiente respecto del pardmetro & si dado el valor del estadistico
T (X) la distribucién condicional de la muestra aleatoria X no depende de &, es decir,

PX=%|TX)=t)=PX =x|T(X)=1;&). (2.24)

Para determinar si un estadistico es suficiente contamos con un criterio mas simple y eficaz que la
definici6n anterior: el teorema de factorizaciéon. Sea f(%; &) la distribucién de probabilidad conjunta
de una muestra X. Un estadistico 7'(X) es suficiente para & si y solo si existen funciones g(¢;&) y h(%)
tal que para toda muestra ¥ € 2" y todo valor del pardmetro £ se tiene

f(%:8) = g(T(%):5)h(%). (2.25)

El término informacion esté relacionado con la idea de disparidad. Cuanto mayor sea la variabilidad,
es decir, las discrepancias en la poblacién, mayor informacién debe contener la muestra aleatoria. Es
evidente que si todos los resultados de un fenémeno aleatorio son equiprobables tenemos menos in-
formacion para decidir sobre alguno de ellos que si sabemos que algunos tienen mayor probabilidad de
suceder que otros, es decir, mayor variabilidad implica mayor informacién y menor informacién implica
menor variabilidad. A continuacién formulamos esta idea usando divergencias.

Sea M = {p(x;&)} una variedad estadistica donde p(x;&) es la distribucién de probabilidad de una
variable aleatoria X. Un estadistico T define otra variedad estadistica M7 = {q(y;&)} = {q(T (x); &}
donde ¢(y; &) es la distribucién de probabilidad de la variable aleatoria Y = T'(X) dada por

qg(v:§) = /KP(X;é)dx, (2.26)

con K = {x| T(x) =y}. Sean D, DT dos divergencias en M, M" respectivamente. Conviene recordar que
una divergencia en una variedad mide la discrepancia entre sus puntos. Como a través de un estadistico
la informacién se mantiene o se reduce y menor informacién implica menor variabilidad, es decir, menor
discrepancia, entonces

D"(& || &) < D& || &). (2.27)

La desigualdad (2.27) se conoce como monotonia de la informacién. Por definicion, un estadistico es
suficiente si y solo si no pierde informacién, entonces

D'(& || &)=D(& || &) < T es suficiente. (2.28)

Una divergencia se dice invariante si cumple (2.27) y (2.28). Se puede demostrar [1] que dada una
variedad Riemanniana con conexiones existe una divergencia canénica que induce la métrica y las cone-
xiones dadas por derivacion mediante las férmulas de la métrica inducida y de las conexiones inducidas.
Entonces una métrica o una conexion se dice invariante si estd inducida por una divergencia invariante.
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Por otro lado un estadistico 7" genera una particién del espacio muestral. Sea el espacio muestral
2 = {x | x muestra observable de X }, su imagen por T es .7 = {t | t = T'(x) para algin x € 2" }. En-
tonces el estadistico 7' genera una particion de .2~ en subconjuntos A, = {x | T(x) =t} cont € T y
asi T'(x) =t es equivalente a x € A,. En términos de la particiones del espacio muestral, T es suficiente
respecto del pardmetro & si basta con conocer a que conjunto de la particién generada por 7T condu-
ce la muestra obtenida, no afiadiendo mds informacién saber cual es la muestra concreta. Prestaremos
especial atencién a las variedades S, por lo que conviene detallar lo estudiado en esta seccion para S,.

Si X toma valores en el espacio muestral 2" = {0, 1,...,n} su distribucién de probabilidad es p =
(Po,p1,---,pn) con pi=P(X =1i),i=0,1,...,n. Un estadistico 7' genera una particion {A;};—o_ . de
{0,1,...,n} con m < n'y una variable aleatoria Y = T'(X) con valores en {0, 1,...,m} y distribucién de

probabilidad p = (po, p1,---,Pm) con

pi=PY=j)=1Y pi (2.29)

iEAj
ya que una variable aleatoria discreta (finita) solo puede transformarse en otra discreta (finita). El es-
tadistico 7' nos conduce de S, a S,,. Sean p,g € S,, y D una divergencia en S, entonces la invariancia

queda
D"(p|4) <D(pl q), (2.30)

satisfaciendo la igualdad siy solo si T es suficiente. Como Y es funcién de X y usando la descomposicién
de la distribucién conjunta en producto de la marginal por la condicional se tiene

p(x;8) = p(x,y;€) = p(»;§)p(x | y;€), equivalentemente, p(x|y;&) = Zgg (2.31)

con & un sistema de coordenadas en S,,. Por definicion T es suficiente si y solo si la distribucién condi-
cional no depende de &, es decir,

p(x|y:€) = plx|y:;&), (2.32)
Yy por tanto ( é) ( 5 )
px;s)  px; !

p(»:&)  p(y:&) (2.33)

2.4. Divergencias invariantes: f-divergencias

Una clase importante de divergencias en una variedad estadistica son las f-divergencias. En esta
seccion estudiamos las métricas que inducen y su relacién con la invariancia.

Definicién 2.3. Sea M una variedad estadistica y f : (0,e0) — R una funcién diferenciable y convexa
tal que f(1) =0y f”(1) = 1. Llamamos f-divergencia a la funcién Ds : M x M — R definida por

Dy(p|lq) =Ep [f (Zg;ﬂ = /55 p(x)f (Zg) dx. (2.34)

Se ha omitido la dependencia en & para simplificar la lectura. Para demostrar que toda f-divergencia
es en efecto divergencia necesitamos recordar la desigualdad de Jensen de andlisis convexo. Una funcién
f:R — Res convexa si y solo si

Fuxi -4+ Axn) < Aflxn) + -4 A f (xa), (2.35)

para cualesquiera A; > 0 tal que Y7 ; A; = 1. La igualdad se satisface si y solo si f es lineal o x; = x;
paratodo i, j=1,...,n. Ademds si f convexay E[|f(X)|] < e entonces

F(EX]) <E[f(X)]. (2.36)
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Proposicion 2.1. Toda f-divergencia es divergencia.

Demostracion. Comprobamos las tres propiedades de la definicién de divergencia. Recordar que para
simplificar usamos p(x) = p(x; &), g(x) = g(x;&,). Entonces:

1. Por la desigualdad de Jensen se tiene

Do) =y |1 (45)| 25 (8 | 25| ) = (ot 20 ax) = s =0 230

2. Si p = g entonces se tiene

Ds(p || p)=E, [f (igm — B, [f(1)] = Ey[0] = 0. (2.38)

Reciprocamente si p # g como f”(1) = 1, es decir, f es estrictamente convexa en 1 entonces

Dol =E, |1 (43| > 1 (5 [ %3] ) = rn =0 (2.39)

3. Derivando respecto de los parametros &;,&, € E C R” se tiene

3y (007 (43)) = agrtor (42) ooy (45) L, e
o (ror (37)) = '(Ziiii) gg;;pf,(%)aﬂ@,

oy (o (1)) = oy (£09) B0 g (4 B
-y () b agzlogq >agflogq<> 7 (45) 205000

(2.42)

Usando (2.3), igualando & = &, es decir, p(x) = g(x) y como f(1) =0y f”(1) = 1 entonces

0Dy | g = F(1) | Op@dx—r(0d, [ pwdx=0,  @43)
0.Ds(& || E)jgg = 1'(1)dyy /, g(x)dx =0, (2.44)

09D (& || &)iggy = £'(1) | 0y logq(x)9 logqlx)-q0)dx-+ (19 [ ax)d

= Ey[dg;logg(x)d;logq(x)] = gii(&),
(2.45)

y como la matriz de Fisher es definida positiva, el resultado queda demostrado.

Proposicion 2.2. Toda f-divergencia en S,, es invariante.
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Demostracion. Sea Dy una f-divergencia en S,, T un estadistico que genera la particién {0}, {1,2},
{3}....,{n} del espacio muestral {0, 1,...,n}y D; una f-divergencia inducida por T en S,,_;. Basta de-
mostrar el resultado para la particién mencionada porque en S,, cualquier otra particion es composicién
de estas. Las divergencias Dy, D]Tc son de la forma

Ds(p|lq) = pof +pif +pof tpaf (B4 tpf (), (246
PO D1 D3 Pn

D?(p\lq)zpof@))+<p1+pz)f<z11ff> (Z) '+pnf(zl’i), 2.47)
pllg) <D

por tanto para demostrar la monotonia de la informacién, D f(

(p1+pz)f(ql+q2) <pif <‘“) +pof <q2> (2.48)
p1+p2 P1 P2

Introducimos la siguiente notacién

+(p || ¢) hay que demostrar

Uy =—, up = —, (2.49)
p

y por la desigualdad de Jensen

Q1+¢]2> < D1 ) 2) )
1+p2 =(p1+p2 u;+ Uy
(pr+p)f <P1+P2 (prp2)f pP1+p2 pP1+p2

< (1 +p2) ( Flun)+ f(uz)) 2.50)

p1+p2 p1+p2
= p1f(ur) + paf(u) = p1f< >+ ﬁ(ii).

Para demostrar la invariancia hay que ver que (2.48) se satisface con igualdad si y solo si T es suficiente.
Como estamos en el caso S,, por (2.33), T es suficiente si y solo si #; = up, o equivalentemente, la
desigualdad de Jensen se verifica con igualdad. Por tanto T es suficiente si y solo si

1+ 1
(p1+p2)f (”) —p1f<q ) zf< ) 251)

P1tp2 pi
y entonces T es suficiente si 'y solo si Dy = D;. Asfi las f-divergencias son invariantes en S,,. O
Nota 2. Tomando f(u) = —logu obtenemos la divergencia de Kullback-Leibler. El tercer apartado

de la proposicién 2.1 demuestra que toda f-divergencia induce la métrica de Fisher. El resultado de
la proposicién 2.2 se mantiene en cualquier variedad estadistica [3]. Por tanto la métrica de Fisher es
invariante en cualquier variedad estadistica.

2.5. Unicidad de la métrica invariante: la métrica de Fisher

La importancia y singularidad de la métrica de Fisher reside en el hecho de que es la Gnica mé-
trica invariante, salvo constante multiplicativa, en una variedad estadistica, es decir, la dnica métrica
razonable en estas variedades teniendo en cuenta su naturaleza estadistica. Chentsov [7] demostrd este
resultado usando teoria de categorias, nosotros lo demostramos para el caso particular de las variedades
S,, mediante una reformulacion de la invariancia.

Consideramos S, es decir, una variable aleatoria X que toma valores en {0, 1,...,n} y distribucién
de probabilidad p = (po, p1,-..,pn) € Sa C R con p; = P(X = i), i =0,1,...,n. Un estadistico T
genera una particién {A;};—o 1 . del conjunto {0,1,...,n} con m < n 'y una variable aleatoria ¥ =



Geometria de la informacién - Angel Palacios Polo 15

T(X) que toma valores en {0, 1,...,m} y distribucién de probabilidad ¢ = (90,41, - - - ,qm) € Sm C R7T!
con

qi=PY=j)=Y pi j=0,1,....m. (2.52)
iEAj

La particién {A;} permite definir la aplicacion

fiSa—=Sw fip—=fp)=q:9;=") pis (2.53)
tGA

que no es inyectiva, no tiene inversa. Una aplicacién mds interesante se puede definir en sentido contra-
rio. Sea (7ij)i=0.1,... n:j=0,1,...m Una distribucién de probabilidad condicionada cualquiera

PX=i|Y=]), siicA,
O (2.54)
0, sii ¢ Aj,
que cumple Y7 o rij = Yjea, P(X =i | Y = j) = 1. Entonces podemos definir la aplicacién
m
h:Sw— Su: h:q— h(q)=p; pi= Y rijq; =rijq;, (2.55)

j=0

donde la tltima igualdad se debe a que r;; = 0 a no ser que i € A, es decir, en la suma solo hay un
término no nulo. Por tanto la aplicacién 4 es inyectiva, tiene inversa. Las aplicaciones / se denominan
aplicaciones de Markov y son inmersiones de la variedad S, en S,,. Las aplicaciones de Markov tienen
la siguiente propiedad

n

Zpi—ZZrIJQJ ZCIJZ’"U ZCI]—I (2.56)

i=0 i=0 j=0
Consideramos ahora los espacios tangentes 7,S,, T,S,, y sus respectivas bases {e }i—1,__n, {em} =1,

donde e} = 0, = a‘; 8 = ‘9 .S1U,V € TSy, u,v € TS, entonces son combinacion lineal de la

]
base

m n
V= V] Z o= Vel = Zvie?. (2.57)
j=1 i=1

El producto escalar viene dado por

U V) =gn(qUVE,  (uv), =g (p)u V", (2.58)
donde
gilg) = (e, ef)g,  &h(p) = (€} ef)p. (2.59)

Dada una aplicacién de Markov & : S, — S, por teoria de variedades tenemos asociada una aplicacién
lineal entre los correspondientes espacios tangentes denominada aplicacién diferencial definida por

"9,
dhy : TySm — TySu; Z Dign, (2.60)

Las variedades S,,, S, son combinaciones convexas de puntos, luego combinaciones lineales y por tanto
las variedades y sus correspondientes espacios tangentes coindicen. Entonces

— Z ‘9”’ i = Zrue (2.61)

dhy(V)=v con V' =r;V/. (2.62)
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Reformulamos la invariancia de las métricas en las variedades S, mediante la siguiente expresién que
involucra aplicaciones de Markov

<U7V>q = <dhq(U)vdhq(V)>p = <“7V>p- (2.63)

Demostraremos que existe una tinica métrica invariante bajo aplicaciones de Markov en S, salvo cons-
tante multiplicativa, que es la métrica de Fisher. La reformulacion se basa en que fijada una distribucién
condicional {r;;}, fijada una aplicacion de Markov 4, las distribuciones g € S, y suimagen h(q) =p € S,
representan la misma informacién. La imagen del simplex S, en S, por una aplicacién de Markov 4 es
1déntica estadisticamente a S, en el sentido que es tan fécil o dificil distinguir dos distribuciones en S,
como distinguir sus respectivas imagenes en S,. Cuales sean las relaciones geométricas en S, deben ser
exactamente las mismas que en /(S,,). Para demostrar el teorema de Chentsov, necesitamos calcular la
métrica de Fisheren S,,_1. Sea ¢ = (qo0,---,gm—1) € Sm—1, donde gy = P(X =k;&),conk=0,...,my

& =1(q1,--.,9m—1) un sistema de coordenadas. Derivamos respecto qi,...,gn, y tenemos
m—1 ) .
0, sii o
al'q():ai(l—ij'):—l, izl,...,m—l, aiquaij: 7&] paraz,jzl,...,m—l.
= 1, sii=j
(2.64)
Entonces para todo i, j = 1,...,m— 1, la métrica de la informacién de Fisher es la matriz

m—1
gij(§) = E[d;logP(X = k;£)d;log P(X = k;&)] = E[d;logqidjlogqr] = Y qxdilogqid;logqx
k=0

1 9ai 9 0iq0d; 1 Digr 9 1 =) 6ys; 1 &
:Z idk jquk: iq0 JqO+Z iqk JQka—f‘i‘Z ik Jk:7+ i j

i—0 9k dk q0 =1 49k 49k q0 =1 49k q0 qj

(2.65)

Teorema 2.3. Existe una tinica métrica invariante en S,, salvo constante multiplicativa que viene dada
por la métrica de la informacion de Fisher.

Demostracion. Consideramos el simplex S,_; como subconjunto de R’ = {(x1,...,x,) € R" | x; >
0,i=1,...,n}. Si m = n entonces las aplicaciones f, h son permutaciones, que son producto de tras-
posiciones. Fijamos a,b € {1,...,n} y consideramos la trasposicién que intercambia los lugares a,b.
Entonces la matriz r;; de h es una matriz de trasposicion y utilizando (2.61) tenemos

dhy(ey) =e€,, dhy(ey) =e, y dhy(e})=¢}, Vj#a,b. (2.66)

]

La hipétesis de invarianza se escribe para n = m como

<€;!1 ’el;z> = <th(e’]1‘|)7dhq(e;!2)>7 (2.67)

y por tanto llegamos a las expresiones

8.)(@)=8;(p) v g5(q) =2gs;(p), Vj#ab, (2.68)
8aa(q) = 8bp(P) ¥y &1p(4) = 8aa(P), (2.69)
gii(q) = gi;(p), Vi,j#a,b. (2.70)
Las condiciones anteriores son utiles en el baricentro de S,_; que es el punto
1 1
p= (,...,) eRY, (2.71)
n n

ya que este punto p es invariante bajo permutaciones de sus componentes. Asi para todas las elecciones
posibles de pares (a,b) tenemos

(eirej)p = &ij(P) = B(n), Vi# j, (2.72)
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(ei ei)5 = gii(P) = C(n), Vi. (2.73)
En definitiva la expresion de la métrica en p viene dada por la matriz G, = (g;?j (P))ij=1,..n cOn
¢55(p) = A(n) &+ B(n), Yi,j=1,....n, (2.74)

donde A(n) = C(n) —B(n), con A(n),B(n),C(n) € R dependen de n'y §;; es la Delta de Kronecker. En
forma matricial

10 0
01 ... 0 bl
Gy=Am)|. . . . |+Bn)|: - i]. (2.75)
00 ... 1 ! !
Definimos la funcién ¢ : R — R dada por
n
¢(p1,--pn) =Y, pi— 1. (2.76)
i=1
Como ¢ es diferenciable y la matriz Jacobiana de ¢ en un punto p = (pi,...,p,) €s
9¢ 9¢
P=(=——,..., =(1,...,1), (2.77)
aprap, =

que tiene rango 1 entonces por teorfa de varieades S, | = ¢ '(0) es una variedad diferenciable de
dimensién n — 1. Tomando las cartas identidad, & es la matriz de la aplicacién diferencial d¢,. Sea

2= (21,...,2n) € TpS,—1 un vector tangente a S,_1 en un punto p entonces d¢,(z) = 0, es decir,
21
22
11 - 1) .[=o0 (2.78)
Zn

1 ... 1 21
B(n)(z1 -+ z) | . : | =0, (2.79)
1 1 Zn
luego podemos escribir la métrica G,, asi
8ij(p) = A(n)d;;. (2.80)
Consideramos puntos con coordenadas racionales
ki k ki
q:(ql,...,qm):<1,2,...,>€Sm1, (2.81)
n'n n
donde k; € Z, tal que Y7, k; = n. Sea la aplicacion de Markov £ definida mediante la distribucién
condicional
L, sii€A;,
rij =1k _ (2.82)
' 0, sii¢gAj,
donde {A;} 1. m es la particion del conjunto de valores {1,...,n} dada por

A1:{1,2,...,k1}, Azz{kl—l-],...,kl—l—kz},...,Am:{klﬁ—-'-—l-km,l—|—1,...,k1—|—"'+km:n},
(2.83)
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y cada A contiene exactamente k; elementos. Entonces /4 aplica todo punto g en p

h(q) = (p1s---Pn) = (r1jqjs- - 1njq)) = <k]j];j - kl I;) = (;77;) =p. (2.84)
Sea e' € R} un vector bésico del espacio tangente de S,,,—1 entonces
Zmen = *6’1 +-- —I—kl ey = A —(ef+--+ep) (2.85)
De forma similar para cada j =2,...,m
Zme = em o T T ) (2.86)

Por tanto aplicando la hipétesis de invariancia y utilizando (2.80) tenemos

1k1 1k1
£ () = (e ef) = (hae).hu(eF) <h2w Ze>

1

1
= g (el el) et {eloef ) (e ef) oot (e ) oot ek el) oot ey eiy)
_ kiA(n)  A(n) nc ¢
ky? ke k@

(2.87)

donde la constante multiplicativa ¢ € R determina la escala de la métrica. Andlogamente para cada
j=2,....m

&) = (€], = (). hule < Y Ze> R

] i€A; J i€cA

Hemos demostrado que toda métrica invariante en S,,,_; es de la forma

, Ssli=]j,
8ijlq v (2.89)
”( )= {0, si i+ j.
que coincide con la métrica obtenida en (2.65) salvo la constante multiplicativa ¢ € R. El teorema
queda demostrado para puntos racionales de la forma (2.81). Como Q es denso en R, por continuidad
el resultado se mantiene para todo punto g € S,,—1. O

2.6. Ejemplos de la métrica de Fisher

En esta seccion calculamos la métrica de Fisher para algunos de los modelos estadisticos mas impor-
tantes. Utilizamos en los cdlculos la férmula (2.14). La métrica de Fisher de un modelo finito general es
la matriz de la férmula (2.65). Presentamos la métrica de Fisher para los modelos binomial, geométrico,
Poisson, normal y exponencial.

2.6.1. Modelo binomial

La distribucion de probabilidad de una variable aleatoria X = B(n,x) binomial de pardmetros n € N,
x € (0,1) viene dada por

(N (1—x)"*, sike{0,...,n},

. (2.90)
0, sik¢{0,...,n}.

P(X =k;x) = {
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Tomamos el logaritmo y derivamos dos veces respecto del pardmetro x

logP(X = k;x) = log (Z) +logx* + (n—k)log(1 —x), (2.91)
k n—k 2 k n—k
o logP(X =k;x) = - — = d; logP(X =k;x) = B il pprL (2.92)
Entonces la métrica de Fisher de un modelo binomial es el escalar
1 —k
€110 = ~El32log p(x = ki) = ¥ ( )) P(X = ko)

n n (2.93)
:lzsz(XZk;x)nL;z ”ZP(XIk;x)—ZkP(X:k;x) __n :
X7 k=0 (1 _x) k=0 x(l —x)

k=0

donde se ha usado que la media de X es E[X] = Y} _(kP(X = k;x) = nx. En particular para n = 1
tenemos el modelo Bernoulli y su correspondiente métrica de Fisher.
2.6.2. Modelo geométrico

La distribucion de probabilidad de una variable aleatoria X = G(p) geométrica de pardmetro p €
(0,1) viene dada por

1—p)1 sike{l1,2,...},
P(X=kp)=1{" (1=2) i ¢ ) (2.94)
0, sik¢{1,2,...}.
Tomamos el logaritmo y derivamos dos veces respecto del pardmetro p
logP(X = k; p) = logp + (k— 1)log(1 — p), (2.95)
1 k-1 2 1 k—1
Entonces la métrica de Fisher de un modelo geométrico es el escalar
gii(p) = —Eld,logP(X =k;p)] = ) | — + 3 | P(X =kip)
k=1 P (p - 1) (2 97)

L <l—p) o
p* (1=pP\ p p*(1=p)’
donde se ha usado que la media E[X| =Y | kP(X =k;p) = +

2.6.3. Modelo de Poisson

La distribucién de probabilidad de una variable aleatoria X = P(A) de Poisson de pardmetro A > 0
viene dada por

AL sike{0,1

PiX = ka)=4¢ wrr StkEd0 L (2.98)
0, sik¢{0,1,...}.
Tomamos el logaritmo y derivamos dos veces respecto del pardmetro A
k k
logP(X =k;A) = —A +klogA —logk!, dylogP(X =k;A)=—1+ T dilogP(X =k;A) = —5-

(2.99)

Entonces la métrica de Fisher de un modelo de Poisson es el escalar

1
F _ 2 —

gl (A) = —E[071ogP(X = k; )] Z 77 P(X =kA) =72 ka X =kA)= T (2.100)

donde se ha usado que la mediade X es E[X]| =Y (kP(X =k;A) = A.
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2.6.4. Modelo normal

La distribucion de probabilidad de una variable aleatoria X = N(u, ) normal de pardmetros u € R,
o > 0 viene dada por la funcién de densidad

1
2
Tomamos el logaritmo y derivamos parcialmente respecto de i y o:

i )2

e 203 xeR 2.101)

p(x;8) =p(x;u,0) = -

log p(x;u,0) = —logo —log(V2m) — 3 (x G“) , (2.102)
xX— —1  (x—u)?
dulogplxiit o) = *F dstogplepo)= L4 TS (2.103)
c o] o]
1 2(x—n) 1 3 [x—u
aﬁlogP(X;NaG) = _?7 aoaulogl’(x§ﬂa0) = _Ta aglogp(x;.u)c;) = g - g o
(2.104)
Entonces la métrica de Fisher de un modelo normal es la matriz cuyas entradas son
> 1 1 _i(xu 1
¢h(,0) = ~EdRlogplrp,0)) = [ — e iV ar— —. (2.105)
< 2x—u 1 _1(x=p)?
gf2<u,c>=g§1<u,a>=—E[auaalogp<x;u,o>1= =N P
-~ 07 ovam 2.106
(o) (2.106)
= ———e 2\3/) dy=0,
/ 63 cV2rn Y
ya que es la integral de una funcién impar en un intervalo simétrico.
e 1 3 x_l.i 2 1 _ 1 (x=p 2
F 2
,0)=—E[d5logp(x;u,0 :—/ — - = e 2 (54 dx
€hal1,0) = [0 logp(x1,0)] M(GQ = (5 ))Gm -

—_1+3/WZ2 1 efézzdzz 2

o2 o0%/).« 21 o2’
donde hemos usado el cambio de variable z = % y [°. 7 \lﬁeﬁz dz = 1. En efecto, el integrando es
funcién par en un intervalo simétrico y aplicando los cambios de variable y = z2, t = 3 1y, tenemos
2 3 2 1 1
27y = / ledt=—TI(Z)=—"—==I'(=) =1, 2.108
/ \/ ¢ ET Uz vz \2) T ym2 \2 (2.108)
yaque I'(n+1) =nl'(n) yI'(3) = /7. En definitiva la métrica de Fisher es la matriz
F F .
(gkl(ﬂaﬁ) 81F2(.U76)) _ (Gz (2)> (2.109)
81(1,0) &K, 0) 0 =

Haciendo el cambio de parametrizaciéon @ — \f la métrica (2.109) se transforma en 2 =1, que es un
multiplo positivo de la métrica del plano hiperbdlico. Andlogamente la métrica de Flsher de un modelo
N(u,X) normal multivariante de dimensién 7 con u vector de medias y ¥ = 61 matriz de covarianzas
multiplo de la identidad es

5 0 0
9 (2.110)
: L0
o
0 0

Haciendo el cambio de parametrizacién pu — \ﬁ la métrica (2.110) se transforma en 2”I que es un
multiplo positivo de la métrica del espacio hiperbdlico. Por tanto con una parametrlzacwn adecuada, el
modelo estadistico normal con matriz de covarianzas miultiplo de la identidad dotado de la métrica de
Fisher tiene la geometria del espacio hiperbdlico y por tanto las mismas geodésicas.
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2.6.5. Modelo exponencial

La distribucion de probabilidad de una variable aleatoria X = E(A) exponencial de pardmetro A > 0
viene dada por la funcién de densidad

Ae ™ §ix>0
xA) = ’ ’ 2.111
plcd) {o, six < 0. 11D

Tomamos el logaritmo y derivamos dos veces respecto del pardmetro A

1 1
logp(x;1) =logA —Ax, dylogp(x;A) = 7 dilogp(x; L) = 1 (2.112)
Entonces la métrica de Fisher de un modelo exponencial es el escalar
FA) = —E,[02p(cA)] = ——= [ —dePdy= — L [o2]” — ] (2.113)
g11(A) = —Epldip(x; )]——ﬁo —Ae x——ﬁe o 22 .

2.7. Geometria invariante

Una vez estudiadas las divergencias y métricas invariantes en variedades estadisticas, es el momento
de estudiar conexiones invariantes en estas variedades. Utilizaremos la siguiente notacién

Di(8) = 9gD(81 || &) g =g,=¢,  D.i(8) = deD(&1 || &2) 1 =g=¢ (2.114)
Dijk(§) = 9gi 010 D(G1 || &2) g ~g,=¢ - (2.115)
Sabemos que una divergencia D en una variedad M induce una métrica gD cuyas componentes son

gl(f)(é) =D ;;(&). (2.116)

Las divergencias verifican D(P || Q) = 0 si y solo si P = Q y por tanto g(P)

expresiones alternativas para sus componentes

g(E) = Dyj,(6) =D j(E) = —D;j(E) = —Dju(€). 2.117)

Si Ffj son las componentes de una conexién V en una variedad Riemanniana (M, g), denotamos por
D*)

admite las siguientes

Lijk = Ffjgk » que dependen del punto &. Se puede demostrar que D induce dos conexiones v, vl
en M por derivacién mediante la férmula para sus componentes en un sistema de coordenadas locales

{0 (€) = —Dija(€) = 9501 0aD(&1 || &) gty 2.118)

Ti (&) = —Diyj(8) = =099, D(&1 || &) =ty =e (2.119)

que llamamos conexiones inducidas. Las conexiones inducidas V(D), V() son simétricas
D D
T () = —Dij(&) = —Djix(8) =T'3 (€) luego T7(E) =T%(&), (2.120)

ya que las derivadas parciales son intercambiables. Andlogamente para los FEjD,:) (&).

Definicion 2.4. Sea (M,g) una variedad Riemanniana. Dos conexiones V,V* en M se dicen duales
respecto de la métrica g si

Zg(X,Y) =g(VX,Y)+g(X,V5Y), VXY, Ze X (M). (2.121)
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Eligiendo X = d;, Y = d;, Z = d; y tras unos calculos la férmula (2.121) se transforma en
0kgij =Thigpi +Thigir = Duij+ Tijie (2.122)

En la definicién 2.4 dada una conexién V el miembro de la izquierda y el primer sumando del miembro
de la derecha son conocidos. El segundo sumando del miembro de la derecha determina totalmente la
conexién V*, luego dada V existe una tinica conexion dual V*.

Proposicion 2.3. Sean V, V* dos conexiones simétricas y duales en una variedad Riemanniana (M, g).
Entonces la conexion de Levi-Civita que denotamos por V') viene dada por

v = %(VJFV*). (2.123)

Demostracion. Es evidente que V(%) es conexi6n porque es combinacién convexa de dos conexiones.
Si V, V* son duales respecto de g, utilizando la relacién de dualidad

Xa(¥.2) = TXg(V.Z) 4 2Xa(¥.2) = 1 (VY. Z) + 5(V.ViZ)) + S[8(ViY.2) +8(¥. Vx2)

VyY +ViY VxZ+VyZ 0 0
¢ <2XZ> e <Y2X> = 8(V{Y,2) +4(r.V{'2),

(2.124)

luego V@ es isométrica. Sean T, 7%, T'? las torsiones de V, V*, V() respectivamente. Entonces

VY + ViV VyX+ViX

0 0
TOX,Y)=vPy -viVx - [x,v] = . S XY
1 1 1 1
= 5 (Vx¥ = VyX = [X.Y]) + 5 (V¥ = ViX = [X,¥]) = ST(X.Y) + 5 T*(X,¥) = 0,
(2.125)
ya que V, V* son simétricas, sus torsiones son T = T* = 0, luego V(¥ es simétrica. O

Teorema 2.4. Las conexiones inducidas VP, VI°') son duales respecto de la métrica inducida g°).

Demostracion. Las componentes de la métrica inducida g(®) son
817 () =Dy (). (2.126)
Derivando respecto de £X obtenemos la relacién de dualidad
g (€)= —Diy (&) — Digy(&) =T(E) + T (&), (2.127)
O

Proposicion 2.4. Sea Dy una f-divergencia. Las componentes de las conexiones inducidas por Dy en
un sistema de coordenadas locales son

Fgﬁf)(é) =Ep {(aiajl()gp(x“:) + 1_2068,-10gp(x;§)8j10gp(x;§)> (aklogp(x;é))] ) (2.128)
(D7) : lta : : :
(@) =B, | (305108p0:8) + 15 0 p 810y ogp(6) ) Gutogp ). 2129)

con o =3+2f"(1) eR.

r
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Demostracion. La técnica de la demostracion es andloga a la de proposicion 2.1. Apoydndonos en los
célculos de la proposicién 2.1, derivamos respecto de 51"

OgtO%; O (P(X)f (Q(x)» — dup()f" <61(X)) 95;61()6)3;2;(1()6)

p(x) p(x) (%)
(49) q@)%w(x;fg;z(x)ag;q(x)
r @8) 23&%?%;)(;)%51)()6) .
+0gp()f’ ( Z&i) égpg(i(x)
f,, ( 28 ) q(x)agkp;(c))jf,aéjq(x)
() B

Usando el intercambio (2.3), igualando §; = &, es decir, p(x) = g(x) y como f(1) =0y f"(1)=1
entonces

(D)

Lo (6) = =019 9 1Dy (81 [] 62) g ==
- [ (U 0Rpmtan At 2130
_ . + dx,
P p(x) p(x)
que coincide con (2.129) para = 3 +2f"(1). Se procede andlogamente para rgjl‘l)cf) (6)- =

Por el teorema 2.4, la proposicién 2.3 y la proposicién 2.4 las componentes de la conexién de Levi-
Civita en una variedad estadistica son

(D})

F(Df) T
©) L ZEp[(8i9j10gp(x;§)+;Bilogp(x;é)f?jlogp(x;i)) 3k10gp(x;§)]7 (2.132)

ijk
2

que coincide con (2.128) y (2.129) para o = 0. Denotamos por V(® = V(Ps) v(-0) — v(Py) y se
denominan a-conexiones. En resumen, las o-conexiones forman una familia de conexiones simétricas,
invariantes y duales respecto de la métrica de Fisher en las variedades estadisticas, obteniéndose la
conexion de Levi-Civita para o = 0.

2.8. Aplicacion en optimizacion

La geometria de la informacién tiene aplicacién en el drea de la optimizacion. Sea una funcién
objetivo diferenciable f : R” — R y consideramos el problema de minimizacion

(P) min f(x). (2.133)
xeR?
Para resolver (P) elegimos una familia de distribuciones de probabilidad paramétrica M = {p(x; &)}
tal que formen una variedad estadistica. Resultados de estadistica [10, 11, 12] permiten reemplazar el
problema original (P) por el siguiente problema equivalente llamado relajacion estocdstica,

(R) minF (&), (2.134)

EeE
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donde F : & — Res F(§) = E,[f(x)]. Los problemas (P), (R), son equivalentes en determinadas con-
diciones, tienen el mismo valor minimo y podemos recuperar la solucién de (P) a partir de la solucién
de (R) y viceversa. Resolvemos el problema (R) utilizando el método de descenso del gradiente en la
variedad M. Este método consiste en seguir la direccién dada por el vector gradiente que es la de ma-
xima variacion para encontrar Optimos locales. Como el objetivo es minimizar tomaremos el gradiente
cambiado de signo para encontrar un minimo local. Podemos plantearlo de forma continua mediante un
problema de valor inicial como sistema de ecuaciones diferenciales ordinarias

{5 =—VeF(c) (2.135)

£(0) = So-

Por el teorema de exitencia y unicidad de solucién de problemas de valor inicial existe una tnica solu-
cion local £(¢), que es la curva que nos conduce desde &) a un minimo local. Por un lado en el plantea-
miento anterior la resolucién exacta no siempre es posible, por lo que daremos un método iterativo. Por
otro lado el gradiente de una funcién f se define como el vector Vf(x) tal que

(Vf(x),v) =df(x)v, (2.136)

donde df(x)v es la diferencial de f en el punto x aplicada al vector vy (, ) es un producto escalar, luego
el gradiente depende de la métrica. Por el teorema de Chentsov existe una tinica métrica razonable en
las variedades estadisticas, la métrica de la informacién de Fisher, que por tanto es la que elegimos.
Entonces tenemos el siguiente gradiente, llamado gradiente natural

d
&’
Discretizamos ¢ proponiendo el siguiente método iterativo conocido como IGO, basado en el descenso
del gradiente natural

Ve = (G) (&) (2.137)

E1=&—MVeF (&), X4 >0, t=0,12... (2.138)

Dado un punto inicial & calculamos el gradiente natural ?5OF (&o) que nos da una direccién para una
recta. Sobre dicha recta siguiendo la direccién de descenso del gradiente, el valor de la funcién objetivo
mejora hasta un cierto punto en que puede empeorar y calculamos ese punto. Se trata de encontrar el
minimo de una funcién sobre una recta, es decir, el minimo de una funcién de una variable que puede
resolverse de forma exacta o numérica mediante biseccién o Newton-Raphson. Esto determina el valor
de Ay y volviendo a (2.138) tenemos lo necesario para obtener el siguiente punto &; y seguir iterando.

El método IGO busca el siguiente punto sobre la recta determinada por el vector gradiente natural,
pero las rectas no son una nocién intrinseca de la variedad, dependen de la parametrizacion, del sistema
de coordenadas. Sin embargo la generalizacién de las rectas, es decir, las geodésicas si son intrinse-
cas a la variedad, no dependen de la parametrizacién. Cambiamos en IGO las rectas por geodésicas
y obtenemos el método conocido como GIGO. Necesitamos definir la aplicacion exponencial de una
variedad.

Definicién 2.5. Sea M una variedad, p € M un punto y v € T,M un vector tangente a M en p. Entonces
existe una tnica geodésica Y = (x'(¢),...,x"(t)) que pasa por el punto p con vector tangente v dada por
la solucién del sistema

&+ T =0,

(2.139)
x(0)=p, x(0)=w

Entonces llamamos aplicacién exponencial en M a

exp, : T,M — M; v —exp,(v)=1v(1). (2.140)
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Una vez definida la aplicacién exponencial, el método iterativo GIGO viene dado por

&1 =expg(AY) donde Y=-V:F(&), A4 >0, t=0,12... (2.141)

El cédlculo exacto de geodésicas en general es complicado y recurrimos a resoluciones numéricas, sin
embargo, para la variedad de las distribuciones normales, podemos calcularlas de forma exacta. De-
notamos por G, la variedad estadistica de distribuciones de probabilidad normales multivariantes de
dimensién n dotada con la métrica de Fisher y por G, la variedad estadistica de distribuciones de pro-
babilidad normales multivariantes de dimensién n con matriz de covarianzas multiplo de la identidad
dotada con la métrica de Fisher. Por la seccién 2.6.4 las geodésicas de G, coinciden con las del espacio
hiperbdlico que vimos en el primer capitulo. El siguiente resultado es ahora inmediato:

Teorema 2.5 (Geodésicas en G,,). Sea y:t — N(u(t),o(t)*I) una geodésica en G,,. Entonces existen
a,b,c,d € R conad—bc=1,v >0 tal que

_aie" +b
cie" +d’

u(t>=u(0)+\/§,ﬁz“r(f), o(t) =Im(yc(t)), r(t) =Re(yc(r), ¥c(r)

Para las geodésicas de G, usando el teorema de Noether se demuestra que si v: ¢ — N(l;,X;) es
una geodésica en G,, entonces las cantidades

(2.142)

Tu =%, Je =X (ul +5), (2.143)
no dependen de ¢, son constantes a lo largo de las geodésicas. Esto permite reducir el orden de las
ecuaciones de las geodésicas de 2 a 1, llegando a que y: ¢t — N(l,%,) es una geodésica en G, si y solo
siu:t— U yX:t— %, satisfacen las ecuaciones con condiciones iniciales:

.ut =XJ, W

Y =% —Jup) = s — puul (2.144)

Ju =2y po, Jz =2 (fopd + o).

Las ecuaciones (2.144) se pueden resolver analiticamente. Usando la factorizacién de Cholesky de la

matriz de covarianzas ¥, = A,AtT , las ecuaciones (2.144) se reescribien en términos de A; y se pueden
resolver de forma exacta, obteniéndose el siguiente resultado:

Teorema 2.6 (Geodésicas en G,,). La geodésica en G, con punto inicial N(lo, X9 = AoAg ) y velocidad
inicial (fl,X0) € TN(uo,AoAg)Gn viene dada por
EXPy (410 A0a]) (SHo, 5T0) = N(ui,AAD), (2.145)
con G
U = 2A0R(s) sinh (S2) G*Aalﬂo + U, Ay =AoR(s), (2.146)
donde exp es la aplicacion exponencial de G, y G es una matriz que satisface

G* = Ay 20Xy "o + 200 ) (AT, (2.147)

1= ((won(€) apmanrosm(€) ). e

y G~ es una pseudo-inversa de G.
Los detalles se pueden consultar en [10].

En conclusion, el método de optimizaciéon GIGO utiliza geodésicas, que en general son compli-
cadas de calcular y se suele recurrir a resoluciones numéricas. Eligiendo las distribuciones normales
encontramos expresiones exactas para las geodésicas. La geometria de G,, es la del espacio hiperbélico
y por tanto tienen las mismas geodésicas, que son bien conocidas en geometria diferencial. Para las
geodésicas en G, obtenemos expresiones exactas pero de una complejidad mayor.
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