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Synchronization in networks with multiple interaction layers
Charo I. del Genio,1* Jesús Gómez-Gardeñes,2,3* Ivan Bonamassa,4 Stefano Boccaletti5,6

The structure of many real-world systems is best captured by networks consisting of several interaction layers.
Understanding how a multilayered structure of connections affects the synchronization properties of dynamical
systems evolving on top of it is a highly relevant endeavor in mathematics and physics and has potential applications
in several socially relevant topics, such as power grid engineering and neural dynamics. We propose a general
framework to assess the stability of the synchronized state in networks with multiple interaction layers, deriving a
necessary condition that generalizes the master stability function approach. We validate our method by applying it
to a network of Rössler oscillators with a double layer of interactions and show that highly rich phenomenology
emerges from this. This includes cases where the stability of synchronization can be induced even if both layers would
have individually induced unstable synchrony, an effect genuinely arising from the true multilayer structure of the
interactions among the units in the network.
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INTRODUCTION
Network theory (1–9) has proved a fertile ground for the modeling of a
multitude of complex systems.One of themain appeals of this approach
lies in its power to identify universal properties in the structure of con-
nections among the elementary units of a system (10–12). In turn, this
enables researchers tomake quantitative predictions about the collective
organization of a system at different length scales, ranging from themi-
croscopic to the global scale (13–19).

Because networks often support dynamical processes, the interplay
between the structure and the unfolding of collective phenomena has
been the subject of numerous studies (20–22). Many relevant pro-
cesses and their associated emergent phenomena, such as social dy-
namics (23), epidemic spreading (24), synchronization (25), and
controllability (26), have been proven to significantly depend on the
complexity of the underlying interaction backbone. Synchronization
of systems of dynamical units is a particularly noteworthy topic be-
cause synchronized states are at the core of the development of many
coordinated tasks in natural and engineered systems (27–29). Thus, in
the past two decades, considerable attention has been paid to shedding
light on the role that network structure plays in the onset and stability
of synchronized states (30–42).

However, in the past years, the limitations of the simple network
paradigm have become increasingly evident, as the unprecedented
availability of large data sets with ever-higher resolution levels has re-
vealed that real-world systems can seldom be described by an isolated
network. Several works have proved that mutual interactions between
different complex systems cause the emergence of networks composed
of multiple layers (43–46). This way, nodes can be coupled according
to different kinds of ties so that each of these interaction types defines
an interaction layer. Examples of multilayer systems include social
networks, in which individual people are linked and affiliated by dif-
ferent types of relations (47), mobility networks, in which individual
nodes may be served by different means of transport (48, 49), and
neural networks, in which the constituent neurons interact over chem-
ical and ionic channels (50). Multilayer networks have thus become
the natural framework to investigate new collective properties arising
from the interconnection of different systems (51, 52). The multilayer
studies of processes, such as percolation (53–57), epidemics spreading
(58–61), controllability (62), evolutionary games (63–66), and diffu-
sion (67), have all evidenced a very different phenomenology from
the one found on monolayer structures. For example, whereas isolated
scale-free networks are robust against random failures of nodes or
edges (68), interdependent ones are very fragile (69). Nonetheless,
the interplay between multilayer structure and dynamics remains, un-
der several aspects, still unexplored, and in particular, the study of syn-
chronization is still in its infancy (70–73).

Here, we present a general theory that fills this gap and generalizes
the celebrated master stability function (MSF) approach in complex
networks (30) to the realm of multilayer complex systems. Our aim
is to provide a full mathematical framework that allows one to eval-
uate the stability of a globally synchronized state for nonlinear dynam-
ical systems evolving in networks with multiple layers of interactions.
To do this, we perform a linear stability analysis of the fully synchro-
nized state of the interacting systems and exploit the spectral proper-
ties of the graph Laplacians of each layer. The final result is a system of
coupled linear ordinary differential equations for the evolution of the
displacements of the network from its synchronized state. Our setting
does not require (nor assume) special conditions concerning the struc-
ture of each single layer, except that the network is undirected and
that the local and interaction dynamics are described by continuous
and differentiable functions. Because of this, the evolutionary differen-
tial equations are nonvariational. We validate our predictions in a
network of chaotic Rössler oscillators with two layers of interactions
featuring different topologies. We show that, even in this simple case,
there is the possibility of inducing the overall stability of the complete
synchronization manifold in regions of the phase diagram where each
layer, taken individually, is unstable.
RESULTS
The model
From the structural point of view, we consider a network composed of
N nodes, which interact throughM different layers of connections, each
layer generally having different links and representing a different kind of
1 of 9

http://advances.sciencemag.org/


SC I ENCE ADVANCES | R E S EARCH ART I C L E

 on January 17, 
http://advances.sciencem

ag.org/
D

ow
nloaded from

 

interactions among the units (see Fig. 1 for a schematic illustration of
the case ofM = 2 layers andN = 7 nodes). Note that in our setting, the
nodes interacting in each layer are literally the same elements. Node i
in layer 1 is precisely the same node as node i in layer 2, 3, orM. This
contrasts with other works in which there is a one-to-one correspon-
dence between nodes in different layers, but these represent poten-
tially different states. The weights of the connections between nodes
in layer a (a = 1,…,M) are given by the elements of the matrixW(a),
which is, therefore, the adjacency matrix of a weighted graph. The sum

qai ¼ ∑
N

j¼1
WðaÞ

i;j ði ¼ 1;…;NÞ
of the weights of all the interactions of node i in layer a is the strength of
the node in that layer.

Regarding the dynamics, each node represents a d-dimensional dy-
namical system. Thus, the state of node i is described by a vector xiwith
d components. The local dynamics of the nodes is captured by a set of
differential equations of the form

ẋi ¼ FðxiÞ

where the dot indicates time derivative and F is an arbitrary C1-vector
field. Similarly, the interaction in layer a is described by a continuous
and differentiable vector field Ha (generally different from layer to
layer), possibly weighted by a layer-dependent coupling constant sa.
We assume that the interactions between node i and node j are diffusive,
that is, for each layer in which they are connected, their coupling de-
pends on the difference between Ha evaluated on xj and xi. Then, the
dynamics of thewhole system isdescribedby the following set of equations

ẋi ¼ FðxiÞ � ∑
M

a¼1
sa∑

N

j¼1
LðaÞi;j HaðxjÞ ð1Þ

where L(a) is the graph Laplacian of layer a, whose elements are

LðaÞi;j ¼ qai if i ¼ j;

�WðaÞ
i;j otherwise

(
ð2Þ
del Genio et al. Sci. Adv. 2016;2 : e1601679 16 November 2016
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Note that our treatment of this setting is valid for all possible choices of
F andHa, so long as they are C

1, and for any particular undirected struc-
ture of the layers. This stands in contrast to other approaches to the study
of the same equation set (1) proposed in previous works (and termed as
dynamical hypernetworks), which, although based on ingenious techni-
ques such as simultaneous block diagonalization, can be applied only to
special cases [such as commuting Laplacians, unweighted and fully
connected layers, and nondiffusive coupling (74)] or cannot guarantee
to always provide a satisfactory solution (75).

Stability of complete synchronization in networks with
multiple layers of interactions
We are interested in assessing the stability of synchronized states,
which means determining whether a system eventually returns to
the synchronized solution after a perturbation. For further details
of the following derivations, we refer to Materials and Methods.

First, note that because Laplacians are zero-row-sum matrices,
they all have a null eigenvalue, with corresponding eigenvector N−1/2

(1, 1,…, 1)T, where T indicates transposition. This means that the gen-
eral system of equations (1) always admits an invariant solution S ≡
{xi(t) = s(t), ∀i = 1, 2,…, N}, which defines the complete synchroni-
zation manifold in ℝdN.

Because one does not need a very strong forcing to destroy synchro-
nization in an unstable state, we aim at predicting the behavior of the
systemwhen the perturbation is small. First, we linearize Eq. 1 around
the synchronized manifold S by obtaining the equations ruling the
evolution of the local and global synchronization errors dxi ≡ xi − s
and dX ≡ dx1, dx2,…, dxN)

T

dX˙ ¼ 1⊗JFðsÞ � ∑
M

a¼1
saL

ðaÞ⊗JHaðsÞ
 !

dX ð3Þ

where 1 is the N-dimensional identity matrix, ⨂ denotes the Kronecker
product, and J is the Jacobian operator.

Second, we spectrally decompose dX in the equation above and proj-
ect it onto the basis defined by the eigenvectors of one of the layers. The
particular choice of layer is completely arbitrary because the eigenvec-
tors of the Laplacians of each layer formM equivalent bases ofℝN. In
the following, to fix the ideas, we operate this projection onto the
eigenvectors of L(1). With some algebra, the system of equations 3
can then be expressed as

ḣj ¼
�
JFðsÞ � s1l

ð1Þ
j JH1ðsÞ

�
hjþ
� ∑
M

a¼2
sa ∑

N

k¼2
∑
N

r¼2
lðaÞr GðaÞ

r;k G
ðaÞ
r;j JHaðsÞhk ð4Þ

for j = 2,…,N, where hj is the vector coefficient of the eigendecomposi-
tion of dX, andlðaÞr is the rth eigenvalue of the Laplacian of layera, sorted

in a nondecreasing order; we have put GðaÞ ≡ VðaÞTVð1Þ, in which V(a)

indicates the matrix of eigenvectors of the Laplacian of layer a. Note
that to obtain this result, one must ensure that the Laplacian eigen-
vectors of each layer are orthonormal, a choice that is always possible
because all the Laplacians are real symmetric matrices. Thus, the
sums run from 2 rather than 1 because the first eigenvalue of the La-
placian, corresponding to r = 1, is always 0 for all layers, and the first
eigenvector, to which all others are orthogonal, is common to all layers.
Fig. 1. Schematic representation of a networkwith two layers of interaction. The
two layers (corresponding here to solid violet and dashed orange links) are made of
links of different types for the same nodes, such as different means of transport be-
tween two cities or chemical and electric connections between neurons. Note that the
layers are fully independent, in that they are described by two different Laplacians L(1)

and L(2), so that the presence of a connection between twonodes in one layer does not
affect their connection status in the other.
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Equation 4 is notable in that it includes previous results about systems
with commuting Laplacians as a special case. If the Laplacians
commute, they can be simultaneously diagonalized by a common basis
of eigenvectors. Thus, in this case,V(a) =V(1) ≡V for all a. In turn, this
implies that Г(a) = 1 for all a, and Eq. 4 becomes

ḣj ¼
�
JFðsÞ � s1l

ð1Þ
j JH1ðsÞ

�
hjþ

� ∑
M

a¼2
sa ∑

N

k¼2
∑
N

r¼2
lðaÞr dr;kdr;jJHaðsÞhk

¼
�
JFðsÞ � ∑

M

a¼1
sal

ðaÞ
j JHaðsÞ

�
hj

recovering anM-parameter variational form as in (74).
Note that the stability of the synchronized state is completely spe-

cified by the maximum conditional Lyapunov exponent L, corresponding
to the variation of the norm of W ≡ (h2,…, hN). Because W will evolve
on average as |W|(t)~exp(Lt), the fully synchronized state will be stable
against small perturbations only if L < 0.

Case study: Networks of Rössler oscillators
To illustrate the predictive power of the framework described above, we
apply it to a network of identical Rössler oscillators, with two layers of
connections. Note that ourmethod is fully general, and it can be applied
to systems composed by anynumber of layers and containing oscillators
of any dimensionality d. The particular choice ofM= 2 and d=3 for our
example allows us to study a complex phenomenology while retaining
ease of illustration. The dynamics of the Rössler oscillators is described
by ẋ¼ ð�y � z; x þ ay; bþ ðx � cÞzÞT, where we have put x ≡ x1, y ≡
x2, and z≡ x3. The parameters are fixed to the values a= 0.2, b= 0.2, and
c = 9, which ensure that the local dynamics of each node is chaotic.

Considering each layer of connections individually, it is known
that the choice of the function H allows (for an ensemble of net-
worked Rössler oscillators) the selection of one of the three classes
of stability (see Materials and Methods for more details), which are

(i) H(x) = (0, 0, z), for which synchronization is always unstable;
(ii) H(x) = (0, y, 0), for which synchronization is stable only for

sala2 < 0:1445;
(iii) H(x) = (x, 0, 0) for which synchronization is stable only for

0:181=la2 < sa<4:615=laN .
Because of the double layer structure, one can now combine

together different classes of stability in the two layers, studying how
one affects the other and identifying new stability conditions arising
from the different choices. In the following, we consider three combi-
nations, namely

Case 1: layer 1 in class I and layer 2 in class II, that is,H1(x) = (0, 0, z)
and H2(x) = (0, y, 0);

Case 2: layer 1 in class I and layer 2 in class III, that is, H1(x) =
(0, 0, z) and H2(x) = (x, 0, 0);

Case 3: layer 1 in class II and layer 2 in class III, that is, H1(x) =
(0, y, 0) and H2(x) = (x, 0, 0).

As for the choices of the Laplacians L(1,2), we consider three pos-
sible combinations: (i) both layers as Erdős-Rényi networks of equal
mean degree (ER-ER); (ii) both layers as scale-free networks with
power-law exponent 3 (SF-SF); and (iii) layer 1 as an Erdős-Rényi
network and layer 2 as a scale-free network (ER-SF). In all cases,
the graphs are generated using the algorithm of Gómez-Gardeñes
and Moreno (76), which allows a continuous interpolation between
scale-free and Erdős-Rényi structures (see Materials and Methods
del Genio et al. Sci. Adv. 2016;2 : e1601679 16 November 2016
for details). Therefore, in the following, we will consider nine possible
scenarios, that is, the three combinations of stability classes for each of
the three combinations of layer structures.
Case 1.
Rewriting the system of equations (4) explicitly for each component of
hj, we obtain here

ḣj1 ¼ �hj2 � hj3 ð5Þ

ḣj1 þ 0:2hj
2
� s2 ∑

N

k¼2
∑
N

r¼2
lð2Þr Gr;kGr;jhk2 ð6Þ

ḣj3 ¼ s3hj
1
þ ðs1 � 9Þhj

3
� s1l

ð1Þ
j hj3 ð7Þ

from which the maximum Lyapunov exponent can be numerically
calculated. As shown in the top panel of Fig. 2, we observe that for
ER-ER topologies, the first layer is dominated by the second because
the stability region of the whole system appears to be almost
independent of s1, disregarding a slight increase of the critical value
of s2 as s1 increases. This demonstrates the ability of class II systems
to control the instabilities inherent to systems in class I. This result
appears to be robust with respect to the choice of underlying structures
because qualitatively similar results are obtained for SF-SF, ER-SF, and
SF-ER topologies (fig. S1).
Fig. 2. Maximum Lyapunov exponent for ER-ER topologies in case 1 (top
panel) and case 2 (bottom panel). The darker blue lines mark the points in
the (s1, s2) space where L vanishes, whereas the striped lines indicate the critical
values of s2 if layer 2 is considered in isolation (or, equivalently, if s1 = 0).
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Case 2.
For case 2, the system of equations (4) reads

ḣj1 ¼ �hj2 � hj3 � s2 ∑
N

k¼2
∑
N

r¼2
lð2Þr Gr;kGr;jhk1 ð8Þ

ḣj2 ¼ hj
1
þ 0:2hj2 ð9Þ

ḣj3 ¼ s3hj
1
þ ðs1 � 9Þhj

3
� s1l

ð1Þ
j hj3 ð10Þ

As shown in the bottom panel of Fig. 2, also in this case, the second
layer strongly dominates the whole system because the overall stability
window is almost independent from the value of s1. This result,
together with that obtained for case 1, suggests that class I systems,
although intrinsically preventing synchronization, are easily controlla-
ble by both class II and class III systems, even though, analogous to
case 1, we observe a slight widening of the stability window for
increasing values of s1. Again, the results are almost independent from
the choice of the underlying topologies (fig. S2).
Case 3.
Finally, for case 3, equations (4) become

ḣj1 ¼ �hj2 � hj3 � s2 ∑
N

k¼2
∑
N

r¼2
lð2Þr Gr;kGr;jhk1 ð11Þ

ḣj2
¼ hj1 þ 0:2hj2 � s1l

ð1Þ
j hj2 ð12Þ

ḣj3 ¼ s3hj1 þ ðs1 � 9Þhj3 ð13Þ

Here, the system reveals its most striking features. In particular, for
ER-ER topologies (see top panel of Fig. 3), we observe six different
regions, identified in the figure by Roman numerals. In region I, syn-
chronization is stable in both layers taken individually (or, equivalent-
ly, for either s1 = 0 or s2 = 0), and the full bilayered network is also
stable. Regions II, III, and IV correspond to scenarios qualitatively sim-
ilar to the ones seen previously, that is, where stability properties of
one layer dominate over those of the other. Finally, regions V and VI
are the most important because within them, one finds effects that are
genuinely arising from the multilayered nature of the interactions. In
these regions, both layers are individually unstable, and synchronization
would not be observed at all for either s1 = 0 or s2 = 0. However, the
emergence of a collective synchronous motion is remarkably ob-
tained with a suitable tuning of the parameters. In these regions,
it is therefore the simultaneous action of the two layers that induces
stability.

Together, the results we obtained for the three cases indicate that a
multilayer interaction topology enhances the stability of the synchro-
nized state, even allowing for the possibility of stabilizing systems that
are unstable when considered isolated.

Numerical validation
We validate the stability predictions derived from equations (4) by
simulating the full nonlinear system of equations (1) for an ER-ER
del Genio et al. Sci. Adv. 2016;2 : e1601679 16 November 2016
topology in case 3, with three different choices of coupling constants
s1 and s2. The three specific sets of coupling values (shown in the top
panel of Fig. 3) correspond to situations in which either one or both
layers are unstable when isolated but yield a stable synchronized state
when coupled. More specifically, we have chosen (s1 = 0.04, s2 = 0.3),
(s1 = 0.15, s2 = 0.5), and (s1 = 0.04, s2 = 0.5) corresponding to
regions II, IV, and VI, respectively.

For all three cases, we run the simulations initially with the pres-
ence of only the unstable layer, by setting either s1 = 0 ors2 = 0 depend-
ing on the set of couplings considered. Note that for the third set of
couplings (region VI), either layer can be the initially active one because
both are unstable when isolated. After 100 integration steps, we then
activate the other layer by setting its interaction strength to the (non-
zero) value corresponding to the region for which we predicted a stable
synchronized state. As the systems evolve, we monitor the evolution of
the norm |W|(t) to evaluate the deviation from the synchronized solu-
tion with time.

The results in Fig. 4 show that when only the unstable interaction
layer is active, |W|(t) never vanishes. However, as soon as the other layer
is switched on, the norm ofW undergoes a sudden change of behavior,
starting an exponential decay toward 0. This confirms the prediction
that the unstable behavior induced by each layer is compensated by
the mutual presence of two interaction layers.

Qualitatively similar scenarios are observed in case 3 for SF-SF topol-
ogies, as well as for ER-SF and SF-ER structures (fig. S3). Again, they
Fig. 3. Maximum Lyapunov exponent in case 3 for ER-ER and SF-SF topologies
(top and bottom panel, respectively). The darker blue lines mark the points in the
(s1, s2) plane where the maximum Lyapunov exponent is 0, whereas the striped lines
indicate the stability limits for the s1 = 0 and s2 = 0. The pointsmarked in the top panel
indicate the choices of coupling strengths used for the numerical validation of the
model. Note that for SF networks in class III, the stability window disappears.
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confirm the correctness of the predictions, showing that in region I,
layer 1 dominates over layer 2, and that in region II, overall stability
can be induced even when both layers are unstable in isolation.

To provide an even stronger demonstration of the predictive power
of our method, we simulate the full system for the ER-ER topology in
case 3, fixing the value of s2 to 1 and varying the value of s1 from 0 to
0.2. Starting from an initial perturbed synchronized state, after a tran-
sient of 100 time units, we measure the average of |W| over the next 20
integration steps. The results in Fig. 5 show agreement between the sim-
ulations and the theoretical prediction (see Fig. 4). For values of s1 less
than a critical value of approximately 0.04, the system never synchro-
nizes. Conversely,whens1 crosses the critical value, the systemcanreach
a synchronized state. Repeating the simulation with s2 = 0, one recovers
the monoplex case. Also in this instance, we find agreement between
theoretical prediction and simulation, with a critical coupling value of
approximately 0.08.
 on January 17, 2018
g/
DISCUSSION
The results shown above clearly illustrate the rich dynamical phenom-
enology that emerges when the multilayer structure of real networked
systems is taken into account. In an explicit example, we have observed
that synchronization stability can be induced in unstable networked
layers by coupling them with stable ones. In addition, we have shown
that stability can be achieved even when all the layers of a complex sys-
tem are unstable, if considered in isolation. This latter result constitutes
a clear instance of an effect that is intrinsic to the true multilayer nature
of the interactions among the dynamical units. Similarly, we expect that
the opposite could also be observed, namely, that the synchronizability
of a system decreases or even disappears when two individually syn-
chronizable layers are combined.

On more general grounds, the theory developed here allows one to
assess the stability of the synchronized state of coupled nonlinear dy-
namical systems with multilayer interactions in a fully general setting.
The system can have any arbitrary number of layers, and perhaps more
importantly, the network structures of each layer can be fully in-
dependent because we do not exploit any special structural or dynam-
ical property to develop our theory. This way, our approach generalizes
the celebrated MSF (30) to multilayer structures, retaining the general
applicability of the originalmethod. The complexity in the extra layers is
reflected in the fact that the formalism yields a set of coupled linear dif-
ferential equations (Eq. 4), rather than a single parametric variational
del Genio et al. Sci. Adv. 2016;2 : e1601679 16 November 2016
equation, which is recovered in the case of commuting Laplacians. This
system of equations describes the evolution of a set of d-dimensional
vectors that encode the displacement of each dynamical system from
the synchronized state. The solution of the systemgives a necessary con-
dition for stability: if the normof these vectors vanishes in time, then the
system gets progressively closer to synchronization, which is therefore
stable; if, instead, the length of the vectors always remains greater than 0,
then the synchronized state is unstable.

The generality of the method presented, which is applicable to any
undirected structure, and its straightforward implementation for any
choice of C1 dynamical setup pave the way for the exploration of syn-
chronization properties on multilayer networks of arbitrary size and
structure. Thus, we are confident that our work can be used in the de-
sign of optimalmultilayered synchronizable systems, a problem that has
attractedmuch attention inmonolayer complex networks (77–80). The
straightforward nature of our formalism makes it suitable for efficient
use together with successful techniques, such as the rewiring of links or
the search for an optimal distribution of link weights, in the context of
multilayer networks. In turn, these techniques may help in addressing
the already mentioned question of the suppression of synchronization
due to the interaction between layers, unveiling possible combinations
of stable layers that, when interacting, suppress the dynamical coher-
ence that they show in isolation. Also, we believe that the reliability of
our method will provide aid to the highly current field of multiplex
network controllability (26, 81–84), enabling researchers to engineer
control layers to drive the system dynamics toward a desired state.

In addition, several extensions of our work toward more general
systems are possible. A particularly relevant one is the study of multilayer
networks of heterogeneous oscillators, which have a rich phenomenology
Fig. 4. Numerical validation of the stability analysis. The error of synchronization increases as long as the only active layer is the one predicted to be unstable.When the other
layer is switched on, at time 100, the error of synchronization decays exponentially toward 0, as predicted by the model. With respect to Fig. 3, the top left panel corresponds to
region II, where layer 1 is unstable and layer 2 is stable, and the interaction strengths usedwere s1 = 0.04 and s2 = 0.3. The bottom left panel corresponds to region IV, where layer
1 is stable and layer 2 is unstable, and the interaction strengths were s1 = 0.15 and s2 = 0.5. The top right and bottom right panels correspond to region VI, where both layers are
unstable. The layer active from the beginningwas layer 1 for the top right panel and layer 2 for the bottom right panel. In both cases, the interaction strengths were s1 = 0.04 and
s2 = 0.5.
Fig. 5. Identification of the critical points. For a systemwith ER-ER topology in case
3 and fixeds2 = 1, the synchronization error never vanishes ifs1 <sc≈ 0.04. Conversely,
as soonass1 >sc, the system is again able to synchronize (green line). One recovers the
monolayer case by imposing s2 = 0, for which similar results are found, with a critical
coupling strength of approximately 0.08 (red line). Both results are in perfect agree-
ment with the theoretical predictions (see Fig. 4).
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http://advances.sciencemag.org/


SC I ENCE ADVANCES | R E S EARCH ART I C L E

D
ow

nloaded from
and whose synchronizability has been shown to depend on all the
Laplacian eigenvalues (85) in a way similar to the results presented
here. Relaxing the requirement of an undirected structure, our ap-
proach can also be used to study directed networks. The graph Lapla-
cians in this case are not necessarily diagonalizable, but a considerable
amount of information can be still extracted from them using singular
value decomposition. For example, it is already known that directed
networks can be rewired to obtain an optimal distribution of in-
degrees for synchronization (86). Further areas that we intend to ex-
plore in future work are those of almost identical oscillators and
almost identical layers, which can be approached using perturbative
methods and constitute more research directions with even wider
applicability.

Finally, as our method allows one to study the rich synchroniza-
tion phenomenology of general multilayer networks, we believe that
it will find application in technological, biological, and social systems
where synchronization processes and multilayered interactions are at
work. Some examples are coupled power grid and communication
systems, some brain neuropathologies such as epilepsy, and the onset
of coordinated social behavior when multiple interaction channels
coexist. As mentioned above, these applications will demand further
advances to include specific features such as the nonhomogeneity of
interacting units or the possibility of directional interactions.
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MATERIALS AND METHODS
Linearization around the synchronized solution
To linearize the system in Eq. 4 around the synchronization
manifold, use the fact that for any C1-vector field f we can write

fðxÞ ≈ fðx0Þ þ Jfðx0Þ ⋅ðx � x0Þ

Using this relation, we can expand F and H around s in the sys-
tem of equations 4 to obtain

dẋi ¼ ẋi � ṡ ≈ JFðsÞ ⋅dxi � ∑
M

a¼1
saJHaðsÞ⋅∑

N

j¼1
LðaÞi;j dxj ð14Þ

Now, we use the Kronecker matrix product to decompose the equa-
tion above into self-mixing and interaction terms and introduce the
vector dX, to get the final system of equations 3. The system 3 can be
rewritten by projecting dX onto the Laplacian eigenvectors of a layer.
The choice of layer to carry out this projection is entirely arbitrary be-
cause the Laplacian eigenvectors are always a basis of ℝN. Without the
loss of generality, we choose layer 1 and ensure that the eigenvectors are
orthonormal.We then define1d to be the d-dimensional identitymatrix

and multiply Eq. 3 on the left by
�
Vð1ÞT⊗1d

�
�
Vð1ÞT⊗1d

�
dX˙ ¼

��
Vð1ÞT⊗1d

��
1⊗JFðsÞ�

� ∑
M

a¼1
sa
�
Vð1ÞT⊗1d

��
LðaÞ⊗JHaðsÞ

��
dX

Now, we use the relation

ðM1⊗M2ÞðM3⊗M4Þ ¼ ðM1M3Þ⊗ðM2M4Þ ð15Þ
del Genio et al. Sci. Adv. 2016;2 : e1601679 16 November 2016
to obtain

�
Vð1ÞT⊗1d

�
dX
: ¼ Vð1ÞT⊗JFðsÞ �

�
s1D

ð1ÞVð1ÞT
�
⊗JH1ðsÞ

h i
dX

� ∑
M

a¼2
sa
�
Vð1ÞTLðaÞ

�
⊗JHaðsÞdX

where D(a) is the diagonal matrix of the eigenvalues of layer a, and
we have split the sum into the first term and the remainingM− 1 terms.
Left-multiply the first occurrence of Vð1ÞT in the right-hand side
by1, and right-multiply F andH1 by1d. Then, using again Eq. 15,
it becomes

�
Vð1ÞT⊗1d

�
dX˙ ¼

��
1⊗JFðsÞ��Vð1ÞT⊗1d

�
�
�
s1D

ð1Þ⊗JH1ðsÞ
��

Vð1ÞT⊗1d

��
dX

� ∑
M

a¼2
saV

ð1ÞTLðaÞ⊗JHaðsÞdX

Factor out
�
Vð1ÞT⊗1d

�
to get

�
Vð1ÞT⊗1d

�
dX
: ¼

�
1⊗JFðsÞ � s1D

ð1Þ⊗JH1ðsÞ
�

�
�
Vð1ÞT⊗1d

�
dX � ∑

M

a¼2
saV

ð1ÞTLðaÞ⊗JHa

�
s
�
dX

The relation

ðM1⊗M2Þ�1 ¼ M1
�1⊗M2

�1

implies that
�
Vð1Þ⊗1d

��
Vð1ÞT⊗1d

�
is the mN-dimensional identity

matrix. Then, we left-multiply the last dX by this expression, obtaining�
Vð1ÞT⊗1d

�
dX˙ ¼

�
1⊗JFðsÞ � s1D

ð1Þ⊗JH1ðsÞ
�
�
�
Vð1ÞT⊗1d

�
dX

� ∑
M

a¼2
saV

ð1ÞTLðaÞ⊗JHaðsÞ

�
�
Vð1Þ⊗1d

��
Vð1ÞT⊗1d

�
dX

Now, we define the vector-of-vectors

h ≡
�
Vð1ÞT⊗1d

�
dX

Each component of h is the projection of the global synchronization
error vector dX onto the space spanned by the corresponding Laplacian
eigenvector of layer 1. The first eigenvector, which defines the synchro-
nization manifold, is common to all layers, and all other eigenvectors
are orthogonal to it. Thus, the normof the projection ofh over the space
spanned by the last N – 1 eigenvectors is a measure of the synchroni-
zation error in the directions transverse to the synchronization
6 of 9
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manifold. Because of how h is built, this projection is just the vectorW,
consisting of the lastN – 1 components of h. With this definition of h,
we left-multiply L(a) by the identity expressed as VðaÞVðaÞT to obtain

ḣ ¼
�
1⊗JFðsÞ � s1D

ð1Þ⊗JH1ðsÞ
�
h

� ∑
M

a¼2
saV

ð1ÞTVðaÞDðaÞVðaÞTVð1Þ⊗JHa
�
s
�
h

In this vector equation, the first part is purely variational because it
consists of a block-diagonal matrix that multiplies the vector-of-vectors
h. However, the second part mixes different components of h. This can
be seen more easily expressing the vector equation as a system of equa-
tions, one for each component j of h.

Towrite this system, it is convenient to first defineGðaÞ ≡ VðaÞTVð1Þ,
then consider the nonvariational part. Its contribution to the jth
component of ḣ is given by the product of the jth row of blocks
of the block-matrix multiplied by h. In turn, each element of this
row of blocks consists of the corresponding element of the jth row of
GðaÞTDðaÞGðaÞ multiplied by JHa (s)

�
GðaÞTDðaÞGðaÞ

�
j;k ¼ ∑

N

r¼1
G

ðaÞT

j;r lðaÞr GðaÞ
r;k

Summing over all the components hk yields

ḣj ¼
�
JFðsÞ � s1l

ð1Þ
j JH1ðsÞ

�
hjþ

M N N
ðaÞ ðaÞ ðaÞ
 on January 17, 2018
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� ∑
a¼2

sa ∑
k¼2

∑
r¼2

lr Gr;kGr;j JHaðsÞhk

which is Eq. 4. Note that the sums over r and k start from 2 because the
first eigenvalue is always 0, and the orthonormality of the eigenvectors
guarantees that all the elements of the first column of Г(a), except the first,
are 0. Eachmatrix Г(a) effectively captures the alignment of the Laplacian
eigenvectors of layer awith those of layer 1. If the eigenvectors for layer a
are identical to those of layer 1, as it happens when the two Laplacians
commute, then Г(a) =1. One can generalize the definition of Г(a) to con-
sider any two layers, introducing the matrices Xða;bÞ ≡ VðaÞTVðbÞ ¼
GðaÞGðbÞT that can even be used to define a measure ℓD of “dynamical
distance” between two layers a and b

ℓD ¼ ∑
N

i¼2

"
∑
N

j¼2
ðXða;bÞ

i;j Þ2
#
� ðXða;bÞ

i;i Þ2

MSF and stability classes
A particular case of the treatment we considered above happens when
M = 1. In this case, the second term on the right-hand side of Eq. 4
disappears, and the system takes the variational form ḣi ¼ Kihi, where
Ki ≡ JF(s) – sliJH(s) is an evolution kernel evaluated on the synchro-
nization manifold. Because l1 = 0, this equation separates the contri-
bution parallel to the manifold, which reduces to ḣ1 ¼ JFðsÞh1, from
the other N – 1, which describe perturbations in the directions trans-
verse to the manifold and which have to be damped for the synchro-
nized state to be stable. Because the Jacobians of F andH are evaluated
on the synchronized state, the variational equations differ only in the
eigenvalues li. Thus, one can extract from each of them a set of d-
conditional Lyapunov exponents, evaluated along the eigenmodes as-
sociated to li. Putting n ≡ sli, the parametrical behavior of the largest
del Genio et al. Sci. Adv. 2016;2 : e1601679 16 November 2016
of these exponents L(n) defines the so-called MSF (30). If the network
is undirected, then the spectrum of the Laplacian is real, and the MSF
is a real function of n. Crucially, for all possible choices of F andH, the
MSF of a network falls into one of three possible behavior classes,
defined as follows (6)

class I: L(n) never intercepts the x axis;
class II: L(n) intercepts the x axis at a single point at some nc ≥ 0;
class III: L(n) is a convex function with negative values within

some window nc1 < n < nc2; in general, nc1 ≥ 0, with the equality
holding when F supports a periodic motion.

The elegance of the MSF formalism manifests itself at its finest for
systems in class III, for which synchronization is stable only if sl2 > nc1
andslN < nc2 hold simultaneously. This condition implieslN=l2<

nc2=nc1.
Because lN=l2 is entirely determined by the network topology and nc2=nc1
depends only on the dynamical functions F and H, one has a simple
stability criterion in which structure and dynamics are decoupled.

Network generation
To generate the networks for our simulations, we used the algorithm
described by Gómez-Gardeñes and Moreno (76), which creates a one-
parameter family of complex networks with a tunable degree of heter-
ogeneity. The algorithm works as follows: start from a fully connected
networkwithm0 nodes and a set c containingN –m0 isolated nodes. At
each time step, select a new node from c and link it to other m nodes,
selected among all other nodes. The choice of the target nodes happens
uniformly at randomwith probability a and following a preferential at-
tachment rule with probability 1 – a. Repeating these steps N – m0

times, one obtains networks with the same number of nodes and links,
whose structure interpolates between ER, for a = 1, and SF, for a = 0.

Numerical calculations
To compute the maximum Lyapunov exponent for a given pair of cou-
pling strengths s1 and s2, we first integrate a single Rössler oscillator
from an initial state (0, 0, 0) for a transient time ttrans, sufficient to reach
the chaotic attractor. The integration is carried out using a fourth-order
Runge-Kutta integrator with a time step of 5 × 10–3, for which we
choose a transient time ttrans = 300. Then, we integrate the systems
for the perturbations (Eqs. 5 to 7, 8 to 10, and 11 to 13) using Euler’s
method, again with a same time step of 5 × 10–3. The initial conditions
are such that all components of all the hj are1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðN � 1Þp

, makingW a
unit vector. At the same time, we continue the integration of the single
Rössler unit to provide for s1 and s3, which appear in the perturbation
equations. This process is repeated for 500 time windows, each with the
duration of 1 unit (200 steps). After each window n, we compute the
norm of the overall perturbation |W|(n) and rescale the components
of the hj so that at the start of the next time window, the norm of W
is again set to 1. Finally, when the integration is completed, we estimate
the maximum Lyapunov exponent as

L ¼ 1
500

∑
500

n¼1
log jWjðnÞð Þ

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/2/11/e1601679/DC1
fig. S1. Maximum Lyapunov exponent L for systems falling into case 1 (layer 1 in stability class
I and layer 2 in stability class II) for SF-SF, ER-SF, and SF-ER topologies (left, center, and right
panels, respectively).
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fig. S2. Maximum Lyapunov exponent L for systems falling into case 2 (layer 1 in stability class
I and layer 2 in stability class III) for SF-SF, ER-SF, and SF-ER topologies (left, center, and right
panels, respectively).
fig. S3. Maximum Lyapunov exponent L for systems falling into case 3 (layer 1 in stability class II
and layer 2 in stability class III) for ER-SF and SF-ER topologies (left and right panels, respectively).
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