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Prologue

Mathematics has a very long tradition in the history of mankind, and many fields have matured mag-
nifically. In fact, it is not uncommon for them to require years of study and understanding of complex
machinery to get up to speed with the latest developments. The mathematical study of knots and links,
or Knot Theory, is a rare breed. Questions are easy to state, in part due to the geometrical nature of
the field. Most importantly, the learning curve required is not so steep, and with basic knowledge of
topology, algebra and differential geometry, many results can be grasped. The main factors that drew
me to choose this topic were simplicity and accessibility, as I read my first ever paper on the topic [19].

Knot theory has been around for a mere 100 years, although the more interesting results have come
in the last 50. In part, this is owed to the strong connection with Topology, as Knot theory is a branch
of it. While knots have been used since the beginning of civilisation, only the shape of the knots will be
of study and this is where topology plays its role. Gauss was the first to actually consider knots math-
ematically, inventing a useful invariant which will be key in this study, the linking number. However,
much of the early research was focused on combinatorial approaches and empirical results. It wouldn’t
be until the next century that the approach would be systematised with the help of algebraic topology.
Further milestone achievements in the field would be the discovery of the Alexander polynomial in 1928
and the Jones polynomial in 1984 [2].

Knots have applications in many fields, and although they have motivated development in areas of
mathematics, the most telling examples come from the relation with more applied sciences. In biology,
topoisomerases are enzymes that manipulate the DNA strands, performing operations akin to those in
knot theory. Scientist try to study this operations by using circular DNA and thus obtaining knots. Virus
that inject their DNA to the host may introduce further twists and the study of the resulting DNA is
simplified in the framework of knot theory. Again in biology, stereoisomers, or molecules with the
same graph but arranged differently in space, are the subject of continuous study. The reason is that this
arrangement might provide new unknown properties to the molecules. Artificial knotted molecules have
been synthesized to study the change in properties. For instance, the chirality, or whether the molecule is
equivalent to its mirror image, is specially relevant. In physics, the modelling of statistical mechanics, or
systems with many particles, has been related to the combinatorial ways of computing some polynomial
knot invariants. It has only been afterwards that fields like this have been able to connect. For instance,
the Yang-Baxter equation, fundamental in statistical mechanics, can be represented as one type of move
that doesn’t change the knot equivalence class. The original motivation by Gauss to study knots must be
mentioned as well. He was trying to determine the change in the magnetic field when there were loops
in the path of the moving pole.

The objective is to classify a special type of knots called algebraic knots. They have a particular
relevance because of their connection with algebraic and analytic varieties. There are many strong
results for them that allow a thorough study. To expand a little the scope, multiple components will be
included as links, as well as the disjoint union of algebraic links. The results will still hold.

The classification will be oriented to telling links apart, rather than tabulating all the union of disjoint
algebraic links. To achieve this, a basic set of concepts will be introduced, along with explanations and
remarks. Important results that affect the classification will be presented as well, and the procedures
to apply the results will be sketched. These algorithms are shown in the appendix, fully implemented
in Sagemath. Some practical examples of usage will be done in the conclusion, to demonstrate the
applicability of the mathematical construct developed. A more detailed summary of this work follows.
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IV Chapter 0. Prologue

In Chapter 1 braids are defined. The braid group Bn with a presentation is given. This is necessary
because later on, links will be expressed by a word in the generators of Bn whose closure is that link.
Then, knots are introduced, specifying that they have to be tame. Orientability is studied and the trefoil
is given as an example. In part, it is to illustrate how to give a regular projection of a knot, which is
explained afterwards. In part, it is because the object of our study, algebraic knots, have the property
to be invertible. They are also chiral, so chirality is defined as well. Now torus knots are explained,
specifying how to represent them with tuples, and what the choice of longitude is. The crossing number
is given, as well as the previous assertion that they are reversible. To further expand the concept of torus
knots, more components are needed, so links are introduced in order to explain torus links. After that,
the way to iterate is presented to finally reach iterated torus links. Some measures to check if a link is
an iterated torus link are given, like whether it’s hyperbolic or if the crossing number surpasses a given
bound. Another way of iterating is given, in the form of satellite knots and cables. An important remark
on how to properly define iterated torus links allows for the torus core to be left intact when iterating.
With iterated torus links properly developed, it is time to bring algebraic links to the spotlight. They are
first expressed in terms of the complex curve, and then shown as iterated torus links with the change
of variables specified. The notation for representing them is explained, with the Puiseux and Newton
pairs. There are some restrictions for the iterated torus links tuples to originate from algebraic knots.
Some of the less intuitive workings are then given to conclude the introduction to algebraic links, like
the relevance of terms in the curve and its coefficients.

In Chapter 2 the Alexander polynomial is introduced in two different ways. The first one is with the
Alexander module, and the ideals of principal ideal domains constructed over the fundamental group
of the complement of the knot. This gives more information and can sometimes be used when there
are some unknowns about the knot. The second one is through the Burau representation. It is easier to
understand, but requires a word whose closure is the knot. This is very similar to the fundamental group
in the first one, the main difference being a more hands-off approach and the ability to normalise it, even
though it is symmetric. The Alexander polynomial of the right-hand trefoil is calculated with this last
method. The issues with the polynomial are stated as well, namely that it does not differentiate between
noninvertible knots and that the Kinoshita-Terasaka knot has trivial Alexander polynomial. However,
the important result, and the reason that it is being used to classify knots is presented. Indeed, the
Alexander polynomial is a complete invariant for algebraic knots. After this introduction, the attention
is focused on the Alexander polynomial of algebraic knots specifically. So the general form of an
iterated torus link is given, and proved using its Burau representation. Then, an idea of what happens
for torus links is presented and quickly abandoned, since that will not be relevant for the objective
that has been set. Instead, splice diagrams are explained along with their connection with the Alexander
polynomial of an iterated torus knot. The pseudocode for reverse-engineering the Alexander polynomial
of an algebraic knot is given, along with restrictions to avoid ones that aren’t from algebraic knots. The
result is the splice diagram, from which the iterated torus knot can be found, and thus its Puiseux pairs.
Actually, the result is a minimal splice diagram, where no redundant iterations are present. This can be
used to give canonical Puiseux pairs. To conclude, there is a remainder for the case of algebraic links,
yet unsolved. It is also stressed that some iterated torus links aren’t algebraic.

In Chapter 3 the linking number is finally defined to complete the gap in the classification of al-
gebraic links. It is shown that it is, in fact, an invariant and also how it can be used to distinguish non-
algebraic links from others that are algebraic. Some interesting types of links in terms of the linking
number are given. After this, there are several algorithms in pseudocode that complete the classifica-
tion of algebraic links. The first finds the components, after which the pairwise linking numbers and
respective Alexander polynomials can be given. This allows for the determination of the equivalence
class of an algebraic link, given as a word. There is also an alternative way to compute the linking
number from just the equation of the algebraic curves. Some examples follow. These examples aren’t
all algebraic links, but instead try to showcase the way that the tools developed can bring clarity when
deciding whether a given link is algebraic or not.

The goal of the work is then achieved.
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Theorem (Lê, Zariski-Lejeune). An algebraic link is determined by the Alexander polynomials of the
individual components and their pairwise linking numbers.

Under the guidance of this theorem, two main classification problems are solved in this work:

1. Starting from a braid whose closure is the disjoint finite union of algebraic links we obtain:

a) The disjoint algebraic links and their components (See A.3)

b) The Alexander polynomial of each component (See A.1 and A.2)

c) The pairwise linking number of the components (See A.4)

d) The iterated torus knot that each component is equivalent to (See A.5 and A.6)

2. Starting from the equation of an algebraic link we obtain:

a) The iterated torus knot of each branch of the plane algebraic singularity (See (1.5) and (2.7))

b) The pairwise linking number of the components (See 3.11)

So we have developed a very robust procedure to give necessary conditions for a given link to be
algebraic. If it is algebraic indeed, the invariants that completely determine it are given. Finding whether
the braid representatives are conjugate to the actual algebraic links with these invariants is not solved,
but the way to do so is already prepared.





Resumen

El objetivo de este estudio es clasificar un tipo especial de nudos llamados nudos algebraicos. Tienen
una relevancia especial debido a su conexión con variedades analíticas y algebraicas, como indica su
nombre. Hay muchos resultados importantes para estos nudos, que permiten un estudio profundo. Para
aumentar un poco el ámbito de estudio, se tendrán en cuenta distintas componentes en forma de enlaces,
así como la unión finita de enlaces algebraicos disjuntos. También se aplicarán a éstos los resultados
mencionados previamente.

La clasificación estará eminentemente enfocada a diferenciar enlaces, en lugar de crear una tabla de
las uniones de enlaces algebraicos disjuntos. Para conseguir esto se introducen conceptos básicos de teo-
ría de nudos, junto con explicaciones y notas. También se añaden los resultados importantes que afectan
a la clasificación y se muestran brevemente los procedimientos para aplicar estos resultados. Los algo-
ritmos están en el apéndice, implementados en Sagemath de manera completa. Hay algunos ejemplos
resueltos en la conclusión para demostrar la aplicabilidad de la construcción matemática desarrollada.
A continuación se da un resumen más detallado del trabajo.

En el Capítulo 1 se definen las trenzas y se da el grupo de trenzas Bn. Hace falta darlo porque más
adelante los enlaces se construyen al identificar los extremos correspondientes de la trenza. Una vez
hecho esto se introducen los nudos y se especifica que tienen que ser tame. Se estudia la orientabilidad,
con el trébol como ejemplo. Por un lado se da el ejemplo para ilustrar cómo es la proyección regular de
un nudo, lo cual se explica un poco después. Por otra parte, es porque los enlaces algebraicos, objeto
de este estudio, son invertibles. También son quirales, así que se define la quiralidad. A continuación
se explican los nudos tóricos, especificando cómo representarlos con tuplas y la elección de longitud
que se hace. Se da el número de cruce y también lo que se mencionaba sobre que son reversibles. Hace
falta generalizar el concepto de nudos tóricos, por lo que se introducen más componentes que permiten
hablar de enlaces tóricos. Después de esto, se da la manera de iterar. Así se alcanzan, finalmente, los
enlaces tóricos iterados. Se ven algunas técnicas que permiten apreciar si un enlace es tórico iterado.
Por ejemplo, si es hiperbólico o si el número de cruce supera una cota dada son condiciones necesarias.
También hay otra manera de iterar, dada por nudos satélites y cableados. Aquí se da una nota importante
sobre enlaces tóricos iterados, donde se explica que está permitido que el alma de un toro se mantenga al
hacer la iteración. Con los enlaces tóricos iterados definidos satisfactoriamente ya, es hora de sacar a los
enlaces algebraicos a la luz. Primero se expresan en términos de una curva compleja y después como
enlaces tóricos iterados con un cambio de variables correspondiente. La notación para representarlos
también se explica, dando así los pares de Puiseux y Newton. Hay algunas restricciones sobre qué
enlaces tóricos iterados pueden provenir de algebraicos, que se determinan en función de sus tuplas.
También se muestran algunas propiedades poco intuitivas, entre ellas la relevancia de los términos de la
ecuación de la curva y sus coeficientes.

En el Capítulo 2 se introduce el polinomio de Alexander de dos maneras distintas. La primera es
con el módulo de Alexander y los ideales del dominio de ideales principales construido sobre el grupo
fundamental del complemento de un nudo. Esta forma da más información y en ocasiones puede servir
para reconstruir el polinomio a partir de datos incompletos. La segunda es a través de la representa-
ción de Burau, la cual es más fácil de entender. Sin embargo, hace falta una palabra que represente al
nudo. Realmente, encontrar esta palabra es un problema esencialmente equivalente a hallar el grupo
fundamental de la forma anterior. La única diferencia es que es más automática y permite normalizar el
polinomio, que por cierto es simétrico. Con este último método se calcula el polinomio del trébol. Tam-
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VIII Capítulo 0. Resumen

bién se mencionan los problemas que tiene el polinomio, como que no diferencia nudos no invertibles y
que el del nudo de Kinoshita-Terasaka es trivial. Llegado este punto, se enuncia el resultado importante,
la razón por la que se está utilizando este polinomio para clasificar nudos. Esto es, el polinomio de Ale-
xander es un invariante completo para los nudos algebraicos. Una vez dicho esto, se centra la atención
en el polinomio de nudos algebraicos específicamente. Se muestra la forma general del polinomio de
enlaces tóricos, la cual se prueba con la ayuda de la representación de Burau. Luego se da una idea
de lo que sucede para los enlaces tóricos y se abandona rápidamente, ya que no será relevante para el
objetivo fijado. Seguidamente, los diagramas splice se explican para detallar la conexión de un nudo
tórico iterado con su polinomio de Alexander. Se da el pseudocódigo para hallar el nudo algebraico del
cual proviene un polinomio de Alexander, junto con restricciones para evitar los que no sean de nudos
algebraicos. También se señala como encontrar el nudo tórico iterado y sus pares de Puiseux a partir
de este diagrama, el cual es mínimo y no tiene elementos redundantes. Esto se puede utilizar para dar
una forma canónica de los pares de Puiseux. Para concluir, hay un recordatorio de que el caso de los
enlaces algebraicos aún sigue sin resolver. También se subraya que algunos enlaces tóricos iterados no
son algebraicos.

En el capítulo 3 se define finalmente el número de enlace para completar la laguna en la clasifica-
ción de los enlaces algebraicos. Se muestra que efectivamente es invariante y también cómo se puede
utilizar para distinguir enlaces no algebraicos de otros que lo son. Se dan algunos enlaces en términos
del número de enlace. Después de esto, hay varios algoritmos en pseudocódigo que completan la cla-
sificación de enlaces algebraicos. El primero busca las componentes, después de lo cual se pueden dar
los números de enlace dos a dos y los polinomios de Alexander respectivos. Esto permite determinar
la clase de equivalencia de un enlace algebraico, dado como palabra. También hay una manera alter-
nativa de calcular el número de enlace únicamente a partir de la ecuación de las curvas algebraicas. A
continuación se muestran ejemplos. Algunos de estos ejemplos no son realmente enlaces algebraicos,
y tratan de mostrar la forma en que las herramientas desarrolladas pueden aclarar si un determinado
enlace es algebraico o no.

En el Apéndice A se muestra la implementación de los algoritmos y procedimientos mencionados.
Estos algoritmos reciben una trenza y devuelven la matriz de números de enlace dos a dos con los
enlaces disjuntos separados por cajas diagonales. También devuelven los polinomios de Alexander de
cada una de las componentes y la forma en nudo tórico iterado, si es posible. Esto nos permite dar
condiciones necesarias para que un enlace venga de uno algebraico. Que sea efectivamente algebraico,
es decir, que la trenza sea conjugada de éste, no está resuelto. Sin embargo, los pasos iniciales ya están
señalados, pues solamente habría que comprobar el enlace algebraico con los invariantes dados.

Así se alcanza el objetivo del trabajo.

Teorema (Lê, Zariski-Lejeune). Un enlace algebraico está determinado por los polinomios de Alexan-
der de las componentes individuales y los números de enlace dos a dos.

Con el apoyo de este teorema, resolveremos dos problemas de clasificación:

1. Tomando una trenza que al cerrarse da la unión finita disjunta de enlaces algebraicos se obtiene:

a) La unión disjunta de enlaces algebraicos y sus componentes (Ver A.3)
b) El polinomio de Alexander de cada componente (Ver A.1 y A.2)
c) Los números de enlace dos a dos de las componentes (Ver A.4)
d) El nudo tórico iterado al cual es equivalente cada componente (Ver A.5 y A.6)

2. Tomando una ecuación de un enlace algebraico se obtiene:

a) El nudo tórico iterado de cada rama de la singularidad (Ver (1.5) y (2.7))
b) Los números de enlace dos a dos de las componentes (Ver 3.11)

De esta manera, hemos desarrollado un procedimiento muy robusto que da condiciones necesarias para
que un enlace sea algebraico. Si lo es, se determina el enlace algebraico. Discernir si efectivamente las
representantes en trenzas son conjugadas de las de los propios enlaces algebraicos no se resuelve.
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Chapter 1

Introduction to algebraic links

1.1. Braids

Definition 1.1. The configuration space of n ordered distinct points in the complex plane C is

Mn = {(z1, . . . ,zn) ∈ Cn;zi 6= z j,∀i 6= j}.

Simply put, Mn is the set of tuples in Cn where no coordinates coincide. Note that this has real
dimension 2n. Since it is connected, when defining its fundamental group, any point can be used. A
conjugation would be enough to change the chosen point.

Definition 1.2. The pure braid group on n strands is

PBn = π1(Mn).

So, a pure braid β in PBn is a closed loop in Mn. Since the points of Mn are all distinct, we can
assign each component of β to a separate strand. This assignation is well-defined, and returns a motion
of n points where the strands are distinct at every step of the motion. Following this construction, a
simpler way of representing β arises: the geometric braid. Start by naming the i-th projection of β

βi. These will be called the strands of the braid. We can now represent β in C× [0,1] as the n strands
(β1(t), t), . . . ,(βn(t), t). These strands do not intersect because β (t) is in Mn. Now, it is only necessary
to fix the base point, which in C× [0,1] translates to choosing n distinct points to be the beginning and
end of the strands. For the sake of simplicity, the i-th strand will begin at (i,0) and end at (i,1). With
this representation in mind it is easy to state when two motions are isotopic. Thus, the endpoints of the
strands need to be fixed while being pairwise disjoint. Also, they must intersect C×{t} exactly once,
for all t ∈ [0,1].

Remark 1.3. It has been previously stated that PBn is, indeed, a group, and the justification is simple.
The neutral element is the motion where all strands are vertical lines. The multiplication is given by
joining two braids together and rescaling so as to get a path in [0,1].

We will now expand this notion of pure braid to include the ones where the strands don’t begin at
the same point of C. By introducing the symmetric group ∑n that permutes the coordinates of Mn, it is
possible to give that more general notion.

Definition 1.4. The configuration space of n unordered distinct points in the complex plane C is

Nn = Mn
/

∑n

Now the coordinates are not ordered, so that the only restriction is that they are distinct.

Remark 1.5. Another way to understand Nn is as the complex polynomials of degree n and simple roots.
That is, Vn\Dn where Vn = {p(t)∈C[t]|p monic, deg(p)= n} and Dn = {p(t)∈Vn|p has multiple roots}.
The map is Mn→Vn \Dn, with (x1, . . . ,xn) 7→Πn

i=1(t− xi). Now Nn ∼=Vn \Dn.

1



2 Chapter 1. Introduction to algebraic links

Definition 1.6. The braid group on n strands is

Bn = π1(Nn).

This definition is more general because the end of each strand doesn’t have to be equal to its start.
The geometric construction as above yields braids with i-th strand beginning at (i,0) and end at (σ(i),1),
where σ ∈ ∑n. This permutation in the components of the point in Nn is the way to understand the
monodromy action of Bn. Braids will be considered equal if a homotopy relative to the endpoints exists.
The following presentation of Bn was given by Artin in [4]:

Bn = 〈σ1, . . . ,σn−1|σiσ j = σ jσi, |i− j|> 1;σiσ jσi = σ jσiσ j, |i− j|= 1〉 (1.1)

where σi is the twisting of the i-th and i+ 1-th strands by a local negative half Dehn twist, that is, a
counter-clockwise rotation of these strands as shown in Fig. 1.1.

· · · · · ·

1 i i+1 n

Figure 1.1: Artin generator σi

The problem of braid equivalence can be thusly translated to algebraic terms in what’s known as the
word problem. A word of a braid is simply an ordered product of σi or σ

−1
i as shown in (1.1). This

problem has been solved [13] so that two words in Bn can be determined to be equal or not through the
relations in Bn. Similarly, Garside’s work has shown it is possible to solve an extension of the word
problem in Bn. Specifically, in [12] he devised a procedure to find when two braids in Bn are conjugate.
These results imply that there is no need to study braids through invariants, as we’ll do for links.

1.2. Knots

Braids are really just another way of looking at knots and links. Indeed, by identifying the ends of a
braid together, we create the object of our study: a link. If it has a single component, it is called a knot.
Let us give a more detailed definition.

Definition 1.7. A knot is a smooth embedding of S1 in S3. Two knots will be considered isotopic if
there is a diffeomorphism between their ambient spaces.

The notion of isotopy can be understood in a more geometric manner through equivalence and
orientation-preserving homeomorphisms. If the focus is on combinatorics, the Reidemeister moves as
in Fig. 1.2 are a set of three transformations of the knot which enclose all the possible elementary
moves that don’t change isotopy class. The Reidemeister moves are specially insightful because there
are constructions that extract information from knots and are only invariant for some of the moves. All
of this is explored further in [2, 8, 16, 19, 20, 24, 27, 31, 30].

⇐⇒

(a) Type-I Move

⇐⇒

(b) Type-II Move

⇐⇒

(c) Type-III Move

Figure 1.2: Reidemeister moves
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For instance, the inclusion of S1 ⊂ R2 in R3 is called the trivial knot. For most knots, this change
from S3 to R3 won’t be an issue since only the compactification point is missing. Certainly tame knots
will be able to be understood properly here. When talking about this, by an abuse of language, we will
refer as knots to both the isotopy class and the image of the embedding. Some knots, called wild are
troublesome because they are not differentiable. Several examples of wild knots can be seen in [5].

Definition 1.8. A knot is called tame if it is equivalent to a piecewise-linear knot.

We will only study tame knots, to avoid the issues that wild ones present. Tame knots can be
represented by a finite closed polygonal curve. Knots of this form will be called polygonal. Drawing
them in a smooth manner doesn’t mean they lose this property.

In this study, knots will be assumed to be oriented. For every knot, two orientations are possible.
If both orientations are equivalent, it is said to be invertible. Many of the first knots are invertible.
Here, first is referring to a classification of knots that will be presented later. For example, the simplest
nontrivial knot, the trefoil knot is invertible. To see this, simply rotate the diagram of Fig. 1.3 in R3

along the axis of the affine projection. This idea of projection needs to be explained further.

Figure 1.3: The trefoil knot 31

Any tame knot can be represented properly as a projection in the following manner.

Definition 1.9. A projection of a tame knot over an affine plane of R3 is regular if it satisfies the
following:

a) There is a finite number of multiple points.

b) These multiple points are all double points, that is, the cardinal of their fibers is 2.

c) No vertex is projected over a double point.

Since the multiple points are double points, we can represent which strand goes over by drawing
continuously. The minimum number of multiple points of the regular projections of a knot is its crossing
number. Traditionally knots have been classified according to their crossing number, in the Alexander-
Briggs notation. For instance, the trefoil is 31 in this notation because it has crossing number three. The
subindex is simply a convention and doesn’t have any inherent information other than to label the knot.

If we switch which strand goes over in all the double points, we get the mirror image of the knot.
Knots equivalent to their mirror image are amphichiral. According to the previously presented classific-
ation of knots, 41 is the first amphichiral knot. Since 41 is also invertible, it is fully amphichiral. Knots
that are invertible but not amphichiral are called reversible. Non amphichiral knots will be referred to
as chiral.

Definition 1.10. A knot equivalent to one in the revolution torus ∂{(x,y) ∈C2| |x|= 1, |y| ≤ 1} ⊆ S3 ⊆
C2 is called a torus knot.

Note that S3 is the union two solid torii glued along their common boundary. Calling the S1 from
{(x,1)| |x| = 1} the meridian curve and the other S1 from {(1,y)| |y| = 1} the longitude curve, we
can count the number of times a given torus knot intersects these curves. Note that the longitude is
a meridian in another solid torus. Say the tuple is {p,q}. We will denote the torus knot with such
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tuple as K{p,q}. By imposing that the wrapping of the knot along the torus is counter-clockwise, this
tuple defines a single isotopy class. Clockwise wrapping would be represented by negative integers.
Changing the sign of only one of the numbers of a torus knot results in its mirror image, while changing
both reverses the orientation.

All torus knots with the same tuple as above are equivalent. Moreover, we can consider the tuple as
just a set of two numbers, because the torus knots K{p,q} and K{q, p} are equivalent. It is seen easily
simply by deforming the meridian to be the longitude and vice versa. This explains the set notation,
used over K(p,q).

Remark 1.11. The choice of orientation is clear, and given by the structure of C2. The torus knot
K(p,q) can be given as t 7→ (re2iπt p,re2iπtq) by identifying the ends together.

Torus knots can also be given in terms of the braid very easily. For instance, the closure of
(σ1 · · ·σp−1)

q ∈ Bp is the torus knot K(p,q).

Theorem 1.12. The crossing number of a torus knot K{p,q} is min{|p|(|q|−1), |q|(|p|−1)}.

Note that the crossing number must be less or equal than min{|p|(|q| − 1), |q|(|p| − 1)} because
there exist regular projections with this crossing number. The reason why this is indeed the crossing
number is not so immediate, and was proved in [24, 7.5] and in [8, 3.29].

Theorem 1.13. Nontrivial torus knots are reversible.

Proof. We need to prove they are both invertible and chiral, that is, K{p,q} isotopic to K{−p,−q} but
not isotopic to K{−p,q} or K{p,−q}. Using the symmetry of the torus, take a reflection from the plane
of the longitude followed by a half rotation. This works even for nontrivial torus knots. Analytically, by
taking the parametrization in Remark 1.11 and the change of variable t̃ =−t, the equivalence is shown.
Proof of chirality can be seen in [24, 7.4.2].

When attempting to construct a torus knot from the aforementioned set, it is crucial to realise that
the numbers must be coprime. Otherwise, the result would be a knot folded on itself.

1.3. Links

Definition 1.14. A link is a smooth embedding of the disjoint finite union of S1 in R3.

A link can be considered as the union of non-intersecting knots. These distinct knots will be called
the components. Clearly, the number of components is an invariant of links. If a link is equivalent to
having its components separated through planes, it is called splittable. When a link is equivalent to the
disjoint union of several links, the components in those different links are splittable as well. However,
if there is more than one component in any of those links, the original link is not splittable.

Remark 1.15. We can define a torus link of type (d p,dq), gcd(p,q) = 1 as d parallel copies of torus
knots with type (p,q) in the same torus. They will, however, not be splittable in general. Consider the
case K{2,2}. This torus link is known as the Hopf link. It is not splittable because its linking number is
nonzero, as we’ll see later on. The converse isn’t necessarily true. In particular, there exist some links
with components where the linking number is null but which aren’t splittable. This is because the other
components are involved as well and prevent the splitting from happening. Fig. 3.3 is an example.

Torus knots can be iterated in the following manner from their braid presentations. First construct a
torus knot and then consider a cylinder around the strands. Since the knot, by definition, is closed, the
cylinder will close and form a second torus. This torus is not the standard torus, but we can work on it
just as easily since it is homeomorphic to it. Note that the cylinder might have a very small radius, to
avoid self-intersections. On this second torus construct a torus knot.
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Definition 1.16. An iterated torus knot is a knot constructed over a torus found by iterating as mentioned
previously.

Remark 1.17. Clearly, not all knots will be torus knots. By a simple argument with the crossing number
of K{p,q} we can see this. For instance, there are 7 nonequivalent knots with crossing number 7, but
the only possibilities for torus knots are K{2,7} and K{1,8}. The second one is clearly trivial, now we
have 6 knots which aren’t torus knots. In fact, for crossing number less than 11, only 31, 51, 71, 819,
91 and 10124 are torus knots. For comparison, there are 250 knots with crossing number less than 11,
so torus knots aren’t very common. Reversibility is too broad to characterise iterated torus knot. For
instance, the cinquefoil knot is a torus knot K{5,2}. However, the knot 52 is reversible as well, but not
an iterated torus knot. One way to see that it can’t such a knot is because it is a hyperbolic knot. This
means that a metric of curvature −1 exists for the complement of the knots. Iterated torus knots are
non-hyperbolic, so this is actually a better test.

Iterated torus knots can be represented with tuples of integers generalising the torus knot notation,
but in order to do that, the longitudes will have to be fixed. Note that the meridians are already canonical.
This fixed longitude will be the naive longitude, taken as a parallel curve to the braid representative as
in Fig. 1.4. Now, the crossing number is a more delicate question. We will only give a bound for it.
First notice that the iterated torus knots K((p1,q1),(p2,q2)) and K((p2,q2),(p1,q1)) are not equivalent.
Also not equivalent are K((p1,q1),(p2,q2)) and K((q1, p1),(p2,q2)). This justifies the tuple notation.
With a similar argument as before, is is simple to find an upper bound.

Theorem 1.18. The crossing number of iterated the torus knot K((p1,q1), . . . ,(pk,qk)) is

cr(K((p1,q1), . . . ,(pk,qk)))≤
k

∑
i=1

(|qi|(|pi|−1)
k

∏
j=i+1

p2
j) (1.2)

Proof. Simply take the braid whose closure is that torus knot and separate all the crossings in stages.
This braid is obtained from recursion over the representative shown for one iteration. First consider
the crossings from the initial iteration, followed by the second and so on. In the first stage, the strands
q2 . . .qk are involved in each of the p1(q1−1) crossings. In the second one, q3 · · ·qk are involved in each
side of the p2(q2−1) crossings. By induction the bound follows.

The bound will be reached for the (pi,qi) such that the number of iterations is lowest but the knot
doesn’t change i.e. no iteration is of the type (1,n). Clearly iterations with (1,n) are isotopic to the
identity, as they are isotopic to the core of the solid torus.

Figure 1.4: Braid with closure K((3,4),(2,5))

The notion of iterated torus knots is generalised in that of satellite knot.

Definition 1.19. Let K1 be a knot inside a solid torus and K2 a tame knot. Then, its satellite knot K3 is
the result of fixing the torus from K1 inside a tubular neighbourhood of K2 without self-intersections. In
this case, K2 is called the companion knot.

Many new knots can be constructed in this manner. One such example is the Whitehead double or
double knot. This is simply the satellite of the knot whose projection is shown in Fig. 1.5.

The Whitehead double can be twisted in the middle of the torus, creating a whole family of knots,
the twist knots. In the Alexander-Briggs notation explained previously, twist knots appear right after
torus knots.
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Figure 1.5: Initial knot for the double satellite

Remark 1.20. The knot K1 doesn’t have to be a torus knot, and neither does K2. But if both are, the
resulting knot is an iterated torus knot. This construction concept will be generalised in that of cabling,
explained below.

Definition 1.21. If the starting braid is a torus knot K(p,q) with the naive longitude, its satellite knot
over the companion knot K is called the (p,q)-cable of K.

Remark 1.22. There is one delicate thing here that isn’t being explained properly. That is the choice of
the longitude. It will be implied that the naive choice of a longitude to the knot is taken. However, many
different ones could be taken. One that stands out is that which has a special relation with the torus knot,
called null homologous longitude. It is harder to express and find, but results in easier representations
of invariants. This added difficulty is not necessary in our case, where a more intuitive longitude is
both useful and simple to obtain. Null homologous longitudes might be used in other knots, which are
constructed over more complex surfaces. Since there is no convention on the choice for longitudes, the
reader is encouraged to try and clarify when just the tuples are given. Different choices of longitudes
will most likely result in nonequivalent knots, even with equal tuples.

Here the order of p and q does matter, as it does in iterated torus knots with more than one iteration.
With the notion of cabling, the result of iteratively taking the (pi,qi)-cables starting from the trivial is
the iterated torus knot K((p1,q1), . . . ,(pk,qk)). In general, cables without a clear choice of longitude
will be selected with the null homologous one. However, in the case of torus knots and iterated torus
knots, the naive one will be preferred. Whenever the null homologous longitude is chosen, the notation
K[(p1,q2), . . . ,(pk,qk)] will be used.

Remark 1.23. Iterated torus link aren’t well-defined with just the longitude and the tuples. When
iterating, it is needed to stress over which component we are creating a tubular neighbourhood. This
problem didn’t appear in iterated torus knots simply because there is only one component every time, so
the companion knot for the cables is well-defined. This is not so for the case with more components. We
could either choose one of the components as the companion and construct the cable over it, but we could
just as well construct cables over many components simultaneously. How to specify the construction
then? One solution is with the splice diagram for links, which will be presented later. Another one will
be to give separate iterated torus knots which are entangled. Either one is a complicated construction
and requires a detailed study.

Definition 1.24. An iterated torus link is the resulting link from iterative cabling, that allows for the
cabling of just one component to be chosen. In these cases, that torus core may not vanish after taking
its satellite.

Remark 1.25. The class of iterated torus links is much more general than just allowing non-coprime
iteration tuples, precisely for the choice to leave the core in some cases.
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1.4. Algebraic links

Now we will change the focus to a subset of torus links where all the wrapping is in the positive
direction. The starting premise is to take a complex curve {(x,y)∈C2; f (x,y) = 0}=C f and intersect it
with a sphere {(x,y)∈C2; |(x,y)|= ε}= S3

ε of radius sufficiently small. By a theorem from Milnor [22],
this intersection is transversal, so C f ∩S3

ε = k f is a well-defined link.

f (x,y) ∈ C[x,y] 3 f (0,0) = 0,gcd( f , f ′) = 1,x - f (1.3)

∃ε,δ 3 0 < δ � ε, f (x,y) 6= 0 if |y|= ε, |x| ≤ δ (1.4)

We will now introduce additional, nonintrusive restrictions that will allow us to operate over cartesian
coordinates, instead of the stereographic projection. By taking our polynomial as in (1.3), we can find a
rectangular sphere B(0,ε)×B(0,δ ) from (1.4). This simplifies the working coordinates to visualize the
algebraic link, seen in a standard torus in R3.

Definition 1.26. The resulting curve K f from the above procedure is an algebraic link.

Algebraic links constructed in this manner are well-defined. The choice of excluding multiple roots
is to ensure transversality, which will be explored further. Moreover, the zero locus of f doesn’t change
with this exclusion. The reason for x to not be a factor is a matter of allowing ∂ (B(0,ε)×B(0,δ )) to
intersect C f , instead of having to rely on S3.

By construction, all algebraic links are iterated torus links. In fact, we can exchange equations for
iterated torus knots with the null homologous longitude as indicated in Remark 1.22. The reverse is also
presented for simplicity purposes.

y = x
m1
n1 + x

m2
n1n2 + · · ·+ x

mk
n1 ···nk ⇔

K

[
(n1,m1),(n2,m2 +m1n2(n1−1)), . . . ,

(
nk,mk +mk−1nk(nk−1)+

k−2

∑
i=1

[mi(ni−1)nk

k−1

∏
j=i+1

n2
j ]

)]
(1.5)

K[(p1,q1), . . . ,(pk,qk)]⇔ y = x
q1
p1 + x

q2+q1 p2(1−p1)
p1 p2 + · · ·+ x

qk+∑
k−1
i=1 [qi(1−pi)∏

k
j=i+1 p j ]

p1 ...pk (1.6)

Remark 1.27. This clearly justifies the choice of naive longitude, since the conversion is much more

simple, y = x
m1
n1 +x

m2
n1n2 + · · ·+x

mk
n1 ···nk ⇔ K((n1,m1), . . . ,(nk,mk)). The issue with this longitude is that it

requires a braid representative and is not canonical. On the other hand, the null homologous longitude
is canonical.

The plane curve singularity from the equation f (x,y) = 0 may have several branches. Each of
them can be expressed after a change of coordinates as x = tn, y = h(t) and so y = h(x

1
n ). Then,

every equation represents a component of the algebraic link. The restrictions for the equation form are
m1
n1

< m2
n1n2

< .. . < mk
n1···nk

where mi,ni ∈ N such that gcd(mi,ni) = 1. In general, there would be finitely
many equations of this type. Notice that some manipulation might be needed to make the ni appear in
the appropriate denominators.

The pairs (n1,m1), . . . ,(nk,mk) are called Puiseux pairs. Some conditions apply to the coefficients

in (1.5) and (1.6) because of the following decomposition y = x
s1
r1 (1+x

s2
r1r2 (1+ . . .)). We can express si

in terms of Puiseux pairs as si = mi−nimi−1. This decomposition is called the Newton decomposition
and its respective pairs (ri,si), the Newton pairs. The Newton pairs are important because they give
the successive cabling that results in the appropriate iterated torus knot. Since the iterations have to be
positive integers, some restrictions for (1.6) can be obtained. Indeed, the positivity of the Newton pairs
implies that qn > pn pn−1qn−1. Iterated torus knots that don’t satisfy this aren’t algebraic. For instance,



8 Chapter 1. Introduction to algebraic links

the closure of the braid in Fig. 1.4 is 5 ≯ 2 · 3 · 4, so it’s not an algebraic knot. Also notice that if the
Puiseux pairs are coprime, the Newton pairs will be as well. With the simple restriction that p1 < q1,
there is a canonical representation with iterated torus knots.

Remark 1.28. The algebraic knot from f might be equivalent to that from g, even if f and g aren’t
equal. For example, the equations y = x

1
2 + x

3
4 and y = x

5
2 yield equivalent algebraic knots. To see this,

obtain the respective iterated torus knots with the procedure in (1.5). The knots are K((2,1),(2,5)) and
K{2,5}. These are seen to be equivalent by eliminating the redundant iteration (2,1). In general not

all terms are relevant. The algebraic knot from y = (x+ · · ·+ xg0)+a1x
q1
p1 (1+ · · ·+ xg1)+a2x

q2
p1 p2 (1+

· · ·+xg2)+ · · ·+akx
qk

p1 ···pk (1+ . . .) with polynomials in the parenthesis is equivalent to the one from just

y = x
q1
p1 + x

q2
p1 p2 + · · ·+ x

qk
p1 ···pk . Moreover, the last parenthesis can even be a convergent series. This can

be checked by realising that in each deleted step, no new strands are being added, so the isotopy to
the original strand can be taken. This is similar to what happened to the iterations of the form (r,1).
Analytically, these terms will only affect to some local deformations that for ε sufficiently small don’t
alter the equivalence class.

Remark 1.29. When multiple components are involved, the coefficients of the equations are no longer
irrelevant for the isotopy type. They will determine the linking number, as will be explored further in
Chapter 3. Note that in general, y(x

1
n ) will be equal to y(ξ x

1
n ), with n = p1 . . . pk and ξ a root of the

unit.

Algebraic links can then be studied as iterated torus links of through their invariants. We have
already seen link invariants, like invertibility, chirality, number of components, crossing number or
splittability. The focus will be on on splittability, expanded in the notion of linking number and used
in conjunction with the Alexander polynomial. Iterated torus links will be used to classify them, once
determined.



Chapter 2

Alexander polynomial

With the fundamental group of the complement of a given knot K, a canonical Q[t, t−1]-module
can be found. Calling the submodule MK and the ring R, since R is a principal ideal domain, MK

can be decomposed as a direct sum over some ideals. The decomposition will be of the form MK =⊕r
i=1

R
(pi)
⊕Rn. The ideals of the decomposition are then used to define a polynomial. An equivalent

definition will be given later.

Definition 2.1. The Alexander polynomial of a knot K is

∆K(t)
.
=

{
0 n > 0
Πr

j=1 p j n = 0
(2.1)

with p j the ideals as above and n the multiplicity of the non-cyclic element in the decomposition.

So the Alexander polynomial being defined through a Q[t, t−1]-module means that this is only
defined up to units of Q[t, t−1]. In this ring, the units are of the form ±tn, n ∈ Z. This ambiguity
is contained in the notation .

=, which represents p .
= q ⇐⇒ p

q =±tn, n ∈ Z.

Remark 2.2. Notice that, since the polynomial comes from the complement of the knot, there is no
orientation taken into account and thus noninvertible knots are assigned the same invariant. This is the
first and more obvious issue that appears, but as will be seen later, there are still some more, like the one
with the Kinoshita-Terasaka knot.

The algebraic approach to the Alexander polynomial is general, and can be obtained in some cases
where the fundamental group is not known. When it is known, however, a more comprehensive way
of finding the Alexander polynomial can be given using the Burau representation and a braid whose
closure is equivalent to the knot. This representation is not faithful for Bn, n≥ 5 but it won’t be an issue
for our purposes.

Definition 2.3. The (non-reduced) Burau representation of Bn is given by the following map

τ : Bn → M(n,Z[t, t−1])

σ1 7→


1− t t

1 0
0

0
1 0

. . .
0 1


Remark 2.4. The matrices in the non-reduced Burau representation have (1, t, . . . , tn−1) as eigenvector
of eigenvalue 1. This eigenspace has dimension 1 and will be needed to be taken out in order to properly
operate with this representation. The result will be the reduced Burau representation.

9
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More information about the Burau representation is available in [6, 3.2, Example 3] and in [20, 8.4].

Definition 2.5. The reduced Burau representation is the quotient of the non-reduced space by the ei-
genspace of 1. As seen in [15, §2], it is given by τ : Bn→M(n−1,Z[t, t−1] with the following images:

τ(σ1) =

 −t 0
−1 1

In−3

 ,τ(σi) =


Ii−2

1 −t 0
0 −t 0
0 −1 1

In−i−2

 ,τ(σn−1) =

 In−3
1 −t
0 −t



There is a relation between the reduced Burau representation and the Alexander polynomial.

∆
β̃
(t) =

det(In−1− τ̃(β ))(t−1)
tn−1

(2.2)

Remark 2.6. Note that (2.1) and (2.2) define the same polynomial, considering the constraints in rep-
resentation of (2.1). We shall normalise the polynomial so that no factors of the form ±tn,n ∈ Z exist.
This way, it is a polynomial, not a Laurent polynomial and the highest exponent is as low as possible,
while maintaining positive exponents. There are other ways of calculating the polynomial, taking a
more combinatorial approach.

Example 2.7. The Alexander polynomial of the right-hand trefoil knot is ∆31(t)
.
= t2− t + 1. A braid

with closure 31 is β = (σ1σ2)
2. First, we find with Definition 2.5 the reduced Burau representative of β ,

τ̃(β ) =

(
0 −t3

t −t2

)
. So det(In−1− τ̃(β )) = 1+ t2 + t4 and by (2.2), ∆β (t) =

(1+t2+t4)(t−1)
(t3−1) = t2− t +1.

Since the closure of β̃ = σ3
1 is the trefoil as well, it can be checked that ∆β (t) = ∆

β̃
(t) is consistent with

what is known. Proceeding similarly, τ̃(β̃ ) = (−t3) and ∆
β̃
(t) = (t3−1)(t−1)

(t2−1) = t2− t + 1. In particular,
K(2,3) = K(3,2).

2.1. Properties

Theorem 2.8. The Alexander polynomial is symmetric. In other words,

∆K(t)
.
= ∆K(t−1).

Proof. This is done with the introduction of Fox derivatives and dual presentations of the fundamental
group of the complement of the knot. The knot is then partitioned into segments with only over-crossings
or under-crossings. With this partitions, the presentation of the group is changed to account for the
words. One presentation will have the additional relations from the over-crossings and the other, the
ones from the under-crossings. For the full proof see [11].

In this form, ∆31(t) = t−1+ t−1. However, the Alexander polynomial is not a complete invariant.
There exist some nontrivial knots whose polynomial equals 1.

If we compute the Alexander polynomial of the knot in Fig. 2.1, the resulting polynomial is 1, the
same as S1 in R3. Nonetheless, this polynomial will be useful for us because of the following result.

Theorem 2.9. The Alexander polynomial is a complete invariant for algebraic knots.

Proof. This is proved checking the roots, which are all of the unit, and seeing the relation they have
with the Puiseux pairs. For the complete proof, see [17, Lemma 2.5.1]. Alternatively, Algorithm 2.10
proves this too.

Thus, we conclude that the Kinoshita-Terasaka knot is not algebraic.
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Figure 2.1: Kinoshita-Terasaka knot

2.2. Iterated torus knots

To simplify the calculations, we will now try to generalise the form of the Alexander polynomial of
iterated torus knots. First start with torus knots. They will be of the form K{p,q} with gcd(p,q) = 1.
Their Alexander polynomial will be

∆K(t) =
(t pq)(t−1)

(t p−1)(tq−1)
(2.3)

This can be proved from the braid representative (σ1 . . .σp−1)
q. The reduced Burau representative

of σ1 . . .σp−1 is the matrix with −1 in the lower sub-diagonal and (−t)n in the n−th entry of the first
row. Any power of this matrix will have some diagonal crossing that makes the computation of the
determinant with principal minors immediate.

If gcd(p,q) 6= 1, that is, if it were a torus link, the formula doesn’t hold. Let gcd(p,q) = d, then

∆K(t) =
(t

pq
d −1)d(t−1)

(t p−1)(tq−1)
(2.4)

There will be really no use for this last formula, since the focus will be on the Alexander polynomial
of each of the components of the torus link. In this way, if K{d p,dq} with gcd(p,q) = 1, each of the
components has the same roots in its Alexander polynomial than K{p,q}. This applies to iterated torus
knots too.

It is still left to find the general formula for an iterated torus knot. In order to do that, we shall
give the following graph representation of a given iterated knot. It is only for knots, links with more
components would have more complicated constructions, with more arrows in the end, one for each
component. This representation of a link is called a splice diagram and was introduced in [1, 10, 1.2].
Actually this is a more compact version than the splice diagrams from [10], with just the information
needed for the Alexander polynomial.

. . .
b0 a1 a2 ak−1 ak

b1 b2 bk−1 qk

Figure 2.2: Graph representation of an iterated torus knot

If the graph in Fig. 2.2 represents the iterated torus knot K[(p1,q1), . . . ,(pk,qk)], then ai = pibi. So
we only need to specify the bi in terms of p and q with the naive longitude. The first elements are:

b0 =
k

∏
i=1

pi, b1 = q1

k

∏
i=2

pi, b2 = q2

k

∏
i=3

pi (2.5)

bn = qn

k

∏
i=n+1

pi (2.6)
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From this representation it is very simple to express the Alexander polynomial because it coincides
with the characteristic polynomial of the monodromy action.

∆K[(p1,q1),...,(pk,qk)](t) =
t−1

tb0−1

k

∏
i=1

t pibi−1
tbi−1

(2.7)

Since we are only working with the simple to obtain, naive longitude, a change of variable will be
needed after the previous formulae. With (2.7) and the fact that bn > bn−1 there is a constructive way
of finding some pi, qi that represent an algebraic knot in the form of iterated torus knot from its given
Alexander polynomial. The procedure is simple:

Algorithm 2.10. (Iterated torus knot from Alexander polynomial)

1. Check that the polynomial is product of cyclotomics. Otherwise the polynomial isn’t from an
algebraic knot.

2. Take the root of ∆K(t) with the highest order and least argument, ξak .

3. From the ak-th roots of the units, find the highest order qk that is missing.

4. Reset the polynomial to ∆̃k−1(t pk) = ∆K(t)(tqk−1)(t pk−1)
(t−1)(tak−1) , saving pk as ak

qk
.

5. Proceed recursively until all pi and qi are found. Stop when ∆̃(t) = 1.

Remark 2.11. The recursion ensures that the qi found in every iterative step is indeed qi, instead of bi.
Notice how this is true for the last b, bk. Since we are reducing the polynomial each time, it is then clear
that qi is obtained.

The original knot K is equivalent to K[(p1,q1), . . . ,(pk,qk)]. This procedure will yield no pairs of
the form (1,r) which are redundant, as stated previously. Moreover, it will give the minimum number
of iterations of torus knots that result in an equivalent knot. The minimality comes from the minimality
of this splice diagram. This minimal splice diagram can always be found, and the one presented for
iterated torus knots is minimal. For a justification of the general case, see [10, 8.2]. In fact, Algorithm
2.10 will give a canonical splice diagram for iterated torus knots.

Remark 2.12. This takes care of the problem of iterated torus knots, but what happens for iterated torus
links is still not solved. For that, we need further information. The Alexander polynomial could be
generalised, so that it had a variable for each component of the torus link. For this approach see [33,
theorem A].

It is necessary to stress that we are only focusing on algebraic links. Not all iterated torus knots
are algebraic links. For instance, the torus knot K{3,2} is algebraic but its mirror image, the torus knot
K{3,−2} isn’t. From Theorem 2.9, if two algebraic knots are equivalent, their Alexander polynomials
must coincide. Conversely, if two nonequivalent knots have the same Alexander polynomial, both
cannot be algebraic. Since the Alexander polynomial of K{3,−2} is ∆(t) = t2− t + 1, the same as
K{3,2}, and K{3,2} is algebraic, its mirror image cannot be algebraic. So in particular, K{3,−2}
isn’t an iterated torus knot. For more than one iteration, neither K((3,2),(7,−2)) nor its mirror image
are algebraic. This is the reason why the restriction to clockwise wrapping, or positive integers in the
iteration tuples, is given.



Chapter 3

Linking number

It has been seen that the Alexander polynomial alone isn’t enough to completely characterise al-
gebraic links. The problem comes from the multiple components and the ways that they can interact.
We have already given an approximation to this issue in the notion of splittability. However, this was
a concept that wasn’t specific enough, as more than just the interaction between two components is in-
volved. There is the need then, for an invariant which inputs two components and gives enough inform-
ation so that, together with the respective Alexander polynomials, it gives a complete characterisation
of algebraic links.

Definition 3.1. Let J and K be two oriented knots in R3 and consider the regular projection of J ∪K.
The integer lk(J,K) constructed by adding or subtracting in the intersections where J crosses over K as
shown in Fig. 3.1 will be called the linking number of J and K, lk(J,K).

This definition, at first glance, depends on the projection chosen. However, the linking number is
much stronger than a simple projection invariant. It will be proved in Theorem 3.3 that indeed it is an
invariant of links and thus doesn’t depend on the projection.

Remark 3.2. There are many other ways to define it, but this is the simplest and most intuitive. This
definition can be expanded to include oriented links with two components. If the two components of
L are J and K, then lk(L) = lk(J,K). This is well-defined because lk(J,K) = lk(K,J). The equality
follows from the close relation between the multiplicities in the multi variant Alexander polynomial and
the linking number, at least for algebraic knots. In general the argument is more complicated but still
true. So the commutativity is inherited.

K

J

+1

K

J

−1

Figure 3.1: Crossing sign convention

3.1. Properties

The linking number is useful when lk(J,K) 6= 0. In these cases, J and K are really linked, and
cannot be separated by an isotopy. This is because the linking number is preserved by isotopy and if
the components were equivalent to being split, the null linking number would be preserved, reaching a
contradiction.

13
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Theorem 3.3. The linking number is invariant by isotopy. That is, if L and L′ are oriented links with
two components, then

L∼ L′⇒ lk(L) = lk(L′)

Proof. This is a matter of checking that it is invariant under Reidemeister moves as shown in Fig.
1.2. Let’s check the first two moves. Type-I is clearly invariant because the crossing affects the same
component. For Type-II there are two possibilities. Either the strands belong to the same component,
in which case the linking number is locally null or they are different. In this second case, the linking
number won’t change either because it goes up on one crossing and down on the other, no matter the
orientation chosen.

Note that J, K can be linked even when lk(J,K) = 0. Fig. 3.2 is an example of this.

+1

−1

Figure 3.2: Whitehead’s Link

In particular, Whitehead’s link is not an iterated torus link. The fixed orientation in the wrapping
of the strands around the torus in each of the iterations ensures that the linking number between the
different components will be a positive integer. This orientation is clearly shown when the braid repres-
entative of the iterated torus link is of the type of Fig. 1.4.

Remark 3.4. In fact this allows us to ascertain when a link cannot be an iterated torus knot. For instance,
Fig. 3.3 shows a three-component link. The pairwise linking numbers are lk(K0,K1) = 1, lk(K0,K2) = 1
and lk(K1,K2) = 0. Since some unsplittable components have null linking number, it is not an iterated
torus link nor the disjoint union of iterated torus links. Indeed, the components in nontrivial iterated
torus links have strictly positive linking number. This is just a necessary condition, though. Sufficiency
is a harder matter that will only be checked by conjugating the iterated torus braid.

This argument applies to Borromean rings not being iterated torus links. This is generalised in
Brunnian links. Brunnian links have components such that, if one is removed, they are all splittable.
Borromean rings are a particular case of these, where the components are trivial knots.

K0

K1 K2

Figure 3.3: Not an iterated torus link
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3.2. Algorithms

We will now give an algorithm to obtain the linking number between two given components of
an iterated torus link. The starting point will be the iterated torus link. Specifically, the braid whose
closure is that link. This way, we essentially have a word that represents the link. First, we’ll find the
components with this procedure.

Remark 3.5. This algorithm is only a way to give the permutation of the epimorphism Bn→ Σn.

Algorithm 3.6. (Components from word)

1) Substitute σi and σ
−1
i by the transposition (i, i+ 1). Note that this doesn’t specify which strand

goes over.

2) Multiply all the transpositions, making sure to include single strands.

3) Count the number of cycles, including those with length one. That is the number of components
of the link.

Remark 3.7. The indices of each cycle are the strands in that component.

Now to find the linking number between two given components first we need to isolate the crossings
between only the ones of interest. Since the focus of these algorithms is on obtaining all the pairwise
linking numbers of the components in a given link, we will obtain all at the same time. In fact, we
will expand the area of study to include the disjoint finite union of algebraic links, or plane algebraic
singularities that lie on different points in a straight line. This amounts to adding a constant in the
Puiseux expansion. When we find the linking matrix of these links, there is a permutation that takes
the matrix to diagonal box form. This permutation will also give the disjoint algebraic links. Two
components will then be in the same algebraic link if their pairwise linking number is strictly positive.

Algorithm 3.8. (Pairwise linking numbers from components and word)

1. Enumerate the r components K1, . . . ,Kr and change the indices so that i is assigned to j if i ∈ K j.

2. Create the symmetric matrix L = M(r,N0) that contains the linking numbers.

3. If σi changes the i-th index named j to s and j 6= s, add one to L j,s.

4. If σ
−1
i changes the i+1-th index named j to s and j 6= s, substract one from Ls, j.

5. Proceed until the end of the word, reorder L with the permutation ρ ∈ ∑r so that L̃ is diagonal by
boxes.

6. If the boxes of L̃ aren’t of the type


0 ∗ · · · ∗
∗ 0 · · · ∗
...

...
. . .

∗ ∗ · · · 0

 with ∗ 6= 0, the word doesn’t come from a

disjoint union of algebraic links.

7. The pairwise linking numbers are lk(K j,Ks) = L̃σ( j),σ(s).

The permutation ρ should be saved, so that the Alexander polynomials can be grouped in their
respective links later on. In fact this is exactly what is done in the coded implementation. A similar
process to Algorithm 3.8 could be followed to obtain the reduced words of each component, although
the condition in step 3. would need to be changed. With these reduced words, the Alexander polynomial
can be obtained as in (2.2).
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Algorithm 3.9. (Alexander polynomials from components and word)

1. Change the indices as in step one of Algorithm 3.8.

2. Create an empty array of r words.

3. If σi doesn’t change the i-th index and it is the s-th index called j, multiply the j-th word by σs.

4. Proceed until the end of the word.

5. Find the reduced presentation in Definition 2.5 and apply equation (2.2) to each of the r reduced
words to obtain an array of r polynomials.

6. The Alexander polynomial of the i-th component is the i-th polynomial of this array.

Remark 3.10. Algorithms 3.8 and 3.9 can be combined to run simultaneously, being careful with ρ .

There is yet another way to obtain the linking number, this time from the different developments of
an algebraic link. If we have an algebraic link given by the polynomials y1 = a1x

q1
p1 + a2x

q2
p1 p2 + · · ·+

arx
qr

p1 ···pr and y2 = b1x
q̃1
p̃1 + a2x

q̃2
p̃1 p̃2 + · · ·+ arx

q̃r
p̃1 ···p̃s , the linking number between these two components

can be found.

Theorem 3.11. If K1 and K2 are two components of an algebraic knot given as above, then

lk(K1,K2) = ∑
ξ

n1
1 =1,ξ n2

2 =1

ord(y1(ξ1x)− y2(ξ2x)) = n1 ∑
ξ n2=1

ord(y1(x)− y2(ξ x)) (3.1)

where ord(p(x)) is the lowest exponent of p(x), n1 = p1 · · · pr and n2 = p̃1 · · · p̃s.

Remark 3.12. This is constructive, so Theorem 3.11 gives an algorithm for obtaining the linking num-
ber when the equations are given.

3.3. Classification theorem

Theorem 3.13 (Lê, Zariski-Lejeune). An algebraic link is determined by the Alexander polynomials of
the individual components and their pairwise linking numbers.

Proof. We’ll give an idea of the proof of the case with two components, the rest follows inductively.
Let ((p1,q1), . . . ,(pr,qr)) be the Puiseux pair of the two components, obtained from their Alexander
polynomials. Denote p1 · · · pk = n. Let lk ∈ N be their linking number. Then, if y1 and y2 give the
equations of the respective algebraic curves, the linking number is ∑ξ n

1 =1,ξ n
2 =1 ord(y1(ξ1x)−y2(ξ2x)) =

lk. There will be some exponent α in y1 and y2 uniquely determined by the Puiseux pairs and lk. The
uniqueness comes from the fact that with the Puiseux pairs fixed, the map α 7→ lk is strictly increasing
and thus injective. This is taken to be the first distinct term i.e. the coefficients are all equal up to
xα , up to multiplication by ξ with ξ n = 1. There are several cases for the position of this factor in
the polynomials, α ∈ (0, q1

p1
)⇒ α ∈ N, α ∈ [ qi

p1···pi
, qi+1

p1···pi+1
)⇒ p1 · · · piα ∈ N and α ∈ [ qr

p1···pr
,∞)⇒

p1 · · · prα ∈N. So the links with these fixed pairs and linking number are equivalent. This proof follows
the steps of [18].
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3.4. Exercises

Example 3.14. We will now apply our algorithms to classifying the link given by the word

β = σ4σ6σ5σ4σ6σ8σ2σ7σ3σ4σ5σ
−1
2 σ5σ6σ5σ4σ5σ7σ4σ

−1
7 σ

−1
6 σ7σ6

σ
−1
2 σ

−1
6 σ

−1
4 σ6σ4σ

−1
6 σ

−1
4 σ2σ6σ

−1
2 σ4σ2σ

−1
6 σ

−1
2 σ6

After Algorithm 3.6, we get (1)(2,4,6,7,3)(5,8,9). There are three components, K1 = (1), K2 =
(2,4,6,7,3) and K3 = (5,8,9). So it is already known that K1 is trivial because it only has one strand.
After Algorithms 3.8 and 3.9 we obtain the matrix with the pairwise linking numbers and the Alexander
polynomials of the components.

L =

 0 0 0
0 0 4
0 4 0

 , ∆K1(t) = 1, ∆K2(t) = t4− t3 + t2− t +1, ∆K3(t) = 1

Indeed, ∆K1 = 1 as seen previously. The third component is trivial as well. The only non-trivial com-
ponent is the second one. Since we know for certain that it comes from some union of disjoint algebraic
links, we can now ensure that there are two algebraic links. The first is a trivial knot, K1. The second
is an algebraic link with a trivial component K3 and an iteration (2,5) on the other, with lk(K2,K3) = 4.
Applying Algorithm 2.10 returns K{2,5} as the only torus knot without trivial iterations and with poly-
nomial ∆K2(t). So the link from the closure of β is indeed a candidate for algebraic link.

Example 3.15. A significantly harder link is given by

β = σ
−1
5 σ

−1
7 σ

−1
6 σ

−1
8 σ

−1
7 σ

−1
8 σ

−1
6 σ

−1
4 σ

−1
5 σ

−1
9 σ

−1
6 σ

−1
8 σ

−1
10 σ

−1
9 σ

−1
7 σ

−1
8 σ

−1
9 σ

−1
6 σ

−1
11 σ

−1
10

σ
−1
9 σ

−1
7 σ

−1
6 σ

−1
8 σ

−1
5 σ

−1
7 σ

−1
6 σ

−1
2 σ

−1
1 σ

−1
5 σ

−1
2 σ

−1
3 σ

−1
2 σ

−1
4 σ

−1
1 σ

−1
3 σ

−1
5 σ

−1
2 σ

−1
4 σ

−1
1

σ
−1
3 σ

−1
2 σ

−1
6 σ

−1
7 σ

−1
5 σ

−1
8 σ

−1
6 σ9σ4σ8σ5σ7σ9σ6σ5σ7σ8σ4σ9σ7σ10σ3σ9σ2σ11σ8σ4σ1σ10σ3σ9σ2

σ5σ4σ3σ8σ7σ4σ5σ6σ5σ4σ5σ7σ8σ6σ7σ5σ6σ5σ3σ4σ5σ2σ9σ3σ10σ1σ4σ8σ11σ2σ9σ3σ10σ7σ9

σ4σ8σ7σ5σ6σ9σ5σ7σ4σ8σ9σ3σ1σ8σ5σ10σ2σ6σ9σ10σ9σ4σ10σ9σ3σ8σ5σ7σ6σ7σ2σ4σ9σ5σ8

σ9σ4σ3σ4σ10σ2σ1σ10σ11σ2σ8σ
−1
10 σ3σ9σ4σ5σ10σ6σ7σ3σ5σ4σ6σ5σ6σ4σ3σ4σ8σ9σ2σ7σ1σ8σ6σ3σ5σ10

This braid gives the permutation (1,8,2,9,3,6)(4,11,12,5,7,10), so there are only two components
K1 = (1,8,2,9,3,6) and K2 = (4,11,12,5,7,10). They have linking number 23, but when taking the
Alexander polynomials something strange happens. The second component ir a torus link K{2,9}, but
∆K1(t) = t20− t19 + t16− t15 +2t13−5t12 +9t11−11t10 +9t9−5t8 +2t7− t5 + t4− t +1, which is not
cyclotomic. So K1 couldn’t be an algebraic knot.

Example 3.16. Obtaining the Alexander polynomial and linking number is easy with the methods
described above. Now we will give a practical example, where we will apply our methods to L, closure
of the braid β = (σ3σ4σ5σ2σ3σ4σ1σ2σ3)

2(σ4σ5)
13. This time, we will show the procedure more in

depth, to be able to glimpse the inner workings of the algorithms. The first Algorithm is 3.6.

(1)(2)(3)(4)(5)(6)(3,4)(4,5)(5,6)(2,3)(3,4)(4,5)(1,2)(2,3)(3,4) · · ·
· · ·(3,4)(4,5)(5,6)(2,3)(3,4)(4,5)(1,2)(2,3)(3,4)(5,6) = (1)(2)(3)(4,5,6)

There are four components, K1 = (1), K2 = (2), K3 = (3) and K4 = (3,4,5). Let’s find the pairwise
linking numbers by applying Algorithm 3.8. The indices are:

(1,2,3,4,4,4)→(3,4) (1,2,4,3,4,4)→(3,4) (1,2,4,4,3,4)→(3,4) (1,2,4,4,4,3)→(2,4)

(1,4,2,4,4,3)→(2,4) (1,4,4,2,4,3)→(2,4) (1,4,4,4,2,3)→(1,4) (4,1,4,4,2,3)→(1,4)

(4,4,1,4,2,3)→(1,4) (4,4,4,1,2,3)→(4,1) (4,4,1,4,2,3)→(4,2) (4,4,1,2,4,3)→(4,3)

(4,4,1,2,3,4)→(4,1) (4,1,4,2,3,4)→(4,2) (4,1,2,4,3,4)→(4,3) (4,1,2,3,4,4)→(4,1)

(1,4,2,3,4,4)→(4,2) (1,2,4,3,4,4)→(4,3) (1,2,3,4,4,4)
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The linking numbers are:

lk(K1,K2) = lk(K1,K3) = lk(K2,K3) = 0 and lk(K1,K4) = lk(K2,K4) = lk(K3,K4) = 3

Notice that here we have an issue similar to the one in the link from Fig. 3.3. So the closure of β is not
an iterated torus link. Now for the Alexander polynomials. Clearly the first three components are trivial
and it is only necessary to calculate ∆K4(t). After running Algorithm 3.9, the corresponding reduced
word of K4 is (σ1σ2)

13 and the Alexander polynomial is

τ̃
(
(σ1σ2)

13)= (−t13 t14

−t12 0

)
, det

(
I2− τ̃((σ1σ2)

13)
)
= t26 + t13 +1, ∆K4(t) =

(t26 + t13 +1)(t−1)
t3−1

∆K4(t) = t24− t23 + t21− t20 + t18− t17 + t15− t14 + t12− t10 + t9− t7 + t6− t4 + t3− t +1

The only non-trivial component is K4, and its iterated torus form is K{3,13}.

Example 3.17. After properly examining the obtention of the braid in Example 3.15, another braid is
given, this time presumed to be algebraic. The new braid is:

β = σ6σ7σ3σ4σ8σ2σ5σ3σ9σ4σ1σ2σ8σ1σ3σ10σ5σ6σ5σ4σ7σ11σ5σ6σ5σ8σ7σ9σ8σ9σ10σ9σ8σ6σ7σ11

σ8σ10σ2σ9σ4σ3σ2σ4σ5σ1σ6σ2σ3σ4σ2σ3σ2σ5σ4σ3σ10σ8σ7σ8σ6σ7σ5σ6σ8σ1σ2σ9σ4σ10σ8σ11σ9σ7

σ3σ5σ1σ8σ10σ4σ9σ2σ8σ1σ6σ5σ7σ6σ8σ7σ8σ10σ3σ4σ5σ3σ4σ3σ2σ3σ4σ6σ5σ1σ4σ2σ3σ9σ4σ2σ8σ10σ7

σ11σ6σ10σ9σ8σ10σ9σ10σ7σ8σ5σ6σ5σ11σ7σ4σ5σ6σ5σ10σ3σ8σ1σ2σ1σ4σ9σ3σ5σ2σ8σ4σ3σ7σ6σ5σ7

σ6σ8σ7σ8σ6σ4σ5σ9σ6σ8σ10σ9σ7σ8σ9σ6σ11σ10σ9σ7σ6σ8σ5σ7σ6σ2σ3σ1σ4σ2σ5σ3σ1σ4σ2σ3σ2σ5

σ1σ2σ6σ7σ5σ8σ6σ7σ9σ10σ11σ6σ9σ8σ7σ9σ10σ8σ6σ9σ5σ4σ6σ8σ7σ8σ6σ7σ5

The closure of this braid has three components, all of them the iterated torus knot K((2,3),(2,7)). Their
pairwise linking numbers are lk(K1,K2) = lk(K1,K3) = 26 and lk(K2,K3) = 28. So it can be said that
the algebraic link from which they come is the one with these iterations and linking numbers.

Example 3.18. Now will be shown why the Alexander polynomial alone isn’t a complete algebraic link
invariant.

β = σ1σ3σ5σ7σ2σ3σ6σ7σ1σ4σ3σ5σ4σ3σ5σ6σ5σ4σ7σ6σ5σ1σ3σ4σ3σ7σ2σ1σ3σ2σ4

σ3σ5σ4σ3σ5σ6σ5σ7σ6σ2σ5σ1σ2σ3σ2σ7σ5σ1σ7σ2σ3σ2σ1σ5σ2σ6σ7σ5σ6σ5σ3σ4

σ5σ3σ4σ2σ3σ1σ2σ7σ3σ4σ3σ1σ5σ6σ7σ4σ5σ6σ5σ3σ4σ5σ3σ4σ1σ7σ6σ3σ2

The previous link has lk(K1,K2) = 16 with components K((2,3),(2,17)) and K((2,5),(2,11)). The
Alexander polynomial of the whole link is ∆L(t) = −t92 + t84− t82− t78 + t74 + t70− t68− t63− t61 +
t60 + t55− t51− t49− t47 + t45 + t43 + t41− t37− t32 + t31 + t29 + t24− t22− t18 + t14 + t10− t8 +1.

Example 3.19. Now consider the following braid.

β = σ6σ2σ1σ3σ5σ7σ2σ6σ1σ5σ4σ3σ4σ7σ5σ4σ6σ1σ5σ7σ6σ4σ3σ4σ5σ4σ7σ3σ2σ3σ1

σ2σ4σ3σ4σ5σ4σ6σ5σ7σ6σ3σ5σ2σ1σ3σ2σ3σ7σ1σ5σ7σ3σ2σ3σ1σ2σ5σ3σ6σ5σ7σ6

σ4σ5σ4σ3σ4σ2σ1σ3σ2σ3σ7σ4σ5σ4σ3σ4σ6σ7σ5σ1σ6σ4σ5σ7σ4σ3σ4σ5σ1

The components are K((2,3),(2,15)) and K((2,5),(2,13)), so it’s not equivalent to the one in Example
3.18. But the Alexander polynomial of the link is the same as the one in Example 3.18. Hence, it is
proved that the Alexander polynomial of the link is not a complete invariant of the whole link. Here the
calculation is done with the Burau representative of the link. For more information on the obtention of
these specific braids, see [3, 7].

Example 3.20. Taking the equations from Remark 1.28 result in the braids β1 = σ2σ3σ1σ2σ3
3 , β2 = σ5

1
and β3 = (σ1σ2σ3σ4)

2. Applying Algorithms 3 and 3.9 shows that the knots are indeed equivalent.



Appendix A

Algorithms in Sagemath

A.1. Reduced Burau matrix

def burau ( n , j ) :
C= i d e n t i t y _ m a t r i x (LR , n )
j 1 =abs ( j )
e1= s i g n ( j )
i f j 1 ==1:

C[0 ,0]=− t
C[1 ,0]=−1

e l i f 1< j1 <n :
C[ j1 −2, j1−1]=− t
C[ j1 −1, j1−1]=− t
C[ j1 , j1−1]=−1

e l i f j 1 ==n :
C[ j1 −2, j1−1]=− t
C[ j1 −1, j1−1]=− t

i f e1 ==1:
re turn C

e l i f e1 ==−1:
re turn d e t (C)^−1∗C . a d j o i n t ( )

LR. < t >= L a u r e n t P o l y n o m i a l R i n g (QQ)
R=LR . p o l y n o m i a l _ r i n g ( )
def a l e x _ p o l y ( a lex_words , components ) :

f o r i in range ( l e n ( components ) ) :
l = l e n ( a l e x _ w o r d s [ i ] )
i f l ==0 or l ==1:

a l e x _ w o r d s [ i ]=1
e l s e :

n=max ( a l e x _ w o r d s [ i ] )
I = i d e n t i t y _ m a t r i x (LR , n )
B= prod ( [ burau ( n , j ) f o r j in a l e x _ w o r d s [ i ] ] )
p o l = d e t ( I−B)
po l0 = n o r m a l i z e ( p o l )
a l e x _ w o r d s [ i ]=R( po l0 ∗ ( t −1 ) / ( t ^ ( n +1)−1))

re turn a l e x _ w o r d s

19
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A.2. Alexander polynomial from reduced Burau representation

def o r d e r e d _ c o m p o n e n t s ( b r a i d , d imens ion ) :
c y c l e s = Bra idGroup ( d imens ion ) ( b r a i d ) . p e r m u t a t i o n ( ) . c y c l e _ t u p l e s ( )
max_comp= l e n ( c y c l e s )
components = [ ]
f o r i in range ( max_comp ) :

component= l i s t ( c y c l e s [ i ] )
components . append ( component )

re turn components
def r e n a m e _ i n d i c e s ( components , d imens ion ) :

i n d = [ ]
f o r i in [ 1 . . d imens ion ] :

i n d . append ( i )
f o r i in [ 0 . . l e n ( components )−1] :

f o r j in [ 0 . . l e n ( components [ i ] ) −1 ] :
i n d [ components [ i ] [ j ]−1]= i +1

re turn i n d
def n o r m a l i z e ( p o l ) :

re turn p o l . p o l y n o m i a l _ c o n s t r u c t i o n ( ) [ 0 ]

A.3. Component permutation of disjoint links

def o r d e r _ b o x e s ( m a t r i x ) :
dim= m a t r i x . d i m e n s i o n s ( ) [ 0 ]
p e r m _ t o t a l = i d e n t i t y _ m a t r i x ( dim )
i =1
whi le i <dim :

r =0
f o r j in [ i + 1 . . dim ] :

i f m a t r i x [ i −1, j −1] !=0:
perm= e l e m e n t a r y _ m a t r i x ( dim , row1= i +r , row2= j −1)
p e r m _ t o t a l ∗=perm
m a t r i x =perm∗m a t r i x ∗perm
r +=1

box= m a t r i x . ma t r ix_ f rom_rows_and_co lumns ( [ i −1 . . i +r −1] , [ i −1 . . i +r −1])
box+= i d e n t i t y _ m a t r i x ( r +1)
i f e x i s t s ( box . l i s t ( ) , lambda i : i = = 0 ) [ 0 ] :

re turn mat r ix , ’ n o t a l g e b r a i c ’
i f i + r +1>dim :

re turn mat r ix , p e r m _ t o t a l ∗ v e c t o r ( [ 1 . . dim ] )
s q u a r e = m a t r i x . ma t r ix_ f rom_rows_and_co lumns ( [ i −1 . . i +r −1] , [ i + r . . dim−1])
i f e x i s t s ( s q u a r e . l i s t ( ) , lambda i : i ! = 0 ) [ 0 ] and s q u a r e ! = [ ] :

re turn mat r ix , ’ n o t d i s j o i n t ’
i += r +1

re turn mat r ix , p e r m _ t o t a l ∗ v e c t o r ( [ 1 . . dim ] )

A.4. Alexander polynomial and linking matrix from braid

def a l e x a n d e r _ a n d _ l i n k i n g ( b r a i d ) :
d imens ion =max ( abs ( t e rm ) f o r t e rm in b r a i d )+1
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components= o r d e r e d _ c o m p o n e n t s ( b r a i d , d imens ion )
i n d = r e n a m e _ i n d i c e s ( components , d imens ion )
r = l e n ( components )
L= m a t r i x ( r )
a l e x _ w o r d s = [ ]
f o r a in range ( r ) :

a l e x _ w o r d s . append ( [ ] )
f o r a in range ( l e n ( b r a i d ) ) :

i =abs ( b r a i d [ a ] )
j = i n d [ i −1]
s= i n d [ i ]
i f b r a i d [ a ] >0 :

i f j == s :
a l e x _ w o r d s [ j −1] . append ( i n d [ : i ] . c o u n t ( j ) )

e l s e :
L [ s−1, j −1]+=1

e l s e :
i f j == s :

a l e x _ w o r d s [ j −1] . append (− i n d [ : i ] . c o u n t ( j ) )
e l s e :

L [ j −1, s−1]+=−1
i n d [ i −1] , i n d [ i ]= i n d [ i ] , i n d [ i −1]

box_L , perm= o r d e r _ b o x e s ( L )
i f perm== ’ n o t a l g e b r a i c ’ :

re turn a l e x _ p o l y ( a lex_words , components ) , L , ’ n o t a l g e b r a i c ’
i f perm== ’ n o t d i s j o i n t ’ :

re turn a l e x _ p o l y ( a lex_words , components ) , L , ’ n o t d i s j o i n t ’
b o x _ a l e x _ p o l y = [ ]
a l e x _ p o l y s = a l e x _ p o l y ( a lex_words , components )
f o r i in range ( l e n ( a l e x _ p o l y s ) ) :

b o x _ a l e x _ p o l y . append ( a l e x _ p o l y s [ perm [ i ]−1])
re turn box_a l ex_po ly , box_L

A.5. Iterations from Alexander polynomial

def p r o d u c t _ c y c l o t o m i c s ( p o l ) :
i f p o l ==1:

re turn [ 1 , 1 ]
c y c l o t o m i c = p o l . i s _ c y c l o t o m i c _ p r o d u c t ( )
i f c y c l o t o m i c :

l i s t = p o l . f a c t o r ( )
r e s = [ ]
f o r p , j in l i s t :

r e s . append ( ( p . i s _ c y c l o t o m i c ( c e r t i f i c a t e =True ) , j ) )
re turn r e s

e l s e :
re turn [ [ 0 , 0 ] ]

def r e d u c e _ a l e x _ p o l ( p o l ) :
l i s t = p r o d u c t _ c y c l o t o m i c s ( p o l )
l 1 =[ _ [ 0 ] f o r _ in l i s t ]
a=max ( l 1 )
i f a ==0:
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re turn [ 1 , ’ n o t a l g e b r a i c ’ ]
e l s e :

b=max ( j f o r j in a . d i v i s o r s ( ) i f j not in l 1 )
q=ZZ ( a / b )
p o l _ r e d u c e d =R( p o l ∗ ( t ^b−1 ) / ( t −1 ) / ( t ^a−1)∗( t ^q−1))
po l_q = v e c t o r ( p o l _ r e d u c e d . c o e f f i c i e n t s ( ) ) ∗ v e c t o r ( [ R . gen ( 0 ) ^ ( j / q )

f o r j in p o l _ r e d u c e d . e x p o n e n t s ( ) ] )
re turn [ pol_q , q , b ]

def a l e x _ t o _ i t ( p o l ) :
i t = [ ]
i f p o l ==1:

re turn [ [ ’ t r i v i a l ’ ] ]
whi le p o l ! = 1 :

r e d u c e d = r e d u c e _ a l e x _ p o l ( p o l )
i t . i n s e r t ( 0 , r e d u c e d [ 1 : ] )
p o l = r e d u c e d [ 0 ]

re turn i t
def p r o p e r _ l o n g i t u d e ( i t ) :

f o r r in range ( l e n ( i t ) ) :
i f l e n ( i t [ r ] ) > 1 :

n = [ ]
q = [ ]
m= [ ]
f o r i in range ( l e n ( i t [ r ] ) ) :

n . append ( i t [ r ] [ i ] [ 0 ] )
q . append ( i t [ r ] [ i ] [ 1 ] )

m. append ( q [ 0 ] )
i f l e n ( i t [ r ] ) = = 2 :

m. append ( q [1]−m[ 0 ]∗ n [ 1 ] ∗ ( n [0 ] −1) )
f o r i in [ 2 . . l e n ( i t [ r ] ) −1 ] :

m. append ( q [ i−1]−m[ i −2]∗n [ i −1]∗( n [ i −2]−1)−sum ( [m[ j −2]∗n [ i −1]∗
( n [ j −2]−1)∗ prod ( [ n [ k−1]^2 f o r k
in [ j . . k−2] ] ) f o r j in [ 0 . . i −3 ] ] ) )

f o r i in range ( l e n ( i t [ r ] ) ) :
i t [ r ] [ i ] [ 1 ] =m[ i ]

re turn i t

A.6. Iterations and linking matrix from braid

def i t _ a n d _ l i n k i n g ( b r a i d ) :
o u t = a l e x a n d e r _ a n d _ l i n k i n g ( b r a i d )
a l e x _ p o l s = o u t [ 0 ]
L= o u t [ 1 ]
i t = [ ]
f o r i in range ( l e n ( a l e x _ p o l s ) ) :

i t . append ( a l e x _ t o _ i t ( a l e x _ p o l s [ i ] ) )
i f l e n ( o u t ) = = 3 :

re turn i t , L , o u t [ 2 ]
re turn p r o p e r _ l o n g i t u d e ( i t ) , L
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