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Prologue

In the same way, when we are kids, we are told first about the natural numbers, then about the integers,
then we discover the real numbers and finally as a completion of them, the complex numbers, in the
beginning there was the linear geometry. Then, some steps later affine geometry arises, and as a com-
pletion for affine geometry, projective geometry arises.

The historical origins of projective geometry should be found in the 17th century, when Renaissance
painters struggled to find a way to draw realistic representations of spatial scenes on a plane. There was
some method already, discovered by Brunelleschi around 1420 and first published by Alberti in 1436.
Nowadays known as Alberti’s Veil, the artist marked on a glass screen a point where one of the light
rays from the scene to the artist’s eye intersected the screen, as shown in Figure 1. This method was fine
for painting actual scenes, but to paint imaginary scenes in perspective some theory was required.

Figure 1: Dürer’s depiction of Alberti’s veil

The first man to supply such insight was Gérard Desargues whose motivation was to help the artists.
He used the concept of "points at infinity" (vanishing points) which had already been also used by Ke-
pler (1604). Projective geometry is born. Together with Pascal they stablish some first fundamental
theorems in the subject. Nevertheless, the innovations of these men were not immediately appreciated
by their fellow mathematicians. "Radical" new ideas that were contrary to Euclid such as the points
at infinity where parallels meet or transformations that change lengths and angles (projections) made
Desargues be called crazy and dismissed projective geometry. Every printed copy of Desargues’ book
Brouillon projet d’une atteinte aux événemens des rencontres du cône avec un plan, originally published
in 1639, was lost. In the 19th century a copy of the book made by a pupil of Desargues was found by
the geometer Michel Chasles and thereby the world learned the full extent of Desargues’ major work.
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Resumen

¿Qué es la geometría proyectiva? De pequeños, los primeros números que aprendemos son los números
naturales. Conforme vamos creciendo, vamos descubriendo nuevas propiedades y nos topamos con los
enteros, los reales, y por último los números complejos, como culminación de todos los anteriores. De
igual modo, cuando nos sumergimos en la geometría, lo primero que aprendemos es la geometría lineal.
A continuación descubrimos la geometría afín, y por último y como culminación que engloba todo lo
anterior, aparece la geometría proyectiva. La geometría proyectiva nos proporciona un nuevo escenario
con menos restricciones y ataduras. Todas las propiedades de la geometría lineal y la geometría afín
tienen cabida en la geometría proyectiva. Es además el hábitat natural de las curvas algebraicas y una
de las áreas donde la teoría de la dualidad tiene más aplicaciones.

Nuestro objetivo es introducirnos en la geometría proyectiva y usar diferentes herramientas para des-
cubrir nuevas propiedades y conceptos proyectivos. En el primer capítulo, entenderemos qué son los
espacios proyectivos, cómo se construyen y cuáles son sus propiedades fundamentales. Trataremos
asimismo de familiarizarnos a trabajar en ellos. En el segundo capítulo veremos cómo se aplica la teoría
de la dualidad en los espacios proyectivos y usaremos las herramientas que ésta nos proporciona para
resolver problemas de geometría clásica (Teoremas de Pappus y Desargues). El último capítulo está
dedicado a las curvas proyectivas, y en especial a las curvas proyectivas planas. Estudiaremos algunas
propiedades de estas curvas y trataremos de entender qué es el dual de una curva plana y qué significado
tiene. Realizaremos asimismo algunos ejercicios usando toda la teoría desarrollada a lo largo de los tres
capítulos.

Las asignaturas de Algebra lineal (27000) y Geometría lineal (27010) me han proporcionado los co-
nocimientos básicos que he necesitado para dar los primeros pasos en geometría proyectiva. El curso
de Topología general (27008) me ha ayudado en todo lo referente a aplicaciones proyectivas y teoría
de la dualidad. Para el estudio de las curvas proyectivas y el significado de la curva dual he empleado
conceptos y teoría de las asignaturas de Análisis Matemático II (27006) y Geometría de curvas y super-
ficies (27013). En mi estudio, me he apoyado fundamentalmente en dos textos, Audin [1] y Traves [10].
El primero me ha servido para aprender cómo funcionan los espacios proyectivos y las aplicaciones
entre ellos, así como teoría básica de dualidad y cónicas. El segundo lo he empleado para la parte de
curvas planas y resultados clásicos de la geometría proyectiva y las curvas. Newman [8] y Stillwell [9]
son dos textos de fácil lectura que explican resultados generales de la geometría proyectiva de un modo
práctico, claro y sencillo (si bien no muy riguroso). Los he utilizado para el contexto histórico y para
dar puntos de vista prácticos y entender el significado de conceptos definidos de forma analítica. Debo
citar por último el texto de Coxeter ([2]), un espléndido resumen de toda la teoría fundamental de los
espacios proyectivos, con una gran cantidad de resultados demostrados. He recurrido a él a menudo para
contrastar definiciones y para ver demostraciones de resultados que son frecuentemente enunciados en
otros textos pero no probados.

A partir de un espacio vectorial E sobre un cuerpo K se define el espacio proyectivo P(E) como
el conjunto de las clases de equivalencia sobre E\{0} bajo relación u ∼ u ⇐⇒ ∃λ ∈ K? tal que
u = λv ∀u,v ∈ E\{0}. Se define de igual manera dim P(E) = dim E − 1. Así, un espacio proyec-
tivo P(E) de dimensión n proviene de un espacio vectorial E de dimensión n+ 1. Desde un punto de
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viii Chapter 0. Resumen

vista afín, P(E) se puede entender como la unión de un hiperplano afín en E (que tendrá dimensión n) y
un hiperplano proyectivo (proyección de un hiperplano vectorial de E) llamado hiperplano del infinito.
Esto provoca importantes consecuencias, como por ejemplo el hecho de que dos rectas en un plano
proyectivo siempre se corten (si son paralelas en el plano afín entonces se cortan en algún punto de la
recta del infinito).

Al igual que sobre un espacio vectorial E, con dim E = n podemos identificar cada vector con una
n−tupla de escalares mediante la elección de una base, en el espacio proyectivo P(E) podemos hacer
algo análogo. Dado un punto m ∈ P(E) proveniente de la recta m̃ ⊆ E, éste se puede ver como la
n−tupla de coordenadas de un vector u ∈ E que genera la recta m̃. Obviamente, la recta m̃ puede ser
generada por más de un vector en E, todos los múltiplos escalares de u de hecho, por lo que dos n−
tuplas (α1,α2, . . . ,αn), (β1,β2, . . . ,βn) representan el mismo punto en P(E) si y solo si ∃λ ∈K? tal que
αi = λβi ∀i. De esta forma, el punto m puede ser representado por la clase de equivalencia de la n−tupla
(α1,α2, . . . ,αn), que se denomina cordenadas homogéneas de m y se suele denotar por [α1 : α2 : . . . : αn].

Sean E y E ′ dos espacios vectoriales, y p : E\{0} −→ P(E), p′ : E ′\{0} −→ P(E ′) dos proyecciones
que asocian a cada vector de E, E ′ el punto del espacio proyectivo correspondiente a la recta vectorial
que generan en E y E ′ respectivamente. Una aplicación g : P(E) −→ P(E ′) tal que existe un isomor-
fismo f : E −→ E ′ que cumple p′ ◦ f = g◦ p se llama transformación proyectiva. Las transformaciones
proyectivas son el análogo a los homomorfismos en los espacios vectoriales. Sin embargo, no preser-
van ni los ángulos ni las distancias. Lo que sí es invariante bajo las transformaciones proyectivas es la
razón doble de cuatro puntos, que se define así: dados cuatro puntos a,b,c,d alineados sobre una recta
proyectiva, siendo los tres primeros distintos, la razón doble [a,b,c,d] es d−b

d−a/
c−b
c−a .

El concepto de dualidad en espacios proyectivos abre la puerta a importantes propiedades y herramien-
tas en este campo. Si F es un subespacio vectorial del espacio vectorial E, definimos el dual de F
como F ′ = {ϕ ∈ E∗ | ϕ|F = 0}, que es un subespacio de E∗ de dimension dim E− dim F (E∗ denota
el espacio dual de E). El dual de un espacio proyectivo P(E) se define como P(E∗). Consideremos
un plano proyectivo P(E) (esto significa que dim E = 3). Su dual será otro plano proyectivo ya que
E ∼= E∗ y por lo tanto dim E∗ = dim E = 3. Ahora bien, el dual de una recta en P(E) es un punto
en P(E∗). Asimismo, el dual de un punto en P(E) es una recta en P(E∗). Relacionamos así puntos
con rectas. Notar que dos puntos generan una recta de la misma forma que dos rectas se cortan en un
punto (recordar lo dicho antes de que dos rectas en el plano proyectivo siempre se cortan en un punto).
Análogamente, tenemos que el dual de dos puntos a,b ∈ P(E) son dos rectas a∗,b∗ ∈ P(E∗) cuyo punto
de intersección a∗∩b∗ es el dual de la recta en P(E) generada por los puntos a y b. El dual de n rectas
concurrentes en P(E) serán n puntos alineados en P(E∗).

Con esta nueva teoría podemos enfrentarnos a la resolución de problemas clásicos de geometría como
el Teorema de Pappus y el Teorema de Desargues. En ambos casos podemos reducir los teoremas a
resultados más débiles que pueden ser probados más fácilmente.

Consideremos ahora el plano proyectivo complejo P(C3) = P2. Definimos en él una curva de grado
d como el conjunto C = {[x : y : z] | F(x,y,z) = 0} donde F es in polinomio homogéneo de grado d.
Podemos ver una curva como el conjunto de puntos que la componen, pero también podemos obtenerla
mediante el conjunto de rectas tangentes a dicha curva (mediante el método de la evolvente). Para cada
punto de la curva existe una única recta tangente a la curva en ese punto. El dual de este conjunto de
rectas será un conjunto de puntos que también forman una curva en P∗2. El dual de una curva proyectiva
es otra curva proyectiva.

Sea H una curva de grado d dada por F(x,y,z) = 0, donde F es un polinomio homogéneo de grado
d. Entonces con los ceros de cualquier polinomio de la forma λF(x,y,z) con λ ∈C también obtenemos
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la misma curva H. Hay D =
(d+2

2

)
monomios de grado d en tres variables por lo que si (a1,a2, . . . ,aD)

son los coeficientes de los monomios en tres variables de F , entonces H se puede identificar con el punto
[a1 : a2 : . . . : aD] ∈ PD−1. Si imponemos que la curva H pase por m puntos de P2, podemos obtener un
sistema de m ecuaciones donde las incógnitas son los D coeficientes (a1,a2, . . . ,aD). Si las ecuaciones
son independientes decimos que los m puntos están en posición general. Si imponemos que m = D−1
puntos en posición general pertenezcan a la curva H, obtendremos un sistema con D−1 ecuaciones y D
incógnitas. La solución tendrá dimensión 1, luego contando la multiplicación por escalares, habrá una
sola curva de grado d pasando por D−1 puntos en posición general. De esto también podemos deducir
que no hay ninguna curva de grado d que pasando D puntos en posición general.

Uno de los resultados más importantes de curvas complejas proyectivas planas es el teorema de Bé-
zout, que sirve de base para probar otros resultados como el teorema de Chasles y el teorema de Pascal.
El teorema de Pascal es una generalización del teorema de Pappus antes mencionado. También se de-
muestra el resultado inverso del teorema de Pascal, llamado teorema de Braikenridge-MacLaurin.

Las aplicaciones de estos resultados y la geometría proyectiva también se pueden emplear para re-
solver problemas que no son puramente geométricos. En álgebra, los puntos de una curva elíptica (una
curva proyectiva plana de grado 3 y no singular) forman un grupo, donde tres puntos distintos suman la
unidad si y solo si están alineados. Podemos demostrar que la operación de este grupo es asociativa (se
trata de hecho de un grupo abeliano).
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Chapter 1

Projective Geometry

Definition. Let E be a vector space over the field K. Let ∼ denote the relation

u∼ v⇐⇒∃λ ∈K∗ such that ,u = λv , foru,v ∈ E\{0}

where K? denotes K\{0}. Then, the projective space P(E) deduced from the vector space E is the set
of all equivalence classes of E\{0} under the relation ∼. We will say that the dimension of P(E) is
dim E−1.

One may check that∼ is in fact an equivalence relation over the vector space E. We will move from the
vector space E to the projective space P(E) using the projection mappings.

Definition. Let E be a vector space over a field K. The map p : E\{0} −→ P(E) given by p(u) = u,
where u is the point in P(E) that comes from the vector line in E generated by u, is called a projection.

In case the field K is R or C, the space P(E) has also a topological structure, as it can be seen as the
quotient P(E) = E\{0}/∼ defined so that the projection p : E\{0} −→ P(E) is a continuous mapping.

1.1 Affine point of view

In order to further understand how a projective space is built and what it looks like, let us analyse the
construction of a projective space from an affine point of view. We may consider now K= R, C.

Consider a vector plane E over the field K. Let (e1,e2) be a basis of E. Then, every element u in
E can be written as u = αe1 + βe2, for some (α,β ) ∈ K×K called coordinates. Lines in E can be
defined as sets {(x,y) ∈ K×K : ax+ by = 0}, where (x,y) are the coordinates of the points on the
line and a,b ∈ K are two arbitrary elements, one of which is at least different from 0. This set can
also be written as {λ (−b,a) : λ ∈ K}. For instance, the line passing through u = (α, β ) would be
lu ≡ {λ (α,β ) : λ ∈K}. The set of all lines in E can be expressed as

{λ (a,b) : a,b ∈K} = {λ (a/b,1) : a,b ∈K,b 6= 0}∪{λ (a,0) : a ∈K}
= {λ (a,1) : a ∈K}︸ ︷︷ ︸

points in the line y=1

∪{λ (1,0)}︸ ︷︷ ︸
point at ∞

.

Recall that the set of all lines in E is the set of points in P(E). Hence, we have split the set of points in
P(E) into two different sets. The points in the first set, correspond to the lines that intersect the affine
line y = 1 (coloured in green in Figure 1.1). We take this intersection point as the representative for the
equivalence class of the line. On the other hand, the line x = 0 does not cut off the affine line y = 1
(red line in Figure 1.1). Notice that this is the only line that does not intersect with y = 1. We take
as a representative of this line the point with coordinates (1,0). Then, P(E) can be seen as the affine
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2 Chapter 1. Projective Geometry

y = 1

e2

xe2

E

Figure 1.1: All lines cross y = 1 but the x-axis one.

line y = 1 plus the point (1,0). This extra point is usually referred to as point at infinity. Hence, a
one-dimensional projective space can be seen as an affine line plus a point (at infinity).

Let us consider now a 3-dimensional vector space H over the field K. We choose again a basis of
H and denote (x,y,z) ∈ K3 the coordinates of the vectors in this basis. As in the previous case, all the
lines in H will intersect the affine plane F : z = 1, except for the lines contained in the plane F ′ : z = 0.
We may then split again the set of lines in H as

{λ (a,b,c) : a,b,c ∈K}= {λ (a,b,1) : a,b ∈K}︸ ︷︷ ︸
points in the plane z=1

∪{λ (a,b,0) : a,b ∈K}︸ ︷︷ ︸
points in the line at ∞

.

Therefore, a two-dimensional projective space can be seen as the union of an affine plane, and the set of
lines in a plane, which is in fact a projective line (as we have just already seen). This projective line is
called line at infinity.

For the general case, where G is an (n + 1)-dimensional vector space, an analogous procedure can
be followed to derive that the projective space P(G) can be seen as the union of an affine hyperplane
and a projective hyperplane called the hyperplane at infinity.

We go back to the previous case and study how and where lines in the projective plane intersect. Re-
call that the projective plane P(H) is obtained from a vector space H, with dim H = 3. Lines in the
projective space come from vector planes in H. We see the projective plane P(H) as the union of the
affine plane z = 1 and a line at infinity. Given a line r⊆ P(H), there are two possibilities: 1) r intersects
the affine plane z = 1 (so r is not the line at infinity). In this case, r is obtained from the vector plane
in E containing r (this plane is well defined since there is just one plane going through the origin and
the line r). So, if we call this plane r̃, we denote r = p(r̃), where p is the projection map. 2) r does
not intersect the affine plane z= 1. Then, r is the line at infinity and it comes from the vector plane z= 0.

Let r,s ∈ P(H) be two projective lines. There are two options:

• Both r,s intersect the affine plane z = 1. If these lines meet also in the affine plane, then the
intersection point would be that one. This is showed in Figure 1.2, the intersection between the
two planes r̃, s̃ that generate the lines r,s respectively is a line (coloured in green) passing through
this intersection point. In case they do not meet in the affine plane (they are parallel), we consider
again the vector plane that generate each line, r̃, s̃. Since the lines are parallel, these planes will
intersect over a line t̃ contained in the plane z = 0 (coloured in green). This line produces a
projective point t = p(t̃) which lies in the line at infinity. So r and s meet at some point in the line
at infinity.

• The line r intersects the affine plane z = 1 and s is the line at infinity. Then, consider again the
vector planes the lines come from, called r̃ and s̃. The plane r̃ would be the vector plane going
through r, and s̃ the plane z = 0. Clearly r̃∩ s̃ is a line t̃ which contained in the z = 0 plane itself
(coloured in green). Hence, the intersection point t = p(t̃) is a point lying on the line at infinity.

Remark. In a projective plane, the choice of the line at infinity depends on the choice of coordinates,
which is not a canonical definition. For a particular choice of coordinates any line can become the line
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s

s̃

r

r̃

z = 1

z = 0

O

r̃
s̃

r s z = 1

z = 0

t̃

r,s intersect in z = 1 r,s parallel in z = 1

O

r

r̃ z = 0≡ s̃

z = 1

t̃

s is the line at infinity

Figure 1.2: Intersection of two lines in the projective plane

at infinity. This is extended to projective spaces in general. We can always find a basis for which any
given hyperplane is the hyperplane at infinity.

1.2 Projective transformations and frames

Definition. Let E1 and E2 be two vector spaces over a field K, and consider the two projections
p : E1\{0} −→ P(E1), p′ : E2\{0} −→ P(E2). A projective transformation g : P(E1) −→ P(E2) is
a mapping such that there exists a linear isomorphism f : E1 −→ E2 with p′ ◦ f = g◦ p. Sometimes it is
also called a projectivity. A projective transformation of a projective line is called a homography.

An equivalent definition is that the diagram

E1\{0}
f //

p
��

E2\{0}

p′

��
P(E1)

g // P(E2)

commutes.

Remark. What we are doing with this new concept of projection is a general mathematical descrip-
tion for the change of the fixed view point. In the case E1 = E2, recall that a projective subspace in
P(E1) is just the result of seeing a vector subspace of a greater dimension (since it ’lives’ in E1) with
the eyes in a one lower dimension. It is clear that while looking at the same object, what we see changes
if we change the position of the eyes all over the space. Therefore, it should not be strange to relate all
of these different ’pictures’ of the same object. This is in fact what projective transformations do. Two
objects in P(E1) for which there is a projective transformation going from one to the other are actually
two different points of view in a lower dimension space of the same object in E1.

Let E be a vector space over a field K with dim E = n+ 1. The same way we represent a vector in
E by its coordinates in a given basis of E, we can do it for the projective space P(E). Given a point
m ∈ P(E), it can be described as the (n+ 1)-tuple of coordinates of a vector u ∈ E which generates
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the line m̃, where m = p(m̃). Obviously, the same line m̃ can be generated by more than one vector in
E, and hence two different (n+1)-tuples, (α1,α2, . . . ,αn+1),(β1,β2, . . . ,βn+1) say, will be representing
the same point in P(E) if and only if there exists a non-zero scalar λ ∈K? such that αi = λβi ∀i. The
equivalent class of (α1,α2, . . . ,αn+1) is called a set of homogeneous coordinates for m. It is often de-
noted [α1 : α2 : . . . : αn+1]. They were first invented by Möbius and Plücker (see [9, Chapter 8]).

Definition. If E is a vector space of dimension n+ 1, a projective frame of P(E) is a system of n+ 2
points (m0,m1, . . . ,mn+1) of P(E) such that m1, . . . ,mn+1 are the images of the vectors e1, . . . ,en+1,
which are a basis of E and m0 is the image of e1 + e2 + . . .+ en+1.

There is an important relation between projective transformations and projective frames which will
support later definitions on this area.

Proposition 1.1. Let P(E1) and P(E2) be two projective spaces of dimension n. Any projective mapping
from P(E1) to P(E2) maps a projective frame of P(E1) onto a projective frame of P(E2). Moreover, if
(m0, . . . ,mn+1) and (m′0, . . . ,m

′
n+1) are projective frames of P(E1) and P(E2) respectively, then there

exists a unique projective transformation g : P(E1) −→ P(E2) such that m′i = g(mi) for all i.

It is not hard to prove using isomorphisms. A short and simple proof can be found in Audin ([1, Propo-
sition 5.6]). Notice that over a projective line, three distinct points form a projective frame. This fact,
together with Proposition 1.1, motivates the following definition.

Definition. Let a, b, c be three different points on a projective line D. Then, there exists a unique
projective mapping, g, from the line to K∪{∞} such that g(a) = ∞, g(b) = 0, g(c) = 1. If d is another
point of D, then g(d) is called the cross-ratio of (a,b,c,d) and is denoted by [a,b,c,d].

The cross-ratio answers a natural question first raised by the Renaissance man Alberti ([9]): since length
and angle are not preserved by projection, what is? The cross-ratio is in fact a projective invariant of
four ordered points. We formalize this in the next proposition.

Proposition 1.2. Let a1,a2,a3,a4 be four points on a projective line D (the first three being distinct) and
a ′1,a

′
2,a
′
3,a
′
4 be four points of a line D ′ (the first three being distinct). Then, there exists a homography

f : D −→ D′ such that f (ai) = a ′i if and only if [a1,a2,a3,a4] = [a ′1,a
′
2,a
′
3,a
′
4].

Proof. First, let f : D −→ D ′ be a homography such that f (ai) = a ′i. We define now the projective
homography g : D ′ −→ K∪{∞} such that g(a ′1) = ∞, g(a ′2) = 0, g(a ′3) = 1. Then, by the definition
of cross-ratio, we have that [a ′1,a

′
2,a
′
3,a
′
4] = g(a ′4). Consider now the map h = g◦ f : D −→ K∪{∞}.

Then,
h(a1) = g( f (a1)) = g(a ′1) = ∞

h(a2) = g( f (a2)) = g(a ′2) = 0
h(a3) = g( f (a3)) = g(a ′3) = 1

 de f
=⇒ [a1,a2,a3,a4] = h(a4).

Summing up, we obtain the equality

[a1,a2,a3,a4] = h(a4) = g( f (a4)) = g(a ′4) = [a ′1,a
′
2,a
′
3,a
′
4].

For the converse, notice that the three distinct points a1,a2,a3 are a projective frame of D, and a ′1,a
′
2,a
′
3

are also a projective frame of D ′. Then, we apply Proposition 1.1 to state that there is a unique ho-
mography f : D −→ D ′ such that f (ai) = a ′1, i = 1,2,3. The only thing we have left is to check that
f (a4) = a ′4. Let t : D ′ −→ K∪{∞} be such that

t(a ′1) = ∞

t(a ′2) = 0
t(a ′3) = 1

 de f
=⇒ t(a ′4) = [a ′1,a

′
2,a
′
3,a
′
4].
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On the other hand, we have

t ◦ f (a1) = t( f (a1)) = t(a ′1) = ∞

t ◦ f (a2) = t( f (a2)) = t(a ′2) = 0
t ◦ f (a3) = t( f (a3)) = t(a ′3) = 1

 de f
=⇒ t ◦ f (a4) = [a1,a2,a3,a4].

Our hypothesis now is [a ′1,a
′
2,a
′
3,a
′
4] = [a1,a2,a3,a4], so t(a ′4) = t( f (a4)). But we also have that

t(a ′i) = t( f (ai)) ∀i = 1,2,3. Hence, we can apply the direct part of the proposition to the homog-
raphy t and conclude that [a ′1,a

′
2,a
′
3, a′4] = [ f (a1), f (a2), f (a3), f (a4)], and hence [a ′1,a

′
2,a
′
3,a
′
4] =

[a ′1,a
′
2,a
′
3, f (a4)]. Therefore f (a4) = a ′4.

Our definition of cross-ratio may seem a bit strange compared with the definition given in most of books
and papers, which is the following.

Definition. The cross-ratio of four collinear points a,b,c,d, the first three being distinct is

[a,b,c,d] =
d−b
d−a

/
c−b
c−a

Proposition 1.3. The two definitions given for the cross-ratio of four collinear points are equivalent.

Proof. Assuming the general convention that identifies
k
0

with ∞ ∀k 6= 0, then the homography given
by

z 7−→ z−b
z−a

/
c−b
c−a

is the only one that maps a to ∞, b to 0 and c to 1. Therefore, its image for d would be the cross-ratio of
the points a,b,c,d, which is exactly the formula given for the cross-ratio in the second definition.

1.3 Topology of the real projective plane

Let us take a look into the topology of the real projective plane. For now on, we will write RP2 to denote
P(R3).

Our vector space is now R3 over the field R. We consider the canonical basis over R3. Notice that
all (vector) lines in R3 intersect the sphere S2={(x,y,z) ∈ R3 |x2 + y2 + z2 = 1}, in two points. For in-
stance, if a line intersects S2 at the point (a,b,c), then the line can be written as the set of point of the
form λ (a,b,c), for any λ ∈ R. Hence, the other intersection point at S2 would be (−a,−b,−c). So for
any line in R3, there are two intersection points with S2. We now identify these points to get a complete
set of representative for any line in R3. Hence, we get

RP2 = {(x,y,z) ∈ R3 |x2 + y2 + z2 = 1}/(x,y,z)∼ (−x,−y,−z).

The relation ∼ is an equivalence relation and therefore RP2 can be seen as a hemisphere where the
antipodal points at the boundary are identified. Moreover, this hemisphere is homeomorphic with a disk
where points at the boundary are identified with its antipodes. Consider the mapping

Φ : RP2 −→ {(a,b,0) | a2 +b2 ≤ 1}
(x,y,z) 7−→ (x,y,0)

which is well-defined, is continuous and has inverse

Φ−1 : {(a,b,0) | a2 +b2 ≤ 1} −→ RP2

(x,y,0) 7−→ (x,y,+
√

1− x2− y2)
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P′P
P P′

a

b

Figure 1.3: The points P and P′ are identified, as well as the semi-circumferences a and b following the
direction of the arrows. We may then say P≡ P′, b≡ a.

which is also well-defined since x2 + y2 ≤ 1 =⇒ 1− x2− y2 ≥ 0, and it is continuous. Therefore, RP2
can be seen as a disk with the antipodal identification at the boundary circumference (see Figure 1.3).
We cut off a disk centred at the point P. Since the points at the boundary are identified, the disk will look
like the green part in the left object of Figure 1.4. If we get rid of the disk, we are left with the central
object in Figure 1.4. This is in fact a strip, were points in the two edges denoted by â (coming from the
former semi-circumference a) are identified following the arrows. The last object is just another way to
draw the same thing, where it is easier to see that this object is a Möbius strip.

P P

a

a

â

â

â â

Figure 1.4: If we remove a disk (centred at P for instance) from the original disk we obtain a Möbius
strip.
t

Hence, it follows that a Möbius strip together with a disk (the one we removed which was centred
in P) is homeomorphic to RP2. The disk should be place around the dashed lines in the right picture
of Figure 1.4, since it was the place where it was firstly removed. This was first noticed and proved by
Klein in 1874 ([6]), and we state it formally in the following corollary:

Corollary. RP2 is obtained by gluing a disk and a Möbius strip along their boundaries.



Chapter 2

Projective Duality

The french mathematicians J. D. Gergonne and J. V. Poncelet may be called the founders of Projective
Duality ([4, page 141]). They both developed this subject spreading through two different paths. Ger-
gonne focused over the duality of points and lines whereas Poncelet was more interested in the dual of
conics and curves.

Definition. Let E be a vector space over a field K. The dual space of E is defined as

E∗ = {ϕ : E −→K | ϕ linear}.

The dual space E∗ is in fact another vector space over the field K. Taking basis for E and E∗ as will
be explained in the proof of Proposition 2.2, it is easy to see that both vector spaces are isomorphic.
Therefore, it makes sense to define the dual of the projective space P(E) as the projective space P(E∗).
We take a further step to show the following result.

Lemma 2.1. E = (E∗)∗

Proof. We prove the statement for fields K with 0-characteristic. Let us consider the following mapping,

h : E −→ (E∗)∗

u 7−→ hu
where

hu : E∗ −→ K
ϕ 7−→ ϕ(u) .

We will prove that h is a natural isomorphism. First, note that h is a homomorphism: let u,v ∈ E, then
hu+v(ϕ) = ϕ(u+v) = ϕ(u)+ϕ(v) = hu(ϕ)+hv(ϕ) = (hu+hv)(ϕ), and hλu(ϕ) = ϕ(λu) = λϕ(u) =
λhu(ϕ) = (λhu)(ϕ) ∀λ ∈K. Since E ∼= E∗, we deduce dim E = dim E∗, and this also implies dim E =
dim (E∗)∗. Therefore, it is enough to show that h is injective. Over a basis of E∗, we can define the dot
product 〈,〉 of two vectors by the multiplication of their coordinates. Then, the mapping θv : E −→ K,
given by θ(w) = 〈v,w〉∀w ∈ E, is a linear mapping for all v ∈ E. Let u ∈ E be such that hu = 0̂, where
0̂ is the null map in (E∗)∗ (this means 0̂(ϕ) = 0∀ϕ ∈ E∗). Therefore, 0̂(θv) = 〈u,v〉 = 0∀v ∈ E, and
this can only happen if u = 0. Hence, ker ϕ = 0 and h is injective.

Proposition 2.2. Let F be a vector subspace in a vector space E (over the field K). Then, the subset
F ′ = {ϕ ∈ E∗ |ϕ|F = 0} is a vector subspace of E∗ of dimension dim E− dim F (i.e. the codimension is
dim F). We will call F ′ the dual subspace of F.

Proof. Again this proof is for fields with 0-characteristic. It is clear that F ′ ⊆ E∗ since it is formed
from elements in E∗. The null map, ϕ0 is in F ′ since ϕ0(u) = 0∀u ∈ E, so in particular this holds for
v∈F ⊆E. Let ϕ , ψ ∈F ′, then (ϕ+ψ)(v)=ϕ(v)+ψ(v)= 0+0= 0∀v∈F . If λ ∈K, then (λϕ)(x)=
λϕ(x) = λ0 = 0∀x ∈ F . Hence, F ′ is a subspace of E∗. Now, let dim F = m, dim E = n. Consider the
dot product 〈 , 〉 in the vector space E given by the multiplication of the coordinates in a given basis. Let
us take an orthogonal basis of F and complete it so that we end up with an orthogonal basis of E. In
other words, we have (e1,e2, . . . ,em,em+1, . . . ,en) a basis of E where ei ∈F for i= 1, . . . ,m, ei ∈E\F for

7
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i = m+1, . . . ,n and 〈ei,e j〉= 0 for i 6= j. For each ei, consider ϕei : E −→K, given by the dot product
in E, i.e. ϕei(u) = 〈ei,u〉∀u ∈ E. We claim (ϕe1 , . . . ,ϕen) is a basis of E∗. Indeed, for if λ1ϕe1 +λ2ϕe2 +
. . .+λnϕen = ϕ0 for some λ1,λ2, . . . ,λn ∈K, then λ1〈e1,u〉+λ2〈e2,u〉+ . . .+λn〈en,u〉= 0∀u∈ E, and
therefore by the linearity of the dot product this implies, 〈λ1e1+λ2e2+ . . .+λnen,u〉= 0∀u∈ E, which
means, λ1e1 +λ2e2 + . . .+λnen = 0, and since (e1,e2, . . . ,en) is a basis of E, this can only happen if
λ1 = λ2 = . . .= λn = 0. This proves that (ϕe1 , . . . ,ϕen) is a basis of E∗. For i = 1, . . . ,m, ϕei /∈ F ′ since
ϕei(ei) = 〈ei,ei〉 6= 0, and ei ∈ F ∀i= 1, . . . ,m. On the other hand, let v∈ F . Then v=α1e1+ . . .+αmem,
for some α1, . . . ,αm ∈K. So, for i = m+1, . . . ,n, ϕei(v) = 〈ei,α1e1 + . . .+αmem〉= α1〈e1,ei〉+ . . .+
αm〈em,ei〉 = 0. Hence, (ϕem+1 , . . . ,ϕen) are all in F ′ and moreover, they are a basis of F ′. This implies
that dim F ′ = n−m = dim E− dim F .

The dual space gives us a new perspective to approach classic geometry results. All the things that at
this point we know that work on a vector (or projective) space can be translated to the dual space (and
its projective space) and we may find new properties and relations. This connexion between vector and
projective spaces and its dual space where things in the first one are translated into its dual space is
sometimes called metamorphosis. Let us give some examples to illustrate how this works.

Take for instance a 3-dimensional vector space E, over a field K. A line d̃ ∈ E defines a plane d̃∗ ∈ E∗

(since dim d̃ = 1 and dim d̃∗ = 3−1 = 2). But remember that a line d̃ in E produces a point d in P(E),
and also a plane d̃∗ in E∗ produces a line d∗ in P(E∗). Hence, a point d in P(E) defines a line d∗ in
P(E∗). On the other hand, a plane P̃∈E defines a line P̃∗ ∈E∗, since dim P̃= 2, and dim P̃∗= 3−2= 1.
Again, since a plane P̃ in E generates a line P in P(E) and a line P̃∗ in E∗ generates a point P∗ in P(E∗),
we conclude that a line P in P(E) produces a point P∗ in P(E∗).

Proposition 2.3. Let F,G be two vector subspaces in a vector space E. Then, F ⊆ G⇐⇒ G′ ⊆ F ′.

The proof is a direct consequence from the last two results. Let us compute a shortcut to go from P(E)
to P(E∗) and vice versa. Let V ⊆ P(E) be a projective subspace where dim P(E) = n, and dim V = k.
Then, codim V = n− k. When moving to the vector space E, V becomes a vector subspace Ṽ ⊆ E,
with dim Ṽ = k + 1. Therefore, since dim E = n+ 1, codim Ṽ = n− k, which was the same as the
codimension for V . Hence, the codimension is preserved when moving from the projective space to
the original vector space. Now, we move forward, to the dual space E∗. We obtain a vector subspace
Ṽ ∗ ⊆ E∗, dim Ṽ ∗ = n− (k+1). Since dim E∗ = n, we follow codim Ṽ ∗ = k+1. Therefore, in this step,
we kind of interchange the codimension with the dimension to move from one place to the other. Finally,
we move to P(E∗), and we get the subspace V ∗, with dim V ∗ = n− (k+1). Since dim P(E∗) = n, we
conclude that codim V ∗ = k+1. Reading from the beginning, the dual of a vector subspace V ⊆ E, dim
V = k, turns out to become a subspace V ∗ ⊆ E∗ with codim V ∗ = k+1.

P(E) E E∗ P(E∗)
dim V = k dim Ṽ = k+1 dim Ṽ ∗ = n− k dim V ∗ = n− (k+1)

codim V = n− k codim Ṽ = n− k codim Ṽ ∗ = k+1 codim V∗ = k+1

Corollary [Metamorphosis]. Over a 3-dimensional vector space E, the following objects are equivalent:

P(E)
point line

aD b
a

P(E∗)
line point

dA
A B
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Working over C3 now, let P(C3) = P2. There is a really quick way to compute the intersection point
between two lines in P2. Considering coordinates in the canonical basis, we take two different lines
a1x+b1y+ c1z = 0, and a2x+b2y+ c2z = 0. They both come from two different vector planes in C3.
Hence, they meet at a line. If c1 = c2 = 0, then a1b2−a2b1 6= 0 since the planes are different and they
meet at the line λ (0,0,1). For c1 = 0, c2 6= 0, then they meet at the line λ (b1c2,−c2a1,a2b1− b2a1)
for a1 6= 0, or λ (c2,0,−a2) for a1 = 0. Finally, if c1 6= 0 6= c2, then they meet at the line λ (c2b1−
c1b2 , c1a2−a1c2 , a1b2−a2b1). In all the cases the following result is satisfied.

Lemma 2.4. The projective lines a1x + b1y + c1z = 0, a2x + b2y + c2z = 0 in P2 meet at the point
[a3 : b3 : c3] given by (a3,b3,c3) = (a1,b1,c1)× (a2,b2,c2).

If ax+ by+ cz = 0 , a,b,c ∈ C is a line in P2, then ax+ by+ cz = 0 is a vector plane in C3. We know
that in (C3)∗ this plane will become a line, but how can we write equations for this line? On the one
hand, we can refer to it as λϕ , where ϕ is the linear map given by

ϕ : C3 −→ C
(x,y,z) 7−→ ax+by+ cz

.

By abuse of notation, we may just write it as λ (ax+by+ cz), being aware that the variables x,y,z refer
to the coordinates in the canonical basis over C3 (and NOT over (C3)∗, since we have not properly
defined a canonical basis here!). Then, the point in P∗2 can be written as ax+by+ cz (≡ ϕ) noting the
same as before. But, on the other hand, we can rewrite this expressions in a better way considering a
basis in (C3)∗ and taking coordinates in this basis.

Following the construction in the proof of Proposition 2.2 over the canonical basis on C3, we define
the canonical basis over (C3)∗ to be the mappings {ε1,ε2,ε2} given by

εi : C3 −→ C
(u1,u2,u3) 7−→ ui,

for i = 1,2,3. This way, ϕ = aε1 + bε2 + cε3, and hence the line λϕ can be expressed as λ (a,b,c),
where (a,b,c) are now coordinates with respect to the canonical basis in (C3)∗.

We have a nice way to find the intersection point between two projective lines in P2, but what about
an easy way to compute the equation of the projective line through two points in P2? We just need to
change into the dual space and apply what we already know.

Let [a1 : b1 : c1], [a2 : b2 : c2] be two points in P2. We can see them as lines in P∗2. The point
a = [a1 : b1 : c1] comes from the line ã = λ (a1,b1,c1) ∈ C3, which can also be written as

ã :
{

a1y−b1x = 0
c1y−b1z = 0

=⇒ ã∗ : α (−b1,a1,0)+β (0,c1,−b1), α,β ∈ C

and lead to a plane ã∗ in (C3)∗ which can be written as a1X + b1Y + c1Z = 0, where X ,Y,Z denotes
coordinates in the canonical basis of (C3)∗. Following this path with [a2 : b2 : c2] we are able to write
the correspondent lines in P∗2 as

a1X +b1Y + c1Z = 0, a2X +b2Y + c2Z = 0.

We use now the formula we already know for the intersection point of two lines (Lemma 2.4) to obtain
the meeting point of these two lines.

(a1,b1,c1)× (a2,b2,c2) = (η1,η2,η3),
η1 = b1c2−b2c1
η2 = c1a2−a1c2
η3 = b2a2−b1a2
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The point [η1 : η2 : η3] ∈ P∗2 comes from the line λ (η1,η2,η3) in (C3)∗, and this from the plane η1x+
η2y+η3z = 0 in C3, whose projective line can be written as η1x+η2y+η3z = 0 in P2 which is in fact
the line through the points [a1 : b1 : c1], [a2 : b2 : c2].

Lemma 2.5. The projective line through the points [a1 : b1 : c1], [a2 : b2 : c2] in P2 is given by η1x+
η2y+η3z = 0 where (η1,η2,η3) = (a1,b1,c1)× (a2,b2,c2).

Using coordinates, we have seen a nice and quick way to move from the projective space to its dual. For
instance, the dual of the line ax+ by+ cz = 0 in P2, is the point (a,b,c) ∈ P∗2. On the other hand, the
dual of the point (u1,u2,u3) ∈ P2 is the line u1X +u2Y +u3Z = 0.

Exercise. A pencil of lines in a projective plane P(E) is the family, denoted by m ′, of all the lines
through a point m. Prove that a pencil of lines of P(E) is a line of P(E∗).

Solution. Let m̃ denote the vector line in E such that m = P(m̃) . Let us consider a basis over E, in
which the vector u ∈ E that generates the line m̃ has coordinates (β1,β2,β3). In P(E), let m ′ be the
set of lines through the point m, i.e., m ′ = {L : ax+ by+ cz = 0 |a,b,c,∈ K, aβ1 + bβ2 + cβ3 = 0}.
In E, m̃ ′ is the set of planes {L̃ : ax+ by+ cz = 0 |a,b,c,∈ K} containing the line m̃. For each dif-
ferent plane L̃ : ax+ by+ cz = 0 in E we get the line L̃∗ = λϕ where ϕ ∈ E∗ is given by ϕ(x,y,z) =
ax+by+ cz ∀(x,y,z) ∈K3 (coordinates in the basis of E). Since the line m̃ is contained in every plane
L̃ ∈ m̃ ′, by Proposition 2.3, all the correspondent lines L̃∗ in E∗ will be contained in the plane m̃∗. Fi-
nally, all lines L̃∗ turn into points in P(E∗), which are all contained in the line m∗. Moreover, for every
point in this line, we can construct a line in E∗ contained in the plane m̃∗, which will be a plane in E
containing the line m̃, and hence, it will be a plane in m̃ ′. Therefore, it also comes from a line contained
in m ′. Moreover, it follows that m ′ is not just a line, it is equal to m∗.

Exercise. Let H and H ′ be two hyperplanes over the projective space P(E), m be a point which is
neither in H nor in H ′. Let x be a point in H. Prove that the line mx intersects H ′ at a unique point, that
we denote by g(x). Prove that g is a projective transformation. The mapping g is called the perspectivity
of center m from H to H ′.

Solution. Since x /∈ H ′, m /∈ H ′, the line mx /∈ H ′. This means that the vector plane P̃ ∈ E such that
P(P̃) = mx is not contained in the hyperplane H̃ ′ ∈ E. Therefore, P̃∩ H̃ ′ 6= P̃. They are both vector
spaces so by the dimension formula they should meet along a line in E. The projective point in P(E)
for this line would be the intersection point between the line mx and the hyperplane H ′ in P(E).
H 6= H ′ in P(E) =⇒ H̃ 6= H̃ ′ in E. m /∈ H, H ′ means that the line m̃ /∈ H̃, H̃ ′ in E. Therefore, writing
m̃ = 〈u〉 = {λu | λ ∈ K} for some vector u ∈ E belonging to m̃, the vector space E can be seen as
E = H̃ ′⊕〈u〉. Using this decomposition, the following mapping is well defined:

f : E −→ H̃ ′

v+λu 7−→ v

where v ∈ H̃ ′, λ ∈K. Clearly it is also surjective. Moreover, E = H̃⊕〈u〉, and hence the restriction of
f to H̃ is a linear isomorphism between H̃ and H̃ ′. Let us finally check that f is the linear isomorphism
satisfying p−1 ◦g◦ p = f . Let d̃ ∈ H̃ be a line. Let’s prove, firstly, that f (d̃) is just the intersection line
of the plane T̃ defined by the lines d̃ and m̃ with the hyperplane H̃ ′. We write d̃ = 〈w〉 for some w ∈ H̃.
Since, w ∈ H̃ ⊆ E, we can write it as w = v+λu, for some v ∈ H̃ ′, λ ∈K. Since d̃ ∈ H̃ ′, m̃ /∈ H̃ ′, then
T̃ = 〈w,u〉 is a vector plane in E. Moreover, m̃ /∈ H̃ ′ implies that the intersection between T̃ and the
vector hyperplane H̃ ′ is just a line. What line? We can rewrite the expression for T̃ in the following
terms:

T̃ = k1w+ k2u = k1(v+λu)+ k2u = k1v+(k1λ + k2)u

so T̃ can also be seen as the plane through the lines 〈v〉 and 〈u〉= m̃. But the line 〈v〉 also belongs to H̃ ′

since the vector v ∈ H̃ ′. Hence, T̃ ∩ H̃ ′ = 〈v〉. Recall now that f (d̃) = f (β (v+λu)) = β f (v+λu) =
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βv = 〈v〉, for β ∈K. So f (d̃) is just the intersection line of the plane P̃ with the hyperplane H̃ ′. On the
other hand, d = p(d̃) is a point in H. g(d) is just the point in H ′ given by the intersection of the line dm
and the hyperplane H ′. Going now back to H̃ ′, p−1(dm∩H ′) is the intersection line between the plane
defined by the lines d̃ and m̃, which is precisely T̃ and the hyperplane H̃ ′. So p−1(g(p(d̃)))= 〈v〉= f (d̃).

Exercise. Let P be a projective plane. Let D be a line and m be a point in P not in D. Let m∗ ⊆ P∗ be the
dual line, that is, the set of lines through m. One defines the incidence mapping i : m∗ −→D associating
with any line through m its intersection point with D. Prove that i is a projective transformation.
Prove that, if D and D ′ are two lines in the projective plane P and if m is a point of P (neither in D nor
in D ′), the perspectivity of center m from D to D ′ is the composition of two incidences.

Solution. Let E be the 3-dimensional vector space such that P = P(E). Let D ′ be a line in P, D 6= D ′

and m /∈ D ′. Then, the map
j : m∗ −→ D ′

p∗ 7−→ p∩D ′

where p is the line in P whose dual point in P∗ is p∗(∈ m∗), is a bijection. For every d ∈ D ′, there is
a unique line l = dm passing through d and m. Therefore, l belongs to the pencil of lines through m,
and d is the image of the point l∗ ∈ m∗. We can therefore identify D ′ ≡ m∗.Taking P as the projective
space P(E) from the last exercise, the two lines D, D ′ are actually hyperplanes in P. We can therefore
use it to claim that the mapping g : D ′ −→ D associating any point p in D ′ the intersection point of the
lines pm and D, is a projective transformation. Using again the identification m∗ ≡ D ′, we get that the
mapping i : m∗ −→ D is also a projective transformation.
The way we have proceeded also shows the last part of the exercise. Take for instance the perspectivity
g : D ′ −→ D. Notice that j is precisely an incidence mapping, and therefore

g : D ′
j−1

−→ m∗ i−→ D

is the composition of two incidences.

2.1 Projectivities of the dual space

For this section, let dim P(E2) = n. Consider a projectivity g : P(E∗2 ) −→ P(E∗1 ). We know from
Proposition 1.1 that the image of (n+ 2) points in general position fixes g (since dim P(E∗2 ) = n and
therefore a collection of n+2 points in general position establish a frame). What we understand as n+2
points in general position is that there is no hyperplane in P(E∗2 ) containing all points. If we translate
this in terms of P(E2), the n+2 points in P(E∗2 ) become n+2 hyperplanes in P(E2). The condition that
no hyperplane contains all points means that no point in P(E2) is contained in all the hyperplanes, i.e.,
the n+ 2 hyperplanes do not intersect at one point. If this happens, we say that the hyperplanes are in
general position. Therefore, it follows that the image of n+2 hyperplanes in general position also fixes
a projectivity.

Proposition 2.6. Any projective mapping from a projective space of dimension n can be described by
the image of n+2 projective hyperplanes in general position.

Given a projective mapping f : P(E1) −→ P(E2), one may wonder whether the dual of f makes sense
as a mapping

f ∗ : P(E∗2 ) −→ P(E∗1 )

such that the following diagram

P(E1)
f //

π

��

P(E2)

π

��
P(E∗1 ) P(E∗2 )f ∗

oo
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commutes, where π(Vi) = V ∗i for all Vi ⊆ P(Ei). In fact, it makes sense and we will try to describe its
matrix in terms of the matrix of f . Let us work it out for P2. We consider coordinates over the canonical
basis in C3. Let f : P2

A−→ P2, denote the projective mapping given by the (3× 3)-matrix A. This
means that

f (p) = A

 x
y
z

 where p≡ (x,y,z) ∈ P2.

Our aim is to find the matrix that describes f ∗ : P∗2 −→ P∗2. Let (a,b,c) ∈ P∗2, what is ( f ∗)−1(a,b,c)?
The point (a,b,c) in the dual space comes from the line r : {ax+ by+ cz = 0} = {(a b c) t(x y z) =
0} ⊆ P2, where t(x y z) denotes the transposed of (x y z). Therefore,

f−1(r) = {p ∈ P2 | A t(x y z) ∈ r}= {p ∈ P2 | (a b c) A t(x y z) = 0}.

If we do the multiplication (a b c) A we obtain a row vector (a′ b′ c′) ∈ C3, so f−1(r) is in fact another
line. What is the dual of this line? It would be the point tA t(a b c)∈P∗2, where tA denotes the transposed
of A. Hence,

( f ∗)(a,b,c) = tA

 a
b
c


and therefore tA is the matrix of f ∗ with respect to the dual basis.

2.2 Pappus’ Theorem

Nowadays known as Pappus’ Theorem, it was first stated and proved by Pappus of Alexandria in the
fourth century A.D. (Proposition 139 of his Book VII in Mathematical Collection, see Coxeter [2]). The
original statement requires a basic knowledge of projective geometry which was completely unknown
until Desargues time in the 17th century. Nevertheless, excluding some arrangements for the case when
the lines are parallel, the theorem makes full sense in spite of the lack of projective geometry.

Theorem 2.7 (Pappus’ Theorem). Let D and D′ be two lines; let A, B and C be three points of D, and
A′, B′ and C′ three points of D′. Let α , β and γ be the interseciton points of B′C and C′B, C′A and A′C,
and A′B and B′A respectively. Then α , β and γ are collinear.

A generalisation of this theorem will be proved in Chapter 3, but now, in an attempt to show the nice
tools projective geometry supply, let us show how the proof can be reduced to the proof of a weaker
result.

Proposition 2.8. Let A, B, C be three points of a line D, and A′, B′, C′ be three points of a line D′

distinct from D. If AB′ is parallel to BA′, and BC′ is parallel to CB′, then AC′ is parallel to CA′.

Since we are working on a projective plane, we can see it as an affine plane by choosing any line to take
the role of line at infinity. We consider, for instance the line αβ . Translating the statement to this affine
plane, the lines B′C and C′B meeting at α , which is at the line at infinity, means that they are parallel
in the affine plane. The same happens to A′B and B′A. Then, we apply Proposition 2.8 to conclude that
C′A and A′C are also parallel and hence, as lines in the projective plane they meet at a point β which
is in the line at infinity. Therefore α,β ,γ belong to the line at infinity and are in fact collinear. Just by
a quick translation to the dual space, we can formulate what is sometimes called the dual of Pappus’
Theorem.

Proposition 2.9. Let A∗, B∗,C∗, and (A′)∗, (B′)∗, (C′)∗ be two sets of concurrent lines in two different
points. Let α∗ be the line through the points B∗∩ (C′)∗ and (B′)∗∩C∗, β ∗ be the line through the points
(A′)∗∩C∗ and A∗∩ (C′)∗, and γ∗ the line through A∗∩ (B′)∗ and (A′)∗∩B∗. Then, the lines α∗, β ∗ and
γ∗ are concurrent.
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A

A′B′

B

C′

C

A′ B′ C′

A
B C

γ
β

α

Proposition 2.8 Pappus’ Theorem

Figure 2.1: Comparation between both statements

Nevertheless, it is not very hard to show that this proposition is actually equivalent to the original
Pappus’ Theorem. This is why Pappus’ Theorem is also its own dual. To see this equivalence it is enough
to prove that Proposition 2.9 implies that Pappus’ Theorem holds. Notice that if Pappus’ Theorem holds,
then it also must hold for the dual space, which is what Proposition 2.9 states.

• Let us call D∗, X and Y the dual of the lines D, AB′ and AC′ respectively. Since the three lines are
collinear in P (over the point A), then the three points in the dual space will be collinear, over the
line A∗ (which is the dual line for the point A).

• Denote the dual points for the lines D, A′C and A′B by (D′)∗, X ′ and Y ′ respectively. Again, since
the lines in P meet all at the point A′, then the three dual point will belong to the line (A′)∗ and
therefore, be collinear.

• Let C∗ and (B′)∗ denote the dual lines for the points C, B′ ∈P. Then, D∗, X ′ ∈C∗, (D′)∗, X ∈ (B′)∗
and both lines meet at the point π = (B′C)∗, dual of the line B′C ∈ P.

• Let B∗ and (C′)∗ denote the dual lines for the points B,C′ ∈ P. Then, D, Y ′ ∈ B∗, (D′)∗, Y ∈ (C′)∗
and both lines meet at the point ρ = (BC′)∗, dual of the line BC′ ∈ P.

• Let us call α∗, β ∗, γ∗ the dual lines for α, β , γ . Notice that γ = AB′∩A′B in P imply X , Y ′ ∈ γ∗

in P∗. Similarly, β = AC′∩C′A imply X ′, Y ∈ β ∗. Let υ = β ∗∩ γ∗.

(D′)∗ X ′ Y ′

D′
X Y

π
ρ

υ

Figure 2.2: Dual to Pappus’ Theorem

Proposition 2.9 tells us that the three lines α∗, β ∗ and γ∗ are concurrent. The point of concurrence
should be υ , so υ ∈ α∗. Since α = BC′∩B′C, we also have that π, ρ ∈ α∗. And therefore π, ρ and υ

are concurrent. This is what original Pappus’ Theorem stated, as showed in Figure 2.2.

2.3 Desargues’ Theorem

Definition. A set of three lines in general position that intersect in three different points A,B,C is called
a triangle. We may denote it by ÂBC, or just ABC.

Girard Desargues main result, still known as Desargues’ Theorem, plays a fundamental role in the whole
projective geometry. It states a significant property common to two sections of the same projection of a
triangle.



14 Chapter 2. Projective Duality

Theorem 2.10 (Desargues’ Theorem). Let ABC and A′B′C′ be two triangles. Let α , β and γ be the
intersection points of BC and B′C′, CA and C′A′, AB and A′B′. Then the points α , β and γ are collinear
if and only if the lines AA′, BB′ and CC′ are concurrent.

What means that the lines AA′, BB′,CC′ are concurrent? Looking at Figure 2.3, we realize that both
triangles are actually two sections of a 3-dimensional pyramid with vertix O. In fact, what this means is
that both triangles are just the result of two different points of view of the 3-dimensional pyramid over
a 2-dimensional space. This point of view is explained in more detail in [8, Chapter 7, IV]. Recalling
the beginning of this Chapter when we defined the projective transformations we can say that there is
a projective transformation between the two triangles. Therefore, the statement of the Theorem can
actually be replace by saying that α, β , γ are collinear if and only if there is a projective transformation
between the two triangles.

A
B

C

O

A′

C′
B′

β

α

γ

Figure 2.3: Desargues’ Theorem

Desargues’ Theorem can be derived from Pappus’ Theorem as showed by Coxeter ([2]). Although
the Theorem states an equivalence, thanks to duality we can show that it is enough to prove just one
direction of the theorem since the other implication is just the dual of the first one. Let us see how.

• The dual of the triangles ÂBC and Â′B′C′ in P are the triangles given by the lines A∗, B∗, C∗ and
(A′)∗, (B′)∗, (C′)∗ in P∗.

• If we denote by âbc, and â′b′c′ these new triangles in P∗, where a = B∗∩C∗, a′ = (B′)∗∩ (C′)∗
and so on, then a is the dual point to the line BC, a′ the dual to the line B′C′, and so on.

• The point α = BC∩B′C′ becomes the line α∗ passing through the points a and a′. Denoting this
line as α∗ = aa′ we also have that β ∗ = bb′ and γ∗ = cc′.

• The lines AA′, BB′ and CC′ become points in P∗. Let us call them δ , µ , σ respectively. Then,
by Proposition 2.3, A, A′ ∈ AA′ =⇒ δ ∈ A∗, δ ∈ (A′)∗ =⇒ δ = A∗∩ (A′)∗. Similarly we can say
µ = B∗∩ (B′)∗ and σ =C∗∩ (C′)∗.

We can apply now the "only if" part of Desargues’ Theorem (given two triangles ABC and A′B′C′, if the
three points α, β , γ are collinear, then the three lines AA′, BB′, CC′ are concurrent) to the two triangles
âbc and â′b′c′ in P∗. This means that if the three points

bc∩b′c′ = A∗∩ (A′)∗ = δ , ca∩ c′a′ = B∗∩ (B′)∗ = µ, ab∩a′b′ =C∗∩ (C′)∗ = σ ,

are collinear, the the lines aa′ = α∗, bb′ = β ∗ and cc′ = γ∗ are concurrent. What does this mean back
in P?

• Using the fourth case in the Metamorphosis Corollary, the points δ , µ, σ being collinear in P∗

means that the lines AA′, BB′ and CC′ where they come from in P are concurrent.

• To say that the three lines α∗, β ∗ and γ∗ are concurrent in P∗ is to say that the points α, β and γ

are collinear in P.

This shows how the converse Desargues’ Theorem is just the dual of the direct statement and thanks to
duality theory it holds as a consequence of it.



Chapter 3

Projective Curves

Unless otherwise specified, along this chapter we will be considering the complex projective plane
P(C3) = P2. We will use the same notation as in former chapters and denote by [x : y : z] the equiva-
lence class of the line λ (x,y,z)∈C3, taking coordinates over the canonical basis of C3. Let us introduce
the concept of a curve in the projective plane relying on homogeneous polynomials (all the terms in the
polynomial have the same degree).

Definition. Let F(x,y,z) be a degree-d homogeneous polynomial (sometimes called degree-d form).
Then, C= {[x : y : z] | F(x,y,z) = 0} is called a degree-d curve in the projective plane. We say that C is
an irreducible curve when F(x,y,z,) is an irreducible polynomial.

We can see P2 as an extension of the complex affine plane C2 where a projective line has been added.
Curves in C2 are then easily transformed into projective curves in P2. Let f̃ (x,y) be a degree-k poly-
nomial defining a curve in C2. Then, we can split f̃ such that f̃ (x,y) = fk(x,y) + fk−1(x,y) + . . .+
f1(x,y)+ f0, where fi is a homogeneous degree-i polynomial. Then, we can homogenize the equation
of the affine curve considering the projective curve defined by the set of zeroes of the homogeneous
polynomial f (x,y,z) = fk(x,y)+ z fk−1(x,y)+ . . .+ zk−1 f1(x,y)+ zk f0, which is a degree-k curve in the
projective plane.

Example 1 (The dual of a curve). Some fair questions arise right after our introduction of curves in the
projective plane. What is the dual of a curve? What is its meaning? What does it look like?

We know that a curve is just a collection of points satisfying some algebraic condition. The dual of
a point in P2 is a line in P∗2. Hence, for each point in the curve, we will get a line in the dual space.
These lines will determine the dual curve in a very special manner. This is not a surprise if the notice
that for each point in a curve, there is also a unique line which is tangent to the curve at that point. The
collection of lines we obtain in the dual space will be in fact the set of all tangent lines to the dual curve.
The dual of a curve will hence be another curve.

Let K be a curve in P2 given by the equation g(x,y,z) = 0. We are going to check that the dual of
the set of tangent lines to K is a curve in P∗2. Let P ∈K, the tangent line to K through P has equation

tP : x
∂g
∂x

∣∣∣∣
P
+ y

∂g
∂y

∣∣∣∣
P
+ z

∂g
∂ z

∣∣∣∣
P
= 0

where
∂g
∂x

denotes the partial derivative of g with respect to its first variable and so on. So, the set of all
tangent lines to K can be written as:{

x
∂g
∂x

∣∣∣∣
P
+ y

∂g
∂y

∣∣∣∣
P
+ z

∂g
∂ z

∣∣∣∣
P
= 0

∣∣∣ g(P) = 0
}
.

15
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The set of dual points for these lines can be expressed as{(
∂g
∂x

∣∣∣∣
P
,

∂g
∂y

∣∣∣∣
P
,

∂g
∂ z

∣∣∣∣
P

) ∣∣∣ g(P) = 0
}
.

Notice that the points are expressed as a 3-tuple of coordinates in the canonical basis of P∗2, so we may
call:

X =
∂g
∂x

∣∣∣∣
P
, Y =

∂g
∂y

∣∣∣∣
P
, Z =

∂g
∂ z

∣∣∣∣
P
.

Writing P = [p1 : p2 : p3], we can solve this system of three equations for p1, p2 and p3 and replace
them in the equation g(p1, p2, p3) = 0, to get another equation now depending only on the coordinates
of the canonical basis in P∗2, i.e. g(p1, p2, p3) = 0 ⇐⇒ g∗(X ,Y,Z) = 0. This is the equation for the dual
curve K∗ of K. Take for instance the conic C : 4xy−2xz+y2−yz = 0 in P2. The set of tangent lines to
the conic can be written as

{(4b−2c)x+(4a+2b− c)y+(−2a−b)z = 0 | 4ab−2ac+b2−bc = 0}

whose dual is the set of points

{(4b−2c,4a+2b− c,−2a−b) | 4ab−2ac+b2−bc = 0}.

Calling X = 4b−2c, Y = 4a+2b− c, Z =−2a−b, we have that

a =−1
8

X +
1
4

Y, b =
1
4

X− 1
2

Y −Z, c =−Y −2Z.

Substituting a,b,c in the equation 4ab−ac+b2−bc = 0, we get the final equation for the dual curve

C∗ : − 1
16

X2 +
1
4

XY − 1
4

Y 2−Y Z−Z2 = 0.

Notice that not only have we obtained a curve for P∗2, but also a conic curve. The dual of a conic will
also be a conic. We generalise what happens with a generic degree-d curve in the following proposition.

Proposition 3.1. The dual of a smooth degree-d curve is another curve of degree d(d−1).

Proof. The idea of the proof is to choose the line at infinity such that it intersects the curve C transver-
sally and choose a point on it P = [0 : 1 : 0] such that the pencil of lines through P contains no tangencies
to inflection points of the curve, that is, only transversal lines or tangent lines. The degree of the dual
curve will be the number of tangencies of C through P. Projecting from P this corresponds with points
of C whose gradient is horizontal, that is, the solution to the system{

f = 0
∂ f
∂y = 0

where f is the degree-d form defining C.

Since the degree of f is d and the degree of ∂ f
∂y is d − 1, the number of solutions by Bézout – see

Theorem 3.2 – is d(d−1).

3.1 Geometry of projective plane curves

Let us consider a degree-2 curve given by a200 x2 + a110 xy+ a101 xz+ a020 y2 + a011 yz+ a002 z2 = 0.
Notice that the same curve can be defined by any non-0 scalar multiple of the given polynomial. So, the
curve can be identified with the point [a200 : a110 : a101 : a020 : a011 : a002] ∈ P5. We can do this for every
degree-d curve.
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The space of curves of degree d in the projective plane can be expressed as the quotient

Pd =

{
∑

i+ j+k=d
ai jk xiy jzk = 0

}
/∼ (3.1)

where ∼ relates two polynomials if there if they are non-0 scalar multiples of each other. This way the
degree-d curves in P2 are identified with points in the projective space P(Sd) (recall that S =C[x,y,z] =
⊕d≥0 Sd). There are D =

(d+2
2

)
monomials of degree d in three variables, and together they form a basis

for the vector space Sd , so we may identify

Pd ≡ P([ai jk])≡ P(Sd)∼= PD−1.

In our initial conic, D =
(2+2

2

)
= 6, so the curve is in fact a point in P(S2)∼= P5. If we require now the

curve to pass through 5 points in P2, then the coefficients a200, . . . ,a002 need to satisfy 5 linear equa-
tions. Assuming that the points are in general position, the solution for the homogeneous system will
have dimension 1, and hence, there is just 1 degree-2 curve passing through 5 points. In general, for
a degree-d curve we have a linear system with D unknowns and as many equations as points we want
to pass through the curve. In this sense, k points will be said to be in general position if they impose k
independent linear equations over this set of unknowns. For D−1 independent conditions the solution
for the system will have dimension 1. This means that there will be just one degree-d curve passing
through D− 1 points in general position, and no degree-d will go over D points in general position.
This concept of independent conditions for the coefficients ai jk (unknowns of the system) will be used
again in next definitions.

Note. The description we have given for the space of curves of degree d in (3.1) does not hold for
R. It is due to Hilbert’s Nullstellensatz (theorem of zeroes). In R we may find two different degree-d
polynomials whose set of zeroes are equal (and therefore they define the same curve) but they are not
scalar multiples of each other. For instance we may consider the conics given by {x2 +y2 + z2 = 0} and
{x2 +2y2 +3z2 = 0}. They are both representing the same conic (the empty set), but the equations are
not scalar multiples.

3.2 Basic results on plane curves

Theorem 3.2 (Bézout). If C1 and C2 are curves of degrees d1 and d2 in the complex projective plane P2
sharing no common components, then they meet in d1d2 points, counted appropriately.

Michael Chasles proved a simple and powerful statement that we will be used to solve many upcoming
results.

Theorem 3.3 (Chasles). Let C1 and C2 be two plane cubic curves meeting in 9 distinct points. Then any
other cubic passing through any 8 of the nine points must pass through the ninth point too.

Two different proofs for this theorem can be found in [3, Theorem CB3] and [10, Theorem 7]. We will
not go over it now. The French mathematician and philosopher Blaise Pascal, stated (and most likely
showed), at the age of sixteen, a generalization of Pappus’ Theorem (in his now lost work Essai sur les
Coniques -see [9]-).

Theorem 3.4 (Pascal). If 6 points A,B,C,a,b,c lie on a conic section, then the lines Aa,Bb,Cc meet the
lines aB,bC,cA in three new points and these new points are collinear.

Proof. Let C1 be the cubic containing the three lines of three non-consecutive edges in the hexagon with
vertices A, B, C, a, b, c. And let C2 be the cubic containing the lines of the other three edges. C1 and
C2 meet then in 6 points on the conic K, and in 3 other points outside K. Let L be the line through 2 of
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these 3 points. Then, K∪L is a cubic going through 8 of the 9 points of intersection of cubics C1∩C2.
Hence, by Theorem 3.3, K∪L must pass through the ninth point too. It cannot lie in K since C1 only
intersects C2 in 6 points on K and so, it must lie in L. Therefore, the three points of intersection not in
K are aligned.

It is not hard to realize that Pascal’s Theorem is a generalisation of Pappus’ Theorem, and therefore the
latter holds as a particular case of the first one. We can take the conic formed by two lines, then take
three points, A, B, C, at one of the lines and three points, C′, A′, B′ in the other one. Then the lines AC′,
BA′ and BA′ meet the lines C′B, A′C, and B′A in three collinear points.

Example 2 (Brianchon’s Theorem). Let us pause for a second to look into the dual statement of Pascal’s
Theorem. We know that the dual to a conic is another conic. The points A, B,C, a, b, c of the conic will
become tangent lines A∗, B∗,C∗, a∗, b∗, c∗ to the dual conic. Calling α = Aa∩ bC, β = Bb∩ cA and
γ =Cc∩aB, the dual lines α∗, β ∗, γ∗ would be lines through the points

α
∗ :
{

A∗∩a∗

b∗∩C∗
β
∗ :
{

B∗∩b∗

c∗∩A∗
γ
∗ :
{

C∗∩ c∗

a∗∩B∗
.

If Pascal’s Theorem holds, and α, β , γ are collinear, then the lines α∗, β ∗, γ∗ will be concurrent. We
can check easily what does this mean by taking a look at Figure 3.1. Our conclusion for the dual of
Pascal’s Theorem is the following statement, which is generally named after Monge’s student, Charles
Brianchon, French mathematician in the 19th century, who discovered it by applying the principle of
duality to Pascal’s Theorem similarly to what we have done (see [8, page 637]).

γ∗

β ∗

α∗ c∗

C∗

A∗

B∗

a∗

b∗

Figure 3.1: Dual of Pascal’s Theorem

Corollary [Brianchon’s Theorem]. Let A, B,C, D, E, F be the vertices of an hexagon circumscribed
around a conic (which means the lines AB, BC, CD, DE, EF , FA are tangent to the conic). Then the
diagonals AD, BE and CF are concurrent.

The converse to Pascal’s Theorem was showed independently by William Braikenridge and Colin
MacLaurin and is usually called after them.

Theorem 3.5 (Braikenridge-MacLaurin). If three lines meet three other lines in nine points and if three
of these points lie in a line, then the remaining six points lie in a conic.

Proof. Let C1 be the cubic containing the first three lines, and C2 the cubic containing the other three
lines. Then, C1 and C2 are two cubics meeting in 9 points. Let L be the line containing the 3 aligned
points. Recall that 5 points always lie in a conic, so let K be a conic passing through 5 of the remaining
6 points. Then, L∪K is a cubic going through 8 of the 9 points in C1∩C2, and hence by Theorem 3.3
it must go through the ninth point too. If it were in L, the we would have 4 aligned intersection points,
and the only way for this to happen is that C1 and C2 share a common line. But |C1∩C2|= 9, and this
cannot be the case. Therefore, the point must lie on the conic K and the six points lie on the conic.

Definition. If a set Γ of γ points imposes only λ independent linear conditions on the coefficients of
a curve of degree d, then we say that Γ fails to impose γ−λ independent linear conditions on forms of
degree d.
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Recall our previous notation – (3.1) – to express a degree-d curve as {∑i+ j+k=d ai jk xiy jzk}. Then, in
order for a point to be on the curve we impose a condition on the D coefficients ai jk of the curve. We
obtain a linear system with an equation for every different point we want it to be in the curve. The inde-
pendent linear conditions stated in the definition refers to independent linear equations for this system
where ai jk are the unknowns.

Theorem 3.6 (Cayley-Bacharach). Suppose that two curves of degrees d1 and d2 meet in a finite collec-
tion of points Γ⊆ P2. Partition Γ into two disjoint subsets Γ = Γ′∪Γ′′ and set s = d1 +d2−3. If d ≤ s
is a non-negative integer, then the dimension of the space of forms of degree d vanishing on Γ′ modulo
those vanishing on Γ is equal to the failure of Γ′′ to impose independent conditions on forms of degree
s−d.

We introduce some notation from Katz [5] in order to help the understanding and simplify upcoming
statements.

Definition. Let K1,K2 be two plane curves given by the union of d and e lines respectively. Then,
the union K1 ∪K2 is called a (d× e)-cage. In order to simplify the terminology, we colour the lines
from K1 red, and the lines from K2 blue. The points given by the intersection of a red and a blue line
are called the nodes of the cage.

Theorem 3.7. Suppose that k nodes of a (k×k)- cage are collinear through a different line. Then, there
is a unique curve of degree k−1 passing through the remaining k2− k nodes.

Proof. The result is trivial for k = 1. For k = 2, there is always a unique line passing through two given
points. Let us assume now that k ≥ 3. Suppose that the red lines L1, . . . ,Lk in the cage are given by the
zeroes of the homogeneous forms L1, . . . ,Lk, the blue lines M1, . . . ,Mk by the forms M1, . . . ,Mk , and
the line G containing the k nodes by g. Let Γ be the set of k2 nodes. Notice now that there is no degree-
(k−1) curve going through all the points in Γ. For if there is such a degree-(k−1) curve K (given by the
degree-(k−1) form K), then |K∩Mi|= k, for i1, . . .k. Hence, since k > (k−1) ·1, by Bézout’s Theorem
(Theorem 3.2), K shares a component with Mi, which means that Mi divides K ∀ i = 1, . . .k, which is a
contradiction for the degree of K. Therefore such a curve cannot exist. Define Γ ′′ = {x ∈ Γ | g(x) = 0},
and Γ ′ = Γ\Γ ′′. Since there are no degree-(k−1) curves going through all the points of Γ, Theorem 3.6
says that the dimension of the space of forms of degree k−1 vanishing on Γ ′ is equal to the failure of
Γ ′′ to impose independent conditions on forms of degree k+ k−3− (k−1) = k−2. Since the k points
in Γ ′′ are collinear (they all lie in G), and k−1 > (k−2) ·1, again by Theorem 3.6, if a degree-(k−2)
form contains k−1 aligned points, then it will contain the line they lie on. Therefore, the failure is equal
to k− (k−1) = 1. Hence, up to scaling there is a unique equation of degree-(k−1) passing through the
k2− k nodes of Γ off the line G.

Theorem 3.8. Suppose that a (k× k)-cage shapes a polygon with sides belonging alternatively to blue
and red lines. Assume that the polygon is inscribed in an irreducible conic. If k−1 of the k2−2k nodes
not in the polygon lie on a green line, then another of these points lies on the green line as well.

A nice proof for this theorem can be found in [10, Theorem 9]. We step forward and present a couple
of results which are consequences of the last two theorems.

Corollary 1. Let Λ be a set of k red points, and Ω a set of k blue points. Consider the k2 lines joining
a point in Λ with a point in Ω. If k of these lines are concurrent over another point (not in Λ∪Ω), then
there is a unique curve of degree (k−1)(k−2) which is tangent to the remaining k2− k lines.

Proof. We just need to read Theorem 3.7 in terms of the dual space. The k2 nodes of the (k× k)-cage
become lines in the dual space. The 2k lines become points. Each red line of the cage contains k points
given by the intersection with the other k blue lines. So, in the dual space, k lines go through every
red point, and each of this k lines contains also a blue point. Therefore, the dual of a (k× k)-cage is a
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collection of k red points, another of k blue points, and the k2 lines obtained by joining a blue and a red
point. Each of the lines contains therefore just one red point, and just one blue point. k nodes of the cage
being collinear through a different line means in the dual space that k lines are concurrent to a different
point (of the original 2k points). Theorem 3.7 says that if this happen, then there is a unique curve of
degree k−1 passing through the remaining k2−k points, which means in the dual space, using what we
have seen in Examples 1 and 2 and Proposition 3.1, that there is a unique curve of degree (k−1)(k−2)
which is tangent to the remaining k2− k lines. Hence, the statement holds.

Example 3 (The dual of an irreducible conic). We know from Example 1 that the dual of a particular
conic is another conic. In order to state the dual of Theorem 3.8 we need to find out now what the dual
of an irreducible conic looks like. We now that a curve is an irreducible conic if it is given as the set
of zeroes of an irreducible degree-2 polynomial, but how can we check this easily? Let a1x2 +2a2xy+
2a3xz+a4y2 +2a5yz+a6z2 = 0 describe a conic. We can rewrite the expression as

( x y z )

 a1 a2 a3
a2 a4 a5
a3 a5 a6

 x
y
z

= 0.

If A is a (3×3) regular matrix, it can be seen as the matrix of a change of coordinates in C3. Over this
new basis, the conic will be expressed as

( x y z ) (tA)

 a1 a2 a3
a2 a4 a5
a3 a5 a6

A

︸ ︷︷ ︸
C̃

 x
y
z

= 0

where C̃ is the new matrix describing the conic. Notice that a change of coordinates does not change the
nature of the conic. This means that the conic will remain irreducible under a change of coordinates,
if the conic is a product of two lines it will remain a product of two (different) lines and if the conic is
a double line it will remain so under a change of coordinates. We note that both matrices that describe
the conic before and after the change of coordinates are congruent, so the congruent class of the conic
matrix is preserved under a change of coordinates. There are three different congruence classes for
(3×3) matrices in C, which we express by the following representatives:

G1 =

 1 0 0
0 0 0
0 0 0

 G2 =

 1 0 0
0 1 0
0 0 0

 G3 =

 1 0 0
0 1 0
0 0 1

 .

G3 will contain the irreducible conics, G2 the product of two lines and G1 the double lines. Therefore,
given a conic, we just need to check the congruent class of the matrix to see if it is irreducible or not.
The quickest way to do so is to compute the rank of the matrix, in our case C̃ for instance (our the initial
matrix).

rank (C̃) = 3 ⇒ C̃ ∈ G3 ⇒ Irreducible conic
rank (C̃) = 2 ⇒ C̃ ∈ G2 ⇒ Two lines
rank (C̃) = 1 ⇒ C̃ ∈ G1 ⇒ Double line

Let’s go no back to our initial question. We take the four points [0 : 0 : 1], [0 : 1 : 0], [1 : 1 : 1], [1 : 0 :
0] ∈ P2. We consider now all conics in C3 that go through these four points, namely H : b1x2 +b2xy+
b3xz+b4y2 +b5yz+b6z2 = 0. Then,

[0 : 0 : 1] ∈H ⇒ b6 = 0
[0 : 1 : 0] ∈H ⇒ b4 = 0
[1 : 0 : 0] ∈H ⇒ b1 = 0
[1 : 1 : 1] ∈H ⇒ b2 +b3 +b5 = 0
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So H : 2b2xy+ 2b3xz− 2(b2 + b3)yz = 0 where b2,b3 ∈ C includes all the conic passing through the
four points. We want also it to be an irreducible conic, so the matrix must have full rank (its determinant
should be different from 0).

det

 0 b2 b3
b2 0 −(b2 +b3)
b3 −(b2 +b3) 0

=−2b2b3(b2 +b3) = 0 ⇐⇒


b2 = 0
b3 = 0
b2 =−b3

Assuming b3 = 1 (this does not mean a loss of generality), we end up with the generic irreducible conic
H : 2b2xy+ 2xz− 2(b2 + 1)yz = 0, b2 6= 0,−1. What is its dual conic? We follow the procedure as
in Example 1 to obtain: H∗ : (b2 +1)2X2−2(b2 +1)XY +2(b2 +1)b2XZ−3Y 2 +2b2Y Z−b2Z2 = 0.
Then,

det

 (b2 +1)2 −(b2 +1) b2(b2 +1)
−(b2 +1) −3 b2
b2(b2 +1) b2 −b2

2

= 4b2
2(b2 +1)2 6= 0 since b2 6= 0,−1.

Hence, the dual conic is also irreducible. We have then proved that the dual of all irreducible conics
passing through [0 : 0 : 1], [0 : 1 : 0], [1 : 0 : 0], [1 : 1 : 1] are irreducible. Notice that then, the dual of all
irreducible conics are irreducible since there is always a projectivity that maps any four different points
(in general position so that they form a frame) to these four points, and all the conics can be reduced to
one of the considered ones.

Corollary 2. Assume a 2k-polygon is formed by the intersection of 2k lines is circumscribed along
an irreducible conic. Colour the 2k vertices of the polygon alternatively red and blue. Consider the
remaining k2− 2k lines obtained by joining a red an a blue point. If k− 1 of these lines concur in
another point, then in fact another of those line should meet at that point too.

Proof. This is just the dual of Theorem 3.8. The sides of the polygon forms another polygon in the
dual space with vertices alternatively red and blue. As the vertices of the original polygon were in an
irreducible conic, the 2k sides of the dual polygon will be tangent to an irreducible conic. Therefore, the
polygon is circumscribed around the irreducible conic. The rest of the points in the original (k×k)-cage
will become lines meeting a red and a blue point. If k−1 of these k2−2k lines not in the dual polygon
are concurrent, then by Theorem 3.8, another of these line will be concurrent through this point too.

3.3 Further applications and exercises

We call a smooth plane curve of degree 3 an elliptic curve. The points of an elliptic curve form an
abelian group, where three distinct points add up to the identity element in the elliptic group if and only
if they are collinear. We denote the group law of an elliptic curve χ by ’+’, and the identity element
by 0χ . Hence, if P1, P2 and P3 are three collinear points in χ , then P1 +P2 +P3 = 0χ . We have enough
background now to show a nice result on the group law on an elliptic curve.

Proposition 3.9. The group law on an elliptic curve χ is associative.

Proof. Let P1, P2, P3 ∈ χ . We need to show that (P1 +P2)+P3 = P1 +(P2 +P3), or analogously, that
−((P1 +P2)+P3) = −(P1 +(P2 +P3)). Notice that χ is a smooth plane degree 3 curve, and hence it
doesn’t have a line as a component in any case. Therefore, by Bézout’s Theorem (Theorem 3.2), any
line will meet χ in three points (counting multiplicity). Let L1 be the line through P1 and P2. Then,
−(P1 +P2) is also a point in χ and it is collinear to P1 and P2 since P1 +P2 +(−(P1 +P2)) = 0χ . Hence,
L1 also meets χ at the point −(P1 +P2). We consider now the line L2 through the points P1 +P2 and P3,
which will also meet χ at −((P1 +P2)+P3), and the line L3 that joins P2 +P3 and 0χ , which will meet
χ also at the point −(P2+P3). On the other hand, let N1 be the line joining P1+P2 and 0χ , which meets
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χ also at −(P1 +P2), N2 the line joining P2 and P3, which meets χ also at −(P1 +P2) and let N3 be the
line joining P1 and P2 +P3, meeting the curve χ also at −(P1 +(P2 +P3)).

A B −(A+B)

D
C

A+B

B+C −(B+C) 0χ

−(A+(B+C))

−((A+B)+C)

L3

L2

L1

N3 N2 N1

Figure 3.2: The only point which is not in χ initially is D

Let D be the intersection point of the lines L2 and N3. We will see that this point is actually equal to
−(P1+(P2+P3)) and to −((P1+P2)+P3), and therefore these points are actually the same one. Let C1
be the cubic formed by the three lines L1, L2 and L3, and let C2 be the cubic formed by the lines N1, N2
and N3. Then, C1 and C2 are two cubics meeting at nine distinct points (0χ , P1, P2, P3, P1 +P2,−(P1 +
P2), P2 +P3,−(P2 +P3), D). Hence, by Chasles’ Theorem (Theorem 3.3), any other cubic meeting at
8 of these nine points must also pass through the ninth point too. Recall that χ is a cubic curve going
through 8 of the points (all of them but D), and therefore it must also pass through D. Finally, D is
different from P1 and P2 +P3 by definition, and if D 6=−(P1 +(P2 +P3)) then the line N3 would meet χ

in four different points, which cannot happen. Therefore D =−(P1 +(P2 +P3)). Also, D 6= P3, P1 +P2
by definition, and if D 6= −((P1 +P2)+P3) then L2 would meet the cubic χ in four different points.
Therefore D =−((P1 +P2)+P3) and both points are equal.

Exercise. Consider two polygons P1 and P2, each with m edges (m > 3) and different vertices, in-
scribed in an irreducible conic, and associate one edge from P1 with one edge from P2. Working
counter-clockwise in each polygon, associate the other edges of P1 with the edges of P2. Extending the
edges to lines, prove that if m−1 of the intersections of pairs of corresponding edges lie on a line, then
the last pair of corresponding edges also meets in a point on this line.

Solution. We split the proof in three cases. First we assume m is even, then we prove the case m = 5
and finally we reduce the remaining odd cases to the previous ones.

We start assuming m is even. Let us build a (m×m)-cage with 2m nodes inside the conic H, and
m− 1 of the remaining nodes aligned through a line G. We associate an edge from P1, B1, with one
from P2, R1 (marked with the symbol ∗ in Figure 3.3) and we colour them in blue and red respec-
tively. Working counter-clockwise in P1 we colour the edges alternatively red and blue and we call them
R m

2 +1,B2,R m
2 +2,B3, . . .. We do the same in P2 with blue and red and we call them B m

2 +1,R2,B m
2 +2,R3, . . .

as in Figure 3.3. Since m is even, both polygons will have m
2 edges alternatively red and blue, so the 2m

points of both polygons will be nodes of the cage. Moreover, the associated lines are the couples of lines
{Ri,Bi} corresponding to a red and a blue line. Therefore all the intersections of pairs of corresponding
edges are also nodes of the cage.

Now, let us compute the dimension of the degree m− 2 forms through all the nodes off the conic.
We set

Γ ′ ≡ m2−2m nodes off the conic

Γ ′′ ≡ 2m nodes on the conic.
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B3

R7
B4

R8

B1

R5
B2

R6

* R3

B7
R4

B8

R1

B5
R2

B6

*

Figure 3.3: Colouring for the case m = 8

Theorem 3.6 tells us that this dimension will be equal to the failure of Γ ′′ to impose independent condi-
tions on forms of degree 2m−3− (m−2) = m−1. Since the points in Γ ′′ lie on an irreducible conic, it
should be a component of the (m−2)-form. Therefore, since 2(m−1) = 2m−2 > 2m−1, by Bézout’s
Theorem 3.2, 2m−1 points are needed to satisfy this condition. So the failure equals

|Γ ′′|− (2m−1) = 2m− (2m−1) = 1.

Hence, up to scaling there is just one curve C of degree m− 2 through Γ ′. It will meet the line G in
m−1 points, so it will contain this line as a component. Therefore we may consider the curve (C/G)∪H
(curve given by the set of zeroes of the polynomial ( f/g) · h, where f ,g,h are the forms defining the
curves C,G and H respectively) which has degree m− 3+ 2 = m− 1 and goes through all the nodes
off the line G. What is the dimension of the forms of degree m−1 going through all the points off G?
It will be equal to the failure of the points in G to impose independent conditions on forms of degree
2m−3− (m−1) = m−2 (by Cayley-Bacharach -Theorem 3.6). The line should be a component of the
form, so the failure equals

#(points in G)− (m−1)≥ 1

and it should be at least 1 since we have already obtained a degree m− 1 curve going through all the
points off G. Therefore, #(points in G)≥ m. But if #(points in G)> m, then the curve will meet the m
red lines in more than m points, which cannot happen. Then, #(points in G) = m. The only thing that is
still to be proved is that the extra mth node is the one corresponding to the intersection of the remaining
edges in the polygons, Rm∩Bm. But this should also be the case, for if this node lied in any other red
line, Ri 6= Rm say, then Ri would meet G in two points, so both lines would be equal. Let us show that
this cannot happen. Ri contains m nodes given by the intersections with the m blue lines. Let’s call
B,C the vertices of the edge Ri, and A, D the next two adjacent nodes. We call Bk, B j the two blue lines
that form the two adjacent edges to Ri. We do the same for the polygon P2 and its associate edge Bi as
described in the figure.

AB

C

D

Ri

B j

Bk A′

C′

B′

D′

Bi

R j

Rk

Recall now that a line meets an irreducible conic in two points. Since the vertices A′,B′,C′,D′ are all in
H, it follows

Rk∩H = {A′,B′}
R j ∩H = {C′,D′} .

Recall that we are assuming Ri 6= Rm. Note that Rm should be different from either R j or Rk, hence we
may assume Rm 6= R j. Then

B j ∩R j ∈ G = Ri

B j ∩Ri = {C}

}
=⇒ B j ∩R j = {C}.
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Therefore, C ∈ R j, but C ∈H and R j ∩H = {C′, D′}. Hence, it follows that C is equal to C′ or D′. In
any case, this cannot happen since all the vertices are different.

We prove it now for the case m = 5, where the two polygons P1 and P2 are two pentagons. Let us
call the vertices A,B,C,D,E,a,b,c,d,e such that P1 = ÂBCDE, P2 = âbcde. Recall that all the vertices
lie on an irreducible conic H. We associate the edge AB from P1 with the edge ab from P2. By our
hypothesis, let’s assume that the intersection points AB∩ab, BC∩bc,CD∩ cd and DE ∩de are aligned
along a projective line G. What we want to prove is that the intersection point coming from the remain-
ing two edges, AE ∩ ae is also in G. Recall from Chapter 1 that we can always find a projectivity that
sends the line G to the "line at infinity" in the projective plane. Then,

AB∩ab
BC∩bc
CD∩ cd
DE ∩de


aligned

through G
⇐⇒

AB ‖ ab
BC ‖ bc
CD ‖ cd
DE ‖ de

(3.2)

where AB ‖ ab means that the lines AB and ab are parallel (they meet at the line at infinity). Our aim
is now to prove that the lines AE and ae are also parallel. The points B,C,D,b,c,d lie on the conic H.
Therefore, we can apply Pascal’s Theorem over them to conclude that the points BC∩bc,CD∩cd, Bd∩
Db are collinear along a line G. Since BC ‖ bc,CD ‖ cd this means that the line G is the line at infinity
and therefore

Bd ‖ Db. (3.3)

A quick way see how Pascal’s Theorem 3.4 applies to a set of points A,B,C,a,b,c lying on a conic
is by giving them an order. This means that we consider an hexagon, say ÂBCabc. Then, for every
point, we consider the two lines joining this point with its two neighbouring vertices of the hexagon.
We will end up with the six lines AB, BC,Ca, ab, bc, cA. Then, Pascal’s Theorem says that the points
AB∩ab, BC∩bc and Ca∩Ac are collinear. Hence, if we know that the two pairs of lines AB ‖ ab and
BC ‖ bc are parallel, we can assert Ac ‖Ca.

Since all the points A,B,C,D,E,a,b,c,d,e lie on the same conic, we can go on choosing ordered sets
of 6 points as mentioned and apply Pascal’s Theorem.

For ÂBCabc ,
AB ‖ ab (3.2)
BC ‖ bc (3.2)

}
=⇒ Ac ‖Ca (3.4)

For ̂BdebDE ,
Bd ‖ bD (3.3)
de ‖ DE (3.2)

}
=⇒ BE ‖ eb (3.5)

For D̂CadcA ,
DC ‖ dc (3.2)
Ca ‖ cA (3.4)

}
=⇒ DA ‖ ad (3.6)

For ̂ADEade ,
AD ‖ ad (3.6)
DE ‖ de (3.2)

}
=⇒ Ae ‖ Ea (3.7)

Let us now state the following extension of Pascal’s Theorem for 8 points lying on a conic due to
Möbius [7].

Proposition 3.10. If 8 points A,B,C,D,a,b,c,d lie on a conic section, then the lines Aa, Ba, Dd,Cb
meet the lines Cc, Dc, Bb, Ad in four new points, and these points are collinear.

The same method works now, but with an octagon instead of an hexagon. Therefore, if we consider the
octagon

̂ebDAEBda ,
eb ‖ EB (3.5)
bD ‖ Bd (3.3)
DA ‖ da (3.6)

 =⇒ ea ‖ AE (3.8)
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So the lines EA and ea are also parallel, as we wanted to prove.

What we are left to show is the general case for m an odd number greater than 5. Let P1 and P2 be
two polygons with m = 2k+1, k ≥ 3 edges inscribed in an irreducible conic. We associate an edge x1
from P1 with vertices A, B with an edge y1 from P2 with vertices A′, B ′. Working counter-clockwise we
call x2, x3 the following two edges of P1 (corresponding to the vertices B,C, D) and y2, y3 the following
edges of P2 (corresponding to the vertices B ′,C ′, D ′), as shown in Figure 3.4. Let ym be the other adja-
cent edge to A in P1 and ym be the other adjacent edge to A′ in P2 (we call E, E ′ the remaining vertices
in Xm and Ym respectively). By hypothesis, the intersection point of m−1 pairs of associated edges lie
on a common line G. Assume these m−1 pairs are all xi, yi but x1, y1. Let us show that the point x1∩y1
also lies in G.

EA

B

C

D

xm
x1

x2

x3

E ′A′

B′

C′

D′

ym
y1

y2

y3

Figure 3.4: The case m odd holds from the cases m even and m = 5.

Let DE denote line joining the vertices D, E. We construct a new polygon based on P1 by taking the
new edge DE and removing xm, x1, x2, x3, and another one from P2 by adding the edge D ′E ′ and re-
moving ym, y1, y2, y3. These new polygons have 2k+1−4+1 = 2k−2 edges. Since k ≥ 3 these new
polygons are well defined and have an even number of edges. If we associate DE with D ′E ′, we get
two polygons whose vertices are all on a conic and where the intersection points of the 2k−3 pairs of
associated lines (all of them but DE and D ′E ′) lie on the line G. Then, we know from the even case,
that also the remaining intersection point DE ∩D ′E ′ lies in G.

Consider now the pentagon Q1 formed by xm, x1, x2, x3 and DE, and the pentagon Q2 formed by ym, y1,
y2, y3 and E ′D ′. We know that the intersection points of the associated edges xm ∩ ym, x2 ∩ y2, x3 ∩ y3,
DE ∩D ′E ′ lie in G. Therefore, we apply the result for m = 5 and conclude that the remaining intersec-
tion point x1∩ y1 also lies in G.

Exercise. If d red lines and d blue lines intersect in d2 points and if 2d of these points lie on an ir-
reducible conic, then there is a unique curve of degree d− 2 through the other d2− 2d intersection
points.

Solution. We have a (d×d)-cage, where 2d nodes lie on an irreducible conic. Using Cayley-Bacharach
(Theorem 3.6), let Γ ′ be the nodes of the cage off the conic and Γ ′′ be the 2d nodes in the conic. The di-
mension of the degree d−2 curves going through Γ ′ will be equal to the failure of Γ ′′ to impose indepen-
dent conditions on forms of degree 2d−3− (d−2) = d−1. Since the points in Γ ′′ lie on an irreducible
conic, it will be a component of the form. By Bézout’s Theorem, since 2(d−1) = 2d−2 < 2d−1, then
2d−1 points in Γ ′′ will be enough to impose the condition. Therefore the failure equals:

|Γ ′′|− (2d−1) = 2d− (2d−1) = 1.

Hence, up to scaling there is a unique degree-(d−2) curve passing through the remaining d2−2d nodes
of the cage off the conic.
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