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“Influencia de la forma del pulso de bombeo en la 

resolución de sensores distribuidos basados en 

dispersión estimulada de Brillouin en fibra óptica” 

Resumen 

Generalmente, se considera a la fibra óptica como un simple medio de transmisión en 

donde las señales ópticas son capaces de propagarse a lo largo de grandes distancias. Para ello 

es necesario confinar en su núcleo una elevada intensidad óptica que, al atravesar su reducida 

sección, puede estimular la aparición de fenómenos no lineales. Alguno de estos fenómenos, 

aunque perjudiciales para la mayoría de las aplicaciones de comunicaciones, puede ser 

empleado como mecanismo de sensado, como es el caso del scattering Brillouin debido a su 

gran precisión en las medidas y fuerte dependencia con las variables del entorno. 

En una fibra óptica, el scattering Brillouin describe la interacción de los fotones con las 

variaciones de densidad presentes en la fibra. Cuando se introduce una onda óptica de 

bombeo por un extremo y otra con un desplazamiento en frecuencia igual a la frecuencia 

Brillouin de la fibra por el extremo contrario, también llamada onda Stokes, el batido entre 

ambas señales produce una variación de la densidad como consecuencia del efecto de 

electrostricción, resultando de este modo el scattering Brillouin estimulado. Esta variación de 

la densidad queda asociada con una onda acústica, que puede verse afectada localmente por 

la temperatura o elongación mecánica de la fibra, induciendo cambios en su índice de 

refracción efectivo.  

Por tanto, mediante la medida estática o dinámica de los cambios de la frecuencia 

Brillouin a lo largo de la fibra puede realizarse un sensor de fibra distribuido para cambios 

locales de la temperatura y elongación mecánica longitudinal sobre decenas o centenas de 

kilómetros. Este tipo de sensores pueden ser empleados por ejemplo en la monitorización de 

estructuras civiles tales como tuberías, puentes o presas para la prevención de desastres. 

Tienen como ventaja que pueden medir el cambio de un parámetro específico a lo largo de la 

longitud completa de la fibra, por lo que, la resolución espacial y la sensibilidad son factores 

clave cuyos valores son aún susceptibles de mejora. 

El objetivo de este Trabajo Fin de Máster es analizar, mediante simulación teórica y 

medidas experimentales en el laboratorio, la influencia que tiene la forma de onda de bombeo 

en la resolución espacial de la medida. Para ello, en primer lugar se ha desarrollado el software 

necesario para la correcta simulación de la interacción producida entre la onda de bombeo, la 

onda de Stokes y la fibra óptica. Posteriormente se han analizado los resultados obtenidos 

para diferentes formas de onda de la señal introducida como bombeo frente a posibles 

defectos presentes en la fibra óptica, emulando variaciones en la temperatura o tensión 

longitudinal. Seguidamente se ha procedido a su comprobación experimental en el laboratorio, 

presentando finalmente las conclusiones obtenidas. 
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Capítulo 1  

Introducción 

 

1.1 Contexto y objetivos 

Durante la pasada década se ha incrementado espectacularmente la demanda, por parte 

de la sociedad, de infraestructuras civiles y fuentes de energía seguras. Esto se ha traducido en 

un crecimiento similar de la presión ejercida sobre la industria de ingeniería civil, petróleo y 

servicios públicos entre otros. La sociedad no sólo requiere de un fuerte crecimiento del 

suministro de servicios sino que también exige seguridad en todo momento. Por tanto, la 

prevención requiere que los ingenieros de diseño y mantenimiento de infraestructuras de 

ingeniería civil evalúen la integridad de sus estructuras bajo estrés. Estos requerimientos 

convierten al monitoreo de la salud estructural (SHM, Structural Health Monitoring) en un 

elemento clave de este tipo se sectores. 

De este modo se hace evidente la necesidad de una técnica que permita la medida en 

tiempo real y de forma distribuida de la temperatura y la elongación mecánica (strain) sobre 

longitudes que irían desde unos pocos metros a decenas e incluso cientos de kilómetros. Como 

veremos a lo largo del presente documento, los métodos de sensado distribuido, entre los que 

se encuentran las técnicas basadas en el scattering Brillouin, son capaces de satisfacer 

adecuadamente todos estos requerimientos. 

Durante las últimas dos décadas los sensores distribuidos sobre fibra óptica basados en 

el scattering Brillouin han atraído un gran interés debido a su capacidad de monitorizar la 

temperatura y strain en grandes infraestructuras y reemplazar miles de sensores puntuales. 

Este tipo de sensores encuentran múltiples aplicaciones en campos como la ingeniería civil, 

industria aeroespacial, generación de energía e ingeniería geotécnica entre otros, por lo que a 

lo largo de estos años han conseguido ser mejorados significativamente. 

Básicamente, el scattering Brillouin es un fenómeno no lineal que se produce como 

resultado de fluctuaciones del índice de refracción producidas por ondas acústicas cuasi 
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coherentes. Éstas son iniciadas térmicamente, generando agitaciones en la onda acústica que 

son capaces de dispersar la onda de luz incidente con un desplazamiento en frecuencia. 

Más concretamente, en una fibra óptica el scattering Brillouin describe la interacción de 

los fotones con las variaciones de densidad presentes en la fibra. Al introducir una onda óptica 

de bombeo por un extremo y otra con un desplazamiento en frecuencia igual a la frecuencia 

Brillouin de la fibra por el extremo contrario, también llamada onda Stokes, el batido entre 

ambas señales produce una variación de la densidad como consecuencia del efecto de 

electrostricción, resultando de este modo el scattering Brillouin estimulado. Esta variación de 

la densidad queda asociada con una onda acústica, que puede verse afectada localmente por 

la temperatura o elongación mecánica de la fibra, induciendo cambios en su índice de 

refracción efectivo.  

Debido a su gran precisión en las medidas y fuerte dependencia con las variables del 

entorno, mediante la medida estática o dinámica de los cambios de la frecuencia Brillouin a lo 

largo de la fibra puede realizarse un sensor de fibra distribuido para cambios locales de la 

temperatura y elongación mecánica longitudinal sobre decenas o centenas de kilómetros. Su 

principal ventaja radica en que pueden medir un cambio de un parámetro específico a lo largo 

de la longitud completa de la fibra, por lo que, la resolución espacial y la sensibilidad son 

factores clave cuyos valores son aún susceptibles de mejora.  

Por tanto, el objetivo del presente trabajo fin de máster es analizar, mediante simulación 

teórica y medidas experimentales en el laboratorio, la influencia que tiene la forma de onda de 

bombeo en la resolución espacial de la medida. Para ello, en primer lugar se procederá al 

desarrollo del software necesario para la simulación de la interacción producida entre la onda 

de bombeo, la onda de Stokes y la fibra óptica en un sistema BOTDA. Posteriormente se 

analizarán los resultados obtenidos para diferentes formas de onda de la señal de bombeo 

frente a posibles defectos presentes en la fibra óptica, emulando variaciones en la 

temperatura o tensión longitudinal. Y por último, se comprobarán experimentalmente en el 

laboratorio las conclusiones obtenidas de los resultados de las simulaciones. 

1.2 Estructura del documento 

El presente documento se encuentra divido en siete capítulos y un anexo adicional, en 

los que, tras este primero de introducción donde se define el contexto y los objetivos que se 

plantean a lo largo de este trabajo fin de máster, se recogen en primer lugar los aspectos 

teóricos necesarios para, posteriormente, proceder a su simulación y comprobación 

experimental. 

De este modo, se comienza el segundo capítulo estableciendo los fundamentos teóricos 

de la fibra óptica, analizando conceptos clave como son la atenuación y los diferentes procesos 

de scattering presentes, así como una breve descripción de los procesos de absorción y 

emisión espontáneos y estimulados. 

El tercer capítulo presenta los principios fundamentales del scattering Brillouin, 

estableciendo las diferencias entre el scattering Brillouin espontáneo y el estimulado, así como 
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la formulación teórica de cada uno de ellos. Posteriormente se define la frecuencia Brillouin y 

su espectro de ganancia, así como su potencia umbral que dependerá de factores como la 

anchura y repetición del pulso, anchura espectral y modulación y polarización. Por último, se 

establece a la frecuencia Brillouin como un mecanismo de sensado, pudiendo identificar 

variaciones de temperatura y/o strain de forma distribuida a lo largo de la fibra óptica. 

Una vez presentados los fundamentos teóricos, el capítulo siguiente se centra en la 

simulación del scattering Brillouin estimulado y el análisis de los resultados obtenidos en un 

sistema BOTDA. En primer lugar se define y desarrolla el modelo numérico que describe la 

interacción de las tres ondas que intervienen en el proceso de scattering Brillouin estimulado: 

la onda de bombeo, la onda de Stokes o sonda y la onda acústica, para su posterior 

implementación en Matlab. Una vez implementado el modelo se realiza la simulación del 

proceso se scattering empleando diferentes formas de la onda pulsada de bombeo, analizando 

su influencia en la resolución espacial y frecuencial. 

En el quinto capítulo se procede a la comprobación experimental de los resultados 

obtenidos en las simulaciones mediante la medida de la frecuencia Brillouin de varios tramos 

de fibra óptica de diferentes longitudes. Posteriormente se realiza la identificación y medida 

de la variación de la temperatura sobre defectos con longitudes por debajo del metro, en este 

caso de aproximadamente 30 cm. 

Se finaliza con las conclusiones que pueden extraerse, así como las líneas futuras que, 

habiendo quedado fuera de los objetivos propuestos, puede ser desarrolladas a partir del 

trabajo realizado. 

En el séptimo y último capítulo se enumeran por orden de aparición el conjunto de 

referencias que han sido empleadas para la correcta elaboración y desarrollo del presente 

trabajo fin de máster. 

Por último, se incluye un anexo adicional en el que se realiza una revisión de las 

principales técnicas de sensado distribuido, que han venido apareciendo en los últimos años, 

basados en el scattering Brillouin, tanto espontáneo como estimulado 
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Capítulo 2   

Fundamentos de la fibra 

óptica 

 

2.1 Introducción 

Gracias a su eficacia, la fibra óptica se ha convertido en el medio de comunicación por 

excelencia, ya que permite la propagación de señales ópticas con unas pérdidas 

significativamente menores a las sufridas por las señales eléctricas a través de cables de cobre 

convencionales. Su baja atenuación, del orden de 0.2 dB/Km, y su inmunidad frente a campos 

electromagnéticos externos, la convierte en el medio de transmisión idóneo para grandes 

distancias [1]. 

Una fibra óptica consiste en una región central con simetría de revolución respecto al 

eje, llamada núcleo (core), por la que se propaga la señal y rodeada de una región externa, 

llamada cubierta (cladding), que la confina en su interior. La luz se confina en el interior del 

núcleo debido a el índice de refracción de éste es ligeramente superior al de la cubierta, 

produciendo el fenómeno de reflexión total interna, que impide que los rayos o modos de la 

luz escapen de la región de mayor índice cuando el ángulo de incidencia en la interfaz núcleo-

cubierta supera un determinado valor crítico. 

Generalmente, para conseguir unas pérdidas de propagación tan bajas las fibras ópticas 

se fabrican con Dióxido de Silicio (SiO2) o Sílice, mientras que, para que el núcleo tenga un 

índice de refracción ligeramente superior al de la cubierta, es necesario que sea dopado con 

algún elemento adicional. Así, mediante el dopado del núcleo con GeO2 y P2O5 se logra 

aumentar su índice de refracción, mientras que con Flúor se reduce. Típicamente los valores 

del índice de refracción en el núcleo y la cubierta de la fibra son del orden de 1.45 y 1.47, 

respectivamente.  
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Sin embargo, debe tenerse en cuenta que el cambio del índice de refracción mediante 

dopado supondrá un aumento significativo de las no linealidades presentes en la fibra. Estas 

no linealidades, como puede ser la dispersión o esparcimiento Brillouin (scattering Brillouin) en 

la que se centra el presente documento, se manifiestan cuando la intensidad óptica confinada 

en la fibra óptica supera un cierto valor umbral.  

Por otro lado, las fibras pueden clasificarse fundamentalmente en fibras monomodo o 

multimodo, donde la presencia de uno o más modos depende de la diferencia en los índices de 

refracción, del tamaño del núcleo y de la longitud de onda de la señal. 

2.2 Atenuación y scattering 

La atenuación que sufre una señal óptica al propagarse a través de una fibra es 

exponencialmente proporcional al coeficiente de absorción ( ) de dicha fibra y la longitud 

recorrida. Por tanto, si se introduce una señal óptica de potencia   , la potencia óptica a una 

distancia   será, 

     
    (2.1) 

La atenuación es un parámetro característico de la fibra y, como se ilustra en la Figura 

2.1, es función de la longitud de onda. Históricamente se consideran tres ventanas de 

atenuación a las longitudes de onda de 850 nm, 1310 nm y 1550 nm, siendo ésta última la que 

consigue la atenuación más baja ( 0.2 dB/Km) y, por tanto, la más habitual en los sistemas de 

telecomunicaciones. 

 

Figura 2.1. Atenuación típica de una fibra óptica de telecomunicaciones. 

Las pérdidas existentes en la fibra se deben a varios factores como la absorción del 

material, la curvatura de la fibra, el scattering elástico (Rayleigh) o scattering inelástico (Raman 

o Brillouin) entre otros. Entre estos factores destaca el scattering Rayleigh debido a que se 

trata de la principal fuente de pérdidas en la fibra. Se trata de una pérdida intrínseca al 

material debido a las inhomogeneidades que presenta. En la ventana de 1550 nm las pérdidas 

cuantificadas por Rayleigh se encuentran entre los 0.12 y 0.15 dB/km. 
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En la Figura 2.2 se muestran los tres principales fenómenos de scattering presentes en la 

fibra: Rayleigh, Brillouin y Raman y su desplazamiento en frecuencia característico con 

respecto a frecuencia de la señal incidente. Éste desplazamiento en frecuencia depende de la 

cantidad de energía pérdida durante el proceso de scattering. 

 

Figura 2.2. Espectro característico de los principales procesos de scattering 

El scattering puede verse como un proceso en donde se produce un cambio de la 

dirección de la luz debido a que los fotones colisionan con átomos o moléculas presentes en el 

medio de propagación. Los diferentes procesos de scattering pueden dividirse básicamente en 

dos grupos: elásticos e inelásticos. La principal diferencia radica en el intercambio de energía 

entre el campo electromagnético y el medio dieléctrico por el que se propaga, es decir, en un 

scattering elástico no se produce intercambio de energía, mientras que en el scattering 

inelástico se intercambia una pequeña cantidad.  

El scattering elástico es un factor determinante en la atenuación de la fibra óptica, 

decreciendo su intensidad según aumenta la longitud de onda. Como ya se ha comentado 

anteriormente, cuando se produce scattering elástico no se produce intercambio de energía y, 

por tanto, no hay desplazamiento en frecuencia en los fotones dispersados sino que éstos se 

dispersan en todas las posibles direcciones, introduciendo así pérdidas en la potencia de la 

señal incidente. Este fenómeno se produce por inhomogeneidades presentes en el núcleo de 

la fibra y, dependiendo del tamaño de éstas inhomogeneidades en relación con la longitud de 

onda incidente, la dispersión elástica puede ser Rayleigh o Mie [2]. Cuando la onda 

electromagnética interacciona con partículas macroscópicas mucho más pequeñas que la 

longitud de onda ( 
 

  
 ) se produce scattering Rayleigh, mientras que cuando su tamaño es 

del orden de la longitud de onda se procede scattering Mie. Incluso a potencias ópticas bajas 

se produce la interacción con estas pequeñas partículas, siendo un efecto perjudicial y que 

siempre estará presente en los sistemas de comunicaciones ópticas. 

En los procesos inelásticos existe una transferencia de energía entre la onda incidente y 

el medio dieléctrico con lo que, por los principios de conservación de la energía, se generan 

ondas de frecuencia inferior (Stokes) y superior (Anti-Stokes) [3]. Los principios del scattering 

Brillouin y Raman son similares, en ambos casos las propiedades no lineales de la fibra 

producen un cambio en la frecuencia de la luz dispersada debido a una variación mecánica del 

medio [4]. En el caso del scattering Brillouin la excitación del material produce fonones 

acústicos, donde el periodo de la onda resultante se debe a la variación de la densidad del 
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medio. Estas variaciones de densidad se propagan a través del medio en forma de onda 

acústica. Por otro lado, el scattering de Raman se debe a vibraciones moleculares produciendo 

la generación de fonones ópticos. Estas vibraciones no se propagan a través del medio sino 

que ocurren en su interior y únicamente pueden transferirse a las moléculas vecinas mediante 

colisiones. En una fibra óptica típica de telecomunicaciones el scattering Raman produce un 

cambio en la frecuencia de la onda dispersa del orden de terahercios, mientras que el 

scattering Brillouin es de gigahercios. 

2.3 Procesos espontáneos y estimulados 

Gracias a la teoría cuántica de la radiación, publicada por Albert Einstein en 1917, donde 

se describe el modelo de emisión y absorción de la radiación, conocemos que la energía en el 

interior de un átomo está cuantificada en niveles de energía discretos.  

Cuando se emite un fotón desde un átomo se produce una transición desde un nivel de 

energía superior a otro inferior. Esta transición entre niveles de energía produce una radiación 

electromagnética e incluye tanto la emisión espontánea como la estimulada. Por otro lado, 

cuando un fotón es absorbido por un átomo, se produce una absorción estimulada. La Figura 

2.3 muestra los diagramas de energía de los tres procesos: emisión espontánea, emisión 

estimulada y absorción estimulada. 

 

Figura 2.3. Emisión espontánea (a), emisión estimulada (b) y absorción estimulada (c) 

  

  

 
  

  

Nivel superior 

Nivel inferior 

 

Nivel superior 

Nivel inferior 

  

Nivel superior 

Nivel inferior 

  

Fotón 

Fotón 

Fotón 

Fotones 

Antes Después 

(a)  

(b) 

(c) 
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Si un átomo o molécula se encuentra en un estado de energía superior al estado 

fundamental, puede caer espontáneamente en cualquier momento emitiendo un fotón sin 

necesidad de un estímulo externo. El tiempo medio que un átomo o molécula excitada 

permanece en el estado de energía superior se conoce como tiempo característico de emisión 

espontánea. Por otro lado, si un átomo o molécula excitada se ilumina con un fotón con la 

misma energía que la diferencia de energías entre el estado excitado y el fundamental, se 

consigue estimular al átomo. Este estímulo produce una caída en el nivel de energía generando 

un nuevo fotón. De esta forma, el estímulo externo de un único fotón produce la emisión de 

dos fotones con la misma energía. 

El tiempo de vida medio de un átomo en un estado excitado es bastante reducido, por lo 

que la probabilidad de que un fotón encuentre a un átomo o molécula en su estado 

fundamental es muy alta. En este caso el fotón será absorbido dando lugar a la llamada 

absorción estimulada. Sólo cuando el número de átomos o moléculas en estado excitado sea 

mayor que el número de átomos que se encuentren en su estado fundamental, la probabilidad 

de que el fotón generé una emisión estimulada será mayor que la de ser absorbido. Este 

estado se conoce con el nombre de inversión de población, debido a que se invierte el estado 

normal de equilibrio. 

En un proceso de scattering espontáneo el material se excita hasta el nivel de energía 

superior debido a la absorción de un fotón con energía      . Posteriormente se genera 

espontáneamente un fotón de Stokes con energía      , menor que la del fotón incidente, y 

el resto de energía,      , se libera en forma de vibraciones u ondas acústicas (fonones). En 

un proceso de scattering estimulado, cuyo diagrama de energía se representa en la Figura 2.4, 

los fotones recibidos con energía       , donde   es el número de fotones, estimula a los 

átomos o moléculas que se encuentran en el estado de energía superior debido a la absorción 

de un fotón con energía      . De nuevo, se libera un fotón con energía       y una 

excitación del material con energía      . El fotón liberado se añade a los fotones 

incidentes y el resultado son fotones con energía   (   )   . 

 

Figura 2.4. Proceso de scattering estimulado 

Estado energía superior  

Estado fundamental  

Estado excitado 

𝐸   𝑣  

 

𝐸  𝑛 𝑣s 

 𝑣  

 

 𝑣𝑠 

 

 𝑣𝑣 

 

𝐸  (𝑛   ) 𝑣s 
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Por tanto, en un proceso de scattering inelástico tendremos generalmente tres ondas 

participantes: la onda de luz incidente, la onda de luz dispersada y la excitación del material, 

donde esta última no siempre es una onda de luz, por ejemplo, el scattering Brillouin produce 

una onda acústica [2]. En todo momento deberá conservarse tanto la energía como el 

momento, por lo que, 

        

        

 (2.2) 

siendo   ,   ,    las frecuencias y   ,   ,    los vectores de onda de la luz incidente, la 

radiación dispersada y la excitación del material, respectivamente. En muchos casos sólo 

determinados ángulos entre los vectores de onda cumplen satisfactoriamente esta relación. 

Hasta ahora, hemos considerado la situación en que un fotón es absorbido por el 

material, generándose un nuevo fotón con una energía ligeramente inferior y un fonón. En 

este caso, la onda dispersada se la conoce como onda Stokes. Sin embargo, también se da el 

proceso en el que la absorción del fotón incidente se realiza por un átomo que ya se 

encontraba en un estado excitado. En consecuencia, el átomo pasará a un estado de energía 

superior para a continuación decaer hasta el estado fundamental, emitiendo un fotón con una 

energía superior y aniquilando un fonón. A esta onda dispersada de frecuencia mayor que la 

incidente se la conoce como onda Anti-Stokes. 

2.4 Procesos de scattering 

Como se ha introducido en secciones anteriores, y representado en la Figura 2.2, los 

principales procesos de scattering presentes en la fibra son el scattering Rayleigh, el scattering 

Raman y el scattering Brillouin. En los siguientes apartados se trataran muy brevemente cada 

uno de ellos indicando alguna de sus características de mayor importancia. 

 Scattering Rayleigh 2.4.1

El scattering Rayleigh fue descubierto en 1899 por Lord JWS Rayleigh [5]. Puede 

describirse formalmente como la dispersión producida por las fluctuaciones de la entropía del 

medio.  

La intensidad de la luz dispersada por el scattering Rayleigh tiene una dependencia con la 

longitud de onda de la forma       , siendo empleada por Lord Rayleigh para explicar el 

color azul del cielo. El color azul es la componente del espectro visible con menor longitud de 

onda ( 400 nm), por lo que la intensidad de luz dispersada desde la atmosfera es mayor que 

para cualquier otro color. 

Las fluctuaciones de densidad presentes en la fibra son la principal causa de pérdidas 

debido al scattering Rayleigh, produciendo pequeños cambios del índice de refracción. Las 

pérdidas intrínsecas en una fibra de sílice debido al scattering Rayleigh pueden ser expresadas 

mediante la siguiente expresión [5], 



Capítulo 2. Fundamentos de la fibra óptica 

10 
 

   
 

  
 (2.3) 

siendo C una constante específica para cada fibra. Valores típicos de C pueden estar 

comprendidos entre 0.7 y 0.9 (dB/km)µm4. A 1550 nm esto corresponde a unas pérdidas de 

entre 0.12 y 0.16 dB/km, con lo que el scattering Rayleigh es la principal fuente de atenuación 

a esta longitud de onda. 

El coeficiente de potencia reflejada por scattering Rayleigh en un segmento de fibra 

típica de salto de índice viene dado por la siguiente expresión [6,7], 

    (
  

  
) [       ] (2.4) 

donde   es el coeficiente de atenuación de la fibra,    el coeficiente de atenuación 

debido al scattering de Rayleigh,   es la longitud del segmento de fibra y   el factor de captura 

de la fibra que viene dado por, 

  
 (  

    
 )

  
 

 (2.5) 

siendo    y    los índices de refracción del núcleo y la cubierta, respectivamente, y   un 

factor de guiado de la fibra que suele estar comprendido en el rango de 0.21 a 0.24 para fibras 

monomodo estándar [8]. 

El scattering Rayleigh es la base de la reflectometría óptica en el dominio del tiempo 

(OTDR), proporcionando la media de la atenuación de la fibra óptica a lo largo de toda su 

longitud mediante la medida y análisis de la fracción de luz que se refleja hacia atrás. El OTDR 

se ha convertido en una herramienta imprescindible en el diagnóstico de redes de fibra óptica. 

 Scattering Raman 2.4.2

El scattering Raman espontáneo fue descubierto en 1926 por el físico hindú Dr. CV. 

Raman [9], siendo el resultado de la interacción entre ondas ópticas y los modos resonantes de 

los átomos o moléculas del medio. Mediante este fenómeno se generan fonones ópticos y 

vibraciones moleculares del medio, por lo que la longitud de onda de la luz dispersada es 

mayor que la de la luz incidente. Este desplazamiento puede ser del orden de cientos e incluso 

varios miles de nanómetros. 

El scattering Raman espontáneo es muy débil, dispersando en torno a un 10-4 % de la 

potencia incidente. El scattering Raman estimulado (SRS) fue observado por primera vez en 

1962 en una celda de nitrobenceno bombeada por un láser de Rubí en régimen Q-switch [10] 

y, en 1972, se realizó la primera demostración experimental en fibras de sílice [11]. 

 Scattering Brillouin 2.4.3

El scattering Brillouin toma su nombre de Léon Brillouin, quien realizó su formulación 

teórica en la segunda década del siglo XX [12]. Se trata de un  fenómeno por el que se dispersa 



Capítulo 2. Fundamentos de la fibra óptica 

11 
 

la luz al interaccionar con un fonón acústico que se propaga a través del medio. La aniquilación 

o creación de un fonón da lugar a las ondas de Anti-Stokes y Stokes, respectivamente. La 

magnitud del desplazamiento en frecuencia o frecuencia Brillouin,   , viene determinada por 

la velocidad de propagación de los fonones acústicos en el material,  , y el ángulo bajo el cual 

la onda Stokes se dispersa,  , de la siguiente manera, 

          (
  

 
)    (

 

 
) (2.6) 

donde   es el índice de refracción del medio y, por tanto, 
 

 
 es la velocidad de la luz a 

través del medio. Debido a su reducido diámetro, en una fibra óptica monomodo existen 

únicamente dos direcciones posibles: hacía adelante (    ) y hacia atrás (      ). Sin 

embargo, al ser el        , el desplazamiento en frecuencia de la luz dispersada en la 

dirección de propagación es cero y, al no producirse un desplazamiento Brillouin, simplemente 

la luz se añade a la señal original. Por lo tanto, únicamente puede detectarse el 

desplazamiento frecuencial de la luz dispersada en la dirección contra propagante (      ), 

quedando la ecuación (2.6) reducida a, 

      (
  

 
) (2.7) 

Aunque la intensidad de la luz dispersada por scattering Brillouin espontáneo es del 

orden de 20 dB inferior al del scattering Rayleigh, el scattering Brillouin estimulado (SBS) es 

relativamente fácil de generar y su intensidad es mayor, por lo que el scattering Brillouin 

estimulado posee un efecto mayor al del scattering Rayleigh [13] y puede ser empleado en 

numerosas aplicaciones: 

 Amplificación selectiva. Esta técnica emplea el estrecho ancho de banda Brillouin 

( 30 MHz) para amplificar selectivamente señales específicas. De este modo se 

posibilita la separación de señales procedentes de sistemas que emplean 

multiplexación en longitud de onda (WDM) y para la conversión fase-amplitud 

[14]. 

 Láseres Brillouin con ancho de banda muy estrecho [15]. 

 Medida distribuida de temperatura y strain [16, 17]. Siendo esta la aplicación del 

scattering Brillouin en la que se centra el presente documento y que será 

desarrollada en los siguientes capítulos. 

Como se verá más adelante, el scattering Brillouin impone un límite en la cantidad de 

potencia que puede ser transmitida a través de una fibra, ya que, al superar un determinado 

valor umbral se refleja hacía atrás la mayor parte de la potencia que se trata de transmitir. 

Esto la convierte en un efecto perjudicial en los sistemas de comunicaciones, haciendo 

disminuir la calidad del enlace. 
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Capítulo 3  

Fundamentos teóricos 

del scattering Brillouin 

 

3.1 Introducción 

El scattering Brillouin estimulado (SBS), observado por primera vez por Chiao y sus 

colaboradores en 1964 [18], se trata de una interacción no lineal entre el campo eléctrico del 

bombeo y la onda de Stokes a través de una onda acústica. La onda acústica induce diferencias 

de presión periódicas o cambios del índice de refracción de la fibra, actuando como una red de 

Bragg. La luz procedente de la onda de bombeo se refleja en dirección contra propagante por 

la red acústica inducida y, debido a que se desplaza en la dirección de propagación a la 

velocidad acústica (   5 km/s en sílice), la onda reflejada será de una longitud de onda mayor. 

La mayor longitud de onda o menor frecuencia se debe al desplazamiento Doppler entre la luz 

propagante y la onda acústica. Así, la onda dispersada se conoce como onda de Stokes y el SBS 

produce que crezca exponencialmente [3]. 

La presencia de grandes intensidades de luz hace que el campo eléctrico del bombeo 

produzca un estrés interno en la fibra actuando sobre la polarización [4]. Este estrés o 

electrostricción, definido como la tendencia de los materiales a comprimirse en presencia de 

un campo eléctrico elevado, produce una deformación del medio dieléctrico, en este caso la 

fibra, modificando su índice de refracción. 

Una onda contra propagante, con el debido desplazamiento en frecuencia, facilita la 

creación de la onda acústica a través del fenómeno de electrostricción. La interferencia del 

bombeo y la onda contra propagante produce picos periódicos de elevado campo eléctrico. 

Estos picos periódicos se desplazan hacia adelante debido a la diferencia frecuencial entre 

ondas, estimulando la creación de una onda acústica mediante electrostricción si se desplazan 

a la velocidad acústica. La onda contra propagante puede proceder de la onda reflejada de 
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Stokes o de otra fuente, como es el caso de las configuraciones de sensado, en cuyo caso se 

denomina onda o señal de sonda. 

De esta forma el scattering Brillouin produce una atenuación en la señal, pudiendo llegar 

a ser un gran obstáculo en la cantidad de potencia que puede enviarse a través de la fibra. Sin 

embargo, la onda reflejada o Stokes también puede ser empleada para la medida de ciertas 

propiedades de la fibra tales como la temperatura o strain, pudiendo ser aprovechado para el 

sensado distribuido en fibra. 

3.2 Scattering Brillouin espontáneo y estimulado 

El scattering Brillouin se produce debido a vibraciones moleculares que crean una onda 

acústica, siendo por lo general muy pequeña la magnitud de la luz dispersada. El scattering 

Brillouin espontáneo puede producirse en la dirección de propagación de la onda de bombeo, 

sin embargo, al no existir desplazamiento en frecuencia, la luz simplemente se añade a la señal 

original. Únicamente cuando la onda dispersada estimula cambios del índice de refracción, se 

incrementa la intensidad de la onda dispersada, fenómeno conocido como scattering Brillouin 

estimulado (SBS), aumentado así de forma sustancial la potencia transferida a la onda 

dispersada. 

Los dos tipos de scattering pueden identificarse analizando la cantidad de fotones 

involucrados en el proceso. El número de fotones dispersados por modo sobre una unidad de 

longitud,   , viene dado por [19], 

   

  
    (    ) (3.1) 

donde    es el número de fotones incidentes y   la magnitud específica del proceso de 

scattering. Se produce scattering espontáneo cuando el número de fotones dispersados por 

modo es pequeño,     . Cuando el número de fotones dispersados es mayor,     , se 

produce scattering estimulado. El scattering estimulado proporciona una solución en forma 

exponencial a la ecuación anterior, que refleja el crecimiento exponencial de la cantidad de 

fotones dispersados, 

     ( ) 
     (3.2) 

donde   es el factor de ganancia del proceso de scattering,   es la longitud de interacción 

e    la intensidad del haz de luz original. 

Las principales diferencias del SBS con respecto al scattering Brillouin espontáneo son 

[19] que presenta una mayor intensidad, un espectro más estrecho y la anchura de la 

intensidad a altura mitad (FWHM) es de la forma Lorentziana, 

   
  

  
 

 

   
 (3.3) 
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 Scattering Brillouin espontáneo 3.2.1

Como ya se ha comentado anteriormente, el scattering Brillouin es un proceso originado 

de la interacción de la luz con una onda acústica, también conocidos como fonones acústicos. 

Una onda acústica se define por la presión p, la magnitud del vector de onda q, y la 

frecuencia Ω de la onda Stokes, mediante la expresión:    (    (     )      )  ̂, siendo 

c.c. el complejo conjugado. Esta onda acústica evoluciona a través del tiempo y del espacio 

mediante la ecuación acústica o ecuación de onda [20], 

    

   
    (

   

  
)           (3.4) 

proporcionando una relación de dispersión de la forma      (      ), con   como 

la velocidad acústica y   el parámetro de amortiguamiento en la ecuación de onda, que puede 

transformarse en, 

  
 

 
  

  
  

 (3.5) 

donde        es la tasa de decaimiento del fonón acústico, empleada para definir el 

tiempo de vida del fonón,       ⁄ , y el coeficiente de absorción del sonido,   =   ⁄ . 

Asumiendo el campo óptico incidente de la forma, 

  (   )     
 (        )       (3.6) 

y que el campo dispersado satisface la ecuación de onda, 

    
  

  

   

   
 

  

  

   

   
 (3.7) 

donde   es la polarización en el medio,   la velocidad de la luz en el vacío y   el índice de 

refracción efectivo del medio. Se considera que: 

 La polarización adicional del medio debido a las fluctuaciones de la constante 

dieléctrica    tiene la forma,   (    ⁄ )  . 

 La ecuación que representa las fluctuaciones de la constante dieléctrica con 

respecto a la densidad es,    (    ⁄ )  . 

 La ecuación que representa las variaciones de densidad en función de la presión 

y la entropía puede expresarse como, 

   (
  

  
)
 

   (
  

  
)
 
   (3.8) 

En la ecuación anterior, el primer término describe las fluctuaciones de densidad 

adiabáticas, es decir, la onda acústica, causante del scattering Brillouin. Mientras que el 

segundo término describe las fluctuaciones de densidad isobáricas, es decir, la entropía o 

fluctuaciones de temperatura, causante del scattering Rayleigh. 
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Considerando la variación de la densidad dada por el primer término en (3.8), puede 

reescribirse la polarización en (3.7), 

 (   )  
 

  

  

  
(
  

  
)
 

  (   )  (   )  
 

  
      (   )  (   ) (3.9) 

donde    (     ⁄ )|    
 es la constante de electrostricción y       (    ⁄ )  la 

compresibilidad adiabática. Sustituyendo en (3.7) una perturbación de presión, de la forma 

       (      )      , se obtiene la siguiente ecuación de onda, 

    
  

  

   

   
 

 

  

    

  
[(    )     

   [(    )   (    ) ]      
⏞                            

      

 (    )      
 [(    )   (    ) ]      

⏞                          
           

] 

(3.10) 

El primer término de la parte derecha de la ecuación indica la componente de Stokes de 

la onda dispersada, mientras que el segundo la Anti-Stokes. En la Figura 3.1 se representa a 

modo gráfico las componentes de Stokes y Anti-Stokes. 

 

Figura 3.1. Representación de las ondas de Stokes y Anti-Stokes mostrando el ángulo   entre el fonón y 
la onda dispersada. 

 Scattering Brillouin estimulado 3.2.2

Al asumirse que la intensidad luminosa es lo suficientemente baja como para no alterar 

las propiedades ópticas del medio, el scattering Brillouin espontaneo únicamente se produce 

debido a fluctuaciones térmicas. En la presencia de un fuerte campo óptico, debido a una 

variedad de fenómenos como son la electrostricción o absorción, las fluctuaciones pueden 

amplificarse y dispersar una mayor cantidad de luz. Se produce scattering Brillouin estimulado 

cuando el campo óptico produce la onda acústica en el medio, interviniendo por lo general, un 

campo óptico con frecuencia   , que interactúa con la onda de presión copropagante de 

frecuencia   o frecuencia Brillouin   .  

El mecanismo físico por el cual dos campos ópticos pueden generar una onda de presión 

es la electrostricción o la absorción, estando el primero de ellos siempre presente y siendo 

dominante en un medio con pérdidas muy bajas, como puede considerarse a una fibra óptica. 
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La presión por electrostricción,    , generada por un campo eléctrico estático queda dado por 

[20], 

      (
  

  
)
  

  
    

  

  
 (3.11) 

donde    es la constante de electrostricción y   la magnitud del campo eléctrico. 

En un proceso estimulado se produce la interacción de tres ondas: dos ópticas (bombeo 

y Stokes) y una acústica, cuya propagación a lo largo del eje z pude describirse por, 

  (   )    (   ) 
 (       )      

  (   )    (   ) 
 (        )      

 ̅(   )      (   )  (       )      

 (3.12) 

donde  ̅ es la distribución de la densidad en el material. En lo sucesivo,   y   serán 

denotadas por    y    para enfatizar que los fonones son generados por el efecto Brillouin. 

En estas ecuaciones las frecuencias y los vectores de onda satisfacen los principios de 

conservación de la energía (        ) y de los momentos (        ). Los campos 

ópticos pueden describirse mediante las ecuaciones de Maxwell, mientras que el campo 

acústico se describe por las ecuaciones de Navier-Stokes con el término que controla la 

electrostricción [20], 

    

   
 

  

  

    

   
 

  

  

    
   

    

   
 

  

  

    

   
 

  

  

    

   

 (3.13) 

   ̅

   
    (

  ̅

  
)       ̅      

(3.14) 

donde f es la fuerza por unidad de volumen, definida por        . Sustituyendo (3.11) 

en la parte derecha de la ecuación (3.14), y teniendo en cuenta que el campo óptico total es 

 (   )    (   )    (   ) puede obtenerse la ecuación del campo acústico, 

   

   
 (       )

  

  
        

    
 

  
    

  (3.15) 

En (3.14) y (3.15) la polarización debido a cambios de densidad   ̅   ̅     es, 

      
  

  
  

  
    

  ̅  (3.16) 

Considerando la aproximación de una variación lenta de la amplitud y teniendo en 

cuenta la fase de los términos de la polarización, 

  (     )      
 (       )      

  (      )       
 (        )      

 (3.17) 
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las ecuaciones de Maxwell para las ondas ópticas son, 

 

 

   

  
 

   

  
  

   

     
   

 

 

   

  
 

   

  
  

   

     
    

 (3.18) 

Las ecuaciones anteriores constituyen el conjunto de ecuaciones que describen el 

proceso de electrostricción del scattering Brillouin estimulado. Este conjunto de ecuaciones 

diferenciales acopladas no tienen una solución analítica por lo que pueden realizarse varias 

aproximaciones con el fin de encontrar una solución. Una aproximación particular es el caso de 

considerar las condiciones del estado de equilibrio. 

3.2.2.1 Solución al estado de equilibrio 

En las condiciones del estado de equilibrio, las derivadas con el tiempo de la ecuación 

(3.18) pueden eliminarse, y considerando la densidad   dada por, 

 (   )  
   

 

  

    
 

  
         

 (3.19) 

Las ecuaciones de Maxwell pueden transformarse por, 

   

  
 

      
      

  |  |
 

  
         

   

  
  

      
      

  |  |
 

  
         

 (3.20) 

Además, asumir el estado de equilibrio implica la inexistencia de dependencias con el 

tiempo de los campos potenciales, es decir,        ⁄   . Esta aproximación es válida 

únicamente cuando las variaciones temporales de las ondas ópticas están en una escala 

temporal mucho mayores que el tiempo de vida del fonón   . Definiendo las intensidades 

como      (    ⁄ )        
  en (3.15), las ecuaciones anteriores pueden reescribirse como, 

   
  

 
   

  
         (3.21) 

donde    es el factor de ganancia del scattering Brillouin estimulado. La ecuación 

diferencial ordinaria (3.12) puede resolverse fácilmente en caso de tener una intensidad de 

bombeo constante, 

  ( )    ( ) 
       (3.22) 

Se ha considerado que la luz incidente no presenta pérdidas debido a la interacción con 

el medio por el que se propaga. Sin embargo, en el caso de la fibra óptica donde el scattering 

Brillouin se obtiene normalmente sobre un segmento de fibra  , típicamente de cientos de 

kilómetros, las pérdidas de transmisión no son despreciables. Por tanto, la pareja de 
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ecuaciones (3.21) puede reescribirse de nuevo introduciendo las pérdidas de transmisión de la 

fibra  , 

   

  
            

   
  

            

 (3.23) 

Por lo tanto, la intensidad de Stokes en las condiciones del estado de equilibrio crece 

exponencialmente en la dirección contra propagante de acuerdo a la expresión, 

  ( )    ( ) 
            (3.24) 

3.3 Frecuencia Brillouin 

Se produce SBS cuando un fotón procedente de la onda de bombeo es aniquilado para la 

creación de un fotón de Stokes, en dirección opuesta, y un fonón acústico en la dirección de 

propagación. Debido al principio de conservación de energía, la energía del fotón del bombeo 

(  ) deberá ser igual a la combinación de energía entre el fonón acústico (  ) y el fotón de 

Stokes (  ) [3], 

        

           

 (3.25) 

Esto refleja que la onda Stokes deberá ser de una frecuencia inferior a la del bombeo. 

Este desplazamiento en frecuencia, o frecuencia Brillouin, es de aproximadamente 11 GHz 

para una fibra estándar monomodo (SMF). Por tanto, la frecuencia Brillouin (  ) queda dada 

por [3], 

   
  

  
 (3.26) 

siendo    la diferencia entre la frecuencia de la onda de bombeo propagante (  ) y la 

frecuencia de la onda de Stokes contra propagante (  ). Al deberse conservar tanto la energía 

como el momento durante el proceso se tiene, 

        

 ⃗    ⃗    ⃗  
 (3.27) 

donde  ⃗  representa los vectores de onda de la onda acústica ( ⃗  ), bombeo ( ⃗  ) y Stokes 

( ⃗  ), respectivamente. La onda Stokes generada por scattering Brillouin se propaga siempre 

hacía atrás, lo que implica que el ángulo entre el bombeo y la onda Stokes debe ser   radianes. 

Representando este ángulo por  , se puede comprobar esta afirmación mediante la relación 

     | ⃗  |, donde    es la velocidad de la onda acústica. Asumiendo que | ⃗  |  | ⃗  |, se 

puede simplificar la magnitud del vector de onda acústico [3], 
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| ⃗  |  | ⃗    ⃗  |   | ⃗  |    (
 

 
) 

(3.28) 

Combinando este resultado con      | ⃗  | se tiene, 

      | ⃗  |    (
 

 
) (3.29) 

En la fibra óptica hay dos direcciones posibles: hacía adelante (    rad) y hacia atrás 

(    rad). Por tanto, la diferencia frecuencial en la dirección con     es cero, 

demostrándose así que la onda Stokes se propaga en la dirección contra propagante. 

Para calcular el desplazamiento Brillouin exacto, substituyendo | ⃗  |       ⁄  y     

en las ecuaciones anteriores [13], se tiene, 

   
    
  

 (3.30) 

Substituyendo los valores característicos de la fibra de sílice, se tiene una frecuencia 

Brillouin aproximada de 11.2 GHz, donde       ,           y la velocidad del sonido 

             [13,20]. 

 Espectro de ganancia Brillouin 3.3.1

La amplificación de la onda Stokes es debido al espectro de ganancia Brillouin,   ( ), 

donde el máximo de ganancia se produce a la frecuencia Brillouin (   o   ). El perfil de la 

curva de ganancia Brillouin es lorentziano y se define como [3], 

  ( )    

(   ⁄ ) 

(    )
  (   ⁄ ) 

 (3.31) 

donde    está relacionado con el tiempo de vida del fonón      
         y la onda 

acústica tiene un decaimiento de      . El valor de pico de la curva de ganancia Brillouin (  ) 

se establece como [3], 

     (  )  
        

 

         
 (3.32) 

siendo   el índice de refracción del medio de propagación o del núcleo de la fibra,     
  el 

coeficiente elasto-óptico longitudinal,    la longitud de onda del bombeo y    la densidad del 

material. 
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3.4 Potencia umbral de Brillouin 

La potencia crítica o potencia umbral de Brillouin se alcanza cuando la mitad de la 

potencia de bombeo ha sido transferida a la onda de Stokes [3]. En términos matemáticos [21], 

  ( )    ( ) (3.33) 

donde   es la longitud total de la fibra,   ( ) la potencia de la onda Stokes al comienzo 

de la fibra y   ( ) la potencia de la onda de bombeo al final.  Al comenzar la onda de Stokes 

por el final de la fibra y el bombeo por el comienzo, tras la interacción Brillouin, la potencia se 

divide entre la onda de bombeo y Stokes. Por encima de este valor umbral, el SBS transfiere 

rápidamente potencia del bombeo a la sonda. La potencia de bombeo umbral necesaria para 

que tenga lugar el SBS puede aproximarse como [3,22], 

      
    

      
 (3.34) 

donde   es el coeficiente de ganancia Brillouin,      el área efectiva del núcleo y      la 

longitud efectiva de la fibra, que se relaciona con la longitud real de la fibra ( ) y su atenuación 

( ) mediante la fórmula, 

     
 

 
(      ) (3.35) 

Conceptualmente, la longitud efectiva de la fibra es aquella en la que, manteniendo una 

intensidad constante e igual a la intensidad en el origen, se obtendría el mismo efecto que 

sobre la longitud real teniendo en cuenta la atenuación. Como puede comprobarse fácilmente, 

para longitudes muy grandes la longitud efectiva puede aproximarse a   ⁄ . 

El concepto de área efectiva es similar. En general, se desconoce la distribución 

transversal del campo electromagnético que se propaga por la fibra, por lo que se define como 

una zona donde se supone que la intensidad del modo es constante. Se trata por tanto de 

encontrar el valor de      cuyo efecto sea el mismo que el producido por la distribución real 

de la intensidad. 

Como ya se ha comentado anteriormente, la transferencia de energía de la onda de 

bombeo a la onda Stokes crece drásticamente una vez superada la potencia umbral. La Figura 

3.2 muestra los resultados experimentales obtenidos por P. C Wait y T. P. Newson para una 

fibra monomodo de 8.6 km de longitud, bombeada con un láser semiconductor a 1532 nm 

[23]. Resultando, como puede comprobarse, una potencia umbral de 16 mW. 
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Figura 3.2. Potencia dispersada por SBS en función de la potencia de bombeo. 

El valor de la potencia umbral depende de varios factores como son la anchura y 

repetición del pulso de bombeo, su anchura espectral y modulación y la polarización [19], y 

cuya influencia se analizará en los siguientes apartados. 

 Anchura y repetición del pulso 3.4.1

Para que tenga lugar el scattering Brillouin es necesario la creación de una onda acústica 

coherente, y que ésta se mantenga durante un tiempo suficiente para interactuar con el 

bombeo. Por tanto, al ser el tiempo de vida medio de los fonones acústicos muy reducido, 

aproximadamente 10 ns, el pulso de bombeo debe tener una anchura mayor de los 10 ns o 

tener una tasa de repetición muy alta. A continuación se consideran ambas situaciones: 

 Pulso corto y tasa de repetición alta. El tiempo entre pulsos debe ser 

suficientemente pequeño para poder estimular la onda acústica. Si la tasa de 

repetición es demasiado baja (<10 MHz) la onda acústica se desvanece por 

completo antes de la llegada del siguiente pulso, siendo insuficiente para 

producir la modulación en el índice de refracción del material. 

 Pulso ancho y tasa de repetición baja. La anchura del pulso debe ser mayor a 10 

ns. De esta forma el pulso es capaz de crear la onda acústica y producir el 

scattering Brillouin. Con un pulso inferior a 10 ns la onda acústica se desvanecerá 

antes de la llegada del siguiente pulso y, por tanto, será insuficiente para 

producir la modulación en el índice de refracción [3]. 

En cualquiera de estas situaciones, para una fibra estándar SMF la potencia umbral 

puede llegar a ser de tan sólo 1 mW [3]. 

La anchura del pulso no sólo influye en la potencia umbral, sino también en la anchura de 

las componentes Stokes y Anti-Stokes. Por tanto, si el scattering de Brillouin en la fibra se 

emplea para el análisis de diferencias de temperatura o presión, la anchura del puso 

determinará la resolución espacial con la que se pueden determinar dichas cambios [24]. 
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Cuando más estrecho es el pulso, mayor es la resolución espacial, pero también aumenta la 

anchura espectral de la luz dispersada y la forma del espectro se aleja del perfil Lorentziano 

original. 

 Anchura espectral y modulación 3.4.2

La potencia umbral aumenta drásticamente cuando la anchura espectral de la onda de 

bombeo es mayor que la anchura de la curva de ganancia Brillouin. Típicamente para fibras de 

sílice, la anchura de la curva de ganancia Brillouin tiene un valor de 35 MHz [13], pudiendo 

llegar a los 100 MHz debido a inhomogeneidades presenten en el material [3]. 

Por otro lado, modulando la onda de bombeo se aumenta su anchura espectral, con lo 

que se produce un aumento de la potencia umbral. Ésta es una técnica habitual para evitar el 

scattering Brillouin es sistemas de comunicaciones sobre fibra óptica. 

 Polarización 3.4.3

Para que el efecto de amplificación de la sonda tenga la mayor eficiencia posible, es 

necesario que la interacción entre los campos eléctricos de la onda de bombeo y de la sonda 

sea máxima, por lo que la polarización juega un papel a destacar. Polarizaciones paralelas 

posibilitaran la optimización del efecto, mientras que polarizaciones cruzadas harán que el 

efecto desaparezca. 

Teniendo en cuenta la polarización en la ecuación (3.34), la ecuación de la potencia 

umbral se modifica ligeramente resultando [25], 

      
     

      
 (3.36) 

donde   es una constante determinada por el grado de libertad del estado de 

polarización determinado por [25], 

  
 

  
 (3.37) 

siendo    la eficiencia de la interacción entra las dos ondas contra propagantes. Para 

fibra linealmente birrefringente     cuando el bombeo se acopla a un eje principal, es decir, 

ambas ondas tienen polarizaciones lineales paralelas,     cuando se acopla a 45:. Cuando el 

estado de polarización es completamente aleatorio      , aumentando el umbral de 

potencia en al menos un 50 %. Si la polarización no es lineal, la orientación, la elipticidad y el 

sentido de rotación deben ser los mismos para que la interacción entre las dos ondas se 

optimice. 

3.5 Mecanismo de sensado 

Se considera sensor o sistema de sensado a un dispositivo o sistema capaz de detectar, 

medir y reproducir fielmente una determinada variable física o química en el dominio 
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eléctrico. Además, si se emplea como sensor la luz y la variable a caracterizar produce cambios 

de alguna de sus propiedades, se denomina sensor óptico o fotónico. Un ejemplo de éstos son 

los sensores distribuidos en fibra óptica, capaces de detectar y medir variables a lo largo de la 

fibra actuando de forma simultánea de transductor distribuido y canal óptico. Los sensores 

distribuidos sobre fibra óptica son especialmente atractivos debido a que pueden operar sobre 

grandes distancias con un coste relativo bajo comparado con los sistemas que emplean un 

gran número de sensores puntuales. 

De acuerdo con la descripción matemática desarrollada en secciones anteriores, el 

scattering Brillouin posee una fuerte dependencia de las variables termodinámicas del medio 

por el que se propaga la luz. La constante dieléctrica varía según la onda de presión generada y 

que viaja a través del medio. Por tanto, la frecuencia de desplazamiento Brillouin,   , es 

función del fonón acústico así como de la estructura y de los constituyentes del medio. La 

estructura del material se ve afectada por los cambios en la temperatura ambiente o por 

fuertes alteraciones de su distribución de densidad, como es el caso cuando se aplica una 

fuerza longitudinal o stress. 

Por tanto, cambios de temperatura o de tensión longitudinal en la fibra tiene una 

influencia lineal en la magnitud del desplazamiento [13]. Sin embargo, tanto la temperatura 

como el strain afectan simultáneamente al valor de la frecuencia Brillouin. Por lo que, aunque 

algunas técnicas de sensado son capaces de diferenciar sus efectos independientemente, en la 

mayoría de los casos se asume que bien la temperatura o el strain es constante. 

Fue en 1989 cuando por primera vez Culverhouse y sus colaboradores [16,26] 

demostraron la aplicación del desplazamiento Brillouin como método para el desarrollo de 

sensores distribuidos de temperatura. Tras estos trabajos pioneros, aparecieron nuevas 

demostración de nuevos usos y mejoras en la técnica. Tal es el caso de la medida de strain en 

fibra óptica a través del scattering Brillouin [27] y el sensado distribuido de la temperatura 

mediante el análisis óptico de Brillouin en el dominio del tiempo [28], posibilitando el sensado 

de la frecuencia Brillouin en un lugar específico de la fibra óptica. 

 Sensado de temperatura 3.5.1

La frecuencia de los fonones acústicos es función de la temperatura, ya que el índice de 

refracción de la fibra óptica varía con ésta. Por tanto, en una fibra óptica estándar la frecuencia 

de desplazamiento Brillouin se incrementa linealmente con la temperatura. En el rango de 

30°C a 100°C la dependencia de la frecuencia Brillouin con la temperatura puede calcularse 

[13, 28], 

  ( )    (  )[    (    )] (3.38) 

donde   es la temperatura en un punto específico de la fibra,    la temperatura de 

referencia y    el coeficiente de temperatura, cuyo valor típico para la sílice es de     

         [13], pudiéndose definir como, 
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  (  )

   ( )

  
 

 

  (  )

   

  
 

 

  (  )

  (  )    (  )

     
 (3.39) 

 Sensado de strain 3.5.2

El desplazamiento de la frecuencia Brillouin depende directamente de la velocidad 

acústica, siendo ésta fuertemente dependiente de la densidad del material. Por tanto, 

cualquier variación de esta cantidad puede evaluarse realizando un análisis del espectro de 

ganancia Brillouin. Los sensores Brillouin son un mecanismo eficiente para la monitorización 

del strain, tanto en compresión como en extensión. 

En el caso de cambios de strain longitudinales, el desplazamiento Brillouin también se 

incrementa linealmente, pudiendo calcularse a través de la expresión [13], 

  ( )    ( )[     ] (3.40) 

donde   es la elongación longitudinal relativa en la fibra y    su coeficiente de strain. Un 

valor típico para la sílice es        [13]. El efecto de una presión lateral también se traducirá 

en una desplazamiento de la frecuencia, sin embargo, presiones de hasta         ⁄  no 

producen un cambio significativo en la frecuencia Brillouin. 

El coeficiente de strain es función de la variación de la velocidad acústica y el índice de 

refracción con respecto al strain aplicado, 

   
 

  ( )

   

  
 

 

 

  

  
 

 

  

   
  

 (3.41) 
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Capítulo 4  

Simulación y análisis 

 

4.1 Introducción 

Una vez revisados los fundamentos teóricos de la fibra óptica y del scattering Brillouin, el 

presente capítulo se centra en la simulación del scattering Brillouin estimulado y el análisis de 

los resultados obtenidos en función de diferentes formas de la onda pulsada de bombeo. 

El estudio teórico, mediante la simulación de un sistema de sensado distribuido de 

Brillouin, resulta de un gran interés debido a que permite emular el comportamiento completo 

del proceso de scattering de una forma rápida y fiable. De este modo, y desde un punto de 

vista práctico, se permite analizar el efecto producido por diferentes formas de onda en la 

resolución del sistema, para posteriormente, en función de los resultados obtenidos, llevarlo a 

cabo en el laboratorio y poder corroborar las simulaciones realizadas. 

En este caso de emulará el comportamiento de un sistema BOTDA, cuyo esquema y 

principios se describen en el Anexo A del presente documento, mediante un modelo numérico 

que describe el modelo transitorio de la interacción de las tres ondas que intervienen en el 

proceso de scattering Brillouin estimulado introducido en el capítulo anterior. 

4.2 Modelo numérico 

El modelo numérico más general que describe la interacción producida en el proceso de 

scattering Brillouin estimulado entre la onda de bombeo, la onda de Stokes y la onda acústica, 

y que incluye la dispersión de la velocidad de grupo (GVD), la auto modulación de fase (SPM) y 

la modulación de fase cruzada (XPM) se introduce en [3].  

Sin embargo, debido a que en este caso la anchura del pulso de la onda de bombeo es 

del orden de nanosegundos, y por tanto presenta una anchura espectral pequeña, los efectos 

producidos por GVD pueden ser despreciados. Además, SPM y XPM también pueden 
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despreciarse debido a que la potencia del pulso de bombeo es relativamente baja [3] ( 50 

mW). 

Bajo estas circunstancias, y de forma equivalente a las ecuaciones (3.18) obtenidas en el 

capítulo anterior, mediante las siguientes ecuaciones diferenciales parciales acopladas se 

describe un modelo numérico práctico del SBS, 

(
 

  
 

 

 

 

  
)          

 

 
    (4.1a) 

(
 

  
 

 

 

 

  
)        

    
 

 
    (4.1b) 

(
 

  
  )          

  (4.1c) 

donde   ,    y   representan los campos de la onda bombeo, la onda de Stokes y la 

onda de sonido, respectivamente,    y    los coeficientes de acoplo fotón-fonón [29,30] y   el 

factor de atenuación de la fibra. Se define       ̅, luego      
   ̅ , y multiplicando 

ambos lados de la ecuación (4.1c) por     y con  
 
  

  
, se obtiene una forma más compacta de 

las ecuaciones anteriores, 

(
 

  
 

 

  

 

  
 

 

 
 )    ̅   (4.2a) 

(
 

  
 

 

  

 

  
 

 

 
 )    ̅    (4.2b) 

(
 

  
  )  ̅  

 

 
        

  (4.2c) 

donde    
     

  
 es el factor de ganancia Brillouin. Se define   como        siendo 

   
 

  
 la tasa de amortiguamiento con un tiempo de vida del fonón de   10 ns para fibra de 

sílice, y      (    )       la diferencia en frecuencia, donde   es la frecuencia de 

batido entre la onda de bombeo y la onda de Stokes, y    la frecuencia Brillouin de la fibra. 

Las ecuaciones (4.2) pueden resolverse aplicando el método numérico introducido por 

Chu y sus colaboradores [31]. Dado que la ecuación (4.2c) se trata de una ecuación lineal de 

primer orden no homogénea su solución general es simplemente, 

 ̅(   )  
 

 
     

   ∫   (   
 )  

 (    )
 

 

       

 
 

 
    ∫     

    (    )      
(   )

 

 

 

(4.3) 

siendo   
(   ) el ruido blanco inicial del campo acústico. Sustituyendo la ecuación (4.3) 

en las ecuaciones de los campos (4.2a) y (4.2b), respectivamente, se tiene, 
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(4.4) 

Aplicando diferencias finitas en tiempo y espacio [32, 33] a las ecuaciones (4.4), se 

obtiene, 
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(4.5a) 
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(4.5b) 

donde   
 

  
   

 

 
             son índices de tiempo y       , y   

         son índices espaciales y       . Por tanto,    
  y    

  son los campos de bombeo y 

Stokes en la posición    y en el tiempo   , respectivamente. Esto es, 
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(4.6a) 
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(4.6b) 

las integrales de la parte derecha de las ecuaciones anteriores pueden evaluarse 

mediante la regla de Simpson. Para la ecuación (4.6a), 

∫     
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(4.7) 

donde   
  se define de forma recursiva como, 
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  {

(  
        

    
  )     

   
    

       

   

   
 (4.8) 

Para la integral de (4.6b) se obtiene de forma análoga, 

∫   
    

   (       )   
    

 

 
  

 
(  

     
       

   ) (4.9) 

Definiendo 

  
  {

(  
        

     
 )      

   
     

       

   

   
 (4.10) 

Sustituyendo las ecuaciones (4.7) y (4.9) en (4.6a) y (4.6b), respectivamente, se llega a 

tener, 
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(4.11a) 
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   ) 

(4.11b) 

donde    
 

 
        , donde el signo negativo permite obtener la ganancia Brillouin 

de la onda de Stokes en    , mientras que el signo positivo refleja la medida de pérdidas. Las 

ecuaciones anteriores son no lineales ya que se desconocen los coeficientes    
    y    

   . Sin 

embargo, pueden linealizarse reemplazando estas incógnitas por su valor previo en el slot de 

tiempo anterior   [31], se obtiene, 
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(4.12a) 
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  (  
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   ) 

(4.12b) 

La onda de Stokes se introduce en    , mientras que la onda de bombeo se introduce 

en    , luego    
    y    

    pueden considerarse como las condiciones límite en el tiempo 

  (   )  , respectivamente. Por lo tanto, pueden agruparse los valores desconocidos de 

   y    en vectores como, 

  
    (   

       
            

   )
 

 y   
    (   

         
           

    )
 

 (4.13) 

Por consiguiente, la ecuación (4.12a) puede escribirse como una serie desde     a 

     , 
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Que tras alguna manipulación se tiene, 
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Definiendo   
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), la forma matricial de las ecuaciones 

anteriores se define como, 
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Es decir, se llega a la relación matricial       
         

      
 , donde, 
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con   
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). Del mismo modo, se puede escribir la ecuación (4.12b) en 

series desde     a       como, 

{
 
 
 
 

 
 
 
    

       
    

   

  
(   

       
 )        

         

    
   

     (  
    

       
   |   

 |
 
)

   
       

    
   

  
(   

       
 )        

         

    
   

     (  
    

       
   |   

 |
 
)

 

     
         

    
   

  
(     

         
 )          

           

    
     

     (    
      

         
   |     

 |
 
)

   
         

    
   

  
(     

         
 )          

           

    
     

     (    
      

         
   |     

 |
 
)

 

Tras alguna manipulación, se tiene, 
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Y definiendo   
   (  
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), la forma matricial de las ecuaciones 

anteriores, 



Capítulo 4. Simulación y análisis 

31 
 

 

(

 
 
 
 
 
 
 

(   
       

    
)  

(   
       

    
)

 

(     
         

    
)

 (     
         

    
))

 
 
 
 
 
 
 

 

 

(

 
 
 
 
 
 

   
   

   
   

 

     
   

     
   )

 
 
 
 
 
 

 

(

 
 
 
 
 
 

  

  
  

  
  

  

     
  )

 
 
 
 
 
 

(

 
 
 
 
 
 

   
   

   
   

 

     
   

   
   )

 
 
 
 
 
 

 

(

 
 
 
 
 
 
 

   

  
   

    
    

   

   

  
   

 

 

   

  
     

 

   

  
     

 
)

 
 
 
 
 
 
 

  

Es decir,       
         

      
 , con, 

   

(

 
 
 
 
 
 

  

  
  

  
  

  

     
  )

 
 
 
 
 
 

,    

(

 
 
 
 
 
 

  
  

  
 

 

    
 

     
 )

 
 
 
 
 
 

 

con   
     

       

    
, 

  
  

(

 
 
 
 
 
 
 

   

  
   

    
    

   

   

  
   

 

 

   

  
     

 

   

  
     

 
)

 
 
 
 
 
 
 

 

Por tanto, las ecuaciones (4.12) se convierten en la forma matricial, 

{
      

         
      

 

      
         

      
 

 (4.14) 



Capítulo 4. Simulación y análisis 

32 
 

Calculándose los coeficientes de las matrices y de los vectores anteriores mediante los 

valores de   
  y   

  del slot temporal anterior. 

 Condiciones iniciales y de contorno 4.2.1

Para poder obtener    y    a lo largo de la fibra completa en los instantes de tiempo 

    , deben conocerse los valores de    y    en el instante anterior   , encabezados por las 

condiciones iniciales   (   ) y   (   ).  

Se considera que la onda continua de Stokes o sonda, introducida en    , existe a lo 

largo de la fibra de sensado antes de introducir el haz pulsado de bombeo. Por tanto, se 

definen las condiciones iniciales de    simplemente considerando la atenuación como 

  (   )      
 

 

 
(   ) donde     es la intensidad de la onda continua incidente, es decir, 

  (   )     , y el factor 
 

 
 es debido a que se trata de la atenuación de la amplitud del campo 

en lugar de intensidad. Por otro lado, la condición inicial para la onda pulsada de bombeo es 

  (     )   , mientras que   (   ) se define como la condición de contorno que 

dependerá de la forma del pulso de bombeo y que serán analizadas en las siguientes 

secciones. 

 Ruido blanco inicial 4.2.2

Resolviendo las ecuaciones (4.1) aparece un ruido térmico inicial,   , inducido por el 

campo acústico, siguiendo |  | una distribución Rayleigh [34, 35]. Este campo acústico inicial 

procede de la vibración térmica de la estructura de la fibra. Considerando dos dimensiones, se 

define la probabilidad de |  | como, 

 (|  |)  |  | 
 
|  | 

 

    (4.15) 

donde    es la constante de Boltzmann (1.3806503x10-23 J/K) y   es la temperatura. 

Normalizando la probabilidad anterior, 

 (|  |)  
 |  |

   
 
 
|  | 

 

    (4.16) 

La ecuación (4.16) representa una distribución Rayleigh de anchura √    ⁄ . En este 

punto se considera el campo acústico inicial como ruido blanco, ya que se encuentra 

totalmente espaciado y temporalmente incorrelado. Debido a que la fase no influye en la 

intensidad, se asume que es aleatoria y uniformemente distribuida. Las ecuaciones anteriores 

pueden transformarse en, 

 (|  |) |  |   ( )
  

 |  |
 |  | (4.17) 

donde  ( )   . Por lo tanto, de la ecuación (4.16) se tiene, 
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 |  |
  (|  |)  

 |  |

   
 
 
|  | 

 

    

   ∫
 |  |

   
 
 
|  | 

 

    |  |
|  |

 

 

 |  |     √   (   ) 

(4.18) 

Con una distribución de fase aleatoria uniformemente distribuida  ,   (   ) puede 

determinarse como, 

  (   )  |  | 
   (4.19) 

Se verifica que este ruido es realmente incorrelado y sigue una distribución Rayleigh. 

Finalmente, el ruido blanco inicial del campo acústico,   
(   ), empleado en la simulación 

resulta, 

  
(   )     |  | 

   (4.20) 

4.3 Simulación del modelo 

Una vez establecido el modelo para la simulación de las ecuaciones (4.1), que definen la 

interacción producida en el proceso de scattering Brillouin estimulado entre la onda de 

bombeo, la onda de Stokes y la onda acústica, se ha llevado a cabo su implementación en 

Matlab. 

En este caso se ha implementado un sistema BOTDA, cuyo esquema y principios se 

describen en el Anexo A, en un tramo de fibra óptica de 12 metros de longitud. La Figura 4.1 

representa un esquema básico de la situación simulada. 

 

Figura 4.1. Esquema de la situación simulada 

En los 12 metros de fibra a simular se han introducido dos defectos, el primero de ellos a 

5 metros del inicio de la fibra, de 30 cm cada uno, con una separación entre ellos de 30 cm. 

Estos defectos emulan una variación de la temperatura o strain estableciendo una frecuencia 

Brillouin diferente a la del resto de fibra. Como se aprecia en la figura anterior, la onda pulsada 

de bombeo se introduce al comienzo de la fibra en    , mientras que la onda continua de 

𝑧    𝑧       

𝐸𝑝 𝐸𝑠 

𝐷𝑒𝑓𝑒𝑐𝑡𝑜   

30 cm 

𝐷𝑒𝑓𝑒𝑐𝑡𝑜   

30 cm 
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Stokes se introduce en el extremo opuesto en       . Tras la simulación, se analiza la 

ganancia producida en la onda continua al comienzo de la fibra. 

Con el objetivo de que los resultados de las simulaciones se ajusten en la medida de lo 

posible a los resultados experimentales del laboratorio, deben ajustarse adecuadamente todos 

los parámetros físicos que intervienen en la simulación. De este modo, se considera una fibra 

óptica monomodo con un índice de refracción,  , de 1.47 y 4.5 μm de radio. El coeficiente de 

atenuación,  , es de 6.9x10-5 m-1, el factor de acoplo fotón-fonón,   , es de 100.595 m3ns-1kg-1, 

mientras que el tiempo de vida medio del fonón,  , es de aproximadamente 10 ns, resultando 

en una tasa de amortiguamiento,    
 

  
, de 50 MHz. El factor de ganancia Brillouin,   , se fija 

en 5x10-14 m/mW y se considera una temperatura ambiental de 295 K. 

La frecuencia Brillouin de la fibra se establece en 10.69 GHz, mientras que la frecuencia 

de cada uno de los defectos se fija en 10.74 GHz y 10.62 GHz para el primer y segundo defecto, 

respectivamente.  

Tras un proceso previo de optimización de la potencia, la onda continua de Stokes se fija 

a una potencia de 2 mW, mientras que el pulso de bombeo contendrá una potencia de base de 

tan sólo 1 μW de potencia, un pulso de pre-excitación, pos-excitación o ambos, según 

corresponda dependiendo de la forma de la onda de Stokes de 5 mW y un pulso principal de 

50 mW de potencia óptica. En la Figura 4.2 se representan las tres formas de onda de la señal 

de Stokes que han sido simuladas. 

Figura 4.2. Formas de onda de la señal de Stokes 
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La potencia del pulso de pre-excitación debe ser baja de modo que no se convierta en el 

pulso principal y oculte las perturbaciones por debajo del metro de la fibra. Por tanto, y con el 

objetivo de reducir la interferencia del pulso de pre-excitación en las medidas, se ha fijado en 

un 10 % de la potencia del pulso principal. 

El interés por las formas de onda anteriores radica en que, como se comprueba en [36], 

un pulso de bombeo con una base distinta de cero puede emplearse para conseguir 

resoluciones espaciales por debajo del metro, pudiendo incluso pulsarse y emplearse como 

una pre-excitación del campo óptico para inducir la onda acústica. Como se aprecia en la 

Figura 4.2 (a), el pulso de pre-excitación es inmediatamente seguido por un pulso estrecho de 

gran potencia. De este modo, variaciones rápidas de la amplitud y la fase de la onda de 

bombeo puede inducir cambios en la amplificación de la onda de Stokes.  

Para la forma de onda representada en la Figura 4.2 (a), en la Figura 4.3 se representa la 

ganancia y la anchura del espectro Brillouin normalizada en función de la duración del pulso de 

pre-excitación. Las distintas curvas se corresponden a la onda de bombeo sin pulso principal, 

es decir, únicamente con el pulso de pre-excitación, y con pulsos de duración desde 1 a 5 ns. 

 

Figura 4.3. Ganancia y anchura del espectro Brillouin normalizada en función del pulso de pre-excitación 

Como se observa en las curvas de ganancia a medida que crece la duración del pulso de 

pre-excitación aumenta su ganancia. Esto se debe a que la energía introducida en la fibra, y 

que por tanto interviene en la interacción, es mayor. El mismo fenómeno se produce al 

introducir un pulso principal de mayor duración. Por otro lado, se aprecia que cuanto más 

corto es el pulso de pre-excitación y el pulso principal, pese a que se mejora la resolución 

espacial, la anchura espectral de la ganancia Brillouin se ensancha [37]. 

De forma análoga a la anterior, en la forma de onda de la Figura 4.2 (b) el pulso ancho, 

en este caso de pos-excitación, se introduce tras el pulso estrecho. En este caso se obtienen las 

curvas de ganancia y anchura del espectro Brillouin representadas en la Figura 4.4. 

Los resultados obtenidos son idénticos a los de la Figura 4.3, demostrándose que ambas 

formas de onda son totalmente equivalentes. 
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Figura 4.4. Ganancia y anchura del espectro Brillouin normalizada en función del pulso de pos-excitación 

Del mismo modo, y para la forma de onda de la Figura 4.2 (c), donde se introduce un 

pulso de pre-excitación anterior al pulso principal y un pulso de pos-excitación posterior, en la 

Figura 4.5 se representan las curvas de ganancia y anchura del espectro Brillouin. 

 

Figura 4.5. Ganancia y anchura del espectro Brillouin normalizada en función del pulso de pre y pos-
excitación 

De nuevo, al aumentar la duración del pulso de pre y pos-excitación aumenta su 

ganancia, aumentando también con la anchura del pulso principal. Destacar que, pese a que 

no se refleja en la gráfica de ganancia al estar normalizada, la ganancia para esta forma de 

onda es mayor a las anteriores debido a que, al estar presente un pulso de pre y pos-

excitación, la energía introducida en la fibra es mayor. Del mismo modo, la anchura del 

espectro se ve reducida al aumentar el pulso de bombeo. En este caso la variación producida 

entre distintas anchuras del pulso principal es menor debido a su escasa influencia en la forma 

de onda resultante. 

De las gráficas de ganancia y anchura del espectro Brillouin anteriores se extrae que debe 

alcanzarse un compromiso entre resolución espacial y frecuencial, duración del pulso de pre 

y/o pos-excitación y duración del pulso principal. De este modo, se estable una anchura del 

pulso de pre y/o pos-excitación de 20 ns con el objetivo de reducir el espectro de ganancia, 

debido a la escasa diferencia frecuencial entre los defectos y la frecuencia Brillouin normal de 

la fibra (50 y 80 MHz, respectivamente), y tener la suficiente energía en la fibra para la 

excitación de la onda acústica. En cuanto al pulso principal, y con el objetivo de detectar 

defectos en la fibra de 30 cm, se fija en una duración de 3 ns.  
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La Figura 4.6 representa la ganancia de Brillouin en función de la posición a lo largo de la 

fibra y la frecuencia Brillouin para las tres formas de onda de la Figura 4.2 con una duración de 

20 ns del pulso de pre y/o pos excitación y 3 ns de pulso principal. 

 

Figura 4.6. Espectro de ganancia Brillouin (a) Pre-excitación, (b) Pos-excitación y (c) Pre y pos-excitación 

De las tres gráficas anteriores se aprecia que, aunque teóricamente las formas de onda 

de las Figuras 4.2 (a) y 4.3 (b) sean equivalentes, se consigue una mejor resolución espacial y 

frecuencial con el pulso de pre-excitación que con pos-excitación. Mientras que los resultados 

de estas dos primeras son claramente superiores a la forma de onda de la Figura 4.2 (c) con 

pre y pos-excitación. Por tanto, en adelante será considerada para su análisis únicamente la 

forma de onda de la Figura 4.2 (a) con pre-excitación e inmediatamente seguido el pulso 

principal.  

En la Figura 4.7 se muestra la representación en 3D del espectro de ganancia Brillouin 

normalizado para el pulso principal con pre-excitación. 
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Figura 4.7. Espectro de ganancia normalizado 3D de la forma de onda con pulso de pre-excitación 

Aunque la forma de onda con pre-excitación mejora los resultados obtenidos, y debido a 

la reducida longitud de los defectos, se aprecia como la ganancia Brillouin de las posiciones de 

la fibra donde se localizan los defectos a su frecuencia Brillouin es menor que la de la 

frecuencia del resto de fibra, haciéndose más difícil la detección del defecto. En la Figura 4.8 se 

muestra el espectro de ganancia normalizado para las posiciones de 5.08 m y 5.67 m, donde se 

encuentran los defectos en la fibra. 

 

Figura 4.8. Espectro de ganancia normalizado en la posición: (a) 5.08 m y (b) 5.67 m 

Para intentar corregir este problema, en [38] se propone una técnica diferencial 

(Differential pre-excitation pulse BOTDA), mediante la que se extrae el espectro de ganancia 

Brillouin del pulso de pre-excitación con y sin el pulso principal y se analiza la diferencia entre 

ambos. De este modo, restando al espectro de ganancia Brillouin anterior el obtenido con el 

mismo pulso de pre-excitación y sin pulso principal, se tiene el espectro representado en la 

Figura 4.9. 

(a) 

(b) 
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Figura 4.9. Espectro de ganancia Brillouin diferencial 

De la figura anterior se observa como mediante esta técnica se mejora la ganancia a la 

frecuencia Brillouin de los defectos en la posiciones de la fibra donde se encuentran. Sin 

embargo, sigue siendo insuficiente para conseguir, a la frecuencia Brillouin de los defectos, 

tener una ganancia mayor que para la frecuencia del resto de fibra. Este problema consigue 

solucionarse multiplicando el espectro de ganancia Brillouin sin pulso principal por un factor 

de ajuste, en este caso con un valor de 1.3, y aplicar posteriormente la técnica diferencial. De 

este modo, finalmente se logra obtener correctamente la frecuencia Brillouin en cada punto 

de la fibra, Figura 4.10, de la que poder analizar sus variaciones frente a posibles cambios de 

temperatura o strain. 

 

Figura 4.10. Frecuencia Brillouin a lo largo de la fibra óptica 

De la figura anterior se extrae la existencia de dos defectos. El primero de ellos situado 

entre las posiciones 5.16 m y 5.45 m, y por tanto de 29 cm, a una frecuencia de 10 74 GHz, y el 

segundo entre 5.61 m y 5.94 m de 33 cm, a la frecuencia de 10.62 GHz, ajustándose así a la 

situación descrita inicialmente en la Figura 4.1. 
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Capítulo 5  

Resultados 

experimentales 

 

5.1 Introducción 

En el presente capítulo se trata de comprobar en la práctica las conclusiones extraídas de 

los resultados obtenidos de las simulaciones anteriores. Como se ha comprobado, la forma de 

onda que proporciona una mayor resolución espacial y frecuencial del espectro de ganancia 

Brillouin está formada por un pulso estrecho de elevada potencia y un pulso de pre-excitación 

que induce la onda acústica. 

En este caso, al igual que en las simulaciones, se implementa un sistema BOTDA cuyo 

setup experimental se representa en la Figura 5.1.  

 

Figura 5.1. Setup experimental del sistema implementado 



Capítulo 5. Resultados experimentales 

41 
 

A partir de una única fuente laser a 1550 nm y mediante un acoplador 50:50, se genera la 

señal de Stokes o señal de sonda, rama superior del esquema, y el pulso de bombeo, rama 

inferior. La rama superior está formada por un EOM controlado por una fuente de tensión de 

bias y una señal de radiofrecuencia, y un aleatorizador de polarización (PS) tras el que la señal 

de sonda se introduce a la fibra bajo análisis (FUT).  

La señal óptica de bombeo, formada por el pulso de pre-excitación y el pulso principal, se 

obtiene mediante la generación de dos pulsos eléctricos desplazados en el tiempo y 

combinados a través de un divisor de potencia resistivo (RPD). De este modo, el pulso eléctrico 

resultante se aplica al EOM de la rama inferior generando el pulso óptico a su salida. Tras el 

modulador se introduce el pulso de bombeo en un EDFA para amplificar la señal y mediante un 

circulador dirigirla a la fibra bajo análisis. 

Tras la interacción producida en la fibra entre las tres ondas que intervienen en el 

proceso de scattering Brillouin estimulado, la señal de sonda resultante se monitoriza en el 

dominio del tiempo a través de un conversor óptico/eléctrico (O/E) y una unidad de análisis y 

procesado (A&P). Se realiza un promediado de 2048 muestras por cada frecuencia con un paso 

de la señal de sonda de 2 MHz. 

Por último, la fibra que será objeto de análisis está compuesta por diferentes tipos de 

fibras ópticas, cada una de ellas con una frecuencia Brillouin diferente. En primer lugar se tiene 

un tramo de fibra estándar (Siecor SMF) de 5 metros, con una frecuencia Brillouin de 10.86 

GHz, y a continuación 20 metros de fibra Teralight de Alcatel. Esta última presenta una 

frecuencia Brillouin principal en 10.69 GHz y una frecuencia secundaria en 10.85 GHz. Tras la 

fibra Teralight se coloca un pequeño tramo de 1.5 metros de fibra S3MC de Alcatel, con una 

frecuencia de 10.8 GHz, y de nuevo 10 metros de fibra Teralight. Por último, se encuentra un 

tramo de 1000 metros de fibra estándar (Siecor SMF). En la Figura 5.2 se representan los 

diferentes tramos de fibra que forman la FUT. 

 

Figura 5.2. Diferentes tramos de fibra óptica de la FUT 

5.2 Parametrización del sistema 

En primer lugar, antes de introducir un defecto del orden de centímetros en alguno de 
los tramos de fibra, representados en la Figura 5.2, y proceder a su posterior medida e 
identificación, dada su dificultad y debido al amplio número de factores que influyen en la 
medida de la frecuencia Brillouin se realiza un proceso previo de parametrización. 

 

10 m Teralight 

10.69 y 10.85 GHz 

1.5 m S3MC 

10.80 GHz 

 

20 m Teralight 

10.69 y 10.85 GHz 

 

5 m SMF 

10.86 GHz 

1000 m SMF 

10.86 GHz 



Capítulo 5. Resultados experimentales 

42 
 

Al tratarse de un sistema de una gran sensibilidad, la parametrización consiste en el 
ajuste preciso de todos los parámetros que intervienen en el sistema. En este caso, se va a 
considerar una adecuada parametrización cuando se consiga medir e identificar correctamente 
los distintos tramos de fibra introducidos en la Figura 5.2, prestando especial atención al de 
fibra S3MC de 1.5 metros. 

De este modo, y tras los resultados obtenidos de las simulaciones, se introduce una señal 
óptica pulsada con pre-excitación como bombeo, tal y como se representa aproximadamente 
en la Figura 5.3, cuya anchura del pulso de pre-excitación y pulso principal es del orden de 15 y 
3 ns, respectivamente. 

 

Figura 5.3. Señal óptica pulsada de bombeo 

Una vez optimizado el sistema, y aplicando la técnica diferencial introducida en el 
capítulo anterior, se extrae el espectro de ganancia Brillouin aplicando la señal de bombeo de 
la Figura 5.3 y sin el pulso principal. Analizando la diferencia entre ambos espectros se obtiene 
el espectro de ganancia Brillouin que se muestra en la Figura 5.4. 

 

Figura 5.4. Espectro de ganancia Brillouin diferencial 

En la figura anterior se aprecia tres zonas claramente diferenciadas. En primer lugar, en 
torno a la frecuencia de 10.69 GHz aparecen los dos tramos de fibra Teralight. A la frecuencia 
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de 10.80 GHz, dividiendo los dos tramos Teralight anteriores, se presenta un tramo estrecho 
correspondiente a la fibra S3MC, y por último se encuentra un tramo de fibra a la frecuencia 
de 10.86 GHz, tratándose esta última de la fibra estándar SMF. De una forma más gráfica, en la 
Figura 5.5 se presenta la frecuencia Brillouin en cada posición espacial de la fibra. 

 

Figura 5.5. Frecuencia Brillouin a lo largo de los diferentes tramos de fibra 

Se comprueba como de forma aproximada el gráfico anterior representa la situación 
propuesta en la Figura 5.2. Se presentan dos tramos de fibra con una frecuencia Brillouin de 
10.69 GHz correspondiente a la fibra Teralight, de unos 20 y 10 metros, respectivamente. 
Entre ambos se localiza un tramo de 1.4 metros, tratándose de la fibra S3MC, con una 
frecuencia de 10.80, y por último un tramo con una frecuencia Brillouin ligeramente por 
encima de los 10.86 GHz de la fibra estándar SMF. 

De este modo, queda parametrizado finalmente el sistema y demostrado que permite 
reproducir fielmente cualquier variación de la frecuencia Brillouin a lo largo de una fibra 
óptica. 

5.3 Defecto sub métrico 

Tras quedar demostrado en la sección anterior que, una vez parametrizado 
correctamente, el sistema es capaz de detectar cambios de la frecuencia Brillouin de una fibra 
óptica en longitudes del orden de metros, se introduce un defecto en uno de los tramos de 
fibra presentados en la Figura 5.2. 

En este caso, sobre el segundo tramo de fibra óptica Teralight, y mediante un 
calentamiento térmico a través de una célula Peltier, se introduce un defecto de 
aproximadamente 30 cm de longitud.  

Este defecto, bajo una temperatura ambiente de aproximadamente 26 grados 
centígrados, se somete a un calentamiento térmico hasta llegar a los 56 grados, es decir, 30 
grados por encima de la temperatura ambiente. Por tanto, según la teoría vista en el apartado 
3.5.1, al presentar la sílice un coeficiente de temperatura de aproximadamente 1 MHz/°C el 
desplazamiento en frecuencia Brillouin deberá ser de entorno 30 MHz. 
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De este modo, introduciendo la señal pulsada con pre-excitación de la Figura 5.3 como 
bombeo y aplicando de nuevo la técnica diferencial, se obtiene el espectro de ganancia 
Brillouin representado en la Figura 5.6. 

 

Figura 5.6. Espectro de ganancia Brillouin diferencial 

Se aprecia como, además del tramo de fibra de 1.5 metros S3MC identificada en la 

sección anterior, en torno a 30 metros se presenta un pequeño defecto que desvía la 

frecuencia Brillouin ligeramente por encima de la frecuencia característica de la fibra situada 

en 10.69 GHz. Esta desviación frecuencial se debe al calentamiento producido sobre los 30 cm 

de fibra Teralight. En la Figura 5.7 se presenta en tres dimensiones el mismo espectro de 

ganancia Brillouin de la figura anterior. 

 

Figura 5.7. Espectro de ganancia Brillouin diferencial en 3 dimensiones 

De las figuras anteriores no puede apreciarse suficientemente las características que 

presenta el defecto, por lo que en la Figura 5.8 se representa la frecuencia Brillouin en cada 

posición espacial de la fibra. 
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Figura 5.8. Frecuencia Brillouin a lo largo de la fibra óptica 

Se observa como en torno a 30 metros se presenta una desviación de la frecuencia 

Brillouin de 10 MHz durante aproximadamente 36 cm. Esta desviación se corresponde con el 

defecto introducido debido al calentamiento térmico de la fibra. Sin embargo, dicha desviación 

frecuencial debería situarse unos 30 MHz por encima de la frecuencia de la fibra a temperatura 

ambiente. 

Esta diferencia entre los resultados prácticos y los resultados esperados teóricamente se 

ha mantenido aproximadamente constante en las diferentes repeticiones  realizadas. Por 

tanto, probablemente sean debidos a una diferencia entre el punto de medida de temperatura 

que se ha considerado y la temperatura real de la fibra óptica, siendo realmente 10 grados la 

diferencia entre la temperatura ambiente y la temperatura del defecto. 

De este modo queda comprobado experimentalmente que mediante el análisis de la 

frecuencia Brillouin a lo largo de una fibra óptica a través de un sistema BOTDA puede 

detectarse variaciones de temperatura y/o strain en longitudes por debajo del metro. 
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Capítulo 6  

Conclusiones y Líneas 

futuras 

 

6.1 Conclusiones 

Durante el transcurso del presente trabajo fin de master se han revisado conceptos 

teóricos de la fibra óptica, tales como la atenuación o los diferentes procesos de scattering 

presentes, así como los principios fundamentales del scattering Brillouin, tanto espontáneo 

como estimulado. 

Se ha definido la frecuencia Brillouin y su espectro de ganancia, así como su potencia 

umbral que depende de varios factores como son: la anchura y repetición del pulso, la anchura 

espectral y modulación, y polarización. Todo ello con el único propósito de establecer a la 

frecuencia Brillouin como un mecanismo de sensado, que permita identificar variaciones de 

temperatura y/o strain de forma distribuida a lo largo de la fibra óptica. 

Presentados los fundamentos teóricos, se ha llevado a cabo la simulación del scattering 

Brillouin estimulado y el análisis de los resultados obtenidos en un sistema BOTDA. Para ello se 

ha desarrollado un modelo numérico que describe la interacción producida durante el proceso 

de scattering y se ha implementado en código Matlab. Tras la simulación y el análisis de 

diferentes formas de la onda pulsada como bombeo, se ha demostrado que la forma de onda 

que proporciona una mayor resolución espacial y frecuencial es aquella que presenta un pulso 

ancho de pre-excitación, que induce la onda acústica, seguido por un pulso estrecho de mayor 

potencia que consigue aumentar la resolución espacial.  

Para la detección de defectos de aproximadamente 30 cm de longitud y próximos 

frecuencialmente a la frecuencia Brillouin del resto de fibra, 50 y 80 MHz respectivamente, se 

ha comprobado que se logra una mayor resolución empleando un pulso de pre-excitación de 

20 ns y 5 mW de potencia y un pulso principal de 3 ns de anchura y 50 mW de potencia óptica. 
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De esta forma, se ha comprobado mediante simulación la correcta caracterización de los 

defectos introducidos, identificando fielmente su longitud y su frecuencia Brillouin. 

Se ha realizado la comprobación experimental de los resultados obtenidos de la 

simulación mediante la medida de la frecuencia Brillouin de varios tramos de fibra óptica de 

diferentes longitudes. Se ha conseguido caracterizar correctamente los distintos tramos de 

fibra en los que estaba dividida la FUT, presentando una mayor atención, debido a su mayor 

dificultad, a la identificación del tramo de fibra S3MC de 1.5 metros de longitud.  

Posteriormente se ha conseguido identificar y medir la variación de la temperatura sobre 

defectos con longitudes inferiores al metro. Este era el caso del defecto de aproximadamente 

30 cm que había sido calentado térmicamente 30 grados por encima de la temperatura 

ambiente. Sin embargo, la caracterización del defecto anterior no resulto del todo precisa 

debido a que la variación de la frecuencia Brillouin resulto ser insuficiente con respecto al 

aumento de temperatura introducido. Esta menor variación de la frecuencia Brillouin puede 

ser debida a una diferencia de temperatura entre el punto de medida considerado y la 

temperatura real de la fibra óptica. 

6.2 Líneas futuras 

A continuación se enumeran algunas de las posibles líneas futuras que, habiendo 

quedado fuera de los objetivos iniciales, pueden ser desarrolladas a partir del trabajo realizado 

en el presente documento: 

 Aunque durante la etapa de simulación se realizó, en función de los resultados 

obtenidos, un pequeño estudio de la potencia del pulso de bombeo óptima, 

resultaría de gran utilidad un análisis en profundidad de la influencia de la 

potencia del pulso óptico en la resolución espacial y frecuencial. Se trataría de 

analizar, tal y como se ha realizado con la anchura temporal de cada uno de los 

pulsos, la potencia del pulso de pre y/o pos-excitación y del pulso principal en 

función de la resolución espacial y frecuencial, alcanzando así un valor óptimo de 

potencia para cada uno de ellos. Este análisis de potencia podría realizarse tanto 

desde un punto de vista teórico, mediante simulación, como experimental, 

pudiendo analizar las posibles diferencias que hubiera entre ambos.  

 Siguiendo con el análisis realizado con las formas de onda representadas en la 

Figura 4.2 como señal de bombeo, sería interesante analizar los resultados 

obtenidos frente a otras formas de onda diferentes como pueden ser los trenes 

de pulsos. 

 Al tratarse de un sensor distribuido, su principal objetivo es conseguir la menor 

resolución espacial posible. Por tanto, empleando el mismo sistema BOTDA 

implementado y analizando progresivamente defectos de menor longitud, 

permitiría obtener el límite en resolución espacial del sistema. También podrían 

proponerse diferentes modificaciones, tanto del sistema como de la onda de 

bombeo, para conseguir obtener una menor resolución. 



 

48 
 

 

Capítulo 7  

Referencias 

 

7.1 Referencias 

Según orden de aparición, a continuación se enumeran las referencias que han sido 

necesarias para la elaboración del presente trabajo fin de máster. 

[1] G. Keiser, “Optical Fibre Communications”, McGraw-Hill, 2000. 

[2] J. M. Senior, “Optical Fiber Communications”, 2nd ed. Prentice-Hall, 1992. 

[3] G. P. Agrawal, “Nonlinear fibre optics”, 3rd ed. Academic Press, 2001. 

[4] G. C. Baldwin, “An introduction to nonlinear optics”, Plenum, 1969. 

[5] D. N. Stacey, “Rayleigh’s legacy to modern physics: high resolution spectroscopy”, European 

Journal of Physics, vol. 15, pp. 236-242, 1996. 

[6] P. Gysel y R. H. Staubli, “Statistical properties of Rayleigh backscattering in single-mode fibers”, 

Journal of Lightwave Technology, vol. 8, pp. 561-567, 1990. 

[7] S. K. Liaw, S. L. Tzeng, y Y. J. Hung, “Rayleigh backscattering induced power penalty on 

bidirectional wavelength-reuse fiber systems”, Optical Communications, vol. 188, pp. 63-67, 

2001. 

[8] E. Brinkmeyer, “Backscattering in single mode fibers”. Electronics Letters, vol. 16, pp. 329-330, 

1980. 

[9] C. V. Raman, “A new radiation”, Indian Journal of Physics, vol. 2, pp. 387-398, 1928. 

[10] E. J. Woodbury y W. K. Ng, “Ruby laser operation in the near IR”, Proceeding of the IRE, vol. 50, p. 

2347, 1962. 

[11] E. P. Ippen y R. H. Stolen, “Stimulated Brillouin scattering in optical fibers”, Applied Physics, 

Letters, vol. 20, p. 62, 1972. 



Capítulo 7. Referencias 

49 
 

[12] L. Brillouin, “Diffusion de la lumière et des rayons X par un corps transparent ethomogène-

Influence de l’agitation thermique”, Annales de Physique, Paris, Thèse, 1920. 

[13] T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda y Y. Koyamada, “Development of a distributed 

sensing technique using Brillouin scattering”, Journal of Lightwave Technology, vol. 13, no. 7, pp. 

1296-1302, 1995. 

[14] X. S. Yao, “Phase-to-amplitude modulation conversion using Brillouin selective sideband 

Amplification”, IEEE Photonics Technology Letters, vol. 10, no. 2, pp.264-266, 1998. 

[15] Donald R. Ponikvar y Shaoul Ezekiel, “Stabilized single-frequency stimulated Brillouin fiber ring 

laser”, Optics Letters, vol. 6, pp. 398-400, 1981. 

[16] D. Culverhouse, F. Farahi, C. N. Pannel y D.A. Jackson, “Potential of stimulated Brillouin Scattering 

as sensing mechanism for distributed temperature sensors”, Electronic Letters, vol. 25, no. 14, pp. 

913-914, 1989. 

[17] T. Horiguchi, T. Kurashima y M. Tateda, “A technique to measure distributed strain in optical 

fibers”, IEEE Photonics Technology Letters, vol. 2, no. 5, pp. 352-354, 1990. 

[18] R. Y. Chiao, C. H. Townes y B. P. Stoicheff, “Stimulated Brillouin scattering and 

coherentgeneration of intense hypersonic waves”, Physics Review Letters, vol. 12, no .21, pp. 592-

595, 1964. 

[19] F. T. Arecchi y E. O. Schulz-Dubois, “Laser handbook”, North Holland Publishing Company – 

Amsterdam, vol. 2, pp. 1079-1150, 1972. 

[20] R. W. Boyd, “Nonlinear Optics”, 2nd ed. Academic Press, 2003. 

[21] A. B. Ruffin, “Stimulated Brillouin scattering: an overview of measurements, system impairments 

and applications”, NIST-SOFM, pp. 23-28, 2004. 

[22] R. G. Smith, “Optical Power Handling Capacity of Low Loss Optical Fibers as Determined by 

Stimulated Raman and Brillouin Scattering”, Appl. Opt., vol. 11, no. 11, pp. 2489-2494, 1972. 

[23] P. C. Wait y T. P. Newson, “Measurement of Brillouin scattering coherence length as a function of 

pump power to determine Brillouin linewidth”, Optics Communications 117, pp. 142-146, 1995. 

[24] H. Naruse y M. Tateda, “Trade-off between the spatial and the frequency resolutions in measuring 

the power spectrum of the Brillouin backscattered light in an optical fiber”, Applied Optics, vol. 

38, no. 31, pp. 6516-6521, 1999. 

[25] M. O. Van Deventer y A. J. Boot, “Polarization properties of stimulated Brillouin scattering in 

single-mode fibres”, Journal of Lightwave Technology, vol. 12, no. 4, pp. 585-590, 1994. 

[26] D. Culverhouse, F. Farahi, C. N. Pannel y D. A. Jackson, “Stimulated Brillouin scattering: a means 

to realize tunable microwave generator or distributed temperature sensor”, Electronics Letters, 

vol. 25, no. 14, pp. 915-916, 1989. 

[27] T. Horiguchi, T. Kurashima y M. Tateda, “Tensile strain dependence of Brillouin frequency shift in 

silica optical fibers”, IEEE Photonics Technology Letters, vol. 1, no. 5, pp. 107-108, 1989. 

[28] T. Kurashima, T. Horiguchi y M. Tateda, “Distributed-temperature sensing using stimulated 

Brillouin scattering in optical silica fibers”, Optics Letters, vol. 15, no. 18, pp. 1038-1040, 1990. 



Capítulo 7. Referencias 

50 
 

[29] H. Li y K. Ogusu, “Dynamic behavior of stimulated Brillouin scattering in a single-mode optical 

fiber”, Jpn. J. Appl. Physics 38 (11), pp. 6309-6315, 1999. 

[30] W. Lu, A. Johnstone y R. G. Harrison, “Deterministic dynamics of stimulated scattering 

phenomena with external feedback”, Physical Review A 46 (7), pp. 4114, 1992. 

[31] R. Chu, M. Kanefsky y J. Falk, “Numerical study of transient stimulated Brillouin scattering”, J. 

Appl. Phys. 71, pp. 4653-4658, 1992. 

[32] C. A. Hall y T. A. Porshing, “Numerical analysis of partial differential equations”, Prentice Hall, 

Englewood Cliffs, NJ, 1990. 

[33] J. W. Thomas, “Numerical partial differential equations: Finite difference methods”, Springer-

Verlang, 1995. 

[34] B. Oliver, “Thermal and quantum noise”, Proc. Institute of Radio Engineers, vol. 53, pp. 436-454, 

1965. 

[35] M. Gupta, “Electrical noise: Fundamentals and Sources”, IEEE Press, 1977. 

[36] K. Kishida y C. H. Li, “Pulse pre-pump-BOTDA technology for new generation of distributed strain 

measuring system”, Structural Health Monitoring and Intelligent Infrastructure, London, pp. 471-

477, 2006. 

[37] V. Lecoeuche, D. J. Webb, C. N. Pannell y D. A. Jackson, “Transient response in high-resolution 

Brillouin-based distributed sensing using probe pulses shorter than the acoustic relaxation time”, 

Opt. Lett., vol. 25, pp. 156-158, 2000. 

[38] C. A. Galindez y J. M. Lopez-Higuera, “Decimeter Spatial Resolution by Using Differential Pre-

excitation BOTDA Pulse Technique”, IEEE Sensors Journal, vol. 11, pp. 2344-2348, 2011. 

[39] T. Kurashima, T. Horiguchi, H. Hizumita, S. Furukawa y Y. Koyamada, “Brillouin optical-fiber time 

domain reflectometry”, Tech. Dig. Int. Quantum Electron. Conf., paper MoL4, pp. 42-44, Vienna-

Austria, 1992. 

[40] B. Eisler, G. Lanan, M. Nikles y L. Zuckerman, “Distributed Fiber Optic Temperature Sensing 

System for Buried Subsea Arctic Pipelines”, Deep Offshore Technology Conference DOT, Houston, 

TX-USA, 2008. 

[41] M. Nikles, R. Burke, F. Briffod y G. Lyons, “Greatly extended distance pipeline monitoring using 

fibre optics”, OMAE2005-67369, Halkidiki-Greece, 2005. 

[42] M. N. Alahbabi, Y. T. Cho y T. P. Newson, “150-km-range distributed temperature sensor based on 

coherent detection of spontaneous Brillouin backscatter and in-line Raman amplification”, Journal 

of the optical society of America-JOSA B, vol. 22, no. 6, pp. 1321-1324, 2005. 

[43] P. C. Wait y T. P. Newson, “Landau-Placzek ratio applied to distributed fibre sensing”, Optics 

Communications, vol. 12, no. 4-6, pp. 141-146, 1996. 

[44] Y. Mizuno, W. Zou, Z. He y K. Hotate, “Proposal and experiment of BOCDR – Brillouin optical 

correlation-domain reflectometry”, 19th International Conference on Optical Fibre Sensors, Proc. 

of SPIE vol. 7004, 70043M, Perth-Australia, 2008. 



Capítulo 7. Referencias 

51 
 

[45] Y. Mizuno, Z. He and K. Hotate, “Measurement range enlargement in Brillouin optical correlation-

domain reflectometry based on temporal gating scheme”, Optics Express, vol. 17, no. 11, pp. 

9040-9046, 2009. 

[46] Y. Mizuno, W. Zou, Z. He y K. Hotate, “Proposal of Brillouin optical correlationdomain 

reflectometry (BOCDR)”, Opt. Express, vol. 16, no. 16, pp. 12148-12153, 2008. 

[47] T. Horiguchi y M. Tateda, “BOTDA –nondestructive measurement of single/mode optical fiber 

attenuation characteristics using Brillouin interaction: Theory”, Journal of Lightwave Technology, 

vol. 7, no. 8, pp. 1170-1176, 1989. 

[48] R. L. Idriss, M. B. Kodindouna, A. D. Kersey y M. A. Davis, “Multiplexed Bragg grating optical fiber 

sensors for damage evaluation in highway bridges”, Smart Mater Structure 7, pp. 209-213, 1998. 

[49] M. Nikles, L. Thevenaz y P. A. Robert, “Brillouin spectrum characterization in single-mode optical 

fibers”, Journal of lightwave Technology, vol. 15, no. 10, pp. 1842-1851, 1997. 

[50] X. Bao, D. J. Webb y D. A. Jackson, “22Km distributed temperature sensor using Brillouin gain in 

an optical fiber”, Optics Letters, vol. 18, no. , pp. 552-554, 1993. 

[51] X. Bao, D. J. Webb y D. A. Jackson, “32-km distributed temperature sensor based on Brillouin loss 

in an optical fiber”, Optics Letters, vol. 18, no. 18, pp.1561-1563, 1993. 

[52] T. Horiguchi, T. Kurashima y Y. Koyamada, “1 m spatial resolution measurement of distributed 

Brillouin frequency shift in single-mode fibers”, Tech. Dig. OFM’94, pp. 73–76, 1994. 

[53] A. W. Brown, B. G. Colpitts y K. Brown, “Distributed Sensor Based on Dark-Pulse Brillouin 

Scattering”, IEEE Photonics Technology Letters, vol. 17, no. 7, pp. 1501-1502, 2005. 

[54] S. B. Cho, J. J. Lee y I. B. Kwon, “Strain event detection using a double-pulse technique of a 

Brillouin scattering-based distributed optical fiber sensor”, Optics Express, vol. 12, no. 18, pp. 

4339-4346, 2004. 

[55] L. Thevenaz y S. Foaleng, “Distributed fibre sensing using Brillouin echoes”, The 19th Optical Fiber 

Sensing conference -OFS19, SPIE vol. 7004, pp. 70043N-4, Perth-Australia, 2008. 

[56] J. Yang, C. Yu, Z. Chen, J. Ng y X. Yang, “Suppression of polarization sensitivity in BOTDA fiber 

distributed sensing system”, The 19th Optical Fiber Sensing conference -OFS19, SPIE vol. 7004, 

pp. 700421-4, Perth-Australia, 2008. 

[57] K. Hotate y T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical 

fibre using a correlation-based technique –proposal, experiment and simulation-”, IEICE 

Transaction on Electronics, vol. E83-C, no. 3, 2000. 

[58] K. Y. Song, Z. He y K. Hotate, “Optimization of Brillouin optical correlation domain analysis system 

based on intensity modulation scheme”, Optics Express, vol. 14, no. 10, pp. 4256-4263, 2006. 

[59] K.Y. Song, Z.He y K. Hotate, “Distributed strain measurement with millimeter-order spatial 

resolution based on Brillouin optical correlation domain analysis”, Optics Letters, vol. 31, no. 17, 

pp. 2526-2528, 2006. 

[60] D. Garus, K. Krebber, F. Schliep y T. Gogolla, “Distributed sensing technique based on Brillouin 

optical-fiber frequency-domain analysis”, Optics Letters, vol. 21, no. 17, pp. 1402-1404, 1996. 



Capítulo 7. Referencias 

52 
 

[61] D. Garus, T. Gogolla, K. Krebber y F. Schliep, “Brillouin Optical-Fiber Frequency- Domain Analysis 

for Distributed Temperature and Strain Measurements”, Journal Of Lightwave Technology, vol. 

15, no. 4, pp. 654-662, 1997. 

[62] R. Bernini, A. Minardo y L. Zeni, “An Accurate High-Resolution Technique for Distributed Sensing 

Based on Frequency-Domain Brillouin Scattering”, IEEE Photonics Technology Letters, vol. 18, no. 

1, pp. 280-282, 2006. 

 

 

 



 

53 
 

  


