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RESUMEN

Comparacion de algoritmos de anonimizacién: Mondrian y Datafly

El presente trabajo muestra una comparacién de dos algoritmos para lograr la k-
anonimizacién de un conjunto de datos. El primero es Datafly (1997-1998), un algoritmo
heuristico cuyas principales herramientas son la generalizacién y la supresién de tuplas. El
segundo algoritmo es Mondrian (2005), de desarrollo posterior, que basa su estrategia en la
particiéon multidimensional de los datos, perdiendo en cierto modo el cldsico enfoque tabular
(filas-individuos y columnas-atributos).

Ambos algoritmos se han implementado desde cero, en un mismo lenguaje de progra-
macién (Java) y siguiendo lo més fielmente posible la idea expresada en los trabajos originales.
Todo ello para poder realizar una comparacién lo més justa posible. Como ambos algoritmos
tienen algunas partes sin detallar, se han tomado ciertas decisiones de diseno e implementacion
que podrian afectar a la comparacién, por ello se describen en este trabajo para que se pueda te-
ner en cuenta a la hora de sacar las conclusiones oportunas. Entre las medidas utilizadas estan:
el coste temporal asintdtico, el nimero de combinaciones totales finales, la k-anonimizacién
media lograda y la varianza respecto a dicha media. No se ha tenido en cuenta en la compara-
tiva el tiempo medido durante las pruebas, ya que se han ejecutado en una méquina multitarea
y la carga de la misma podria afectar a la medicién por ello se puede considerar una medida
menos normalizada que las indicadas.

Cabe destacar el disenio e implementacién de varios scripts para la herramienta MATLAB
capaces de generar conjuntos de datos sintéticos con ciertas caracteristicas modificables y para
representar las estadisticas de los resultados obtenidos mediante graficas.

Tras las pruebas realizadas se ha podido observar como Mondrian consigue mejores re-
sultados en general, y con mayor regularidad de tuplas en cada una de las combinaciones finales.
Sin embargo, Datafly a pesar de ser uno de los primeros algoritmos de k-anonimizacién consi-
gue acercarse a los resultados de Mondrian en algunos de los conjuntos de datos, dependiendo
de los valores y la distribucién de estos.
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2. INTRODUCCION

Con el incipiente aumento de la necesidad de publicar y acceder a datos, es necesario
proteger aquella informacion sensible que pueda identificar a individuos dentro de un conjunto.
Por ello, se han desarrollado ciertos mecanismos que permitan publicar la maxima informacion
posible pero manteniendo el anonimato legal, necesario y deseado. Dos de los campos que mas
sufren este problema son el financiero y el médico, aunque cada vez mas sectores se estdn
sumando, como la administracién publica o las grandes empresas.

Como es 16gico, la ley érganica de proteccion de datos ya tiene en cuenta dicho problema
y una de las soluciones que propone es la anonimizaciéon. La anonimizacién es un método
utilizado para evitar que los datos pertenecientes a un individuo lo identifique en un conjunto.
Desde el punto de vista cldsico de una base de datos tabular, el problema seria evitar que una
tupla de una tabla sea identificable por uno, varios o todos sus atributos eliminando la minima
informacién posible.

Muchos expertos han reconocido que ningin método conocido de anonimizacién es in-
vulnerable a ataques de desanonimizacién, que mediante inferencia estadistica sumada a la
adiccion externa de informacién permite la identificacién singular de individuos. Es bien cono-
cido que el acceso a informacién privilegiada puede generar grandes beneficios. Es por esto, que
es uno de los temas sobre los que se estan llevando a cabo varias investigaciones. Uno ejemplo
de esto es la investigacion realizada en la universidad de Texas con el ‘Netflix Prize Dataset’
[3].

Por ejemplo, tomamos los datos en la tabla 2 con tres atributos y cuatro tuplas. Si se
conoce el nombre y la edad de una de las personas se puede saber su deporte favorito. Tras
anonimizar ambos atributos tal y como se puede ver en la tabla, ya no se puede identificar el
deporte favorito de un individuo atin sabiendo su nombre y edad, aunque si se puede inferir
que le gusta uno de los dos correspondientes a su identificador anonimizado.

Original
Nombre | Edad | Deporte favorito
Alvaro 25 Baloncesto
Alejandro 22 Futbol
Mario 12 Tenis
Marcos 18 Curling
Nombre y edad anonimizados
Nombre | Edad | Deporte favorito
Al* 2X Baloncesto
Al* 2X Futbol
Mar* 1X Tenis
Mar* 1X Curling

El término anonimizacién es muy amplio y por ello, existen diversos tipos y enfoques.
Hemos elegido aqui el enfoque denominado “k-anonimizacién”, muy frecuente en la literatura.
La k-anonimizaciéon no es més que una restricciéon extra a la definicién anterior que implica
que tras la anonimizacion, cada identificador de cada tupla distinta, aparecera al menos k
veces. Encontrar una solucién 6ptima a este problema es NP-dificil. En el ejemplo anterior se
puede ver como se alcanza una 2-anonimizacién ya que cada par nombre-edad original puede
corresponder (al menos) a 2 tuplas anonimizadas.



Los algoritmos elegidos son Datafly y Mondrian. Datafly es un algoritmo heuristico
creado en 1997 [5][6] y posteriormente detallado para k-anonimizacién en 2002 [7] por Latanya
Sweeney. Es unos de los llamados sistemas tempranos ya que junto a u-Argus son los primeros
sistemas completos de anonimizacién. Datafly se basa en la generalizacién del atributo con
mas valores distintos y la supresién individual de tuplas. En el lado opuesto, Mondrian es uno
de los sistemas més recientes y data de 2005 [1]. Su heuristica voraz se basa en la particién
multidimensional de los datos. Este dltimo posee dos modos de funcionamiento con el que se
varia la forma en la que se realizan dichas particiones.

Ambos algoritmos se han implementado desde cero en un mismo lenguaje (Java) y se
han refinado para que la comparacion sea lo més justa posible. La evaluacion se ha realizado
de forma individual y la comparacién se ha realizado utilizando las caracteristicas propias de
los algoritmos y los resultados obtenidos en los casos de prueba controlados. Todo el cédigo
desarrollado se puede encontrar en [4]. Ambos algoritmos se han desarrollado para que hagan
uso solo de un proceso a pesar de que Mondrian mejora notablemente en tiempo haciendo uso
de threads ya que cada particién es separable de las demas.

Un resumen de las caracteristicas y los resultados obtenidos se puede ver en la tabla 1.

Cuadro 1: Sintesis de las principales caracteristicas de ambos algoritmos.

’ Propiedad \ Datafly \ Mondrian
Fecha de creacién 1997-2002 2005
Asegura k-anonimizacién Si Si
Asegura solucién éptima No No
Supresion de datos Si No
Forma de anonimizar Generalizacién (Bottom-Up) Particién (Top-Down)
Heuristica Generalizar el atributo con | Realizar una divisién por el atributo con
mas valores distintos el rango normalizado mayor
Coste asintético temporal O(|PT)) O(|PT| * loga| PTY)
Resultados practicos Sobregeneralizacién Cercanos a los 6ptimos en muchos casos




3. DATAFLY

Datafly es un algoritmo heuristico voraz que asegura la k-anonimizacién de los datos.
Esta heuristica consiste en generalizar el atributo con més valores distintos y una vez alcanzada
una generalizacion suficiente, se eliminan las tuplas que siguen siendo identificables sin cumplir
la k-restriccién. Los resultados que se obtienen no son éptimos ya que tiende a sobregeneralizar
como se podra ver mas adelante y su ratio de aproximacién al resultado éptimo depende de
los propios datos de entrada.

3.1. Resumen de funcionamiento

Comenzamos explicando el funcionamiento general del algoritmo datafly. El pseudocddi-
go asociado a la siguiente explicacién puede encontrarse en la Figura 8, pagina 13 de [7]. En
primer lugar, se hace una lista de frecuencias de las distintas combinaciones del ID existentes
en los datos. En el caso de que haya k o mas tuplas sin cumplir la k-anomizacién, se cuenta el
nimero de valores distintos que tiene cada uno de los quasi-identificadores individualmente y
se generalizan los valores del atributo con la mayor variaciéon. Una vez hecho esto, se recalcula
la lista de frecuencia de los identificadores y se vuelve a comprobar el niimero de tuplas que
no cumplen la k-restriccion. Esto se repite hasta que hay menos de k tuplas que no cumplen
la k-restriccién, las cuales son eliminadas.

Ejemplo: Vamos a tomar como ejemplo los datos mostrados en la Figura 7. La tabla
de frecuencias inicial seria:

{10,10} = 1 tupla
{10,11} = 1 tupla
{10,21} = 1 tupla
{19,10} = 1 tupla
{19,11} = 1 tupla
{19,21} = 1 tupla

Con lo que hay 6 tuplas que no cumplen (por ejemplo, una 2-restriccién). Asi que se
procede ha contabilizar el nimero de valores distintos de los quasi-identificadores:

Ap = 2 valores{10, 19}
Ay = 3 valores{10, 11, 21}

Por lo que se generaliza A;, manteniendo las cifras de las decenas y superiores, y cam-
biando las unidades a 0. Se recalculan las frecuencias quedando:

{10,10} = 2 tuplas
{10,20} = 1 tupla
{19,10} = 2 tuplas
{19,20} = 1 tupla

Como sdlo hay 2 tuplas sin cumplir la 2-anonimizacién, se pueden eliminar:

{10,10} = 2 tuplas



{10720 =—t-tupla

{19,10} = 2 tuplas
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De este modo ya se cumple la 2-anonimizacién por lo que se reconstruye la tabla con
los nuevos valores de ID dando como resultado la tabla de la figura 1. Los valores tachados o
eliminados no se guardan en los datos resultantes.

PT A, A, A A3 A A
PT[0] 0 10 0 o 0 o0
PT[1] W 10 o0 o 0 o0
—PR- 36— 26— —6— 86— —5— —6—
PT[3] 9 10 0 0 0 0
PTHA] 9 10 0 0 0 0
PR} 39 20 5 90— -9 56—

Figura 1: Ejemplo final de anonimizacién usando Datafly.

3.2. Detalles de implementacion

Este algoritmo tiene dos partes importantes que marcan su coste, el calculo y actuali-
zacion de la tabla de frecuencias y el recuento de valores distintos de cada quasi-identificador.
En los siguientes razonamientos se usara la nomenclatura presente en la seccién 9.

Para la tabla de frecuencia se ha utilizado un diccionario Hash en el que la clave es una
composicién de todos los quasi-identificadores separados por guiones. De esta forma el coste
promedio de acceso a un elemento es O(1), siendo el coste asintético de la generacién de la tabla
completa O(|PT|), O(]PT|) para recorrerse todas las tuplas y O(|ID|) para generar la clave de
la tupla con lo que el coste total es O(|PT| x |ID|). En la gran mayorfa de los casos précticos
|ID| es muy pequenio y lo podemos considerar constante, por lo que O(|PT|*|ID|)=0O(|PT]).

Para el recuento de valores de los atributos se ha usado una estructura del tipo vector
de diccionarios Hash, uno por quasi-identificador. El diccionario usa como clave el valor del
atributo y como elemento el niimero de ocurrencias de dicho valor.

De este modo, el coste asintético del recuento es O(|PT|) para recorrer todas las tuplas
y O(|ID]) para cada atributo. Como se disponen de los indices de los QI el coste de acceso
a cada elemento del vector es O(1) y puesto que solo se necesita saber el ndimero de valores
almacenados en cada diccionario, el tiempo para encontrar el atributo con mas valores distintos
es O(|ID]). Asf que el coste asintético de esta parte es O(|PT| % |[ID| + |ID|) = O(|PT)).

Como ejemplo ilustrativo, el primer recuento de valores del ejemplo utilizado anterior-
mente, daria lugar a la estructura V (vector de diccionarios hash) mostrada en la figura 2.

Para contar el nimero de tuplas que no cumplen la k-restriccién basta con recorrerse
la tabla de frecuencias acumulando el nimero de tuplas de las secuencias con una frecuencia
menor que k. La cota superior temporal es O(|PT), es el caso extremo en el que cada tupla
tiene una combinacién de ID distinta. Esto solo se cumple en la primera iteracién y el coste es
menor conforme las tuplas van compartiendo combinaciones.
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{10,3} {10,2}
{19,3} {11,2}
{21,2}

Figura 2: Ejemplo de vector de diccionarios Hash para el recuento de valores.

La generalizacién tiene un coste O(|PT|) ya que hay que recorrerse cada uno de los datos
del atributo designado para generalizarlo. En algunos casos puntuales es necesario realizar dos
pasadas, como en el caso de la primera generalizacion de las cadenas o los nimeros decimales
(lamados dobles en el presente trabajo).

La eliminacién de tuplas que no cumplen la k-restriccién se puede hacer en O(k) = O(1)
si se almacenan los indices de las tuplas que no han cumplido la condicién de parada de Datafly
mientras se genera la tabla de frecuencias.

Teniendo en cuenta todo lo anterior, el coste total del algoritmo es O(numero de ite-
raciones * (frecuencias y atributos + condicién + obtencién del atributo con mds valores +
generalizar) + eliminacién), esto es, O(x * (|[PT| + |PT| + |ID| + |PT|) + k) = O(x = |PT|)
~ O(|PT)). Esta ultima asuncién de aproximacién se debe al nimero de iteraciones necesario
para la generalizacién total de cada tipo de datos. Dicho ntimero es variable: los caracteres
necesitan 1 iteracion, los enteros un maximo de 10, los dobles cerca de 20, las fechas siempre
6 y las cadenas necesitan como maximo un numero igual a la longitud méxima permitida.
De este modo, la variable x tomarfa el valor |ID| x |cadenaM asLargaPermitida|. Este valor
maximo es inalcanzable en datasets no preparados para ello. En los conjuntos reales ningtin
atributo del tipo cadena y de gran longitud formaria parte de un identificador. Por ello, se
puede asumir que |ID| x|cadenaM asLargaPermitida| realmente es en general muy inferior al
valor que toma |PT| y por ello despreciable.

3.3. Forma de generalizar

El algoritmo original usa jerarquias de generalizacién de campo (DGH en inglés). Esto
implica que para cada atributo de cada conjunto de datos distinto, es necesario crear una
jerarquia de conceptos que abarque todos y cada uno de los valores que pueden aparecer en
ellos, ademas de los conceptos extras para las generalizaciones intermedias.

Como se puede intuir, esto es muy costoso y rara vez reutilizable salvo para algunos
atributos muy comunes. Ademads es sensible a los errores o a los valores extrafios que puedan
aparecer en los datos. Algunos de los problemas més comunes de las DGHs encontradas son:
sensibilidad a las maytsculas, falta de acentos, faltas ortogréficas, etc. Algunos de ellos son
facilmente remediables, pero otros requieren un sistema mas complejo para su reconocimiento.
Por ello, en este trabajo se han sustituido las DGHs por jerarquias de generalizaciéon segin
el tipo de dato. Con este cambio, el tiempo que se necesita invertir para acondicionar un
conjunto de datos es practicamente cero a costa de perder precision en las generalizaciones.
Estas jerarquias por tipo de dato son el resultado de utilizar la misma DGH en los campos con
el mismo tipo de dato.



Cuadro 2: Configuraciones de los datasets independientes.

NOMBRE EXPRESION REGULAR
CARACTER (CHAR) .
ENTERO (INT) [0-9]+
DOBLE (DOUBLE) [0-9]+([.][0-9]4)?
FECHA (DATE) [0-9]2[/][0-9]2[/][0-9]4
CADENA (STRING) —+

Se han definido 6 tipos de datos que pueden contener los atributos, en la tabla 2 se
pueden ver sus nombres y las expresiones regulares que los identifican.

La generalizacion de cada uno es bastante genérica y sencilla, independiente de errores
ortograficos siempre que se cumpla la expresion regular. En el caso de que no se obtenga la
precision deseada, se pueden anadir facilmente mas tipos de datos o cambiar la generalizacion
de estos.

Los caracteres simplemente se sustituyen por un *. Se han probado alternativas como
usar la operacién médulo (%) de los enteros, pero desde el punto de vista de la informacién
que contienen, no es una generalizacién ya se modifica su significado, por ello se ha preferido
usar el enmascaramiento total.

Los enteros se generalizan usando la operacién médulo (%) con potencias de 10 cre-
cientes. La funcién completa es la siguiente: f(z,i) = z — (x %10%), donde ‘<’ es el entero a
generalizar e ‘i’ es el nimero de generalizaciones sufridas por el atributo mas uno. Por ejemplo:
1234 = 1230 = 1200 = 1000 = 0.

Los dobles (punto flotante), se generalizan de forma parecida a los enteros. En la primera
generalizacion, todos los niimeros pasan a tener el mismo nimero de decimales que el valor
que menos tiene, en las siguientes se van quitando decimales hasta que no quedan, luego se
tratan como enteros. Por ejemplo: 1234.6789 = 1234.67 (por la existencia de un valor con dos
decimales) = 1234.6 = 1234 = ... = 0.

Las fechas se generalizan eliminando los dias, meses y, una vez sélo quedan los anos, se
trata como los enteros. Por ejemplo: 10/02/1234 = 02/1234 = 1234 = ... = 0.

Las cadenas se generalizan igualando la longitud en la primera generalizacién y elimi-
nando el ultimo carécter en las siguientes. Cuando sélo queda uno, se le trata como un cardcter
y se enmascara. Por ejemplo: anonimizacién = anon (por la presencia de una cadena con 4
caracteres) = ano = an = a = *.

En general, esta forma de generalizar funciona bien, pero la generalizacién de cadenas
usando DGH da un mejor resultado que la usada a cambio de necesitar trabajo extra tanto
creando la jerarquia como corrigiendo las inexactitudes que pueden surgir entre la jerarquia y
los datos. A pesar de lograr un mejor resultado, se ha optado por el método propuesto al ser
mas genérico.



4. MONDRIAN

Mondrian es un algoritmo voraz que cambia un poco la forma en que se ven los datos,
en vez de tener una tabla como la del ejemplo anterior los datos se tratan como puntos en un
hiperespacio cuyas dimensiones vienen dadas por los atributos. Inicialmente todos los datos
estan dentro de un unico hiperespacio, y este algoritmo realiza divisiones a dicho hiperespa-
cio de forma que los puntos en el interior de cada una de las particiones comparten ciertas
caracteristicas.

4.1. Resumen de funcionamiento

El algoritmo comienza creando un hiperespacio o particion tinica en el que se introducen
todos los datos, pudiéndose ver como puntos. Después coge la particién y la divide en dos, por
la mediana de la dimension con el rango de valores normalizado méas amplio. Cada uno de los
puntos del hiperespacio original pasa a una de las dos particiones. En este punto se tienen dos
particiones, de las que se elige una y se vuelve a partir. De este modo se siguen dividiendo
las regiones mientras se pueda, es decir, mientras haya al menos 2*k puntos en su interior.
El algoritmo termina cuando ya no hay mas particiones que se puedan dividir. Entonces se
reconstruye la tabla original con las mismas tuplas pero sustituyendo los valores de los atributos
por los rangos de las dimensiones de la particién a la que pertenece.

Ejemplo: En la Figura 3 se puede ver una tabla con un solo atributo. Esta se convierte
en un l-espacio finito o segmento. Al dividirla en dos por la mediana, da lugar a dos segmentos
de menor tamano. Después cada tupla de la tabla toma el rango de valores de la particién a la
que pertenece. De esta forma se ha conseguido una 3-anonimizacién.

Si se desease una 2-anonimizacion, el resultado seria el mismo, dado que ninguna de las
dos semirrectas se puede dividir méas sin que ningin valor se quede aislado en una particién. 3
valores siempre solo se pueden dividir en 1-2 o 2-1, violando la 2-restricciéon en ambos casos.
De modo que aunque existe una 2-anonimizacién exacta ([0-2], [3-4], [6-9]), el algoritmo no la
encuentra, es decir, no siempre da una soluciéon éptima.
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e &
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Figura 3: Ejemplo unidimensional de Mondrian.

Mondrian tiene dos formas de realizar la division y estas aportan un comportamiento
algo distinto. En primer lugar esta el modo “strict” o estricto el cual pasa todos los valores
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coincidentes con la mediana a uno de las dos particiones en su totalidad. Por contra, el método
“relaxed” o permisivo reparte los datos de la mediana entre ambas particiones, procurando
generar particiones del mismo tamano.

4.2. Detalles de implementacién

En primer lugar se ha desarrollado una clase para representar una particién. Los datos
que almacena son a grandes rasgos dos vectores, el primero almacena los indices de las tuplas
que pertenecen a la particién (los puntos del hiperespacio) mientras que el segundo almacena
los rangos de las distintas dimensiones. Esto se hace guardando el valor minimo y maximo de
cada atributo ademas de otra informacién con el fin de evitar tener que recalcularla.

Esta clase tiene dos operaciones claves, la primera es la que calcula los rangos de cada
dimensién. Su coste es intuitivamente O(|P| x |[ID])=O(|P|), hay que recorrerse cada atributo
de cada punto perteneciente a la particion. El coste depende directamente del tamano de la
particién que cada vez es menor. La particién inicial posee |PT| indices, mientras que las
dltimas menos de 2*k, ya que en caso contrario se podrian seguir dividiendo.

La otra operacién clave es la de divisién. En primer lugar se necesita O(|ID]) para
obtener el rango mayor. El rango mayor se considera el que tiene un ratio mayor entre la
amplitud del rango en la particién actual y la amplitud que tenia en la particiéon inicial.
Matematicamente se puede definir como:

méx1§j§|P| PT[]] [IDamplio] - mfn1§j§|P\ PT[j][IDamplio] _
méx < j<|pr| PT[J][I Damplio) — miny<j<|pr) PT ][I Dampiio)

i méx; <;j<|p| PT ][I Di] — miny<;<p) PT[j][IDi]
1<i<|1D|méxy < j< | pr| PT(j]I D] — mini ;< pr) PT{j][ID;]

f(P) = {IDamplio

Por ejemplo: Dados inicialmente los siguientes valores de dos atributos Ag = {100,101, 102, 103,104}
y A1 = {1,2,3,4}. Tras varias iteraciones la particién P tiene los siguientes valores en los dos
atributos Ag = {103,104} y A; = {1,2} y tenemos que elegir que atributo de la particién es el

més amplio. Ay tiene un valor de %83:}88 = (0,25 mientras que A; tiene un valor de % = 0,33,

1
f(P) = Aj. Porello, A; tiene un rango méds amplio y es el que se usard para dividir la particién.

Después hay que obtener la mediana del rango, para ello se han probado dos métodos:
En primer lugar, y el elegido, es la ordenacién de valores y obtencién del valor en la posiciéon
|P|/2. El coste es O(|P|*log | P|) ya que ese es el coste promedio de ordenar un vector mediante
Quicksort de doble pivote. El segundo es conocido como Median of Medians, un algoritmo
aproximado que obtiene la mediana (o el elemento en la posicién que se quiera) en un vector
no ordenado con coste O(|P|). A pesar de su menor coste asintético, el valor que debe tomar
|P| para ser més rdpido que la ordenacién es demasiado grande por lo que no se suele utilizar
en la practica.

Siguiendo con la divisién, hay que recorrer todos los indices de la particién para asig-
narlos a una de las dos nuevas, lo que tiene un coste O(|P|). En el modo “strict”, los valores
iguales 0 menores a la mediana, van a una particién y los mayores a otra mientras que en el
modo “relaxed” se utiliza una tercera particiéon temporal para los valores iguales a la mediana
que posteriormente se reparten entre las otras dos, con el fin de equilibrar los tamanos de
ambas particiones. Por tltimo se generan los nuevos rangos de las dos particiones mediante el
método anterior. Asi que el coste total de la divisién es O(|ID|+ |P|+|P|+2*|P|) = O(|P|).

El coste del algoritmo es O(|PT|xlog|PT)|). Las divisiones se pueden ver como un érbol
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binario cuyos nodos representan las particiones y el niimero en su interior corresponde al de
elementos que contienen. Ya que el coste de dividir las particiones es O(|P]), el de dividir un
nivel completo del drbol es siempre |PT|. Asi que el coste total viene dado por el producto de

la altura del drbol por el nimero inicial de elementos | PT|. Dicha altura es siempre log, ‘P—le.

Figura 4: Ejemplo de arbol binario de particiones.

En la Figura 4 se pueden ver las particiones de un conjunto de datos con 32 tuplas
y 4-anonimizacién. La suma de elementos por nivel siempre es 32. Y la altura del arbol es
log, % = 3. Obviamente hay un desajuste cuando no se tratan de potencias de 2, pero esto no
cambia el coste asintdtico.
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5. PRUEBAS

Las pruebas experimentales realizadas a ambos algoritmos tienen tres partes: generacién
u obtencién de los datos de entrada, ejecucién y evaluacién. Las pruebas realizadas cuentan
tanto con datasets sintéticos generados como con el dataset mas usado para probar algoritmos
de anonimizacién.

El tipo de dato elegido para las pruebas sintéticas ha sido el ENTERO. Esta decision
no es relevante ya que no influye en el funcionamiento de Mondrian. Datafly tiene una gene-
ralizacién parecida en todos los tipos de datos. Ademads, la generalizaciéon utilizada para los
enteros coincide con la DGH més comun en la literatura.

Los datasets generados se han dividido en dos grupos, los independientes y los depen-
dientes. Los independientes poseen quasi-identificadores que podrian ser identificadores por si
mismos, independientemente de los demas. Por su parte, los dependientes no son identificadores
por si mismos, se necesitan todos los atributos del dataset para formar el identificador.

Para generar los conjuntos de entrada se ha utilizado la herramienta MATLAB pa-
ra desarrollar dos scripts que, dados unos parametros de configuracién, escriba uno o varios
ficheros con las caracteristicas deseadas y directamente ejecutables por el programa de anoni-
mizacion desarrollado. La generacion de los valores no es aleatoria, por lo que ejecutando los
scripts mencionados anteriormente, se obtienen los mismos conjuntos de valores que los utili-
zados para las pruebas. Ambos scripts son facilmente modificables para la generacion aleatoria
de valores.

Las caracteristicas configurables de los conjuntos de datos independientes son las si-
guientes:
-Funcién de rango de los atributos (func): La funcién desarrollada tiene dos posibilidades, ‘li-
near’ que genera un conjunto de datos con valores crecientes uniformemente y ‘quadratic’ los
genera aumentando su valor exponencialmente. Estas son las dos opciones utilizadas pero la
funcién es facilmente modificable para soportar otros tipos de crecimiento.
-Numero de tuplas (N).
-Numero de atributos (A).

En la figura 5 se puede ver un ejemplo de como se distribuyen los valores. En ambas
imégenes se muestra un conjunto de 10.000 datos, a la izquierda con una funcién lineal y a la
derecha con una cuadrética.

107 DISTRIBUTION
DISTRIBUTION w0
10000

9000
8000
7000
6000
5000
4000 ar
3000 3r
2000 2r

1000 it

o o L L L L L L L L ,
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 O 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
VALUES VALUES

Figura 5: Ejemplo de valores usando una funcién lineal (izda.) y una cuadrética (dcha.)
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Cuadro 3: Configuraciones de los datasets independientes.

N A
1000 1
1000 2
1000 5
1000 | 10
10000 | 1
10000 | 2
10000 | 5
10000 | 10
100000 | 1
100000 | 2
100000 | 5
100000 | 10

Cuadro 4: Configuraciones de los datasets dependientes.

A% A N
1:300 2 | 90.000
1:10 5 | 100.000

1:3 10 | 59.049

12,22,...,3002 | 2 | 90.000
12,22,..,102 | 5 | 100.000
12,2232 | 10 | 59.049

Las configuraciones que se han usado se pueden ver en la tabla 3. Para la funcién lineal
se han usado todas ellas mientras que para la cuadrética solo hasta N=10000 ya que al elevar
al cuadrado producen valores demasiado grandes. En total se han generado 20 conjuntos de
datos.

Las caracteristicas configurables de los atributos dependientes son unicamente dos:
-V: Vector con los diferentes valores que puede tomar cada atributo.
-A: Ntdmero de atributos.

Las configuraciones elegidas para la generacién de datasets dependientes son las que se
pueden ver en la tabla 4. En total 6 conjuntos. El numero de tuplas de un conjunto viene dado
por las distintas variaciones con repeticién de V tomando A elementos.

Un ejemplo de la diferencia entre atributos dependientes e independientes se puede ver
en la tabla 5. Para Datafly no tiene ninguna repercusién utilizar uno u otro mas alla de obligar
a generalizar al menos una vez por cada atributo en los independientes. Si que la tiene en
Mondrian, ya que al usar los independientes ambos modos de ejecuciéon generan el mismo
resultado debido a que la mediana es tnica en todos los atributos y en todas las particiones
que se realicen.

Una vez generados todos los datasets, cada uno se ha utilizado 4 veces con cada uno
de los algoritmos. Cada una de esas ejecuciones se ha utilizado un valor de k-anonimizacion
distinto, siendo estos 2, 8, 32 y 128. Mondrian se ha ejecutado tanto en modo estricto como
en modo permisivo. Esto hace que el total de ejecuciones haya sido de (20 + 6) datasets * 4
valores de k * 3 algoritmos = 312. De cada ejecucién se ha obtenido el ntimero de combinaciones
distintas que posee el ID (o particiones), el nimero de tuplas maximo y minimo encontrado en
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Cuadro 5: Atributos identificadores independientes (izda.) y atributos identificadores depen-
dientes (dcha.)

Independientes | Dependientes
Al A2 Al A2

1 1 1 1

2 2 1 2

3 3 2 1

4 4 2 2

una combinacién, la media de tuplas por combinacién y su varianza. Estas han sido las cinco
medidas que se han utilizado para realizar la comparaciéon de las pruebas.

Una vez se han obtenido todos los ficheros de resultados, se ha procedido a su evaluacién
y generacion de graficas para poder observarlos. En la seccion 9 se pueden ver las graficas
generadas a partir de las medidas obtenidas. Como se ha dicho anteriormente, las graficas de
ambos modos de Mondrian (mostradas en las figuras 9 y 10) son idénticas por el uso de datasets
independientes.

Ademsés se ha realizado la prueba con el dataset real sobre la poblacién adulta (Adult)
disponible en el repositorio de la UC Irvine [2]. Dicho dataset posee 32561 tuplas y 15 atributos
todos ellos con informacién financiera real de una parte del censo estadounidense. Los quasi-
identificadores elegidos han sido todos los numéricos ya que los demés no se han considerado
informacién sensible.
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6. COMPARACION

Datafly fue uno de los primeros sistemas de anonimizacién creados (1997), junto con
u-Argus. Mondrian es posterior, cuando ya habia varios algoritmos que solucionaban los proble-
mas que se habian encontrado anteriormente por lo que se puede considerar algo més avanzado.

Ambos algoritmos poseen una caracteristica muy deseable en algoritmos de k-anonimizacion,
la seguridad de que los datos resultantes cumplen la k-anonimizacion. Obtener una éptima k-
anonimizacién es un problema NP-dificil por lo que ninguno de ellos la asegura (aunque puede
darse, depende de los datos), y en su lugar se ha éptado por heuristicas voraces.

La estrategia de Datafly es Bottom-Up, esto quiere decir que se parte de multiples
elementos pequenos y se van agrupando en elementos de mayor tamano, en este caso, los
elementos son las tuplas. La estrategia de Mondrian es completamente opuesta, Top-Down,
donde inicialmente solo se tiene un conjunto que se va dividiendo en elementos de menor
tamano.

La generalizacién de Datafly propuesta es la basada en DGH. La calidad de los resultados
estd muy relacionada a la DGH usada. Cuanto mas detallada es la jerarquia mejores resultados
se consiguen, pero el tiempo empleado en crearla es mayor, asi como el de ejecucion. Ademas de
esto, hay que proponer un sistema adicional que controle los datos que no estan en la jerarquia
ya sea por error del conjunto de datos o por no haberlo tenido en cuenta. La soluciéon adoptada
para subsanar este problema es utilizar un conjunto de jerarquias de generalizacién segin el
tipo de dato del que se trate y que tengan en cuenta cualquier posible valor soportado por el
tipo.

La divisién de particiones de Mondrian se realiza por la mediana del atributo con un
rango normalizado mayor. Esta heuristica voraz funciona bastante bien incluso con atributos
repetidos, aunque si los hay y no se tiene en cuenta, el modo permisivo de este algoritmo puede
dejar de asegurar la k-anonimizacion. Por ello se suele usar la pre-condicién que impida haber
identificadores repetidos en los datos de entrada.

La heuristica de Datafly tiende a sobregeneralizar mas conforme el niimero de genera-
lizaciones sobre un atributo crece, por ello se utiliza la supresién cuando quedan pocas tuplas
que no cumplan la k-anonimizaciéon. Con dicha supresién se evitan generalizaciéon extra cuando
hay algunos datos muy alejados de los demas. Esto mitiga un poco la sobregeneralizacién pero
no la evita. Una de las razones por la que esto pasa es que Datafly utiliza informacién externa
y fija para generalizar (DGHs) mientras que Mondrian utiliza rangos, informacién obtenida
dinamicamente de los datos. Por ejemplo, la generalizacion de los enteros agrupa los valores
de 10 en 10, luego de 100 en 100, de 1000 en 1000, etc. Mondrian los agrupa mediante rangos
no fijos y de diferente amplitud.

El coste asintético de Datafly es O(|PT|?), polinémico de segundo grado (aunque en la
practica es mucho menor). Mondrian por su parte tiene un coste O(|PT| * log2|PT)), aunque
con los nimeros de tuplas manejados en las pruebas, se usa un algoritmo para encontrar la
mediana que eleva el coste a O(|PT| x (loga| PT|)?).

Mediante la pruebas realizadas se ha podido comprobar como Datafly realmente sobre-
generaliza y Mondrian consigue unos resultados muy cercanos a los éptimos en muchos de los
Casos.

En las graficas de las figuras de la subseccion ‘Gréficas de los conjuntos con atributos
independientes’ se puede ver los resultados obtenidos de las ejecuciones de los datasets con
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Cuadro 6: Tabla con el niumero de combinaciones logradas con los datasets de 100000 tuplas y
atributos independientes

K C)ptimo Datafly | Mondrian
128 | 781.25 100 512

32 3125 1000 2048

8 12500 10000 8192

2 50000 10000 34464

Cuadro 7: Tabla con los valores 6ptimos del nimero de combinaciones del ID de los datasets
con atributos dependientes.

Valores distintos por atributo | Atributos | k Optimo
3 10 2 29524.5
10 5 2 50000

300 2 2 45000
3 10 8 7381.13
10 5 8 12500
300 2 8 11250
3 10 32 | 1845.28
10 5 32 3125
300 2 32 2812.5
3 10 128 | 461.32
10 5 128 | 781.25
300 2 128 | 703.13

atributos independientes.

Con atributos independientes, lineales y un gran nimero de tuplas, el ratio de aproxi-
macién al éptimo de Mondrian es constante con los diferentes valores de k (65.5 %), mientras
que el de Datafly es muy variable desde un 12.8 % logrado con k=128 hasta un 80 % logrado
con k=8 (ver tabla 6). En media Mondrian logra un ratio algo mayor.

Con pequenos nimeros de tuplas y atributos lineales, ambos algoritmos no funcionan
tan bien, con los datasets de 1000 tuplas, Datafly suele anonimizar por completo los datos
debido a la proximidad entre todos los valores, mientras que el ratio de aproximacién del
nimero de combinaciones de Mondrian empeora y se vuelve algo inestable como se puede ver
en la grafica inferior de la grafica 9 para k=8.

Una de las caracteristicas que més distinguen a ambos algoritmos es la diferencia entre
los resultados de los datasets lineales y cuadraticos. Mondrian es completamente insensible a
las distribuciones de los valores de los datos, mientras que Datafly se comporta de manera muy
distinta. Tanto el niimero de combinaciones como el niimero de tuplas en ellas es muy distinto
en Datafly, por ello aparecen los picos en todas las graficas de la figura 8, correspondiendo a los
datasets con atributos cuadraticos. Las graficas de Mondrian son completamente horizontales
en los datasets con igual numero de tuplas.

Con los datasets con atributos dependientes, las estadisticas son algo maéas variables
como se puede ver en las graficas de la subseccién ‘Graficas de los conjuntos con atributos
dependientes’. El niimero 6ptimo de combinaciones del ID de los datasets se puede ver en la
tabla 7.

Con los datasets dependientes, la diferencia entre lineal y cuadratica es mucho menor
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ya que el numero de valores distintos de un atributo es mucho menor, la diferencia se puede ver
entre los datasets de exactamente 100000 tuplas y 5 atributos. En los independientes variaban
entre 1 y 100000 mientras que en los dependientes solo de 1 a 10. La diferencia entre los
cuadrados consecutivos es mucho menor, casi despreciable 1000002 —999992 = 199,999V 5102 —
92 =19.

Mondrian en modo restrictivo logra la mejor media de aproximacién en niumero de
combinaciones de ID, pero con valores de k grandes, el ntimero de tuplas por combinacién se
vuelve irregular como se puede observar en la gréafica de la variacion de la figura 12.

Por otro lado Mondrian en modo permisivo, es el més regular, sobre todo conforme ma-
yor es la variacién de los valores de los atributos y mayor es la k utilizada. Esto se puede ver en
las graficas de la figura 13, cuyas lineas son bastante horizontales. En la grafica correspondiente
a la variacién se puede ver como con el k menor no se sigue la misma tendencia decreciente
que con los demés valores de k.

Datafly se acerca a los nimeros de combinaciones de Mondrian cuanto menor es el
numero de valores distintos que toman los conjuntos de datos. En los demds casos consigue
unos pobres resultados ya que necesita generalizar demasiado. Ademads, cuanto mayor es el
nimero de tuplas, mayor es la variacién de tuplas por combinacién.

En la subseccién ‘Gréficas comparativas con el dataset real ‘Adult” se puede ver como
con un dataset con informacién real, Datafly logra unos malos resultados en comparacién con
los de Mondrian. El modo permisivo logra unos buenos resultados y regulares mientras que
el mismo algoritmo en modo estricto obtiene unos resultados algo mejores que los de Datafly
pero mas regulares.

En resumen, Mondrian logra unos resultados mejores y con mayor regularidad que los
conseguidos por Datafly en las pruebas realizadas tanto con conjuntos de datos sintéticos como
con los reales.
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7. CONCLUSION

Tras obtener una visién global del problema de la anonimizacién leyendo los trabajos
publicados por distintas universidades y grupos de investigacion, se puede observar la gran
cantidad de formas de abordar dicho problema. Por eso se ha querido comparar dos sistemas
conocidos de anonimizacién, uno de los mas antiguos y otro de los mds modernos.

Datafly es uno de los primeros algoritmos de este estilo que se crearon, mientras que
Mondrian es algo més novedoso y, por ello, avanzado al disponer de mas informacién ya publi-
cada. En las pruebas realizadas se ha podido ver como Mondrian es sus dos modos de ejecucién,
lograba mejores resultados y era més constante aunque se le varien las propiedades de los datos.

Datafly usa la generalizacién del atributo con mayor ntimero de valores distintos, lo que
no tiene en cuenta la dependencia con los demds atributos, su generalizaciéon es unidimensional.
Mondrian si lo tiene en cuenta a la hora de hacer sus particiones ya que son multidimensionales.
Por esto, las divisiones de Mondrian son mas precisas que las divisiones de Datafly si tomamos
en conjunto todos los atributos del identificador.

Datafly en promedio es algo mas rapido que Mondrian pero el tiempo no se ha tenido
en cuenta en la presente comparacién. Esto puede cambiar ya cada particién de Mondrian se
puede ver como un problema independiente y puede mejorar mucho su tiempo haciendo uso
de la concurrencia. Por todo lo anterior (ver en el resumen de la tabla 1) se puede concluir
que Mondrian consigue mejores resultados con un coste asintético mayor pero sin necesidad de
eliminar o suprimir tuplas.

Por ello, concluimos que en caso de querer un algoritmo que no requiera ningin tipo de
construccién extra o andlisis previo de los datos, se deberia elegir Mondrian. Sin embargo, si
se pueden tratar los conjuntos de datos y crear jerarquias muy precisas, los resultados pueden
ser parecidos en ambos casos.

Cabe destacar que ambos algoritmos se pueden adaptar para funcionar como el otro,
Datafly utilizando rangos y Mondrian haciendo uso de DGHs. Pero no es lo propuesto en los
trabajos originales y por ello no se ha tenido en cuenta.

Otro de los resultados de realizar este trabajo es el codigo desarrollado, el cual se puede
encontrar en [4], es facilmente modificable y ampliable segin las necesidades del usuario final.
También hay varias mejoras de rendimiento que se pueden implementar como el ya citado uso
de threads.

Como trabajo futuro, se pueden anadir otros sistemas de anonimizacién tempranos
como el ya mencionado p-Argus o sistemas més novedosos como Incognito para realizar una
comparacién entre los cuatro o tempranos contra novedosos.

Otra de las opciones es llevar a cabo una comparacién més exhaustiva modificando los
algortimos desarrollados y ejecutandolos en una maquina dedicada para asi poder tener en
cuenta el tiempo de ejecucién u otras medidas. Algunos ejemplos de modificaciones serian:
permitir el uso de DGHs precisas y concretas en el caso de Datafly o usar threads en el de
Mondrian.

También se pueden comparar los resultados obtenidos entre algoritmos que tratan la
k-anonimizacién y los que emplean la l-diversidad.
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8. TIEMPO INVERTIDO

El tiempo invertido en este trabajo se puede dividir en 5 puntos, la recopilacién de
informacién, la implementacién tanto de los algoritmos como de las herramientas auxiliares,
las pruebas, la comparacién y la elaboraciéon de la documentacion, entre la que se incluye el
presente documento.

Para la recopilacién de informacién se han invertido 40 horas aproximadamente. En la
recopilacién de informacion se ha incluido tanto el tiempo invertido en la busqueda y lectura
de la informacién utilizada como la no utilizada. Por ejemplo, otros algoritmos descritos en la
literatura, métodos alternativos de anonimizacién como la l-diversidad, otras formas de medir
los resultados précticos, etc. En general, todo aquello que ha contribuido a tener una vision
mas amplia del problema y la solucién.

El tiempo invertido en la implementaciéon engloba todo aquel que se ha invertido escri-
biendo el codigo de los algoritmos y las herramientas creadas para llevar a cabo las pruebas.
Ademsds se incluye el tiempo de la pruebas de correccién del algoritmo que comprueban su
correcto funcionamiento y las pequenas mejoras. En esta parte se han empleado cerca de 110
horas.

En las pruebas se han utilizado alrededor de 65 horas, entre las que se incluyen las
invertidas en buscar datasets reales, generar los sintéticos y ejecutar los propios conjuntos de
datos con los diferentes algoritmos y valores de k.

La comparacién ha requerido de 25 horas. Es el tiempo utilizado en aplicar las herra-
mientas de evaluacién antes mencionadas a los resultados obtenidos en las pruebas y obtener
otras informaciones ttiles de los propios trabajos o del trabajo desarrollado en el presente
trabajo.

Por ultimo, el generar la documentacién entre la que se incluye este documento ha
costado 65 horas aproximadamente. Entre este tiempo se incluye el aprendizaje de IMTEX, el
procesador de textos y la realizacion de las imégenes utilizadas para las explicaciones.

La duracién total del trabajo ronda las 305 horas, el desglose de la utilizacién de estas
se puede ver en la figura 8.

Figura 6: Desglose del tiempo invertido.
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Pruebas (Bisqueda y generacion de datasets)
Pruebas (Ejecucion y obtencion de resultados)
Comparacion

Memoria y documentacion

TOTAL

glovezcess
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9. NOMENCLATURA

En este trabajo se utilizara la siguiente nomenclatura y abreviaturas:

- PT (private table): Conjunto de datos (dataset) de entrada (tuplas-atributos).

-N6
- PT[i]: Tupla i de PT.

- PTJi][j]: Valor del atributo j en la tupla i.

- A;: Atributo i de PT.

PT|: Longitud de PT. Ndamero de tuplas.

- Identificador 6 ID: Conjunto de atributos que identifican a una tnica tupla en el conjunto.
- Quasi-identificador 6 QI: Cada uno de los atributos que conforman el ID.

- ID;: QT i del ID.

- |ID]: Ntumero total de QIs.

- Jerarquia de generalizacién por campo 6 DGH: Estructura arborescente que indica cémo
generalizar un campo (atributo) concreto.
- Particién 6 P: Conjunto de puntos que forman un espacio multidimensional.
- |P|: Ntimero de puntos o indices que posee P.

PT
PT[0]
PT[1]
PT[2]
PT[3]
PT[4]
PT[5]

PT[|PT]|-1]

- > ID={Ay A}

Az Az Ay As T

10 10 0 0 [1] 1]
1wf1uf o 0 0 0 - -
1wl 21 o 0 0 0 - -
19flwfo o o o - -
wiunflo o o o - -
wwfl2aalo o o o - -

= = _ _ - _ - _

Figura 7: Ejemplo ilustrativo usando la nomenclatura.

En la Figura 7 hay dos atributos que conociendo su valor, permiten identificar una tupla.
Este par de atributos forma el ID, y por lo tanto Ay y A; son Qls.
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ANEXO: GRAFICAS DE LOS RESULTADOS

En esta seccion se exponen las graficas generadas utilizando las medidas tomadas en la
ejecucién de los diferentes datasets con los diferentes algoritmos y valores de k.

Las figuras correspondientes a las pruebas sintéticas poseen 5 graficas: la superior iz-
quierda corresponde al nimero de las distintas combinaciones (particiones) presentes en los
resultados, la superior derecha y central izquierda son los valores minimo y méximo de tuplas
que hay en una sola particién, la central derecha es el nimero medio de tuplas por particion
(se puede ver como la k-anonimizacién media alcanzada) y por dltimo en la parte inferior
estd la varianza del nimero de tuplas respecto a la media. Cada grafica posee cuatro lineas
correspondiente a los cuatro valores de k probados. El eje X corresponde al nombre de los
datasets utilizados. Estos contienen sus propiedades codificadas: los independientes utilizan la
siguiente regla dataset[func]-[N]-[A] y los dependientes dataset[func]-[|V|]-[A]. El significado de
cada pardmetro se puede consultar en la seccion 5.

Las figuras de las pruebas del dataset real siguen la misma distribucion que las anteriores
pero en los ejes X no esta el nombre de los datasets sino los valores de k y las lineas ahora
corresponden a cada uno de los algoritmos.
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Graficas de los conjuntos con atributos independientes
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MONDRIAN STR: MIN (GROUPED BY N)
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MONDRIAN REL: MIN (GROUPED BY N)

k128
k128

———k32

e

FILES
MONDRIAN REL: MEAN (GROUPED BY N)

FILES

K128

&

5

250

MONDRIAN REL: IDS COMBS (GROUPED BY N)

x10*

200
150
250

200
150

FILES
MONDRIAN REL: MAX (GROUPED BY N)

NV3IW

100 [

FILES

—

MONDRIAN REL: VARIANCE (GROUPED BY N)

FILES

351

250
200
150

NIW

100

tributos indepen-

ian permisivo con a

Figura 10: Gréfica de los resultados obtenidos por Mondri

dientes.

26



Graficas de los conjuntos con atributos dependientes
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Figura 11: Grafica de los resultados

obtenidos por Datafly con atributos dependientes.
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Figura 12: Gréfica de los resultados obtenidos por Mondrian estricto con

tes.
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Graficas comparativas con el dataset real ‘Adult’
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Figura 14: Gréfica de los resultados de los algoritmos con el dataset Adult y diversos valores

de k.
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