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1. RESUMEN 

La fosfoenolpiruvato carboxiquinasa es una proteína clave del metabolismo celular al catalizar la 

reacción limitante de la gluconeogénesis. Cuenta con dos isoformas, citosólica y mitocondrial. El 

papel de esta última en el organismo no se conoce todavía en profundidad, por lo que su estudio 

resulta muy interesante. Una aproximación adecuada para tratar de elucidar su función es silenciarla 

mediante la técnica CRISPR-Cas9, una potente y novedosa herramienta de edición genética, dirigida 

específicamente a producir una deleción en el primer exón del gen que codifica para la proteína. Por 

una parte, los resultados muestran que la eficiencia de la técnica no ha sido muy buena, ya que de 

todos los clones seleccionados, solo dos muestran evidencias de deleción. Por otra parte, los efectos 

fenotípicos observados en el metabolismo no son muy significativos, al no haber grandes diferencias 

en la producción de glucosa en los clones silenciados con respecto al silvestre. Asimismo, no ha sido 

posible correlacionar el silenciamiento de la proteína con una proliferación celular alterada, ya que 

los clones positivos han resultado ser de crecimiento tanto rápido como lento, del mismo modo que 

clones negativos tenían bien crecimiento rápido, bien lento.  

Abstract 

Phosphoenolpyruvate carboxykinase is a key protein in the cellular metabolism since it catalyzes the 

rate-limiting reaction of the gluconeogenesis. It has two isoforms, a cytosolic one and a 

mitochondrial one. The role in the organism of the latter is yet not known in depth, so that its study 

is very interesting. An appropriate approach to try to elucidate its function is to silence it using the 

CRISPR-Cas9 technique, a powerful and novel genetic-editing tool, specifically targeted to produce a 

deletion in the first exon of the gene that encodes the protein. On the one hand, the results show 

that the efficiency of the technique has not been very good being that, of all selected clones, only 

two of them show evidence of deletion. On the other hand, the phenotypic effects observed in the 

metabolism are not very significant because there are no large differences in glucose production in 

silenced clones compared to the wildtype. Likewise it has not been possible to correlate protein 

silencing with altered cell proliferation, since positive clones have been found to be both fast and 

slow growing, in the same way that negative clones were either fast or slow growing. 

2. INTRODUCCIÓN 

2.1. Fosfoenolpiruvato carboxiquinasa 
La fosfoenolpiruvato carboxiquinasa (PEPCK) es una enzima que participa en la gluconeogénesis 

catalizando la conversión del oxalacetato (OAA) en fosfoenolpiruvato (PEP), que es el paso limitante 

de esta ruta metabólica [1]. 

Su acción metabólica requiere de GTP, además del oxalacetato, como sustrato; así como el cofactor 

Mn2+ [1]. 

GTP + OAA → GDP + PEP + CO2 
[1] 

La PEPCK tiene dos isoformas, una citosólica (PCK1 o PEPCK-C) y otra mitocondrial (en adelante, 

PEPCK-M, aunque también se la conoce como PCK2), que aunque catalizan la misma reacción, están 

codificadas por distintos genes [17]. Ambas participan activamente en gluconeogénesis en el tejido 

renal y hepático, y en gliceroneogénesis en el hígado y el tejido adiposo [17].   
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El gen de la PEPCK-M se encuentra, en humanos, en el cromosoma 14, concretamente en el locus 

14q11.2-q12 [2]. La forma canónica de la proteína cuenta con 640 aminoácidos, de los cuales los 32 

primeros constituyen un péptido de tránsito a la mitocondria. Actúa como un monómero [1].  

Mientras que la expresión de PEPCK-C está más restringida a hígado, intestino delgado, córtex del 

riñón y tejido adiposo, tejidos gluconeogénicos [3]; la PEPCK-M tiene una alta expresión en células no 

gluconeogénicas como células β pancreáticas o fibroblastos [19]. De manera más minoritaria, se 

expresa en  linfocitos T y B [3], cerebro, corazón y placenta [19]. Además, la expresión, no solo depende 

del tejido, sino también de la etapa de desarrollo. Así, se ha visto que en mamíferos, antes del 

nacimiento, solo se expresa PEPCK-M [18]. 

Curiosamente, y al contrario que la PEPCK-C, que está regulada por una gran variedad de estímulos 

hormonales como glucagón (que induce la expresión) o insulina (que la inhibe al antagonizar al 

glucagón); la PEPCK-M parece expresarse de manera constitutiva [19]. 

En cuanto al papel metabólico de la PEPCK-M, hasta ahora ha permanecido bastante desconocido. 

Sin embargo, hallazgos recientes parecen mostrar que hay una interacción compleja con la isoforma 

citosólica en la gluconeogénesis hepática [3], de manera que ejercen una función cataplerótica 

retirando los intermediarios del ciclo de Krebs. Paralelamente, se ha visto que tiene propiedades 

anapleróticas ya que sintetiza oxalacetato, realimentando por tanto el ciclo de Krebs [17]. 

Por otra parte, la PEPCK-M se ha asociado con la secreción de insulina mediada por glucosa en las 

células β pancreáticas. En estas células, el metabolismo de glucosa conduce a la producción de GTP 

mitocondrial por medio de la enzima succinil-CoA sintetasa en el ciclo de Krebs. El GTP, debido a que 

no tiene un transportador específico, queda atrapado en la mitocondria; de manera que la PEPCK-M 

lo utiliza para convertir el oxalacetato en fosfoenolpiruvato. Este último sale de la mitocondria para 

convertirse en piruvato en el citosol, desencadenando, por mecanismos todavía desconocidos, la 

liberación de insulina [18]. 

La PEPCK-M regula por tanto la secreción de insulina y la gluconeogénesis. Como un elevado flujo 

gluconeogénico contribuye a aumentar los niveles de glucosa plasmática en ayunas, lo cual se asocia 

con diabetes mellitus tipo 2; la PEPCK-M podría ser un factor importante en la diabetes e incluso una 

diana terapéutica viable en humanos [18].  

Asimismo se ha visto que el gen de la PEPCK-M constituye un mecanismo de supervivencia bajo 

condiciones de estrés, ya que en varios tumores humanos se da una expresión diferencial de PEPCK-

M inducida por señales de la respuesta integrada a estrés (ISR), como inductores químicos de la 

respuesta a proteínas desplegadas (UPR) y de la respuesta a aminoácidos (AAR) [3]. Por ello, dirigir 

fármacos contra esta podría permitir matar células tumorales al eliminar su principal elemento de 

adaptación a un ambiente hostil [20]. 

Debido a que hay aspectos de la PEPCK-M que no se conocen, el silenciamiento de la misma puede 

contribuir a entender su función biológica. 

2.2. Técnica CRISPR-Cas9 
La edición genética por nucleasas permite realizar manipulaciones sitio-específicas, y al contrario que 

las herramientas de terapia génica disponibles previamente, las nucleasas no solo introducen DNA 
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exógeno en la célula diana, sino que permiten corregir alteraciones genéticas, lo que las hace 

preferibles para terapia génica [9]. 

Las nucleasas de dedos de zinc (ZFN) y las nucleasas de efectores de tipo activador de transcripción 

(TALEN) se basan en la fusión de un módulo de reconocimiento específico de DNA con una nucleasa 

inespecífica que produce un corte de cadena simple. Con la combinación de pares de proteínas 

específicas, se inducen cortes de doble cadena en el DNA, de manera que se activan los sistemas de 

reparación celular, dando lugar a modificaciones genéticas [21]. 

Sin embargo, y aunque el uso de estas ya ha permitido hacer modificaciones genéticas dirigidas, 

todavía hay necesidad de nuevas tecnologías más escalables y asequibles, y de fácil manipulación [7]. 

Así, CRISPR ha simplificado mucho la edición genética, ya que no requiere modificar pares de 

proteínas específicas para cada sitio diana [8]. Además, se presenta como una herramienta con gran 

capacidad para producir modificaciones dirigidas en cualquier organismo [5]. 

El sistema CRISPR  (Clustered Regularly-Interspaced Short Palindromic Repeats o Repeticiones 

Palindrómicas Cortas Agrupadas y Regularmente Espaciadas) es un sistema inmune adaptativo 

procariota [5] que otorga protección contra virus y otros elementos genéticos móviles [6]. 

El locus CRISPR, observado por primera vez en Escherichia coli, está presente en un 84% de las 

arqueas y un 45% de las bacterias. Es una agrupación de secuencias palindrómicas repetidas cortas 

separadas por espaciadores con secuencias únicas que se puede encontrar tanto en el cromosoma 

como en el DNA plasmídico de los procariotas. Los espaciadores derivan de ácidos nucleicos de virus 

y plásmidos, de manera que son usados como elementos de reconocimiento para destruir a estos 

agentes. La actividad de CRISPR requiere además la acción de las nucleasas Cas, que normalmente se 

encuentran adyacentes al locus CRISPR (Figura 1) [6].  

El proceso de defensa mediada por CRISPR-Cas se divide en tres etapas (Figura 1) [6], que se detallan 

a continuación: 

En la primera etapa, adaptación, como consecuencia de una primera infección, el genoma del agente 

infeccioso se fragmenta y se incorpora al locus CRISPR como un nuevo espaciador. Esto permite que 

en el propio locus se genere un registro cronológico de las infecciones que ese organismo y sus 

antepasados han padecido, dado que como el genoma se modifica con la adquisición de los 

espaciadores, los descendientes pueden heredar la protección [6]. 

En la segunda etapa, expresión, el sistema se prepara para actuar por medio de la expresión de los 

genes Cas y la transcripción del locus CRISPR en un precursor llamado pre-CRISPR RNA (pre-crRNA), 

cuyo distinto procesado dará lugar a los distintos tipos de CRISPR. En el tipo I, el pre-crRNA es 

procesado por Cas5 o Cas6; mientras que el tipo II usa una RNasa III y un crRNA trans-activador 

(tracrRNA), junto con un factor adicional desconocido que produce un corte en 5’. El tipo III también 

usa, como el tipo I, Cas6, además de un factor adicional que produce un corte en 3’ [6].  

Finalmente, en la tercera etapa, interferencia, como consecuencia de una segunda infección por un 

mismo agente, el ácido nucleico es reconocido y degradado por la acción combinada del crRNA y las 

nucleasas Cas [6]. 
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Un tiempo después de su descubrimiento, se demostró que el sistema CRISPR-Cas tipo II facilita el 

corte sitio-específico guiado por RNA [7]. Este sistema, de manera típica, funciona mediante la 

interacción de dos RNAs: el crRNA, que reconoce el DNA diana, y el tracrRNA, que une y estabiliza la 

Cas9 [4]. Así, el dúplex de RNA en presencia de un protoespaciador llamado PAM (motivo adyacente al 

protoespaciador), en la hebra contraria y específico de organismo [9], se encarga de dirigir el corte de 

la nucleasa Cas9 a una distancia de unas 3 pb de la secuencia PAM (Figura 2) [10]. En la práctica, el 

dúplex de RNA se puede reemplazar por un único RNA guía (sgRNA) [8]. 

 
 

 

Tras el corte por Cas9, existen dos sistemas para reparar el DNA (Figura 3). En ausencia de plantilla 

de reparación, los cortes se reparan por el proceso propenso a errores NHEJ (Non-homologous end 

joining), por el cual se producen mutaciones de tipo indel (inserción/deleción). Se puede aprovechar 

de esta manera para inducir silenciamientos, al producirse cambios en el patrón de lectura y llegada 

prematura a codones STOP. El otro sistema, HDR (Homology-directed reparation), se da en presencia 

Figura 1. Representación esquemática del mecanismo de acción del sistema CRISPR-Cas9. Las Cas9 (verde) es 
guiada al DNA diana por un gRNA formado por el crRNA (spacer), que dirige el corte y un tracrRNA que une y 
estabiliza la Cas9 (scaffold) 

[11]
, 

[4]
. 

 

Figura 1. CRISPR-Cas9 como un sistema inmune adaptativo en bacterias 
[6]

. 
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de una plantilla exógena con brazos de homología con el lugar de inserción, permitiendo de esta 

manera la entrada del DNA exógeno. A diferencia del NHEJ, el HDR es generalmente activo solo en 

células en división y se suele producir a frecuencias más bajas y variables [10]. 

 
 

 

 
 
La técnica CRISPR-Cas9 es muy específica cuando los gRNAs se diseñan correctamente, pero la 

especificidad es todavía un problema importante. El gRNA ideal debería tener homología perfecta 

con el DNA diana y con ninguna otra región del genoma; pero en realidad, un gRNA dado tendrá 

sitios diana adicionales con homología parcial. Estos sitios se llaman off-targets y hay considerarlos a 

la hora de diseñar el experimento. Para mejorar la especificidad se pueden hacer modificaciones en 

la Cas9. Esta nucleasa genera roturas en la doble hebra gracias a la actividad combinada de dos 

dominios catalíticos, RuvC y HNH. Por tanto, la inactivación de uno de estos dominios, generando lo 

que se conoce como Cas9 nickasa, implicará que no se produzca un corte de doble cadena, sino de 

cadena simple (Figura 4). Esto aumenta mucho la especificidad, dado que se requieren dos nickasas 

dirigidas contra hebras opuestas para permitir la eliminación del DNA entre ambos puntos de corte, y 

es poco probable que dos sitios off-target estén a la distancia adecuada [11]. 

 
 
 
 
El sistema CRISPR-Cas9 está teniendo mucho impacto en genómica funcional. Su aplicación en 

estudios de genoma completo permitirá el cribado a gran escala de dianas de fármacos y otros 

fenotipos, y facilitará la generación de modelos animales que ayudarán a la comprensión de 

enfermedades humanas. Por otra parte, las aplicaciones de CRISPR-Cas9 también prometen cambiar 

el ritmo y el curso de la investigación agrícola [4]. 

Por todo esto, la técnica CRISPR-Cas9 es una buena aproximación para los objetivos que nos 

planteamos en el trabajo. 

Figura 3. Reparación de los cortes de doble hebra inducidos por Cas9. Puede ocurrir por NHEJ, resultando en 
mutaciones de tipo indel, que pueden crear un codón stop prematuro, generando un silenciamiento. 
Alternativamente, la reparación por HDR en presencia de un molde permite una edición fiel y precisa 

[10]
. 

 

Figura 4. Conversión de la Cas9 en una nickasa por inactivación de su dominio RuvC o HNH (nCas9), de 

manera que produce mellas en un sola cadena 
[9]

. 
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3. OBJETIVOS 

Partiendo de la importancia metabólica de la PEPCK-M y del escaso conocimiento que se tiene de la 

misma hasta la fecha, el objetivo es generar una línea celular HEK293T deficiente en PEPCK-M, 

actuando a nivel del gen que la codifica (PCK2) mediante la técnica CRISPR-Cas9 con la Cas9 

modificada para actuar como una nickasa, para así tratar de determinar el efecto de la proteína en el 

metabolismo y en la proliferación celular. 

4. MATERIALES Y MÉTODOS 

4.1. Líneas celulares 
Las células elegidas para utilizar la técnica de CRISPR son las HEK293T, que derivan de células 

embrionarias de riñón humanas [13], ya que expresan bien la PEPCK-M.  

Tienen una morfología de tipo epitelial y son células semi-adherentes que crecen en monocapa [14].  

4.1.2. Establecimiento y mantenimiento de las líneas celulares 

Para establecer los cultivos, se descongelaron las alícuotas, almacenadas en nitrógeno líquido, en un 

baño termostatizado a 37℃. El 1 ml descongelado se transfirió a un tubo tipo Falcon de 15 ml. Se le 

añadieron al menos 5 ml de medio completo y se centrifugó 5 minutos a 500 xg. El sobrenadante se 

retiró y seguidamente el pellet se resuspendió en 1 ml de medio DMEM completo (PAN-Biotech) 

nuevo (DMEM suplementado con 10% suero fetal bovino, 5% de penicilina-estreptomicina y 5% de 

glutamina). De esta forma se eliminó el DMSO que se había usado como crioprotector y que resulta 

tóxico para las células a partir de una determinada concentración, que depende de la línea celular. 

Este 1 ml nuevo se transfirió a un frasco de 25 cm2 y se completó hasta 5 ml con medio DMEM 

completo para establecer así el cultivo. 

Las células se manipularon en condiciones de esterilidad en campanas de flujo laminar vertical 

(Telstar PV-30/70). Una vez establecidos, los cultivos se mantuvieron en un incubador (CO2 Incubator 

Barnstead Lab-Line) a 37℃ y 5% CO2.  

Las células se observaron a diario al microscopio para evaluar su correcto crecimiento. Conforme 

alcanzaban la confluencia, se hacían pases, bien a frascos de 25 cm2, bien de 75 cm2. 

Para pasar las células, se tripsinizó con tripsina-EDTA (PAN-Biotech) con 2 ml para los frascos de 25 

cm2, y con 5 ml para los frascos de 75 cm2. Una vez despegadas y resuspendidas las células, se tomó 

la cantidad necesaria para hacer un pase 1:10 en el nuevo frasco. En el caso de los de 25 cm2, se 

tomó 0,5 ml y se completó hasta 5 ml (4,5 ml) con medio DMEM completo. Para los de 75 cm2, 1,5 ml 

de células tripsinizadas, completando hasta 15 ml (13,5 ml) con DMEM completo. 

Para la determinación de la cantidad de células, se usó un contador celular portátil, Scepter TM 

(Millipore), a partir de alícuotas de 1 ml procedentes del cultivo original, diluidas previamente en 

caso necesario. 

4.1.3. Criopreservación de las líneas celulares y obtención de pellets 

Con el objetivo de tener células almacenadas, se realizaron diversas criopreservaciones en nitrógeno 

líquido a lo largo del proceso. Asimismo, se recogieron pellets celulares para el aislamiento de DNA 

para su análisis por PCR, y para el análisis de las proteínas mediante Western-blot. 
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Los frascos de 75 cm2 se tripsinizaron del modo habitual (5 ml de tripsina). Una vez despegadas las 

células, se pasaron a un tubo tipo Falcon de 15 ml, al que se añadieron 13 ml de medio DMEM 

completo para inactivar la tripsina. A continuación, se centrifugaron 5 minutos a 500 xg y se retiró el 

sobrenadante. Seguidamente, el pellet se resuspendió en 3 ml de medio nuevo. 

Para la obtención de pellets, se tomó 1 ml de los 3 ml y se pasó a un tubo. De ese 1 ml, 800 μl se 

pasaron a otro tubo de 1,5 ml Eppendorf para destinarlos al aislamiento de DNA para su análisis por 

PCR y los 200 μl restantes para Western-blot. A continuación se volvió a centrifugar para obtener los 

pellets, que hasta su uso se mantuvieron congelados a -20℃.  

Para la preservación en nitrógeno líquido, a los 2 ml de cultivo sobrantes del paso anterior, todavía 

en el tubo tipo Falcon, se añadió DMSO (Sigma-Aldrich) a una concentración final del 10% (110 μl/1 

ml), dejando resbalar poco a poco por la pared del tubo mientras este se agitaba para dispersar 

rápidamente el DMSO y minimizar así su toxicidad sobre las células. El cultivo con el DMSO se pasó 

entonces a un criotubo, el cual se depositó en un recipiente con isopropanol a temperatura 

ambiente, que a continuación se introdujo en un congelador a -80℃. Esto permite que la congelación 

ocurra despacio, aproximadamente a 1℃ por minuto, para que así las células no sufran mucho daño 

por la formación de cristales de hielo. Pasadas 24 horas se traspasó a un tanque de nitrógeno líquido 

para su almacenamiento a largo plazo. 

4.2. Clonaje 
Con el fin de suprimir la expresión de PEPCK-M en las células HEK293T mediante el sistema CRISPR-

Cas9 reconvertido a nickasa, es necesario el diseño de cuatro de oligonucleótidos (en adelante, 

oligos) de cadena sencilla (fw y rv), complementarios dos a dos. Estos, previamente anillados para 

generar dos oligos de doble cadena (UP, porque codifica un RNA guía para el extremo upstream de la 

deleción; y DWN, porque codifica un RNA guía del extremo downstream), se clonaron de manera 

independiente en el plásmido que contiene la Cas9 nickasa, generando así dos vectores distintos, 

uno con cada oligo de cadena doble. Posteriormente, con ambos vectores se transformaron bacterias 

para obtener un alto número de copias de ambos vectores, para a continuación co-transfectarlos a 

las células HEK293T. 

4.2.1. Plásmido pX335 

El plásmido pX335 (Addgene plasmid # 42335) ha sido optimizado para realizar el CRISPR en 

humanos. Se trata de un vector de expresión en mamíferos con un alto número de copias en 

bacterias cultivadas a 37℃. 

Con 8.434 pb, contiene el esqueleto del vector pUC y resistencia a ampicilina, así como el gen de la 

Cas9 nickasa (D10A) humanizada de Streptococcus pyogenes. Es decir, la Cas9 de S. pyogenes con los 

codones adaptados para maximizar la expresión en humanos. Asimismo contiene el promotor U6, 

que permitirá la expresión del RNA guía, y el primer LK01, que servirá para la secuenciación. 

Adyacente al promotor U6, contiene el sitio de clonaje BbsI (Figuras 5 y 6) [7].  

Se recibió de Addgene en bacterias sembradas en agar. Como tiene resistencia a ampicilina, las 

bacterias se crecieron en presencia de este antibiótico para seleccionarlas frente a las que no lo 

tienen. 
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4.2.2. Diseño de oligonucleótidos 

Para el diseño de los oligos que dirigirán la modificación de la PEPCK-M, se decidió que la secuencia 

diana incluiría el ATG iniciador del primer exón, para evitar la síntesis de fragmentos de la proteína 

que pudieran tener alguna actividad residual. 

Como se ha mencionado, el plásmido usado codifica una nickasa en lugar de una Cas9 convencional. 

De esta manera, teniendo en cuenta la secuencia del exón 1, se diseñaron dos conjuntos de oligos en 

los extremos (subrayado) de una secuencia de 59 pares de bases (negrita) en cuyo centro más o 

menos se encuentra el ATG iniciador (rojo), y que está flanqueada por la secuencia PAM NGG (en 

amarillo), imprescindible para el corte con la Cas9 de S. pyogenes que contiene el plásmido [10]. De 

esta manera, se producirá un corte de cadena sencilla a cada extremo de esa región de 59 pares de 

bases, pero en cadenas opuestas, de forma que se escindirá ese fragmento de DNA.   

SECUENCIA EXÓN 1 (NG_008162.2) [2] 
TGGGTTTGGCGGTTTGGAGGCAGGGGTTGGGGCGGCGGCTGGGCTGACCTGGAGCCTGGAGCCCCGGGGCCGAGG

GAGCTGGCCTGCCAGCGGGGCGGAGGAAAGCTAGTGCCAGCCCTACCAGGTTCCGCCCCCGCGCCTGCCCCCCTC

CTTTTTAAGCGCCTCCCGCCAGCCTCTGCTGTGGCTCGCTTCGCCGCGCTCCCTCCTTCCCCGCCTTCCATACCT

CCCCGGCTCCGCTCGGTTCCTGGCCACCCCGCAGCCCCGCCCAGGTGCCATGGCCGCATTGTACCGCCC

TGGCCTGCG 

Puesto que la enzima de restricción BbsI no corta en la secuencia específica que reconoce, sino a 

unos pocos nucleótidos, independientemente de la secuencia de los mismos, los dos sitios de corte 

de BbsI presentes en pX335 se han diseñado con secuencias distintas. Por tanto, para favorecer la 

posterior clonación direccional de los oligos en el vector, es necesario añadir cuatro nucleótidos en el 

extremo, CACC para el oligo fw y CAAA para el rv, de manera que se genera complementariedad con 

los extremos que quedarán en el plásmido al digerirlo con la BbsI (Figura 6). 

Figura 5. Mapa del plásmido pX335
 [11]

. 

 



 

Página 9 de 30 

 

 
   3’    GAG   CCAAGGACCGGUGGGG 5’ 

   5’ CCGCTC / GGTTCCTGGCCACCCCGCAGCCCCTGCCCAGGTGCCATGGCCGCATTGTACCGCCCTGG 3’ 
         ----------------------- espaciador PAM ----------------------- 
   3’ GGCGAGCCAAGGACCGGTGGGGCGTCGGGGACGGGTCCACGGTACCGGCGTAACATGGC / GGGACC 5’ 
                                             5’ AUGGCCGCAUUGUACCG   CCC    3’ 

 
KO-PCK2-UPfw:  5’ CACCGGGGGTGGCCAGGAACCGAG 3’ 

KO-PCK2-UPrv:  3’     CCCCCACCGGTCCTTGGCTCCAAA 5’ 

 

KO-PCK2-DWNfw: 5’ CACCGTGGCCGCATTGTACCGCCC 3’ 

KO-PCK2-DWNrv: 3’     CACCGGCGTAACATGGCGGGCAAA 5’ 

      

Los oligos se encargaron a Invitrogen. 

4.2.3. Obtención del plásmido pX335 purificado 

Las bacterias que contenían el plásmido se crecieron en 10 ml de LB con 50 μg/ml de ampicilina 

durante toda la noche a 37℃ y 200 rpm en un incubador orbital. 

A continuación, se extrajo el DNA plasmídico de un pellet equivalente a 3 ml del cultivo con el 

Plasmid DNA Extraction Mini Kit de Favorgen y luego se cuantificó y determinó la pureza del DNA 

utilizando un espectrofotómetro, Nanovue plus.  

4.2.4. Digestión del DNA plasmídico puro 

El DNA plasmídico puro se digirió con la enzima BbsI (Thermo Scientific) para permitir la posterior 

ligación con los oligos que codifican los RNAs guía que dirigirán el corte de la Cas9.  

El volumen total de la preparación fue de 90 μl, ya que según la cuantificación, había muy poca 

concentración de DNA, de manera que se pusieron 75 μl de DNA, 9 μl de tampón Tango 10X (Thermo 

Scientific), 1 μl de enzima BbsI y 5 μl de agua estéril para completar el volumen. Una vez hecha la 

mezcla, se incubó 2 horas a 37℃.  

Al terminar, se hizo una comprobación mediante una electroforesis horizontal en gel de agarosa al 

1%, con Sybr-Safe (Invitrogen) a una dilución 1:30.000 para poner de manifiesto la presencia del DNA 

utilizando una lámpara de luz azul (GeneFlash Syngene Bio Imaging). Se cargaron 10 μl de muestras 

con 2 μl de tampón 6X LB, y 10 μl de patrón de peso molecular 1 kb. Se corrió durante 30 minutos a 

80V en tampón TBE 1X (Anexo III).  

A continuación, mediante el NucleoSpin Gel and PCR Clean-Up kit de Macherey-Nagel, se purificó el 

DNA digerido del gel de agarosa para usarlo en ligaciones.  

Figura 6. Detalle del sitio de clonaje del plásmido pX335 
[11]

. 
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4.2.5. Hibridación de oligos 

Dado que los oligos se encargaron en forma de cadena simple, hubo que anillar los complementarios 

(fw y rv) para dar lugar a los dos oligos de cadena doble, UP y DWN, con extremos cohesivos 

complementarios a los extremos generados por la enzima BbsI en el vector. 

KO-PCK2-UP: CACCGGGGGTGGCCAGGAACCGAG 

                CCCCCACCGGTCCTTGGCTCCAAA 

KO-PCK2-DWN: CACCGTGGCCGCATTGTACCGCCC 

                 CACCGGCGTAACATGGCGGGCAAA 

Para ello, para cada una de las dos hibridaciones, se mezclaron 3 μl de cada uno de los dos oligos de 

cadena simple (fw y rv) a una concentración de 100 μM y 44 μl de NaCl 50 mM en TE (Anexo III). El 

tubo con esta solución se introdujo, utilizando un flotador, en un vaso de precipitados con agua que 

previamente se había llevado a ebullición. Se tapó el vaso de precipitados con varias capas de papel 

de aluminio para mantener el aire dentro lo más caliente posible y minimizar así la condensación de 

agua en la tapa del tubo, evitando de esta manera que se concentrase la muestra y se alterase el 

anillamiento. Finalmente, se dejó enfriar lentamente hasta temperatura ambiente.   

4.2.6. Ligación del vector con el inserto 

Como ya se ha mencionado, fue necesario construir dos vectores independientes, uno con el oligo 

UP y otro con el DWN. Así se hicieron dos mezclas de ligación, además de una control en la que se 

incluyó agua estéril en lugar de inserto (Tabla 1). 

Control pGLP1 pGLP2 

5 μl vector digerido 5 μl vector digerido 5 μl vector digerido 

4 μl tampón ligasa 5X 
(Invitrogen) 

4 μl tampón ligasa 5X  
4 μl tampón ligasa 5X 

(Invitrogen) 

1 μl ligasa (Invitrogen) 1 μl ligasa 1 μl ligasa 

10 μl agua estéril 8 μl agua estéril 8 μl agua estéril 

 2 μl oligo UP 2 μl oligo DWN 

 
 
Para terminar, se dejó en la cámara fría a 4℃. 

4.2.7. Transformación y selección de colonias 

Con los productos de ligación se transformaron bacterias Escherichia coli DH5α, al tratarse de una 

cepa que produce un alto número de copias de plásmidos. Una vez purificado el plásmido de las 

colonias bacterianas con el Plasmid DNA Extraction Mini Kit de Favorgen, se sometió a una doble 

digestión enzimática para confirmar el correcto clonaje del inserto. 

En tres tubos con 200 μl de las bacterias se añadieron 5 μl de la correspondiente mezcla de ligación 

(pGLPC, pGLP1 o pGLP2), se mezcló y se dejó en hielo 30 minutos. A continuación se le dio un choque 

térmico a 42℃ durante 1 minuto y seguidamente se puso otros dos minutos en hielo. Finalmente, se 

añadió 1ml de LB, se mezcló bien y se incubó 1 hora a 37℃  en el incubador orbital.  

Tras ese tiempo, se centrifugó durante 2 minutos a 2.500 rpm. Así se obtuvo el pellet y se retiró 

sobrenadante hasta que quedó un volumen de 200 μl. En esterilidad, se resuspendió y se pipetearon 

150 μl de la correspondiente mezcla en distintas placas con 150 μg/ml ampicilina para seleccionar 

Tabla 1. Mezclas de ligación inserto-vector. 
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aquellas bacterias que habían introducido el plásmido. Las placas se incubaron durante una noche a 

37℃.  

Al día siguiente, se seleccionaron 5 colonias de la placa pGLP1 (nombradas como pGLP1-1, pGLP1-2, 

pGLP1-3, pGLP1-4 y pGLP1-5) y otras 5 de la placa pGLP2 (nombradas como pGLP2-1, pGLP2-2, 

pGLP2-3, pGLP2-4 y pGLP2-5). Estas se crecieron en 4 ml de medio líquido LB con 50 μg/ml ampicilina 

durante toda la noche a 37℃ en un incubador orbital. A partir de ese cultivo, se tomaron 3 ml para 

hacer una extracción del DNA plasmídico con Plasmid DNA Extraction Mini Kit de Favorgen.  

Seguidamente, para comprobar si el inserto se había introducido correctamente, se digirió el DNA 

plasmídico de cada colonia seleccionada con la enzima BbsI y con la EcoRI High Fidelity del grupo de 

investigación de Ramón Hurtado (BIFI, Universidad de Zaragoza), para evitar cortes no específicos. 

Para la digestión se usó el tampón NEBuffer 2.1 (New England Biolabs), para el cual las dos enzimas 

tienen una efectividad del 100% (Tabla 2) [16].  

Control Muestras 

0,25 μl BbsI 0,25 μl BbsI 

0,25 μl EcoRI 0,25 μl EcoRI 

2 μl tampón NE 2.1 2 μl tampón NE 2.1 

17,1 μl agua estéril 12,1 μl agua estéril 

0,4 μl plásmido vacío 
5 μl plásmido extraído de la 

colonia correspondiente 

 
 
 
 
A continuación se incubó 1h a 37℃ y seguidamente se comprobó el resultado con una electroforesis 

en gel de agarosa al 1% usando el mismo procedimiento que en el apartado 4.2.4. Digestión del DNA 

plasmídico puro. La digestión y la electroforesis se repitieron para las colonias que parecían 

correctas, pero con menos cantidad de DNA (Tabla 3). 

Control Muestras 

0,25 μl BbsI 0,25 μl BbsI 

0,25 μl EcoRI 0,25 μl EcoRI 

2 μl tampón NE 2.1 2 μl tampón NE 2.1 

17,1 μl agua estéril 17 μl agua estéril 

0,4 μl plásmido vacío 
0,5 μl plásmido extraído de la 

colonia correspondiente 

 
 
 
 
Para confirmar que los clones eran correctos, se aisló del gel el DNA plasmídico de cada colonia que 

según las digestiones parecía correcta, con NucleoSpin Gel and PCR Clean-Up kit de Macherey-Nagel, 

y se mandó a secuenciar a Sistemas Genómicos de Paterna (Valencia), usando como cebador de la 

secuenciación el oligo LK01 (5’GACTATCATATGCTTACCGT 3’), también encargado a Invitrogen.   

La mezcla, con un volumen final de 19 μl, contenía 3,5 μl de primer LK01 1 μM, 3 μl de DNA 50 ng/μl 

y 12,5 μl de agua para completar volumen.  

Tabla 2. Mezclas de digestión del DNA plasmídico para la selección de colonias con un correcto clonaje de 
las placas pGLP1 (colonias pGLP1-1, pGLP1-2, pGLP1-3, pGLP1-4 y pGLP1-5) y pGLP2 (colonias pGLP2-1, 
pGLP2-2, pGLP2-3, pGLP2-4 y pGLP2-5). En paralelo se digirió plásmido vacío como control. 

 

Tabla 3. Repetición de las mezclas de digestión del DNA plasmídico para la selección de colonias con un 
correcto clonaje, digiriendo las que en el paso anterior parecían positivas. En paralelo se digirió plásmido 
vacío como control. 
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4.3. Obtención de la línea celular estable 
Con el fin de generar una línea estable de células HEK293T con la PEPCK-M silenciada, estas se co-

transfectaron con los dos vectores construidos, pGLP1 y pGLP2, para conseguir que ambos RNAs guía 

se expresasen simultáneamente en una misma célula, condición necesaria para que se produzca el 

corte por Cas9. Tras esto, las células se sometieron a un proceso de selección para determinar cuáles 

habían sufrido la deleción. 

4.3.1. Co-transfección  

Se realizaron dos métodos distintos de co-transfección, ambos en placas de 24 pocillos a partir de un 

cultivo de células HEK293T wildtype en un frasco de 75 cm2, y mediante GeneJuice Transfection 

Reagent de Novagen. Se siguió el protocolo del fabricante para células adherentes, usando OptiMem 

de Gibco by Life Technologies, y añadiendo 250 ng de cada construcción, pGLP1-5 y pGLP2-1 (500 ng 

en total), al ser estas las que, según las comprobaciones, tenían una secuencia correcta. 

Por una parte, se hizo una co-transfección reversa, ya que se ha visto que tiene mayor eficiencia, con 

200.000 células/pocillo. Esta consiste en que las células se siembran sobre la mezcla de transfección 

ya preparada, de modo que integran el DNA exógeno conforme se adhieren. 

200.000 células ·
mL

6,2·105 células
= 0,333 mL = 333 μL de células wildtype. A estas se les añadieron 

167 μl de DMEM completo. 

Por otra parte, se hizo una co-transfección convencional sembrando por duplicado las siguientes 

cantidades en la placa de 24 pocillos. 

250 μl células + 250 μl DMEM   125 μl células+ 375 μl DMEM    62,5 μl células+ 437,5 μl DMEM 

Al día siguiente se realizó la transfección en el pocillo de concentración intermedia (125 μl células + 

375 μl DMEM). 

Cuando alcanzaron confluencia, las células transfectadas se tripsinizaron con 100 μl  de tripsina y un 

vez despegadas se pasaron a un frasco de 25 cm2 con 5 ml de medio DMEM completo. 

4.3.2. Selección de clones positivos 

Para la selección de clones positivos, las células confluentes en los frascos de 25 cm2 se pasaron a 

placas de Petri (100 mm de diámetro) y a placas de 6 pocillos a muy baja concentración. Así se 

consiguió que quedasen células aisladas, lo suficientemente separadas como para que a partir de una 

única célula se formase una colonia. De esta manera, si el CRISPR había funcionado en la célula que 

originariamente había dado lugar a la colonia, se daría una modificación indel concreta que se 

transmitiría a todas las células hijas de la colonia, dando lugar a un clon positivo.  

Para empezar, se cuantificaron las células para calcular la cantidad necesaria a pipetear para 

conseguir dos placas de Petri con 100 células por placa en un volumen final de 15 mL/placa 

(
200 células

30 mL
= 6,67 

células

mL
). 

200 células ·
mL

3,2·105 células
= 0,000625 mL = 0,625 μL de la transfección no reversa 

200 células ·
mL

4,65·105 células
= 0,00043 mL = 0,43 μL de la transfección reversa 
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A esta misma concentración se sembró el cuarto pocillo de una placa de 6 pocillos, mientras que los 

pocillos de arriba se sembraron a mayor concentración, y los de la derecha a menor (Figura 7). Así, se 

trataba de encontrar la concentración adecuada de células para la selección. 

 
 

Cuando se obtuvieron colonias de un tamaño adecuado para su aislamiento (unos pocos mm de 

diámetro), se utilizaron cilindros de clonaje (Sigma-Aldrich) para aislar y pasar clones a frascos de 25 

cm2. 

Para ello, se eligieron 18 colonias, 9 de cada transfección, de distinto aspecto. Se marcó su posición 

con rotulador en el lado exterior de la placa y a continuación, en cabina de cultivo, se les colocó un 

cilindro encima (con silicona en su lado inferior para adherirse a la placa y formar una barrera 

impermeable), de forma que la colonia quedó rodeada por el cilindro. A continuación se añadieron 

en cada cilindro 50 μl de tripsina-EDTA para despegar las células. Tras resuspender bien, esos 50 μl se 

pasaron a frascos de 25 cm2, a los que se añadieron 5 ml de medio DMEM completo. Se nombraron 

con números del 1 al 18, siendo los 9 primeros de la transfección reversa y los otros 9 de la 

convencional, y se introdujeron en el incubador. Conforme alcanzaron la confluencia, se pasaron a 

frascos de 75 cm2 y seguidamente se hicieron las comprobaciones de la eficacia del CRISPR. Los 

clones 2 y 7 tenían un crecimiento más lento, por lo que la comprobación se hizo más adelante. 

4.3.2. 1. PCR 

Por una parte, para la determinación de la eficacia de CRISPR se realizó una PCR del DNA genómico 

extraído de los distintos clones. Se usaron dos oligos, diseñados específicamente a partir de la 

secuencia de nucleótidos del gen que codifica para la PEPCK-M (Anexo I), de manera que el DNA 

diana del CRISPR-Cas9 quedó contenido en el producto de PCR. Se encargaron a Invitrogen. 

PCK2CRISPFor: 5’ GGGTTTGGCGGTTTGGAGGC 3’ 

PCK2CRISPRev: 5’ TGCCCTCCCAAGAGACGCGC 3’ 

Con el pellet obtenido de las células transfectadas en cultivo (4.1.3. Criopreservación de las líneas 

celulares y obtención de pellets), se hizo la extracción del DNA genómico con Genomic DNA 

Extraction Blood DNA Kit de Favorgen. 

La mezcla de PCR, con un volumen final de 25 μl, contaba con 5 μl de Taq Master Mix 5X de Bioron, 

un 5% de DMSO (1,25 μl), 12,75 μl de H2O, 0,5 μl de cada primer 10 μM (PCK2CRISPFor y 

PCK2CRISPRev) y 5 μl de DNA 500 μg/ml genómico extraído correspondiente. 

Estas preparaciones de PCR se pusieron en un termociclador Minicycler MJ Research, con el 

programa que sigue: 

73,4 
células

ml
 66,7 

células

ml
 53,4 

células

ml
 

3,34 
células

ml
 2,23 

células

ml
 6,67 

células

ml
 

Figura 7. Concentraciones de siembra celular para la selección de clones positivos. 
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Desnaturalización inicial 2 min a 94℃ 

40 ciclos de: 

 Desnaturalización 10s a 94℃ 

 Anillamiento 20s a 54℃ 

 Elongación 45s a 72℃ 

Una vez finalizada, se hizo una electroforesis en un gel de 2% de agarosa usando los mismos 

parámetros que en el apartado 4.2.4. Digestión del DNA plasmídico puro.   

Después, la PCR y la electroforesis se repitieron en las mismas condiciones para los clones que 

parecían delecionados y a continuación se purificó el DNA con NucleoSpin Gel and PCR Clean-Up kit 

de Macherey-Nagel para mandar a secuenciar. 

4.3.2.2. Secuenciación 

Aquellos clones que en la PCR parecían ser positivos se mandaron a secuenciar a Sistemas 

Genómicos de Paterna (Valencia), con el fin de comprobar que en efecto eran correctos. Para ello, 

cada uno de los clones y el silvestre se secuenció por duplicado; para así tener una mayor seguridad 

en el resultado de la secuenciación. En un caso el cebador fue el oligo PCK2CRISPFor, y en el otro el 

PCK2CRISPRev. 

La mezcla de secuenciación tenía un volumen final de 19 μl, con 3,5 μl de oligo correspondiente 1 

μM, 3 μl de DNA 10 ng/μl y 12,5 μl de agua para completar volumen.  

4.3.2.3. Western-blot 

Una vez confirmado el corte mediante PCR y secuenciación, con los pellets restantes de los clones 

positivos (4.1.3. Criopreservación de las líneas celulares y obtención de pellets) se hizo un Western-

blot para estudiar la expresión de la PEPCK-M. 

En primer lugar, se prepararon las muestras para hacer una electroforesis vertical de proteínas en un 

gel desnaturalizante de poliacrilamida (SDS-PAGE). Para ello, se rompieron las células en presencia de 

200 μl de tampón de carga 2X SLB (Anexo III). Para romper el DNA se sonicó con el siguiente ciclo: 5 

minutos sonicando, 5 minutos de descanso, y finalmente otros 5 minutos sonicando. Una vez 

terminado, se comprobó si la muestra estaba viscosa como consecuencia de la liberación del DNA. En 

los casos en los que seguía viscoso, se repitió la sonicación durante 10 minutos más. En el momento 

en que ya no estuvieron viscosos, se sometieron a un hervido de 5 minutos a 100℃.  

A continuación, se cargaron en el gel 5 μl de patrones de peso molecular, y 10 μl del silvestre y cada 

clon positivo. La electroforesis se corrió 50 minutos a 180V en tampón Tris-glicina-SDS. 

Los geles de poliacrilamida constan de dos partes. La parte superior tiene poliacrilamida al 4% 

(concentrador o stacking), mientras que en la inferior está al 10% (separador o running), 

concentración adecuada para separar la PEPCK-M al tener esta un peso molecular de unos 70 kDa [1]. 

Una vez hubo finalizado, se realizó la transferencia. Para ello, se colocó en un soporte una esponja, 

dos papeles Whatman para mejorar el contacto con el gel, el gel, y sobre él la membrana de PVDF 

para transferir, activada previamente con metanol. Sobre esta se añadieron otros dos papeles 

Whatman y una esponja. Finalmente el soporte se cerró, se colocó en una cubeta con tampón de 
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transferencia (Anexo III) y hielo, y se dejó transferir durante 70 minutos a 100 V en la cámara fría con 

un agitador magnético para homogenizar la temperatura.  

Tras la transferencia, se bloqueó la membrana durante una hora con 3 ml de PBST (Anexo III) al 5% 

BSA (Sigma-Aldrich) para evitar que el anticuerpo se uniese inespecíficamente a la membrana. 

Después, se eliminó el líquido y se añadieron 3 ml de PBST al 5% BSA con los anticuerpos primarios: 

por una parte, un anticuerpo primario de cabra contra PEPCK-M (Everest Biotech), que era la 

proteína que queríamos detectar, a una dilución de 1:3.000. Por otra, un anticuerpo de conejo anti-

actina (Sigma-Aldrich) que actuó como control de carga, a una dilución 1:10.000. Se dejaron toda la 

noche incubando en un balancín en la cámara fría a 4℃.  

Al día siguiente, se hicieron tres lavados con PBST de 10 minutos para retirar el anticuerpo primario 

no unido. Seguidamente, se añadieron los anticuerpos secundarios también en PBST al 5% BSA, 

ambos a una concentración 1:10.000. Por una parte, anti-cabra (Millipore) y por otra anti-conejo (Cell 

Signalling Technology). Se dejaron incubando durante 1 hora en un balancín a temperatura 

ambiente, tras lo cual se hicieron otros tres lavados con PBST de 8 minutos para retirar el anticuerpo 

secundario no unido.  

El revelado se hizo con el kit de ECL Inmobilon Western (Millipore), que se basa en la emisión de luz 

cuando la peroxidasa conjugada con el anticuerpo secundario se pone en contacto con el peróxido y 

el luminol del kit. Esta luz es luego captada por una película fotográfica (GE Healthcare), poniendo de 

manifiesto las bandas tras su revelado con métodos convencionales en cuarto oscuro. 

4.4. Ensayo de producción glucosa 
Para ver el efecto que el silenciamiento tiene sobre el metabolismo celular, se realizaron tres 

ensayos, independientes pero iguales, de producción de glucosa. 

Para ello, se sembraron 700.000 células/pocillo, por duplicado, de cada clon positivo y de la línea 

celular silvestre, en una placa de 6 pocillos. Anteriormente, y para evitar que las células se 

despegasen en pasos posteriores, los pocillos se habían incubado durante 1 hora a 37℃ con 1 ml de 

poli-lisina. 

Cada pocillo se sometió a una transfección reversa. Así, uno de los dos pocillos de la cepa silvestre y 

de los clones positivos se transfectó con un plásmido que contenía la PEPCK-M (pcDNA-Myc PCK2) 

para ver el efecto de la sobreexpresión de la misma en el caso del silvestre, o de la reversión del 

fenotipo en el caso de los clones silenciados. El otro pocillo de cada muestra fue sometido a una falsa 

transfección, es decir, solo con los reactivos pero sin DNA, como control para determinar el posible 

efecto del proceso de transfección sobre las células. 

A los dos días de cultivo, se retiró el medio completo y se añadieron 2 ml de medio de producción de 

glucosa: DMEM puro (Gibco by Life Technologies) con 2 mM de piruvato y 20 mM de lactato (Sigma-

Aldrich). Esto se mantuvo durante media hora en incubación a 37℃ para conseguir que los gránulos 

de glucógeno se movilizasen. Pasado este tiempo, se retiró el medio y se puso 1 ml nuevo durante 3 

horas a 37℃ para estimular la producción de  glucosa. Tras ello, se recogieron los medios de cultivo 

de cada pocillo y se realizó el ensayo colorimétrico con Glucose  (GO) Assay kit  (Sigma-Aldrich), que 

se basa en la aparición de color al reaccionar la glucosa de la muestra con la glucosa oxidasa y la 

peroxidasa del kit. 
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Se preparó un blanco con 250 μl de agua, una referencia con 250 μl de glucosa a 50 μg/mL, y 

finalmente, las muestras con 250 μl del medio de cultivo correspondiente. A estos se les añadió 500 

μl del reactivo del ensayo de glucosa del kit y se dejó la reacción durante 30 minutos a 37℃. Para 

detenerla, se añadieron 500 μl de ácido sulfúrico. La aparición de color se midió a continuación con 

un espectrofotómetro (Cary 100 Bio UV-Visible Spectrophotometer) a 540 nm.  

4.5. Ensayo de Bradford 
Las células cultivadas para el ensayo de glucosa se lisaron para hacer una cuantificación de proteína 

total mediante un ensayo de Bradford en placas de 96 pocillos. 

Para ello, se hizo inicialmente un lavado con 500 μl de PBS. Después se despegaron las células con 1 

ml de PBS, del cual se tomaron 500 μl para centrifugar y obtener un pellet. Este se resuspendió en 

500 μl de tampón de lisis (PBS 1% Tritón) para obtener el lisado celular. 

A continuación, se prepararon las mezclas para el ensayo. Todas ellas se prepararon con 99 μl del 

reactivo de Bradford (Bio-Rad). Para el blanco se añadió 1 μl de agua, para la referencia 1 μl de BSA a 

1 mg/ml, y para cada muestra 1 μl del lisado celular correspondiente. Se pipeteó bien, se esperó 

unos segundos a la aparición de color azul y seguidamente se midió la absorbancia en un lector de 

placas (Biotek Sinergy HT) a 595 nm.  

5. RESULTADOS Y DISCUSIÓN 

5.1. Purificación del plásmido pX335  
Tras la obtención del plásmido puro (4.2.3. Obtención del plásmido pX335 purificado), se midió 

mediante espectrofotómetro la concentración y la pureza del mismo. La relación Abs260/Abs280 se 

encontraba dentro de los márgenes normales, entre 1,8 y 2, por lo que se podía decir que no había 

contaminación por RNA, el cual absorbe a 280, frente al DNA que absorbe a 260. Asimismo, el valor 

de la relación Abs260/Abs230 también era adecuado, por lo que se concluyó que tampoco había 

contaminación por proteínas ni compuestos fenólicos.  

La concentración obtenida era sin embargo muy baja, de 6,85 μg/ml, por lo que el rendimiento de la 

obtención había sido muy malo. Esto podría dar problemas en los pasos posteriores ante la 

necesidad de poner una alta cantidad del eluído. Aun así, se consideró que como inicio era suficiente 

y se prosiguió con los experimentos. 

5.2. Digestión del DNA plasmídico 
El plásmido puro se digirió con la enzima de restricción BbsI y posteriormente se analizó mediante 

electroforesis en agarosa, poniéndose de manifiesto que la digestión había sido efectiva ya que como 

se ve en la Figura 8, había una única banda correspondiente a un tamaño de unas 8.000 pb, que se 

corresponde con el tamaño del plásmido completo linearizado. 

 

 

PM 1 2 

8.000 pb 

Figura 8. Digestión del plásmido pX335 con la enzima de restricción BbsI en presencia de tampón Tango 10X 
para la posterior ligación con el inserto. En el primer carril se encuentran los patrones de peso molecular 
(PM), y en los dos siguientes (1 y 2) muestras iguales del plásmido digerido con BbsI. A la izquierda se indica la 
posición del marcador de 8 kb. 
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Si no se hubiese digerido, podría observarse más de una banda ya que una parte del plásmido estaría 

en una conformación circular superenrollada, que habría migrado menos. Para confirmarlo, habría 

sido mejor correr el plásmido no digerido en paralelo. 

5.3. Transformación y selección de colonias  
El DNA digerido se usó en una ligación con los oligos anillados, dando dos vectores distintos que 

luego se usaron para transformar bacterias E. coli DH5α que se sembraron en placas de agar con 

ampicilina para así obtener una gran cantidad de ambos vectores.  

Al observar las placas, se vio que el control tenía más o menos las mismas colonias que pGLP1 y 

pGLP2. Esto no es lo esperado, ya que en el control debería haber menos colonias porque como los 

dos sitios de corte por BbsI son distintos, el plásmido no se debería circularizar y por tanto no 

existiría resistencia a ampicilina. Además, las colonias presentes en estas placas eran más pequeñas, 

lo que en este caso no está justificado. Se veía asimismo una alta presencia de colonias satélite, lo 

que indica que tal vez la concentración de antibiótico era demasiado baja. 

A continuación, se extrajo el DNA plasmídico de 5 colonias de cada placa y se sometió a la digestión 

por dos enzimas, BbsI y EcoRI. Esto permitió distinguir los clones que habían introducido el vector 

con el inserto, de aquellos en los que se había introducido el vector sin inserto, recircularizado 

consecuencia de una digestión parcial; gracias a la aparición de un distinto patrón de bandas en la 

electroforesis tras la digestión (Figuras 10 y 11). En los clones en los que se había introducido el 

vector con el inserto, el sitio BbsI se había perdido, de manera que solo se produjo el corte por EcoRI, 

dando lugar a una banda de un tamaño de 8.434 pb. Por el contrario, en los clones que habían 

introducido el plásmido circularizado sin inserto, el sitio BbsI se había reconstruido, de manera que 

se podían apreciar dos bandas de distinto tamaño, una a 5.451 pb y otra a 2.983 pb, derivadas del 

corte por ambas enzimas (Figura 9). 

 

 Figura 9. Mapa de digestión del plásmido pX335 con EcoRi y con BbsI, obtenido con la herramienta 
NEBCutter a partir de la secuencia de nucleótidos del plásmido en Addgene. En (A), el resultado de 
cortar con EcoRI (clones positivos, plásmido completo linearizado). En (B), el resultado de cortar con 
EcoRI y BbsI (clones negativos), de manera que se generan dos fragmentos, de 5.451 pb y 2.983 pb. 
Abajo (C), la lista con los sitios de corte de ambas enzimas. 

 

(A) 

 

(B) 

(C) 
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Sin embargo, como la digestión y la electroforesis se hicieron sin previa cuantificación, se vio que 

había un exceso un DNA, lo que estaba distorsionando las bandas. Así, se repitió el proceso, pero con 

menos cantidad de DNA, con aquellos clones que parecían positivos, es decir, 1-1, 1-4, 1-5, 2-1 y2-2; 

ya que era en estos en los que se veía una única banda de 8.000 pb (Figura 11). 

 

 
 

 

Todos los clones, salvo el 2-2, tenían el comportamiento esperado para un plásmido que contiene el 

inserto, ya que como se observa en la Figura 11, había una única banda a 8.000 pb. Sin embargo, la 

muestra 2-2 migraba más, por lo que decidimos obviar este clon ya que puede que la secuencia 

hubiese sufrido alguna modificación no deseada. 

En base a los problemas tenidos, y de cara a la secuenciación, se cuantificó la concentración de DNA 

de la purificación de cada clon, obteniendo los siguientes resultados: GLP11: 329 ng/μl, GLP14: 331,5 

ng/μl, GLP15: 339,0 ng/μl y GLP21: 302,5 ng/μl. Los valores de Abs260/280 y Abs230/260 eran 

adecuados, por lo que se concluyó que la purificación había producido DNA de buena calidad y 

pureza. 

1-1  1-3 PM C 

2-2  1-1 2-1 PM 1-4  1-5 C 

8.000 pb 

3.000 pb 

5.000 pb 

1-4 1-5 2-1 1-2  2-2 2-3 2-4 2-5 

8.000 pb 

3.000 pb 

5.000 pb 

Figura 10. Digestión con BbsI y EcoRI del DNA plasmídico en presencia de tampón NEBuffer 2.1 para la 
comprobación de la integración del inserto. En el primer carril se encuentran los patrones de peso molecular 
(PM). Los carriles siguientes, nombrados como 1-1, 1-2, 1-3, 1-4, 1-5, 2-1, 2-2, 2-3, 2-4 y 2-5, contienen el DNA 
plasmídico digerido de los clones de mismo nombre. En el último carril, hay un control (C) de plásmido 
digerido con ambas enzimas. A la izquierda se indica la posición del marcador de 8 kb, y a la derecha las 
posiciones de las bandas de 5 kb y 3kb. 

 

Figura 11. Repetición de la digestión con BbsI y EcoRI con una menor cantidad de DNA. En el primer carril se 
encuentran los patrones de peso molecular (PM). Los carriles siguientes, nombrados como 1-1, 1-2, 1-4, 1-5, 
2-1, 2-2 contienen el DNA digerido de los clones de mismo nombre. En el último carril, hay un control (C) de 
plásmido digerido con ambas enzimas. A la izquierda se indica la posición del marcador de 8 kb, y a la derecha 
las posiciones de las bandas de 5 kb y 3 kb. 
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Para confirmar que el inserto sí se había introducido correctamente, se secuenciaron los clones que 

en la electroforesis parecían positivos. Una vez obtenida la secuenciación, esta se alineó con la 

secuencia que tendría que tener el plásmido con el oligo insertado. Así, se comprobó que solo 

pGLP1-5 y pGLP2-1 eran correctas porque eran las únicas en las que no había discordancia con la 

referencia (Anexo II).  

5.4. Selección de clones positivos 
Una vez se hubieron obtenido los dos vectores necesarios para guiar el corte con Cas9, pGLP1-5 y 

pGLP2-1, con estos se co-transfectaron células HEK293T para obtener la línea. Estas se pasaron 

entonces a placas de Petri y a placas de 6 pocillos para la selección de clones positivos. A los 6 días de 

cultivo en las placas, ya era posible ver colonias aisladas de un tamaño considerable como para 

aislarlas en cultivos diferenciados mediante cilindros de clonaje. 

Así, cuando los clones aislados crecieron, se realizó una extracción de DNA genómico para realizar 

una PCR y posteriormente una electroforesis que permitió comprobar si el corte con la Cas9 había 

sido efectivo (Figura 12). En los clones positivos esperaríamos ver una banda que hubiese migrado 

más que la cepa silvestre, ya que el sistema produce dos cortes con 59 nucleótidos de separación, de 

manera que el DNA entre ambos se pierde. Sin embargo, el fragmento eliminado puede variar 

ligeramente de tamaño de unos clones a otros, ya que el sistema de reparación celular, que habrá 

actuado de manera diferente en cada clon, puede eliminar nucleótidos adicionales. 

 

 

 

 

 6  1 5 PM 3 4 8 WT 9  10 

PM 11 12  13 14  15 16 17 18 WT 

486 pb 

486 pb 

Figura 12. PCR del DNA genómico con Taq Master Mix para la comprobación de la efectividad del corte con 
CRISPR-Cas9. Tanto en (A) como en (B), el primer carril se corresponde con los patrones de peso molecular 
(PM) y el segundo con la amplificación del DNA de la cepa silvestre (WT). En (A) los carriles nombrados 
como 1, 3, 4, 5, 6, 8, 9 y 10; y en (B) los carriles 11, 12, 13, 14, 15, 16, 17 y 18 se corresponden con la 
amplificación del DNA genómico de los clones del mismo nombre. A la izquierda se indica la posición del 
tamaño del amplificado del WT, 486 pb. 
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Los más probables candidatos a estar silenciados eran los clones 1, 5, 16 y 18; ya que como se 

observa en la Figura 12, en estos se daba una mayor migración. Los clones aparentemente positivos 

se analizaron de nuevo, para mayor seguridad, mediante PCR con Taq Master Mix, seguido de 

electroforesis en agarosa (Figura 13).  

 

 
 
 

Como puede verse en la Figura 13, el clon 16 claramente no está delecionado ya que la banda se 

encuentra a la misma altura que la del silvestre. La banda del 18, por otra parte, sí ha migrado un 

poco más, de manera que eso nos podría indicar que sí se ha delecionado el fragmento de 59 

nucleótidos y por tanto el CRISPR sí ha funcionado. Los clones 1 y 5 son confusos porque se pueden 

apreciar perfectamente tres bandas, una de las cuales está a la altura del silvestre. Esto podría 

indicar que bien tenemos poblaciones mixtas, es decir, que el clon seleccionado partía inicialmente 

de más de una célula (células distintas que se han quedado en la placa muy cerca unas de otras); o 

bien que al ser las células HEK293T trisómicas (tres copias de algunos cromosomas) [13], ha habido 

una modificación solo en alguno de los alelos. 

Más tarde, se hizo la PCR de dos clones que habían tenido un crecimiento más lento, el 2 y el 7 

(Figura 14). 

 

 
 

 

16 1 PM WT 18 5 

2 PM WT 7 

486 pb 

486 pb 

Figura 13. Repetición de PCR de los clones 1, 5, 16 y 18 con Taq Master Mix. En el primer carril se encuentran 
los patrones de peso molecular (PM). A continuación, el carril nombrado como WT es  el correspondiente 
con la cepa silvestre. Finalmente, los carriles 1, 5, 16 y 18 son las amplificaciones de los clones del mismo 
nombre. A la izquierda, se indica la posición del tamaño del amplificado del WT, 486 pb. 

 

Figura 14. PCR del DNA genómico con Taq Master Mix para la comprobación de la efectividad del corte con 
CRISPR-Cas9. El primer carril se corresponde con los patrones de peso molecular (PM). El segundo carril es la 
amplificación del DNA de la cepa silvestre (WT), mientras que los carriles nombrados como 2 y 7 se 
corresponden con la amplificación del DNA genómico de los clones del mismo nombre. A la izquierda se 
indica la posición del tamaño del amplificado del WT, 486 pb. 
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De nuevo en la Figura 14 se observan varias bandas en los dos clones, por lo que nos encontraríamos 

otra vez en la tesitura de que sean poblaciones mixtas o que presenten distintas modificaciones en 

cada uno de los alelos de las células HEK293T. 

Para un mayor control, se realizó una secuenciación de los clones 1, 5, 18, 2 y 7. El alineamiento de la 

secuenciación con la secuencia del gen como referencia, puso de manifiesto que los clones 1 y 18 

eran poblaciones mixtas, mientras que el clon 5 había sido delecionado completamente (Anexo II). 

Esto parecía estar en contradicción con lo que habíamos observado en la PCR, así que hicimos un 

Western-blot para confirmar que en efecto el gen se había silenciado y por tanto no había expresión 

de la PEPCK-M (Figura 15 (B)). Paralelamente, la secuenciación de los clones 2 y 7 mostró que el clon 

2 se había delecionado (Anexo II), mientras que en el 7 la secuenciación no funcionó. La expresión en 

este clon también se comprobó mediante Western-blot (Figura 15 (A)). 

En un principio se especuló con la posibilidad de que fueran los clones de crecimiento más lento en 

los que el CRISPR-Cas había sido efectivo, ya que el silenciamiento de la PEPCK-M podría suponer una 

desventaja metabólica y de crecimiento. Sin embargo, como hemos visto, los resultados de PCR y 

secuenciación demostraron que no había una correlación directa entre velocidad de crecimiento y 

silenciamiento de la proteína, ya que de los clones silenciados, uno era de crecimiento rápido y otro 

de crecimiento lento. Lo que sí es destacable, es que ambos clones pertenecían a la co-transfección 

reversa, de manera que esta sí fue en efecto más efectiva. 

                               
 
 

 

 
La banda de unos 72 kDa indica la presencia de la PEPCK-M, ya que 70 kDa es su peso molecular [1]; 

mientras que la banda a unos 41 kDa se corresponde con la actina [15]. 

En ambos Western-blots se ve mucho ruido de fondo, así como unión inespecífica de los anticuerpos 

(bandas adicionales a las esperadas), lo cual no fue posible mejorar con distintos Western-blots. Se 

asumió que se debió a la calidad del anticuerpo primario anti-PEPCK-M, ya que debido a un fallo en el 

congelador en el que estaba almacenado, sufrió una descongelación. 

Asimismo, se puede decir que en los dos Western-blots las bandas de actina de la cepa silvestre y el 

clon (2 o 5) son del mismo tamaño, de manera que las diferencias observadas en cuanto al tamaño 
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Figura 15. Western-blot del clon 2 (A) y del clon 5 (B). Se analizó la expresión de PEPCK-M (azul) de extractos 
celulares enteros de células de cepa silvestre (WT) y de los clones por separado (2 y 5). En ambos casos, se 
usó actina como control de carga (verde). El tamaño de los marcadores de peso molecular, corridos en 
paralelo, se indica a la izquierda de cada panel, en kDa. 
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de la banda correspondiente a la PEPCK-M se debe al silenciamiento, y no a la presencia de una 

menor cantidad de proteínas en el gel de los clones silenciados. 

En cuanto a la expresión de PEPCK-M, tanto para el clon 2 como para el 5 era mucho menor, pero 

como se ve en la Figura 15, había una pequeña banda. De esta manera, se puede concluir que o bien 

es efecto del alto ruido de fondo, o bien porque se haya dado un silenciamiento parcial. Sería por 

tanto interesante repetir los Western-blots con otro anticuerpo anti-PEPCK-M para mejorar la 

calidad, intentando conseguir imágenes más limpias, sin tanto ruido de fondo y con menos unión 

inespecífica para poder así determinar con mayor seguridad y certeza la expresión de PEPCK-M.  

5.5. Ensayo de producción de glucosa y Bradford 
Puesto que un par de clones tenían claramente disminuidos los niveles de PEPCK-M, decidimos 

determinar cómo podría afectar esto a la función principal de esta proteína, la síntesis de glucosa. 

Para determinar los niveles de glucosa producidos por estos clones en comparación con las células 

silvestres, realizamos tres ensayos colorimétricos de producción de glucosa, aunque de los tres, solo 

se vio coloración en uno. 

De esta manera, esperaríamos que los clones silenciados produjeran una menor cantidad de glucosa 

que la cepa silvestre, y que la sobreexpresión de PEPCK-M revirtiera el fenotipo. 

La aparición de color producida por la reacción se midió por absorbancia en espectrofotómetro, 

usando una muestra con agua como blanco para hacer la línea base. Dado que se incluyó una 

referencia con concentración conocida, se calculó la concentración de glucosa de todas las muestras 

a partir de esta (Tabla 4): 

Concentración glucosa (
μg

ml
) =

Abs540 Muestra

Abs540 Referencia
· Concentración referencia (

μg

ml
)  

 B R WT WT+PCK2 2 2+PCKK2 5 5+PCK2 

Abs  0,8285 0,705 0,7058 0,6839 0,6581 0,7024 0,7636 

Concentración 
de glucosa 

(𝛍g/mL) 
 50 42,55 42,59 41,27 39,72 42,39 46,08 

 

 
 

 
 

 
 

 

 

Tabla 4. Resultados de absorbancia (Abs) y concentración en μg/mL del ensayo de glucosa. La concentración 
de las muestras (μg/mL), tanto de las no transfectadas (WT, 2 y 5), como de las transfectadas con PCK2 
(WT+PCK2, 2+PCK2 y 5+PCK2), se calculó a partir de la concentración conocida de la referencia (R) de 50 
μg/mL. La muestra B, blanco, se hizo con agua para establecer la línea base. 

 

Figura 16. Coloración de los tubos tras el ensayo de glucosa, donde una coloración rosa, como la de la 
referencia (R), implica una mayor concentración de glucosa que una coloración morada, como la de las 
muestras, tanto las transfectadas con PCK2 (WT, 2+PCK2 y 5+PCK2) como las no transfectadas (WT, 2 y 5). La 
falta de coloración se corresponde con la ausencia de glucosa en el blanco (B). 
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A priori, estos resultados no son muy consecuentes con lo que esperaríamos, ya que la concentración 

en el clon 5 es prácticamente igual que en el silvestre. Además, la transfección con pcDNA-Myc PCK2 

no se corresponde con un aumento de la concentración de glucosa en el clon 2 ni en la cepa silvestre. 

Sin embargo, estos resultados no son significativos por sí mismos, ya que los diversos cambios de 

medio, o incluso distintos ritmos de crecimiento, han podido determinar que en unos casos haya más 

células que en otros, y por tanto la producción sea mayor. Por ello, estos resultados se tienen que 

referir a una cuantificación de proteína total, la cual correlaciona con el número de células. 

Para ello, se realizó un ensayo de Bradford por duplicado. Se hizo la medida entre los duplicados y se 

restó la absorbancia del blanco para establecer la línea base. A continuación, y como la referencia 

estaba a 1 mg/ml, se calculó la concentración para cada una de las muestras (Tabla 5): 

Concentración proteína (
mg

ml
) =

Abs595 Muestra

Abs595 Referencia
· Concentración referencia (

mg

ml
)  

 B R WT WT+PCK2 2 2+PCKK2 5 5+PCK2 

Abs1 0,246 0,475 0,894 0,856 0,814 0,773 0,987 0,742 

Abs2 0,247 0,477 0,686 0,853 0,825 0,764 0,854 0,906 

Media 0,2465 0,476 0,790 0,8545 0,8195 0,7685 0,9205 0,8240 

Media - B  0,2295 0,5435 0,608 0,573 0,522 0,674 0,5775 

Concentración 
de proteína 

(mg/mL) 
 1 2,368 2,649 2,497 2,275 2,937 2,516 

 

 
 

 
 

 

 
 

 

 

 
A continuación, se refieren los resultados de la glucosa a la cantidad total de proteína. Para ello, se 

divide la concentración de glucosa de cada muestra entre la concentración de proteína total de la 

misma (Tabla 6): 

 WT WT+PCK2 2 2+PCK2 5 5+PCK2 

𝛍g glucosa/mg 
proteína 

17,97 16,08 16,53 17,46 14,43 18,31 

 

 
Se ve que en general, aquellos datos correspondientes a las células silenciadas son menores que las 

de las silvestres, especialmente en el clon 5, aunque la diferencia no es muy significativa. Además, en 

el caso de las silenciadas, la transfección con PCK2 ha sido efectiva, ya que se observa una mayor 

Tabla 5. Resultados de absorbancia y concentración en mg/ml del ensayo de Bradford. Se muestra la 
absorbancia del duplicado (Abs1y Abs2) del blanco (B), la referencia (R) y las muestras, tanto las transfectadas 
con PCK2 (WT+PCK2, 2+PCK2 Y 5+PCK2), como las no transfectadas (WT, 2 y 5). Asimismo, se muestran la 
media de absorbancia y la media descontando el blanco (Media - B) para establecer la línea base. Finalmente, 
la concentración (mg/ml) calculada a partir de la concentración conocida de 1 mg/ml en la referencia. 

 

Tabla 6. Correlación de la concentración de glucosa y de proteína total, en μg glucosa/mg proteína. 

 

Figura 17. Coloración de los pocillos tras la adición del reactivo de Bradford. El blanco (B) se corresponde con 
los pocillos de color marrón, sin proteína, mientras que la referencia (R) y las muestras, tanto las 
transfectadas con PCK2 (WT+PCK2, 2+PCK2 Y 5+PCK2), como las no transfectadas (WT, 2 y 5) presentan color 
azul, más intenso cuanta mayor concentración de proteína. 
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producción de glucosa. Sin embargo, en el silvestre, la sobreexpresión no ha funcionado ya que se 

observa menos producción de glucosa que en el no sobreexpresado. Esto se puede deber a fallos en 

la preparación de la mezcla de transfección, como una mala mezcla de los componentes. 

Estos resultados nos indican que el hecho de silenciar la proteína sí tiene un pequeño efecto en el 

fenotipo, pero este es poco significativo. Quizá lo que está sucediendo es que el silenciamiento de la 

PEPCK-M está llevando a un efecto compensatorio por sobreexpresión de la PEPCK-C. Además, como 

de los tres ensayos de producción de glucosa solo funcionó uno, no podemos estar seguros de los 

resultados obtenidos. 

Dado que los resultados no han sido muy concluyentes, sería necesario repetir el estudio para tratar 

de encontrar más clones que permitiesen hacer un estudio más profundo y reproducible, no solo del 

metabolismo de la glucosa, sino también de otras moléculas importantes como lípidos; así como 

ensayos de proliferación y supervivencia celular. Además, resultaría adecuado estudiar si en efecto 

se produce una compensación por la PEPCK-C. 

6. CONCLUSIONES 

Para finalizar con el proyecto, a continuación se exponen las conclusiones que se han obtenido de la 

realización del mismo: 

1. La co-transfección con los plásmidos que dirigen el sistema CRISPR-Cas9 no fue muy eficiente 

para ninguna de las transfecciones, siendo más efectiva la co-transfección reversa. 

2. Los efectos sobre la producción de glucosa en las células no son muy significativos, siendo 

además muy variables entre los dos clones silenciados. 

3. El fenotipo se revierte mediante la transfección con un plásmido de expresión que codifica 

para la PEPCK-M. 

4. No se aprecian diferencias en cuanto al ritmo de crecimiento de los clones silenciados con 

respecto a la cepa silvestre. 

Conclusions 

To conclude the project, conclusions obtained from the realization of the same are reported below:  

1. The co-transfection with the plasmids that direct the CRISPR-Cas9 system was not very 

efficient for any of the transfections, being more effective the reverse co-transfection. 

2. The effects on the production of glucose in the cells are not very significant, being very 

variable between the two silenced clones.  

3. The phenotype is reversed by transfection with an expression plasmid that encodes for 

PEPCK-M. 

4. Differences in growth rate of the silenced clones compared to the wildtype are not seen. 
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ANEXOS 

Anexo I 
Secuencia de nucleótidos del gen PCK2 [2]. Subrayado se indica el lugar de hibridación de los oligos 

de la PCR, y en rojo y negrita el ATG iniciador.   

TGGGTTTGGCGGTTTGGAGGCAGGGGTTGGGGCGGCGGCTGGGCTGACCTGGAGCCTGGAGCCCCGGGGCCGAGG

GAGCTGGCCTGCCAGCGGGGCGGAGGAAAGCTAGTGCCAGCCCTACCAGGTTCCGCCCCCGCGCCTGCCCCCCTC

CTTTTTAAGCGCCTCCCGCCAGCCTCTGCTGTGGCTCGCTTCGCCGCGCTCCCTCCTTCCCCGCCTTCCATACCT

CCCCGGCTCCGCTCGGTTCCTGGCCACCCCGCAGCCCCTGCCCAGGTGCCATGGCCGCATTGTACCGCCCTGGCC

TGCGGTGAGTGACCCCCGGCCCGGGGCCCACCCGCACCTTCCGCTGCGCTCGCCCCCTCGGGGCTGCCAGTGGCG

CTCTCCTGCTCTCAGCCTCCGCCAGGTTTCCCATCCTAGGCGGAGGCGGGCAGGGGCGACTGCTGTGGGTCCAGC

CTCCCGCGCCGCGCGTCTCTTGGGAGGGCAGCCGGCCGGTGCTCCTCGTTTCCGCCTGCACCTCCCCTTCTCTGC

CTCGCTCGCCTCTGACCGCGCGATCTCTATCTGCCACTCTCAGAACTTCCTCTCTCTCCTCGCTCCTCTCTGCTG

AGCCAGGTCTCCGCATATCCTCCTTTCCTTCCCAGATACCTCCCTCGGACCTCTAACGGGCTCTCAGCCAGCGCC

CCAGGGTACTTCGAGAGGCAGCAGGGCCCTGGGGACAAGGGTACGTGAGCCCCGGGAGACTAAGCTCAGAGCCCC

CTAAAGAAGGTGGAAGGTTAAATATCCATTCCCGGCCTCTCCCGGACTGGAAGGACTGGAACCTGGCGGGAAGTC

CAGAGCAGCCCGAGGGACCTGGGCCCAGGGGAGGGAGGCAAGCAAGGTGGGAGGAGGGCGCCAAGTTGCCTTCGT

TTCTTACATAGCTGGCTTCTTCCTCCGTCCAGGCCTGGAGCCCCCAGGCTCGTCCTGTTTGTCTGCCTGTCCTCT

TAGTCTCCTATTTATTCTCTGAGGCCTCTCTTCTCAGCTTTTGTCCCAGAGTCGGAAGTGACCCACATCTGTCGC 

ACAGCCCGTTCCACTTGGGCAGCCCTTGTGGGTGGTCTCTGAAGGAAACGTCCCACTTAGAGGGCTGCAAGAGGG

TGTGGGGGCTTCACAAGAGATAACGTGAGCCAGGCTCCAGGGAGAGAGAGGCTGTCCTCAAGACTGTGTGCTTGA

AAACTGATGCTCACGGAGAACTTCCCTCTGAGGCAGGAACAGACCCAGGTCCCAGTAGCCCTCCTCCCCTGCCCC

TGGGGCCACACTGATCATCTATCCTGCTTTAGCGGAAACCACCCCAGCTTCTACCCCAGACAGACTCAAGCTCCC

GTATCCATGCTCTGAGCTTTCTTCCTTCCCCAGGCTAACACCCTCTGAGTCTGAGCTGCCAGCAAGCTGCTGTTC

CACCCTCCCACCAACACCAAAGCTCTCTAGGCATGTGGCCTCTAGGAAGAAGAGCCAGGGGAAGCACGGGGTCAC

GTGGTCCTGGGTGTGGGGGCAGTTTCTGATGGGCGAGGCCTTGATAGAGGAGGAGAGTAACATCCCCTTCATGGT

CTTTGCTCTCTCGGGTTTACTCCACCTTGAGTCCAGGCCAATCAGAGCAGACGTTGCTTCTCTGTCTCCCAGGGC

CATGAGAGGACAGACAACAGGACGCTGACCTCCTGAGAATTAAGCCCATGAACCCCAGCCAGTGACACTCATTCC

CCAGTGGTCAACCTTCCGCAGAGTTCAGAAATACTTACCCGAGGGCAACATTTTATGCAACCATTGTTGGTCCAA

GTGGGCAGCAGCAGATCAGGGCCTGGAAGCCCAGCATCCAGTCACCTATTCTCTGTGCAAGAGCCCTCATCTAGA

AACCTGGCACTGGAAAGACTGTGACCTTTGCTTGGGGCTTTCATAGTCTTACAGCATACACACCAGAAGGAAAGA

ATAAACACAGCTGCCATTTTAATTTATAAAAAACTATACTTGAAAATGGAAATAAAATGGATGAGGCTTCAAATA

CCAGACATATGAAATTGTCACCTGGGCCCAACTTCTTGTCTTGACACTTGGGCCAAAGGCCCCTACTCATTTCTT 

TTTTTTTTTTTTTTTTTTTTTTTTTTGAGACAGAGTCTTGCTCTGTCGCCCAGGTTGGAGTGCAGTGTCCCGATC

TCGGCTCACTGCAACCTCCACCTCCCGGGTTCAAGCGATTCTCCTGCCTCAGCCTCCTGAGTAGCTGGGACTAGA

GGCACACGCCACCACATCCGGCTAATTTTTATATTTTTAGTAGATGGGGTTTCACCATGTTGCCCAGTATGGTCT

TGATCTCCTGACCTCATGATCCACCTGCCTCAGCCTCCCAAAGTGCTGGGATTACAGGCATGAGCCACCGTGCCC

AGCCATCTCCCTACTTATTTCTAAACGTTGATTAAACAGTTAAACATGGGCATGGGCTACACAGGCAGTAACATC

AGCATGCCTACATGTATACTTCCACACAGCCAGGCATGTGCCTTTTTTGCTCATTTGGCCATATCTGTCCCTCGC

TGAGCAGGAGACACCCTCCTCAAGCCTCATAAAGGCTACAAGATACATGTGTCCTGAACACATCCCACACACCAA

CTGCAACCTGCTCTTCATGGTCCCTGCATGCAGACATGTTTTAGCAGGCTGCAGCCCAAGCTTTCTGTCTCTCCA

CCACCTGCCTTGTCCACTCTCGATGACAGCAACTAGCTCATTGCCTCTGTTTCTCCTATAGGCTTAACTGGCATG

GGCTGAGCCCCTTGGGCTGGCCATCATGCCGTAGCATCCAGACCCTGCGAGTGCTTAGTGGAGATCTGGGCCAGC

TTCCCACTGGCATTCGAGATTTTGTAGAGCACAGTGCCCGCCTGTGCCAACCAGAGGGCATCCACATCTGTGATG

GAACTGAGGCTGAGAATACTGCCACACTGACCCTGCTGGAGCAGCAGGGCCTCATCCGAAAGCTCCCCAAGTACA

ATAACTGGTAAGCCTTGGGCTCCACAACCTGCAGGATAGGTGCACTGAGGCCACTTTGGGTTCACCAAGGCAAAA

TCAACTTAACTAGAACATCCCAATGGAATGAACAAGAATGAGAGCTTTGGGGTAAACAGACCCAGAAACTGGGAT 

TTGCTTACGCCTATAATCCCAGCACTTTGAGAGGCCAAGGCGGGTGGATCACCAGGTGTCGGGAGTTTGGGACCA

GCCTGACCAACATGGAGAAACCCCGTCTCTACTGAAAAAAAAAAAAAAAAATACAAAAATTAGCCCAGCATGGCA

GCGCATGCCTGTAATCCCAGCTACTTGGGAGGGTGAGGCAGGAGAATCACTTAAACCCAAGAGGCGGAGGTTGCA

GTGAGCCAAGATCGCGTCATTGCACTCCAGCCTGGGCAATAAGAGCGAAACTCTGTCTCAAAAAAAAAAAAGAAA

GAAACTGGGATTTTTTTTTTTTTTTGAGATGGAGTCTCACTGTATCACCCAGGCTGGAGTGCAGTGGCATGATTT

CAGCTCACAACAACCTCTGCCTCCGGGGAATTGTCTCAAGCAATTCTCCTGCCTCAGCCTCCGGAGTAGCTGGGA

TTACAAGCATGCGCCACCACACCCAGCTGATTTTTGTATTTTTAGTAGAGACAGGGTTTCACCATGTTGGCCAGG

TTGGTCTCAAACTCCTAACCTCAAGTGATCCACCCACCTCAGCCTCCCAAAGTGCTGGGATTACAGGCATGAGCC

ACTGCGCCCAGCCTAGTTTGTAGTTTGTATTTTATTTTAATGTTAAATGAAGAAGCTGATATAAATAAGATCCTT

TGCTTTTTTTTTTTTTCCTCACCAGTTCAGGGAGCTTTTGCCAGGGGCAGAGACCCCCAGAGGGCTGGGACCTTG

GGGAACACCCCTTAGATGGGACAAAGCCTGGAGGAAGGGACTGAGATGTGATTGGGTGGGGAAACATAAGGCCAA

CAGAAGACCTGGAGTCAAAGTTGGACTTGAAAAAGTGGGTCTAGGGACAAGGGAAACCTGCTGGCCACCATCTTC
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CTGACAATCCCCTCTCCCCCAGCTGGCTGGCCCGCACAGACCCCAAGGATGTGGCACGAGTAGAGAGCAAGACGG

TGATTGTAACTCCTTCTCAGCGGGACACGGTACCACTCCCGCCTGGTGGGGCCCGTGGGCAGCTGGGCAACTGGA 

TGTCCCCAGCTGATTTCCAGCGAGCTGTGGATGAGAGGTTTCCAGGCTGCATGCAGGGTAACCAGGGCAGGGGCA

CAGTGGCAAGGGCACGGAAGATGTGAACAGGTTTGGAACCCTTCATCCAGGGGATGCCTTCCTCCACAGGCCGCA

CCATGTATGTGCTTCCATTCAGCATGGGTCCTGTGGGCTCCCCGCTGTCCCGCATCGGGGTGCAGCTCACTGACT

CAGCCTATGTGGTGGCAAGCATGCGTATTATGACCCGACTGGGGACACCTGTGCTTCAGGCCCTGGGAGATGGTG

ACTTTGTCAAGTGTCTGCACTCCGTGGGCCAGCCCCTGACAGGACAAGGTAAGCACCTGCTCTGCCCCAAGGGGA

ACACAGAGGCCTTCTTGTACTCAGAGGAAATCCCAAATCCTACCTCTCCACAGACCCTAAGAACCTGTCCTCTCT

GGCAACCTAATTCCCAAGATCCAGAGCAGCAGTCCCAGCAGAGGGATAAGGCTGTGTTTGCAGAGCACTTTGCAC

TAGGTTGAGAAAAATCCGTGTCCAAGAATAGGGGCATGGAAGCTGATGGTTATTATGAGGTGGGGGGCTTCAGCC

ACCTCTTGGTGCTGCTACTGCTCCCAAGTGTCTCTCCTGCCAATCCCTGATCCCTCTGGCCCCGACACCCCAGTT

CCTGATGCTGCTGCCAGCAGCCCCATGACCCCATTGTCCCCAGGGGAGCCAGTGAGCCAGTGGCCGTGCAACCCA

GAGAAAACCCTGATTGGCCACGTGCCCGACCAGCGGGAGATCATCTCCTTCGGCAGCGGCTATGGTGGCAACTCC

CTGCTGGGCAAGAAGTGCTTTGCCCTACGCATCGCCTCTCGGCTGGCCCGGGATGAGGGCTGGCTGGCAGAGCAC

ATGCTGGTGAGGGCCTGGTGAGAAGCAGGGCAGCTGCCGGGGACAGGGCAGGGGTGGGGCCTGGCCAGTCTGCCT

CAGCCTCACCTCCCTCCTGCCAGGTGCCAGGCTGGTGGGCGGGGACTCTACTTGAAGGCCCAAAGCTTTGGCCTC 

AGGCTGCTGAATGTTGAGGTTTCCCCTGCCACTAACCCAGGCCTGATGGCAGGGCAATCACTTATATAGTTAATA

AACATTGGTCCTCCCTATTAGACCCTAGCTGCCCTTCCCCATGCAGACCATGCCCTGACTTTTGGTGACCTCTTT

CTTATTCCCTCTCTCCCCAATGCACAGATCCTGGGCATCACCAGCCCTGCAGGGAAGAAGCGCTATGTGGCAGCC

GCCTTCCCTAGTGCCTGTGGCAAGACCAACCTGGCTATGATGCGGCCTGCACTGCCAGGCTGGAAAGTGGAGTGT

GTGGGGGATGATATTGCTTGGATGAGGTTTGACAGTGAAGGTGAGGGACTCTCAGATCATACTCTTGGTTCTGGC

TCTTGTCAGAGCCTCGGGGTCTCCTCTCTAGTGTTCACAATGACTTTGTCAGTGAGAAAGTTTCCTGAACACCCA

ACCCTGCTCCATTCCTCTGGCAGCCCAGCCACCCGAGAGACAGCCTTTCCTCATCAGATCTTGGGTCCATCTCAG

GACAGGGGTGGGTGGAGCAGGACCTTCTTTGGTCTTACATCTCAAGTTTTCCTTGTTTGGTCCTTCCTTTCTTTC

ACTTCTCCTAACAGGTCGACTCCGGGCCATCAACCCTGAGAACGGCTTCTTTGGGGTTGCCCCTGGTACCTCTGC

CACCACCAATCCCAACGCCATGGCTACAATCCAGAGTAACACTATTTTTACCAATGTGGCTGAGACCAGTGATGG

TGGCGTGTACTGGGAGGGCATTGACCAGCCTCTTCCACCTGGTGTTACTGTGACCTCCTGGCTGGGCAAACCCTG

GAAACCTGGTATGTGCGGTGGGGAAGGTGTGGCACAGCCTCCAGGCCTCAGCACCTTAATGGTGGAAAAGCTTTC

TCCACAACCTCCAACCATCTTCTAGGACTGCCAGGAGGCACAGAAGTCATGAACGTTTGCAGTTTCCAGTCCCAG

GCAAAATCTCAGTTCATGTCCCAACTCCACCAGTCACTGGTTTTGTGATCTGGCTAAGTTGCTCAACTTCCCTAA 

GCTTTAGTTTCCACATCAGTTGAATGAGGGTAGTTGTGATAGTACCTATCTCATGAGATTGTTGGAGGATTAAAT

AGTGCATAAAAAGGGTTTATCACACTGACAAATACACAGTAAATTCTCAATAATAAATACAGGCTGGATTTTTTT

TTAATGAAAGGAAAAGGAAGGACTTTTGAACATTCTTACAGAAGGTATTGGGCTCCAAGCACTATCCATAAAGTT

TGGCCCATTAGGAAAAGAGGAAAGCTGCCTCCTCTGCTCCAACTCTCCTCCTGCCACTTGGCTCCCACTGTCCCC

TGTATAATAACCACTGTCTAAAGGTCAGTATTGTTACCGTCACCCTTCCCCTGTCCCTCCAAAGCATTCACCCCA

ATCCTTCCTACAAACAAAATCAGGTCAGTGCTTGAGTCTTTCCCAGAAGCTAGTTTCTGAATCCTGTCATTACCC

TGGGCGCCTGGGAGTCCCACCTCTCCCTCAGCCCTGCACTCTGGACCTTCAGTATTCTTTCCATGGCCTTCTGCA

GTCAGGCAGTCCAGACACCAAGAGGCAGGGGCAAAGAAGAGCATGGGAGGGGAGGCTGGCCTTGTAGTCACTGAA

GCCTATATTCAGGTTTGCCAGGCTGGCCTAGCAGTCACCCTCCTTGCTTCATCTAATCACCCTTTATTTTTACTA

ACACCATCATTAAGCCCCCCTCAGCCTTCCCACCCAACTGAGAAATCCAAGAAACTTTCATCTTTCCCCACAGGC

TAGTTCCCCAACCCTTTCATCATCTCCAGATTTGGGGGCATAACTAGGGCATCTTGTCCCCAGCTTCAATTCCCA

GAATAATACCCTGTGTTAGGATTCTGCACTGGGTGCTGAAGAAGGATGGCTCTTATCTGCAATGGCGGGCAGAAG

CTGGCGGATGGGAGAGGGTGGGGATTTTGGCCCCGTGGCTTCCCCACTCCCCAGGTCTGACCAGCAACCTCCAGC

AGAGAAGGCACCATGTCCACTCAGGGGCCACACAGTGGTGCTTCATACATGTGCCACTGACTTAGTCCCAACCCC 

CCTCCAGGACACCTGAAGGTGCCAAGTGTGACCTGGGCTCCTGAGGTTATCCCTACCCATGTGATATCCCTATCT

CTATTTTTCCAGCCCTATCACTTCATCAGGGTCTAAGCAGGGCAGGGAAATCACCAACATGTTGTTAGCTTTAAA

ATCAATTCCTTGCAGGGCACAGTGACTCACATCTGTAATCCCAGCACTTTGGGAGGCCGAGGCAGTTGGATCACC

TGAGGTCAGGAGTTCGAGACCAGCCTGGCAACATGGCAAAACCCCGTCTCCAATAAAATACAAAAATTAGCCAGG

CATGGTGGCTCATGCCTGTAATCCCAGCTACTCAGGAGGCAGGAAAATTGCTTGATCCCAGGAGGCAGAGGTTGC

AGTGAGACAAGATCATGCCACTGCACTCCAGCCTGGTGACAGAGTGAGACTCCGTCTCATAACTAAATTAATTAA

GTAAATAAAATCAGGCCAGGCGCAGTGGCTCATGCCTGTAATCCTACTACTTTGGGAGGCCAAGGTGGGCAGATC

AGTTAAGGTCAGGAGTTTGAAACCAGCCTGGCCAACATGGTGAAACCCCATCTCTATTAAAAATACAAAAAAATC

AGCCAGGCATGGTGGTGGGTGCCTGTAATCCCAGCTACTGGGGAGGCTGAGGTAGGAGAATTGTTTGAACCTGGG

AGGCGGAGGTTGCAGTAAGCCAAGATTGCACCACTGCACTACAGCCTGGGCAACAGAGCAAGACTCTGCCTCAAA

AATAAAAAGATAAAATAAATTCCTATTTGCATTTGGATAACTTAGGAGAACCTGTCTTCCCCGGTTTGCTGACGG

AAAGTCAATTGTCTGAAGTACTAAGCTGACATTCTCAGTTTTTGCTTTAGGTTTGGGTATTCATTTAAATAATAA

TCTCACAAATAATGAAATAGTTTCTGGGGGAAAAATTATTATAACCTTATGCCCATATCTAACCCCATTCCCTTG

AGCCCTGGTCAGTGCCAAGTGCCAGTAGCTTGGCACAAACATTAGTGCCCTGCCAAACCCCAATTCCTCTCCCAC 

TCTTTTCTCACATAGCTCAGCTGGCCGCACCTTCATGGCTAAACAACCTGAGCTCTTGGAGATGCCCTGGCTCCC

CTCTCTCTGCTCCTTATCACACAAGGTTCTAGGCAGCTGATGAGGCAAAAAAAAAAAAAGAACCCTGCAAGAATG

TGTGCCCATGTATGTGTGTGTTGGGGGTCGACATGACCTTGGAAATAATAGTGTTTGTATTTCCTCTGCCAGGTG
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ACAAGGAGCCCTGTGCACATCCCAACTCTCGATTTTGTGCCCCGGCTCGCCAGTGCCCCATCATGGACCCAGCCT

GGGAGGCCCCAGAGGGTGTCCCCATTGACGCCATCATCTTTGGTGGCCGCAGACCCAAAGGTAAACAACATATGA

GCTCCATGTTCTTGGCAAAAGGGCTATCTCTGTATTAGGGCCTACCTCCCTCCCTCTGATCCAGAGCCTCAGCCT

GGATCTCACCTTTCTCCAGAGTTCTCCCCTGGTGAATGCAAACTTGGGAGGAGGCAAAGGGTCTGAAAATGGGAT

AGCCGAGGTCTTAGGAGAGAGAGTACCAGTCAAGCTCACCAGAAGGGCTGGAGTTAGGGTCCAAAGAAAAGGGCT

GCCTGTGACTCTGTTCATTGGTGATCTAGGGGTACCCCTGGTATACGAGGCCTTCAACTGGCGTCATGGGGTGTT

TGTGGGCAGCGCCATGCGCTCTGAGTCCACTGCTGCAGCAGAACACAAAGGTGAGCACCCTCACCATTCCTCCCT

CTCCTGTGTGTGCACACAGCACGTCCTCTCTCCCTTCCTGAGCCAGACCTTCCTTTTGTCCACCCCTGGAGTCTG

ATATGGCCCCACCTCTTCCCACTTCTATCTTTTCCCCATCCCTGAAGATATTCAGAACCATAAGCCTTTCACAGC

TTCCTCCAACTGGATGCAGGGTGCCCTTCCCTACCCCAGTGAGAAGGAAGATTCCTTACCCATCTTGCTTCCCCC

CCAGGGAAGATCATCATGCACGACCCATTTGCCATGCGGCCCTTTTTTGGCTACAACTTCGGGCACTACCTGGAA 

CACTGGCTGAGCATGGAAGGGCGCAAGGGGGCCCAGCTGCCCCGTATCTTCCATGTCAACTGGTTCCGGCGTGAC

GAGGCAGGGCACTTCCTGTGGCCAGGCTTTGGGGAGAATGCTCGGGTGCTAGACTGGATCTGCCGGCGGTTAGAG

GGGGAGGACAGTGCCCGAGAGACACCCATTGGGCTGGTGCCAAAGGAAGGAGCCTTGGATCTCAGCGGCCTCAGA

GCTATAGACACCACTCAGCTGTTCTCCCTCCCCAAGGACTTCTGGGAACAGGAGGTTCGTGACATTCGGAGCTAC

CTGACAGAGCAGGTCAACCAGGATCTGCCCAAAGAGGTGTTGGCTGAGCTTGAGGCCCTGGAGAGACGTGTGCAC

AAAATGTGACCTGAGGCCCTAGTCTAGCAAGAGGACATAGCACCCTCATCTGGGAATAGGGAAGGCACCTTGCAG

AAAATATGAGCAATTTGATATTAACTAACATCTTCAATGTGCCATAGACCTTCCCACAAAGACTGTCCAATAATA

AGAGATGCTTATCTATTTTACACAAGA 

Anexo II 
Alineamiento entre la secuencia del clon pGLP1-5 y la secuencia que debería tener el plásmido con 

el oligo UP: 

pGLP1-5   ------------------NNNNNNNTNNNNNNNNNCG-NNTNTTGGCTTTATATATCTTGTGGA 

Ref_pGLP1 gactatcatatgcttaccgtaacttgaaagtatttcgatttcttggctttatatatcttgtgga 

                            ..   ..    .. ...** ..* ********************** 

pGLP1-5   AAGGACGAAACACCGGGGGTGGCCAGGAACCGAGGTTTTAGAGCTAGAAATAGCAAGTTAAAAT 

Ref_pGLP1 aaggacgaaacaccgggggtggccaggaaccgaggttttagagctagaaatagcaagttaaaat 

          **************************************************************** 

pGLP1-5   AAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTGTTTTAGAGCTA 

Ref_pGLP1 aaggctagtccgttatcaacttgaaaaagtggcaccgagtcggtgcttttttgttttagagcta 

          **************************************************************** 

pGLP1-5   GAAATAGCAAGTTAAAATAAGGCTAGTCCGTTTTTAGCGCGTGCGCCAATTCTGCAGACAAATG 

Ref_pGLP1 gaaatagcaagttaaaataaggctagtccgtttttagcgcgtgcgccaattctgca-------- 

          ******************************************************** 

pGLP1-5   GCTCTAGAGGTACCCGTTACATAACTTACGGTAAATGGCCCGCC 

Ref_pGLP1 -------------------------------------------- 

 
Alineamiento entre la secuencia del clon pGLP2-1 y la secuencia que debería tener el plásmido con 

el oligo DWN: 

pGLP2-1   -----------------------NNNNNNNNNNANNNNNTTNTTGGCTTTATATATCTTGTGGA 

Ref_pGLP2 gactatcatatgcttaccgtaacttgaaagtatttcgatttcttggctttatatatcttgtgga 

                                 ...   .. .:. . .** ********************** 

pGLP2-1   AAGGACGAAACACCGTGGCCGCATTGTACCGCCCGTTTTAGAGCTAGAAATAGCAAGTTAAAAT 

Ref_pGLP2 aaggacgaaacaccgtggccgcattgtaccgcccgttttagagctagaaatagcaagttaaaat 

          **************************************************************** 

pGLP2-1   AAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTGTTTTAGAGCTA 

Ref_pGLP2 aaggctagtccgttatcaacttgaaaaagtggcaccgagtcggtgcttttttgttttagagcta 

          **************************************************************** 
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pGLP2-1   GAAATAGCAAGTTAAAATAAGGCTAGTCCGTTTTTAGCGCGTGCGCCAATTCTGCAGACAAATG 

Ref_pGLP2 gaaatagcaagttaaaataaggctagtccgtttttagcgcgtgcgccaattctgca-------- 

          ******************************************************** 

pGLP2-1   GCTCTAGAGGTACCCGTTACATAACTTACGGTAAATGGCCCGCC 

Ref_pGLP2 -------------------------------------------- 

 
Alineamiento entre la secuencia del clon pGLP5 amplificada con el oligo PCK2CRISPFor (pGLP5F) y 

con el oligo PCK2CRISPRev (pGLP5R) y la secuencia de nucleótidos del gen: 

pGLP5F    --------------------------NNNNNNNNNNNNNNNNNNNANCGCACTGCCGGGGACAG 

ref       ----GGGTTTGGCGGTTTGGAGGCAGGGGTTGGGGCGGCGGCTGGGCTGACCTGGAGCCTGGAG 

pGLP5R    NGTGGGGTTTGGCGGTTTGGAGGCAGGGGTCGGGGCGGCGGCTGGGCTGACCTGGAGCCTGGAG 

                                                          *  ***  *     ** 

pGLP5F    CCTGCTTCAGTTGCCACGCGTCTCTTGAGGAGGGCAATAGGANTNGANTGCNANCCCTACCTTG 

ref       CCCCGGGGCCGAGGGAGCTGGCCTGCCAGCGGGGCGGAGGAAAGCTAGTGCCAGCCCTACCAGG 

pGLP5R    CCCCGGGGCCGAGGGAGGGGCTAG-CCAGCGGGGCGGAGGAACGTGCCCCCCTCCCTTATAAGC 

          **          *  *   *       **  ****    * *        *   ** **      

pGLP5F    TTCCTCCCCTTGACCGGCCCACTTGCTTTTTAAGCGCCTCCCGCCAGCCTCTGCTGTGGCTCGC 

ref       TTCCGCCCCCGCGCCTGCCCCCCTCCTTTTTAAGCGCCTCCCGCCAGCCTCTGCTGTGGCTCGC 

pGLP5R    GCCTCCCCCCAGCCTTGCCCCCCTCCTTTTTAAGCGCCTCCCGCCAGCCTCTGCCTTCCATACC 

            *  ****    *  **** * * *****************************  *   *  * 

pGLP5F    TTCNCCGCGCTCCCTCCTTCCCCGCCTTCCATACATCCCCGGCTCCGCACNNTTTGCTGCTCTC 

ref       TTCGCCGCGCTCCCTCCTTCCCCGCCTTCCATACCTCCCCGGCTCCGCTCGGTTCCTGGCCACC 

pGLP5R    TTCCCCGCTCTCCTT------------------------------------------------- 

          *** **** **** *                                  

pGLP5F    NTNCC----------------------------------------------------------- 

ref       CCGCAGCCCCTGCCCAGGTGCCATGGCCGCATTGTACCGCCCTGGCCTGCGGTGAGTGACCCCC 

pGLP5R    -------------------------------------------------CGTTCCCGGCCACCC                                                                

pGLP5F    ---------------------------------------------------------------- 

ref       GGCCCGGGGCCCACCCGCACCTTCCGCTGCGCTCGCCCCCTCGGGGCTGCCAGTGGCGCTCTCC 

pGLP5R    GGACCTGGCCCCATCCGCACCTTCCGCTGCGCTCGCCCCCTCGGGGCTGCCAGTGGCGCTCTCC 

pGLP5F    ---------------------------------------------------------------- 

ref       TGCTCTCAGCCTCCGCCAGGTTTCCCATCCTAGGCGGAGGCGGGCAGGGGCGACTGCTGTGGGT 

pGLP5R    TGCTTTCAGCCTCCGCCAGGTTTCCCATCCTAGGCGGAGGCGGGCAGGGGNGANTGNNNGNNNN 

pGLP5F    ----------------------------------- 

ref       CCAGCCTCCCGCGCCGCGCGTCTCTTGGGAGGGCA 

pGLP5R    NTNNNNNNNN------------------------- 

 
Alineamiento entre la secuencia del clon GLP2 amplificada con el oligo PCK2CRISPFor (GLP2F), ya 

con el oligo PCK2CRISPRev no funcionó, y la secuencia de nucleótidos del gen: 

pGLP2R    ANNAATAGGCGGANGAAAAGGCGGGAATAGACAAAGAAGANNAGTAACAATCCGTGACGAGANA 

ref       ----------------------------------------------------------------                                                                    

pGLP2R    ACGGNGCANACCAACAGCCTNNGGATTGGGNGATTTGGAGGCAGGGGATGGGGCGGCGGGGTGG 

ref       ----------------------GGGTTTGGCGGTTTGGAGGCAGGGGTTGGGGCGGCGGCTGGG 

                                ** ** ** * ************** ***********   ** 
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pGLP2R    GCGGTNGGAGGCA--GGGCCCGGGNGGCGGNGGGGCTGACGCCCCCCCTGGAGCCCGAACGTCG 

ref       CTGACCTGGAGCCTGGAGCCCCGGGGCCGAGGGAGCTGGCCTGCCAGCGGGGCGGAGGAAAGCT 

            *    *  **   * **** ** * **  ** **** *   **  * **     * *   *   

pGLP2R    AGGGCCACCTCTACCCAGTTGGGCCCAGGAACCTGCCCCCCTCCCTTTCAAGCGCCTCCCCCCA 

ref       AGTGCCAGCCCTACCAGGTTCCGCCCCCGCGCCTGCCCCCCTCCTTTTTAAGCGCCTCCCGCCA 

          ** **** * *****  ***  ****  *  ************* *** *********** *** 

pGLP2R    GCCTN------------------------------------------------------GCCCC 

ref       GCCTCTGCTGTGGCTCGCTTCGCCGCGCTCCCTCCTTCCCCGCCTTCCATACCTCCCCGGCTCC 

          ****                                                       ** **                   

pGLP2R    CCTCCTTTTTA---------AGCGCCTCCCGCCAGCCTCGCCGCTCCCTACCTTCCCCGCTCTC 

ref       GCTCGGTTCCTGGCCACCCCGCAGCCCCTGCCCAGGTGCCATGGCCGCATTGTACCGCCCTGGC 

           ***  **               *** *   ****   *   *  * *    * ** * **  * 

pGLP2R    CTTCGTTCCCGGCCTCCCGGACCTGGCCCCATCCGCACCTTCCGCTGCGCTCGCCCCCTCGGGG 

ref       CTGCGGTGAGTGACCCCCGGCCCGGGGCCCACCCGCACCTTCCGCTGCGCTCGCCCCCTCGGGG 

          ** ** *    * * ***** ** ** **** ******************************** 

pGLP2R    CTGCCAGTGGCGCTCTCCTGCTTTCAGCCTCCGCCAGGTTTCCCATCCTAGGCGGAGGCGGGCA 

ref       CTGCCAGTGGCGCTCTCCTGCTCTCAGCCTCCGCCAGGTTTCCCATCCTAGGCGGAGGCGGGCA 

          ********************** ***************************************** 

pGLP2R    GGGGCGACTGCNNNNNNNCCNNNNNNNN------------------------- 

ref       GGGGCGACTGCTGTGGGTCCAGCCTCCCGCGCCGCGCGTCTCTTGGGAGGGCA 

          ***********       **         

En todos los alineamientos, los asteriscos (*) indican la coincidencia de la misma base en las 

secuencias comparadas. 

Anexo III 
Composición de tampones y disoluciones usados: 

LB 
Tampón de 

carga 2X SLB 

Gel 
poliacrilamida 

4% 

Gel 
poliacrilamida 

10% 

Tampón de 
transferencia 

PBST TBE 1X TE 

10 g 
triptona 

20 % SDS (20%) 3,8 ml H2O 4,84 ml H2O 
12,1 g Tris 

base 

10% 
PBS 
10X 

 0,5 M 
Tris 

base 

10 
mM 
Tris-
HCl 

pH 8 

5 g 
extracto 

de 
levadura 

25% Glicerol 
(80%) 

500 μl 
Acrilamida 

(40%) 

2,5 ml 
Acrilamida 

(40%) 
57,6 g Glicina 

0,1%  
Tween 

0,5 M 
Ácido 
bórico 

1 mM 
EDTA 

10 g NaCl 
10 % Tris (1M pH 

6,8) 
625 μl Tris (1M 

pH 6,8) 
2,5 ml Tris (1M 

pH 8,8) 
 800 ml 

Metanol 
Hasta 
1l H2O 

10 mM 
EDTA 

 

1 ml 
MgSO4 

1M 

10 % Azul de 
bromofenol (2%) 

25 μl SDS 20% 
50 μl SDS 

(20%) 
Hasta 4l H2O    

10 ml 
Tris 1M 
pH 7,5 

30,85 mg/ml 
ditiotreitol 

50 μl APS 
(10%) 

100 μl APS 
(10%) 

    

 35 % H2O 5 μl TEMED 10 μl TEMED     
 


