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Single-molecule force spectroscopy is a powerful technique based in the application of controlled
forces to macromolecules. In order to relate the measured response of the molecule with its equi-
librium and dynamical properties, a suitable physical picture of the involved process is necessary.
In this work, we introduce a plausible model for mechanical unbinding of some molecular com-
plexes, based on a novel free energy profile. We combine two standard theoretical frameworks
for analyzing force spectroscopy experiments for two protein:protein complexes, obtaining key
magnitudes of the underlying free energy profile, which are only understood within the mentioned
model. Additionally, we carry out detailed stochastic dynamics simulations to prove the validity of
the analysis protocol and the reliability of the free energy profile. Remarkably, we can compare
directly the obtained unbinding free energies with the previously known bulk binding free energies,
bridging the gap between bulk and single molecule techniques.

1 Introduction

Since the irruption of single molecule techniques, the study of
biological processes at the molecular level has been completely
revolutionized1,2. The possibility of manipulating individual
molecules allows to sample directly distributions of molecular
properties, providing the identification of rare subpopulations,
something inconceivable with bulk biophysical assays, where en-
semble averaging is inherent to the technique. Specifically, single
molecule dynamic force spectroscopy (DFS) involves the appli-
cation of controlled forces to biological macromolecules or com-
plexes3,4, inducing conformational changes such as unfolding of
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proteins5 and nucleic acids6, dissociation of ligand-receptor com-
plexes7–10 or even unravel enzyme catalysis mechanisms11.

In this context, processes such as molecular unbinding are usu-
ally characterized by a free energy profile along a reaction coor-
dinate, namely the pulling direction. This profile shows a single
-or multiple- free energy barrier ∆G† and an unbinding or dissoci-
ation free energy ∆G0, which respectively control the kinetic and
thermodynamic properties of the system. Ultimately, force spec-
troscopy experiments aim to access to this information by mea-
suring rupture forces on such molecular transitions.

In the last few years, wide theoretical effort has been focused
on this goal. For instance, when pulling a molecule at constant
rate r f = d f/dt, force spectroscopy theory12–17 relates the most
probable rupture force f ∗ with the free energy barrier height ∆G†,
the position of the transition state x† and the intrinsic rate co-
efficient k0. In addition, Jarzysnki equality18 provides the free
energy difference between two equilibrium states ∆G0 by mea-
suring the work performed over a non-equilibrium transition be-
tween such states19–21. A combined application of both theo-
retical frameworks would provide a global picture of the kinetic
and equilibrium characteristics of the system. Nevertheless, they
should be understood together within a suitable shape of the free
energy profile, concerning the particular system of study.

In this work, we study the problem of mechanical dissociation
of molecular complexes10,22–26. Here, the force is typically ex-
erted to the complex through a polymer linker attached to the
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Table 1 Free energy barrier height ∆G†, position x† and dissociation free energy ∆G0 for some biomolecular complexes. Typically ∆G0 > ∆G† can be
observed. (a), (b), (c) and (e) are presented in Refs. 27, 29, 22 and 24 respectively. (d) are obtained after an analysis of data given in 24 (seeSI). (f) is
obtained in this work and (g) in 31.

Complex ∆G†[kBT] x† [nm] ∆G0[kBT]
Biotin:streptavidin 13.6a 0.6a 30.9b

Biotin:avidin 11.7a 0.5a 33.7c

LFA-1:ICAM1 8.6d 0.2d 15.5e

LFA-2:ICAM2 7.6d 0.4d 14.3e

FNR:Fld 4.9 f 0.6 f 12.8g

FNR:Fd 6.9 f 0.5 f 13.5g

pulling apparatus, which retracts at constant rate r f until the
complex dissociates at a certain rupture force. From this mag-
nitude, one should be able to derive the main properties of the
underlying free energy profile. We propose a simple analysis
procedure which allows for recovering the relevant free energy
magnitudes ∆G† and ∆G0 from rupture force measurements, by
applying DFS theory12,13,16,27,28 and Jarzysnki equality18. The
method is applied to DFS-AFM experiments of the complexes
formed by the flavoenzyme Ferredoxin-NADP+ reductase (FNR)
and its two protein partners Ferredoxin (Fd) and Flavodoxin (Fld)
from cyanobacterium Anabaena PCC 7119. This system is paradig-
matic for the study of the association mechanism of redox com-
plexes, and their interaction mechanism has been carefully char-
acterized30–35.

We provide values for the barrier position x† and height ∆G†,
and for the dissociation free energies ∆G0, which remarkably
match the thermodynamic values determined in31. Different
from the unfolding of biological macromolecules case, now the
obtained equilibrium magnitude ∆G0 compares to that obtained
from bulk experiments -such as calorimetry- since the initial
(bound) and final (unbound) states are very similar.

In our analysis, a somehow surprising ∆G† <∆G0 is found. This
result seems to be uniquitous in mechanical unbinding of com-
pleses see Table 1, but does not suit the conventional picture of
a molecular potential36–38, pictured in Fig. 1A. Thus, the main
objective of our work is to introduce a plausible model for the
mechanical unbinding of biomolecular complexes that suits this
observation. In this sense, and in order to provide a unified frame-
work for understanding the physical properties of this process, we
propose an alternative free energy profile, sketched in Fig. 1B.
To study the validity of the proposed model and the consistency
of our method, we perform stochastic numerical simulations and
analyze them with the same procedure used with the experimen-
tal data. Thus, on the one hand we validate the use of a simple
and robust analysis protocol in order to jointly determine ∆G† and
∆G0 from DFS experiments. On the other hand, we propose a free
energy profile shape for mechanical dissociation of biomolecular
complexes, focusing on the physical mechanism which drives this
process. We finish with a thoroughly discussion on the biological
implications of our results.

Fig. 1 Free energy profile representation for the dissociation of
biological complexes. The profile is characterized by a free energy
barrier ∆G†, and the dissociation free energy ∆G0. Panel (A) shows a
conventional picture of an unbinding molecular potential, ∆G† > ∆G0.
Panel (B) shows our proposal, which meets the requirements found in
DFS studies, ∆G† < ∆G0.

2 Analysis Method
We describe the joint analysis protocol to extract the free energy
magnitudes ∆G† and ∆G0 from DFS experiments. This protocol
is applied both to experiments on two different protein:protein
complexes and on stochastic simulation on a physical-based
model (Fig. 2, panel A).

From each force-extension unbinding trajectory showing an un-
binding event (see Fig. 2, panel B), the rupture force f † is taken
as the peak of the trace. Thus, a rate dependent rupture force his-
togram is generated. From dynamic force spectroscopy theory, we
can obtain ∆G† and x† from the dependence of the most probable
rupture force on the loading rate as16,27,39:

f ∗ =
∆G†

νx†

[
1−

(
− kBT

∆G† log
r f x†

κkBT

)ν]
(1)

where ν is a parameter which depends on the analytical shape
of the free energy profile (see below for further details and see
Ref.39 for a comment about the difference between the expression
for the most probable and the mean rupture force). The zero
force unbinding rate k0 can be obtained from κ and ∆G† as k0 =

κe−∆G†/kBT .

As ∆G0 is an equilibrium magnitude, we can use Jarzynski
equality18 in order to infer it from non-equilibrium work mea-
surements.



Fig. 2 Panel (A): Graphical representation of the set-up for an
unbinding force-spectroscopy experiment (upper) and scheme of the
physical model (lower). The system is composed of two elements: first,
the biological complex is modeled as a point particle moving in a
phenomenological potential. Second, the pulling device (PEG polymer
linker in series with the AFM cantilever) is modeled as a WLC model in
series with a linear spring. There are three relevant coordinates, xp is
the position of the particle in the potential, γ the distance to the tip of the
cantilever, while λ is the control parameter such that λ =Vt. Panel (B):
Selected force extension curve for the simulated physical model (left)
and experiment (right). Force on the spring is represented versus
coordinate γ. Two clear regions can be identified. First, a WLC
dependence of persistence length P = 0.37nm and contour length
L0 = 20nm is found (blue curve) up to the unbinding force f . Then, the
force relaxes following a linear dependence of slope KC = 20pN/nm. The
area under the trace (shaded region) is the accumulated work upon the
unbinding process (Eq. (4)).

e−∆G0/kBT = 〈e−W/kBT 〉, (2)

where 〈· · · 〉 is the ensemble average over a fixed non equilibrium
protocol. As we are subject to limited sampling, given a work dis-
tribution P(W ), we compute the Jarzynski estimator ∆G0

J . Consid-
ering a limited number N of work measurements Wi, the Jarzynski
estimator reads:

∆G0
J =−kBT log

1
N

N

∑
i

e−Wi/kBT . (3)

It is important to define correctly the non equilibrium protocol
we use in order to compute the proper work distributions p(W )40.
Here, the work performed on the system is the integral of the

rupture force with respect to the control parameter λ (see Panel A
at Fig. 2). In this regard, given a rupture trace f (λ ), the work is
calculated as41:

W =
∫

λ †

0
f (λ )dλ =

∫
γ†

0
FWLC dγ +

1
2
( f †)2

KC
, (4)

where FWLC is the force-extension curve of a WLC (see SI), KC the
spring constant of the AFM cantilever and γ and λ are graphically
defined in Fig. 2A. Equation (4) is equivalent to the work accu-
mulated by the whole pulling device over the unbinding process
(polymer linker and linear spring contributions). Jarzynski equal-
ity is exact, and thus independent of the pulling rate. Neverthe-
less, the exponential average leads to poor convergence, which is
enhanced for slow rates. In this regard, we calculate the Jarzynski
estimator ∆G0

J as a function of the loading rate, expecting conver-
gence to ∆G0 as the rate decreases.

3 Dynamic Force Spectroscopy Experi-
ments

3.1 Methods

DFS measurements were carried out using the force spectroscopy
mode in a Cervantes Fullmode SPM system (Nanotec Electrónica
S.L, Spain). FNR molecules were labelled, separated and immo-
bilized on mica surfaces, as described previously42. Maleimide-
terminated flexible polyethylene glycol (PEG) linker silicon ni-
tride AFM cantilevers with nominal spring constant of 20pN/nm
(Novascan Technologies Inc, Ames, USA) were used. PEG poly-
mer has a nominal stretched length of around 20nm (PEG MW
3400). 42µM thiolated-Fld/Fd, labeled and purified as re-
ported35,42, were incubated on the maleimide-PEG-cantilevers in
PBS, EDTA, pH 7.0 for 1 hour and washed extensively with the
same buffer. Labelling and subsequent immobilization steps were
performed to orient the interaction surfaces of both proteins one
towards each other, which optimizes the recognition ability and
the collection of successful unbinding events in DFS scans. A
schematic view of the experimental set-up is depicted in Fig. 2
(upper).

Several hundred force-distance cycles were registered for Fd
and Fld-cantilever/FNR-mica approaches at different loading
rates, ranging from 2− 80× 103pN/s. Data were collected at
a sampling rate of 16kHz, and subsequently averaged over 20
points. This sampling is suitable for obtaining f † as explained
in the text, see also Fig. 2(B). We use a PEG fingerprint to se-
lect the curves containing specific rupture events24–26, which are
characterized by a WLC-like increase in the force with the per-
sistence and contour length of the polymer spacer (0.37nm and
20nm respectively)43,44. Furthermore, a careful orientation pro-
tocol was designed to increase the ratio of specific interactions,
typically low. Although designed sophisticated fingerprints to dis-
tinguish specific forces have been reported45,46, PEG marks were
clear enough to select specific force events and those that of-
fered doubts were dismissed. Additionally, negative control ex-
periments were carried out by blocking the available FNR sites by
incubating the samples with 0.70mM Fld. However, an unavoid-
able source of uncertainty in the experiment comes from small



Fig. 3 Typical rupture force f ∗ as a function of the loading rate for the two protein:protein complexes, FNR:Fd (black) and FNR:Fld (red). The
experimental data are fitted to Eq. (1) for the three models, ν = 1 (Bell model, left panel), ν = 1/2 (cusp-parabolic potential, central panel) and ν = 2/3
(cubic potential, right panel). Parameters yielded for each case are shown in Table 2. Insets show the the rupture force distribution P( f †) for two
different loading rates r f . f ∗ is taken as the peak (mode) of the histograms.

Table 2 Fitting parameters for Fig. 3 for the three different model exponents ν . Intrinsic rate k0, position of the transition state x† and free energy
barrier height ∆G† are provided but for Bell model ν = 1. The quality of the fittings is evaluated with the reduced χ2 and R2, as well as the Bayesian
information criterion (BIC), see also SI.

Complex Model k0 ∆G†[kBT] x† [nm] χ2/R2 BIC
FNR:Fd ν = 1 0.044±0.016 − 0.26±0.02 1.32/0.90 42.3
FNR:Fld 0.218±0.064 − 0.34±0.04 3.50/0.89 42.4
FNR:Fd ν = 1/2 0.013±0.002 7.69±0.71 0.52±0.05 1.28/0.91 43.4
FNR:Fld 0.176±0.020 5.43±0.44 0.71±0.07 1.33/0.96 32.8
FNR:Fd ν = 2/3 0.018±0.002 6.86±0.61 0.46±0.02 1.175/0.91 42.1
FNR:Fld 0.110±0.022 4.85±0.41 0.56±0.01 1.58/0.95 33.1

misalignment between the force at the attachment point and the
unbinding direction coordinate. Further details on the experi-
mental protocol can be found in the SI and35,42.

Experiments are performed by moving the cantilever sup-
port at a constant velocity V . Loading rates are computed as
r f = d f/dt = KeffV whith Keff the effective stiffness of the total,
complex-linker-cantilever, system47 K−1

eff =K−1
M +K−1

L +K−1
C . Usu-

ally KM� KL,KC, and from the force-distance curves we estimate
KL ' KC. Being KC = 20pN/nm, it yields an effective stiffness
Keff ' 10 pN/nm (see SI for additional comments).

3.2 Results

We carry out DFS measurements of mechanical dissociation
for the two different protein-protein complexes formed by the
flavoenzyme Ferredoxin-NADP+ reductase (FNR) and its two
protein partners Ferredoxin (Fd) and Flavodoxin (Fld) from
cyanobacterium Anabaena PCC 7119. Crystal structure of FNR:Fd
complex is 1EWY while the FNR:Fld complex has not been crystal-
ized. This system is paradigmatic for the study of the association
mechanism of redox complexes, as two proteins of different na-
ture (Fd and Fld) interact at the same binding site of FNR30. Ad-
ditionally, they constitute a suitable system for our analysis pro-
posal, as they share similar thermodynamic properties31, while
their interaction mechanisms are dissimilar, being that of Fd with
FNR very specific, whereas that of Fld with FNR has low speci-
ficity, allowing multiple orientations on the FNR surface that are

competent for the electron transfer process32,48,49.
Each rate dependent force histograms P( f †|r f ), see inset of

Fig. 3, was built from typically 100−200 specific events. From the
experimental force histograms, the most probable rupture force
f ∗ is calculated as its mode. The showed histogram includes mul-
tievents which lead to long tails in the high force region. These
events usually are not trivially identified. The analysis proto-
col we use is largely unaffected by them since we fit the typi-
cal rupture forces (not affected by high force tails), and we use
the Jarzynski equality, which enhaces low force events, being the
right tail events absolutely negligible.

Figure 3 shows the typical rupture force as a function of the
loading rate r f for FNR:Fd (black) and FNR:Fld (red). As the
actual barrier profile is uknown, we fit the data to Eq. (1) with
three different exponents ν , respectively Bell-Evans phenomeno-
logical model (ν = 1,left panel)13, a parabolic-cusp potential
(ν = 1/2, middle panel)14 and a linear-cubic potential (ν = 2/3,
right panel)16. Table 2 shows the fitting parameters and the re-
duced χ2, the R2 and the BIC values, in order to compare the
quality of the fittings.

The fitting results show a difference between both complexes.
For FNR:Fd the three models give similar selection criteria values.
However, in the case of FNR:Fld both ν = 1/2 and ν = 2/3 yield
significantly better fittings. Thus, from the point of view of the
statistical analysis of the experimental data we can only discard
the ν = 1 model and for the FNR:Fld case.

From a physical point of view, fitting to the linear-cubic poten-



Fig. 4 Evolution of the Jarzynski estimator ∆G0
J with the inverse of the

loading rate 1/r f for the two analyzed protein-protein complexes
FNR:Fd (left) and FNR:Fld (right). Error bars are calculated with
Jackknife resampling method. The calorimetry-determined values for
the dissociation free energy are marked by dashed lines,
∆G0 = 13.49kBT for Fd-FNR and ∆G0 = 12.82kBT for Fld-FNR. For high
loading rates, a clear overestimation is observed with respect to ∆G0.
Nevertheless, as the loading rate decreases convergence is achieved
within error bars. Inset : Work distributions for two chosen loading rates
with ∆G0 as a vertical dashed line.

tial likely gives the best estimation of the free energy parameters,
as any analytical potential can be approximated by a cubic one
when tilted by a force. We have seen that ν = 1/2 and ν = 2/3
yield good fittings, providing the height of the free energy barrier
∆G†. Both fittings give similar free energy values which are in
any case compatible with the discussion and conclusions of this
work. Bell-Evans phenomenological model (ν = 1) does not pro-
vide the curvature of the force dependence as observed at higher
rates. Being the simplest theory, it does not account however for
the shift of the transition state with the force, an effect which
appears for most analytical potential shapes.

Each force distribution can be mapped onto the work distri-
butions by means of Eq. (4). For each pulling rate, we cal-
culate Jarzysnki estimator, by applying Eq. (3). Fig. 4 shows
Jarzysnki estimator as a function of the inverse of the loading
rate 1/r f , where the errors bars are calculated with Jackknife re-
sampling method. Dashed lines indicate the dissociation free en-
ergy as obtained from calorimetric experiments31 (∆G0

Fd−FNR =

13.5±0.2kBT , ∆G0
Fld−FNR = 12.8±0.2kBT ).

As already mentioned, a well known feature of Jarzynski esti-
mator is its convergence behavior, which is readily illustrated in
Fig. 4. At high loading rates (low values of 1/r f ), the system
is very far from equilibrium, and a non accesible number of ex-
periments is needed (typically of the order of50 N ∼ e(〈W 〉−∆G0)).
Nevertheless, for lower loading rates, here r f ∼ 3−20×103 pN/s,
the estimator converges to a fixed value, as the reduction of 〈W 〉
allows N to be of the order of 102, the number of experiments
used. Interestingly, the estimator converges to the calorimetric
free energy, so the bias of the estimator indeed drops to zero.
Several analytical effort has been put on developing expressions
that would allow predicting the bias of Jarzynski estimator, and
therefore improve the free energy estimation, when the system
is far from equilibrium51–53. Such approaches are useful to im-
prove convergence in the high pulling rate range, nevertheless
they would make no difference in our free energy determination
as we are able to measure in a pulling rate range where conver-
gence is achieved. The application of the analytical correction to
the Jarzynski estimator is shown in the SI.

4 Numerical simulations

4.1 Model

We propose and simulate a physical model for force-driven un-
binding of biological complexes via force-spectroscopy experi-
ments. Our model is made up of two main ingredients, according
to the typical set-up used in these experiments. First, the biolog-
ical complex is represented as a particle moving in a mesoscopic
one-dimensional potential. Second, the pulling device is mod-
eled as a Worm-Like Chain (WLC) model43,44 representing the
polymer linker -with P the persistence length and L0 the contour
length- connected in series with a linear spring of stiffness KC

modeling the AFM cantilever. This scheme is pictured in Panel A
of Fig. 2.

In order to mimic the observed phenomenology, we character-
ize the free-energy profile by two magnitudes, the free energy
barrier height ∆G† and the dissociation free energy ∆G0, such
that ∆G† < ∆G0. This condition is a key component observed in
many experiments (see Table I), and will be further discussed.
Mathematically, we choose (see S.I. for further information and
detailed parameter set):

G(xp) = D(1− e−axp)2 +Ue−(xp−x†)2/b

+ F0
[
1+ tanhw(xp− s)

]
. (5)

This profile reflects the three relevant regions in the unbinding
process. The first term provides the equilibrium well at xp = 0
which represents the bound state. The second term accounts for
a brittle free energy barrier of height ∆G† ≈ D+U , width b and
placed at xp = x†. The third term originates a smoother slope
leading to the unbound state ∆G0 = 2F0 +D, with characteristic
length of s/w, distance over which the complex dissociates. The
exact analytical expression of the potential is not decisive for the
model success, providing it exhibits a first brittle slope of height



∆G† and the second smooth slope leading to the unbound state
∆G0.

This particle is subject to a force exerted by the pulling device,
as the end of the linear spring moves at a constant velocity V , so
that its position is a controlled parameter λ = Vt. As in the ex-
perimental case, the loading rate is defined as r f = d f/dt = KeffV
with Keff ' 10 pN/nm. In order to simulate rupture trajectories,
we integrate the Langevin equation of motion (see SI):

mẍp =−η ẋp−∇G(xp)+FWLC (γ− xp)+ξ (t), (6)

being m the mass of the particle, η the viscous damping, ξ (t) the
thermal white noise, and γ the distance from the origin to the end
of the polymer, so that γ − xp is the polymer extension (see Fig.
2). Thus, FWLC (γ − xp) is the force exerted by the polymer, which
equals that of the linear spring, FWLC = KC(γ−Vt).

4.2 Results

We have simulated the Langevin equation of the system. We set
the profile parameters such that ∆G† = 7.7kBT , ∆G0 = 14.7kBT
and x† = 0.5nm, values close to those found in the experimental
studies of the system. The loading rates range was chosen so
that the most probable rupture forces span over the experimental
range ( f ∗ ∼ 20− 100pN). For each simulated rate, we ran 104

realizations, saving the rupture force f † for each trajectory. The
most probable rupture force f ∗ is calculated as the maximum of
the force histogram. Force histograms are then mapped into work
histograms using Eq. (4).

Figure 5 (top) shows the most probable unbinding force as a
function of the loading rate. Fitting to Eq. (1) with ν = 2/3,
we obtain ∆G† = 7.28± 0.20kBT , x† = 0.35± 0.08nm, κ = 5.44t−1

-time units defined in SI-, matching the values set in the free en-
ergy profile. As shown, the agreement between the simulated
data and the fitting protocol is excellent. A comparison with the
fitting to the ν = 1/2 case is given in the SI. The ν = 1 model
is unable to reproduce the curvature of the data at high pulling
rates. Equation (1) was derived for a particle pulled by a soft lin-
ear spring and hopping over an energy potential, which is a good
approximation in most cases, proving it to be a suitable tool for
analyzing this kind of processes.

Figure 2 might suggest that unbinding occurs surmounting two
potential barriers, a situation where Eq. (1) is not valid. How-
ever this second barrier, with a smaller slope, disappears at small
forces. At typical rupture forces a single barrier profile is ob-
tained. Nevertheless, rare events exist, where the system escapes
thermally for low pulling forces, jumping over the two barriers.
Such events can be observed as the small shoulder which appears
at low forces f ∼ 20pN in the distributions P( f †) (see inset on
Fig. 5 top), which do not affect the f ∗ determination.

In Fig. 5 (bottom) we plot the Jarzynski estimator ∆G0
J as a

function of the inverse of the loading rate, where the error bars
are calculated with Jackknife resampling method. The blue solid
line indicates the unbinding free energy ∆G0 = 14.7kBT . Clearly
the estimator converges to this value as we decrease the pulling
rate. Nevertheless, it must be noted that the convergence is far
faster than that seen in the experimental system, as we are aver-

Fig. 5 Top: Typical rupture force f ∗ as a function of the loading rate r f
in semi-logarithmic scale, simulated for potential Eq. (5) with
parameters set such that ∆G† = 7.7kBT and x† = 0.5nm. Fitting to Eq. (1)
yields ∆G† = 7.28±0.2kBT , x† = 0.35±0.08nm and κ = 5.44t−1. Inset :
Distribution of rupture forces for two selected rates. Bottom: Evolution of
the Jarzynski estimator ∆G0

J as a function of the inverse of the loading
rate 1/r f simulated for potential Eq. (5), with parameters such that
∆G0 = 14.7kBT , indicated with solid blue line. Clear convergence is
observed, especially for lower loading rates. Inset Work distributions for
two selected rates, with ∆G0 as a dashed line.

aging over 104 realizations, compared to the ∼ 102 experimental
curves used.

In the inset, we show the P(W ) for two chosen loading rates,
with a vertical dashed line at ∆G0. Quasistatic pulling would lead
to P(W ) = δ (W −∆G0), where δ (x) is the Dirac delta distribution.
As we are pulling out of equilibrium, 〈W 〉>∆G0, but for some rare
events we obtain W < ∆G0 which allows the Jarzynski estimator
to converge. This fact is consistent with previous commentary, as
these low work rare events arise from low force escapes, where
the particle actually “sees" the smooth barrier which leads to the
unbound state.

5 Discussion
In this work we have shown that, by employing a suitable anal-
ysis protocol, DFS experiments can be used to obtain both the
kinetic and thermodynamic properties of ligand:receptor com-



plexes. Our analysis method lies on the free energy profile we
introduce to model the unbinding process. The shape of this pro-
file is motivated by an apparent paradox we find in many lig-
and:receptor complexes, where ∆G† < ∆G0. This condition ap-
pears to be ubiquitous for mechanical unbinding of biological
complexes, as shown in Table I where results of different works
are collected.

The main characteristic of the proposed free energy profile is
the scale separation between a short range steep barrier, and the
second smooth slope. In DFS experiments, the bias exerted by
the pulling force tilts the profile with a − f xp term, see Panel A in
Fig. 6. The second smooth slope vanishes at small pulling forces,
and the system escapes on average through a single barrier profile.
With low probability, the system will reach the unbound region at
very low force, and this rare escape will carry information about
the second region which has not vanished yet, contributing to the
low force tail. By taking advantage of this uncoupling between
∆G† and ∆G0, we obtain both magnitudes by a joint application
of force spectroscopy theory and Jarzysnki equality. While Eq.
(1) accounts for the typical or average contributions, Jarzysnki
equality, due to exponential averaging, enhances low force tails.

This two uncoupled regions are also motivated by the phys-
ical process of unbinding, corresponding to different physical
situations, see Panel B in Fig. 6. The first region reflects the
local short-ranged molecular interactions between the interface
residues which keep the complex in the bound state. This is mod-
eled effectively by a steep free energy barrier located within few
Å. Over the barrier, first water molecules would enter the inter-
molecular region, solvating partially the interacting surfaces, and
thus lowering the profile. The second region should account for
the complete dissociation between both molecules and thus span
over few nanometers. This interaction region is originated by
long-range non-specific interactions, likely originated by the cou-
pling between the dipolar moments of the molecule. This is mod-
eled as the smooth slope which leads to the plateau where the
interaction vanishes. In this regard both analysis methods are in-
sensitive to minor details of the specific landscape in the coupling
region since DFS probes the barrier and Jarzynski the unbinding
energy.

We applied our analysis method on AFM experiments for two
protein:protein complexes, and on stochastic simulations on a
physical-based model. While the experimental results yielded
valuable information about the physical properties of the stud-
ied systems, the numerical simulations helped in validating the
protocol, as they successfully recovered the magnitudes set in the
profile at zero force. A relevant advantage of our procedure it
is its robustness, as the only necessary output from the experi-
ments is the rupture force, allowing for a systematic application
and interpretation of the results. Nevertheless, a faithful analysis
requires to measure a considerable number of specific unbinding
events, making it necessary to adopt functionalization strategies,
as random targeting suffers of low efficiency in bond formation.
In our case, the immobilization strategy used to orient both the
interaction surface of FNR and protein ligands towards each other
on mica and AFM tips, respectively, allowed us to achieve a high
efficiency in getting successful specific rupture events35,42.

Fig. 6 Panel (A): Free Energy profile tilted for different values of the
pulling force. At very small forces (5−10pN), the smooth region survives
and the system escapes surmounting two effective barriers. When the
force rises, the profile is completely equivalent to a single-barrier profile,
and the second barrier is not seen by the system. Panel (B): Schematic
view for the physical interpretation of the proposed free energy profile
for mechanical dissociation of biological complexes. We can distinguish
different interaction regions upon the mechanical dissociation process.
First the steep inner barrier must be overcome, involving the rupture of
the short-range molecular bonds between the interacting surfaces.
Then, the first water molecules access the interface region decreasing,
the free energy of the system. In order to dissociate completely the
complex, the molecules must be separated within few nanometers
solvating completely the intermolecular space and overcoming the
electrostatic interaction due to the dipolar moment coupling of the two
proteins.

Protein:protein complexes are of particular interest. Particu-
larly the studied system composes a singular case, as Fd and Fld
are common binding partners of FNR using the same interac-
tion surface on the flavoenzyme, as undoubtedly verified30,31,34.
FNR catalyzes the transfer of two electrons to reduce NADP+ to
NADPH from two independent Fd molecules, while in some al-
gae and cyanobacteria, Fld replaces Fd under iron-deficient condi-
tions31,32. While both share similar binding affinities31, they are
known to display different interaction mechanisms31,33,34,48,49.
It is demonstrated that Fd binding is more specific, and forms an
only complex maintained mainly through specific electrostatic in-
teractions. Nevertheless, it has not been found any key residue for
Fld binding, contrary to Fd, and different orientations between Fd
and FNR are equally efficient for electron transfer. The fact that
crystallization of the FNR:Fld complex has not been achieved is



also indicative of this. The size of the interacting surfaces are dif-
ferent, the binding site for Fld is smaller, which shows a lower
variation of the Cp value on binding, and the release of 20 water
molecules per 30 for Fd binding to FNR31.

Our findings from the analysis of DFS experiments match pre-
vious knowledge on the energetics of these complexes, providing
in addition novel information, particularly about their kinetic be-
havior. On the one hand, we recover the thermodynamic features
of both complexes, reflected in moderate affinities which are very
similar in both cases (∆G0 ≈ 13kBT ). The unbinding free energies
calculated through Jarzysnki equality agree respectively within
error bars with the calorimetric binding free energy reported in31.
In any case, a small difference could be expected due to the pres-
ence of a tether linked to the ligand, which increases the free en-
ergy of the unbound state relative to the equilibrium (tether-free)
unbound state.

Nevertheless, despite these similar equilibrium characteristics,
we found significant differences in their kinetic behaviors, as
the obtained free energy barriers heights contrast considerably
(∆G† ≈ 7kBT for FNR:Fd and ∆G† ≈ 5kBT for FNR:Fld). These
differences might be attributed to the particular features concern-
ing the formation of each complex. Showing a larger interacting
interface, Fd binding to FNR is more specific, with salt bridges be-
tween certain key positive residues on the FNR surface and acidic
residues on Fd32,48,49,54, which would contribute in addition to
other non-specific interactions such as hydrogen bonds or the hy-
drophobic effect. On the contrary, kinetic analysis of side-directed
mutants and docking studies on FNR:Fld suggest that Fld can
adopt multiple orientations on the FNR surface, and that charged
residues are not involved in crucial specific interactions32,33,48.
In this sense, this features agree with our findings. Upon complex
rupture, specific short range-interactions contribute decisively to
the FNR:Fd interaction, reflected in a higher free energy barrier
when compared to FNR:Fld, whose binding mechanism is mainly
due to the hydrophobic effect.

To conclude, we have presented a simple and consistent anal-
ysis method for force-induced dissociation experiments in differ-
ent biological complexes (protein:protein, protein:ligand or en-
zyme:substrate for instance). The method relies on a novel free
energy profile we introduce to model this process. Our pro-
posed method and model is of general application to any biolog-
ical problem of interest which involves mechanical dissociation
of complexes. In addition, different from the case of mechan-
ical stretching, in mechanical unbinding problems the obtained
dissociation free energy can be directly compared with the ther-
modynamic binding energy. In this sense, our work bridges the
gap between single-molecule and bulk experiments.
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1 Force espectroscopy experiments

Functionalization. The typical random immobilization on AFM tips and samples leads to many
of the immobilized protein molecules are unable to interact with their partners because their
interacting surfaces are used to anchor them to the support, which makes binding and subsequent
rupture only occurring in a small percentage of approaches. Herein, an implemented procedure
for tip and sample functionalization optimizing the recognition ability was used. Each protein
molecule has a few lysine residues in their structure. First, once the protein complexes were
formed, Sulfo-LC-SPDP crosslinker bound randomly to the primary amino groups of superficial
lysines, and then labeled proteins were separated chromatographically from each FNR complex.
Later, proteins were reduced with DTT and left exposed reactive sulfhydryl groups reacted with
maleimide-PEG tips, forming disulfide bonds, or reacted with the thiol protected PDP groups in
the case of the mica substrates. Thus, both partners were immobilized exposing the interaction
surface of one molecule towards the other [Ref. 41 in the ms].

This method achieved a large increase in successful rupture events with respect to the corre-
sponding random labeling using the same procedure, as was analyzed previously in detail [Ref.
34 in the ms]. The results range from 5-23%, with random labeling, to 40-77% with Fld-tagged
tips and 34-61% for Fd-tagged probes in efficiency ratio for ”useable curves” showing specific
unbinding events regarding the total approaches. The increase with regard the randomly func-
tionalized samples oscillated between 3-13 and 2-4 times for Fld and Fd approaches, respectively,
and the differences attributed to the type of complex [Ref. 34 in the ms].

Selection of the specific forces. The total adhesion peaks generated during each force-distance
curve either originates from a specific interaction (formation of a FNR-Fd/Fld bond) or from a
non-specific one of any other origin. The use of PEG spacers to attach protein ligands to the
AFM tip in unbinding DFS studies increase the length and flexibility of the sensor, allowing the
molecules to freely move favoring first recognition and later the identification of the specific forces
at the scans. The feature-rich stretching profile in water presented by PEG tethers constitutes

Figure 1: Representative experimental retraction force curve for a specific unbinding event corresponding to a
single FNR-Fd complex. The Fz scan shows also a non-specific adhesion peak -in red to be distinguished- that
follows the slope of the retraction. The unbinding event occurs at the unbinding length or tip-sample separation
that is close to the length of the linker, around 20 nm, given by the piezo displacement encompassing the non-
linear portion of the retraction curve before the rupture. The black line at this part represents the corresponding
stretch of PEG according the WLC function. The shape of the force peak and the distance at which occurs ensure
specificity. These considerations add certainty that measured rupture forces come from recognition events under
study and not from artifacts or non-specific tip-sample adhesions.



a fingerprint of specificity, so specific force peaks show a nonlinear delay parabolic-like shape,
which is characteristic of the stretching of a PEG linker, preceding the jump. The flexible tether
sustains the increasing force until the complex dissociates, as indicated by a sudden jump to
zero force. This occurs at a certain force value (unbinding force, FU ) and tip-sample distance
(unbinding length, LU ). In contrast, in non-specific adhesions the contact curve extends towards
negative values keeping the same slope, indicating that the bare tip, not the sensor, remains in
contact with the surface. Figure 1 shows a representative Fz curve describing the two adhesion
types. Control experiments were developed adding an excess of free ligand to block the FNR
binding sites, at different R and for both type of complexes. In all the cases, they produced
an important decrease in successful rupture events, giving very similar more probable rupture
forces at the histograms, thus verifying the specificity and correctness of the measurements [Ref.
34 in the ms].

2 Potential Model and Simulation Details

We model the free energy profile for a mechanical rupture of a biological complex event as:

G(xp) = D(1− e−axp)2 + Ue−(xp−x†)2/b + F0 [1 + tanhw(xp − s)] . (1)

Each one of the three terms of this profile reflects one of the three characteristic regions of this
system: 1) a Morse potential creating an equilibrium well for the bound state; 2) a Gaussian
barrier for the first steep barrier; 3) a tanh term for the smooth slope to the dissociation state, as
an energetic plateau. In this sense, we can relate the free energy magnitudes with the parameters
of the potential ∆G† ≈ D+U and ∆G0 = D+2F0. The remaining parameters set the qualitative
shape of the profile, set such that the we have a steep first slope and a smooth second slope.

The exact set of parameters is : D = 12pNnm, a = 3nm−1, U = 24pNnm, x† = 0.5nm,
b = 0.03nm−2, F0 = 24pNnm, w = 0.75nm−1 and s = 4.0nm, setting a free energy barrier
∆G† = 7.7kBT and ∆G0 = 14.7kBT .

We want to stress that the exact shape of this profile is not a critical aspect of the model,
as long as we maintain the scale separation of the two slopes.

3 Simulation protocol

Numerical force spectroscopy experiment simulations are carried out by integrating the Langevin
equation of motion,

mẍp = −mηẋp −∇G(xp) + FWLC (γ − xp) + ξ(t), (2)

where m is the reduced mass of the complex, η the viscous damping and ξ(t) white thermal
noise. The term −∇G(xp) is the force derived from the movement in the free energy profile,
while FWLC is the force exerted by the polymer, modeled, by a Worm Like Chain model:

FWLC (x) =
kBT

P

[
1

4

(
1− x

L

)−2
− 1

4
+
x

L

]
, (3)

where P is the persistence length, P = 0.37nm for the PEG polymer used here, and L its
contour length (L = 20nm in our case).

Regarding the involved coordinates, xp is the coordinate of the particle moving in the free
energy profile G(xp) while γ is the distance of this particle to the linear spring (AFM tip), such
that γ − xp is the extension of the WLC linker (polymer linker), and thus FWLC (γ − xp) is the



force exerted by the polymer. As the AFM moves at constant velocity (force-extension mode),
λ = V t is a control parameter (not fluctuating), which can be expressed as λ = γ + FWLC/Kc,
being Kc the elastic constant of the linear spring. Here we consider that force equilibrium at the
tip of the AFM, and thust FWLC (γ−xp) = Kc∆z, where ∆z is the elongation of the linear spring.
This is a reasonable assumption due to the scale separation between the AFM tip (∼ µm) and
the polymer linker (∼ nm).

The Langevin equation of motion is integrated by a fourth-order Runge-Kutta stochastic
algorithm. Choosing a certain pulling velocity V = λ/t, we run numerical experiments starting
at λ = 0 and stopping at λ = 40nm to ensure that the rupture event has taken place (polymer
length is L = 20nm). This is looped for 10000 realizations for each pulling velocity.

We use normalized time and mass units m̃ = 1 and t̃ = 1, but pN units for force and nm
for length, given that we are mainly interested in comparing forces, lengths and energy with
the experiments. Simulations are carried out at room temperature T = 4.1pNnm = kBT . The
damping in the normalized time units is η = 10.

4 Calculation of the work performed over a force-extension tra-
jectory

As discussed in [1], the proper definition for the non-equilibrium work performed on a system
is dW = Fdλ, where λ is a control parameter (in contrast with fluctuating variables, which are
stochastic variables) Here dλ = V dt- where V is the pulling velocity of the cantilever. According
to Fig. 1 in main text, λ = γ + ∆z, where ∆z is the cantilever deflection, modeled as a linear
spring, so ∆z = F/KC . The work accumulated along a non-equilibrium transition from λ = 0 to
λ†, where λ† is a sufficiently large value of λ so that the rupture event has occurred1, is defined
as:

W =

∫ λ†

0
F (λ)dλ. (4)

By changing the variable to γ (and neglecting the change in the coordinate xp), we obtain

W =

∫ γ†

0
FWLCdγ +

1

2

f †

KC
. (5)

In this sense W depends only on the rupture force f †.

5 Fitting of experimental data from other complexes

Table I in main manuscript shows data for ∆G† and ∆G0 for six different ligand-receptor
complexes, including the FNR-Fd and FNR-Fld analyzed here, showing how ∆G0 > ∆G† is
found. ∆G0 values are taken from calorimetry experiments. ∆G† are determined from force
spectroscopy measurements. In order to determine them we reinterpret the original data in the
context of our model.

Dynamic force spectroscopy AFM experiments for LFA-1:ICAM-1 and LFA-1:ICAM-2 com-
plexes expressed in Jurkat cells where originally published in [2], and interpreted within a two-
barrier profile obtaining by a two-region fitting of Bell-Evans expression. As discussed in the

1In the case of mechanical unbinding the exact value of λ† is not critical, as once the rupture event has occurred,
the interaction disappears and thus 〈F 〉 = 0 from then on. This is different from stretching of biomolecules where,
once denatured, and underlying polymer stretching is still present



Figure 2: Fitting of dynamic force spectroscopy experiments for LFA-1:ICAM-1 and LFA-
1:ICAM-2 complexes taken from [2] to Eq. (3) in main text. Inset : Proposed free energy
profile for such complexes according to previous fitting.

main text, we consider more appropriate the proposed protocol, and thus we reinterpret the
data in this context.

Figure 2 shows unbinding force data for LFA-1:ICAM-1 and LFA-1:ICAM-2 taken from [2]
and fitted to Eq. (3) of main text. This allows us to obtain the free energy barrier height
and position, yielding LFA-1:ICAM-1: ∆G† = 8.57 ± 0.42kBT and x† = 0.18 ± 0.01nm and
LFA-1:ICAM-2: ∆G† = 7.57± 0.38kBT and x† = 0.40± 0.01nm. Inset shows the proposed free
energy profile according to our model and the obtained magnitudes.

Data for Biotin:Streptavidin and Biotin:Avidin complexes is taken from [3] although origi-
nally published in [4]. Here, due to the vast range of unfolding rates employed, one would see
a clear deviation from Eq. (3) at lowest rates. As mentioned in the main text, this might be
an effect of the second smooth slope, which starts to be ”seen” by the experiment due to the
extremely low pulling velocities.

6 Goodness of fit and model selection.

In the main text we show the results of the experimental data fit to equation (1) in three
different cases: Bell-Evans model (ν = 1 and two fitting parameters) and two more complex
models (ν = 1/2 and ν = 2/3 and three fitting parameters). A first approach to the goodness
of the fit is to evaluate the χ2 parameter which is an usual output of main statistic programs.
However, as both kind of models have different number of fitting parameters a better measure of
its increasing complexity is needed in order to compare the performance of different models. In
the table (2) of the main text we write down the reduced χ2 which is defined as the ratio of the
χ2 and the number of fit degrees of freedom (ndof = n−k , where n is the number of data and k
the number of parameter of the model). Although this quantity takes into account the number
of parameters k, other quantities have been proposed, like the Akaike (AIC) or Bayesian (BIC)
information criterion, that rigorously discriminate between different models [5]. We have also
computed and include in table (2) of the paper the result of the BIC of each model.

The BIC or Schwarz criterion is defined by [6]:

BIC = −2 logL+ (k + 1) log n, (6)



where L is the maximum likelihood of the fit. A simple commonly used approach to the calculus
of the BIC is given by BIC = n+n log 2π+n log(RSS/n) + (k+ 1) log n with RSS the residual
sum of squares, which is directly proportional to the usually computed χ2. Thus maximum
likelihood criterion corresponds to minimum χ2. BIC introduces a penalty of log n for each
additional fitting parameter of the model. The model with lowest value of BIC is the best
model from the data statistics point of view. BIC has been proved to be in many cases an
effective approach to solve the model selection problem. However, a couple of caveats should be
mentioned here: BIC is suitable for number of data n much larger than the number of parameters
in the model k; and BIC generally penalizes free parameters more strongly than other criteria.

7 Fit of numerical data to other theories

In the manuscript we have fitted the experimental data to Eq. (1) (main text) using three values
for the exponent ν. This theory considers that the barrier decreases as (1 − f/fc)1/ν , being fc
the critical force, fc = ∆G†/νx†. Here, ν = 2/3 correspond to a cubic potential, which is a
reasonable choice as any analytical potential can be expanded to a cubic polynomial next to the
rupture force (for intermediate forces, as the ones found here).

Regarding the numerical data, in Fig. 5 of the manuscript only results for the fitting to the
ν = 2/3 exponent are shown However, in order to study the validity of the the different theories
we can compare predictions for ∆G† and x† to the correct values for a well-known, although
non trivial, potential profile, as the one described in the Eq. (1) of this SI. This analysis is done
in the table and in Figure 3. It shows small differences between (ν = 2/3 and ν = 1/2, though
the first theory describes in a better way the barrier dependence ∆G(F ). Note that Bell-Evans
theory, ν = 1, does not allow for obtaining a prediction for ∆G†.

Being the force barrier dependence the main factor in the theory, we show in Figure 3 the
dependence of the barrier with the force as numerically obtained for the proposed model and
predicted for the two theories. It can be seen that the ν = 2/3 is better for a wide range of force
values.

Figure 3: Barrier decreasing as a function of the applied force for our model potential [Eq. (1)],
and for DFS theory with ν = 2/3 and ν = 1/2.



Table 1: Potential parameters ∆G† and x† and reduced χ2 and R parameters.

∆G†(kBT ) x†(nm) χ2/R2

Model 7.70 0.50 -
Fit: ν = 2/3 7.28± 0.2 0.35± 0.08 0.06/0.996
Fit: ν = 1/2 6.80± 0.14 0.38± 0.03 0.08/0.997

8 Validation of the analysis protocol

For the sake of consistency, we probe our analysis protocol on the physical model using four
different parameter sets. Figure 4 (left) shows the profiles for each of the four chosen parameter
sets. In order to proof that our analysis procedure allows obtaining both ∆G† and ∆G0, the
profiles have four different dissociation free energies ∆G0 but just two different barrier heights
∆G†. This fact guaranties that the obtention of both free energy magnitudes from the same
force data is completely independent.

Figure 4: Left: Free energy profiles for the four chosen free energy profiles. All show different ∆G0 values bur
barriers are equal in sets A-B and C-D respectively. Right: Typical rupture force f∗ versus pulling rate rf for
the four parameter sets. Solid lines are fittings to Eq. (3) in main text.

We plot in Fig. 4 (right) the typical rupture forces versus the pulling rate for each of the four
parameter sets. We can check how the curves corresponding to sets A-B and C-D superimpose
respectively, as the profile has the same barrier height. The four data sets fit perfectly to
expression (3) in the main text. Fitted parameters ∆G† are shown in Table I below.

Figure 5 shows the Jarzynski estimator ∆G0
J as a function of the inverse of the pulling rate

r−1
f . Dashed lines indicate the dissociation free energy ∆G0 set on each of the four parameter

sets. We can see clear convergence of each data set to their respective ∆G0 values, revealing
that Jarzynski equality allows recovering the dissociation free energy successfully.

Table I gathers the ∆G† and ∆G0 values set for the four profiles together with the estimations
from Jarzysnki equality ∆G0

J and force spectroscopy theory ∆G†f respectively. Indicated ∆G0
J

is the average of the last three values shown in Fig. 5 for each parameter set.



Figure 5: Jarzynki estimator ∆G0
J obtained from simulation performed for each parameter set. Dashed lines

indicate the values set for each parameter set ∆G0.

Table 2: Free energy magnitudes ∆G0 and ∆G† set for each parameter set and estimation according to our
analysis protocol ∆G0

J from Jarzynski equality and fitted ∆G†.

Parameter Set ∆G0(kBT ) ∆G†(kBT ) ∆G0
J(kBT ) ∆G†f (kBT )

A 14.6 7.7 13.9± 0.5 7.3± 0.3
B 20.5 7.7 20.3± 1.0 6.7± 0.5
C 27.3 14.1 24.6± 0.3 13.2± 0.6
D 32.2 14.1 32.7± 1.5 12.5± 0.4

9 Effective stiffness

DFS analysis is based in Eq. (1) in the main text which is obtained after several approaches.
Thus, this equation is obtained in the so-called weak spring limit of the system where KM �
KL,KC . Deviations from this case have been previously studied in [7, 8] for instance. Another
approach concerning the stiffness of the system is to assume a constant Keff , thus neglecting
the force dependence of the effective stiffness of the system (which comes mostly from the KL

term, the PEG is not a linear spring) [9]. With these caveats Eq. (1) can be used to analyze
data and a well defined pulling rate rf = KeffV is defined. Note here that from a theoretical
perspective it would be natural to use the well controlled pulling velocity V as control parameter
of the system instead of the pulling rate rf . However, following the tradition in the literature
on the subject, we have decide to present our results in terms of rf . Thus, in our work, we
use a constant value of Keff = 10pN/nm. We could question the validity of this approximation,
then we should point two crucial facts (i) Theory is validated by our numerical simulations.
We use the same approach to study the numerical simulations. There, the barrier parameters
obtained by the DFS analysis show good agreement to the correct values. It shows the degree
of robustness and accuracy of the employed theories. (ii) The error associated to neglecting the
Keff(F ) dependence is similar (same order of magnitude) to the one introduced by two other
unavoidable approximations under the theory: the assumption of an specific form for the force
dependence of barrier and prefactor in the Kramers rate expression, which are at the core of Eq.
(1) result. To finish, this is the price to pay in order to have a simple useful result as Eq. (1).



Figure 6: Corrected Jarzynski estimators by the bias estimation obtained fitting the work dis-
tributions (blue solid lines in the insets).

10 On the convergence of Jarzynski estimator

The Jarzynksi estimator for a finite number of N irreversible work measurements Wi can be
written as:

∆GJ = − log

[
1

N

N∑
i=1

exp

(
− Wi

kBT

)]
, (7)

where kB is the Boltzmann constant and T the absolute temperature. Although it is an unbiased
estimator when N → ∞, in practice it suffers from poor convergence and it is highly biased
when the system is too far from equilibrium. Efforts have been made on developing analytical
theories to correct the bias for finite N . In particular, under conditions of high dissipation, Ref.
[10] proposes the following expression for the bias of the Jarzynski estimator:

BN = µ+ logN − Ω(logN)1/δ − λ(1−δ)/δ
[
γ +

1− δ
δ

log (logN) + log
q

δ

]
, (8)

where γE = 0.5772 · · · is the Euler-Mascheroni constant and Ω and δ are parameters given by
fitting the work distribution left tail to the following expression:

P (W ) =
q

Ω
exp

[
−
(
|W −WM |

Ω

)δ]
, (9)

where

µ = (δ − 1)

(
Ω

δ

)δ/δ−1

, λ = logN

(
δ

Ω

)δ/δ−1

, (10)

and q is a normalization constant. Then the corrected Jaryzinski estimator is simply ∆G∗J =
∆GJ −BN .

In the case studied here, as mentioned in the main text and shown in Fig. 4, higher pulling
rates lead to an overestimation of the free energy, due to the mentioned issues. Nonetheless,
lowest rates meet the agreement between being close enough to equilibrium and having enough
statistics to reach a well-converged Jarzynski estimator.

However, we calculate now the estimation of the bias shown in Eq. (8) to the work dis-
tributions showing high dissipation and thus being intrinsically biased. Figure 6 shows the



corrected Jarzynski estimator ∆G∗ with an example of two work distributions fitted to Eq. (9)
(insets), where the dashed vertical lines are the respective free energy values as obtained in the
calorimetry experiments. Comparing with Fig. 4 in the main text, the free energy estimation is
improved, specially in the intermediate rate region. Highest rates have a very poor estimation
of the left tail (lower work values). Therefore, the fits to Eq. (9) are not meaningful, so is not
the calculation of BN .
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