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Optimizing diffusion in multiplexes by maximizing layer dissimilarity
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Diffusion in a multiplex depends on the specific link distribution between the nodes in each layer, but also
on the set of the intralayer and interlayer diffusion coefficients. In this work we investigate, in a quantitative
way, the efficiency of multiplex diffusion as a function of the topological similarity among multiplex layers. This
similarity is measured by the distance between layers, taken among the pairs of layers. Results are presented
for a simple two-layer multiplex, where one of the layers is held fixed, while the other one can be rewired in a
controlled way in order to increase or decrease the interlayer distance. The results indicate that, for fixed values of
all intra- and interlayer diffusion coefficients, a large interlayer distance generally enhances the global multiplex
diffusion, providing a topological mechanism to control the global diffusive process. For some sets of networks,
we develop an algorithm to identify the most sensitive nodes in the rewirable layer, so that changes in a small set
of connections produce a drastic enhancement of the global diffusion of the whole multiplex system.
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I. INTRODUCTION

Multilayer networks have been the focus of intense research
in recent times [1,2]. Such interest arises mainly from the
necessity of exploring new emergent properties in networks
whose backbone is formed by different types of connec-
tions [3-5]. Many aspects of network theory have been recently
revisited under the paradigm of multilayer systems. These
features cover the stability of technological interdependent
networks that has caused a catastrophic breakdown of energy
distribution [6], mathematical aspects related to their spectral
properties [7,8], and critical phenomena [9].

During recent years, most of the attention has been devoted
to a particular class of multilayer networks called multiplexes.
A multiplex is a multilayer structure formed by M layers, each
of them being itself a network [5,10,11] and containing exactly
the same quantity, N, of nodes. This way, we can represent
systems in which a set of N nodes can be connected through
links of M types. Such a feature can be effectively observed in
a series of actual complex systems, e.g., a set of airports that
are connected by different airlines, each one with its own set
of flights connecting a common pool of destinations [12,13].
The same is observed for a group of individuals that may
communicate with each other through different media [14]
or use different communication means with the same set of
locations [15-17].

To assemble a multiplex (see Fig. 1), we represent each of
the N entities (airports, individuals, locations, etc.) in each of
the M layers, so that for each entity there are M nodes (one per
layer) that represent it. Each of the N nodes in a layer is directly
connected to its M — 1 counterparts in the other layers as they
represent the same entity while the rest of the connections are
established within the layer to which they belong.

The particular form of multiplexes and its ubiquity as
the backbone of real complex systems has motivated the
development of a mathematical framework for their treat-
ment [11]. This has helped the analysis of the emergence
of collective behavior such as percolation [18-20], epi-
demics [21-26], coordination [27,28], cooperation [29-32],
and synchronization [33-36], among others [37]. In many

24770-0045/2017/95(5)/052312(10)

052312-1

cases, these studies have shed light on the new physical
phenomena that the coupling between the interaction layers
of the multiplexes induces to the collective behavior of such
systems [38].

A general issue related to multiplex systems is the un-
derstanding of diffusive processes on such a structure, and,
particularly, its relation to the diffusive properties of each
interaction when considered independently [39]. Multiplex
diffusion depends on diffusion within each individual layer,
o =1,2,...,M, but also on the interlayer diffusion coeffi-
cients D, g. If these are all set to zero, multiplex diffusion
is restricted to each specific layer, depending only on the
specific link distribution in that layer and on the intralayer
diffusion coefficients. In the other extreme, the full potential
of the multiplex is reached when all D, g # 0, which allows a
direct connection between any pair of layers. Therefore, it is
quite a difficult task to predict, in a general way, how a global
multiplex diffusive process depends on each of the individual
intralayer counterparts.

In this work, we propose to relate the efficiency of the global
multiplex diffusion to a quantitative measure for the difference
between the topological structure of any pair of layers in the
multiplex. In a single layer ¢, the diffusion efficiency, which
depends on the intralayer diffusion coefficient D, and on the
network topology, is usually expressed in terms of the smallest
nonzero eigenvalue Af of the corresponding Laplacian matrix
L, [40]. Similarly, multiplex diffusion is expressed by A,, the
smallest nonzero eigenvalue of the supra-Laplacian matrix, as
will be detailed in the next section. Thus, we investigate how
A, depends on the dissimilarity between layers, measured
through the network distance introduced in [41]. In particular,
for a multiplex, we can evaluate M(M — 1)/2 values §(«, )
corresponding to the distance between a pair of layers o and S.
For the sake of a clearer presentation of our results, we restrict
our analysis to the simplest situation of an M = 2 multiplex
to follow in a close way the relation between A, and the layer
distance é§ while proceeding with a controlled rewiring of one
of the networks.

The rest of this work is organized as follows: In Sec. II,
we show how to describe a diffusion process in a multiplex by
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FIG. 1. Illustration of a simple multiplex network composed of
M = 2 layers and N = 7 nodes. Note that each node is represented
once in each of the two interaction layers, and that an interlayer con-
nection (dotted lines) is established between its two representations.

means of the supra-Laplacian matrix. Section III discusses
the method used to rewire a multiplex layer, providing a
physical interpretation to this process and its relation to 6(c, §).
Section IV presents our results for multiplexes constituted by
layers belonging to well-known network classes [42—46] such
as Erdos-Renyi (ER) [47,48], Barabési-Albert (BA) [49], and
Watts-Strogatz (WS) [50] networks. Finally, Sec. V closes the
paper with conclusions and remarks on future developments.

II. DIFFUSION IN MULTIPLEXES

Diffusion is a well-known irreversible physical process by
which particles move from one part of the system to another
with a corresponding increase of the entropy. The transport of
particles occurs in the inverse direction of the concentration
gradient, i.e., from a high concentration to one of lower
concentration. Analogous versions of diffusion processes also
occur in complex networks, related to information spread in
social networks, flows of people in transportation systems, or
epidemic propagation of diseases. As the network topology
has a great influence on spreading processes, it becomes quite
important to understand the relation between them in order to
control diffusion.

Consider a network characterized by the set V of N vertices
(or nodes), and the set E of edges. It can be represented by
its adjacency matrix A with elements a;;. For the sake of
simplicity, we assume the network is undirected, although the
formalism described here can be adapted for directed networks.
If we consider a multiplex with M layers, the set V is the same
for all layers, but, in each of them, the representation of node i
receives a different label i + (¢ — 1)N, witha = 1,2, ... , M.
The edges in each layer are described by different sets
E,,oa =1,2,...,M, so that the multiplex adjacency matrix
A is assembled by the M corresponding adjacency matrices
Ag, with the further addition of NM (M — 1)/2 links between
each node i and its counterparts in the M layers. For the
simplest case M = 2, A has the following structure:

(A0 0 1
“4—(0 A2>+<I 0)’ (1

where I represents the N x N identity matrix describing the
interlayer connections between the representations of a node
in each of the M = 2 layers.
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To describe the linear diffusive process on the multiplex, we
follow the framework introduced in Ref. [39]. Let the vector
x of components (x,); represent the state of the diffusing
substance in the node i + (o — 1)N. By assuming that the
state in each node changes only due to differences in the
values of (x,); with respect to that in the nodes to which it
is directly connected, the time evolution of x is controlled by
the following equation:

d(xa)i
dt

=D,

M=

(a0)ijl(xe)j — (xa)i]

1

+ Dopl(xp)i — (xa)il, 2)

M= 5

1

=
Il

where D, and D,g represent, respectively, the intralayer
diffusion coefficient within each layer « and the interlayer
diffusion coefficient between the identical nodes in the layers
a and B. To describe a more general process in which
the intralayer diffusion is not homogeneous, it is necessary
to replace each adjacency matrix A, by the corresponding
weighted matrix W, [51], with elements (w,);,; Tepresenting
the strength of the interaction between each pair of nodes.

In the case of a single layer (M = 1), Eq. (2) reduces
to the usual network diffusion equation x = —Lx, where L
is the Laplacian matrix with elements L;; = k;5;; — a;j, k;
indicating the degree of the node i. L is a square and symmetric
matrix, with real eigenvalues );, and at least one vanishing
eigenvalue A; = 0. The relaxation time t of the diffusive
process is controlled by the smallest nonzero eigenvalue,
which we will assume to be 1, = 1/7.

For a general multiplex with M > 1 layers, Eq. (2) can also
be written in matrix form with the help of the MN x M N
supra-Laplacian matrix defined as [39]

EZ‘CO“I‘E_W (3)

where L is a block-diagonal matrix where each block « is
the usual Laplacian matrix corresponding to the ath layer,
while L£; describes the interaction between the corresponding
nodes on different layers o and S. The off-diagonal blocks of
L correspond to the adjacency matrix with the negative sign
multiplied by the corresponding diffusion coefficients Dyg.
Given that interlayer connections are only allowed between the
same node in different layers, the off-diagonal blocks consist
of N x N diagonal matrices. The diagonal blocks of £ are
also diagonal matrices, the elements (Ly);; of which are the
negative sum of all elements in the row i of L. Therefore, when
all interlayer diffusion coefficients are equal, i.e., Dog = Dy,
we obtain

L, 0 ... 0
0 L, 0
L= )
0 0 --- Ly
(M — DI . —1
—I M~—-DI - —I
+D,| R A AN
—1 —1 (M — DI
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By evaluating A,, the smallest nonzero eigenvalue of £
in (4), we characterize the essential features of multiplex
diffusion.

Since in this work we restrict our investigation to M = 2
multiplexes, we can use the results derived in [39] for the
dependency of the smallest nonzero eigenvalue of £ on the
interlayer diffusion coefficient. To this purpose, we assume
that Dy = D, = 1 and look for the function A, = A,>(D,).
In [39], exact analytical results for two extreme cases have
been obtained:

(i) When the interlayer coupling is small, D, < 1,
AZ(Dx) = ZDX

(i1) For large interlayer coupling, D, — oo, Ax(Dy) ~
/2, where A is the first nonzero eigenvalue of the Laplacian
matrix L = (L, 4+ L,)/2 corresponding to the superposition
of the two layers.

It is interesting to note that, given the smallest nonzero
eigenvalues of each layer, A5 and Az’g, in the strong-coupling
regime A, > min(k“,kg) is always satisfied, meaning that
diffusion in the multiplex is always faster than in the
slowest layer. However, superdiffusion occurs when A, >
max(k“,kg). In [39] it was shown that superdiffusion is
possible for certain combinations of network topologies.
Although no rigorous conditions for its emergence were
derived, it was hypothesized that superdiffusion should be
fostered when the number of redundant links in both layers is
minimum. This argument serves us in the following section to
design multiplexes for which the diffusion rate is maximized.

For intermediate values of D, , we must conduct a numerical
evaluation of A,. Therefore, in Sec. IV we discuss our results
based on graphs of A as a function of D,, much as was done
in [39].

III. CONTROLLED MULTIPLEX REWIRING

A. Network distance

Given any two networks « and B with the same number of
nodes N, it is possible to define a distance 6 between them by
the expression [41]

1 YTV Vo
2 _ Jo_ J
S_N(N—I)MZ_:][@ o, } (5)

o

Here, ©, and D indicate the diameter of each network, while
V; and V; are the corresponding neighborhood matrices [52],
the elements of which indicate the length of the shortest path
between the corresponding pairs of nodes in the network.

Let us remark that the N nodes in a network may be
numbered N! different ways, which do not affect the network
topology. If the nodes are pure mathematical entities, or if they
represent indistinguishable physical entities, they can be freely
renumbered, with no further consequences. If the nodes have
identifiable attributes they can also be renumbered, but in such
cases it is necessary to keep track of the attributes associated
with each node when the network is renumbered.

It is easy to see that the results provided by Eq. (5) depend
on the specific node numbering. Thus, to consistently use
8 as a measure of the topological difference between two
networks « and B where the nodes can be freely renumbered, it
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becomes necessary to obtain A(«, 8) = Spin, 1-€., the minimum
value of § taken over all possible node numberings of one of
the networks, keeping fixed the numbering of the other one.
Unless N is very small, it becomes prohibitive to compute
all N'! values of 8, which requires an alternative procedure to
obtain a good estimation for A(«,B). This can be achieved
by a Monte Carlo (MC) procedure based on the METROPOLIS
algorithm [53] to minimize § using a random sequence of
pairwise renumbering steps. With the exception of a small
number of upward jumps allowed by the MC algorithm, §
decreases monotonically as s increases, where s indicates the
number of undertaken MC steps [41].

B. Monte Carlo multiplex rewiring

In the current study, our focus is understanding diffusion on
M = 2 multiplexes with N nodes as a function of differences
in the layer topologies. We state that a multiplex is formed
(or assembled) when a direct interlayer connection is inserted
between every node with the same label (number, name,
subject, etc.) in two hitherto isolated networks, say « and
B. If @ and B are arbitrary networks, i.e., if the nodes are
all equivalent and have no specific meaning, they can be
independently numbered in N! ways in each of the networks.
At the same time, there exist N! ways to assemble a multiplex
based on « and B, which can be accomplished, e.g., by holding
the node numbering in « constant, spanning the N! different 8
numbering and, for each of them, inserting the direct interlayer
connections. If the multiplex is formed by two networks where
the nodes in each of them have some precise meaning, there is
only one possible way to insert interlayer connections between
the nodes.

The straightforward way to set a dependency between dif-
fusion and topology difference is to evaluate A,(D,;«,8) and
6(a, B) for multiplexes that are constituted by chosen networks
o and B. If they are arbitrary, we can freely use the MC
approach described before to obtain a significative sample of
the N! multiplexes and the corresponding dependence between
A, and é. If we investigate multiplexes with identifiable nodes,
renumbering nodes in 8 by the MC procedure is also possible,
but the interpretation of the process is different from that
provided in [41]. As it is not possible to renumber the nodes
of only one layer, the process of switching the labels of two
nodes in B is equivalent to switching all connections they have
in B, giving rise to a new connection landscape in that layer.
Note that this interpretation is also valid when we work with
two arbitrary networks.

The use of the MC algorithm to identify M = 2 multiplexes
where global diffusion proceeds at a faster or slower pace is
the key contribution of this work. Each MC step allowing a
change in B can be represented by three diagrams in Fig. 2:

(i) A pair of nodes that will switch labels in 8 is chosen.

(i1) Switching labels does not make the nodes in 8 loose
their original identification with nodes in ¢, which is indicated
by tilted dashed lines between the two layers.

(iii) Relabeled nodes are moved back to their original
positions in B, changing the graphical representation of the
layer B but not its topology.

Because of that, the intralayer diffusion on 8 is not affected
as )\§ is not affected by node renumbering. However, this
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FIG. 2. Illustration of the rewiring process in the layer L, associated to switching the labels of nodes 5 and 6. In (a), the two layers are
identical. In (b), the labels 5’ and 6’ have been switched, but they are still connected to nodes 5 and 6 by tilted lines. In (c), the new nodes 5’
and 6’ are moved back to the positions vertically below the nodes 5 and 6, resulting in a displacement of the connections in L,.

procedure affects the general topological structure of the
multiplex, which may impact the global multiplex diffusion.
The MC procedure can be set to accept changes that either
increase or decrease 6 by rewiring B.

The procedure starts by tuning the MC algorithm to increase
or decrease 4, and selecting an M = 2 multiplex assembled
by the layers o and 8 = (s = 0). Next, the MC algorithm is
sequentially applied, and if s indicates the number of MC steps
in the process, we obtain a series of values 5(s) = §(«, B(s))
and the corresponding series of multiplexes B(s). Once N
is finite, the procedure will eventually lead §(s) to reach a
plateau where it shows just small fluctuations. The highest
(smallest) attained value for 8(s) is the best estimate for
Z(oe,,B) = Smax($)[A(a, B) = Smin(s)]. This process is coupled
to the evaluation of A,(D,;s) ata conveniently chosen interval
of MC steps, providing a clear picture of the relation between
multiplex diffusion and topology. One particularly useful
strategy is to choose B(s = 0) = «, so that §(0) =0

C. Optimized rewiring

As described above, the rewiring procedure based on
the MC algorithm will eventually find the optimized B(s)
for which 8(s) ~ A(a,B), although this may require a large
number § of MC steps. Nevertheless, one may question
whether it is possible to relabel a limited number o < S of
specific nodes in such a way that §(c') < A(a, 8). Although it
is not possible to provide a simple answer for every choice of
o and B, we were able to devise two procedures that are able
to fulfill this task when B(s = 0) = «, provided they satisfy
some specific topological properties.

The first procedure is based on the comparison of the
neighborhood structures of each node. The ith line of the
neighborhood matrix V contains the distance of node i to all
other nodes j # i. Therefore, we define

tig = Z VE i (6)

which is proportional to the difference between the neighbor-
hoods of nodes i and ¢. By summing the above expression
over £, we obtain

T, = v_1 Zti,b (7N

which expresses the average distance from the node i to all
other nodes. Now we order the nodes according to decreasing

values of 7; and consider the node at the top position, i, for
which T; > T;,Vi # i. This node is somewhat peculiar, as it
has the largest topological difference from the other nodes in
the network. This hints that, by rewiring its connections, one
might cause a large change in the network topology. After
selecting 7, which constitutes the step (i) for selecting a pair of
nodes to be rewired, we move to step (ii) to find the node ? that
has the largest contribution to 73, i.e., satisfying the condition
Lop>bVElF# {. Thus, steps (i) and (ii) select the pair (z E)
that will have the labels switched.

As in the random rewiring procedure, the optimized
rewiring starts with §(s = 0) = 0, and the pair (i,0) is rewired.
To proceed with the procedure and select the second pair of
nodes to be rewired, we still implement step (iii): subtract
from T; the contribution #; ;. After that, the optimized rewiring
proceeds by successively applying steps (i)—(iii). As we will
show in the next section, this procedure is particularly efficient
to cause huge changes in the diffusion process by switching
only a very small number of pairs of nodes when the initial
layers are identical ER networks.

The second procedure follows the same steps indicated
above, but the criterion is based on selecting pairs of nodes
with the largest and smallest values of node degree. It turns
out that this method is more efficient to cause changes in
the diffusion processes when the initial layers correspond to
identical BA networks.

Results for the behavior of §(s) as a function of s for ER and
BA multiplexes are shown in Fig. 3. In panel (a), we draw the
behavior of §(s) as a function of s for a multiplex assembled
at s = 0 by identical N = 500 ER layers where each pair of
nodes is connected with probability p = 0.01. When B(s) is
rewired according to the random MC algorithm, §(s) increases
with s along a sigmoidal function, which seems to have reached
a plateau at ~5 x 10® MC steps. Similar patterns are obtained
when we consider a multiplex assembled by identical BA or
WS layers. On the other hand, our results also indicate that
8(s) increases at a much larger pace for the optimized rewiring
as compared to the random process for ER networks. This
behavior is not reproduced when BA or WS multiplexes are
rewired by the optimized procedure.

The results in panel (b) indicate the typical behavior for
multiplexes formed by distinct realizations of ER networks.
The two curves 61 (s) evolve from the value §(s = 0) moving
toward A(x,8) and A(x,B) as s increases. The pattern
observed for an N = 1000 BA multiplex in panel (c) is
similar, although we notice a change in the asymmetry of 5., (s)
and 6_(s) with respect to the horizontal line §(s) = §(s = 0).
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FIG. 3. Typical results for the behavior of 3(s) as a function of s resulting from the rewiring procedure. (a) Multiplex assembled at s = 0
by one single N = 1000, p = 0.01 ER network. The solid circles indicate the values s = 434 and s = 5 x 10°. (b) Multiplexes assembled at
s = 0 by two distinct samples of N = 500, p = 0.01 ER networks. (c) Multiplexes assembled at s = 0 by two distinct samples of N = 1000
BA networks. In (b) and (c), the two branches indicated by §, and §_ are obtained by tuning the MC procedure to increase and decrease the

value of §(s).

These specific forms are typical for results obtained by joining
different ER and BA realizations, respectively, and they also
seem to be independent of the chosen number of nodes.

IV. RESULTS

The essential information on global multiplex diffusion is
provided by the behavior of A, as a function of D, . If we take
into account that A, can only be numerically evaluated for
almost all values of Dy, its graphical representation becomes
the most convenient way to access and analyze the results.
Also, to better display the different regions of values of D,, it
is wise to use logarithmic scales in both axes.

The quantitative discussion of these plots is better perceived
when we take into account the expressions for A, under
the conditions D, <« 1 and D, > 1, as indicated in Sec. II.
Therefore, we include in all graphs the tilted line A, = 2D,
as well as a horizontal line at the value Xz, indicating the
asymptotic value of A, in the second limiting conditions.
To keep track of the diffusive properties of each individual
layer, henceforth identified by the labels « and 8, we add to
the graphs two further horizontal lines at the values X, , and
A2 g. An observed feature in all studied cases is the monotonic
increase of A, with D,. Therefore, the obtained pattern shows
how A, stays under the influence of each regime and how it
behaves in the intermediary region.

This is exemplarily illustrated in Fig. 4, where panel (a)
shows Aj(D,;s) x D, for two multiplexes assembled by
N =500, p =0.01 ER networks, with the inclusion of the
additional curves described above. For both multiplexes, we
consider the same layer « but different layers g. In the first
case, the layer (s = 434) was obtained by rewiring s = 434
pairs of nodes from « according to the random procedure
discussed in Sec. III [see the first dot in Fig. 3(a)]. For the
second multiplex, the second layer is B(s = 107), obtained in
a similar way after rewiring a much larger number of randomly
chosen pairs of nodes.

In the small D, region, both A,(D,;s =434) and
As(Dy;s = 107) collapse with the exact asymptotic result
Ay = 2D,. We observe that this region extends itself up to a
value roughly given by D, = X, /2. Once the only difference
between the layers « and § refers to the adopted numbering,
they share the same topology and related properties, like the

spectra associated with the possible matrix representations.
Therefore, the horizontal lines 1 , and A, g(5)(V s) are always
coincident whenever we consider multiplexes assembled by
layers with identical topology. Two consequences follow from
this property: (i) Any multiplex where the layer 8 is obtained
from relabeling nodes of layer « is always superdiffusive; (ii)
if B(s = 0) # «, the horizontal line A, g(,) does not depend on
s, but superdiffusion may occur depending on D, and on s.

(@)
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0 200 400 600 800 1000
S

FIG. 4. Typical results produced within the adopted framework
for multiplexes assembled from one single N = 500, p = 0.01 ER
network. (a) Dependency of A, on D,: A, = 2D, (cyan short-dotted
line), A>(ar) = Ax(B) (black solid line), A>(s = 107) (red dash-dotted
line), A>(Dy;s = 434) (dark yellow dashed line), A,(D,;s = 107)
(dark cyan short-dashed line). (b) Dependency of 22(s) on s. The red
circles around squares indicate the values s = 433 and 434, where
the value of X,(s) jumps by a large amount.
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FIG. 5. Dependency of A,(s) on s by rewiring targeted pairs of
nodes in B for an N = 500 ER multiplex with p = 0.01 (a), and an
N = 750 ER multiplex with p = 0.008 (b).

When D, > A4/2, we notice that Ay(Dy;s =434) <
As>(Dy;s = 107)V D,, the same relationship obtained for
8(s = 434) < 8(s = 107), as shown in Fig. 3(a). This direct
association, which suggests a direct relation between layer
dissimilarity and diffusion, is a typical result observed very
often in our investigation, especially when the multiplex layers
are sparse. We observe that, for multiplexes assembled with
ER layers with larger values p, e.g., p = 0.1 and N = 500,
similar features to those described above have also been
found.

The dependency of A, on s, which provides the D, —
oo asymptotic behavior of Aj, is illustrated in Fig. 4(b). It
is characterized by a monotonic increase with respect to s,
with the presence of some large increments at some specific
values of s. This is what happens, for instance, when we move
from s = 434 to 435, indicated by red circles around the black
squares. We notice that, from s = 0 to 433, Xz(s) increases by
a very small amount, as compared to a sharp gain of almost
100% of its value at s = 434.

The finding that sharp gains in global multiplex diffusion
can be obtained by a judicious rewiring of a few nodes in
the layer B is corroborated by the optimized rewiring strategy
described in Sec. III C. This is illustrated in Fig. 5. In panel
(a), we show how A, (s) changes for the first 10 rewiring steps
selected by the optimized rewiring algorithm for the same
multiplex used in Fig. 4, and in panel (b) we show similar
results foran N = 750 p = 0.008 ER network. In (a), the first
detected pair of nodes corresponds to the same pair of nodes
exchanged in the s = 434 step in the random procedure [see
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FIG. 6. Typical results produced within the adopted framework
for multiplexes assembled from one single N = 1000, (k) =4 BA
network. (a) Dependency of X, on D, for random rewiring: A, = 2D,
(cyan short-dotted line), A> () = A»(B) (black solid line), A,(s = 107)
(red dash-dotted line), A,(D,;s = 500) (dark yellow dashed line),
A»(Dy;s = 107) (dark cyan short-dashed line). (b) Dependency of A,
on D, for the optimal BA rewiring scheme: A, = 2D, (cyan short-
dotted line), A,(cr) = A,(B) (black solid line), A,(s = 499) (red dash-
dotted line), A,(D,;s = 256) (dark yellow dashed line), A;(D,;s =
499) (dark cyan short-dashed line).

Fig. 4(b)]. We notice that this single change in the B layer
produces an increase of 47% in the value of A,, an amazing
indication of the effectiveness of this process. We also notice
that, after 10 steps, A»(s = 10)/A2(s = 0) = 2.37. In (b), the
first exchange causes an increase ~25% in the value of A5 (s).
Therefore, despite the different values of A7 and a(s) in the
two cases, both multiplexes have similar qualitative behavior.
This is a clear indication that the rewiring procedure identifies,
in a very precise way, which changes in the multiplex structure
allow for a very sharp increase of diffusion.

The results obtained for multiplexes where o = B(s = 0)
are BA networks display similar features, as illustrated in
Figs. 6(a) and 6(b): the dependency of A, with respect to D,
for several values of s indicates that it increases in a monotonic
and uniform way with respect to both control parameters. The
dependency of A,(s) with respect to s also follows the same
overall pattern shown in Fig. 4(b) for the ER multiplexes.
However, a difference appears when we apply the optimized
rewiring strategy: providing a targeted rewiring i <> £ and of
the next pairs of nodes identifying that algorithm does not
lead to a sharp increase of A,, as observed in Fig. 5 for

052312-6



OPTIMIZING DIFFUSION IN MULTIPLEXES BY ...

PHYSICAL REVIEW E 95, 052312 (2017)

0.8® (a) . 0 0) ©
" 10 L _ 100 1
0.6 s b T
—_ [ ~ o 1 .- ‘,"——— o 1 . ,—”,___.-.-_
@ 2 <10 - <10 PR ]
04 ) 24 = - PP - PEa
I=< ° ] A < el < el
2 g & Pt ]
02 . .o ° 16 107 W0 2™
<><> 0% m . -7 s
L] o o N
0'0©l 2 93 .4 5 6 10) 3 - ‘-1 ‘0 103 3 . 2 ‘.] ‘(7
10 10 10 10 10 10 10 10 10 10 10 10 10 10
S DX Dx

FIG. 7. Typical results produced within the adopted framework for multiplexes assembled from one single N = 500, p = 0.05 WS network.
(a) Dependency of A,(s) (black squares) and D,,(s) (blue diamonds) on s. The symbols surrounded by red circles on the left vertical axis, which
correspond to the values at s = 0, have been inserted for the purpose of comparison. (b) Dependency of A, on D, for random rewiring: A, = 2D,
(cyan short-dotted line), A,(cr) = A,(8) (black solid line), A,(s = 10°) (red dash-dotted line), A,(D,;s = 10%) (dark cyan short-dashed line),
Ay(D,;s = 3000) (dark yellow dashed line), A,(Dy;s = 10*) (gray dots). (c) Dependency of A, on D, for random rewiring: Ay = 2D,
(cyan short-dotted line), A,(cr) = A,(B) (black solid line), A,(s = 10°) (red dash-dotted line), A,(D,;s = 100) (dark cyan short-dashed line),
Ay(Dy ;s = 200) (dark yellow dashed line), A(D,;s = 500) (gray dots).

the ER assembled multiplexes. On the other hand, a targeted
rewiring of pairs of nodes with large and small degree is able
to produce a relatively fast increase in A,, as illustrated in
the Fig. 6(b).

Our investigation also considered the impact of rewiring
B on multiplexes based on initially identical layers of a
WS small-world network, where a uniform linear chain
with connections between nearest and next-nearest neighbors
has links randomly rewired with probability p. We found
that, while § increases monotonically with s (up to small
fluctuations), the same is not observed either for A, or Ax(s)
when s becomes large enough. This contrasts with the observed
behavior for the two former network types. Indeed, Fig. 7(a)
illustrates that, for p = 0.05, Xz(s) goes through a maximum
at s ~ 1000, in opposition to the pattern in Fig. 4(b). It was
possible to identify that such a behavior is correlated with the
dependency of topological features of WS multiplexes with
respect to s, for instance, the multiplex’s shortest path, and
the multiplex diameter D,,(s). The behavior of D,,(s) with
respect to s is also illustrated in Fig. 7(a). Note that, for small
values of p, the diameter of WS networks is still much larger
when compared to those of the ER counterparts. When the
MC procedure starts, § increases with s and this also causes a
reduction in the value of D,,. However, after a certain value of
s (here s ~ 10%), the behavior of D,, changes and it increases
again, irrespective of the fact that § still grows with s. The
results suggest that the diffusive properties of WS multiplexes
are strongly related to D,,. On the other hand, the results for ER
and BA multiplexes show that D,, remains almost constant,
so that A,(s) keeps its increasing behavior with s and 8(s),
eventually reaching a stationary situation.

Figure 7(b) shows that, when we consider A as a function
of D, for successive values of s, the corresponding curves
cross each other in several points, a feature that was absent
in Figs. 4 and 6. The results in Fig. 7(c) correspond to
multiplexes obtained for s < 1000, in the range of s where
Aa(s) still increases with s. In accordance with the expected
limit behavior indicated by Fig. 7(a), for small values of s
(typically s < 500), the typical behavior shown for ER and
BA multiplexes still holds, but these features are lost when s
increases beyond this threshold. Finally, we observe that the

patterns displayed in Fig. 7 are also observed for other values
of N and p that lead to typical WS small-world networks.

(a) -
o 10°E L |
(<:\1 ] V_,;—;’ ——————————
10" .
10" o
DX
(b) -
~ 100_ |
~ JEPEEEEE R
(< ‘7,,__' -----------------------
10" ‘
10’ D 10°

FIG. 8. Typical results for multiplexes assembled by two real-
izations of N = 500, p = 0.01 ER networks. (a) Dependency of A,
on D, for §; multiplexes: 1, = 2D, (cyan short-dotted line), A,(c)
(black solid line), A,(B) (gray dots), Az(s = 107) (red dash-dotted
line), A»(D,;s =0) (dark yellow dashed line), A,(D,;s = 107)
(dark cyan short-dashed line). (b) Dependency of A, on D, for
5_ multiplexes: A, = 2D, (cyan short-dotted line), A,(cr) (black
solid line), A,(B) (gray dots), A2(s = 0) (red dash-dotted line),
As(Dy; s = 0) (dark yellow dashed line), A>(Dy; s = 107) (dark cyan
short-dashed line).
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FIG. 9. Dependency of A,(s) as a function of s for multiplexes
assembled by two realizations of N = 500, p = 0.01 ER networks.
Panels (a) and (b) correspond to the situations in which the network
distance is given by 8, and §_, respectively.

When p increases, the features illustrated in Fig. 7 become
less pronounced.

Now we discuss the relationship between § and A, based
on results for multiplexes where o and B(s = 0) correspond
to two different realizations of networks generated by the
same procedure. The dependency between § and s for ER and
BA multiplexes has been presented in Figs. 3(b) and 3(c).
Figures 8(a) and 8(b) illustrate the behavior of A, as a
function of D, for two values of s and, respectively, for the
two situations described by &.(s) and 5_(s). As expected,
two independent realizations of the same algorithm may
give rise to networks with different diffusive properties,
which is indicated by different values of A5 and Ag . Finally,
note that, if S < 852, A2(DX;S[) < Az(Dx;Sz)[Az(DX;Sl) >
Ay (Dy; s7)] for 6, (8-) multiplexes.

The examples in Fig. 8 suggest an overall agreement
with the observed behavior for ER multiplexes starting with
identical layers, as illustrated in Fig. 9. There we draw the
behavior of A,(s) as a function of s for the same multiplexes
used in Fig. 8. Although the general tendency indicates that
22(s) increases (decreases) when 8. increases (6_ decreases),
it is subject to the presence of small-amplitude fluctuations to
this rule, especially for the §_ branch. Once similar patterns
are obtained for other multiplex realizations with the same
parameters, the general conclusion is that a direct relationship
between A, and § is valid for sparse ER networks. Our
results also show that the magnitude of the deviations from

PHYSICAL REVIEW E 95, 052312 (2017)
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FIG. 10. Typical results for multiplexes assembled by two real-
izations of N = 1000, BA networks. (a) Dependency of A, on D,
for §, multiplexes: A, = 2D, (cyan short-dotted line), A,(«) (black
solid line), A»(s = 107) (red dash-dotted line), A,(D,;s = 0) (dark
yellow dashed line), A,(D,;s = 107) (dark cyan short-dashed line).
(c) Dependency of X, on D, for §_ multiplexes: A, = 2D, (cyan
short-dotted line), A, () (black solid line), A»(s = 0) (red dash-dotted
line), A»(D,;s =0) (dark yellow dashed line), A,(D,;s = 107)
(dark cyan short-dashed line). For the sake of clearer pictures, the
horizontal line 1,(8) is not shown, once it is different but very close
to Ar(@).

the monotonic behavior of A,(s) x s is of the same order of
magnitude even beyond the sparse network regime, e.g., when
p increases up to 0.1 when N = 500.

We also remark that the use of the optimized rewiring
procedure when o # (s = 0) does not produce the same
effect observed whena = ﬁ(O) Although we can use the same
procedure to identify 7 and #, the operatlonz < { does not lead
to alarge increase in the values of § and 2a(s) as when the initial
layers are identical.

For BA multiplexes, the overall behavior of A; follows the
pattern that displayed sparse ER multiplexes. Figures 10(a)
and 10(b) illustrate the behavior of A, as a function of D,
for several values of s and, respectively, for the two situations
described by §(s) and §_(s) in Fig. 3(c). The general behavior
agrees qualitatively with the previously observed tendency in
ER multiplexes to have a direct relationship between § and
A,. Graphs for a(s) x s are also characterized by an overall
monotonic relationship with respect to §. As in the case of
ER multiplexes, small fluctuations may lead, within small s
intervals, to deviations from the general tendency.

052312-8



OPTIMIZING DIFFUSION IN MULTIPLEXES BY ...

With regard to the use of the optimized rewiring, we notice
that the procedure based on rewiring pairs of nodes with large
and small degree, as used in multiplexes based on identical BA
networks, offers again a good strategy to accelerate the MC
search process. Indeed, the increase in the value of A, along
with that of § occurs at a much faster pace when this choice is
used.

The behavior of multiplexes assembled by two distinct
realizations of WS networks is not monotonic. As was
observed when working with two identical layers at s = 0,
Aa(s) has the tendency to form a peak when s increases
together with §, (s), and a minimum when s increases and §_(s)
decreases. These changes are correlated with the values of
D,,(s), which shows a minimum (maximum) when we follow
the multiplexes generated by 8., (s) [6_(s)]. In accordance with
this overall picture, A, shows a complex behavior with respect
to both s and D, . The magnitude of these changes may depend
on the value of p and N.

V. CONCLUSIONS

This work has investigated the relation between diffusion
in a multiplex and the differences between the topology of its
different layers. We have focused our attention on two-layer
multiplexes, so that this relation could be quantified in terms of
two well-defined parameters: the multiplex diffusive relaxation
time T = 1/A;, and the interlayer structural difference §.
To closely follow this dependency, a MC procedure was
implemented in such a way that 6 could increase or decrease
by selectively rewiring one of the layers in the multiplex (8),
while the values of A, were evaluated at suitable values of
MC steps s. For these values, we followed the dependency
of A, with respect to the interlayer diffusion coefficient D,,
and we also evaluated A,, which corresponds to the theoretical
asymptotic value A, when D, — oc.

PHYSICAL REVIEW E 95, 052312 (2017)

The reported results for three well-known network sets
uncovered an overwhelming tendency for a direct relationship
between A,(D,;s) and §(s). This is valid for two different
choices for the layers o and B(s = 0). When o = $(0), ¢
necessarily increases with s, and so does A;. On the other hand,
8 can be set to increase and decrease when o # B(0), with a
general trend of A, to behave accordingly. Some exceptions
of the general trend were observed when small-world WS
networks were subject to a very large number of rewiring
steps. Here we could see that, despite a monotonic increase
(or decrease) of §, A, moves in the opposite direction, which
seems to be correlated with a change in the behavior of the
multiplex diameter with respect to s.

Although the increase or decrease of A, proceeds through
a series of small increments resulting from rewiring random
pairs of S links, we were able to identify alternative procedures
to speed up the rewiring process of two initially identical
layers, in the sense that the values of 6 and A, can be
significantly increased after a very small number of rewired
pairs of links. This opens the used framework to applications
in real-world situations, in which the diffusion process can
be controlled by playing with a small subset of nodes in a
multiplex. The extension of the adopted framework to include
multiplexes with a larger number of layers is a natural and
interesting consequence of this work.
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