
Repositorio de la Universidad de Zaragoza – Zaguan http://zaguan.unizar.es

Trabajo Fin de Grado (Apéndices)

Modelos dinámicos de haces de fibras.

Comparación entre dos métodos de cálculo

Dynamical fiber-bundle models. Comparison

between two approaches

Autor/es

Miguel Ángel Clemente Salvador

Director/es

Amalio Fernández-Pacheco Pérez

Javier Gómez Jiménez

Facultad / Escuela

Facultad de Ciencias

Año 2017

Índice

1. Apéndice A 2

2. Apéndice B 38

1. Apéndice A

El código utilizado para las simulaciones en una dimensión es el siguiente:

/**
*
* Autor: Miguel angel Clemente Salvador
* Grado en Fisica, cuarto Curso (TFG)
* Universidad de Zaragoza
*
* Proposito: el programa resuelve la dinamica de una cadena de N elementos,
* controlada por la redistribucion local de la carga del elemento roto (LLS).
* El objetivo es calcular el tiempo total de rotura de la cadena, comparando
* la distribucion de tiempos de rotura para los dos metodos.
*
*/

#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include <math.h>

/*------Parametros globales-----------*/
#define N 10 // Numero de elementos
#define size_vect (int)N/2+1 // Tamano de los vectores de contaje. Como maximo, el

numero de grietas distintas es N/2 (configuracion intercalada)
#define rho 2 // Exponente para el calculo de las cargas
#define sigma_0 1 // Carga inicial
#define N_simul 100000 // Numero de simulaciones total a realizar
#define N_interv_histo 50 // Numero de bins para el histograma

/*--Definir EXCLUSIVAMENTE uno de los dos metodos--*/
//#define Metodo_radiactivo
#define Metodo_clasico

/*---Structs---*/
/**
* Contiene 2 enteros, cada uno guardara uno de los cumulos de los que
* es vecino el elemento en cuestion. Si alguna de las componentes es 0,
* se debe a que el elemento ya estaba roto, o bien es uno de los elementos
* que no tienen vecinos (ninguno de los casos nos interesa para el recuento.
*/

struct almacenaje_vecinos{
int cum1, cum2;

}; typedef struct almacenaje_vecinos Almacenaje_vecinos;

2

/*------Librerias------*/

#include "Librerias/Random.cpp"
#include "Librerias/Estadisticas_ficheros.cpp"
#include "Librerias/Inicializacion_vectores.cpp"
#include "Librerias/Reparto_cargas_1D.cpp"
#include "Librerias/Funciones_radiactivo_1D.cpp"
#include "Librerias/Funciones_clasico_1D.cpp"

/*-------------------Programa principal------------------*/
int main(){

int simul; // Indice para realizar cada simulacion
int paso; // Indice para cada paso temporal, o rotura de un elemento
double T; // Tiempo total transcurrido (parametro problema)
double delta; // Tiempo incrementado en cada paso temporal, entre roturas de 2

elementos

double cargas_red[N]; // Vector que almacena las sigmas (cargas)
int etiquetas[N]; // Vector que indexa las grietas (I)
int rotos_grieta[size_vect]; // Vector que cuenta el numero de elementos rotos

de cada grieta (R)
int numero_vecinos[size_vect]; // Vector que cuenta el numero de vecinos no rotos

de cada grieta (S)
Almacenaje_vecinos vecinos[N]; // Vector donde se guardan los indices de los

cumulos que son vecinos de cada elemento (V)
int indice_elemento_roto; // Indice del proximo elemento a romper
int indice_nuevo; // Indice a asignar a la proxima nueva grieta que

aparezca

#ifdef Metodo_clasico
double tiempos_iniciales[N]; // Vector que almacena la distribucion inicial de

tiempos
double tiempos_nuevos[N]; // Vector que almacena los tiempos de rotura

calculados en cada paso
double tiempos_transcurridos[N]; // Vector que almacena el tiempo transcurrido

para cada elemento (pesado con sigma)
#endif // Metodo_clasico
#ifdef Metodo_radiactivo
double prob_rotura[N]; // Vector que almacena la probabilidad de

rotura de cada elemento
#endif // Metodo_radiactivo

FILE *fich_tiempos; // Fichero donde se escribe el resultado
de T para cada simulacion (binario)

char ruta_tiempos[]="tiempos_finales.dat"; // Ruta para el fichero fich_tiempos
fich_tiempos=fopen(ruta_tiempos,"wb");

3

srand(time(NULL));

for(simul=0; simul<N_simul; simul++){ // Bucle para las ’N_simul’ simulaciones
/*---Inicializamos las variables a utilizar---*/
indice_nuevo=1;
inicializa_vector_double(cargas_red, sigma_0, N); // Todas las cargas valen

signa_0 (parametro global)
inicializa_vector(etiquetas, 0, N); // Todas las etiquetas son 0,

ya que los elementos estan sin romper
inicializa_vector(rotos_grieta, 0, size_vect); // La componente 1 deberia ser

N, pero no importa porque no se usa
inicializa_vector(numero_vecinos, 0, size_vect);

#ifdef Metodo_clasico
inicializa_tiempos(tiempos_iniciales); // Distribucion exponencial

para los tiempos iniciales
inicializa_vector_double(tiempos_transcurridos, 0, N);

/*--- El primer paso lo hacemos fuera del bucle para aprovechar el vector de
tiempos iniciales---*/

delta=busca_minimo_vector(tiempos_iniciales, &indice_elemento_roto);
T=delta;
#endif // Metodo_clasico
#ifdef Metodo_radiactivo
delta=probabilidades_rotura(cargas_red, prob_rotura);
T=delta;
#endif // Metodo_radiactivo

/* Bucle principal (metodo clasico):
1) Se incrementa el tiempo transcurrido para cada elemento, con el valor de

(delta*sigma^rho) (delta y sigma ya han sido calculadas en la iteracion
anterior)

2) Se rompe el elemento con menor tiempo (que ya habia sido obtenido al
calcular delta)

3) Se reindexan adecuadamente todas las grietas, igualando indices de las
contiguas

4) Se buscan todos los elementos que son vecinos de alguna de las grietas,
y se cuentan separadamente para cada una de ellas. Ademas, se almacenan
en el struct ’vecinos’ los indices de las grietas que son vecinas a cada
uno de los elementos, si las hay.

5) Se calculan las cargas de red a partir de la informacion almacenada en
el struct ’vecinos’ y del numero de elementos rotos y vecinos de cada
grieta.

6) Se recalculan los tiempos de rotura a partir de los tiempos iniciales,
los tiempos transcurridos y el nuevo valor de la carga soportada por

4

cada elemento.
7) Se busca el minimo valor del tiempo (guardando tambien las coordenadas

del elemento para romperlo) y se incrementa el valor del tiempo total
transcurrido.

*
* Bucle principal (metodo radiactivo):

1) Se calcula el elemento que va a romperse en esta iteracion, a partir de
las probabilidades de rotura (calculadas en la iteracion anterior)

2) Se rompe el elemento, se reindexan las grietas y se reparten las cargas
(puntos 3-5 anteriores)

3) Se calculan las nuevas probabilidades de rotura (gammas) y la vida de la
configuracion actual, que se suma al tiempo total transcurrido

*/
for(paso=1; paso<N; paso++){ // El primer paso se realiza antes del bucle

#ifdef Metodo_clasico
incrementa_tiempos(tiempos_transcurridos, cargas_red, delta);
/*---Se rompe el elemento y se reparten las cargas---*/
reindexa_grietas(etiquetas, rotos_grieta, indice_elemento_roto,

&indice_nuevo);
encuentra_vecinos(etiquetas, numero_vecinos, vecinos);
calcula_cargas(cargas_red, etiquetas, vecinos, rotos_grieta,

numero_vecinos);

recalcula_tiempos(tiempos_nuevos, tiempos_iniciales,
tiempos_transcurridos, cargas_red);

delta=busca_minimo_vector(tiempos_nuevos, &indice_elemento_roto);
T+=delta;
#endif // Metodo_clasico

#ifdef Metodo_radiactivo
indice_elemento_roto=calcula_elemento_roto(prob_rotura);
/*---Se rompe el elemento y se reparten las cargas---*/
reindexa_grietas(etiquetas, rotos_grieta, indice_elemento_roto,

&indice_nuevo);
encuentra_vecinos(etiquetas, numero_vecinos, vecinos);
calcula_cargas(cargas_red, etiquetas, vecinos, rotos_grieta,

numero_vecinos);

delta=probabilidades_rotura(cargas_red, prob_rotura);
T+=delta;
#endif // Metodo_radiactivo

}
fwrite(&T, sizeof(double), 1, fich_tiempos); // Escribimos en un fichero el

resultado, para analizarlo despues
if(((100*simul) %N_simul)==0){ // Escribimos el progreso por pantalla

printf(" %d/100 completado\n", (int)(100.0*simul/N_simul));

5

}
}
fclose(fich_tiempos);
printf("100/100 completado\n");

/*---Analisis estadistico---*/
double T_med, T_var;
med_var(ruta_tiempos, N_simul, &T_med, &T_var, 1); // Se obtiene la media y

varianza de los resultados
printf("<T>= %lf\n Varianza= %.12lf\n", T_med, T_var);

FILE *medias_var; // Fichero donde se escriben los
resultados finales de la media y la varianza

char ruta_histograma[60]; // Ruta para el fichero de histograma

#ifdef Metodo_clasico
char ruta_medias[]="1D/medias_varianzas_clasico.txt"; // Ruta para el fichero

medias_var
sprintf(ruta_histograma,"1D/histogramas_clasico/histog_rho= %d_N= %d_sim= %d.txt",

rho, N, N_simul);
#endif // Metodo_clasico

#ifdef Metodo_radiactivo
char ruta_medias[]="1D/medias_varianzas_radiactivo.txt"; // Ruta para el fichero

medias_var
sprintf(ruta_histograma,"1D/histogramas_radiactivo/histog_rho= %d_N= %d_sim= %d.txt",

rho, N, N_simul);
#endif // Metodo_radiactivo

histograma(ruta_tiempos, N_simul, N_interv_histo, ruta_histograma, 1); // Se
obtiene el histograma

medias_var=fopen(ruta_medias, "at");
fprintf(medias_var, " %d\t %d\t %d\t %lf\t %.12lf\n", N, rho, N_simul, T_med, T_var);
fclose(medias_var);

return 1;
}

}

Las librerías utilizadas para el código 1D son las siguientes:
Reparto_cargas_1D.cpp:

/**
* Dada la matriz que contiene los indices de cada grieta (argumento 1) y el indice

del punto que se ha roto (argumento 3), comprueba si este elemento es vecino de

6

alguna de las grietas, en cuyo caso le asigna el indice de una de ellas (orden de
prioridad: left, right). Ademas, invoca a una de las funciones
’iguala_indices_ngrietas’ para que todas las grietas que ahora se han puesto en
contacto tengan este mismo indice. Finalmente, se modifica adecuadamente el
segundo parametro, que da cuenta del numero de elementos rotos que tiene cada
grieta. El ultimo parametro solo se incrementa si el elemento roto ha formado una
nueva grieta.

*/
void reindexa_grietas(int vector_indices[N], int *rotos_grieta, int roto, int

*indice_nuevo){
/*---Calculamos los indices de los elementos adyacentes, respetando las

condiciones periodicas---*/
int ind_anterior, ind_siguiente;

ind_anterior=(roto+2*N-1) %N; // Si roto es 0, ind_anterior=N-1; en caso
contrario, ind_anterior=roto-1

ind_siguiente=(roto+N+1) %N; // Si roto es N-1, ind_siguiente=0; en caso
contrario, ind_siguiente=roto+1

/*---Calculamos las etiquetas de los elementos adyacentes---*/
int left, right, indice_asignado; // Indice_asignado: el que va a perdurar, y el

que se asocia al nuevo roto
int cambia; // Indice a sustituir por indice_asignado en la

reindexacion
left=vector_indices[ind_anterior];
right=vector_indices[ind_siguiente];

/*---Distinguimos casos segun el numero de vecinos rotos---*/
switch (!!left + !!right) { // ’!!a’ devuelve 1 si a!=0, 0 si a=0. Esto da el #

de vecinos que no son 0
case 0: // Nueva grieta

indice_asignado=*indice_nuevo;
(*indice_nuevo)++; // La siguiente grieta nueva estara

asociada al siguiente indice nuevo
break;
case 1: // El elemento roto es vecino de una sola grieta. Se le asocia el

indice no nulo.
if(left!=0){

indice_asignado=left;
}else if(right!=0){

indice_asignado=right;
}

break;
case 2: // El elemento roto es vecino de 2 grietas. Se le asocia el indice!=0,

respetando prioridad (left, right)
if(left!=0){

7

indice_asignado=left;
cambia=right;

}else{
indice_asignado=right;
cambia=left;

}
/*--- Se igualan los indices de ambas grietas---*/
if(cambia!=indice_asignado){ // Si es igual, no hay que hacer nada
int ncambiados=0;
for(int i=0; i<N; i++){

if(vector_indices[i]==cambia){ // Cambiamos los del indice a cambiar por
el indice a asignar
vector_indices[i]=indice_asignado;
ncambiados++;

}
}
rotos_grieta[indice_asignado]+=ncambiados;
rotos_grieta[cambia]=0;

}
break;

}
vector_indices[roto]=indice_asignado; // Se asigna el indice adecuado al nuevo

elemento roto
rotos_grieta[indice_asignado]++; // Nuevo elemento para la grieta con la que

esta en contacto
}

/**
* Escanea el vector de etiquetas (argumento 1) y comprueba para cada elemento si los

colindantes son vecinos de uno o varios cumulos, informacion que se guarda en el
ultimo argumento: cada una de las 2 componentes de los elementos del vector puede
guardar el indice del cumulo o cumulos de los que es vecino cada elemento. Si el
elemento ya esta roto, le asignamos el valor de 0, para ignorarlo en el calculo
de las cargas. Ademas, el algoritmo calcula el numero de vecinos que tiene cada
cumulo (segundo argumento).

*/
void encuentra_vecinos(int vector_indices[N], int numero_vecinos[size_vect],

Almacenaje_vecinos vecinos[N]){
int left, right;
int indice_left, indice_right;
inicializa_vector(numero_vecinos, 0, size_vect); // El numero de vecinos se

calcula cada vez que se ejecuta esta funcion

/*---Leemos el vector:---*/
for(int i=0; i<N; i++){

left=(i-1+2*N) %N;

8

right=(i+1+N) %N;
if(vector_indices[i]!=0){ // Los elementos ya rotos, como no tienen carga, no

los utilizaremos
vecinos[i].cum1=0;
vecinos[i].cum2=0;

}else{ // Si es 0, puede ser vecino de algun cumulo
indice_left=vector_indices[left];
indice_right=vector_indices[right];

/* Guardamos los indices de los cumulos contiguos al elemento i. Si alguna
es 0, se guarda un 0, que al no corresponder a ningun cumulo, significa
que en realidad no tiene vecino en esa direccion.

*
* Incrementamos el numero de vecinos de la(s) grieta(s) dada(s) por

el(los) indice(s) del (de los) elemento(s) contiguo(s). Si alguno es
0, se incrementa el numero de vecinos del "cumulo 0", que es el cumulo
de los elementos no rotos y no se utiliza para calcular las cargas.

*/

vecinos[i].cum1=indice_left;
numero_vecinos[indice_left]++;
if(indice_right!=indice_left){

vecinos[i].cum2=indice_right;
numero_vecinos[indice_right]++;

}else{
vecinos[i].cum2=0;

}
}

}
}

/**
* Calcula las cargas de la red mediante 1+suma de (r_k/s_k)*(1-delta(vecino, 0)),

siendo {k} los 2 elementos contiguos al punto en cuestion, r el numero de
elementos rotos de cada grieta y s el numero de vecinos de cada grieta. Es decir,
si el elemento es vecino de una o mas grietas, el exceso de carga que soporta es
r/s por cada grieta adyacente, siendo aditivas (los vecinos de dos grietas
soportan mas carga que los vecinos de una sola). La carga es 1+este exceso.

* Primer parametro: vector con las cargas de la red (salida del subalgoritmo).
* Segundo parametro: vector de etiquetas de las grietas
* Tercer parametro: vector de structs donde se almacenan los indices de los cumulos

que son vecinos de cada elemento
* Cuarto argumento: vector donde se almacena el numero de elementos rotos de cada

grieta
* Quinto elemento: vector donde se almacena el numero de vecinos de cada grieta
*/

9

void calcula_cargas(double cargas_red[N], int vector_etiquetas[N], Almacenaje_vecinos
vecinos[N], int rotos_grieta[size_vect], int numero_vecinos[size_vect]){
int etiqueta;
for(int i=0; i<N; i++){

etiqueta=vector_etiquetas[i];
if(etiqueta!=0){ // Elemento ya roto, no soporta carga

cargas_red[i]=0;
}else{ // Elemento sin romper

/* Incrementamos las cargas, como la suma (restringida a los vecinos no
nulos), mediante: r_k/s_k siendo r el numero de elementos rotos de la
grieta y s el numero de vecinos de la grieta.

*/
cargas_red[i]=1;
if((vecinos[i].cum1)!=0){

cargas_red[i]+=((double)rotos_grieta[vecinos[i].cum1]/
(numero_vecinos[vecinos[i].cum1]));

}
if((vecinos[i].cum2)!=0){

cargas_red[i]+=((double)rotos_grieta[vecinos[i].cum2]/
(numero_vecinos[vecinos[i].cum2]));

}
}

}
}

Funciones_clasico_1D.cpp:

/**
* Asocia a todos los elementos del vector (primer argumento) un numero aleatorio

dado por la distribucion exponencial, es decir, un valor de -log(random entre 0 y
1)

*/
void inicializa_tiempos(double vect[N]){

for(int i=0; i<N; i++){
vect[i]=-log(random_01());

}
}

/**
* Se lee un vector y se devuelve (por referencia) el indice del elemento de minimo

valor positivo, asi como este valor
*/

double busca_minimo_vector(double vect[N], int *indice){
double minimo=vect[0];
*indice=0;

10

for(int i=0; i<N; i++){
if(minimo<=0){

minimo=vect[i]; //Buscamos primero el tiempo de un elemento no roto, para
comparar

*indice=i;
}
if(vect[i]<minimo && vect[i]>0){

minimo=vect[i]; //Buscamos el minimo tiempo de un elemento no roto
*indice=i;

}
}
return minimo;

}

/**
* Se actualizan los tiempos transcurridos para cada elemento (argumento 1), a partir

de las cargas de red (argumento 2) y del intervalo en que las han soportado
(argumento 3).

*/
void incrementa_tiempos(double tiempos_transcurridos[N], double cargas[N], double

delta){
for(int i=0; i<N; i++){

tiempos_transcurridos[i]+=delta*pow(cargas[i], rho);
}

}

/**
* Se devuelven los nuevos tiempos de rotura para cada elemento (argumento 1),

calculados a partir de los tiempos iniciales (argumento 2), de los tiempos
transcurridos (argumento 3) y de las cargas de red (argumento 4).

*/
void recalcula_tiempos(double tiempos_nuevos[N], double tiempos_iniciales[N],

double tiempos_transcurridos[N], double cargas[N]){
for(int i=0; i<N; i++){

if(cargas[i]>0){
tiempos_nuevos[i]=(tiempos_iniciales[i]-tiempos_transcurridos[i])/

(pow(cargas[i], rho));
}else{ //Para elementos rotos, asignamos el valor de 0, que no esta

contemplado a la hora de buscar el minimo tiempo
tiempos_nuevos[i]=0;

}
}

}

Funciones_radiactivo_1D.cpp:

11

/**
* Calcula la probabilidad de ruptura de cada elemento a partir del
* vector de red (primer parametro) y la almacena en un vector (segundo parametro).
* Ademas, devuelve la delta de la configuracion, necesaria para calcular T
*/

double probabilidades_ruptura(double *red, double *prob){
double gamma_total=0; // Tiempo de vida de la configuracion actual
double gamma[N]; // Vector para el calculo de las probabilidades

for(int i=0; i<N; i++){ // Calculo de las gammas
gamma[i]=pow((red[i]),rho);
gamma_total+=gamma[i];

}
for(int i=0; i<N; i++){ // Calculo de las probabilidades

prob[i]=(gamma[i])/(gamma_total);
}

return 1/gamma_total; // Se devuelve el valor de delta
}

/**
* A partir del vector de probabilidades, lanza un numero entre 0 y 1 y determina
* el siguiente elemento en romperse, que develve con su indice
*/

int calcula_elemento_roto(double *probabilidades){
double numero=random_01();
double acum_prob=0;
int indice;

/*
* El intervalo [0,1) se divide en segmentos, cada uno de una longitud
* igual a la probabilidad de ruptura del elemento. El numero entre 0 y 1
* determina el segmento en el que cae, al cual se le asocia el indice, que
* es el parametro de salida
*/

for(indice=0;indice<N;indice++){
acum_prob+=probabilidades[indice];
if(acum_prob>numero){

return indice; // El indice se devuelve cuando el numero esta entre dos
separaciones de segmentos

}
}

};

El código utilizado para las simulaciones en dos dimensiones es:

12

/**
*
* Autor: Miguel Angel Clemente Salvador
* Grado en Fisica, cuarto Curso (TFG)
* Universidad de Zaragoza
*
* Proposito: el programa resuelve la dinamica de una red de NxM elementos,

controlada por la redistribucion local de la carga del elemento roto (LLS). El
objetivo es calcular el tiempo total de rotura de la red, comparando la
distribucion de tiempos de rotura para los dos metodos, y ver si el tiempo de
rotura no es nulo para N, M tendiendo a infinito.

*
*/

#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include <math.h>

/*------Parametros globales-----------*/
#define N 50 // Numero de elementos (en Y): numero de filas
#define M 50 // Numero de elementos (en X): numero de columnas
#define size_vect (int)N*M/2+1 // Tamano de los vectores que se utilizaran
#define rho 2 // Indice de heterogeneidad
#define sigma_0 1 // Carga inicial
#define N_simul 100000 // Numero total de simulaciones a realizar
#define N_interv_histo 50 // Numero de bins para el histograma
#define animacion // Para obtener una animacion del proceso de rotura de

las grietas
#define evol_tamano // Para observar como crece el tamano medio de las

grietas con el tiempo

//#define Metodo_radiactivo
#define Metodo_clasico

/*---Structs---*/
/**
* Contiene 4 enteros, cada uno guardara uno de los cumulos de los que
* es vecino el elemento en cuestion. Si alguna de las componentes es 0,
* se debe a que el elemento ya estaba roto, o bien es uno de los elementos
* que no tienen vecinos (ninguno de los casos nos interesa para el recuento).
*/

struct almacenaje_vecinos{
int cum1, cum2, cum3, cum4;

}; typedef struct almacenaje_vecinos Almacenaje_vecinos;

13

/*---Declaracion de funciones y librerias---*/

#include "Librerias/Random.cpp"
#include "Librerias/Estadisticas_ficheros.cpp"
#include "Librerias/Inicializacion_arrays.cpp"
#include "Librerias/Reparto_cargas.cpp"
#include "Librerias/Funciones_radiactivo.cpp"
#include "Librerias/Funciones_clasico.cpp"

/**
* En caso de estar activado el modo animacion, escribe en un fichero de texto el

estado de cada elemento (roto=2, vecino de una o varias grietas=1, ni roto ni
vecino=0) en cada paso temporal, para hacer una animacion de la ruptura de la
grieta

*/
void escribe_animacion(int [N][M], Almacenaje_vecinos [N][M], int);

/**
* Devuelve el tamano medio de las grietas en un instante dado, a partir del
* vector que guarda el numero de elementos rotos en cada grieta
*/

double calcula_tamano_medio(int *);

/*-------------------Programa principal------------------*/
int main(){

int simul; // Indice para realizar cada simulacion
int paso; // Indice para cada paso temporal, o ruptura de un elemento
double T; // Tiempo total transcurrido (parametro problema)
double delta; // Tiempo incrementado en cada paso temporal, entre rupturas de 2

elementos

double cargas_red[N][M]; // Matriz que almacena las sigmas (cargas)
int matriz_etiquetas[N][M]; // Matriz donde se indexan las grietas (I)
int rotos_grieta[size_vect]; // Vector para guardar el numero de

elementos rotos de cada grieta (R)
int numero_vecinos[size_vect]; // Vector para guardar el numero de

vecinos de cada grieta (S)
Almacenaje_vecinos vecinos[N][M]; // Matriz donde se guardan los indices de

los cumulos que son vecinos de cada elemento (V)
int fila_roto, columna_roto; // Indices del elemento a romper
int indice_nuevo; // Indice de la proxima grieta a indexarse

#ifdef evol_tamano
double tamano_medio[N*M]; // Vector que guarda el tamano medio de

las grietas en cada paso de tiempo

14

inicializa_vector_double(tamano_medio, 0, N*M);
#endif // evol_tamano

#ifdef Metodo_clasico
double tiempos_iniciales[N][M]; // Matriz que almacena la distribucion

inicial de tiempos
double tiempos_nuevos[N][M]; // Matriz que almacena los tiempos de

ruptura calculados en cada paso
double tiempos_transcurridos[N][M]; // Matriz que almacena el tiempo

transcurrido para cada elemento (pesado con sigma)
#endif // Metodo_clasico
#ifdef Metodo_radiactivo
double prob_ruptura[N][M]; // Matriz que almacena la probabilidad de

ruptura de cada elemento
#endif // Metodo_radiactivo

FILE *fich_tiempos; // Fichero donde se escribe el resultado
de T para cada simulacion (binario)

char ruta_tiempos[]="tiempos_finales.dat"; // Ruta para el fichero fich_tiempos
fich_tiempos=fopen(ruta_tiempos,"wb");

srand(time(NULL));

for(simul=0; simul<N_simul; simul++){ // Bucle para las ’N_simul’ simulaciones
/*---Inicializamos las variables a utilizar---*/
indice_nuevo=1;
inicializa_matriz_double(cargas_red, sigma_0); // Todas las cargas valen

signa_0 (parametro global)
inicializa_matriz(matriz_etiquetas, 0); // Todas las etiquetas son 0,

ya que los elementos estan sin romper
inicializa_vector(rotos_grieta, 0, size_vect); // La componente 1 deberia ser

N*M, pero no importa porque no se usa
inicializa_vector(numero_vecinos, 0, size_vect);

#ifdef evol_tamano
tamano_medio[0]+=calcula_tamano_medio(rotos_grieta);
#endif // evol_tamano

#ifdef Metodo_clasico
inicializa_tiempos(tiempos_iniciales); // Distribucion exponencial

para los tiempos iniciales
inicializa_matriz_double(tiempos_transcurridos, 0);

/*--- El primer paso lo hacemos fuera del bucle para aprovechar el vector de
tiempos iniciales---*/

delta=busca_minimo_matriz(tiempos_iniciales, &fila_roto, &columna_roto);

15

T=delta;
#endif // Metodo_clasico
#ifdef Metodo_radiactivo
delta=probabilidades_ruptura(cargas_red, prob_ruptura);
T=delta;
#endif // Metodo_radiactivo

#ifdef animacion
if(simul==0){ // Hacemos la animacion solo para la primera simulacion

escribe_animacion(matriz_etiquetas, vecinos, 0);
}
#endif // animacion

/* Bucle principal (metodo clasico):
1) Se incrementa el tiempo transcurrido para cada elemento, con el valor de

(delta*sigma^rho) (delta y sigma ya han sido calculadas en la iteracion
anterior)

2) Se rompe el elemento con menor tiempo (que ya habia sido obtenido al
calcular delta)

3) Se reindexan adecuadamente todas las grietas, igualando indices de las
contiguas

4) Se buscan todos los elementos que son vecinos de alguna de las grietas,
y se cuentan separadamente para cada una de ellas. Ademas, se almacenan
en el struct ’vecinos’ los indices de las grietas que son vecinas a cada
uno de los elementos, si las hay.

5) Se calculan las cargas de red a partir de la informacion almacenada en
el struct ’vecinos’ y del numero de elementos rotos y vecinos de cada
grieta.

6) Se recalculan los tiempos de ruptura a partir de los tiempos iniciales,
los tiempos transcurridos y el nuevo valor de la carga soportada por
cada elemento.

7) Se busca el minimo valor del tiempo (guardando tambien las coordenadas
del elemento para romperlo) y se incrementa el valor del tiempo total
transcurrido.

*
* Bucle principal (metodo radiactivo):

1) Se calcula el elemento que va a romperse en esta iteracion, a partir de
las probabilidades de ruptura (calculadas en la iteracion anterior)

2) Se rompe el elemento, se reindexan las grietas y se reparten las cargas
(puntos 3-5 anteriores)

3) Se calculan las nuevas probabilidades de ruptura (gammas) y la vida de
la configuracion actual, que se suma al tiempo total transcurrido

*/
for(paso=1; paso<N*M; paso++){ // El primer paso se realiza antes del bucle

#ifdef Metodo_clasico
incrementa_tiempos(tiempos_transcurridos, cargas_red, delta);

16

/*---Se rompe el elemento y se reparten las cargas---*/
reindexa_grietas(matriz_etiquetas, rotos_grieta, columna_roto, fila_roto,

&indice_nuevo);
encuentra_vecinos_2D(matriz_etiquetas, numero_vecinos, vecinos);
calcula_cargas_red_2D(cargas_red, matriz_etiquetas, vecinos, rotos_grieta,

numero_vecinos);

recalcula_tiempos(tiempos_nuevos, tiempos_iniciales,
tiempos_transcurridos, cargas_red);

delta=busca_minimo_matriz(tiempos_nuevos, &fila_roto, &columna_roto);
T+=delta;
#endif // Metodo_clasico

#ifdef Metodo_radiactivo
calcula_elemento_roto(prob_ruptura, &fila_roto, &columna_roto);
/*---Se rompe el elemento y se reparten las cargas---*/
reindexa_grietas(matriz_etiquetas, rotos_grieta, columna_roto, fila_roto,

&indice_nuevo);
encuentra_vecinos_2D(matriz_etiquetas, numero_vecinos, vecinos);
calcula_cargas_red_2D(cargas_red, matriz_etiquetas, vecinos, rotos_grieta,

numero_vecinos);

delta=probabilidades_ruptura(cargas_red, prob_ruptura);
T+=delta;
#endif // Metodo radiactivo

#ifdef animacion
if(simul==0){ // Hacemos la animacion solo para la primera simulacion

escribe_animacion(matriz_etiquetas, vecinos, paso);
}
#endif // animacion
#ifdef evol_tamano
tamano_medio[paso]+=calcula_tamano_medio(rotos_grieta);
#endif // evol_tamano

}
fwrite(&T, sizeof(double), 1, fich_tiempos); // Escribimos en un fichero el

resultado, para analizarlo despues
if(((100*simul) %N_simul)==0){ // Escribimos el progreso por

pantalla
printf(" %d/100 completado\n", (int)(100.0*simul/N_simul));

}
}
fclose(fich_tiempos);
printf("100/100 completado\n");

/*--------Analisis estadistico--------*/

17

double T_med, T_var;
med_var(ruta_tiempos, N_simul, &T_med, &T_var, 1); // Se obtiene la media y

varianza de los resultados
printf("<T>= %lf\n Varianza= %.12lf\n", T_med, T_var);

FILE *medias_var; // Fichero donde se escriben los
resultados finales de la media y la varianza

char ruta_medias[60]; // Ruta para el fichero medias_var
char ruta_histograma[60]; // Ruta para el fichero de histograma
if(N==1 || M==1){

#ifdef Metodo_clasico
sprintf(ruta_medias,"1D/medias_varianzas_clasico.txt");
sprintf(ruta_histograma,"1D/histogramas_clasico/histog_rho= %d_ %dx %d_sim= %d.txt",

rho, N, M, N_simul);
#endif // Metodo_clasico

#ifdef Metodo_radiactivo
sprintf(ruta_medias,"1D/medias_varianzas_radiactivo.txt");
sprintf(ruta_histograma,

"1D/histogramas_radiactivo/histog_rho= %d_ %dx %d_sim= %d.txt", rho, N, M,
N_simul);

#endif // Metodo_radiactivo
}else{

#ifdef Metodo_clasico
sprintf(ruta_medias,"2D/medias_varianzas_clasico.txt");
sprintf(ruta_histograma,

"2D/histogramas_clasico/histog_rho= %d_ %dx %d_sim= %d.txt", rho, N, M,
N_simul);

#endif // Metodo_clasico

#ifdef Metodo_radiactivo
sprintf(ruta_medias,"2D/medias_varianzas_radiactivo.txt");
sprintf(ruta_histograma,

"2D/histogramas_radiactivo/histog_rho= %d_ %dx %d_sim= %d.txt", rho, N, M,
N_simul);

#endif // Metodo_radiactivo
}

medias_var=fopen(ruta_medias, "at");
fprintf(medias_var, " %d\t %d\t %d\t %d\t %lf\t %.12lf\n", N, M, rho, N_simul, T_med,

T_var);
fclose(medias_var);

histograma(ruta_tiempos, N_simul, N_interv_histo, ruta_histograma, 1); // Se
obtiene el histograma

18

#ifdef evol_tamano
FILE *fich_tamano; // Fichero donde se escribira la evolucion

del tamano medio de las grietas
char ruta_tamano[60];
#ifdef Metodo_clasico
sprintf(ruta_tamano, "Tamano/clasico/tamano_2D_N= %d_M= %d_rho= %d_simul= %d.txt",

N, M, rho, N_simul);
#endif // Metodo_clasico
#ifdef Metodo_radiactivo
sprintf(ruta_tamano,

"Tamano/radiactivo/tamano_2D_N= %d_M= %d_rho= %d_simul= %d.txt", N, M, rho,
N_simul);

#endif
fich_tamano=fopen(ruta_tamano, "w");
for(int i=0; i<N*M; i++){

fprintf(fich_tamano, " %d\t %lf\n", i, tamano_medio[i]/N_simul);
}
fclose(fich_tamano);
#endif // evol_tamano

return 1;
}

/*--------------Funciones------------------------------*/
/**

* En caso de estar activado el modo animacion, escribe en un fichero de texto el
estado

* de cada elemento (roto=2, limite de una o varias grietas=1, ni roto ni vecino=0)
* en cada paso temporal, para hacer una animacion de la ruptura de la grieta
*/

void escribe_animacion(int etiquetas[N][M], Almacenaje_vecinos vecinos[N][M], int
paso){
FILE *archivo_animacion;
char ruta_animacion[60];
#ifdef Metodo_radiactivo
sprintf(ruta_animacion,

"Animacion/Radiactivo/rho= %d_N= %d_M= %d/animacion_paso= %d.txt", rho, N, M,
paso);

#endif // Metodo_radiactivo
#ifdef Metodo_clasico
sprintf(ruta_animacion,

"Animacion/Clasico/rho= %d_N= %d_M= %d/animacion_paso= %d.txt", rho, N, M, paso);
#endif // Metodo_radiactivo
archivo_animacion=fopen(ruta_animacion, "w");
for(int i=0; i<N; i++){

19

for(int j=0; j<M; j++){
if(etiquetas[i][j]!=0){

fprintf(archivo_animacion, "2\t"); // Elemento roto
}else if(vecinos[i][j].cum1!=0 || vecinos[i][j].cum2!=0 ||

vecinos[i][j].cum3!=0 || vecinos[i][j].cum4!=0){
fprintf(archivo_animacion, "1\t"); // Elemento limite de una o varias

grietas
}else{

fprintf(archivo_animacion, "0\t"); // Elemento intacto (ni roto ni
vecino)

}
}
fprintf(archivo_animacion, "\n");

}
fclose(archivo_animacion);

}

/**
* Devuelve el tamano medio de las grietas en un instante dado, a partir del
* vector que guarda el numero de elementos rotos en cada grieta
*/

double calcula_tamano_medio(int v[size_vect]){
double suma=0;
int contador=0;
for(int i=0; i<size_vect; i++){

if(v[i]!=0){
suma+=v[i];
contador++;

}
}
return suma/contador;

}

Las librerías utilizadas para el código 2D son las siguientes:
Reparto_cargas_2D.cpp:

/**
* En el caso de que el elemento roto sea vecino de 2 grietas, se debe asociar el

mismo indice a las 2, ya que ahora estan en contacto. Por tanto, se asigna el
valor del parametro 3 a los puntos de la matriz de indices (parametro 1) que
tengan el valor indicado mediante el ultimo parametro. Si el indice ya es el
asignado, no hace falta cambiarlo, por lo que la funcion no hace nada. Ademas,
reagrupa el numero de elementos rotos de la grieta correspondiente a
indice_asignado, sumandoles los elementos que hay en la grieta correspondiente al
indice a cambiar, y volviendose 0 el numero de elementos de esta ultima.

20

*/
void iguala_indices_2grietas(int matriz[N][M], int *rotos_grieta, int

indice_asignado, int cambia){
if(cambia!=indice_asignado){ //Si es igual, no hay que hacer nada

int ncambiados=0;
for(int i=0; i<N; i++){

for(int j=0; j<M; j++){
if(matriz[i][j]==cambia){ // Cambiamos los del indice a cambiar por el

indice a asignar
matriz[i][j]=indice_asignado;
ncambiados++;

}
}

}
rotos_grieta[indice_asignado]+=ncambiados;
rotos_grieta[cambia]=0;

}
}

/**
* En el caso de que el elemento roto sea vecino de 3 grietas, se debe asociar el

mismo indice a las 3, ya que ahora estan en contacto. Por tanto, se asigna el
valor del parametro 3 a los puntos de la matriz de indices (parametro 1) que
tengan alguno de los valores indicados mediante los 2 ulimos parametros. Si
alguno de los indices ya es el asignado, no hace falta cambiarlo, por lo que
invoca a la funcion iguala_indices_2grietas con el otro indice (que en general es
distinto del asignado). Ademas, reagrupa el numero de elementos rotos de la
grieta correspondiente a indice_asignado, sumandoles los elementos que hay en las
grietas correspondientes a cambia1 y cambia2, y volviendose 0 el numero de
elementos de estas ultimas.

*/
void iguala_indices_3grietas(int matriz[N][M], int *rotos_grieta, int

indice_asignado, int cambia1, int cambia2){
if(indice_asignado==cambia1){ // Si el primero ya es igual, no hace falta

reindexarlo
iguala_indices_2grietas(matriz, rotos_grieta, indice_asignado, cambia2);

}else if(indice_asignado==cambia2){ // Si el segundo ya es igual, no hace falta
reindexarlo
iguala_indices_2grietas(matriz, rotos_grieta, indice_asignado, cambia1);

}else{
int ncambiados=0;
for(int i=0; i<N; i++){

for(int j=0; j<M; j++){
if(matriz[i][j]==cambia1 || matriz[i][j]==cambia2){

matriz[i][j]=indice_asignado;
ncambiados++;

21

}
}

}
rotos_grieta[indice_asignado]+=ncambiados;
rotos_grieta[cambia1]=0;
rotos_grieta[cambia2]=0;

}
}

/**
* En el caso de que el elemento roto sea vecino de 4 grietas, se debe asociar el

mismo indice a las 4, ya que ahora estan en contacto. Por tanto, se asigna el
valor del parametro 2 a los puntos de la matriz de indices (parametro 1) que
tengan alguno de los valores indicados mediante los 3 ulimos parametros. Si
alguno de los indices ya es el asignado, no hace falta cambiarlo, por lo que
invoca a la funcion iguala_indices_3grietas con los otros dos indices (que en
general son distintos del asignado). Ademas, reagrupa el numero de elementos
rotos de la grieta correspondiente a indice_asignado, sumandoles los elementos
que hay en las grietas correspondientes a cambia1, cambia2 y cambia3, y
volviendose 0 el numero de elementos de estas ultimas.

*/
void iguala_indices_4grietas(int matriz[N][M], int *rotos_grieta, int

indice_asignado, int cambia1, int cambia2, int cambia3){
if(indice_asignado==cambia1){ // Si el tercero ya es el asignado no hace

falta cambiarlo
iguala_indices_3grietas(matriz, rotos_grieta, indice_asignado, cambia2,

cambia3);
}else if(indice_asignado==cambia2){ // Si el segundo ya es el asignado no hace

falta cambiarlo
iguala_indices_3grietas(matriz, rotos_grieta, indice_asignado, cambia1,

cambia3);
}else if(indice_asignado==cambia3){ // Si el tercero ya es el asignado no hace

falta cambiarlo
iguala_indices_3grietas(matriz, rotos_grieta, indice_asignado, cambia1,

cambia2);
}else{

int ncambiados=0;
for(int i=0; i<N; i++){

for(int j=0; j<M; j++){
if(matriz[i][j]==cambia1 || matriz[i][j]==cambia2 ||

matriz[i][j]==cambia3){
matriz[i][j]=indice_asignado;
ncambiados++;

}
}

}

22

rotos_grieta[indice_asignado]+=ncambiados;
rotos_grieta[cambia1]=0;
rotos_grieta[cambia2]=0;
rotos_grieta[cambia3]=0;

}
}

/**
* Dada la matriz que contiene los indices de cada grieta (argumento 1) y las

coordenadas del punto que se ha roto (argumentos 3 y 4), comprueba si este
elemento es vecino de alguna de las grietas, en cuyo caso le asigna el indice de
una de ellas (orden de prioridad: up, left, right, down). Ademas, invoca a una de
las funciones ’iguala_indices_ngrietas’ para que todas las grietas que ahora se
han puesto en contacto tengan este mismo indice. Finalmente, se modifica
adecuadamente el segundo parametro, que da cuenta del numero de elementos rotos
que tiene cada grieta. El ultimo parametro solo se incrementa si el elemento roto
ha formado una nueva grieta.

*/
void reindexa_grietas(int matriz_indices[N][M], int *rotos_grieta, int colum, int

fila, int *indice_nuevo){
/*---Calculamos las coordenadas de los elementos adyacentes, respetando las

condiciones periodicas---*/
int fila_up, fila_down, colum_left, colum_right;

colum_left=(colum+2*M-1) %M; // Si colum es 0, colum_left=M-1; en caso contrario,
colum_left=colum-1

fila_up=(fila+2*N-1) %N; // Si fila es 0, fila_up=M-1; en caso contrario,
fila_up=fila-1

colum_right=(colum+M+1) %M; // Si colum es M-1, colum_right=0; en caso contrario,
colum_right=colum+1

fila_down=(fila+N+1) %N; // Si fila es N-1, fila_down=0; en caso contrario,
fila_down=fila+1

/*---Calculamos los indices de los elementos adyacentes---*/
int up, down, left, right, indice_asignado; // Indice_asignado: el que va a

perdurar, y el que se asocia al nuevo roto
int cambia; // Indice a sustituir por

indice_asignado en la reindexacion
up=matriz_indices[fila_up][colum];
down=matriz_indices[fila_down][colum];
left=matriz_indices[fila][colum_left];
right=matriz_indices[fila][colum_right];

/*---Distinguimos casos segun el numero de vecinos rotos---*/
switch (!!up + !!left + !!down + !!right) { // ’!!a’ devuelve 1 si a!=0, 0 si a=0.

Esto da el # de vecinos que no son 0

23

case 0: // Nueva grieta
indice_asignado=*indice_nuevo;
(*indice_nuevo)++; // La siguiente grieta nueva estara

asociada al siguiente indice nuevo
break;
case 1: // El elemento roto es vecino de una sola grieta. Se le asocia el

indice no nulo.
if(up!=0){

indice_asignado=up;
}else if(left!=0){

indice_asignado=left;
}else if(right!=0){

indice_asignado=right;
}else{

indice_asignado=down;
}

break;
case 2: // El elemento roto es vecino de 2 grietas. Se le asocia el indice!=0,

respetando prioridad (up, left, right, down)
if(up!=0){

indice_asignado=up;
cambia=down+left+right; // Alguno de estos 3 es no nulo, el resto son

nulos
}else if(left!=0){

indice_asignado=left;
cambia=down+right; // Uno es nulo y el otro no

}else{
indice_asignado=right;
cambia=down;

}
iguala_indices_2grietas(matriz_indices, rotos_grieta, indice_asignado,

cambia); // Se igualan los indices de ambas grietas
break;
case 3: // El elemento roto es vecino de 3 grietas. Se le asocia el indice!=0,

respetando prioridad (up, left, right, down)
if(up==0){

indice_asignado=left;
iguala_indices_3grietas(matriz_indices, rotos_grieta, indice_asignado,

right, down); // Se igualan los indices de las 3 grietas
}else{

indice_asignado=up;
if(left==0){

iguala_indices_3grietas(matriz_indices, rotos_grieta, indice_asignado,
right, down);

}else{
if(right==0){

24

iguala_indices_3grietas(matriz_indices, rotos_grieta,
indice_asignado, left, down);

}else{
iguala_indices_3grietas(matriz_indices, rotos_grieta,

indice_asignado, right, left);
}

}
}

break;
case 4: // El elemento roto es vecino de 4 cumulos .Se le asocia el indice!=0,

respetando prioridad (up, left, right, down)
indice_asignado=up;
iguala_indices_4grietas(matriz_indices, rotos_grieta, indice_asignado, down,

left, right); // Se igualan los indices de las 4 grietas
}
matriz_indices[fila][colum]=indice_asignado; // Se asigna el indice adecuado al

nuevo elemento roto
rotos_grieta[indice_asignado]++; // Nuevo elemento para la grieta con

la que esta en contacto
}

/**
* Escanea la matriz que indexa a las grietas (argumento 1) y comprueba para cada

elemento si los colindantes son vecinos de uno o varios cumulos, informacion que
se guarda en el ultimo argumento: cada una de las 4 componentes de los elementos
de matriz puede guardar el indice del cumulo o cumulos de los que es vecino cada
elemento. Si el elemento ya es uno de los que estan rotos, ponemos que este "es
vecino del cumulo de los elementos sin romper" (0), para ignorarlos en el calculo
de las cargas. Ademas, el algoritmo calcula el numero de vecinos que tiene cada
cumulo (segundo argumento).

*/
void encuentra_vecinos_2D(int matriz_indices[N][M], int numero_vecinos[size_vect],

Almacenaje_vecinos vecinos[N][M]){
int col_left, col_right, fila_up, fila_down;
int indice_up, indice_left, indice_right, indice_down;
inicializa_vector(numero_vecinos, 0, size_vect); // El numero de vecinos se

calcula cada vez que se ejecuta esta funcion

/*---Leemos la matriz:---*/
for(int i=0; i<N; i++){

fila_up=(i-1+2*N) %N;
fila_down=(i+1+N) %N;
for(int j=0; j<M; j++){

col_left=(j-1+2*M) %M;
col_right=(j+1+M) %M;
if(matriz_indices[i][j]!=0){ // Los elementos ya rotos, como no tienen

25

carga, no los utilizaremos
vecinos[i][j].cum1=0;
vecinos[i][j].cum2=0;
vecinos[i][j].cum3=0;
vecinos[i][j].cum4=0;

}else{ // Si no es 0, no es un vecino, sino un
elemento roto
indice_up=matriz_indices[fila_up][j];
indice_left=matriz_indices[i][col_left];
indice_right=matriz_indices[i][col_right];
indice_down=matriz_indices[fila_down][j];

/* Guardamos los indices de los cumulos contiguos al elemento i, j. Si
alguna es 0, se guarda un 0, que al no corresponder a ningun
cumulo, significa que en realidad no tiene vecino en esa direccion.

*
* Incrementamos el numero de vecinos de la(s) grieta(s) dada(s) por

el(los) indice(s) del (de los) elemento(s) contiguo(s). Si alguno
es 0, se incrementa el numero de vecinos del "cumulo 0", que es el
cumulo de los elementos no rotos y no se utiliza para calcular las
cargas.

*/

vecinos[i][j].cum1=indice_up;
numero_vecinos[indice_up]++;
if(indice_left!=indice_up){

vecinos[i][j].cum2=indice_left;
numero_vecinos[indice_left]++;
if(indice_right!=indice_up && indice_right!=indice_left){

vecinos[i][j].cum3=indice_right;
numero_vecinos[indice_right]++;
if(indice_down!=indice_up && indice_down!=indice_left &&

indice_down!=indice_right){
vecinos[i][j].cum4=indice_down;
numero_vecinos[indice_down]++;

}else{
vecinos[i][j].cum4=0; // Si es doblemente vecino de

alguno, solo lo guardamos 1 vez
}

}else{
if(indice_down!=indice_up && indice_down!= indice_left){

vecinos[i][j].cum3=indice_down;
numero_vecinos[indice_down]++;

}else{
vecinos[i][j].cum3=0;

}

26

vecinos[i][j].cum4=0;
}

}else{
if(indice_right!=indice_up){

vecinos[i][j].cum2=indice_right;
numero_vecinos[indice_right]++;
if(indice_down!=indice_up && indice_down!=indice_right){

vecinos[i][j].cum3=indice_down;
numero_vecinos[indice_down]++;

}else{
vecinos[i][j].cum3=0;

}
}else{

if(indice_down!=indice_up){
vecinos[i][j].cum2=indice_down;
numero_vecinos[indice_down]++;

}else{
vecinos[i][j].cum2=0;

}
vecinos[i][j].cum3=0;

}
vecinos[i][j].cum4=0;

}
}

}
}

}

/**
* Calcula las cargas de la red mediante 1+suma de (r_k/s_k)*(1-delta(vecino, 0))

siendo {k} los 4 elementos contiguos al punto en cuestion, r el numero de
elementos rotos de cada grieta y s el numero de vecinos de cada grieta. Es decir,
si el elemento es vecino de una o mas grietas, el exceso de carga que soporta es
r/s por cada grieta adyacente, siendo aditivas (los vecinos de mas de una grieta
soportan mas carga que los vecinos de una sola). La carga es 1+este exceso.

* Primer parametro: matriz con las cargas de la red (salida del subalgoritmo).
* Segundo parametro: matriz donde se han indexado las grietas
* Tercer parametro: matriz de structs donde se almacenan los indices de los cumulos

que son vecinos de cada elemento
* Cuarto argumento: vector donde se almacena el numero de elementos rotos de cada

grieta
* Quinto elemento: vector donde se almacena el numero de vecinos de cada grieta
*/

void calcula_cargas_red_2D(double cargas_red[N][M], int matriz_etiquetas[N][M],
Almacenaje_vecinos vecinos[N][M],

int rotos_grieta[size_vect], int numero_vecinos[size_vect]){

27

int etiqueta;
for(int i=0; i<N; i++){

for(int j=0; j<M; j++){
etiqueta=matriz_etiquetas[i][j];
if(etiqueta!=0){ // Elemento ya roto, no soporta carga

cargas_red[i][j]=0;
}else{ // Elemento sin romper

/* Incrementamos las cargas, como la suma (restringida a los vecinos no
nulos), mediante: r_k/s_k, siendo r el numero de elementos rotos de
la grieta y s el numero de vecinos de la grieta.

*/
cargas_red[i][j]=1;
if((vecinos[i][j].cum1)!=0){

cargas_red[i][j]+=((double)rotos_grieta[vecinos[i][j].cum1]/
(numero_vecinos[vecinos[i][j].cum1]));

}
if((vecinos[i][j].cum2)!=0){

cargas_red[i][j]+=((double)rotos_grieta[vecinos[i][j].cum2]/
(numero_vecinos[vecinos[i][j].cum2]));

}
if((vecinos[i][j].cum3)!=0){

cargas_red[i][j]+=((double)rotos_grieta[vecinos[i][j].cum3]/
(numero_vecinos[vecinos[i][j].cum3]));

}
if((vecinos[i][j].cum4)!=0){

cargas_red[i][j]+=((double)rotos_grieta[vecinos[i][j].cum4]/
(numero_vecinos[vecinos[i][j].cum4]));

}
}

}
}

}

Funciones_clasico_2D.cpp:

/**
* Asocia a todos los elementos de la matriz (argumento) un numero aleatorio dado por

la distribucion exponencial, es decir, un valor de -log(random entre 0 y 1)
*/

void inicializa_tiempos(double matriz[N][M]){
for(int i=0; i<N; i++){

for(int j=0; j<M; j++){
matriz[i][j]=-log(random_01());

}
}

28

}

/**
* Se lee una matriz y se devuelve la fila y columna del elemento de minimo valor

positivo, asi como este valor
*/

double busca_minimo_matriz(double matriz[N][M], int *fila, int *columna){
double minimo=matriz[0][0];
*fila=0;
*columna=0;
for(int i=0; i<N; i++){

for(int j=0; j<M; j++){
if(minimo<=0){

minimo=matriz[i][j]; //Buscamos primero el tiempo de un elemento no
roto, para comparar

*fila=i;
*columna=j;

}
if(matriz[i][j]<minimo && matriz[i][j]>0){

minimo=matriz[i][j]; //Buscamos el minimo tiempo de un elemento no roto
*fila=i;
*columna=j;

}
}

}
return minimo;

}

/**
* Se actualizan los tiempos transcurridos para cada elemento (argumento 1), a partir

de las cargas de red (argumento 2) y del intervalo en que las han soportado
(argumento 3).

*/
void incrementa_tiempos(double tiempos_transcurridos[N][M], double cargas[N][M],

double delta){
for(int i=0; i<N; i++){

for(int j=0; j<M; j++){
tiempos_transcurridos[i][j]+=delta*pow(cargas[i][j], rho);

}
}

}

/**
* Se devuelven los nuevos tiempos de ruptura para cada elemento (argumento 1),

calculados a partir de los tiempos iniciales (argumento 2), de los tiempos
transcurridos (argumento 3) y de las cargas de red (argumento 4).

29

*/
void recalcula_tiempos(double tiempos_nuevos[N][M], double tiempos_iniciales[N][M],

double tiempos_transcurridos[N][M], double cargas[N][M]){
for(int i=0; i<N; i++){

for(int j=0; j<M; j++){
if(cargas[i][j]>0){

tiempos_nuevos[i][j]=
(tiempos_iniciales[i][j]-tiempos_transcurridos[i][j])/(pow(cargas[i][j], rho));

}else{ //Para elementos rotos, asignamos el valor de 0, que no esta
contemplado a la hora de buscar el minimo tiempo
tiempos_nuevos[i][j]=0;

}
}

}
}

Funciones_radiactivo_2D.cpp:

/**
* Calcula la probabilidad de ruptura de cada elemento a partir del vector de
* cargas de red (primer parametro) y la almacena en un vector (segundo parametro).
* Ademas, devuelve la delta de la configuracion, necesaria para calcular T
*/

double probabilidades_ruptura(double red[N][M], double prob[N][M]){
double gamma_total=0; // Tiempo de vida de la configuracion actual
double gamma[N][M]; // Matriz para el calculo de las probabilidades

for(int i=0; i<N; i++){ // Calculo de las gammas
for(int j=0; j<M; j++){

gamma[i][j]=pow((red[i][j]),rho);
gamma_total+=gamma[i][j];

}
}
for(int i=0; i<N; i++){ // Calculo de las probabilidades

for(int j=0; j<M; j++){
prob[i][j]=(gamma[i][j])/(gamma_total);

}
}

return 1/gamma_total; // Se devuelve el valor de delta
}

/**
* A partir del vector de probabilidades, lanza un numero entre 0 y 1 y determina
* el siguiente elemento en romperse, que develve mediante sus coordenadas (x,y).

30

* La matriz se recorre de izquierda a derecha y de arriba a abajo
*/

void calcula_elemento_roto(double probabilidades[N][M], int *fila, int *columna){
double numero=random_01();
double acum_prob=0;
int j, i;

/* El intervalo [0,1) se divide en segmentos, cada uno de una longitud
* igual a la probabilidad de ruptura del elemento. El numero entre 0 y 1
* determina el segmento en el que cae, al cual se le asocian las coordenadas,
* que son los parametros de salida
*/

for(i=0; i<N; i++){
for(j=0; j<M; j++){

acum_prob+=probabilidades[i][j];
if(acum_prob>numero){ // El indice se devuelve cuando el numero esta entre

dos separaciones de segmentos
*fila=i;
*columna=j;
return; // Para salir del bucle

}
}

}
}

Otras librerías que son comunes a ambos códigos:
Random.cpp:

#define NormParisi (2.3283063671E-10F) //Para normalizar el valor generado en la
rueda de Parisi-Rapuano

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

/**
* Devuelve un numero aleatorio en intervalo [0,1) (distribucion PLANA)
*/

double random_01()
{

int i;
unsigned int rueda[256], aleatorio;
unsigned char indice_ran, indice1, indice2, indice3;
//Inicializar rueda
for(i = 0; i < 256; i++)

31

rueda[i] = (rand()<<16) + rand();
//Inicializar indices
indice_ran = 0; indice1 = 0; indice2 = 0; indice3 = 0;
//Modificamos los indices
indice1 = indice_ran - 24;
indice2 = indice_ran - 55;
indice3 = indice_ran - 61;
//Modificamos la rueda
rueda[indice_ran] = rueda[indice1] + rueda[indice2];
//Generamos un numero aleatorio entre 0 y 2^32-1
aleatorio = (rueda[indice_ran]^rueda[indice3]);
//Cambiamos la posicion base para el siguiente numero aleatorio
indice_ran++;
//Devolvemos el numero aleatorio normalizado, entre 0 y 1
return aleatorio * NormParisi;

}

double random_ab(double a, double b){
return a+random_01()*b;

}

Estadisticas_ficheros.cpp:

/**
* Calcula un histograma a partir de un conjunto de datos.
* Primer argumento: ruta a un archivo con los datos en bruto, o bien un vector con

los datos
* Number: numero de datos (tamano del vector numeros)
* Interv: numero de intervalos deseado
* f_salida: ruta a un archivo para la escritura de resultados
* Modo: a donde apunta el primer argumento: 0 para archivo de texto, 1 para archivo

binario, 2 para vector
*/

void histograma(char *f_entrada, int Number, int Interv, char *f_salida, int modo){
int i;
int posicion;
double d, Max, Min;
double posiciones[Interv];
double numero_leido;
FILE *fich_entrada;

/*----Inicializar las frecuencias----*/

for (i=0; i<Interv; i++){
posiciones[i]=0;

}

32

/*-------------Calcular el maximo y el minimo-----------*/
if(modo==1){ //Para archivos binarios

fich_entrada=fopen(f_entrada, "rb");
fread(&numero_leido, sizeof(double), 1, fich_entrada);
Max=numero_leido;
Min=numero_leido;

for (i=1; i<Number; i++){
fread(&numero_leido, sizeof(double), 1, fich_entrada);

if (numero_leido>Max){
Max=numero_leido;

}
if (numero_leido<Min){

Min=numero_leido;
}

}
fclose(fich_entrada);

}else{
if(modo==0){ //Para archivos de texto

fich_entrada=fopen(f_entrada, "r");
fscanf(fich_entrada, " %lf", &numero_leido);
Max=numero_leido;
Min=numero_leido;

for (i=1; i<Number; i++){
fscanf(fich_entrada, " %lf", &numero_leido);

if (numero_leido>Max){
Max=numero_leido;

}
if (numero_leido<Min){

Min=numero_leido;
}

}
fclose(fich_entrada);

}else{ //Para vectores
Max=(*f_entrada);
Min=(*f_entrada);

for (i=1; i<Number; i++){
if (*(f_entrada+i)>Max){

Max=(*(f_entrada+i));
}
if (*(f_entrada+i)<Min){

Min=(*(f_entrada+i));
}

33

}
}

}

/*-------Calcular la separacion entre intervalos------*/

d=(Max-Min)/Interv;
if (d==0){

printf("Error: no se han podido calcular los intervalos.");
exit(1);

}

/*------Calcular los valores de la frecuencia en cada intervalo------*/

if(modo==1){ //Para archivos binarios
fich_entrada=fopen(f_entrada, "rb");
for (i=0; i<Number; i++){

fread(&numero_leido, sizeof(double), 1, fich_entrada);
posicion=(numero_leido-Min)/(d);
posiciones[posicion]++;

}
fclose(fich_entrada);

}else{
if(modo==0){ //Para archivos de texto

fich_entrada=fopen(f_entrada, "r");
for (i=0; i<Number; i++){

fscanf(fich_entrada, " %lf", &numero_leido);
posicion=(numero_leido-Min)/(d);
posiciones[posicion]++;

}
fclose(fich_entrada);

}else{ //Para vectores
for (i=0; i<Number; i++){

posicion=(*(f_entrada+i)-Min)/(d);
posiciones[posicion]++;

}
}

}
//Normalizar el histograma

double Norm;
Norm=1.0/(Number);
for(i=0; i<Interv; i++){

posiciones[i]=posiciones[i]*Norm;
}

34

//Guardar el histograma con el formato adecuado para representar con barras, en el
fichero indicado por f_salida

FILE *fich_salida;
fich_salida=fopen(f_salida, "wt");
double punto;
punto=Min+0.5*d;
for (i=0; i<Interv; i++){

fprintf(fich_salida, " %lf \t %lf \n", punto, posiciones[i]);
punto+=d;

}
fclose(fich_salida);

}

/**
* Calcula la media y la varianza de un conjunto de datos
* Primer argumento: ruta del conjunto de datos
* Segundo argumento: numero de datos
* Tercer y cuarto argumentos: media y varianza (resultados de salida)
* Quinto argumento: tipo de conjunto de datos (0: ruta a archivo de texto, 1: ruta a

archivo binario, 2: vector)
*/

void med_var(char *f_entrada, int Cantidad, double *media, double *varianza, int
modo){
double suma, suma2;
int j, k;
suma=0;
suma2=0;

if(modo==0){ //Para archivos de texto
double numero_leido;
FILE *fich_entrada;

/*-------------Calculo de la media------------*/
fich_entrada=fopen(f_entrada, "rt");

for (j=0; j<Cantidad; j++){
fscanf(fich_entrada, " %d\n", &numero_leido);
suma+=numero_leido;

}
fclose(fich_entrada);

/*-----------------Calculo de la varianza--------*/

fich_entrada=fopen(f_entrada, "rt");
for (k=0; k<Cantidad; k++){

35

fscanf(fich_entrada, " %d\n", &numero_leido);
suma2+=(numero_leido)*(numero_leido);

}
fclose(fich_entrada);

}else{
if(modo==1){ //Para archivos binarios

double numero_leido;
FILE *fich_entrada;

/*-------------Calculo de la media------------*/
fich_entrada=fopen(f_entrada, "rb");

for (j=0; j<Cantidad; j++){
fread(&numero_leido, sizeof(double), 1, fich_entrada);
suma+=numero_leido;

}
fclose(fich_entrada);

/*-----------------Calculo de la varianza--------*/

fich_entrada=fopen(f_entrada, "rb");
for (k=0; k<Cantidad; k++){

fread(&numero_leido, sizeof(double), 1, fich_entrada);
suma2+=(numero_leido)*(numero_leido);

}
fclose(fich_entrada);

}else{ //Para vectores
/*-------------Calculo de la media------------*/

for (j=0; j<Cantidad; j++){
suma+=*(f_entrada+j);

}

/*-----------------Calculo de la varianza--------*/

for (k=0; k<Cantidad; k++){
suma2+=(*(f_entrada+k))*(*(f_entrada+k));

}
}

}
*media=suma/Cantidad;
*varianza=suma2/Cantidad-(*media)*(*media);

}

Inicializacion_arrays.cpp:

36

/**
* Asocia a todos los elementos de la matriz (primer argumento) el valor del segundo

argumento
*/

void inicializa_matriz(int matriz[N][M], int valor){
for(int i=0; i<N; i++){

for(int j=0; j<M; j++){
matriz[i][j]=valor;

}
}

}

/**
* Asocia a todos los elementos de la matriz (primer argumento) el valor del segundo

argumento
*/

void inicializa_matriz_double(double matriz[N][M], double valor){
for(int i=0; i<N; i++){

for(int j=0; j<M; j++){
matriz[i][j]=valor;

}
}

}

/**
* Asocia a todos los elementos del vector (primer argumento) el valor del segundo

argumento
*/

void inicializa_vector(int *vector, int valor, int tamano){
for(int i=0; i<tamano; i++){

vector[i]=valor;
}

}

/**
* Asocia a todos los elementos del vector (primer argumento) el valor del segundo

argumento
*/

void inicializa_vector_double(double *vector, double valor, int tamano){
for(int i=0; i<tamano; i++){

vector[i]=valor;
}

}

37

2. Apéndice B

Para realizar el reparto de cargas, se utilizan las siguientes variables auxiliares:

Un vector (de tamaño N) o matriz (de tamaño NxM) cuyos elementos son los índices de
las grietas. Los elementos no rotos llevan asignado el valor de 0. En adelante, denotaremos
por I a este vector.

Un vector (de tamaño N) o matriz (de tamaño NxM) cuyos elementos a su vez tienen 2
componentes (4 en el caso bidimensional). Cada una de las componentes de estos elementos
constituye el índice de las grietas adyacentes. Por ejemplo, en el caso unidimensional, si
un elemento es vecino de las grietas indexadas por 2 y 4, se almacenan los valores de 2 y 4
en la componente correspondiente del vector. Si sólo es vecino de la grieta 3, se almacenan
los valores de 3 y 0. Para el caso bidimensional, por ejemplo, si un elemento es vecino
de la grieta 1 (por la izquierda y por arriba, es decir, está rodeado) y de la grieta 4 por
la derecha, se almacenan los valores de 1, 0, 4 y 0 en la componente correspondiente del
vector (en realidad sería 1, 1, 4 y 0, pero los índices que se repiten sólo se almacenan una
vez para facilitar el cálculo). Llamaremos a este vector V.

Un vector, de tamaño N/2+1 en el caso 1D, y de tamaño N·M/2+1 para 2D (en ambos
casos se trata del número máximo de grietas distintas posibles, es decir, configuración
alternada en 1D y configuración “de ajedrez” en 2D). Este vector almacena el número
de elementos rotos de cada grieta (tamaño). En la primera componente de este vector se
guarda el número de elementos supervivientes, y en la componente i-ésima del vector, el
número de elementos de la grieta indexada por i (la suma de todas las componentes del
vector debe dar el número total de elementos del haz). Llamaremos a este vector R, pues
está relacionado con las variables tipo r que aparecen en las Ecs. (1) y (2).

Un vector, del mismo tamaño que el anterior, que guarda en la componente i-ésima el
número de elementos sanos que son vecinos de la grieta i-ésima (perímetro). Llamaremos
a este vector S, ya que sus componentes son las variables tipo s de las Ecs. (1) y (2).

Y el procedimiento es el siguiente (ver Figuras 1, 2, 3, 4, 5):

1. Romper un elemento. Si no es vecino de ninguna grieta (lo cual se consulta mediante el
vector I, comprobando que las componentes adyacentes valgan 0), se le asigna una nueva
etiqueta (vector o matriz I). En caso contrario, se le asigna la etiqueta correspondiente a
una de ellas, con el siguiente orden de prioridad: en 1D, izquierda-derecha; en 2D, arriba-
izquierda-derecha-abajo. Por lo tanto, en primer lugar se ha obtenido la componente del
vector I que se le asocia al nuevo elemento roto, que denotaremos por I0.

2. Con esta etiqueta, se incrementa en 1 el valor de la componente correspondiente del vector
R, ya que ahora la grieta indexada por I0 cuenta con un elemento más. Es decir, R(I0) se
incrementa en 1.

38

3. Si el elemento que se ha roto era vecino de dos o más grietas diferentes, se lee I y se modi-
fican los índices de la grieta o grietas que se han unido, de manera que todos los elementos
de la nueva grieta tengan los mismos índices. Esta es la principal diferencia respecto al
algoritmo de Hoshen–Kopelman: la lectura de I sólo debe realizarse en caso de que se unan
varias grietas, mientras que se omite cuando se forman grietas nuevas. Paralelamente, se
modifica apropiadamente el vector R, incrementándose el valor de R(I0) (en una cantidad
igual al número de elementos de las grietas que se han unido), y anulándose las compo-
nentes que dan cuenta de la grieta o grietas cuyos índices se han perdido. De esta forma,
ya conocemos el valor de las variables tipo r que intervienen en el cálculo de las cargas.

4. Una vez roto el elemento y reindexado correctamente las grietas afectadas, se lee I para
encontrar el perímetro, asignando los valores correspondientes al vector S. Por lo tanto, ya
contamos con el valor de las variables tipo s, necesarias para calcular las cargas. Paralela-
mente, se obtienen las componentes de V, lo cual permite efectuar fácilmente ese cálculo,
pues para cada elemento i del haz, se conocen los índices de las grietas vecinas, denotados
por Vr(i) y Vl(i). En el caso 2D, para cada elemento (ij) del haz se tiene Vl(ij), Vr(ij),
Vu(ij) y Vd(ij). Para mayor claridad:{

1D: Vr(i) = I(i+ 1); Vl(i) = I(i− 1)
2D: Vr(ij) = I(i, j + 1); Vl(ij) = I(i, j − 1); Vu(ij) = I(i+ 1, j); Vd(ij) = I(i− 1, j)

5. Se recorre toda la red, calculando la carga de cada elemento con las ecuaciones vistas
anteriormente. En términos del algoritmo, este cálculo se reduce simplemente a:

rr(i) = R[Vr(i)]
rl(i) = R[Vl(i)]
sr(i) = S[Vr(i)]
sl(i) = S[Vl(i)]

⇒ Ec. (1) (1)

Y en 2D:
rr(ij) = R[Vr(ij)]
rl(ij) = R[Vl(ij)]
ru(ij) = R[Vu(ij)]
rd(ij) = R[Vd(ij)]
sr(ij) = S[Vr(ij)]
sl(ij) = S[Vl(ij)]
su(ij) = S[Vu(ij)]
sd(ij) = S[Vd(ij)]



⇒ Ec. (2) (2)

Por lo tanto, a diferencia del algoritmo de Hoshen–Kopelman (en el que el vector o matriz
I se lee 3 veces por cada iteración), con este método la lectura de I se realiza 2 ó 3 veces,
dependiendo de que el nuevo elemento roto unifique o no algunas grietas preexistentes.

Otra ventaja de utilizar estas variables auxiliares es la facilidad de obtener otros resultados,

39

como la evolución temporal del tamaño medio de las grietas (que se obtiene como el promedio
de todas las componentes del vector R), o animaciones de la secuencia de rotura, en las que
se visualizan los elementos rotos e intactos (gracias al vector I), así como los elementos del
perímetro de las grietas (mediante V).

Figura 1: Ejemplo de rotura de un elemento (fila 2, columna 3) y reindexación de las grietas que se unen.
Se muestra el cambio en la matriz I. Al elemento roto se le asigna el índice de la grieta de su izquierda,
por el orden de prioridad establecido, y por tanto la grieta 3 es reindexada con el índice 1. El valor de 0
se asigna a los elementos sanos.

Figura 2: Mismo ejemplo que en la Figura 1, pero desde el punto de vista del vector R. La primera
componente muestra el número de elementos sanos, y las sucesivas componentes, el número de elementos
de cada grieta. Como las grietas 1 y 3 se han unificado en una nueva grieta mayor (indexada por 1), se
incrementa el valor de R(1) y se anula R(3)

.

Figura 3: Mismo ejemplo que en la Figura 1, pero desde el punto de vista del vector S. La primera
componente muestra el número de elementos sanos (aunque es irrelevante para el cálculo), y las sucesivas
componentes, el número de elementos vecinos no rotos de cada grieta (perímetro). Como las grietas 1 y
3 se han unificado en una nueva grieta mayor (indexada por 1), se incrementa el valor de S(1) y se anula
S(3), aunque en este caso no se conserva la suma de las componentes de S, ya que es más complicado.

40

Figura 4: Mismo ejemplo que en la Figura 1, pero desde el punto de vista de la matriz V. En cada
elemento, las cuatro componentes indican los índices de las grietas superior, izquierda, derecha e inferior.
Los elementos señalados con (*) son aquellos en los que alguno de los índices se repetiría. En estos casos,
sólo se tienen en cuenta una vez, ya que el cálculo de σ requiere que las grietas que limitan con el elemento
sean distintas.

Figura 5: Mismo ejemplo que en la Figura 1, pero desde el punto de vista de la matriz de cargas, que se
calculan aplicando las Ecs. (1) ó (2), con los valores de R, S y V obtenidos en las Figuras 2, 3 y 4.

41

	Apéndice A
	Apéndice B

