
Safety-Critical Platooning Function Based
On Wireless Communication Using

Cooperative Robots

Trabajo de fin de grado (12 ECTS) realizado en la Universidad técnica de
Dinamarca (DTU) entre el 1 de febrero de 2017 y el 31 de mayo de 2017

realizada por Ana Lasheras Mas

Trabajo supervisado en DTU por Paul Pop y Fotis Foukalas
Ponente en la Escuela de ingeniería y arquitectura (EINA) Ana Cristina Murillo

Abstract

Platooning functionality is based on a string of vehicles, driving in the same direction, where
each vehicle drives one after another keeping the smallest security distance possible to avoid
collisions. This functionality can be provided in self-driving, but also, human driving vehicles.
Communication between vehicle allows to keep a small security distance inter-vehicles, while
it reduces fuel consumption and it makes more compact the traffic in the roads without
increasing the risk of collisions.

This thesis proposed some basic platooning scenarios and defines a distributed control plane,
based on a communication and a controller protocol, to achieve some scenarios using wireless
communication between the entities in the system. The scenarios and the protocol stack
proposed are based on previous work from academic articles. These papers explain and prove
that the standards and technology used is adequate for the use case developed in this thesis.

The main task of this thesis is to develop a high-level communication protocol that provides a
set of messages to achieve platooning functionality and supports the use cases defined in the
thesis. In addition, the designed communication protocol is tested in a real platform using
simple controller functionalities.

This thesis also analyses the protocol and finds solutions to support communication failures,
while it evaluates the protocol with evaluation metrics.

Tests on the real platform and metrics show that the communication protocol is valid to
achieve the defined use cases.

I

Resumen

Platooning define la conducción de un grupo de vehículos con un destino o dirección común,
en la que el primer vehículo decide sobre la conducción (p. ej. aceleración, cambio de carril,
desvío, etc.) y los demás se restringen a seguirlo. Estos vehículos pueden ser conducidos
por un ser humano o de forma automática. Además, los vehículos comparten información
entre sí permitiendo mantener una distancia de seguridad mínima entre ellos, lo que reduce
el consumo de combustible y compacta el tráfico en las carreteras sin incrementar el riesgo
de colisiones.

Esta tesis propone una serie de escenarios basados en platooning y define un plano de control
distribuido entre los vehículos que integra un protocolo de comunicación y un protocolo de
control necesarios para conseguir realizar los escenarios de platooning, propuestos. Tanto
los escenarios como la pila de protocolos para la comunicación que se han propuesto están
basados en trabajo previo descrito en artículos de investigación. Estos artículos explican y
prueban estándares y tecnologías adecuadas para desarrollar las funcionalidades de platooning
definidas en la tesis.

La principal tarea en esta tesis es el diseño de un protocolo de comunicación en alto nivel,
capa de aplicación del modelo OSI, el cual define un conjunto de mensajes que al combinarlos
permiten implementar una serie de funciones de platooning, en concreto permiten la implementación
de los escenarios descritos en la tesis. Además de diseñar este protocolo de comunicación, se
han implementado y probado en una plataforma real sencillas funciones de platooning.

En la tesis también se analiza el protocolo, se buscan soluciones para soportar fallos de
comunicación en la implementación y se evalúa la actuación de la implementación en base a
unas métricas previamente definidas.

Los test realizados sobre la implementación y los resultados obtenidos en la evaluación
muestran que el protocolo diseñado permite ejecutar correctamente los escenarios de platooning
deseados.

II

Acknowledgements

First, I would like to thank my supervisor Paul Pop and co-supervisor Fotis Foukalas for
giving me the opportunity to work on this interesting project, and also for their instructions
and advises to can finalise my report properly.

I also would like to thank Ana Cristina Murillo for being my presenter in my home university,
University of Zaragoza, and for being so helpful giving recommendations about the project.

Furthermore, I thank my family for supporting me always, and for letting me make the
most of the opportunity to go one year to DTU in order to finalise my studies and do my
thesis.

Finally, I would like to thank my wonderful boyfriend David Nicuesa for always being there
when I need him, and for encouraging me during the development of this thesis.

III

Contents

1 Introduction 1
1.1 Platooning . 1
1.2 Vehicular Cyber-Physical System (vCPS) . 2
1.3 Bibliography review . 2
1.4 Standard messages’ review and application discussion 3
1.5 Communication protocols search . 4
1.6 Definition of platooning scenarios . 5
1.7 Objectives and structure of the thesis . 6

2 Distributed control plane for cooperative vCPSs 8

3 Cooperative Driving Messages (CDM) protocol 9
3.1 Communication links . 9
3.2 Type of messages . 10
3.3 Protocol application . 12
3.4 Leader discovery . 18

4 Distributed Controller protocol 20
4.1 Controller model . 20
4.2 Controller analysis . 22

5 Integration of CDM protocol into the distributed controller 25

6 Experimental testing 29
6.1 Definition of the device . 29

6.1.1 Lego Mindstorms EV3 hardware . 29
6.1.2 Lego Mindstorms EV3 software . 31

6.2 Protocol stack . 32
6.3 Mechanisms for the CDM to support crash failures 32
6.4 Application of the distributed controller protocol 34
6.5 Device and network configuration . 35
6.6 Distributed control plane implementation . 36

7 Performance evaluation 39
7.1 Definition of evaluation metrics . 39
7.2 Performance results . 40
7.3 Study and comparison of the results . 44

8 Conclusion 46
8.1 Future work . 46

A Appendix 50
A.1 Gantt chart . 50
A.2 Configuration files to configure a hostspot with fixed IPs 50
A.3 Code of the distributed control plane for cooperative vCPSs 52
A.4 Retransmission analysis . 60
A.5 Packet size measurement . 61

IV

List of Figures

1.1 Platoon of three vehicles . 1
1.2 Objective platooning scenarios . 6

2.1 Overview of the distributed control plane diagram 8
2.2 Distributed control plane diagram in details 8

3.1 Platoon using one-vCPS look-ahead communication 9
3.2 Platoon using leader-followers and one-vCPS look-ahead communication . . . 9
3.3 Communication links between vCPSs for messages that provide maneuvers . 10
3.4 Structure of CIN messages . 10
3.5 Structure of EVM message . 11
3.6 Structure of EVM message of type join . 11
3.7 Structure of EVM message of type leave . 11
3.8 Structure of EVM message of type accelerate 12
3.9 Structure of GID message . 12
3.10 Structure of GID message of type leader . 12
3.11 Transition between states using Mealy machine 12
3.12 State machine for the exchange of CIN messages between vCPS 13
3.13 State machine to define a group identifier by using GID messages 13
3.14 State machine for a follower leaving the platoon 14
3.15 State machine for a leader leaving the platoon 15
3.16 State machine for a new vCPS joining the platoon at the back 16
3.17 State machine for a new vCPS joining the platoon in any position 17
3.18 Sequence of pictures showing a vCPS leaving the platoon and then joining it

aging at the back scenario . 18
3.19 Sequence of pictures showing a vCPS joining a platoon in the middle scenario 18
3.20 Structure of GID message of type discovery 19
3.21 Sequence of pictures showing discovery of a platoon 19

4.1 Control architecture block diagram . 20
4.2 Control system block diagram . 21
4.3 Maneuver’s control system block diagram . 22

5.1 MQTT packet structure . 25
5.2 Possible CDMs to include in the payload of a MQTT publish packet 26
5.3 Packet exchanged through the distributed control plane 26
5.4 Packet data exchange between platoon vCPS 27
5.5 Packet data exchange between platoon vCPS to perform a join follower maneuver 27
5.6 Packet data exchange between platoon vCPS to perform a leave follower maneuver 28

6.1 Picture of the three robots with its peripherals highlighted 30
6.2 Picture of the three robots running through a black line 30
6.3 Protocol stack for mobile robots’ implementation 32
6.4 Implementation of PAR protocol . 33
6.5 Follower crashes in a platoon using one-vCPS look-ahead communication . . 34
6.6 Lego EV3’s control architecture block diagram 34

V

6.7 Lego EV3’s control system block diagram . 35
6.8 Platooning scenarios implemented . 37

A.1 Gantt chart defining the tasks achieved in the thesis 50
A.2 Wireshark output to control retransmission of packets in a join back maneuver 60
A.3 Wireshark output to control retransmission of packets in a leave back maneuver 60
A.4 Wireshark output to control retransmission of packets in a leave middle maneuver 61
A.5 Output of Wireshark for Context Information (CIN) message 61
A.6 Output of Wireshark for Event Maneuver (EVM) message of type JOIN . . . 62
A.7 Output of Wireshark for Event Maneuver (EVM) message of type LEAVE . . 62
A.8 Output of Wireshark for Group Identifier (GID) message of type ID 63

VI

List of Tables

7.1 Results of the durationjoin_back metric evaluation, measured in seconds. . . . 40
7.2 Results of the durationleave_back metric evaluation, measured in seconds. . . . 41
7.3 Results of the durationleave_middle metric evaluation, measured in seconds. . . 41
7.4 Packet size . 43

VII

1. Introduction

This chapter introduces the terms of platooning and vehicular cyber-physical system (vCPS)
used through the thesis. Then, there is a section reviewing previous work related to the
objectives of the thesis, and a review of standard messages to be exchanged within a platoon.
Next section reviews the many possible communication protocols and standards to use in the
implementation of the Cooperative Driving Messages (CDM) protocol and selects a certain
protocol to use in the design and the implementation. Later, platoon scenarios are defined
to provide a design that can support them. Finally, the last section describes the objectives
of the thesis and summarises the structure of this report.

1.1 Platooning

Platooning is a formation where a set of vehicles follows one another in the same direction.
These vehicles communicate between them sharing breaking and leaving information to the
other vehicles in the platoon. This information helps vehicles to take decisions in its outputs
(eg. its speed) to maintain a safe driving while keeping a small distance between vehicles.
This small distance allows increasing traffic throughput without compromising safety reducing
road congestion. It also decreases fuel consumption by reducing the aerodynamic drag when
vehicles drive very close one another.

The use of platoon is mainly focused on road/highways where the number of interruptions
is limited as there are no traffic lights, pedestrian crossings or stop signs that could split the
platoon. Platoons can be also used in other fields like agriculture, where the obstacles are
also limited.

Platoons are composed of vehicles that can play the role of leader or follower(figure 1.1).
The role of leader can be just played by one vehicle, in concrete by the first vehicle in the
platoon. The leader vehicle drives freely, it can choose the desired velocity and change that
velocity whenever it wants. On the contrary, the follower vehicles, that drive behind the
follower, must follow the speed indicated by the leader vehicle to avoid collisions and keep a
defined security distance between vehicles. For that reason, the leader vehicle communicates
with the follower vehicles to indicate its speed and the possible changes in its movement. As
it seems, the leader is a coordinator that gives some rules about how the follower must move.
The leader coordinates also the maneuvers1 within the platoon, by receiving maneuver’s
petitions, computing these requests and answering back.

Figure 1.1: Platoon of three vehicles

1Maneuver: Change of a vehicle position in the platoon. Generally, a vehicle joining or leaving the platoon.

1

1.2 Vehicular Cyber-Physical System (vCPS)

A Cyber-Physical System (CPS) is computer-based machines that integrate physical and
computational elements that interact between them in order to provide a task. CPS can
integrate communication mechanisms and input/output sensors allowing to interact with
other CPSs using the network connection. This system can compute actions based on
algorithms taking inputs from their knowledge (ie. sensors or previous actions) and from
the communication network.

Vehicular Cyber-Physical System (vCPS) are CPS integrated into a vehicle or mobile robot.
The term vCPS is used in this thesis to avoid the distinction between vehicles and mobile
robots and to indicate that these devices have some embedded computation mechanisms.

1.3 Bibliography review

Nowadays many researchers are focused on the study of vehicular Cyber-Physical Systems
(vCPS) cooperating with each other to provide a specific task as a way to improve driving
remaining safety in scenarios like platooning and vehicle-to-vehicle (V2V) or vehicle-to-infrastructure
(V2I), but also to automate and improve tasks’ execution of tractors in agriculture or forklifts
in a warehouse.

Initially, it has been done a paper research to study the different use cases and system
models discussed and proved in the literature to understand better the topic and know more
about the most recent investigations. The paper research is mainly focused in papers about
platooning and formation control theme, chiefly communication-based papers. Moreover, it
has tried to read papers as recently as possible, to get an idea of what is really interesting
now and what is left to be done to try to achieve it in the thesis.

In [14] different updating schemes are proposed to communicate between vehicles within
the platoon. These schemes allow to join and leave the platoon taking into account that if
the leader vehicle leaves the platoon then another vehicle must assume the leadership.

A chain of platoons (multi-platooning) that communicates in both directions using 802.11p
and DCF for the inter-platoons’ communication, where vehicles can join/leave a platoon in
terms of the following the same destination is described in [17].

[20] describes a platoon management protocol for Cooperative Adaptive Cruise Control
(CACC) vehicles using wireless communication that allows merging two platoons into one,
split one platoon into two new platoons and lane-change (join or leave a platoon).

In conference [21], it is described a use case of a platoon in a traffic jam situation where the
leader vehicle generates traffic shock waves by changing its cruising speed frequently. It also
provide simulation with hundreds of platoons, but without inter-platooning communication.

The use case of platoons’ emergency braking scenario with human-driving vehicles around
is experimented with real vehicles and simulated in [22] after the investigation of different
communication strategies taking into account controller requirements and the reliability of
wireless communications for platooning under high channel load.

[23] analyses the impediments that human-driven vehicles can cause while a vehicle is trying

2

to join a platoon in the road, defines a communication protocol on the application layer that
considers packet failures and simulates the execution of this protocol in some join scenarios.

In [30], vehicular communication is shown as a particular case of ad-hoc networks and it
is reviewed many possibilities for group formation described in the literature, to define the
interconnection and exchange of information between vehicles.

1.4 Standard messages’ review and application discussion

The main messages exchange between vehicles in a platooning scenario are ones that contain
vehicle profile’s information to keep a certain distance between vehicles and to avoid collisions
while string stability2 is provided.

Cooperative Awareness Messages (CAM)[12] standard, defined by the European Telecommunication
Standards Institute (ETSI), determines the relevant information to exchange from vehicle
to vehicle (V2V) and between vehicles and roadside infrastructure(V2I/I2V). This roadside
information represent knowledge about stations on the roadside that assist the communication
between vehicles and provide a general view’s information about roads to improve traffic (eg.
reduce traffic jams).

This project does not consider roadside communication, for that reason, CAM messages are
not used exactly like they are defined in the standard but simpler messages with just data
needed to keep the distance between vehicles and not roadside information. The information
communicated between vehicles in addition to data collected from onboard sensors helps to
improve the controller output’s accuracy reducing the propagation of inaccurate information
which could lead into changes in the distance kept between vehicles and in the worst-case
collisions.

The data included in the messages that the studied papers define and CAMs information
fields have been analysed to decide which data is needed to include in the messages for this
project. Moreover, the sending frequency used in the implementation is based on the CAM
standard[12]. This standard states that CAM messages need to be sent in an interval between
0.1 and 1 second.

Apart from these information messages, it is also needed to have a set of event messages
to notify vehicles about formation changes or maneuvers (eg. join/leave platoon), group
definition events (eg. change id information) and emergency messages (eg. decelerate order
because there is an obstacle in the way). ETSI does not have a standard defining the
messages to achieve these cases, but it defines Decentralised Environmental Notification
Messages(DENM)[13] to alert vehicles of potentially dangerous events (eg. constructing zones
or road narrowing) that can abort maneuvers requests in case of danger conditions.

This project assumes that the road is free of obstacles, being the vehicles the only potential
obstacles in case of stop. For that reason, DENM messages are not considered in the project.
Although, it is needed to define another kind of messages to can achieve maneuvers and to
determine the platoon’s group and leadership.

2String stability: Reduction of disturbances propagated through the platoon.

3

1.5 Communication protocols search

There are many protocols and standards possibilities to implement the communication for
a platooning case. Papers based on real vehicles platooning use a modification of the
WiFi standard (IEEE 802.11) in the physical (PHY) and medium-access control (MAC)
layers. This amendment, called IEEE 802.11p, adds wireless access in vehicular environments
(WAVE) stack. This standard provides a 75 MHz bandwidth in 5.9 GHz (5.85-5.925 GHz)
frequency band. The channels provided in IEEE 802.11p have a size of 10 MHz to support
many parallel applications at a time, but because of this size, there can be channel congestion
that is solved combining two of these channels to have a channel of 20 MHz. It maintains the
Orthogonal Frequency Division Multiplexing (OFDM) technique provided in 802.11 standard.
The main change in IEEE 802.11p standard comparing to IEEE 802.11 is the use of a
communication Outside the Context of BSS(OCB), where BSS is a Basic Service Set that is
a set of stations that exchange data information. It also introduces a new time management
frame based on Timing Advertisements (TA) and a frame to identify organisations called
Vendor-Specific Action(VSA). But, the devices used to test the platooning function does not
use IEEE 802.11p, but another WiFi protocol, that it cannot be modified to emulate the
IEEE 802.11p. For that reason, the search for a communication protocol is based on upper
layers of the communication stack, in particular, network, transport, and application layers.

Network layer protocol

The main protocol used in the network layer is IP, but also WSMP is a possibility defined
by WAVE[19] and used in [20].

IP protocol is a very known and easy to way to communicate two entities, while WSMP
is not to spread and there are no many documentation and examples to apply it. So, as both
of them are solutions defined by the Dedicated Short Range Communication (DSRC) in the
WAVE stack the IP protocol has been selected because the simplicity and knowledge to use
it.

Transport layer protocol

The main protocols for transport layer are UDP and TCP, but also WSMP. The protocol
WSMP must be used in the network and transport layer so as IP protocol has been selected
in the network layer, then WSMP has been discarded to use it in the transport layer as it
cannot be combined with IP.

UDP is a non-connection oriented protocol, what means that every message is sent independently
of the previous one. In addition, it is an unreliable protocol so it does not guarantee package
delivery, ordering, or duplicates. However, it can be a good solution to communicate, as it is
a non-connection oriented, it is not possible to lose the connection between devices and if the
devices move out of the communication range they just lost the reception of some messages
but when they move again inside the range they can receive messages again. Nevertheless,
this is not a problem in our system as the communication range for 802.11n goes between
70 and 250 meters[31] and the mobile robots are not going to use such a distance in the
experiment as the real vehicle could do.

TCP is a connection-oriented protocol, and for that reason, provides reliable communication.
It makes sense to use it in the application that will be developed as the communication links
between vCPSs are previously-defined. In addition, TCP/IP is mostly used in multi-agent

4

communication as [32] cites. Also, it is a good option because it should not be a problem
losing the connection at least not from a loss of communication range point of view as the
robots will not move too far as real vehicles could do.

Moreover, paper [32], presents an overview of the communication protocols used between
mobile robots, states that TCP/IP is mostly used in multi-agent communication as it ensures
stability and reliability. But UDP is a possible solution to support real-time systems and it is
a more lightweight protocol comparing to TCP/IP. So both protocols can be a good option.

Application layer protocol

There are many options of application protocols developed for Machine to Machine (M2M)
communication or Internet of Thing (IoT). One of the most popular message-Oriented framework
based on the publisher-subscriber paradigm is MQTT.

MQTT allows receiving data only from the interested nodes send. This way is very easy
to send information to more than one node in a group, like in a multicast communication.
MQTT is a light weight messaging protocol based on TCP/IP. It is designed to be used
in networks where the bandwidth is limited and it allows to have quality of service in
the communication. Papers like [29] and [28] proposed a solution for mobile robots using
publish/subscribe solutions. Also, the community of the operative system selected, ev3dev,
suggest the use of MQTT for communication between robots[27].

There is an extension of MQTT called MQTT-S or MQTT-SN[18] focused on wireless sensor
networks, that allows to use UDP in the transport layer what remove handshake and make
it more lightweight. But the problem is that there is no many implementation possibilities
and documentation about this extension as it is quite new comparing to the original MQTT.

Another possible communication approach is a blackboard model where there is no direct
communication between nodes so the robots must not be notified when a message arrives.
This one is not a good solution as it is important to know exactly when a message has arrived,
mainly in emergency message, notification events, etc.

One more communication solution can be the Constrained Application Protocol (CoAP)
that uses a similar communication to HTTP, called REST. This protocol is based on IP
network layer protocol and UDP transport layer and it supports a reliable mode by using
confirmation messages.

Paper [25] evaluate (CoAP) and MQTT-SN protocols concluding that MQTT-SN has better
average time for message transmission than CoAP. It also shows that CoAP is more power
efficient than MQTT but CoAP consumes more bandwidth than MQTT.

For that reason, MQTT has been selected in the application layer to implement the communication
protocol that supports platooning functionality.

1.6 Definition of platooning scenarios

This section defines two platooning scenarios (figure 1.2) taking ideas from the papers reviewed
in the previous section 1.3. These scenarios are the objective of the thesis in terms of design,
as the distributed control plane must be able to execute these scenarios by exchanging a

5

sequence of messages defined in the communication protocol that triggers the execution of
certain controller functionalities.

(a) Scenario: vCPS leaves and joins again the platoon at the back

(b) Scenario: vCPS joins the platoon in the middle

Figure 1.2: Objective platooning scenarios

The scenario defined in figure 1.2a shows how a vCPS that is part of the platoon leaves the
platoon, and after leaving, it joins again at the back. This scenario can be useful to exchange
the position of vCPSs with different quantity of fuel left, so the vCPS with more fuel should
be at the beginning of the platoon and the vCPS with less at the end as the aerodynamic
drag is bigger for the first vCPS what increases its fuel consumption. The vCPS with less
fuel needs to refill earlier what implies to leave the platoon sooner, and it is always easy to
leave from the back as this maneuver does not interfere with the other vCPSs in the platoon.

Figure 1.2b describes a scenario where a vCPS outside the platoon wants to join a certain
platoon. This joining can be done in any position of the platoon, but to complicate the
maneuver the join has been depicted in the middle. This scenario is very common, as a vCPS
that wants to join a platoon can be in any location and the platoon can be quite long so it
is not efficient to make that vCPS wait until it can join the platoon at the back. It is better
to create a gap in the more suitable position for that vCPS to join.

1.7 Objectives and structure of the thesis

The main objectives of the thesis are the design of a communication application protocol
to communicate vehicular profile information and events between vCPSs in order to provide
platooning functionality, and the implementation and test of this protocol on a real device.

The initial tasks needed to provide these objectives is the study of previous work related
with platooning and cooperative task topics based on mobile robots, vCPS implementation

6

or simulation and mainly focused on the communication between the entities. After reviewing
the literature, section 1.3, it is needed to define the integration of the communication protocol
and the controller functionality required to achieve platooning, even the controller is not
the main focus of this thesis. This definition is done in section 2. Then, it comes the
main task of designing the communication application protocol, section 3, by indicating the
type of communication links needed between the vCPSs in order to provide the platooning
functionality safely and to define the messages that must be exchanged between these entities
while the content of these messages and how to use them is explained. After, it must
be defined the architecture of the controller and some control equations or rules to follow,
section 4. Next, the integration of the messages with the controller must be defined clearly
indicating the importance of the communication input for the controller to can achieve a
certain maneuver or just the platooning movement of the vCPSs, section 5. Later, another
main objective that is the implementation of the system in a certain device, must be done
and documented well, section 6. In section 6, it is needed to study the device possibilities
and limitations to define what it is possible to implement in the device. Also, to decide and
study the available libraries that can be used to make the implementation easier. Once the
implementation scenarios are defined, it must be described how to provide the communication
and controller functionality defined for these scenarios based on the device’s limitations.
Finally, the performance of the designed protocol must be measure, section 7. The measurements
of the performance must be done using the device implementation as no simulation is done in
this thesis, and this involves some drawbacks due to the limitations of the implementation.

The tasks of the thesis have been divided in the study of previous work, the study of
programming libraries and the device, the iterative design of the communication and controller
protocols and its integration, the software implementation embedded in a particular device,
the evaluation performance and the writing of this report. Appendix A.1 contains a Gantt
chart indicating the time spent in each one of the tasks.

7

2. Distributed control plane for cooperative vCPSs

The main objective of the thesis is to support platooning scenarios by using wireless communication
and controller functions. In order to achieve this complex model, it is proposed a distributed
control plane (DCP) design based on three layers that support the cooperation among the
vCPSs. This chapter defines the DCP that integrates the communication and the controller
protocols required to provide platooning functionality (figure 2.1).

DCP maps the vCPS information into particular local control tasks supporting a cooperative
global task, it provides point-to-point connectivity to ensure communication between vCPSs
and it controls the performance of a task by the integration of the global communication
messages with each local distributed controller.

Figure 2.1: Overview of the distributed control plane diagram

The architecture of the proposed DCP, depicted in figure 2.2, integrates three levels of
functionalities. On top is a cooperative driving messages (CDM) application protocol defined
in section 3. CDM protocol has the responsibility of exchanging information between the
vCPSs to support platooning cooperative tasks. The CDM application protocol is implemented
on top of a communication protocol that is more likely a machine-to-machine (M2M) protocol.
At the bottom of the architecture, there is a distributed control protocol, defined in section
4. The distributed controller is responsible for mapping the CDM messages received by the
vCPSs to a particular control functionality which objective is to accomplish the cooperative
task.

Figure 2.2: Distributed control plane diagram in details

8

3. Cooperative Driving Messages (CDM) protocol

This section defines a protocol based on the definition of a set of messages, and how to
combine them to keep a certain distance between vCPSs maintaining string stability and to
support maneuvers in a platooning scenario. First, there is a discussion on the communication
links needed to exchange vehicular profile’s information between vCPSs. Then, the different
types of message supported by the protocol are defined. Next, states machines illustrate how
to combine a sequence of messages in order to achieve different platooning scenarios. In the
end, there is a section defining how to achieve discovery of a platoon.

3.1 Communication links

There are two main variations of communication links to send CAM messages between vCPSs.
One is the communication proposed in [20] that it uses a one-vCPS look-ahead communication
where every vCPS receives information just from its vCPS in front as figure 3.1 shows.
And the other one, shown in figure 3.2, is a combination of leader-follower plus one-vCPS
look-ahead communication where the leader vCPS communicates with every follower and
each follower communicates with its following vCPS. Papers [14],[21] and [22] defines this
communication.

Figure 3.1: Platoon using one-vCPS look-ahead communication

Figure 3.2: Platoon using leader-followers and one-vCPS look-ahead communication

The advantages of the communication drawn in figure 3.1 is lower bandwidth consumption
as less messages are exchange between vCPSs comparing with figure 3.2. The possibility of
messages collision is the same as the messages are exchanged in the same communication
medium in both cases.

The messages to support maneuvers need a communication link with the leader as every
follower must be able to communicate with the leader because the leader is the one who
manages the maneuvers and who accepts or denies a certain maneuver. The only exception
is the case where the leader does a leave maneuver, as it can accept that is leaving but it has
to indicate that to the followers so they can elect a new leader. Therefore, it is required to
have bidirectional links between the leader and the followers vCPSs.

9

Figure 3.3: Communication links between vCPSs for messages that provide maneuvers

All these links must be reorganised in the case of the leader vCPS leaving the platoon and
also in the case of crash failure of a vCPS, meaning with crash failure the suddenly stop of
sending messages from the crashed vCPS, .

3.2 Type of messages

The communication protocol is based on a set of different messages that will be exchanged
between the vCPSs. These messages communicate information about the speed profile of a
vCPS and also about it desires of joining or leaving a platoon.

To ensure string stability is necessary to share information about the vehicular profile of
a vCPS what allows the receiver’s vCPSs to anticipate speed changes. This way the vCPS
has a more precise control of the security distance maintained and it makes easier to avoid
jam on the brakes.

The messages to maintain a certain distance between vCPSs within the platoon while string
stability is provided has been defined as Context Information (CIN) messages, figure 3.4.
This kind of message contains speed, location and acceleration information about the sender.
This information combined with the input information from onboard sensors (eg. sensor that
returns the distance between vCPSs, GPS, etc.) help to accurate the output of the receiver
vCPS providing a more secure driving.

Figure 3.4: Structure of CIN messages

Apart from the messages to ensure string stability, messages to provide maneuvers in the
platoon are needed. The idea is to have a generic type of message that allows sharing
information supporting diverse movements within the platoon. These messages are defined
as Event Maneuver (EVM) messages, figure 3.5. EVM messages inform other vCPSs of the
desire of JOIN, LEAVE or ACCELERATE. This message can be used directly to join or
leave a platoon but also to do more complex maneuvers as merging two platoons, split the
platoon in two or change the position within the platoon as figure 1.2a shows.

Every EVM message includes the id of the sender and the receiver and the type of the
petition done. The id of the sender and the receiver is an unique value for every vCPS in
the platoon that represents the position of that vCPS within the platoon. It has decided to
give the id value 0 to the leader, and a whole number starting from 1 to the follower. This
value for the follower indicates its position in the platoon (eg. the first follower has id=1, the
second follower has id=2,..., the last follower has id=n being n the total number of follower
in the platoon that it is equal to the total number of vCPSs in the platoon minus one). The

10

type of the petition indicates if the messages is requesting something (REQ value), or if it is
just accepting (ACK value) or rejecting that petition (NACK value).

Figure 3.5: Structure of EVM message

JOIN message, defined in figure 3.6, includes the mandatory fields of an EVM message (id
sender, id receiver and petition type) in addition with other fields. There are two different
packet structures, one for the request message and another for the answer message. The
request message, figure 3.6a, adds to the mandatory fields of an EVENT message the fields
speed, location_x and location_y, previously defined the CIN messages of section 3.2. These
fields are used to allow the leader vCPS indicate where the vCPS requesting has to join
the platoon, as in [23]. The answer message just includes the position_to_join field that
indicates the position where the vCPS has to join the platoon.

(a) Join request

(b) Join answer

Figure 3.6: Structure of EVM message of type join

LEAVE message, figure 3.7, is really simple and it just includes the mandatory fields of an
EVM message. The idea is that a vCPS in the platoon sends a LEAVE message of the type
request (REQ) and it waits for an acknowledgement (ACK) answer from the leader to can
leave the platoon. After that, the leader is in charge of reformulating the group changing the
ids of the other followers if it is needed.

Figure 3.7: Structure of EVM message of type leave

ACCELERATE message, figure 3.8, includes an acceleration field apart from the mandatory
fields of an EVENT message. This acceleration fields indicates how much a vCPS must
accelerate or decelerate if that value is negative. The leader uses this message to can create
gaps so a new vCPS can join the platoon in this gap and to remove this gap after a follower
in the middle leaves the platoon. In a regular scenario, this message is not needed as the
onboard sensors compute the distance with the car in front and automatically accelerate or
decelerate depending on the distance. But, it can be useful in emergency braking scenarios
where there is an obstacle in the road, and also in case the sensors giving the distance just
work in a certain range then when vCPSs are out of range they just will know if they need
to accelerate or not by communication.

11

Figure 3.8: Structure of EVM message of type accelerate

Group Identifier message (GID) is used to indicate which role a vCPS has in the platoon and
also its position within the platoon. At the beginning of the platoon formation, every vCPS
should have an id that can change anytime a GID message arrives. If a process receives a
GID message where the field old_id is equal to its id, then this vCPS must change its id
with the value in id_new field and send back to the leader an acknowledge of this message.
A GID message, figure 3.9, is composed with a petition_type field, a field with the old id of
the receiver and a field with the new id of the receiver. The petition type can be REQ for
request messages or ACK for acknowledge message.

Figure 3.9: Structure of GID message

Election of a new leader is done by using LEADER messages, this messages, defined in figure
3.10, are included in the GID kind of messages as its functionality is also related to the
definition of the platoon group. This type of message can be request message using REQ in
the petition_type field, to indicate the other vCPSs that they have to change its leader. And,
It can also acknowledge messages to accept the new leader. An acknowledge message has the
value ACK in the petition_type field. There is also a field address_leader to indicate the IP
address of the new leader, this way the other vCPSs know the new leader with whom they
have to communicate.

Figure 3.10: Structure of GID message of type leader

3.3 Protocol application

In this section, some state machines are defined to show how the protocol is applied in
concrete scenarios (eg. join a platoon). These state machines are represented as Mealy state
diagrams[24] where the output is defined based on the actual state and the input as figure
3.11 shows.

Figure 3.11: Transition between states using Mealy machine

In a platooning scenario, messages where the vCPSs exchange velocity, location and acceleration
information are needed to maintain string stability through the platoon. This message is
defined in section 3.2 as CIN messages. Figure 3.12 shows the states a vCPS follows to send
and receive CIN messages. These messages are sent from a vCPS to its follower. In concrete,

12

a vCPS sends a message periodically to its follower, this regularity is represented using a
timer variable, TIMER_INFO, to show that every time the timer expires a new message is
sent, figure 3.12a. At the same time, the vCPS can receive these messages as figure 3.12b
shows. Every time a vCPS receives a message, it updates its controller information to ensure
string stability by keeping the correct distance and following the given velocity.

(a) Sender

(b) Receiver

Figure 3.12: State machine for the exchange of CIN messages between vCPS

The vCPSs within a platoon form part of a group and this group must be defined and known
by the leader. Group messages as the one defined in the previous section as GID messages
are needed to indicate the id of a vCPS when it joins the platoon for the first time or to
change the ID of a vCPS that is already in the platoon (eg. there are three vCPSs in a
platoon with ids 0, 1 and 2 respectively and a new vCPS joins the platoon between vCPSs
1 and 2; the vCPS joining needs to have id 2 and the actual id 2 vCPS needs the new id 3).
Figure 3.13 shows a state machine where the platoon’s leader indicates a new id to a follower
sending an ID_REQ message, and a state machine for the follower where it updates its id
after receiving an ID_REQ message. The follower accepts the request, after changing its id,
by sending an ID_ACK back to the follower.

(a) Leader

(b) Follower

Figure 3.13: State machine to define a group identifier by using GID messages

13

Figure 3.14 shows a more complex scenario where a follower vCPS within a platoon wants
to leave the platoon. In this scenario, the follower that wants to leave needs to start
sending a LEAVE_REQ message to the leader. Then, the leader vCPS receives the leave
petition message that can accept sending a LEAVE_ACK or reject sending a LEAVE_NACK
message. The follower that wants to leave will leave if it receives a LEAVE_ACK message,
but if it gets a LEAVE_NACK the follower will have to send a new request to can leave. After
sending a LEAVE_ACK, the leader must redefine the group by sending ID_REQ messages
to all the follower vCPSs with an id bigger than the vCPS that have left the platoon.

(a) Leader

(b) Follower that wants to leave (id = i)

(c) Followers in the platoon with id from (i+1) to n

Figure 3.14: State machine for a follower leaving the platoon

A specific scenario of a platoon’s vCPS leaving, it is one where the leader of the platoon
wants to leave. In this scenario, the communication will be different as the leader needs to
communicate to the followers its leaving request and it is needed a new leader to be elected.
Figure 3.15 shows the state machines to can achieve the scenario where the leader leaves the
platoon for the different roles of vCPSs. At the beginning, the leader sends a LEAVE_REQ
message to the first follower (id = 1) and waits for an acknowledge message. The first follower
receives the LEAVE_REQ message and accepts or rejects the request with a LEAVE_ACK
or a LEAVE_NACK message, respectively. If the leader receives a LEAVE_ACK message

14

it can just leave the platoon, as the first follower has already information about the platoon
(eg. platoon size, the actual speed of the platoon, etc). After sending a LEAVE_ACK
messages, the first follower has to impose itself to be leader sending a LEADER message to
every follower in the platoon. The followers in the platoon receive a LEADER message and
accept the new leader replying with a LEADER_ACK message, and update their leader and
their communication channels as now there is a new leader and one vCPS less in the platoon.

(a) Leader

(b) Follower (id = 1)

(c) Followers in the platoon with id > 1

Figure 3.15: State machine for a leader leaving the platoon

Another common maneuver in a platooning scenario is the action of a new vCPS joining a
platoon. The new vCPS can join the platoon in the back or in any other place.

Figure 3.16 defines the state machines that indicate the communication messages to support
a new vCPS joining the platoon at the back scenario. First, the new vCPS needs to request
the platoon leader that it want to join the platoon at the end by sending a JOIN_back_REQ
message. Using the message defined in the previous section, it can be assumed that this
JOIN_back_REQ is a JOIN message where position_to_join field has a special value that
indicates the last position of the platoon. This value will not be the real value of the last
position of the platoon, but a pre-defined value as the vCPS that wants to join does not know
the size of the platoon. Then, when the leader receives the request message it will reject the
petition by sending JOIN_NACK or accept by sending JOIN_n_ACK this acknowledge
message contains the id assigned to the vCPS joining the platoon. The vCPS that wants to

15

join receives a JOIN_n_ACK message and it updates its id with the value contained in the
message to form part of the platoon group, in this case, n that represents the last position
of the platoon.

(a) Leader

(b) New follower (vCPS that wants to join back)

Figure 3.16: State machine for a new vCPS joining the platoon at the back

Figure 3.17 shows the general joining scenario where a new vCPS can join the platoon
anywhere. In this scenario, anywhere does not mean that the joining vCPS chooses where
to join; it means that the vCPS joining the platoon requests the entry to the platoon group
and depending on its position the leader selects the optimal position to join. To initiate
the scenario, the new vCPS that wants to join the platoon sends a JOIN_REQ to the
leader. Then, the leader receives that request that can reject sending back a JOIN_NACK
message, or can accept. If the leader accepts the petition then it calculates where the
vCPS must join the platoon and send to a follower i that will be behind this new vCPS
an ACCELERATE_REQ to deccelerate and make a gap where the new vCPS will join. The
vCPS receiving this ACCELERATE_REQ message can reject the petition answering with
a ACCELERATE_NACK or accept the petition with a ACCELERATE_ACK message and
changing its velocity to make the gap. Once the leader has received the confirmation of
the gap with the ACCELERATE_ACK message from the follower i, the leader can reply the
vCPS that want to join the platoon with a JOIN_ACK message indicating the location where
it must join and its id to be part of the platoon. The leader also sends new ids, ID_REQ,
to the followers behind the new vCPS to redefine the group. These followers receive the
ID_REQ and update its id with the value of the new one indicated in the request message.

16

(a) Leader

(b) New follower (vCPS that wants to join the platoon)

(c) Follower in the platoon (id = i)

(d) Followers in the platoon with id from i to n

Figure 3.17: State machine for a new vCPS joining the platoon in any position

To conclude this section, two figures are included to show, in a more graphical way than
using Mealy state machines, how the vCPSs perform the scenarios in figure 1.2a and 1.2b,
respectively, using a sequence of messages defined in the communication protocol.

The figure depicted in 3.18 shows the scenario defined in figure 1.2a where a vCPS that
is already in the platoon, in a middle position, leaves and joins again the platoon at the end.

17

Figure 3.18: Sequence of pictures showing a vCPS leaving the platoon and then joining it
aging at the back scenario

The scenario defined in figure 1.2b where a vCPS that is not part of a platoon joins a close
platoon is represented in figure 3.19.

Figure 3.19: Sequence of pictures showing a vCPS joining a platoon in the middle scenario

3.4 Leader discovery

In section 3.3 every scenario assumes that the vCPSs know the members of the platoon to
can communicate with them. But in a real situation where a vCPS in the road wants to
join a platoon, it will not know its members as platoons are something dynamic that can be
created, modified and dissolved over the time.

For that reason, a discovery mechanism should be provided to allow new vCPSs to discover
the platoon, to recognise the leader and to communicate with it in order to join the platoon.

18

A solution for discovery is to use broadcast messages in the network to find the leader.
This way, an independent vCPS that wants to join a platoon broadcasts a message in the
network and waits an answer from the leader or any member of the platoon. This answer
should include the address of the leader to indicate the vCPS outside the platoon to whom
it must request the access to the platoon. As a broadcast message is sent to every node in
the network, it is possible that the vCPS outside the platoon receives more than one answer,
if that is the case the vCPS just discards the duplicates.

Figure 3.20 shows a possible definition of the request and acknowledge discovery message. In
the request message the vCPS that is on the road but does not know the platoon, broadcast
a message like the one in figure 3.20a to indicate that it wants to be part of the platoon.
Be part means that it wants to know how to communicate with the platoon not to join.
Indeed, the vCPS needs to send a EVM message of type JOIN to can join the platoon, this
DISCOVERY message is just used to know the address of the leader. The leader or any other
vCPS that receives this message answers back with a DISCOVERY_ACK message, like the
one defined in figure 3.20b, indicating the address of the platoon leader.

(a) Discovery request

(b) Discovery answer

Figure 3.20: Structure of GID message of type discovery

Broadcast messages are sent within a network, so it must be assumed that every vCPS is on
the same network. This is a reasonable assumption if it is assumed that the vCPSs connects
to a network provided by some infrastructure in the road. This way vCPSs close to the
same infrastructure will be in the same network. But even if this is assumed, this road
infrastructure that provides the network connectivity will not be the same during the whole
platoon’s trip. Consequently, vCPSs needs to use a mobile IP protocol that allows vCPSs to
keep its same IP even if they move from one network to another or to have a mechanism that
triggers broadcast messages informing of the new IP when there is a change on the IP. So, If
just half of the vCPSs within a platoon move to a new network, they can still communicate
with the vCPSs in the previous network. Figure 3.21 shows how the discovery scenario could
be achieved using the messages defined in figure 3.20 considering the network assumptions
and the mobile IP protocol described previously.

Figure 3.21: Sequence of pictures showing discovery of a platoon

19

4. Distributed Controller protocol

This chapter defines the controller functionalities each vCPS needs to execute in order to
provide string stability and maneuvers. First, some figures depict block diagrams to describe
the controller architecture and system model. Then, there is an analysis of the controller
functionality needed to provide string stability through a platoon of vCPSs.

4.1 Controller model

First, the architecture of the controller is defined in figure 4.1 showing how onboard sensors
and a communication unit create an output that the controller uses as input to generate an
output that is the input of the actuators. To support platooning in real vehicles sophisticated
sensors like radar or lidar are used to measure the distance between vCPSs instead of infrared
sensors that are used in the implementation done in the thesis. VCPSs are also equipped
with a sensor to get a location reference, for example, a global positioning system (GPS) to
provide the position and do a more accurate control of the platoon movement. In addition,
there is a wireless communication unit compliant that can use the IEEE 802.11p standard
or another vehicular communication technology like 5G in real vehicles platooning, or the
IEEE 802.15 standard used in mobile robots’ implementations as it consumes less power.
The actuators control the acceleration of the vCPS setting the compute acceleration from
the controller to the motor.

Figure 4.1: Control architecture block diagram

The control architecture in figure 4.2 shows the outputs and inputs from every functional
block (sensors, controller and actuators) specified in figure 4.1, where a block diagram shows
the components that each vCPS needs to provide platooning functionality based on keeping
a distance between vCPSs while string stability is preserved. The input and output from
the wireless network show the content of the CIN messages, defined in section 3.2, to keep a
distance between vCPSs while string stability is maintained. The maneuvers input achieved
by EVM and GID messages are omitted in this figure to express the diagram with clarity
but express in figure 4.3. The solid lines indicate that the input/output is sent/received
periodically.

20

Figure 4.2: Control system block diagram

It is assumed that every vCPS is identified by a unique value of i being i = [0..N] where N
is the number of the follower vCPS in the platoon and the vCPS with id=0 is always the
leader. Each vCPS receives a communication input from the vCPS it has in front, except the
leader as it is supposed that it has no vCPS in front, and an input from its onboard sensors.
From the communication each vCPS receives vi−1, ai−1 and (xi−1,yi−1) that correspond to
the velocity, acceleration and position of the sender vCPS, respectively. From the sensors, the
vCPS receives the distance to the vCPS in front. It is assumed that the leader has no vCPS
in front within the platoon, for that reason its on-board sensors are not depicted as the leader
does not need to know the distance di to the vCPS in front to keep the controller objective.
Despite the fact that leader does not need onboard sensors to provide string stability and a
certain distance within the platoon, the leader can include sensors to measure the distance
like the followers. The leader uses these sensors in case there is an obstacle in the road to
detect it, or if another leader is elected and it becomes follower. This distance from the
sensors, di, is used by the controller to accelerate or decelerate in the case of being too close
or far from the vCPS in front. The controller computes the acceleration, ai to be applied to
the motor taking into account the input from the communication and the onboard sensors.
In the case of the leader, it just decides the velocity it wants for the platoon and indicates
to the gas injector and pressure regulator the acceleration required to run the motor at that
certain speed.

The objective of the controller is still the same during maneuvers, vCPSs must keep a certain
distance between vCPSs and string stability even if there are changes in the platoon due to
maneuvers. To provide maneuvers, the vCPSs receive additional information related to the
maneuver request and acknowledgements. This information is provided by the communication
protocol to the controller as the distributed control plane defines, chapter 2. The distributed
control plane integrates the messages sent based on the communication protocol with the
control protocol to provide platooning functionality. Figure 4.3 shows how the messages used
to provide maneuvers, EVM messages mainly, come from the wireless network to be computed
in the controller and goes to the wireless network as a request or an answer compute by the
controller. The dotted lines indicate that this input/output is asynchronous what means
that the messages could be sent/receive at any time and to any vCPS that matches the id
specified in the message.

21

Figure 4.3: Maneuver’s control system block diagram

4.2 Controller analysis

The main function of the controller is to keep a certain distance between vCPSs, avoiding
collisions, while string stability is kept in a network with communication delays.

Let D be the desired distance to keep, knowing di from the infrared sensors. The controller
goal is to maintain the distance D, what means that

D − di = 0 (1)

based on (1) the controller computes a velocity value for the actuators with the purpose of
reducing the gap error between vCPS i and the vCPS in front, i-1. The action of accelerating
or decelerating to keep the desired distance is shown in

if di > D then vi = vi ∗ A

else if di < D then vi = vi ∗ D

else vi = vi−1;

(2)

where A is a predefined value that indicates the acceleration percentage and D is another
predefined value that indicates the deceleration percentage.

String stability is one of the main factors to provide by the control system. By definition,
string stability is the faculty to reduce perturbations, velocity and acceleration, throughout
the platoon. According to [16] string stability can be defined as

|SS(t)| =
Xi(t)

Xi−1(t)
≤ 1, i ≥ 1 (3)

with Xi(t) and Xi−1(t) being the positions of the vCPS i and i-1 in a certain time t,
respectively. This equation shows the need of having communication, to know the previous
vCPS position and with it can achieve string stability.

The position Xi(t) of a vCPS can be determined by using a positioning system like GPS
but also using odometry equations to estimate relative position based on a starting position.
But, not every device integrates a positioning system so, for that devices, the position can
be estimated by odometry, if the trajectory angle is close to 0, then

∆xi = ∆si cos(θi +
∆θi

2
)

∆yi = ∆si sin(θi +
∆θi

2
)

(4)

22

where ∆xi, ∆yi are the difference of the robot’s coordinates in a Cartesian plane all over the
time, and ∆si is the distance travelled by robot i. Assuming that the robots move following
a straight line the trajectory angle θ = 0 and the ∆yi is a constant based on the initial
y-coordinate yi0

. Based on this assumption, (4) can be simplified to

∆xi = ∆si

∆yi = 0
(5)

∆si can also be defined as si(t), like the distance travelled after a time t, and it can be easily
calculated by multiplying the speed by the time like

si(t) = vi(t)t = ∆xi (6)

Using (5) and (6) the position of a robot Xi based on its initial position xi0
and its traveled

distance si is calculate with

Xi = xi0
+ ∆xi(t) (7)

Equations from (3) to (7) show how the controller model can keep the string stability through
the platoon based on its knowledge received from the on-board sensors and the communication
unit.

It is assumed that the communication network used to send the vehicle profile information
cannot deliver the messages instantly, so the messages can be delayed. For that reason, the
output computed by the controller must have into account this variable delay.

The communication delay must be taken into account in a way that delay information does not
compromise safety while keeping a certain distance between vCPSs and the platoon stable. In
addition, maneuvers can be aborted if the delay in the communication exceeds a certain limit.

VCPSs can realise of a certain delay by computing the difference between its position and
the position sent by the previous vCPS in a certain sample

|Xi−1| = |Xi + di| (8)

This way, the vCPS knows that there is a certain time delay if (8) is not satisfied. In concrete,
the communication delay for that sample is

τ =
vi

|Xi−1 − Xi + di|
(9)

(9) can be used to abort a maneuver in case this time delay is over a threshold and also for
controller arrangements to keep string stability.

In a leave maneuver execution where a follower leaves the platoon, it is assumed that messages
are exchanged between the vCPS that wants to leave and the leader. After, the vCPS can
leave, without new controller requirements, the vCPS in the platoon just needs to still keep
a certain distance and string stability. Then, when the vCPS has left the platoon completely
the vCPSs behind it must cover the remaining gap. To achieve this the controller just act as
normal, it receives an input from the sensors saying the distance between this vCPS and the
preceding one. The vCPS that receives this distance computes that this distance is bigger
compared to the desired distance so it accelerates. In this scenario, the leader could also

23

send ACCELERATE messages to indicate that they have to accelerate to cover the gap, but
anyway, the controller is already aware of that.

In a join maneuver execution, the vCPS that wants to join sent that request to the leader.
Then, the leader computes that request to decide where this vCPS should join the platoon
as

xjoin = xm +
v0 − vm

t + τ
(10)

where xjoin is the position where the vCPS must join, xm and vm is the position and velocity
of the vCPS when it requests to join, respectively, and τ is the communication delay. After
computing this position, the leader sends a message to the vCPSs behind this position to
decelerate and create a gap. This gap is covered by the vCPS joining the platoon, and if this
gap is too big then the controller will get a distance bigger than the desired distance that it
will accelerate the vCPS and cover the gap completely to keep the desired distance.

Due to communication delays, the execution of a maneuver could compromise safety if the
actions taken to execute the maneuver are not achieve on time. For that reason, it is important
to measure the communication delay and conclude if a maneuver should execute it or if it
has to abort it. A safe time ratio that indicates if the maneuver is still executable can be
defined as in [22]. Assuming that the maximum tolerable delay, τsafe, to execute a maneuver
can be defined as in [22]

τsafe = {τmsg : T ∈ τsafe ∧ τmsg ≤ δreq + ∆} (11)

where τmsg is a certain delay of a message, T is the inter-message delays collected, δreq is the
maximum allowable inter-message delay and ∆ is a grace time period in which the information
received is still useful.

Then, the safe time ratio, τsafe_ratio, is

τsafe_ratio =

∑
τs∈τsafe

τs
∑

τmsg∈T τmsg

(12)

24

5. Integration of CDM protocol into the distributed

controller

This chapter describes the integration of the communication protocol, defined in chapter
3, and the distributed controller protocol from chapter 4 to build the distributed control
plane described in chapter 2. So basically, the chapter defines the interaction between the
communication and the distributed controller protocol to provide platooning.

In concrete, it is defined how the CAM protocol is incorporated into the M2M protocol, and
how the M2M protocol works over the wireless network and gives input to the distributed
controllers to achieve the cooperative task.

The CDM protocol is implemented using the machine-to-machine (M2M) application protocol
called MQTT, as section 1.5 defines. The structure of the packets and its maximum size is
defined in [26]. There are many types of packets in MQTT, but publish and ACK packets
are the only ones analysed (figure 5.1) as these packets are the ones more important to define
the performance of the communication. Publish packet carries, inside the payload field, the
messages defined in the CDM application communication protocol from chapter 3 (ie. CIN,
EVM and GID messages). ACK packet is used by the MQTT mechanism to send back an
acknowledgement of the publish packet reception right after the sending of a publish packet.
It is important to remark that ACK packet is not always sent, they are sent depending on
the quality of service (QoS) configured in MQTT.

(a) Publish packet

(b) ACK packet

Figure 5.1: MQTT packet structure

MQTT has three different levels of QoS: QoS0, QoS1 and QoS2[11]. QoS0 is like having
no QoS at all, it ensures that the packet is delivered at most once, what means that it can
be delivered once or not be delivered if the packet is lost in the network. QoS1, at least
once, ensures that the packet is delivered but it can be delivered more than one time, so the
receiver gets duplicates. This is possible because the sender sends the packet, activate a timer
and then waits for an ACK packet to be sure that the packet was delivered. If the time-out
is trigger before receiving the ACK that means that the packet was not delivered and the
sender has to retransmit again the packet until it gets an ACK packet before time-out. QoS2
ensures not only that the package is delivered correctly, but also that the receiver does not
get duplicates of the message. This type of quality is also called exactly once and it is the

25

safest, but the slowest mode of transfer.

MQTT runs over TCP protocol that ensures reception of packets by sending TCP-ACK
packets, but this ACK just ensures that the reception of the packet not its delivery to the
application as the QoS1 and QoS2 options of MQTT provide.

Figure 5.2 shows the messages defined in the CDM protocol that can be included in the
payload field of a MQTT publish packet. Just one of these type of messages is included in
this field per packet, meaning that it is not possible to include more than one different message
in this field. The inclusion of the selected message from the CDM protocol is implemented
in the experimental testbed by building a JSON format string based on the CDM protocol
and including this string in the payload field of the MQTT publish packet.

Figure 5.2: Possible CDMs to include in the payload of a MQTT publish packet

MQTT packets are encapsulated inside TCP and IP packets as figure 5.3 shows, where the
payload field indicates the CDM message included. These packets are sent through the
network and received by the distributed control plane application defined in 2, that each
device is running as it can be seen in figure 2.2. The encapsulation of a CDM message into a
MQTT packet shows the integration of the two top layers (ie. Cooperative driving messages
and Machine communication) defined in figure 2.2. This packet is sent through the network
and received by the controller as it is defined in figure 4.2 and 4.3. When a packet is received,
it triggers a function that extracts the payload of the packet and it parses the content to
get the packet fields defined as part of the CDM protocol, in section 3.2. Once the fields
of the message are obtained the distributed controller protocol of chapter 4 uses this input
to compute the output to be sent to the actuators based on the controller model defined in
section 4.1.

Figure 5.3: Packet exchanged through the distributed control plane

The distributed control plane of each vCPS sends and receives packets, using the format
shown in 5.3, in order to compute a certain controller action. Next, some temporal diagrams

26

show how packets are exchanged through the network and how these packets affect the
controller of each vCPS requiring a computation in order to provide platooning as it is
defined by the coordination control plane in chapter 2.

Figure 5.4 shows a temporal diagram that indicates the transmission and reception of CIN
messages and the computation in a 500 ms frame taking into account that CIN messages are
sent every 100 ms using one-vCPS look-ahead communication. In this case, the controller
computation refers to the motors’ speed change based on the speed indicated in the message
received and the input from the sensors.

Figure 5.4: Packet data exchange between platoon vCPS

An execution of the maneuvers join and leave is depicted in figure 5.5 and 5.6, respectively,
showing the exchange of CIN messages to maintain a safety distance between vCPSs while
string stability is provided, and EVM messages to perform the maneuver required. At the
same time, it is depicted the controller computation required to maintain the platoon driving
while the maneuver is executed safely. In this case, the controller computation represented
in the figures refers mainly to the change of the speed in the motors that will be its stop or
set to zero in the case of the leave maneuver in figure 5.6 for vehicle 3. But, in figure 5.5
the controller computation depicted for vehicle 3 after the LEAVE packet reception’s event
represent the computation required to become a member of the platoon by subscribing to the
MQTT topic in order to receive CDM and to register the platoon id.

Figure 5.5: Packet data exchange between platoon vCPS to perform a join follower maneuver

27

Figure 5.6: Packet data exchange between platoon vCPS to perform a leave follower maneuver

The CDM protocol defined in chapter 3 to support the cooperation between vCPSs using the
distributed control plane allows more maneuver scenarios (eg. leader leave) but all of them
follows the same idea of executing a controller functionality and provide that output to the
actuators based on the received messages. For that reason, only the more common scenarios
of a follower joining or leaving the platoon are depicted as this figures look enough to describe
how the communication is integrated into the distributed controller.

28

6. Experimental testing

This chapter, first, describes the devices used in the experimental testbed. Then, it is defined
the communication protocol stack to use based on the communication protocols reviewed
and the protocol selected in section 1.5. After there is a subsection that summarises the
failures that will affect the communication and it is described how to implement the previous
communication protocol to be reliable against these failures. Later, section 6.4 indicates how
the distributed controller protocol, defined in chapter 4, is applied to the devices used in
the experimental testing. Next, there is a description of the device’s libraries and network
configuration needed for the implementation. Finally, the last section defines the scenarios
implemented in the Lego Mindstorms EV3 robots and describes the decisions taken during
the implementation.

6.1 Definition of the device

The distributed coordination plane defined in section 2, and designed in sections 3, 4 and
5 is implemented and tested in a particular device to evaluate its execution. The device
selected to do the implementation is the Lego Mindstorms EV3 robot model 31313. This
device is based on a programmable brick running in a microprocessor ARM9-based Sitara
AM1808 system-on-chip from Texas Instrument. This brick can be programmed using a Lego
programming software but this software can be replaced and be programmed in almost any
other programming language.

As every Lego product, this device can be customised with many different Lego pieces.
Between these Lego parts, there are wheels and motors that can be connected to the brick to
build a mobile robot. This device also has some sensors that can be connected to the brick
and programmed.

In particular, three Lego Mindstorms are used to test some simple platooning scenarios.
These three robots are built the same way and all of them have the same sensors except the
leader.

6.1.1 Lego Mindstorms EV3 hardware

The robots are built with two wheels that are connected each one to a motor, and another
small wheel just needed to maintain the stability of the robot. The connection of the motors
to the brick and the wheels allows the robot to move. This motor runs at 160-170 RPM and
the wheels have a radius of 2.15cm, what allows to run a robot with a maximum speed of
0.36-0.38 meters per second. In addition, the robots are equipped with sensors. In concrete,
all of them has two colour sensors and the followers, two out of three robots, have an infrared
sensor. The structure built for the robots, including the sensors and motors, can be seen in
figure 6.1.

29

Figure 6.1: Picture of the three robots with its peripherals highlighted

Two of the robots has an infrared sensor that is used to measure the distance between robots.
This way it is possible to keep a certain distance between them and make them accelerate
or decelerate avoiding collisions. The infrared sensor is placed in the front of the robot to
measure the distance between it and the robot in front of it. The leader does not have this
sensor as it is assumed that it has no robot in front, and also in the test done there are not
obstacles in the way where the robots move.

Lego Mindstorms EV3 robots do not include any sensor to measure position (eg. GPS).
So, the position is not taken into account in the implementation and tests. Also, they do not
have a gyroscope or compass sensor that could help to maintain the trajectory of the robots
straight, reorienting the robot if it turns. But, Lego EV3 robots include colour sensors that
indicate which colour is seen through the sensor. This way, it is possible to use colour sensors
to make the robots follow a straight trajectory driving them through a straight black line on
the floor. So, the colour sensors obtain the colour seen if its black that means that the robot
is moving straight but if it is white that means that the robot is not straight and it has to
be reoriented to run straight again. Figure 6.2 shows the black line used in the tests to make
the robots run straight using the colour sensors.

Figure 6.2: Picture of the three robots running through a black line

30

The WiFi communication is provided to the Lego EV3 robot by connecting a Wifi dongle
to the brick. In concrete two different WiFi dongles with the same characteristics has been
used, the Edimax EW-7811Un and the Sandberg micro WiFi USB. Both are compatible with
IEEE 802.11b/g/n standards, and it is not possible to do network modification on the dongles
to simulate the IEEE 802.11p standard used in vehicular platooning scenarios, so it has just
been used like this.

6.1.2 Lego Mindstorms EV3 software

LEGO Mindstorms EV3 (31313) allows using its default operative system and firmware
to program it. The official EV3 programming software has an integrated development
environment to implement programs in a visual way by selecting and mixing blocks of actions.
These blocks are a set of instructions that hide the programming code needed to provide
a certain action, making easy to non-programmers to develop features but reducing the
programming possibilities. For that reason, it has done a search in different software to
implement functionalities in Lego Mindstorms that allows developing the features by coding
instead of using a visual interface, to have more flexibility.

As it is said before, it is possible to use many others operative systems and firmwares to
implement the code in a regular way and not in a graphical way moving blocks. These
different firmwares allow to use different programming languages and provide a library with
some functions that make easy to provide a functionality.

Ev3dev

Ev3dev[2] is an operative system based in Debian-Linux compatible with the LEGO Mindstorms
EV3 robots and other devices as Raspberry Pi.

This operative system provides libraries for programming languages as C, C++, Python,
JavaScript, etc. In addition, as it is Debian-Linux based, it has the flexibility to develop
anything supported by this operative system. Also, it is possible to install a firmware in the
top of this operative system as ROS or LeJOS to use the functions that this firmware provides
in their libraries. Ev3dev libraries are available on GitHub and there is a big community
working on it, to increase the functionalities, improve them but also to help using them.

Ev3dev also provides a debugger and cross-compiler called brickstrap. The library provides
many functions to run easily the Lego’s peripherals (eg. motor, infrared sensor, etc) and
much more sensors that could be connected to the brick. And, it has also a big flexibility
to communicate via WiFi the robots by using TCP/IP, UDP, etc. But, ev3dev proposed to
use MQTT to communicate the bricks between them as it is simple to use and lightweight to
exchange information between several devices.

RobotC

RobotC[9] is a programming platform based in C. It provides a library with functions and
instruction to do an implementation in the Lego Mindstorms robots but also other devices.
It has many tutorials and examples available and also a forum to ask doubts or report a bug
to the community.

But the main disadvantage is that it is not open source and not free software. In addition,

31

there is not a direct command to connect EV3 bricks via WiFi. So, it is not possible to create
customised communication as referred on many forum posts present it as a constraint.

LeJOS

LeJOS[5] is a firmware that runs a JAVA virtual machine on the LEGO Mindstorms robots.
It allows to do custom connections between the bricks via WiFi, and it has a library with
many functions for the device peripherals.

This firmware has an active forum to submit problems or difficulties using this firmware,
as well as tutorials to get started. It is easy and flexible to debug the code with this firmware
by using the Java Integrated Development Environment (IDE).

Monobrick

Monobrick[6] is a free software, developed in Denmark, to provide functions that help to
control robots over the Internet. The library provided is C#-based but it allows to program
in C#, F# and IronPython. As the other software mentioned, it has examples to get started
and a forum to solve problems. It allows establishing a TCP/IP connection easily between
devices by using the WiFi dongle like another sensor.

Development environment selected

After reviewing the software possibilities, the software selected to use in the robots is ev3dev
because it looks to be the most flexible as it is based in Debian-Linux. Also, because it brings
libraries that can help dealing with the controller and communication as well as a developer’s
community working with this operative system that can help during the implementation. In
addition to the big community using a Debian-Linux distribution that can also help.

6.2 Protocol stack

This sections defines, in figure 6.3, the protocol stack to use in the experimental testbed
based on the analysis done in section 1.5 and the device limitations.

Figure 6.3: Protocol stack for mobile robots’ implementation

6.3 Mechanisms for the CDM to support crash failures

The platooning communication system uses a hybrid architecture where the maneuvers are
achieved by requesting the leader vCPS an always waiting for its acknowledge to can perform

32

that maneuver like in a server/client architecture, in this case, the leader vCPS acts like a
server and the follower vCPSs act like clients. But, the exchange of CIN messages, containing
vehicle profile’s information to achieve string stability, uses a peer-to-peer architecture where
there are no request messages just information messages exchange between vCPSs as equals.

In a distributed system like platooning, it is not enough to just send the defined messages
in section 3.2 in a certain sequence to achieve the maneuvers. If the messages are sent
directly like they are defined messages can be lost, duplicate and corrupt. Depending on the
scenario and type of message these failures can be significant or not (eg. If an info message
is duplicated there is no much problem as this kind of message is received continuously, but
the duplication of an accelerate request can be critical as a the vCPS could collide with
another vCPS if it accelerates more than it should). For that reason, it is necessary to use
a transmission protocol that eliminates these failures. The Positive Acknowledgement with
Re-Transmission (PAR) protocol, used in TCP, eliminates duplication messages, losses using
retransmission and corruption using acknowledge messages. But this protocol still has the
problem of floating corpses that are messages lost in the network for a considerable period of
time and suddenly are received confusing the receiver. This problem can be solved extending
the PAR protocol with numbered acknowledge messages. So, if a vCPS receives an old
message, lost in the network, it can accept it numbering its acknowledge message with the
number of the message to inform the sender process that this message was received it does not
have to be retransmitted anymore. But in a real time system like the platoon is, it has more
sense to discard that messages and send a not-acknowledgement, NACK, message. Figure
6.4 shows the implementation of the PAR protocol to provide a reliable connection ensuring
the reception of messages with no duplicates, x1 and x2 represents any message type defined
in section 3.2.

(a) Execution of PAR protocol with no failures

(b) Execution of PAR protocol where the receiver does not get the first message in time

Figure 6.4: Implementation of PAR protocol

Another important issue in the system is to be fault-tolerance, meaning that the platoon
must be running correctly even if a process fails. For that reason, vCPSs should be able to
find out crashed vCPSs that cannot communicate anymore and act to reorganise the platoon
if it is necessary (eg. If the leader crashes one or more followers should realize of that failure
and notify the others to elect a new leader or just to impose the follower just behind the
crashed leader to be the new leader; If a follower in the middle of the platoon crashes other
vCPS should aware and notify to the leader so the leader can decide to divide the platoon in

33

two avoiding the crashed vCPS that should not continue being a member of the platoon.).

In distributed systems, there is well-known mechanism called heartbeat that consists in
exchange messages between the members of a group to notify the others that its correct
execution. That way, if a node stops sending these messages for a while then the other
nodes can assume that this node has crashed. In the platooning communication protocol,
the vCPSs are already sending periodic messages to other vCPSs, the CIN messages to keep
a certain distance and string stability, that can somehow inform the receiver that this sender
is alive. If the CIN messages are replied with an acknowledge message, as the PAR protocol
indicates, then the senders can be aware of the crash failures of its receivers, and also of the
failure of its senders (eg. In a platoon where CIN messages are sent as figure 6.5 defines,
and the first follower fails. The leader, as the sender, will realise that this vCPS has crashed
because it will not receive an acknowledge of its CIN message. But also, the follower F2 will
realise that this vCPS has crashed as it should periodically receive CIN messages from the
crashed vCPS.).

Figure 6.5: Follower crashes in a platoon using one-vCPS look-ahead communication

To provide the PAR protocol it can be used the quality of service possibility that MQTT
provides, in concrete QoS2 that ensures the reception of a message exactly once is needed
to provide the same reliability as the PAR protocol does. The different types of quality of
service that MQTT provide are described in section 5.

However, the heartbeat systems would need to be implemented on top of the distributed
control plane to provide resilience to failure. But, as it is assumed in the experimental
testbed that a device is not going to crash indefinitely, the heartbeat mechanism has not been
implemented.

6.4 Application of the distributed controller protocol

The distributed controller protocol, section 4, is applied during the experimental testbed in
the Lego Mindstorms EV3 31313 robots. But, some changes in the controller has been done
as this device has some limitation and less sophisticated hardware.

Figure 6.6 shows the controller architecture based on the hardware included in the Lego
Mindstorms EV3 31313 robots, defined in chapter 6.1, that is used to test the designed
protocol.

Figure 6.6: Lego EV3’s control architecture block diagram

34

The controller system for the Lego EV3 devices is shown in figure 6.7. Figure 6.7 shows
exactly how the system is defined for a platoon of three robots, being robot 0 the leader of
the platoon, and robot 1 and robot 2 its followers.

Figure 6.7: Lego EV3’s control system block diagram

It is assumed that the integer value close to the robot word is a unique value of i being i =
[0..N] where 0 always indicate the leader of the platoon and N is the number of follower robot
in the platoon, in this case N=2. This way, the output from the communication, represented
by the wireless network input, contains vi−1, ai−1 and (xi−1, yi−1) that express the velocity,
the acceleration and the position of the robot in front, respectively. The output from the
sensors is defined in IRi, infrared sensor of i, and COLi, colour sensors of i. Infrared sensor
has di as output, what means the distance measured between the vCPS in position i and the
previous vCPS. Colours sensors produce cri and cli where cri represents the colour obtain
from the right sensor of the vCPS i, and cli represents the colour obtained from the left
sensor of the vCPS i. These values from the sensors and the communication are the input of
the controlleri block that using this input calculates vi, ori and oli representing the desired
velocity of robot i and the desired orientation of the robot i for the right and the left wheel,
respectively. The output from the controller is the input of the right and left motors that
control the right and the left wheel, respectively.

6.5 Device and network configuration

The first step to take is the installation of the software selected in the subsection 6.1.2 for
the implementation, that it is the ev3dev operative system from [2]. Also, it is needed to
install a library provided by the operative system that includes functions to use sensors
and actuators easily. Ev3dev provide libraries in many programming language, but only
the C-library[1] has been installed as the implementation is coded in C. Then, the MQTT
broker called Mosquitto has been installed and configured[8]. There are many MQTT broker
possibilities, this one is selected because of a recommendation. Next, it is needed to install the
MQTT publisher-subscriber library in C language. Like the broker, there are many different
libraries and from all of them the Eclipse Paho library has been selected[7] as it has good
documentation. Finally, the JSON-C library has been installed, as the messages are written
using JSON format and decode using this library[4].

35

For the network communication, it has set up a wireless access point and configure a DHCP
server to provide a fixed IP address for each LEGO Mindstorms robot based on its MAC
address. This way it is possible to include the IP in the code of the implementation without
being to be change, and also to make easy the communication via ssh with the devices by
always using the same IP for each one. The hotspot’s configuration steps can be checked
easily from an Internet web page like [3] that is why it is not specify here, but the modified
system files are in the appendix A.2.

6.6 Distributed control plane implementation

First, figure 6.8 defines the platooning scenario implemented in the Mindstorms EV3 robots
based on the limitations of the devices, as the previously defined scenarios in section 1.6
would need a more sophisticated and accurate hardware to be implemented (eg. GPS needed
to get the accurate position of vCPSs).

The scenarios to be implemented are a simplification of the scenarios defined in the introduction,
but their combination allows to achieve the scenario of figure 1.2. In concrete, it is implemented
a scenario where a vCPS joins from the back (figure 6.8a) that it is a simplification of the
1.2b defining a vCPS joining in the middle. A join in the middle is much more complex than
the join in the back because it needs to compute the position to join in very accurately to
avoid collisions with other vCPSs in the platoon during the maneuver or to avoid the join
in an area outside the platoon. For that reason, the join at the back maneuver has been
implemented as it only has to take care of the distance with the last vCPS of the platoon
to join without crash with it. In addition, the join back maneuver is an interesting scenario
that forms part of the vCPS leaves and joins again the platoon scenario defined in figure 1.2a
so it can help in the implementation of this more complex scenario.

The other two scenarios implemented describes a leave follower maneuver, the leaving can
be from the back (figure 6.8b) or from an intermediate position in the platoon (figure 6.8c).
These scenarios has been defined in order to provide the scenario of figure 1.2a, at least
separately by having the leave in the middle from figure 6.8c and the join in the back from
figure 6.8a that could be connected to achieve the whole scenario, but as it is said before to
can compute the exact time and position to join the platoon back from a different lane it
is needed a positioning system like a GPS to measure accurately the position of the vCPSs,
that is why the whole scenario of figure 1.2a is not implemented.

These three scenarios has been achieved by using the sequence of messages defined in section
3.3. In concrete, messages from figure 3.16 are used for the joining at the back scenario of
figure 6.8a, and messages of figure 3.14 are used to achieve the leaving scenarios represented
in figure 6.8b and 6.8c.

36

(a) Scenario: vCPS joins at the back a platoon of two vCPSs

(b) Scenario: Last vCPS of a three vCPSs platoon leaves the platoon

(c) Scenario: Middle vCPS of a three vCPSs platoon leaves the platoon

Figure 6.8: Platooning scenarios implemented

The implemented code uses functions from the ev3dev operative system C-library[1] to
configure and move the motors, and to configure and read data from the sensors. Also,
it uses functions from the MQTT library[7] in order to exchange message between the LEGO
Mindstorms EV3 robots. And, the functions of JSON library[4] are used to parse the content
of the messages that is formatted using JSON.

Apart from the functions in the libraries, it has coded a header file and a C-file with other
functions required in order to integrate the communication and the controller, implementing
this way the distributed control plane. Listing A.4 of appendix A.3 contains the header file
that defines functions to be use in order to communicate but also to control the movement
of the vCPSs.

The other files implemented contain the main function executed by a vCPS. All these files
have the same structure and contain the functions send_info, check_events, drive_straight
and main. Send_info, check_events and drive_straight are executed concurrently as each one
is executed in a different thread created in the main function. Send_info function sends CIN

37

messages to the vCPS just behind. Check_events function tests if there is any messages of
type EVM or GID received, and if so it executes a functions that acts based on the messages
received. Drive_straight function assures that the vCPS moves through a black line straight
and if the line is left then the vCPS correctes its position by turning the driving in order to
reach the line again. And, main function sets up the communication, configures the sensors
and actuators of the LEGO Mindstorms, creates threads for the other three functions and
indicates how the vCPS should move.

In the appendix A.3 there is one of these main files, in concrete listing A.5, that contains
the code of the leader vCPS increasing its speed after twenty seconds for three times and
then stopping. The other main files contain the code of a follower vCPS where the speed of
the motors is based on the received CIN messages and where the distance between vCPSs
is kept based on the values read from the infrared sensors. There is a file for a follower just
following the leader vCPS and keeping a distance between itself and the vCPS in front while
string stability is provided. Another file has the code of the last vCPS joining the platoon
following the same code as the one for the follower but including the creation and sending of
a JOIN EVM message of type request in order to become a member of the platoon. There
is also a file containing the code of a follower vCPS leaving the platoon from the back that
it includes the creation and sending of a LEAVE EVM message of type request in order to
depart. And, some other file that describes the leaving from the middle maneuver including
the same code as the file where a vCPS leaves from the back but adding the controller part
to change the lane after leaving the platoon from the middle.

The code files implemented, that is the one in appendix A.3, includes the modifications
needed to evaluate its performance in section 7.2. This code needs to be compiled with the
libraries previously installed in the device like section 6.5 indicates, a possible Makefile1 for
the compilation has been implemented and it can be seen in the link included in appendix
A.3. To execute the code, it is just needed to run the executable file as it is done in a Linux
terminal (ie. using ./name_file being name_file the executable file to be run).

1Makefile: File containing directives used with the make build automation tool to compile a set of files.

38

7. Performance evaluation

First, evaluation metrics has been selected getting ideas from the literature[20][22][23]. Then,
these metrics has been defined to indicate how they are going to be tested. Finally, the
evaluation metrics has been tested during the LEGO Minstorms EV3 robots’ execution and
the results has been analysed.

7.1 Definition of evaluation metrics

One of the points to evaluate is the maneuver performance to analyse how the maneuvers
influence the execution. The maneuver performance is going to be tested using different
metrics: duration, failure rate and packet loss, bandwidth consumption and throughput
impact.

Duration means the time it takes to achieve a maneuver, and it can be defined like

durationmaneuver = tmn − tm1
(1)

For a maneuver that needs to exchange n messages, its duration, durationmaneuver, is the
time difference between the first message sent, tm1

, and the last message received, tmn , to
achieve the maneuver. As it is assumed that the communication medium can have delays,
the duration of a maneuver can be different from on measure to another. For that reason,
the test of this metric should be done as the average of a certain number of measurements to
provide a valid result.

Failure rate gives the quantity of packages lost during a concrete maneuver scenario. In
this metric is assume that only messages related with the tested maneuver are sent. Failure
rate can be defined as

failure_ratemaneuver =
mmaneuver

msentmaneuver

(2)

where mmaneuver is the number of messages needed to achieve the maneuver defined for a
certain vCPS and msentmaneuver is the number of messages sent through the network in order
to achieve that maneuver.

Another metric is the packet loss over the wireless link to measure the communication failure.
This way, the packet loss is the difference between the packets received and the packets sent.

packet_lossmaneuver = msentmaneuver − mreceivedmaneuver
(3)

where msent is the number of messages sent through the network and mreceived is the number
of messages received.

Another metric is the bandwidth consume during a maneuver. This metric indicates the
number of bits sent in the sequence of messages needed to execute a certain maneuver. To
do this first, it must be measured the size of the different kind of messages proposed in the
communication protocol. Then, it has to be identified which sequence of messages are needed
to achieve a maneuver. Finally, the total bandwidth is the addition of the sizes of every
message required plus the size of the acknowledge messages sent from the TCP protocol.
Equation (4) reflects the bandwidth if there is no QoS selected in MQTT, QoS0, as it does

39

not take into account the additional ACK packets sent by MQTT with QoS1 or QoS2.

bandwidth_consumedmaneuver = 2 ∗
mmaneuver∑

i=1

(msg_size[i] + tcpack_size) (4)

where it is assumed that a maneuver is defined by a number of mmaneuver messages and its
size is contained in an array called msg_size where i indicates the position of that message
i in the sequence of messages. The sum value is multiplied by two because it has to be taken
into account the sending of the message to the broker from the publisher and the reception
of the message by the subscriber (ie. broker sends the message to the vCPSs subscribed to
that topic).

The last metric to evaluate is the impact of the maneuvers in the throughput. This can
be measure knowing the bandwidth consumed by a maneuver and the time duration of a
maneuver, durationmaneuver.

throughput_impactmaneuver = ⌊
bandwidth_consumedmaneuver

durationmaneuver

⌋ (5)

where the bandwidth_consumedmaneuver is defined in (4), and the definition of durationmaneuver

is in (1).

7.2 Performance results

Every metric has been evaluated for the three scenarios defined for implementation in section
6.6 with three LEGO Mindstorms EV3 robots using an area composed of two black lines of
570 cm long, that simulate the road where the vCPSs drive.

First to evaluate the durationmaneuver performance metric defined in (1), the follower code
that achieves the maneuver needs to include the C-function gettimeofday in order to measure
the time interval between the request for a maneuver and its resolution, appendix A.3.
This metric is measured ten times to get an average time of the durationmaneuver value
because there can be some value differences from one measurement to another due to the
communication medium. Tables 7.1, 7.2 and 7.3 show the results of the ten executions, and
the average of the durationmaneuver time for each one of the maneuvers measured. This
time defines how fast the sequence of messages to achieve a certain maneuver is received by
the follower requesting that maneuver, allowing the follower to compute the action with its
distributed controller based on the information received in the messages of the CDM protocol.

Join back maneuver
Communication Communication and reduce gap

Test 1 0.187753 18.518347
Test 2 0.202330 20.387474
Test 3 0.162184 18.52486
Test 4 0.214999 20.463871
Test 5 0.155732 17.534069
Test 6 0.187827 18.462982
Test 7 0.163555 17.896031
Test 8 0.202067 20.471877
Test 9 0.209586 20.627352
Test 10 0.178953 18.420495
Average 0.186499 19.1307358

Table 7.1: Results of the durationjoin_back metric evaluation, measured in seconds.

40

Leave back maneuver
Communication

Test 1 0.155197
Test 2 0.155696
Test 3 0.140895
Test 4 0.108600
Test 5 0.123346
Test 6 0.121391
Test 7 0.130693
Test 8 0.198835
Test 9 0.145909
Test 10 0.156928
Average 0.143749

Table 7.2: Results of the durationleave_back metric evaluation, measured in seconds.

Leave middle maneuver
Communication Communication and lane change

Test 1 0.284857 6.480074
Test 2 0.252923 5.602009
Test 3 0.263346 6.330987
Test 4 0.233882 6.056165
Test 5 0.223925 5.093712
Test 6 0.262286 5.226361
Test 7 0.2521985 5.466213
Test 8 0.214019 4.754800
Test 9 0.233491 5.437649
Test 10 0.205285 4.618048
Average 0.242621 5.506602

Table 7.3: Results of the durationleave_middle metric evaluation, measured in seconds.

The results in tables 7.1 and 7.2 show that the performance of a join back maneuver and a
leave back maneuver need an average of 0.19 and 0.15 seconds to be executed, respectively.
It has sense that these results are similar as both maneuvers need just two messages to be
executed, JOIN_REQ and JOIN_ACK messages for a join back maneuver, and, LEAVE_REQ
and LEAVE_ACK for the leave back maneuver when the follower leaving is the last one.
The difference between times could appear because in the join maneuver the messages are
sent to the leader after the leader has walk between 110 and 120 cm but the vCPS joining
has not move, so they are separated this distance; while in the leaving maneuver they are
just separated by the size of the vCPSs plus the inter-vCPSs distance kept. This assumption
in the difference of times has not been proved, checking different responses time for different
distances but it seems a fair assumption. Table 7.3 shows the results of the execution of
a leave from the middle maneuver, this maneuver need a three messages to be exchanged,
LEAVE_REQ, LEAVE_ACK and ID_REQ, instead of two like the leave from the back and
join maneuver that is why its duration time for the communication is slightly higher than
the others.

The join maneuver and the leave from the middle maneuver also measure the time from
the request message sent to the vCPS controller finishing the maneuver, what means to cover
the gap actually forming part of the platoon in the join maneuver and to change the driving
lane in the leave from the middle maneuver. As it can be seen in table 7.1 the resulting times

41

are quite similar and it takes around 19 seconds to cover the whole gap because the Lego
Mindstorms robots are driving at 6-6.6 cm/s. This speed is computed by the controller based
on the distance to the vCPS in front and the speed received through the communication and
could change depending on these parameters. Also, it could be possible to reduce the time
to cover the gap increasing the speed but this could lead into undesirable collisions if the
vCPS get too close with a high velocity and it has not enough time to brake or reduce its
speed before reaching the vCPS in front. In table 7.3 the results to change the lane are also
quite similar between them, taking around 5.5 seconds to perform the change. This value
can be used to analyse how the system performs and if it changes a lot from one execution
to another, as it is reflected it does not really change. But, it is something dependent on
the speed and the distance from one lane to another so it is not representative of global
scenario as these parameters could change leading into a change of the communication and
lane change time.

Then, the failure_ratemaneuver for a certain maneuver has been measured using (2). The
mmaneuver variable indicates the number of messages needed to achieve that maneuver,
this values can be obtained from figures in section 3.3 that defines state machines with
the sequence of messages required for some maneuvers. The msentmaneuver variable defines
the number of messages sent through the network in order to achieve that maneuver, in
the optimal case this value is the same than the one in the mmaneuver variable giving a
failure_ratemaneuver value of 1 what indicates that messages sent are exactly the same as the
ones that should be sent. Another possibility is to have the value of msentmaneuver lower than
the value on mmaneuver what means that not all the messages has been received due to network
failures so the maneuver cannot be achieved. And as the last option, if msentmaneuver is higher
than the value on mmaneuver that means that there has been sent duplicates of the packets
caused by network failure or delays in order to can achieve the maneuver. The equations
7.2 and 7.2 show the failure_ratemaneuver compute for the join back, the leaving from the
back and the leaving from the middle maneuvers. For the maneuver join back and leave
back is used the value 2 for the variables mjoin_back and mleave_back as only two messages are
needed to achieve each maneuver, JOIN_REQ and JOIN_ACK messages, and LEAVE_REQ
and LEAVE_ACK messages respectively. However, the leave middle maneuver needs three
messages to achieve the maneuver, LEAVE_REQ, LEAVE_ACK and ID_REQ, that is why
mleave_middle has the value 3. The values of msentjoin_back

, msentleave_back
and msentleave_middle

has been measured by executing both scenarios in the LEGO Mindstorms robots ten times
and doing the average of these results as in the executions there are no failures in the network
and the messages sent are always two in the case of the join back and leave back maneuver
and three in the case of the join middle maneuver. These values has been obtained by using
the variables sent_msg and recv_msg included in the code. For that reason, it is avoided
a table with the results of each test and the average as it would contain always the same
value. Just counting the messages sent and receive cannot be a good solution as MQTT is
running over TCP what means that some of the packets can be retransmitted over TCP to
ensure its reception, but in MQTT are just seen like one transmission. For that reason, it has
also run Wireshark over the network where the robots are sending/receiving the messages
in order to check for TCP retransmissions of the EVM messages. But, the network used
to evaluate the performance is really reliable so there was no TCP retransmission of EVM
messages during all the tests done. One output of the Wireshark captures for each maneuver
is attached in the appendix A.4, only one capture is included for each maneuver since all

42

reflect no retransmission being equal outputs.

failure_ratejoin_back =
mjoin_back

msentjoin_back

=
2

2
= 1

failure_rateleave_back =
mleave_back

msentleave_back

=
2

2
= 1

failure_rateleave_middle =
mleave_middle

msentleave_middle

=
3

3
= 1

Next, the packet_lossmaneuver has been measured by counting the number of messages sent
and the messages received and calculating the difference between these two values as 3 defines.
From the failure_ratemaneuver results it seems like the number of packet loss in the network
is none, as the network has not many interference and as the LEGO Mindstorms robots are
at most 570cm far so it is not as much distance to can lose the connectivity.

packet_lossjoin_back = msentjoin_back
− mreceivedjoin_back

= 2 − 2 = 0

packet_lossleave_back = msentleave_back
− mreceivedleave_back

= 2 − 2 = 0

packet_lossleave_middle = msentleave_middle
− mreceivedleave_middle

= 3 − 3 = 0

The bandwidth_consumed has been measured by measuring the size of the communication
messages, and then applying the (4) using these values. A traffic network analyser, Wireshark[15],
has been used to measure the real size of the packets sent.

The packet’s size changes depending on the type of the message sent. For that reason, it
has been measured the size of the messages used in the implementation. Section 3.2 defines
CIN, EVM and GID messages, but not all the sub-messages included in these messages
has been measure. Only, INFO message defined as a CIN message; JOIN and LEAVE
message from the EVM messages and not ACCELERATION message as it is not used in the
implementation; and ID message from the defined GID messages avoiding the measurement
of NEW_LEADER and DISCOVERY messages as these messages are not implemented nor
used in the testbed scenarios. In addition, ACK packets from MQTT has also been measured
as these packets are received when QoS is configured, and TCP acknowledgement packets as
they are also received after every message sent. Table 7.4 shows the packet’s size (ie. size of
the IP, TCP and MQTT header, TCP options and CDM from 5.3) and the message size (ie.
CDM field from 5.3) obtained using Wireshark, appendix A.5 contains the screenshots of the
Wireshark’s outputs.

Message type Packet size (bytes) Message size (bytes)
Context Information Message (CIN)
INFO message 144 71
Event Maneuver Message (EVM)
JOIN message 142 69
LEAVE message 128 55
Group Identifier message (GID)
ID message 120 47

MQTT ACK 70
TCP ACK 66

Table 7.4: Packet size

43

The bandwidth_consumed of a join back, a leaving follower from the back and a leaving
follower from the middle maneuver is computed by the application of (4). The values of
the variables mmaneuver for mjoin_back, mleave_back and mleave_middle has been obtained from
the states machines in 3.3, but they could have also been obtained from the values used for
the failure rate maneuver metric. The values for these variables are the size of two JOIN
messages for the join back maneuver, two LEAVE messages for the leaving back maneuver
and two LEAVE messages and one ID message for the leaving middle maneuver, respectively.

bandwidth_consumedjoin_back = 2 ∗ (142 + 66 + 142 + 66) = 832 bytes

bandwidth_consumedleave_back = 2 ∗ (128 + 66 + 128 + 66) = 776 bytes

bandwidth_consumedleave_middle = 2 ∗ (128 + 66 + 128 + 66 + 120 + 66) = 1148 bytes

The bandwidth consumed it has been measured using QoS0 in MQTT, what means that
there are no MQTT ACK messages sent. These values of the bandwidth will increase if QoS1
or QoS2 is provided by MQTT.

To reduce the bandwidth, it is possible to reduce the size of the messages (eg. not use
JSON and just add the content directly in the message without indicating what each value
means), and also by using a lower level protocol to send the packets as TCP or UDP sockets
or an application level that sends directly the messages to the receiver and does not use a
third party like the broker.

Finally, the throughtput_impactmaneuver has been measured by inserting the results, obtained
in this section, of bandwidth_consumedmaneuver and durationmaneuver in the equation (5) as
follows.

throughput_impactjoin_back = ⌊
bandwidth_consumedjoin_back

durationjoin_back

⌋ = ⌊
832

0.186499
⌋ = 4461 bytes/s

throughput_impactleave_back = ⌊
bandwidth_consumedleave_back

durationleave_back

⌋ = ⌊
776

0.143749
⌋ = 5398 bytes/s

throughput_impactleave_middle = ⌊
bandwidth_consumedleave_middle

durationleave_middle

⌋ = ⌊
1148

0.242621
⌋ = 4731 bytes/s

These results show a different on the bandwidth of 1000 bytes/s approximately what can
be led by the increased of the distance between two vCPSs, but it has been said during the
measure of the duration that this cannot be proved. And, it can just be that during the
measure of one maneuver and another the network was more overloaded.

7.3 Study and comparison of the results

This section review the results obtained in section 7.2 and compared them with results
obtained in the literature for the same scenarios and with the hypothetical results defined by
the model in chapter 5.

The results obtained for the duration metric defined in (1) can be compared with the
results of Fig. 17. of [20]. This figure shows the average time need it to perform different
platooning maneuvers based on the communication messages defined in the paper. In [20]
the duration time for the last follower leaving is less than 4 seconds while the results of this
thesis’ evaluation, figure 7.2, is less than 0.15 seconds in average and the time for a middle

44

follower leaving in the paper is between 7.5 and 8 seconds while the proposed system gives a
time of fewer than 0.25 seconds for the communication and 5.5 seconds to perform the whole
maneuver taking into account the communication and the lane change of the vCPS. So, as
it can be seen the distributed control plane proposed and evaluated gives better results for
the leaving maneuver. The join maneuver cannot be compared with [20] as it has not been
evaluated the join maneuver in this paper. Even though this comparison gives better results
to the proposed system, it cannot be ensure that the distributed control plane defined in
this thesis performs better as the evaluation of the defined systems is done with three LEGO
Mindstorms ev3, using the WiFi standard 802.11b/g/n and a speed for each device changes
is around 0.072 - 0.076 m/s. But, the evaluation done using VENTOS’ simulator[10] in [20]
uses a platoon of ten vehicles, the WiFi amendment for vehicular systems 802.11p and a
speed for each vehicle of 20 m/s.

The integration of messages and the controller computation needed to provide maneuvers
in the system is defined in figures 5.5 and 5.6 showing the approximate duration must take
theoretically. In theory, this duration is around 0.15 seconds to execute the communication
of a join maneuver that will be at least 0.2 seconds until the controller will receive a CIN
message indicating the speed of the platoon and therefore accelerate the vCPS that wants
to join in order to reach the platoon and keep the safety distance and not more. And, it is
around 0.1 seconds to can leave the platoon what implies to send a leave request and wait
for a leave acknowledge message to can understand by the controller that the vCPS can
remove its platoon membership by stopping its communication and modifying its driving.
Comparing this theoretical results with the performance results it is seen that the join and
the leave maneuvers are slightly more costly in the communication duration.

45

8. Conclusion

After doing a review of the literature there are many proposals to provide platooning functionality
based on simulations, but not such many experimenting with mobile devices as the LEGO
Mindstorms robots used in this thesis. In addition, most of the papers are focused on the
controller or the communication part but they do not explain in details how to integrate both
protocols to achieve platooning. For that reason, this thesis has focused on the definition of
a distributed control plane defining how to achieve platooning through communication but
also describing how communication is connected with the controller protocol in order to drive
vCPSs keeping a certain distance while supporting string stability through the platoon and
performing maneuvers.

The objectives of the thesis has been achieved by defining the distributed control protocol
in chapter 2, designing the Cooperative Driving Messages (CDM) protocol in chapter 3 to
communicate vCPSs through an application layer protocol, analysing the controller formulas
to be taken into account to provide platooning in chapter 4, describing the integration
of the communication and the controller in the distributed control protocol in chapter 5,
and implementing the distributed control protocol defined in the previous sections using the
LEGO Mindstorms EV3 devices as chapter 6 contains.

Finally, it has been proposed and evaluated some metrics to measure the performance of
the distributed control protocol and its implementation using the LEGO Mindstorms and
Wireshark tool in chapter 7. The evaluation of these metrics is tied to certain network and
to a reduce number of executions, due to the use of a device implementation to test it and
not simulation what it will allow running more tests with a wider selection of the parameter,
and to evaluate different network characteristics giving a more variety of results and more
realistic because of this diversity. Nevertheless, the performance evaluation can give an idea
of the distributed controller performance and the possible enhancements that can be done to
improve it.

8.1 Future work

Suggested work to improve the content of this thesis is the incorporation of a GPS module
into the LEGO Mindstorms EV3 robots to implement completely the desirable scenarios
defined in 1.2. Also, the use of a simulator or the increase of the evaluation scenarios, using
the LEGO Mindstorms EV3 robots, in terms of different communication networks and areas
to provide a more complete evaluation of the distributed control plane for cooperative vCPSs.

46

Bibliography

[1] Ev3dev library in C. https://github.com/in4lio/ev3dev-c. [Online; accessed
25-April-2017].

[2] Ev3dev operative system. http://www.ev3dev.org. [Online; accessed 05-March-2017].

[3] Guide to configure a hotspot. https://www.maketecheasier.com/

set-up-raspberry-pi-as-wireless-access-point/. [Online; accessed
20-April-2017].

[4] JSON-C library. https://github.com/json-c/json-c. [Online; accessed
25-April-2017].

[5] LeJOS firmware. http://www.lejos.org/. [Online; accessed 05-March-2017].

[6] MonoBrick firmware. http://www.monobrick.dk/. [Online; accessed 05-March-2017].

[7] MQTT client - Paho. https://www.eclipse.org/paho/. [Online; accessed
25-April-2017].

[8] MQTT server - Mosquitto. https://projects.eclipse.org/projects/technology.

mosquitto. [Online; accessed 25-April-2017].

[9] RobotC firmware. http://www.robotc.net/. [Online; accessed 05-March-2017].

[10] M. Amoozadeh. Vehicular network open simulator (ventos), website. http://maniam.

github.io/VENTOS/. [Online; accessed 17-May-2017].

[11] Eclipse. Mqtt quality of service levels. http://www.eclipse.org/paho/files/

mqttdoc/MQTTClient/html/qos.html. [Online; accessed 06-May-2017].

[12] European Telecommunications Standards Institute (ETSI). ETSI EN 302 637-2
V1.3.2 - Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set
of Applications; Part 2: Specification of Cooperative Awareness Basic Service. ETSI,
2014.

[13] European Telecommunications Standards Institute (ETSI). ETSI EN 302 637-3
V1.2.2 - Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of
Applications; Part 3: Specifications of Decentralized Environmental Notification Basic
Service. ETSI, 2014.

[14] P. Fernandes and U. Nunes. Platooning with IVC-Enabled Autonomous Vehicles:
Strategies to Mitigate Communication Delays, Improve Safety and Traffic Flow. IEEE
Transactions on intelligent transportation systems, vol. 13, no. 1, 2012.

[15] Wireshark Foundation. Wireshark network analyzer. https://www.wireshark.org/.
[Online; accessed 06-May-2017].

[16] J. Ploeg M. Van de Molengraft G. Naus, R. Vugts and M. Steinbuch. Towards on-the-road
implementation of cooperative adaptive cruise control. Proc. 16th World Congr. Exhib.
ITS World, 2009.

47

https://github.com/in4lio/ev3dev-c
http://www.ev3dev.org
https://www.maketecheasier.com/set-up-raspberry-pi-as-wireless-access-point/
https://www.maketecheasier.com/set-up-raspberry-pi-as-wireless-access-point/
https://github.com/json-c/json-c
http://www.lejos.org/
http://www.monobrick.dk/
https://www.eclipse.org/paho/
https://projects.eclipse.org/projects/technology.mosquitto
https://projects.eclipse.org/projects/technology.mosquitto
http://www.robotc.net/
http://maniam.github.io/VENTOS/
http://maniam.github.io/VENTOS/
http://www.eclipse.org/paho/files/mqttdoc/MQTTClient/html/qos.html
http://www.eclipse.org/paho/files/mqttdoc/MQTTClient/html/qos.html
https://www.wireshark.org/

[17] K. Abboud H. Zhou H. Zhao W. Zhuang H. Peng, D. Li and X. Shen. Performance
analysis of IEEE 802.11p DCF for Multiplatooning Communications with Autonomous
Vehicles. IEEE Globecom, 2015.

[18] Hong Linh; Stanford-Clark Andy Hunkeler, Urs; Truong. MQTT-S - A publish/subscribe
protocol for Wireless Sensor Networks. 3rd International Conference on Communication
Systems Software and Middleware and Workshops, pp. 791-798, 2008.

[19] John B. Kenney. Dedicated Short-Range Communications (DSRC) Standards in the
United States. Proceedings of the IEEE | Vol. 99, No. 7, July 2011.

[20] C. Chuah-H. Zhang M. Amoozadeh, H. Deng and D. Ghosal. Platoon management
with cooperative adaptive cruise control enabled by VANET. Elsevier Vehicular
Communications, 2015.

[21] H. Tsai M. Segata, R. Lo Cigno and F. Dressler. On Platooning Control using IEEE
802.11p in Conjunction with Visible Light Communications. 12th Annual conference on
wireless on-demand network systems and services (WONS), 2016.

[22] S. Joerer C. Sommer M. Gerla R. Lo Cigno M. Segata, B. Bloessl and F. Dressler. Toward
Communication Strategies for Platooning- Simulative and Experimental Evaluation.
IEEE Transactions on vehicular technology, vol. 64, no. 12, 2015.

[23] S. Joerer F. Dressler R. Lo Cigno M. Segata, B. Bloessl. Supporting platooning maneuvers
through IVC: An initial protocol analysis for the join maneuver. IEEE Xplore, 2014.

[24] George H. Mealy. A Method for Synthesizing Sequential Circuits. Bell System Technical
Journal. pp. 1045-1079, 1955.

[25] Mohd Saufy Rohmad Muhammad Harith Amaran, Nazmin Arif Mohd Noh and Habibah
Hashim. A Comparison of Lightweight Communication Protocols in Robotic Applications.
Elsevier - IEEE International Symposium on Robotics and Intelligent Sensors, 2015.

[26] OASIS. Mqtt standard definition. http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/

os/mqtt-v3.1.1-os.pdf. [Online; accessed 06-May-2017].

[27] Jorge Pereira. Sending and receiving messages with mqtt. http://www.ev3dev.org/

docs/tutorials/sending-and-receiving-messages-with-mqtt/. [Online; accessed
02-March-2017].

[28] M. Petrov R. Kazala, A. Taneva and St. Penkov. Autonomous robot integration in
Suveillance System. Architecture and communication protocol for system cooperation.
International Power Electronics and Motion Control Conference and Exposition, 2014.

[29] M. Petrov R. Kazala, A. Taneva and St. Penkov. Wireless Network for Mobile Robot
Application. IFAC (International Federation of Automatic Control) conference paper,
2015.

[30] Anna Maria Vegni and Valeria Loscrí. A Survey on Vehicular Social Networks. IEEE
communication surveys tutorials, vol. 17 no. 4, 2015.

[31] Wikipedia. IEEE 802.11. https://en.wikipedia.org/wiki/IEEE_802.11. [Online;
accessed 16-March-2017].

48

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf
http://www.ev3dev.org/docs/tutorials/sending-and-receiving-messages-with-mqtt/
http://www.ev3dev.org/docs/tutorials/sending-and-receiving-messages-with-mqtt/
https://en.wikipedia.org/wiki/IEEE_802.11

[32] Yong-qiang Zhang Zhou Yun and Zhou Wan-zhen. Present Situation and Future
Development of Multiple Mobile Robot Communication Technology. International
Conference on Computer Application and System Modeling (ICCASM), 2010.

49

A. Appendix

A.1 Gantt chart

Figure A.1: Gantt chart defining the tasks achieved in the thesis

A.2 Configuration files to configure a hostspot with fixed IPs

Listing A.1: File: /etc/network/interfaces

auto l o
i f a c e l o i n e t loopback
al low−hotplug wlan1

i f a c e wlan1 i n e t stat ic
address 19 2 . 16 8 . 1 . 2 49
netmask 255 . 255 . 255 . 248
gateway 1 9 2 . 1 6 8 . 1 . 4 6

pre−up i p t a b l e s −r e s t o r e < / etc / i p t a b l e s . ipv4 . nat

Listing A.2: File: /etc/dhcp/dhcpd.conf

The ddns−updates−s t y l e parameter c o n t r o l s whether or not the s e r v e r w i l l
attempt to do a DNS update when a l e a s e i s conf irmed . We default to the
behavior o f the ve r s i on 2 packages (’ none ’ , s i n c e DHCP v2 didn ’ t
have support for DDNS.)
ddns−update−s t y l e none ;

default−l e a s e −time 600 ;
max−l e a s e −time 7200 ;

I f t h i s DHCP s e r v e r i s the o f f i c i a l DHCP s e r v e r for the l o c a l
network , the a u t h o r i t a t i v e d i r e c t i v e should be uncommented .
#a u t h o r i t a t i v e ;

50

Use t h i s to send dhcp log messages to a d i f f e r e n t l og f i l e
log− f a c i l i t y l o c a l 7 ;

I n t e r n a l subnet
subnet 19 2 . 16 8 . 1 . 2 4 8 netmask 255 . 255 . 255 . 248 {

range 1 92 . 1 68 . 1 . 2 53 1 9 2 . 1 6 8 . 1 . 2 5 4 ;
opt ion subnet−mask 2 5 5 . 2 5 5 . 2 5 5 . 2 4 8 ;
opt ion r o u t e r s 1 9 2 . 1 6 8 . 1 . 2 4 9 ;
opt ion broadcast−address 1 9 2 . 1 6 8 . 1 . 2 5 5 ;
default−l e a s e −time 600 ;
max−l e a s e −time 7200 ;
group{

host robot1 {hardware e the rne t 74 :DA: 3 8 : 7E: C7 : 4 0 ;
f i xed −address 1 9 2 . 1 6 8 . 1 . 2 5 0 ; }
host robot2 {hardware e the rne t 80 :1F : 0 2 :EA: 8F :DA;
f ixed −address 1 9 2 . 1 6 8 . 1 . 2 5 1 ; }
host robot3 {hardware e the rne t 74 :DA: 3 8 : 7E: C7 : 7 3 ;
f i xed −address 1 9 2 . 1 6 8 . 1 . 2 5 2 ; }

}
}

,

Path to dhcpd ’ s c o n f i g f i l e (d e f a u l t : / e t c /dhcp/dhcpd . conf) .
#DHCPD_CONF=/etc /dhcp/dhcpd . conf

Path to dhcpd ’ s PID f i l e (d e f a u l t : / var /run/dhcpd . pid) .
#DHCPD_PID=/var /run/dhcpd . pid

Addit iona l opt ions to s t a r t dhcpd with .
#Don ’ t use opt ions −c f or −pf here ; use DHCPD_CONF/ DHCPD_PID ins t ead
#OPTIONS=" "

On what i n t e r f a c e s should the DHCP s e r v e r (dhcpd) s e rve DHCP re q ue s t s ?
#Separate mu l t ip l e i n t e r f a c e s with spaces , e . g . " eth0 eth1 " .
INTERFACES=" wlan1 "

Listing A.3: File: /etc/hostapd/hostapd.conf

i n t e r f a c e=wlan1
d r i v e r=nl80211
s s i d=robots−route r
hw_mode=g
channel=6
macaddr_acl=0
auth_algs=1
ignore_broadcast_ss id=0
wpa=2
wpa_passphrase=robots−route r
wpa_key_mgmt=WPA−PSK
wpa_pairwise=TKIP
rsn_pairwise=CCMP

51

A.3 Code of the distributed control plane for cooperative
vCPSs

This appendix includes a sample of the implemented code, in concrete the header file describing
the functions implemented, and one of the main files. To see all the files implemented go
to: https://gist.github.com/almsv/22067424c2692082ce411aa766d9f4f2. In the link,
there is a comment at the end describing in details the content of each file, how to compile
them and how to execute them.

Listing A.4: Header file that defines the communication an controller functions implemented

#include <s t d i o . h>
#include <s t d l i b . h>
#include <s t r i n g . h>
#include <MQTTClient . h>
#include <pthread . h> //To can use pthread_mutex_t
#include <unis td . h>
#include <json−c/ j son . h> //To decode messages

#define QOS 0
#define TIMEOUT 10000L

#define MOTOR_LEFT OUTA
#define MOTOR_RIGHT OUTB
#define MOTOR_BOTH (MOTOR_LEFT | MOTOR_RIGHT)
#define MAX_SPEED 1050 // tacho_get_max_speed (MOTOR_RIGHT, 0)
#define MIN_SPEED 0
#define MIN_SECURITY_DISTANCE 5
#define MAX_SECURITY_DISTANCE 10

#define COLOR_SENSOR_LEFT INPUT_2
#define COLOR_SENSOR_RIGHT INPUT_3

#define IR_CHANNEL 0
#define COLOR_CHANNEL 0

#define _SNC_TURN_ANGLE_ 10
#define DEGREE_TO_COUNT(d) ((d) ∗ 260 / 90)

#define SIZE_QUEUE 20

typedef enum {INFO, JOIN , LEAVE, ACCELERATE, ID , LEADER} cdm ;
typedef enum {REQ, ACK, NACK} p e t i t i o n ;

typedef struct {
int speed ;
int locat ion_x ;
int locat ion_y ;
int a c c e l e r a t i o n ;

} CIN_struct ;

typedef struct {
cdm msg_type ;
int id_sender ; //ID of the v e h i c l e t h a t has i n i t i a t e the r e qu e s t
int i d_re c e i v e r ; //ID of the v e h i c l e t h a t must r e c e i v e the r e que s t
p e t i t i o n pet i t i on_type ;

52

https://gist.github.com/almsv/22067424c2692082ce411aa766d9f4f2

int po s i t i on_ jo i n ;
int a c c e l e r a t i o n ;

} EVM_struct ;

typedef struct {
cdm msg_type ;
p e t i t i o n pet i t i on_type ;
int old_id ;
int new_id ;
char address_leader [2 5] ;
char address_request [2 5] ;

} GID_struct ;

extern const char∗ msg_name [] ;
extern const char∗ petition_name [] ;

/∗∗
∗ Function t h a t r e turns the speed o f an CIN_struct s t r u c t u r e .
∗
∗ @return : In t e g e r va lue wi th a speed va lue .
∗/

int get_speed () ;

/∗∗
∗ Function t h a t t r a n s l a t e the prox imi ty g iven in the parameters to a
∗ d i s t ance in cm.
∗
∗ @param prox : In t e g e r wi th the prox imi ty g iven by the i n f r a r e d sensor .
∗ @return : In t e g e r t h a t conta ins a d i s t ance in cm.
∗/

int get_distance (int prox) ;

/∗∗
∗ Function t h a t mod i f i e s the p latoon_id o f wi th the va lue g iven in the
∗ parameters .
∗
∗ @param id : In t e g e r t h a t conta ins the i d e n t i f i e r f o r t h i s v e h i c l e .
∗/

void set_platoon_id (int id) ;

/∗∗
∗ Function re turns the p latoon_id o f the v e h i c l e .
∗
∗ @return : In t e g e r t h a t conta ins the p la toon id o f the v e h i c l e .
∗/

int get_platoon_id () ;

/∗∗
∗ Function t h a t r e turns a va lue t h a t i n d i c a t e s i f the v e h i c l e must s top
∗ or must keep running .
∗
∗ @return : In t e g e r wi th va lue 1 i f the v e h i c l e must STOP, and 0 i f
∗ i t shou ld keep running .
∗/

int stop () ;

53

/∗∗
∗ Function t h a t r e turns a va lue t h a t i n d i c a t e s i f t h e r e i s any evm
∗ message in the queue t h a t must be processed .
∗
∗ @return : In t e g e r wi th va lue 1 i f t h e r e are messages in the queue ,
∗ and 0 i f the queue i s empty .
∗/

int evm_to_process () ;

/∗∗
∗ Function t h a t r e turns a va lue t h a t i n d i c a t e s i f t h e r e i s any g id
∗ message in the queue t h a t must be processed .
∗
∗ @return : In t e g e r wi th va lue 1 i f t h e r e are messages in the queue ,
∗ and 0 i f the queue i s empty .
∗/

int gid_to_process () ;

/∗∗
∗ Function re turns the s i z e o f the v e h i c l e s p la toon .
∗
∗ @return : Unsigned i n t e g e r t h a t conta ins the p la toon s i z e .
∗/

unsigned int get_size_platoon () ;

/∗∗
∗ Function t h a t inc rea se the v e l o c i t y o f the v e h i c l e .
∗/

void a c c e l e r a t e () ;

/∗∗
∗ Function t h a t decrease the v e l o c i t y o f the v e h i c l e .
∗/

void d e c e l e r a t e () ;

/∗∗
∗ Cal l back func t i on to enab l e asynchronous n o t i f i c a t i o n o f d e l i v e r y
∗ o f messages . The func t i on i s c a l l e d a f t e r p u b l i s h i n g a message .
∗ I t i s j u s t use i t t h e r e i s QoS con f i gu r e .
∗
∗ @param con tex t : Pointer to the con t ex t va lue passed to
∗ MQTTClient_setCallbacks () , which conta ins the
∗ app l i c a t i on −s p e c i f i c con t ex t .
∗ @param dt : MQTTClient_deliveryToken a s s o c i a t e d wi th the
∗ p u b l i s h e d message . To check t h a t a l l messages have
∗ been c o r r e c t l y p u b l i s h e d .
∗/

void d e l i v e r e d (void ∗ context , MQTTClient_deliveryToken dt) ;

/∗∗
∗ Cal l back fun t i on execu te when a new message , p u b l i s h in a t o p i c which
∗ the c l i e n t i s sub sc r i bed , has been r e c e i v ed from the s e r v e r .
∗ This func t i on i s executed on a separa t e thread .
∗ @param con tex t : Pointer to the con t ex t va lue passed to
∗ MQTTClient_setCallbacks () , which conta ins the

54

∗ app l i c a t i on −s p e c i f i c con t ex t .
∗ @param topicName : Topic o f the r e c e i v ed message .
∗ @param topicLen : Length o f the t o p i c .
∗ I f 0 the va lue re turned by s t r l e n (topicName) can be t r u s t e d .
∗ I f g r e a t e r than 0 , the t o p i c name can be r e t r i e v e d by acce s s ing
∗ the v a r i a b l e as a by t e array .
∗ @param message : MQTTClient_message t h a t conta ins the message pay load
∗ and a t t r i b u t e s .
∗
∗ @return : In t e g e r va lue i n d i c a t i n g whether or not the message has been
∗ s a f e l y r e c e i v ed by the c l i e n t a p p l i c a t i o n .
∗ Return 1 means t h a t the message has been s u c c e s s f u l l y handled .
∗ Return 0 i n d i c a t e s t h a t t h e r e was a problem .
∗/

int msgarrvd (void ∗ context , char ∗topicName , int topicLen ,
MQTTClient_message ∗message) ;

/∗∗
∗ Function t h a t proces s evm messages p r e v i o u s l y r e c e i v ed .
∗/

void process_evm () ;

/∗∗
∗ Function t h a t proces s g id messages p r e v i o u s l y r e c e i v ed .
∗/

void process_gid () ;

/∗∗
∗ Cal l back func t i on to enab l e asynchronous n o t i f i c a t i o n o f the l o s s o f
∗ connect ion to the s e r v e r .
∗ The func t i on i s c a l l e d when the connect ion i s l o s t to the s e r v e r .
∗
∗ @param con tex t : Pointer to the con t ex t va lue passed to
∗ MQTTClient_setCallbacks () , which conta ins the
∗ app l i c a t i on −s p e c i f i c con t ex t .
∗ @param cause : Reason f o r the d i s connec t i on .
∗/

void conn lo s t (void ∗ context , char ∗ cause) ;

/∗∗
∗ Function t h a t e s t a b l i s h a connect ion between a c l i e n t and
∗ the broker to a l l ow p u b l i s h / s u b s c r i b e messages .
∗
∗ @param id : S t r ing i d e n t i f i e r o f a v e h i c l e , must be unique .
∗
∗/

void set_connect ion (char∗ id) ;

/∗∗
∗ Function t h a t c l o s e a connect ion between a c l i e n t and the broker
∗/

void c lo se_connect ion () ;

/∗∗
∗ Function t h a t c a l l s the func t i on MQTTClient_subscribe ()

55

∗ to s u b s c r i b e a c l i e n t to a c e r t a i n t o p i c i n d i c a t e d
∗ in the parameters .
∗
∗ @param s t o p i c : Name o f the t o p i c to be s u b s c r i b e d .
∗/

void subscr ibe_to_topic (char ∗ s t o p i c) ;

/∗∗
∗ Function t h a t c a l l s the func t i on MQTTClient_unsubscribe ()
∗ to unsubscr i b e a c l i e n t from a c e r t a i n t o p i c i n d i c a t e d
∗ in the parameters .
∗
∗ @param s t o p i c : Name o f the t o p i c to be s u b s c r i b e d .
∗/

void unsubscr ibe_to_topic (char ∗ s t o p i c) ;

/∗∗
∗ Function t h a t c r e a t e s a message o f type "CIN " .
∗
∗ @param msg : S t ruc tu re o f type CIN_struct wi th the content o f
∗ the message to be sen t .
∗/

void create_cin_msg (CIN_struct msg) ;

/∗∗
∗ Function t h a t c r e a t e s a message o f type "EVM" .
∗
∗ @param ev : Value t h a t i n d i c a t e s the type o f message to be send .
∗ @param msg : S t ruc tu re o f type EVM_struct wi th the content
∗ o f the message to be sen t .
∗/

void create_evm_msg (cdm ev , EVM_struct msg) ;

/∗∗
∗ Function t h a t c r e a t e s a message o f type "GID" .
∗
∗ @param ev : Value t h a t i n d i c a t e s the type o f message to be send .
∗ @param msg : S t ruc tu re o f type GID_struct wi th the content
∗ o f the message to be sen t .
∗/

void create_gid_msg (cdm ev , GID_struct msg) ;

/∗∗
∗ Funtion t h a t p u b l i s h a new message in a c e r t i n t o p i c .
∗
∗ @param p top i c : Name o f the t o p i c where to p u b l i s h .
∗/

void publish_msg (char∗ ptop ic) ;

Listing A.5: C file that implements the leader’s vCPS code

#include "v2v_comm . h"
#include " co rout ine . h "
#include " b r i ck . h "

pthread_t t_info , t_event , t_co lor_sensors ;

56

char∗ mqtt_id = " robot_1 " ;

char publ i sh_top ic [1 6] ;
char subsc r ibe_top i c [1 6] ;

CIN_struct s_inf ;

// Sends a message every second
void∗ send_info (void ∗ arg){

// Pub l i sh in your INFO t o p i c
s n p r i n t f (publ i sh_topic , s izeof (pub l i sh_top ic) , "CIN_%d" ,
get_platoon_id ()) ;
while (t rue){

create_cin_msg (s_inf) ;
publish_msg (publ i sh_top ic) ;
sleep_ms (1 0 0 0) ; // 1 second

}
}

void∗ check_events (void ∗ args){
while (t rue){

i f (evm_to_process ()) {
process_evm () ;

}
i f (gid_to_process ()) {

process_gid () ;
}

}
}

void∗ dr i v e_s t ra i gh t (void ∗ args){
int l e f t _ s e n s o r = −1, r i ght_sensor = −1, ang le ;
while (s_in f . speed !=0){

l e f t _ s e n s o r = sensor_get_value (COLOR_CHANNEL,
port_to_socket (COLOR_SENSOR_LEFT) , IR_REMOTE__NONE_) ;
r i ght_sensor = sensor_get_value (COLOR_CHANNEL,
port_to_socket (COLOR_SENSOR_RIGHT) , IR_REMOTE__NONE_) ;

// Le f t c o l o r sensor doesn ’ t see b l a c k − Need to turn r i g h t
i f ((l e f t _ s e n s o r != 1) && (r ight_sensor == 1)){

do{
ang le=−_SNC_TURN_ANGLE_;

tacho_set_speed_sp (MOTOR_LEFT, s_inf . speed) ;
tacho_set_speed_sp (MOTOR_RIGHT, s_inf . speed) ;
tacho_set_posit ion_sp (MOTOR_LEFT, DEGREE_TO_COUNT(−ang le)) ;
tacho_set_posit ion_sp (MOTOR_RIGHT, DEGREE_TO_COUNT(ang le)) ;
tacho_run_to_rel_pos (MOTOR_BOTH) ;
tacho_run_forever (MOTOR_BOTH) ;

l e f t _ s e n s o r = sensor_get_value (COLOR_CHANNEL,
port_to_socket (COLOR_SENSOR_LEFT) , IR_REMOTE__NONE_) ;

}while (l e f t _ s e n s o r !=1) ;
}
// Right co l o r sensor doesnt see b l a c k − Need to turn l e f t

57

else i f ((r i ght_sensor != 1) && (l e f t _ s e n s o r == 1)){
do{

ang le=_SNC_TURN_ANGLE_;

tacho_set_speed_sp (MOTOR_LEFT, s_inf . speed) ;
tacho_set_speed_sp (MOTOR_RIGHT, s_inf . speed) ;
tacho_set_posit ion_sp (MOTOR_LEFT, DEGREE_TO_COUNT(−ang le)) ;
tacho_set_posit ion_sp (MOTOR_RIGHT, DEGREE_TO_COUNT(ang le)) ;
tacho_run_to_rel_pos (MOTOR_BOTH) ;
tacho_run_forever (MOTOR_BOTH) ;

r i ght_sensor = sensor_get_value (COLOR_CHANNEL,
port_to_socket (COLOR_SENSOR_RIGHT) , IR_REMOTE__NONE_) ;

}while (r i ght_sensor !=1) ;
}

}
tacho_stop (MOTOR_BOTH) ;

}

int main (void){
char e r r o r ;
s_in f . speed = −1;
set_platoon_id (0) ;
set_connect ion (mqtt_id) ; // I n i t i a l i z e MQTT communication
b r i c k _ i n i t () ; // I n i t i a l i z e robo t sensors and motors

// Subsc r i b e in the prev ious v e h i c l e EVENT t o p i c
s n p r i n t f (subscr ibe_top ic , s izeof (subsc r ibe_top i c) , "EVM") ;
subscr ibe_to_topic (subsc r ibe_top i c) ;

// Create thread to send INFO messages
e r r o r = pthread_create(&t_info , NULL, &send_info , NULL) ;
i f (e r r o r != 0){

p r i n t f (" Thread not c reated : %s \n" , s t r e r r o r (e r r o r)) ;
}
// Create thread to proces s even t s
e r r o r = pthread_create(&t_event , NULL, &check_events , NULL) ;
i f (e r r o r != 0){

p r i n t f (" Thread not c reated : %s \n" , s t r e r r o r (e r r o r)) ;
}
// Create thread to handle co l o r sensors making the robo t d r i v e s t r a i g h t
i f (sensor_is_plugged (port_to_socket (COLOR_SENSOR_LEFT) ,
LEGO_EV3_COLOR) && sensor_is_plugged (port_to_socket (
COLOR_SENSOR_RIGHT) , LEGO_EV3_COLOR)){

color_set_mode_col_color (port_to_socket (COLOR_SENSOR_LEFT)) ;
color_set_mode_col_color (port_to_socket (COLOR_SENSOR_RIGHT)) ;
e r r o r = pthread_create(&t_color_sensors , NULL, &dr ive_st ra ight ,
NULL) ;
i f (e r r o r != 0){

p r i n t f (" Thread not c reated : %s \n" , s t r e r r o r (e r r o r)) ;
}

}
else {

p r i n t f (" Color s e n s o r s NOT plugged \n") ;
}

58

//Run motors
i f (tacho_is_plugged (MOTOR_BOTH, LEGO_EV3_L_MOTOR)) {

s_inf . speed = MAX_SPEED ∗ 0 . 1 0 ;
// 10% of MAX_SPEED
tacho_set_speed_sp (MOTOR_BOTH, s_inf . speed) ;
tacho_run_forever (MOTOR_BOTH) ;
sleep_ms (20000) ; // 20 sec
s_in f . speed = MAX_SPEED ∗ 0 . 2 0 ;
// 20% of MAX_SPEED
tacho_set_speed_sp (OUTA | OUTB, s_inf . speed) ;
tacho_run_forever (MOTOR_BOTH) ;
sleep_ms (20000) ; // 20 sec
s_in f . speed = MAX_SPEED ∗ 0 . 3 0 ;
// 30% of MAX_SPEED
tacho_set_speed_sp (OUTA | OUTB, s_inf . speed) ;
tacho_run_forever (MOTOR_BOTH) ;
sleep_ms (20000) ; // 20 sec
s_in f . speed = 0 ;
tacho_stop (MOTOR_BOTH) ;

}
else {

p r i n t f (" Motors NOT plugged \n") ;
}

br i ck_unin i t () ; // Deac t i va te robo t sensors , motors , e t c .
sleep_ms (1 0 0 0) ;
c lo se_connect ion () ; // Close MQTT connect ion
return 0 ;

}

59

A.4 Retransmission analysis

This section contains screenshots of the network analyser Wireshark, in order to check if the
packets required to achieve a maneuver are retransmitted or not by the TCP protocol. This
has been done in order to calculate the failure_ratemaneuver metric. But, as it can be seen
there is no TCP retransmision of the messages.

Figure A.2: Wireshark output to control retransmission of packets in a join back maneuver

Figure A.3: Wireshark output to control retransmission of packets in a leave back maneuver

60

Figure A.4: Wireshark output to control retransmission of packets in a leave middle maneuver

A.5 Packet size measurement

The network protocol analyser Wireshark is used to provide the size of the different packets
used in the implementation. Following there are screenshots of the Wireshark outputs over
the execution of the code in listing A.6 that defines a code sending CDM messages over
MQTT to measure their size.

Figure A.5: Output of Wireshark for Context Information (CIN) message

61

Figure A.6: Output of Wireshark for Event Maneuver (EVM) message of type JOIN

Figure A.7: Output of Wireshark for Event Maneuver (EVM) message of type LEAVE

62

Figure A.8: Output of Wireshark for Group Identifier (GID) message of type ID

Listing A.6: Code sending every type of message to analyse in wireshark

#include "v2v_comm . h"

char∗ mqtt_id = " robot_1 " ;

int main (void) {
set_connect ion (mqtt_id) ; // I n i t i a l i z e MQTT communication

In f o m_inf = {−1, −1, −1, −1};
create_info_msg (m_inf) ;
publish_msg ("CIN") ;

Event m_join = {JOIN , −1, −1, REQ, −1, −1};
create_event_msg (JOIN , m_join) ;
publish_msg ("EVM") ;

Event m_leave = {LEAVE, −1, −1, REQ, −1, −1};
create_event_msg (LEAVE, m_leave) ;
publish_msg ("EVM") ;

Id m_i = {ID , REQ, −1, −1};
create_id_msg (m_i) ;
publish_msg ("GID") ;

s l e e p (60) ; // 1 minute
c lo se_connect ion () ; // Close MQTT connect ion
return 0 ;

}

63

