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Caracterización del comportamiento de la suite PARSEC en la
jerarquía de memoria del procesador

Resumen ejecutivo

Los simuladores son herramientas fundamentales para el diseño de nuevas arquitecturas de compu-
tadores. En este campo, interesa disponer de simuladores detallados que ofrezcan resultados precisos
y, al mismo tiempo, utilizar cargas de trabajo realistas que proporcionen conclusiones objetivas. El
principal obstáculo para las simulaciones es su alto coste en tiempo y memoria, lo que nos lleva
a sacrificar la precisión del simulador o a utilizar aplicaciones demasiado ligeras que resultan poco
representativas.

En este proyecto, se ha realizado un estudio del propio simulador y las cargas de trabajo con el
objetivo de conseguir simulaciones representativas de una ejecución realista en un tiempo razonable.
Nos hemos centrado en la plataforma Virtutech Simics, un simulador de sistema completo amplia-
mente utilizado, y GEMS, que proporciona módulos para la simulación temporal. Como carga de
trabajo hemos seleccionado PARSEC, que ofrece un conjunto representativo de las nuevas aplicaciones
paralelas emergentes de memoria compartida.

Se ha analizado el tiempo de simulación con Simics y GEMS buscando cuellos de botella que
pudieran ser optimizados. Hemos observado que gran parte del tiempo de simulación recae sobre el
módulo de GEMS que se ocupa de la jerarquía de memoria, aunque el tiempo está muy disperso
dentro del módulo, dificultando la optimización.

Ante estos resultados, pasamos a estudiar la suite PARSEC centrándonos en su comportamiento
en la jerarquía de memorias cache. Cuando se usan estas aplicaciones en investigación, se suelen
utilizar entradas de tamaño reducido como aproximación de una entrada nativa porque el tiempo de
simulación resulta más conveniente. No obstante, no está demostrado que estas entradas destinadas a
simulación sean adecuadas para obtener resultados representativos. Además, existe la creencia popular
de que cuanto más complejo es el problema a resolver, mayor presión se ejerce sobre la jerarquía de
memoria.

Hemos utilizado herramientas de análisis (profiling) y simulación para obtener distintas métricas
de las aplicaciones de PARSEC con sus entradas de diferentes tamaños. Analizando estos resultados,
descubrimos que no necesariamente las entradas más grandes presentan mayores tasas de fallos y
que la entrada nativa no genera un número de fallos notablemente más elevado que el resto. Estos
resultados se han obtenido analizando el comportamiento de las aplicaciones ejecutándolas con un
thread sobre un nivel de memoria cache, aunque se presume que las conclusiones seguirán siendo
válidas para múltiples threads. La verificación de esta hipótesis queda planteada como trabajo futuro.

Como resultado final del proyecto, hemos realizado una selección de las entradas más representativas
de una ejecución nativa que permiten obtener resultados fiables en un tiempo razonable. Para ello se
han utilizado diferentes técnicas: ejecución de una sección de la entrada nativa, uso de una entrada
de menor tamaño o uso de una nueva entrada distinta de todas las que ya existen. La utilización de
estas entradas para las aplicaciones de PARSEC resulta más adecuada que el uso sistemático de una
de menor tamaño, ya que permite conseguir resultados más representativos manteniendo un tiempo
de simulación razonable.
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Capítulo 1
Introducción

La simulación es un recurso esencial para explorar el espacio de diseño de nuevas arquitecturas
de computadores. Para que los resultados de nuestras simulaciones sean fiables nos interesa
simular el sistema completo con suficiente precisión. El problema es que no es posible lograr que
un simulador sea detallado y, al mismo tiempo, lo suficientemente eficiente como para ejecutar
cargas de trabajo realistas en un tiempo razonable. Es imprescindible encontrar programas
representativos que proporcionen conclusiones objetivas en que basar el diseño de nuevos sistemas,
pero las limitaciones ya descritas nos llevan a utilizar aplicaciones creadas especialmente para
este fin que no son necesariamente representativas. Por lo tanto, aunque los resultados obtenidos
sean muy precisos, no siempre nos aportan información valiosa.

En este proyecto se va realizar un estudio en profundidad del propio simulador, buscando
cuellos de botella cuya optimización reduzca los tiempos de ejecución. Se caracterizarán también
cargas de trabajo en lo relativo al diseño de la jerarquía de memorias cache, un aspecto esencial
del diseño de todo sistema mono o multiprocesador. Se pretende confirmar o desmentir la creencia
popular que indica que cuanto más complejo es el problema a resolver, mayor presión se ejerce
sobre la jerarquía de memoria. Además, se buscarán alternativas a la entrada a simular con las
cargas de trabajo analizadas, para obtener resultados representativos en el menor tiempo posible.
Esto permitirá acelerar el proceso de simulación y garantizará la fiabilidad de los datos en los
que se basan las decisiones de diseño.

Como simulador a estudiar nos centraremos en la plataforma Simics (de la empresa Virtutech)
[30] y el módulo GEMS (Universidad de Wisconsin) [31]. Simics tiene capacidad para simular un
sistema completo (sistema operativo, periféricos, etc.), tanto uniprocesador como multiprocesador,
y su uso está actualmente muy extendido. GEMS, por su parte, proporciona módulos para el
estudio de prestaciones del sistema de memoria. Como carga de trabajo hemos seleccionado una
suite reciente lanzada en 2008 y actualizada en 2009, PARSEC [13], caracterizada por ofrecer,
además de un conjunto representativo de las nuevas aplicaciones paralelas emergentes de memoria
compartida, una gran variedad en el tamaño del problema a resolver (input data set). Esta suite
ofrece programas paralelos altamente escalables, lo cual significa que los threads paralelos están
bastante balanceados [8].

Como resultados principales del proyecto, se presenta el análisis del tiempo de simulación
utilizando Simics y GEMS, considerando el efecto de modificar el número de procesadores simu-
lados. Se incluye también un estudio de la variación del instruction mix y el número de páginas
accedidas (footprint) por cada aplicación de PARSEC en función del tamaño de la entrada.
Este estudio se ha realizado ejecutando las aplicaciones con un thread, pero los resultados son
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extrapolables a cualquier número de threads. Por último, se presenta la selección de entradas
o secciones representativas a utilizar para cada aplicación. Esta selección se ha basado en el
análisis del comportamiento de las aplicaciones sobre un nivel de memoria cache, ejecutándolas
con un thread, aunque se presume que las conclusiones seguirán siendo válidas para múltiples
threads. La utilización de esta selección para las aplicaciones de PARSEC resulta más adecuada
que el uso sistemático de una entrada de menor tamaño, ya que permite conseguir resultados
más fiables manteniendo un tiempo de simulación razonable.

1.1 Contexto del proyecto

Este proyecto se ha desarrollado dentro del Grupo de Arquitectura de Computadores de la
Universidad de Zaragoza (gaZ), en relación con el proyecto TIN2010-21291-C02-01 financiado
por el Ministerio de Ciencia e Innovación.

Durante el curso 2010/2011 disfruté de una Beca de Colaboración del Ministerio de Educación
destinada a la iniciación a la investigación durante la cual me centré en el estudio de las redes
de interconexión de caches en multiprocesadores. Actualmente, tengo una beca del Instituto
Universitario de Investigación e Ingeniería de Aragón (i3A) que continuará hasta marzo de 2012.
Además, durante la realización del proyecto asistí a la escuela de verano internacional ACACES
(Advanced Computer Architecture and Compilation for High-Performance and Embedded Sys-
tems) gracias a una beca proporcionada por HiPEAC (European Network of Excellence on High
Performance and Embedded Architecture and Compilation).

1.2 Objetivos

El objetivo de este Proyecto Fin de Carrera es analizar las plataformas de simulación y establecer
cargas de trabajo que faciliten los estudios de diseño de nuevas arquitecturas de computadores.
Las tareas de las que consta este proyecto son:

1. Estudio del estado del arte de plataformas de simulación de multiprocesadores y de cargas
de trabajo paralelas.

2. Puesta en marcha del entorno de simulación y de las cargas de trabajo.

3. Análisis del entorno de simulación para determinar si hay algún factor responsable de
buena parte del tiempo de simulación.

4. Estudio del impacto del tamaño de las entradas de las aplicaciones de PARSEC en la
jerarquía de memoria del procesador.

5. Selección de las entradas de las aplicaciones de PARSEC a simular para conseguir resultados
representativos en un tiempo razonable.

6. Propuesta de vías de continuación de la investigación.

Con la realización de las tareas anteriormente descritas y como se observa a lo largo de la
presente memoria, en particular en los capítulos de resultados y conclusiones del trabajo, se han
alcanzado todos los objetivos planteados para este proyecto.
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1.3 Organización de la memoria

El resto del presente documento está organizado del siguiente modo: en el capítulo 2 se introduce
el estado del arte de simuladores y cargas de trabajo; en el capítulo 3 se explica con mayor
detalle la suite PARSEC; el capítulo 4 explica la metodología utilizada para llevar a cabo los
experimentos; en el capítulo 5 se presenta un resumen de los resultados del proyecto y en el
capítulo 6 se recoge las conclusiones y líneas de trabajo futuro.

Se incluyen como anexos:

A. Gestión del proyecto. Incluye la planificación del tiempo durante el proyecto y el esfuerzo
invertido en el mismo.

B. Análisis del tiempo de simulación: Simics y GEMS. Recoge el estudio del tiempo de ejecución
de las simulaciones y la distribución de dicho tiempo en los módulos del simulador.

C. Detalles de las simulaciones con Simics y GEMS. Se explica con mayor detalle el proceso
seguido para llevar a cabo las simulaciones.

D. Resultados de la caracterización de PARSEC. Se presentan los resultados del impacto del
tamaño de la entrada sobre la jerarquía de memoria del procesador, describiendo también el
proceso seguido para llevar a cabo la selección de entradas a utilizar para lograr una ejecución
representativa en poco tiempo.
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Capítulo 2
Estado del arte

En este capítulo se va a realizar una revisión de las plataformas y estrategias utilizadas para la
simulación de procesadores. Se comentarán también cuáles son las cargas de trabajo más comúnmente
utilizadas.

2.1 Plataformas y estrategias de simulación

Para que los resultados de nuestras simulaciones sean fieles a la realidad se deben ejecutar
cargas de trabajo realistas en máquinas simuladas con suficiente detalle. SimpleScalar [6] ha
sido un simulador muy utilizado en investigación, pero únicamente puede ejecutar aplicaciones
de usuario con un solo thread. Además, no ejecuta el código del sistema operativo, lo cual es
esencial para programas más complicados. Muchos investigadores están interesados en sistemas
que ejecuten cargas de trabajo más complejas, como bases de datos, servidores web y algoritmos
científicos paralelos. Por lo tanto, necesitaremos simuladores de sistema completo, que incluyen
procesadores, memoria, interfaces de red y otros periféricos. La simulación de sistema completo
permite el diseño, desarrollo y prueba de hardware y software en un entorno que se aproxima al
contexto final de aplicación del producto.

Virtutech Simics [30] (comúnmente llamado simplemente Simics) es un simulador de sistema
completo que podemos configurar para modelar multiprocesadores, sistemas empotrados, routers
de telecomunicaciones, clusters o redes de esos elementos. Es capaz de ejecutar sistemas operativos
sin necesidad de que sean adaptados y simular aplicaciones realistas ofreciendo resultados precisos.
Se trata de un simulador comercial y el código no es libre. Simics suele utilizarse conjuntamente
con GEMS (General Execution-Driven Multiprocessor Simulator) [31], que fue creado en la
Universidad de Wisconsin y proporciona módulos para el estudio de prestaciones del sistema
de memoria y microprocesadores. GEMS está compuesto por Ruby, que simula las caches, el
protocolo de coherencia y la red de interconexión, y Opal, para la ejecución fuera de orden. Simics
actúa como un simulador funcional, es decir, simplemente se ocupa de ejecutar las instrucciones, y
se comunica con el módulo Ruby de GEMS, que se encargará de gestionar los accesos a memoria.
Además, en la Universidad de Princeton elaboraron GARNET [4], que, integrado con Ruby,
simula detalladamente la red de interconexión en chip. El uso de estas herramientas está muy
extendido y son las que se han utilizado a lo largo de este proyecto.

M5 [14] es también un simulador de sistema completo que ha sido adoptado por varios grupos
de investigación, tanto en el ámbito académico como en el comercial, gracias a su utilidad como
simulador de arquitecturas de proposito general y su licencia de código libre. Recientemente, los
creadores de GEMS y M5 iniciaron un proyecto para unir ambas herramientas y crear gem5 [2],
que fue presentado en la conferencia ISCA en junio de 2011 y también es de código libre.
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Un problema importante en la simulación de multiprocesadores es el bajo rendimiento de
los simuladores, que hace que la ejecución de las aplicaciones tarde entre 100 y 100000 veces
más en un simulador que en nativo. Todos los simuladores descritos hasta el momento deben
ejecutar en serie la simulación de varios procesadores que trabajan en paralelo. Graphite [32]
surgió en el MIT como una solución a este problema, presentándose como un simulador paralelo
y distribuido que ofrece mejor rendimiento a cambio de sacrificar precisión en los resultados. En
la misma línea propusieron también HORNET [29], un simulador paralelo de multiprocesadores
que da gran importancia al modelado y rendimiento de la red de interconexión.

Otra opción para acelerar el proceso de simulación es idear nuevas estrategias como, por
ejemplo, reducir la cantidad de código del programa que se debe simular. Siguiendo esta idea, en
la Universidad de Carnegie Mellon propusieron el método Sampling Microarchitecture Simulation
(SMARTS) [41] para obtener medidas del rendimiento de aplicaciones completas de manera rápida
y precisa. SMARTS acelera la simulación midiendo en detalle únicamente algunas secciones de la
aplicación, que son escogidas mediante muestreo estadístico para obtener el grado de confianza
deseado en los resultados. Ekman et al. consiguen disminuir el número de puntos a simular en un
orden de magnitud manteniendo la precisión que nos interesa aplicando el método estadístico
matched-pair comparison [20].

2.2 Cargas de trabajo

La selección de las cargas de trabajo que utilizaremos para estudiar el rendimiento de los sis-
temas simulados tiene también gran importancia [15]. Un benchmark es una carga de trabajo
artificial que incluye las características más importantes de cargas de trabajo reales y relevantes.
Generalmente, los benchmarks son aplicaciones pequeñas, eficientes y controlables.

Los benchmarks de SPEC (Standard Performance Evaluation Corporation) son muy utilizados
para la investigación de nuevas arquitecturas. SPEC OMP [36] fue su primera suite creada para
la evaluación de prestaciones de memoria compartida basada en OpenMP, dentro del dominio
de la computación de altas prestaciones. CPU2006 [37] es parte de la siguiente generación de
benchmarks de SPEC, y pretende ser intensiva en cálculo y presionar la jerarquía de memoria,
el procesador y el compilador. También tiene como finalidad servir para la comparación de
prestaciones entre sistemas distintos.

Splash-2 [39] es un conjunto de benchmarks de 1995 que contiene varias aplicaciones paralelas
relacionadas con computación de altas prestaciones y gráficos. Cuando se creó la suite, las
plataformas paralelas eran sistemas con varios nodos en los que la comunicación entre nodos
era muy costosa. Por ello, los algoritmos intentan minimizar la comunicación entre threads
lo máximo posible. La suite es muy popular, aunque los algoritmos se han quedado anticua-
dos para la evaluación de nuevos diseños debido a la proliferación de los multiprocesadores en chip.

EEMBC (The Embedded Microprocessor Benchmark Consortium, pronunciado embassy)
ha desarrollado varios benchmarks entre los que se encuentran CoreMark y MultiBench. Core-
Mark [18] es un benchmark simple diseñado específicamente para probar la funcionalidad de
un procesador que permite realizar comparaciones rápidamente entre diferentes plataformas.
Pero los procesadores son cada vez más complejos y un benchmark destinado a evaluar un solo
procesador no es suficiente para realizar un análisis exhaustivo. Más adecuado para este propósito
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es MultiBench [19], un conjunto de benchmarks comercial que permite a los diseñadores de
sistemas analizar, probar y mejorar plataformas y arquitecturas multicore. MultiBench utiliza
cargas de trabajo estandarizadas y es compatible con una amplia variedad de multiprocesadores
empotrados y sistemas operativos.

Recientemente, Iqbal et al. presentaron ParMiBench [27], que está compuesto por la im-
plementación paralela de siete algoritmos intensivos en cálculo que provienen de la benchmark
suite para uniprocesadores MiBench [22]. Las aplicaciones pertenecen a cuatro ámbitos distintos:
automatización y control industrial, automatización de procesos de oficina, redes y seguridad.

La suite PARSEC (Princeton Application Repository for Shared-Memory Computers) [11,
13, 10, 7, 8, 12] fue creada en Princeton en colaboración con Intel para el diseño de una
nueva generación de procesadores. La suite está compuesta por trece aplicaciones multithread
representativas de programas emergentes de memoria compartida para multiprocesadores en chip
(CMPs). Se ha seleccionado PARSEC como carga de trabajo a utilizar durante el proyecto, por
lo que explicamos sus características con más detalle en el capítulo 3.
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Capítulo 3
La suite PARSEC

Durante este proyecto nos centraremos en PARSEC, ya introducido en el capítulo 2, por ser
un conjunto de benchmarks ampliamente utilizado, precompilado para varias plataformas y ya
preparado para ser simulado con Simics. Buena parte de las publicaciones más relevantes en el
diseño de multiprocesadores utilizan PARSEC como referencia. En la tabla 3.1 aparecen las trece
aplicaciones que componen la benchmark suite junto a una breve descripción.

Aplicación Descripción

blackscholes Cálculos financieros utilizando la ecuación diferencial parcial Black-
Scholes.

bodytrack Visión por computador, detección y seguimiento de una persona.

canneal Optimización del coste de enrutamiento en el diseño de un chip.

dedup Compresión de datos usando deduplicación.

facesim Simulación del movimiento de un rostro humano para animación.

ferret Buscador de imágenes por similitud.

fluidanimate Simulación física de fluidos para animación.

freqmine Minería de datos.

raytrace Aplica el algoritmo raytrace para animación en tiempo real.

streamcluster Resuelve el problema de online clustering.

swaptions Calcula los precios de una cartera de valores usando el modelo
Heath–Jarrow–Morton.

vips Procesado de imágenes.

x264 Codificación de vídeo en H.264.

Tabla 3.1: Visión general de las aplicaciones que componen la suite PARSEC.

Para abordar el problema del elevado coste en tiempo de las simulaciones, comenzamos
analizando el tiempo de simulación de varias aplicaciones de PARSEC con Simics y GEMS.
Se observó que la simulación temporal detallada de varios programas con ocho procesadores
resultaba más de 1000 veces más lenta que la ejecución de las aplicaciones en nativo, y que
este valor seguiría aumentando según incrementáramos el número de procesadores. Estudiando
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en mayor profundidad los módulos en los que la simulación invierte más tiempo, se descubrió
que gran parte de este tiempo corresponde al módulo Ruby de GEMS. Sin embargo, dentro del
módulo la distribución del tiempo es muy dispersa, dificultando en gran medida la optimización
del simulador. El estudio y conclusiones detalladas pueden consultarse en el anexo B.

Como la optimización del simulador no es algo trivial si no deseamos comprometer la
precisión de los resultados, continuamos estudiando las cargas de trabajo. Los desarrolladores
de los benchmarks proporcionan entradas de varios tamaños para utilizar con sus aplicaciones.
Según propusieron KleinOsowski et al. [28], nos interesarán las siguientes entradas:

a. Una muy pequeña para comprobar el correcto funcionamiento del simulador y realizar pequeñas
pruebas, que tarde en ser simulada unos pocos minutos.

b. Otra mayor que nos permita obtener resultados preliminares de rendimiento.

c. Por último, una entrada más realista que nos permita obtener estadísticas de rendimiento
reales para la arquitectura que estemos analizando.

La ejecución de las aplicaciones con las dos primeras entradas no es necesariamente represen-
tativa de la ejecución con una entrada original completa. Por otro lado, hay una clara necesidad
de reducir el tiempo de simulación para una entrada realista, que puede tardar desde unos pocos
días hasta varias semanas o meses. La solución pasa por encontrar una manera de reducir los
conjuntos de datos de entrada y, en consecuencia, los tiempos de ejecución, manteniendo su
representatividad.

En concreto, PARSEC proporciona seis entradas de distintos tamaños:

• test Una entrada muy pequeña para probar la funcionalidad básica del programa.

• simdev Entrada muy pequeña que garantiza un comportamiento del programa similar al
real, destinada a la prueba y desarrollo del simulador.

• simsmall, simmedium y simlarge Entradas de diferentes tamaños (pequeña, mediana y
grande) adecuadas para el estudio de microarquitecturas con simuladores.

• native Entrada muy grande destinada a la ejecución nativa. Consideraremos que se trata
de una aproximación a la ejecución con una entrada realista.

Cuando este benchmark se utiliza en investigación, las aplicaciones se simulan con las entradas
pequeña, mediana o grande (por ejemplo, [23, 21, 9, 38, 33] entre muchas otras). Biena et al.
analizaron el escalado de las entradas en [10], considerando que las entradas para simulación
deberían ser aproximaciones de la entrada nativa y ser capaces de proporcionar resultados
significativos. Pero en su estudio no compararon las entradas pequeña, mediana y grande con la
nativa, alegando que esta última tiene un valor práctico muy limitado ya que es inviable utilizarla
en simulaciones. Por lo tanto, no está demostrado que las entradas destinadas a simulación sean
adecuadas para obtener resultados representativos y se utilizan simplemente porque el tiempo de
simulación resulta conveniente.

En este proyecto, proponemos realizar un estudio de las diferentes entradas para cada
programa, incluyendo la nativa, para encontrar de qué manera se pueden lograr unos resultados
representativos de la ejecución real con un tiempo de simulación aceptable.
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Capítulo 4
Metodología

Este capítulo recoge la metodología utilizada durante el proyecto. Se presentan las métricas seleccio-
nadas, las herramientas que se han elegido para obtenerlas y cómo se han usado.

4.1 Introducción a las métricas utilizadas

Para comenzar el estudio de la suite PARSEC es necesario seleccionar las métricas que se
utilizarán para caracterizar el comportamiento de los programas y establecer conclusiones. Se
listan a continuación las estadísticas que se decidió recoger:

• El instruction mix es el número de instrucciones de cada tipo que hay en un programa,
ya sean aritmético-lógicas, de memoria,... Dentro de las de memoria podemos examinar
la proporción de operaciones de lectura y escritura que se ejecutan con cada una de las
entradas de una aplicación para comprobar si la relación se ha mantenido al realizar el
escalado.

• El footprint (huella) es el número total de páginas a las que un programa accede cuando es
ejecutado. Nos servirá para ver cuánta memoria utiliza cada una de nuestras aplicaciones y
las diferencias existentes entre las entradas.

• El TLB (Translation Lookaside Buffer) es una tabla utilizada en sistemas de memoria
virtual que almacena la dirección física asociada a la dirección virtual de la página para
acelerar el proceso de traducción. Los fallos de TLB pueden tener en muchos casos gran
impacto en el rendimiento del sistema.

• La tasa de fallos en cache, variando la capacidad de la misma. Frecuentemente, la tasa de
fallos no va decreciendo de forma continua al aumentar el tamaño de la cache, sino que se
mantiene en un cierto nivel y después baja bruscamente a otro inferior cuando la capacidad
es suficientemente grande como para que quepa la siguiente estructura de datos importante.

• Una traza temporal del comportamiento de cada aplicación en la cache, que nos permitirá
ver la aparición de los fallos a lo largo del tiempo y así detectar posibles patrones repetitivos
y comparar las diferentes entradas con mayor detalle.

Para todas las métricas nos interesará tener en cuenta únicamente la región de interés del
programa (region of interest o ROI), que es la parte que se ejecutará en paralelo al utilizar varios
threads. Es decir, eliminamos del análisis aquellas partes en las que estamos cargando los datos
que va a utilizar nuestra aplicación y en las que se escribe el resultado final.
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Aunque PARSEC es una benchmark suite destinada a estudiar el comportamiento de multi-
procesadores, todo el estudio se ha llevado a cabo ejecutando las aplicaciones con un solo thread,
lo cual nos permite analizar el comportamiento de los benchmarks y comparar las diferencias
entre las entradas. Los resultados obtenidos para el instruction mix y el footprint serán válidos
al aumentar el número de threads de la aplicación, a pesar de que es posible que se ejecuten
nuevas instrucciones correspondientes a la sincronización de threads que alteren ligeramente el
instruction mix y que al utilizar más threads se necesite asignar espacio dinámicamente para
alguna estructura de datos adicional que aumente el footprint.

También suponemos que las conclusiones obtenidas a partir de las tasas de fallos y trazas
temporales serán extrapolables a un entorno multiprocesador, aunque queda como trabajo futuro
confirmar esta hipótesis. Un estudio más amplio queda fuera del alcance de este proyecto fin de
carrera debido a la limitación temporal y la complejidad añadida al introducir variaciones en el
número de threads y procesadores.

4.2 Footprint de la memoria

Para calcular el footprint hemos partido de una herramienta desarrollada dentro del gaZ por
Alastruey et al. [5]. Esta herramienta utiliza SHADE [35], un emulador de hardware SPARC, para
reconocer los accesos a memoria y usa esta información para ir almacenando el número de veces
que el programa accede a cada bloque de datos, siendo el tamaño de bloque configurable. Al final
de la ejecución obtenemos el footprint de la memoria para instrucciones y datos, diferenciando si
los accesos son de lectura o de escritura. Además, se ordenan los bloques en orden descendente
según el número de referencias a cada uno de ellos y se selecciona el menor número de bloques
posibles que acumulen un porcentaje de accesos que nos interese. De esta forma conseguimos un
footprint de la memoria del 50 % o el 90 %, lo cual nos servirá para tener una idea de la localidad
que presentan las aplicaciones.

Por ejemplo, en la figura 4.1 se muestra el footprint del 50 %, 90 % y 100 % para todas las
entradas de la aplicación blackscholes. Nótese que la escala es logarítmica para facilitar la
representación de los datos. Se ve que, en todos los casos, el 50 % de los accesos a memoria caen
sobre únicamente 8 KB, y el 90 %, sobre unos 32 KB. El footprint total de la aplicación va desde
unos 700 KB hasta más de 600 MB dependiendo de la entrada, lo que nos hace concluir que este
programa presenta mucha localidad espacial.

En nuestro caso, nos interesaba ejecutar las aplicaciones en un Intel de 64 bits (en concreto,
nuestra máquina local es un Intel Core 2 Duo y en el cluster del departamento se dispone de
máquinas Intel Xeon), así que no podíamos usar la herramienta directamente. Decidimos integrar
la parte correspondiente a las estructuras de datos y los cálculos para obtener las métricas con
Pin [26], una herramienta de Intel para la instrumentación dinámica de programas. Por otro
lado, nosotros queremos medir únicamente la región de interés del programa y despreciar el
código correspondiente a la inicialización y finalización. Para ello, añadimos, mediante opciones
de configuración, la posibilidad de comenzar y detener la instrumentación al ejecutar funciones
determinadas o en las direcciones de PC que nos interese. Además, previendo que en un futuro
nos interesaría analizar los programas variando el número de threads, hemos añadido soporte para
programas multithread. Al medir el footprint de las aplicaciones de PARSEC hemos configurado
la herramienta con un tamaño de bloque de 4KB para obtener como resultado los accesos a cada
página de la memoria.
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Figura 4.1: 50 %, 90 % y 100 % del footprint de la aplicación blackscholes

4.3 Obtención de los fallos de TLB

El ordenador en el que estamos trabajando, un Intel Core 2 Duo, tiene dos niveles de TLB con la
configuración que se describe en la tabla 4.1. Las lecturas de datos pasan por el TLB de datos de ni-
vel L0, y si fallan van al nivel superior. En cambio, las escrituras van directamente al nivel superior.

Tipo de TLB Tamaño de página Asociatividad Número de entradas

TLB de datos (L0) 4 KB 4 16

TLB de datos 4 KB 4 256

TLB de instrucciones 4 KB 4 128

Tabla 4.1: Configuración del TLB en un Intel Core 2 Duo

Para obtener los fallos de TLB hemos utilizado VTune [25], una herramienta de profiling
para el estudio del comportamiento de un programa que resulta muy útil para la optimización
del rendimiento. Para monitorizar el rendimiento del hardware, VTune utiliza los contadores
hardware del procesador y muestreo basado en eventos (event based sampling o EBS). Este
método se basa en interrumpir la aplicación cada cierto número de eventos y anotar en qué
punto del código se encuentra. De esta manera se obtiene un histograma del número eventos
basado en las líneas de código en que se producen. Como se utiliza este método de muestreo esta-
dístico, hemos tomado como resultados finales la media de los valores obtenidos en diez ejecuciones.

En este caso hemos tomado las estadísticas de la ejecución completa de la aplicación, no
únicamente de la región de interés, ya que habría sido necesario incorporar instrucciones especiales
al código y recompilar las aplicaciones, lo que habría complicado mucho el proceso. De todas
formas, la región de interés supone la mayor parte del tiempo total de ejecución de las aplicaciones.
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Todos los contadores de eventos hardware disponibles para los procesadores Intel pueden
consultarse en [24]. En concreto, nosotros hemos utilizado los contadores descritos en la tabla 4.2
para monitorizar el rendimiento del TLB.

Contador Descripción

DTLB_MISSES.L0_MISS_LD Cuenta el número de fallos en el TLB de datos de nivel
0 debidos a instrucciones load. Incluye fallos detectados
como resultado de accesos especulativos.

DTLB_MISSES.ANY Cuenta el número de fallos en el TLB de datos. Incluye
fallos detectados como resultado de accesos especulativos.

DTLB_MISSES.MISS_LD Cuenta el número de fallos en el TLB de datos debidos a
instrucciones load. Incluye fallos detectados como resultado
de accesos especulativos.

DTLB_MISSES.MISS_ST Cuenta el número de fallos en el TLB de datos debidos a ins-
trucciones store. Incluye fallos detectados como resultado
de accesos especulativos.

Tabla 4.2: Contadores hardware utilizados para medir los fallos de TLB

4.4 Instrumentación del programa utilizando VALGRIND

VALGRIND [3] es un sistema de instrumentación que proporciona algunas herramientas para el
depurado y profiling de programas y permite construir otras. En concreto, Cachegrind realiza
una simulación detallada de las caches I1 (cache de instrucciones de primer nivel), D1 (cache
de datos de primer nivel) y L2 (cache compartida de segundo nivel), devolviéndonos el número
de accesos a memoria, fallos de cache e instrucciones ejecutadas para cada línea de código.
Nosotros hemos utilizado Callgrind, una extensión de la herramienta anterior que nos proporcio-
na también información relativa al grafo de llamadas y algunas opciones extra de instrumentación.

Para obtener estadísticas únicamente de la región de interés, utilizamos las opciones de
configuración de VALGRIND para indicarle que ponga a cero todos los contadores justo antes de
comenzar la zona de código que nos interesa y que escriba las estadísticas al terminarla.

Hemos usado VALGRIND para obtener el instruction mix, ya que nos proporciona información
del número de operaciones de lectura y escritura que ejecuta el programa.

También queremos analizar el número de fallos de lectura y escritura que se producen en la
cache de datos. Además, es interesante observar cómo va variando el número de fallos cuando
incrementamos la capacidad de la cache. Este estudio suele hacerse con un único nivel de cache,
pero como VALGRIND nos obliga a utilizar necesariamente dos niveles, hemos ido variando
el tamaño de la cache D1 y hemos mantenido una L2 grande siempre del mismo tamaño. En
concreto, se han analizado caches cuyo tamaño crece exponencialmente desde 4 KB hasta 32
MB, con asociatividad 8 y tamaño de bloque de 64 B.
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4.5 Estudio de la jerarquía de memoria mediante simulación

Para el estudio de la jerarquía de memoria se han realizado varias simulaciones utilizando
Simics 3.0.31, ya introducido en el capítulo 2. En el anexo C se describe con mayor detalle la
metodología seguida para llevar a cabo las simulaciones. El uso de este simulador nos permite
ejecutar los programas de manera controlada en arquitecturas con diferentes configuraciones.
Nosotros simularemos una arquitectura UltraSPARC III Plus en la que ejecutaremos el sistema
operativo Solaris 10, partiendo de una configuración ya elaborada por Jorge Albericio dentro del
gaZ.

Una gran ventaja de utilizar un simulador es la posibilidad de crear checkpoints , que permiten
guardar toda la configuración del punto de la simulación en el que nos encontramos para volver a
él rápidamente más tarde. Por ejemplo, lo primero que será necesario hacer es iniciar el sistema
operativo, pero podemos guardar un checkpoint al terminar y comenzar a partir de ahí el resto
de las veces.

Para ejecutar los benchmarks en el sistema simulado necesitaremos primero copiar todos los
ficheros desde nuestro ordenador. Simics nos permite copiar toda la información que deseemos
montando en el sistema simulado, target , una carpeta correspondiente a la máquina en la que
estamos simulando, host . Además, podemos comenzar a ejecutar las aplicaciones y crear un
checkpoint antes de iniciar la región de interés, de manera que no tengamos que volver a simular
el código que precede a la ROI el resto de las veces.

Decidimos utilizar el simulador para analizar también los fallos de lectura y escritura variando
la capacidad de la cache. En el estudio presentado en el anexo B se había utilizado el módulo
Gems para simular la jerarquía de memoria, pero en este caso no necesitábamos mucho detalle
en los resultados. Por lo tanto, optamos por utilizar el sistema de caches proporcionado por
Simics, que no ralentiza la simulación tanto como Gems. Además, a diferencia de VALGRIND,
Simics sí que nos permite utilizar únicamente una cache para datos y obviar el resto de la
jerarquía de memoria. Al igual que antes, simulamos una cache con tamaño desde 4 KB a 32
MB, asociatividad 8 y tamaño de bloque de 64 B.

Para que las estadísticas recogidas correspondan sólo al código de usuario y no a instrucciones
del sistema, hemos añadido una función que se ejecuta cada vez que se cambia entre modo de
usuario y modo protegido y se encarga de activar y desactivar la cache para que las instrucciones
de sistema no pasen por ella.

Simics también ofrece la posibilidad de detener la ejecución tras un número concreto de
instrucciones o ciclos, lo que nos ha permitido obtener la traza temporal de los fallos en cache.
Hemos realizado estas simulaciones con una cache de 64 KB. Para las entradas pequeña, mediana
y grande se han obtenido las estadísticas cada diez millones de instrucciones. Para la entrada
nativa resultaba demasiado costoso en tiempo tomar las estadísticas tantas veces. Se consideró
aumentar el intervalo a cien millones de instrucciones, pero para poder comparar estos resultados
con los anteriores era importante mantenerlo constante durante todas las pruebas. Finalmente,
se decidió tomar las estadísticas cada diez millones de instrucciones, pero no durante toda la
ejecución completa, sino en diez intervalos de tamaño igual a la entrada grande escogidos al
azar. De este modo podíamos obtener una muestra representativa y fácilmente analizable de la
totalidad de la ejecución, pero reduciendo notablemente el tiempo de simulación.
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Para acelerar los periodos de simulación correspondientes a intervalos en los que no tomamos
medidas, dejamos de utilizar la cache y la función que se ejecuta al cambiar entre modo de usuario
y modo protegido. El problema de utilizar este método es que las estadísticas correspondientes al
inicio del intervalo no son válidas porque la cache todavía no contiene ningún bloque (en [40]
hacen referencia a este problema y proponen una solución para el cálculo de la tasa de fallos).
Por ello, para que todos los resultados recogidos durante el intervalo sean válidos, calentaremos
las caches durante cien millones de ciclos antes de comenzar de manera que contengan datos
como si hubieran estado utilizándose durante toda la ejecución de la aplicación.
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Capítulo 5
Resumen de resultados

Este capítulo presenta las principales ideas obtenidas a partir del análisis del tiempo de simulación y
el impacto del tamaño de las entradas en la jerarquía de memoria. Se incluye también un resumen
de la selección de las entradas que proponemos para obtener resultados representativos en el menor
tiempo posible. En los anexos B y D se describen con mayor detalle los resultados y el razonamiento
seguido para la selección de entradas.

5.1 Análisis del tiempo de simulación

Recordamos que un gran obstáculo para las simulaciones es que resultan muy costosas en tiempo.
Como una primera aproximación al problema, se realizó un análisis del tiempo de simulación
cuyos detalles y conclusiones pueden consultarse en el anexo B.

Primero, analizamos cuánto se ralentizaba la ejecución de las aplicaciones de PARSEC que
presentan una mayor tasa de fallos en cache (según [8]) al simularlas con Simics y GEMS. Las
simulaciones funcionales, usando sólo Simics, con uno y dos procesadores resultan entre 1.5 y
5 veces más lentas que la ejecución de las aplicaciones en nativo. Cuando añadimos el módulo
de GEMS para realizar simulación temporal, teniendo en cuenta los detalles de la jerarquía de
memoria y la coherencia, la simulación con un procesador llega a ser hasta 177 veces más lenta que
la ejecución nativa, y con dos procesadores este valor llega hasta 385. Esta cifra sigue aumentando
a medida que incrementamos el número de procesadores, alcanzando valores superiores a 1000
con ocho procesadores.

A continuación, se estudió en mayor profundidad en qué módulos del simulador se invierte
más tiempo de ejecución esperando encontrar un cuello de botella que pudiéramos optimizar para
lograr una mejora en el rendimiento. Utilizamos tres aplicaciones con diferentes características en
cuanto al ámbito de aplicación, tipo y granularidad del paralelismo y tamaño del working set , y
simulamos dos, cuatro y ocho procesadores. Los resultados muestran que, al simular la jerarquía
de memoria completa, gran parte del tiempo de la simulación corresponde a la ejecución del
módulo Ruby de GEMS, pero dentro de este módulo la distribución del tiempo es muy dispersa,
eliminando la posibilidad de que una mejora en una zona específica de código tenga un impacto
relevante en la ejecución global.
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5.2 Impacto del tamaño de las entradas en la jerarquía de me-
moria

En esta sección sintetizamos los resultados obtenidos a partir de los experimentos destinados a
analizar el impacto del tamaño de las entradas en la jerarquía de memoria descritos en el capítulo 4.

5.2.1 Instruction mix

En la figura 5.1 se muestra el porcentaje de cada tipo de instrucción (lectura, escritura y otras)
que se ejecuta en las aplicaciones de la suite PARSEC con cada una de las entradas. Claramente
podemos ver que la proporción de instrucciones de lectura y escritura respecto del total se
mantiene aunque aumentemos el tamaño de la entrada. Por otro lado, el número de instrucciones
sí que es significativamente mayor cuanto más grande es la entrada (los valores concretos pueden
consultarse la figura D.1). Esto nos indica que, efectivamente, las entradas más pequeñas son
una aproximación reducida de las más grandes.
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Figura 5.1: Instruction mix de las aplicaciones de PARSEC con sus entradas pequeña, mediana, grande y nativa.

5.2.2 Footprint

Representamos el footprint en la figura 5.2, en la que aparece el número de bytes utilizado en
la ejecución de todas las aplicaciones con sus entradas (recordamos que cada página tiene un
tamaño de 4 KBytes). Diferenciamos además los bytes que corresponden a datos del programa
y los que almacenan las instrucciones ejecutadas. El tamaño de la memoria que utiliza cada
aplicación para instrucciones se mantiene constante, pero la que se usa para datos aumenta con
el tamaño de la entrada, lo que nos lleva a pensar que las entradas mayores realizarán un uso
más exhaustivo de la memoria y, por lo tanto, ejercerán más presión sobre la jerarquía.

Por otro lado, se han creado gráficas con el footprint del 50 %, 90 % y 100 %, tal y como
se ha explicado en la sección 4.2 (veíamos ya un ejemplo en la figura 4.1 y podemos analizar
los resultados para el resto de las aplicaciones en las figuras D.3 y D.4). Vemos que todas las
aplicaciones presentan mucha localidad, ya que la mayor parte de los accesos se concentran en
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Figura 5.2: Footprint de las aplicaciones de PARSEC con sus entradas pequeña, mediana, grande y nativa.

un conjunto pequeño de las páginas de memoria.

5.2.3 Fallos de TLB

En la figura 5.3 representamos en número de fallos por cada mil instrucciones que generan las
operaciones de lectura y escritura en los dos niveles del TLB. Estos fallos no siguen ya el mismo
patrón que se veía en el instruction mix y en el footprint. El número de fallos no es mayor con
las entradas de mayor tamaño, sino que va disminuyendo según pasamos a entradas más grandes
(blackscholes, bodytrack, ferret, raytrace y vips) o crea una forma de “U”, es decir, las
entradas pequeña y nativa presentan más fallos que la mediana y grande (canneal, dedup,
fluidanimate, swaptions y x264). Estos resultados nos indican que no es correcto suponer que
las entradas nativas presentarán más fallos y que cuanto más grande sea la entrada más nos
acercaremos a una ejecución real.
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Figura 5.3: Fallos por cada mil instrucciones en el TLB de datos de las aplicaciones de PARSEC con sus entradas
pequeña, mediana grande y nativa. Se muestran los fallos que se producen para las lecturas que acceden al nivel
L0 (DTLB L0), y los fallos de lectura y escritura del nivel superior (DTLB)
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5.2.4 Tasa de fallos en cache y traza temporal

Esta sección recoge los fallos en cache por cada mil instrucciones (MPKI) para las diferentes
entradas variando la capacidad de la cache, con arquitectura Intel y Sparc, y las trazas temporales
de fallos. Presentaremos en detalle los resultados para la aplicación blackscholes y el resto
podrán consultarse en el anexo D.

En las figuras 5.4 y 5.5 representamos las tasas de fallos en cache para una arquitectura
Intel, utilizando una política write-allocate y copy-back , y para una arquitectura Sparc, tanto
con política write-allocate y copy-back como con non-write-allocate y write-through. En el eje x
(horizontal) aparecen todos los tamaños de cache utilizados y, para cada uno de ellos, las cuatro
entradas de la aplicación. En el eje y (vertical) representamos el número de fallos en lectura
y escritura expresados en MPKI. En todos los casos se ve cómo, según aumenta la capacidad
de la cache, el número de fallos para las entradas más pequeñas va disminuyendo drástica-
mente a partir del punto en que las estructuras principales caben en la cache. Por lo tanto, en
este caso la entrada nativa sí que genera más fallos en cache y estresa más la jerarquía de memoria.

Si nos fijamos en las dos gráficas para la arquitectura Sparc (figura 5.5) podemos apreciar
claramente que la de política non-write-allocate presenta muchos más fallos en escritura que la
write-allocate. Esto se debe a que no traemos nunca a memoria los bloques cuando se produce un
fallo en escritura, así que se fallará repetidamente. De todas formas, vemos que la relación entre
los fallos de las entradas se mantiene constante sin excepción. Esto se repite en los apartados
siguientes y lo tendremos en cuenta para obtener las conclusiones en los casos en que no se
dispone de todos los resultados.

Para las trazas temporales presentamos dos gráficas de cada una de las ejecuciones o muestras
(figuras 5.6 y 5.7). En la gráfica superior aparece el número absoluto de accesos a memoria en
cada intervalo, para lectura y escritura. En la parte inferior, podemos ver el número de fallos
por cada mil instrucciones. En el eje x se indica el punto de ejecución de la aplicación en que
nos encontramos, representado en el número de intervalos de diez millones de ciclos. Para las
entradas pequeña, mediana y grande, la longitud del eje x se corresponde con el número de
ciclos del total de la ejecución del programa. Por lo tanto, la ejecución con la entrada pequeña
tarda unos 180 millones de ciclos, con la entrada mediana, algo más de 700 millones y con la
entrada grande, casi 3000 millones. Para la entrada nativa se representan por separado cada
una de las diez muestras tomadas, y mirando los ciclos del eje x se puede ver a qué parte de
la ejecución corresponden. Además, el procesador de Simics es muy simple y mantiene un IPC
(instrucciones por ciclo) de uno en todo momento, así que en un intervalo de diez millones de
ciclos se ejecutarán diez millones de instrucciones, aunque el número de instrucciones de usuario
será ligeramente menor.

Analizando las trazas temporales vemos que el número de fallos se mantiene prácticamente
constante a lo largo de toda la ejecución, presentado pequeños picos periódicamente.

Las mismas gráficas para el resto de aplicaciones se presentan en las figuras D.5 a D.51,
acompañadas de explicaciones detalladas adicionales.
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Figura 5.5: Fallos por cada mil instrucciones en la cache de datos para blackscholes ejecutado en Sparc.
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Figura 5.6: Traza temporal de fallos en cache para blackscholes con entradas pequeña, mediana y grande,
ejecutado en Sparc. Se contabilizan únicamente los fallos producidos por instrucciones de usuario y se utiliza una
política write-allocate y copy-back.
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Figura 5.7: Traza temporal de fallos en cache para blackscholes con entrada nativa, ejecutado en Sparc.
Aparecen diez muestras tomadas al azar del total de la ejecución. Se contabilizan únicamente los fallos producidos
por instrucciones de usuario y se utiliza una política write-allocate y copy-back.
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Principalmente, debemos destacar que no siempre presentan más fallos las entradas de mayor
tamaño. En algunos casos se aprecia claramente que al aumentar el tamaño de la cache, los
fallos de las entradas de más pequeñas van disminuyendo drásticamente a partir del punto en
el que las estructuras de datos principales caben en la cache (blackscholes, fluidanimate y
streamcluster). Pero hay otros casos en los que no se aprecia apenas ninguna diferencia entre
las cuatro entradas (facesim y swaptions) o en los que hay entradas de menor tamaño que
presentan más fallos que las nativas (bodytrack, ferret, freqmine y vips). En cualquier caso,
en contra de lo que se pudiera pensar anteriormente, los fallos para las entradas de menor tamaño
son perfectamente comparables a los de la entrada nativa. Una aproximación como la de utilizar
una cache de tamaño extremadamente pequeño con una entrada pequeña para aproximar el
comportamiento de una ejecución nativa ([16]) será totalmente incorrecta. También es impor-
tante señalar que algunos de los benchmarks presentan un número de fallos especialmente bajo,
haciendo que su uso para el estudio de la jerarquía de memoria sea muy inadecuado (raytrace y
swaptions).

La traza temporal de los fallos en cache nos aporta información muy útil en la mayor parte
de los casos. Hay algunos benchmarks en los que los fallos se mantienen estables durante toda
la ejecución (blackscholes, canneal, streamcluster, swaptions y vips), pero hay otros en
los que se distingue claramente un patrón que se repite para las cuatro entradas (bodytrack,
facesim, fluidanimate y raytrace). Esto último nos ha permitido además crear una corres-
pondencia directa entre la forma de la traza y las características de cada entrada, sabiendo qué
se está ejecutando en cada momento.

5.3 Selección de entradas

Ante los resultados obtenidos en la sección 5.2.4, resultaba claro que en la mayor parte de los
casos se podía conseguir una ejecución representativa de la nativa sin necesidad de simular
tantas instrucciones. Por lo tanto, realizamos una selección de las entradas más adecuadas que
se deberán utilizar para llevar a cabo un estudio de la jerarquía de memoria. Para realizar
la selección utilizamos varias técnicas distintas, según las necesidades de cada aplicación. Las
técnicas empleadas son las siguientes:

• Ejecución de una sección de la entrada nativa. Cuando hay diferencias entre las entradas
de diferente tamaño pero el número de fallos a lo largo de la ejecución de la entrada nativa
se mantiene uniforme, es suficiente con ejecutar una sección de la entrada nativa para
obtener resultados representativos de la simulación completa. En este caso habrá que tener
en cuenta que, si hay que ejecutar una sección tomada de un punto central o aleatorio de
la región de interés, será necesario calentar las caches previamente.

• Uso de una entrada de tamaño menor. Hay casos en los que no hay diferencias entre las
entradas o en los que una entrada de menor tamaño resulta más adecuada por presionar
más a la jerarquía de memoria.

• Uso de una nueva entrada. En algunas aplicaciones hemos detectado que todas las entradas
realizan repeticiones de algún patrón. Las entradas pequeñas tienen menos iteraciones y
estructuras de menor tamaño y la entrada nativa hace muchas repeticiones con estructuras
mayores. Para conseguir una ejecución representativa de la nativa pero en menor tiempo
podemos hacer tantas iteraciones como la entrada de menor tamaño, pero realizarlas con
unas estructuras tan grandes como las de la entrada más grande.
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5.3. SELECCIÓN DE ENTRADAS

En la tabla 5.1 indicamos qué técnica se ha utilizado para la selección de la entrada de cada
benchmark y algún comentario adicional que explica brevemente en qué consistiría la ejecución.
Para más detalles del proceso seguido para realizar la selección en cada caso se puede consultar
el anexo D.

Aplicación Técnica Comentario

blackscholes Sección de la nativa Ejecutar primeros 750 millones de instrucciones de
la ROI.

bodytrack Nueva entrada Utilizar 1 fotograma con 4000 partículas.

canneal Sección de la nativa Ejecutar los primeros 1500 millones de instrucciones
de la ROI.

dedup Entrada nativa El pipeline del algoritmo está muy desbalanceado, el
escalado de las entradas es muy malo.

facesim
Entrada de menor
tamaño Usar la entrada pequeña.

ferret
Entrada de menor
tamaño

Usar la entrada pequeña para obtener la ejecución
más similar a la nativa. Si se desea maximizar el
número de fallos en cache, usar la entrada grande.

fluidanimate Nueva entrada Utilizar 5 fotogramas con 500000 partículas.

freqmine
Entrada de menor
tamaño

Usar la entrada pequeña, que es la que más fallos en
cache presenta.

raytrace Nueva entrada

Usar 3 fotogramas con 10 millones de polígonos y
resolución 1920x1080. Aplicación poco adecuada para
el estudio de la jerarquía de memoria porque presenta
muy pocos fallos en cache.

streamcluster Sección de la nativa Ejecutar 10000 millones de instrucciones saltando
los 5000 millones al inicio de la ROI.

swaptions
Entrada de menor
tamaño

Usar la entrada pequeña. Aplicación poco adecuada
para el estudio de la jerarquía de memoria porque
presenta muy pocos fallos en cache.

vips
Entrada de menor
tamaño

Usar la entrada pequeña, que es la que más fallos en
cache presenta.

x264 Sección de la nativa Tomar cuatro muestras de 20000 millones de instruc-
ciones en puntos aleatorios de la ROI.

Tabla 5.1: Selección de las entradas a utilizar con las aplicaciones de PARSEC para conseguir una ejecución
representativa en un tiempo razonable.
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Capítulo 6
Conclusiones y trabajo futuro

6.1 Conclusiones a nivel técnico y trabajo futuro

La simulación es imprescindible para el estudio y diseño de nuevas arquitecturas de computadores,
suponiendo un problema fundamental su elevado coste en tiempo. Durante este proyecto se ha
abordado dicho problema utilizando el simulador Simics [30] con el módulo GEMS [31] y la
benchmark suite PARSEC [13].

Comenzamos realizando un estudio del tiempo de simulación de Simics y GEMS, a partir del
cual determinamos que el slowdown de las simulaciones aumenta linealmente con el número de
procesadores simulados, llegando a adoptar valores superiores a 1000 con sólo ocho procesadores.
A pesar de que gran parte del tiempo de ejecución se debe al módulo Ruby de GEMS, la
distribución del tiempo dentro del mismo es muy dispersa. La inexistencia de un cuello de botella
en el simulador dificulta en gran medida la aplicación de una optimización que tenga un efecto
suficientemente apreciable en el tiempo total de simulación.

Ya que es inviable optimizar el simulador, se han buscado cargas de trabajo más ligeras que
permitan obtener resultados representativos sin suponer tiempos de simulación excesivamente
elevados. Se ha analizado el comportamiento de las trece aplicaciones de la suite PARSEC sobre
la jerarquía de memoria del procesador, utilizando las entradas pequeña, mediana, grande y
nativa. La creencia generalizada sostiene que la entrada nativa es la más cercana a una ejecución
real y presionará más la jerarquía de memoria, siendo el resto de entradas aproximaciones que
resultarán menos precisas.

Los resultados obtenidos del análisis del instruction mix y el footprint de las entradas de
cada aplicación apoyan la idea de que las entradas de menor tamaño son versiones reducidas de
la entrada nativa que presionarán menos la jerarquía de memoria. Estos experimentos se han
realizado ejecutando las aplicaciones con un único thread, aunque los resultados obtenidos para
el instruction mix y el footprint serán válidos al aumentar el número de threads de la aplicación.
La verificación de esta afirmación queda pendiente como trabajo futuro.

Observando el número de fallos de TLB nos damos cuenta de que no obtenemos necesaria-
mente más fallos con las entradas de mayor tamaño, lo que nos hace empezar a pensar que es
probable que las entradas nativas no ejerzan mayor presión sobre la jerarquía de memoria y crea
la necesidad de realizar un estudio en mayor profundidad.

Se ha analizado la tasa de fallos en cache para todas las entradas de los programas variando
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la capacidad de la cache tanto en una arquitectura Intel (utilizando VALGRIND) como en
Sparc (mediante simulación con Simics). Además, se han obtenido trazas temporales de los fallos
utilizando Simics. Por completitud de los resultados, también habría que añadir las estadísticas
de las simulaciones que no han terminado a tiempo para la entrega del proyecto. A partir de
estos resultados podemos concluir sin lugar a dudas que no se cumple la creencia popular que
indica que las entradas mayores presentan más fallos en cache. Hay aplicaciones en las que el
número de fallos disminuye a medida que aumenta el tamaño de la entrada, y otras en las que
prácticamente no varía. En cualquier caso, no es cierto que la tasa de fallos sea notablemente
más elevada para la entrada nativa que para el resto, lo cual prueba que aproximaciones como
reducir significativamente el tamaño de la cache al utilizar una entrada de menor tamaño para
intentar reproducir un comportamiento realista son incorrectas.

Como resultado final del proyecto, hemos presentado una selección de las entradas más
adecuadas para cada aplicación para llevar a cabo un estudio de la jerarquía de memoria en
un tiempo razonable, ya sea por ser más representativas de la entrada nativa o por presentar
tasas de fallos más elevadas. En algunos casos se propone ejecutar únicamente una sección de la
entrada nativa, en otros, se propone utilizar una de las entradas de menor tamaño y en otros, se
indican los parámetros de una entrada nueva distinta de todas las que ya existen. Además, se
señalas las aplicaciones que presentan un número de fallos excesivamente bajo resultando, por
tanto, inadecuadas para estudiar la jerarquía de memoria.

El estudio de tasas de fallos y trazas temporales se ha realizado sobre un nivel de memoria
cache ejecutando las aplicaciones con un solo thread, a pesar de que la suite PARSEC está
destinada al análisis de multiprocesadores. Pensamos que nuestras conclusiones seguirán siendo
válidas en un entorno multiprocesador, aunque influirá el tipo de paralelismo utilizado en cada
aplicación. Esta hipótesis debería ser confirmada con un estudio que incluyera la variación en el
número de threads y procesadores que queda planteado como trabajo futuro. De todas formas,
usar nuestra selección de entradas ofrece mayores garantías de obtener resultados válidos que
usar una entrada de menor tamaño simplemente por mantener un tiempo de simulación razonable.

6.2 Conclusiones a nivel personal

La experiencia del desarrollo de este proyecto me ha resultado muy positiva. Principalmente,
me ha servido como introducción a la investigación. Me ha ayudado a decidir que me gustaría
continuar con esta línea de trabajo y estudiar un máster y un doctorado dentro de la arquitectura
de computadores.

He aprendido que en investigación es necesario tener muchas cosas en cuenta, y para eso
resulta extremadamente útil compartir tus ideas con otras personas que pueden aportarte nuevos
puntos de vista o indicarte qué se te ha olvidado considerar. Además, es importante tener claro
en todo momento qué objetivos intentamos conseguir y planificar previamente lo que se va a
hacer para no realizar trabajo inútil o redundante.

También he podido aplicar directamente los conocimientos adquiridos durante la carrera en
las asignaturas de arquitectura de computadores. Además, las destrezas generales adquiridas a lo
largo de los últimos años me han servido para aprender rápidamente las nuevas herramientas,
adaptarme a la metodología de trabajo y resolver problemas con eficacia.
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Anexo A
Gestión del proyecto

Este anexo contiene detalles acerca de la gestión del tiempo y el esfuerzo invertido durante el proyecto,
así como algunos problemas encontrados a lo largo de su desarrollo.

A.1 Gestión del tiempo

Este proyecto se ha desarrollado desde marzo hasta agosto de 2011, en dedicación a tiempo
completo. En el diagrama de Gantt que se presenta en la figura A.1 se puede ver cómo se han
distribuido las diferentes tareas a lo largo del tiempo.

Figura A.1: Diagrama de Gantt del proyecto.

A continuación incluimos un pequeño resumen del trabajo que engloba cada tarea:

• Formación. Este proyecto tiene un importante componente de formación, ya que se han
utilizado numerosas herramientas que no se conocían anteriormente. Por un lado, ha sido
necesario estudiar el estado del arte tanto de los simuladores como de las cargas de trabajo.
Por otro lado, para la caracterización de Parsec se ha aprendido a utilizar herramientas
para la monitorización de programas y el estudio de prestaciones.
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• Familiarización con el entorno de trabajo. Para comenzar a trabajar, instalamos
y configuramos Simics y GEMS en nuestro ordenador local. Este proceso es bastante
costoso ya que se trata de herramientas poco orientadas a los usuarios. También fue
necesario instalar GEMS en nuestra carpeta dentro del cluster del departamento y hacer
que funcionara con Simics, que estaba ya instalado. Además, se realizaron las primeras
pruebas de simulación de los programas de PARSEC para comprender cómo funcionaba el
simulador

• Análisis de tiempos de simulación. Durante esta parte del proyecto se realizó un
estudio del tiempo de simulación utilizando Simics y GEMS y se consideró la posibilidad
de optimizar del simulador.

• Caracterización de PARSEC. Esta es la tarea principal del proyecto. En ella se engloba
el diseño y ejecución de los experimentos necesarios para estudiar el funcionamiento de las
aplicaciones de PARSEC sobre la jerarquía de memoria y la recopilación y análisis de los
resultados para obtener conclusiones.

• Documentación. Esta parte se corresponde con la redacción de la memoria en LaTeX. Se
documentó también el proceso de instalación de Simics y GEMS para facilitar el trabajo a
quienes deseen utilizarlo en un futuro.

Durante el desarrollo del proyecto se llevaron a cabo todas las tareas planeadas y el trabajo
se finalizó en la fecha prevista.

A.2 Esfuerzo invertido

En la realización del proyecto se han invertido un total de 704 horas. En la figura A.2 se
presenta la distribución de este tiempo en las diferentes tareas. Se ve claramente que la mayor
parte del tiempo se ha invertido en la caracterización de PARSEC, que es la tarea principal,
seguida de la formación, que se ha extendido a lo largo de prácticamente todo el proyecto.

Figura A.2: Distribución del tiempo en las diferentes tareas del proyecto.
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A.3. PROBLEMAS ENCONTRADOS

En la tabla A.1 se muestra de manera más detallada la cantidad de horas invertidas en las
actividades que componen cada tarea.

Tarea Número de horas

Formación 166.45
Estado del arte de simuladores 39.2

Estado del arte de cargas de trabajo 50.5

Herramientas para el análisis de PARSEC 76.75

Familiarización con el entorno de trabajo 105.5
Análisis de tiempos de simulación 68.5
Caracterización de PARSEC 258.8

Diseño y ejecución de experimentos 200.55

Recopilación y análisis de resultados 58.25

Documentación 105.05
NÚMERO TOTAL DE HORAS 704.3

Tabla A.1: Número de horas invertidas en cada una de las tareas del proyecto.

A.3 Problemas encontrados

Los principales problemas encontrados durante el desarrollo del proyecto surgieron en relación
con las simulaciones y venían causados por su alto coste en tiempo y recursos. Un fallo que
conllevara la cancelación de una o varias simulaciones, o su repetición una vez terminadas,
podía suponer un retraso de varios días hasta que se disponía de los resultados correctos. Por
otro lado, algunas de las simulaciones con entradas más grandes tardaban más de un mes en
completarse, lo que ha imposibilitado tener todos los resultados para la fecha de entrega del
proyecto. Además, a finales de julio y principios de agosto se apagó el cluster del departamento
para realizar labores de mantenimiento. Como al lanzar muchas de las simulaciones no se sabía
todavía que el cluster estaría inoperativo durante varios días, no se tuvo en cuenta este hecho y
se tuvo que detener su ejecución sin posibilidad de guardar su estado para retomarlas más adelante.

Debido también a la cantidad de tiempo que tardaban algunas simulaciones no era po-
sible lanzarlas de manera automática con Condor porque serían expulsadas tras varios días
de ejecución, así que fue necesario distribuirlas de forma manual por los nodos del cluster.
Como además necesitan mucha memoria RAM, podían lanzarse un número limitado de simulacio-
nes al mismo tiempo, lo que alargaba más todavía la espera hasta disponer de todos los resultados.

A parte de eso, el gran tamaño de las entradas nativas hizo que fuera necesario crear una
nueva arquitectura con mayor memoria para algunas de las aplicaciones, teniendo que repetir el
proceso de inicio del sistema operativo, copia de los programas al sistema simulado y ejecución
hasta el inicio de la región de interés. En uno de los casos se necesitaba un disco duro de mayor
tamaño, lo cual se podía solucionar añadiendo otro disco a la configuración de partida. Como el
tiempo que nos habría costado preparar el nuevo sistema era demasiado elevado, se decidió no
realizar las simulaciones correspondientes a ese caso.
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Anexo B
Análisis del tiempo de simulación:
Simics y GEMS

En este anexo se detalla el estudio realizado del tiempo de simulación de multiprocesadores de
memoria compartida con Simics y GEMS y la distribución de ese tiempo en los diferentes módulos
del simulador. Se han utilizado aplicaciones pertenecientes a la suite PARSEC.

B.1 Tiempo de ejecución de las simulaciones

Para tener una idea más precisa de cuánto se ralentiza la ejecución de una aplicación al utilizarla
en un simulador, comenzaremos midiendo los tiempos de simulación. Hemos utilizado Simics para
realizar la simulación funcional y, posteriormente, hemos incorporado el módulo GEMS para llevar
a cabo una simulación temporal, que tendrá en cuenta los detalles de la jerarquía de memoria.
Estas herramientas han sido introducidas en la sección 2.1 y se explica el método utilizado para
trabajar con ellas en la sección 4.5 y, más detalladamente, en el anexo C. Como aplicaciones se han
utilizado las de la suite PARSEC (introducida en la sección 2.2 y explicada en mayor profundidad
en el capítulo 3) que presentan más fallos en memoria según [8]: canneal, fluidanimate y
streamcluster. Se han utilizado estas aplicaciones porque, al presentar más fallos en memoria,
requerirán más trabajo por parte del simulador y de esta forma obtendremos una cota superior del
tiempo de simulación para las aplicaciones de PARSEC. Se han llevado a cabo las simulaciones
con las entradas pequeña, mediana y grande de cada una de las tres aplicaciones. Además,
para comprobar cuánto aumenta el tiempo de ejecución al simular un número de procesadores
mayor, se han realizado las pruebas para uno y dos procesadores. Cuando se utilizan dos proce-
sadores, se ejecutan las aplicaciones con dos threads para aprovechar el paralelismo que presentan.

En la figura B.1 se presenta el tiempo de simulación para las tres entradas de las aplicaciones,
con uno y dos procesadores, utilizando únicamente Simics y usando Simics junto con el módulo
GEMS. Para facilitar la visualización de los datos se ha utilizado un eje logarítmico. Vemos
que la simulación funcional tarda aproximadamente entre 10 segundos y 15 minutos, mientras
que la simulación temporal tarda entre 30 minutos y 42 horas. El tiempo de simulación es
similar para uno y dos procesadores, siendo en general un poco superior para dos procesado-
res. Esto se debe a que, como se trata de programas muy escalables, Simics simula el mismo
código aunque lo reparta en varios procesadores. La simulación con más procesadores tarda
más tiempo en la mayoría de los casos debido a la sobrecarga de sincronización de la aplicación
y al aumento de la complejidad de los elementos que debe gestionar el simulador. La única
excepción es la aplicación canneal, en la que la simulación de dos procesadores tarda menos
que la de un procesador. Al duplicar el número de threads, este programa tarda en ejecutarse
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menos de la mitad del tiempo (de 32 a 14 segundos para la entrada grande, por ejemplo), por lo
tanto el tiempo total simulado al utilizar dos threads sumando el de los dos procesadores es me-
nor que el tiempo de simular con un thread, así que es lógico que la simulación tarde menos tiempo.

También podemos comprobar, como ya imaginábamos, que el tiempo de simulación aumenta
con el tamaño de la entrada. Al ir pasando de pequeña a mediana y de mediana a grande el
tiempo se multiplica por un factor que tiene un valor entre 2 y 5 en las distintas aplicaciones.
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Figura B.1: Tiempo de simulación de canneal, fluidanimate y streamcluster con Simics y Simics+GEMS,
con 1 y 2 procesadores.

El slowdown es la medida de cuántas veces más lenta resulta la simulación de la aplicación
respecto de su ejecución nativa y puede calcularse como el tiempo que tarda la simulación
partido por el tiempo simulado. En la figura B.2 vemos que, para la simulación funcional con un
procesador, el slowdown se encuentra entre 1.5 y 3. Esto significa que simular la aplicación es
entre 1.5 y 3 veces más lento que ejecutarla en nativo. Cuando utilizamos también el módulo
GEMS para realizar simulación funcional el slowdown pasa a valer entre 100 y 135. Si pasamos
a dos procesadores se ve claramente un aumento de estos valores, que están entre 2.5 y 5 para
simulación funcional y entre 240 y 400 para la temporal, multiplicándose incluso por más de
dos en varios casos. Cuando tenemos una arquitectura con varios procesadores, por cada ciclo
del sistema simulado Simics debe simular varios, uno por cada procesador. Como la simulación
siempre se ejecuta en serie, cuanto más aumente el número de procesadores, más aumentará el
slowdown, llegando a ser impracticable la simulación de cien o más procesadores.

B.2 Distribución del tiempo en los diferentes módulos durante
la ejecución de la simulación

Como el tiempo que tardan Simics y GEMS en simular las aplicaciones es tan grande que no
permite la exploración eficiente de múltiples diseños para nuevas arquitecturas, decidimos realizar
un estudio más detallado del comportamiento del simulador para intentar detectar cuellos de
botella que pudieran ser optimizados. En esta sección presentamos las simulaciones realizadas
con ese objetivo y los resultados obtenidos.
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Figura B.2: Slowdown de las simulaciones de canneal, fluidanimate y streamcluster con Simics (izquierda) y
Simics+GEMS (derecha), con 1 y 2 procesadores.

B.2.1 Tipos de simulaciones realizadas

Para esta parte del estudio decidimos utilizar los benchmarks blackscholes, bodytrack y
canneal de PARSEC. Blackscholes es la aplicación que menos fallos presenta en cache, logra
el paralelismo dividiendo la cantidad de trabajo entre los threads disponibles y tiene poca
compartición de datos. Bodytrack tiene un working set mayor y el trabajo se distribuye por lo
procesadores mediante un pool de threads. Canneal, también utilizado en la sección anterior,
es la aplicación que más fallos presenta en cache, tiene un working set que podemos considerar
ilimitado y una paralelización de grano fino poco estructurada. En todos los casos se ha utilizado
la entrada pequeña de los benchmarks para mantener un tiempo de ejecución razonable. Se
han realizado simulaciones de un arquitectura UltraSPARC III Plus con dos, cuatro y ocho
procesadores, y sistema operativo Solaris 10.

Para poder obtener las conclusiones necesarias se han llevado a cabo los siguientes tipos de
simulaciones:

• Simics: Simulación funcional utilizando únicamente Simics.

• Simics+GEMS Ideal, latencia 0: Simulación utilizando Simics y GEMS, pero usando
GEMS para simular una jerarquía ideal. Esto significa que GEMS no hace realmente ningún
cálculo, simplemente devuelve latencia cero para cualquier acceso a memoria. De esta
manera estamos introduciendo únicamente el retraso correspondiente a la interacción entre
Simics y GEMS.

• Simics+GEMS Ideal, latencia realista: Simulación utilizando Simics y GEMS, pero
en este caso GEMS devolverá una latencia más realista, obtenida de la latencia media
de otra simulación. Ha sido necesario indicar al simulador que debería devolver latencias
decimales para que los valores se ajustaran a nuestras necesidades. GEMS sólo soportaba
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el uso de números enteros como latencias, así que ha sido necesario añadir nuevas opciones
de configuración y modificar el código para soportar la nueva funcionalidad. Utilizando
este método logramos un CPI igual al de la simulación que estábamos intentando imitar.

• Simics+Gems, L1 grande: Simulación utilizando Simics y GEMS, con una cache de
primer nivel grande, pretendiendo que la aplicación pueda disponer de todos los datos en la
L1 y no tengan que hacerse reemplazos y accesos a la L2. En concreto, se ha utilizado una
L1 separada para instrucciones y datos, cada una con 512KB y asociatividad 16. Habrá
una L2 en cada procesador, con asociatividad 16, sumando en todos los casos 2MB.

• Simics+Gems, L1 pequeña: Simulación utilizando Simics y GEMS con la intención de
ver cómo las aplicaciones se comportarían en una ejecución real, con un número de fallos
apreciable en la L1. Como las entradas utilizadas son de pequeño tamaño, no es posible
conseguir ese efecto con una L1 de tamaño normal, así que se ha realizado la simulación
con una L1 excesivamente pequeña. Esta aproximación ha sido utilizada por Cuesta et
al. en [16]. El tamaño utilizado para la L1 es de 1KB, con asociatividad 2. Para la L2 se
usa la misma configuración que en caso anterior. Como se ha considerado que este era el
caso más representativo, se han utilizado las latencias medias de acceso a memoria de estas
simulaciones para las pruebas de Simics+Gems ideal con latencia realista. En los estudios
realizados posteriormente, hemos podido comprobar que esta aproximación no es adecuada
para reproducir el comportamiento de una ejecución realista. De todas formas, nos sirve
para analizar el comportamiento del simulador ante una situación extrema en la que habrá
un número muy elevado de fallos en cache.

Se han realizado las ejecuciones completas con Simics y GEMS para obtener los tiempos
totales de simulación. Después, se ha utilizado VTune (explicado en profundidad en la sección
4.3) para obtener el porcentaje del tiempo de ejecución que pertenece a cada módulo. Para este
análisis, VTune utiliza la técnica llamada muestreo basado en tiempo (time based sampling o
TBS), que consiste en interrumpir la ejecución cada cierto tiempo y anotar en qué instrucción
se encuentra el programa, informándonos al final de las zonas de código en las que la ejecución
ha pasado más tiempo. Para esta parte se han ejecutado sólo 600 segundos de la simulación,
habiendo comprobado que el resultado obtenido era el mismo que teniendo en cuenta le ejecución
completa.

Los tiempos de simulación obtenidos siguen confirmando las conclusiones que de la sección
B.1, dejando claro que se cumplen también con un mayor número de procesadores. El slowdown
continúa aumentando linealmente con el número de procesadores, llegando a tomar valores
superiores a 1000 cuando simulamos un sistema con ocho procesadores.

B.2.2 Resultados de la distribución de tiempos

Mostramos en las figuras B.3, B.4 y B.5 los tiempos de simulación con su distribución en los
diferentes módulos para las simulaciones de todos los tipos con dos, cuatro y ocho procesadores.
No aparecen en las gráficas las simulaciones en las que se utiliza Simics únicamente debido a que
el tiempo de ejecución es mucho menor que el del resto de simulaciones. El caso en que se utiliza
una cache L1 de tamaño muy pequeño se ha representado en la gráfica de la derecha, con un
rango mayor para el eje y para que toda la información se visualizara mejor. Los experimentos
de los benchmarks bodytrack y canneal con ocho procesadores y cache L1 pequeña no se han
podido realizar porque se obtenían errores durante la simulación. Pensamos que esto se debe a
que la cache es demasiado pequeña y el simulador no puede gestionar los accesos correctamente.
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No se han realizado tampoco las simulaciones con memoria ideal que devuelven una latencia de
acceso a memoria realista, ya que esta latencia ha sido obtenida en todos los casos a partir de la
simulación con la cache L1 pequeña.
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Figura B.3: Distribución del tiempo en los diferentes módulos simulando blackscholes con Simics y GEMS,
con 2, 4 y 8 procesadores.
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Figura B.4: Distribución del tiempo en los diferentes módulos simulando bodytrack con Simics y GEMS, con 2,
4 y 8 procesadores.
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Figura B.5: Distribución del tiempo en los diferentes módulos simulando canneal con Simics y GEMS, con 2, 4
y 8 procesadores.

Centrándonos únicamente en el tiempo total de simulación podemos comenzar diciendo que el
tiempo utilizando únicamente Simics es mucho menor que si utilizamos también GEMS, aunque
este módulo no haga ningún trabajo y devuelva siempre latencia cero, lo que básicamente es lo
mismo que no simular la jerarquía de memoria. Al utilizar GEMS, Simics le pasa la información
de cada acceso a memoria y lo despierta cada ciclo para que realice los cálculos necesarios.
Además, cuando la latencia devuelta por GEMS no es cero, el programa tardará más ciclos en
ejecutarse provocando que la simulación tarde más tiempo.

Pensamos que el tiempo de ejecución en estos casos no aumenta por la comunicación que
se realiza con GEMS cada ciclo, ya que se han hecho pruebas disminuyendo la frecuencia de
esta comunicación y no han mejorado los resultados. Tampoco viene causado por el trabajo de
GEMS, porque el tiempo de ejecución aumenta bastante aunque usemos memoria ideal. Por lo
tanto, hemos concluido que la razón son los retrasos que introduce Simics ejecutando más ciclos,
aunque esté esperando el resultado de un acceso a memoria. Desafortunadamente, no podemos
profundizar más en este punto porque el código de Simics no es libre.

Por otro lado, al simular la jerarquía de memoria y coherencia utilizando GEMS, el tiempo
de simulación es también mayor, principalmente al utilizar una L1 pequeña. Esto se debe clara-
mente al aumento de trabajo que tiene que realizar GEMS. La única excepción es la aplicación
blackscholes, en la que tarda más la simulación cuando utilizamos una memoria idea devolvien-
do latencia realista que cuando simulamos toda la jerarquía de memoria con una cache L1 grande.
Cuando devolvemos una latencia realista la ejecución de la aplicación tarda un mayor número
de ciclos porque se introducen las esperas por los datos de memoria, haciendo que aumente
también el tiempo de simulación. Por lo tanto, si la latencia devuelta es muy grande el tiempo
de simulación puede llegar a ser mayor que en el caso en que GEMS tiene que realizar trabajo
pero devuelve latencias menores.
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Si nos fijamos ahora en la distribución del tiempo vemos que aparecen claramente tres módulos
principales: Simics, que se ocupa de la simulación funcional, Ruby (el módulo de GEMS que se
ocupa de la jerarquía de memoria), para la simulación temporal, y Sparc, que es la arquitectura
que estamos simulando. En un primer vistazo, nos damos cuenta de que la distribución general
no cambia cuando variamos el benchmark o el número de procesadores.

Cuando utilizamos GEMS con memoria ideal vemos que el porcentaje de tiempo que se debe
a Ruby es muy pequeño, aunque la parte de Simics y Sparc aumenta si la latencia devuelta es
mayor, ya que el número de ciclos de ejecución aumenta. El peso de Ruby en la ejecución es
pequeño porque no está haciendo trabajo real, únicamente devuelve la latencia que le hemos
indicado. Cuando usamos GEMS para simular la jerarquía de manera realista vemos que comienza
a ser una parte muy importante del total de la ejecución. En este punto, detectamos también que
el porcentaje del tiempo de ejecución correspondiente a Ruby es mayor para canneal que para
el resto de aplicaciones. Esto se debe a que canneal es la aplicación más fallos en cache presenta.
Utilizando una cache L1 extremadamente pequeña vemos que Ruby supone más del 80 % del
tiempo total de simulación. De todas formas, tras los estudios que se presentan en profundidad
en el anexo D sabemos que esta ejecución no se aproxima a una ejecución real, porque los
fallos en una cache extremadamente pequeña con la entrada pequeña de las aplicaciones no son
equivalentes a los de la entrada nativa con una cache de tamaño común.

Como el módulo Ruby supone una gran parte del tiempo de ejecución y el código es libre, se
ha realizado un análisis más detallado para intentar localizar si hay una función o parte del código
en la que se invierta mucho tiempo. En la tabla B.1 se muestran los porcentajes de ejecución de
los ficheros y funciones con mayor peso para la simulación de blackscholes utilizando Simics y
GEMS con la cache L1 pequeña y 4 procesadores. De todas formas, como ya hemos comentado
antes, los valores no variarán de manera relevante si tomamos otra aplicación o cambiamos el
número de procesadores.

Fichero Porcentaje Función Porcentaje

PerfectSwitch 15.5 % PerfectSwitch::wakeup 15.5 %

Set 14.8 %

Set:setSize 5.4 %

Set:count 5.0 %

Set:operator= 1.9 %

otros 2.4 %

Throttle 5.3 % Throttle:wakeup 5.3 %

Vector 15.5 %

Vector<Set>:operator= 6.9 %

Vector<Set>:grow 5.0 %

Vector<Set>:Vector 2.2 %

otros 3.4 %

Tabla B.1: Distribución del tiempo de ejecución en ficheros y funciones dentro del módulo Ruby durante una
simulación del benchmark blackscholes con Simics y GEMS, con 4 procesadores.

Se puede ver que consumen mucho tiempo los módulos Set y Vector, pero son los propor-
cionados por C y su alto porcentaje se debe a que se utilizan en varios lugares diferentes y
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las funciones son llamadas muchas veces. La función en la que más tiempo pasa la simulación,
PerfectSwitch::wakeup, supone únicamente un 15.5 % del tiempo total de Ruby, es decir,
aproximadamente un 13 % del total de la simulación. Por lo tanto, aunque se lograra que fuera
más eficiente, la mejora no se reflejaría en el resultado global de manera importante. La clase
Throttle se utiliza para controlar el ancho de banda a la salida de un router.

A pesar de todo, se ha hecho un pequeño análisis del grafo de llamadas para la función
PerfectSwitch::wakeup, en la que deberían centrarse nuestros esfuerzos si deseáramos optimi-
zar el simulador. En la tabla B.2 se presenta una lista de las funciones en el orden en que van
llamándose unas a otras (la función 1 llama la función 2, la 2 a la 3, y así sucesivamente), la
clase a la que se pertenecen y una pequeña descripción de las mismas.

Grafo de llamadas para la función PerfectSwitch::wakeup

Orden Función Clase o
fichero Descripción

1 runRubyEventQueue interface.c
Se ejecuta cada vez que Simics despierta
a Ruby, en nuestro caso, cada ciclo.

2 triggerEvents EventQueue
Se encarga de la pila de eventos pendien-
tes.

3 triggerWakeup PerfectSwitch

PerfectSwitch utiliza la clase virtual
Consummer, que se ocupa de objetos que
pueden ser objetivo de wakeup calls. La
función se ocupa simplemente de llamar
a la función wakeup().

4 wakeup PerfectSwitch

PerfectSwitch es un switch perfecto que
no tiene latencia y utiliza una tabla de
routing. Lo que más tiempo consume es
el uso de round robin para elegir entre
los puertos de entrada, mirar qué men-
sajes están esperando y utilizar adaptive
routing.

Tabla B.2: Grafo de llamadas para la función en la pasa más tiempo una simulación con Simics y GEMS,
PerfectSwitch::wakeup.

Vemos que se trata de una función que se llama varias veces durante todos los ciclos simulados.
Para hacerla más eficiente sería necesario revisar tanto las estructuras de datos utilizadas como
los algoritmos, y la mejora que podría lograrse tampoco sería muy notable respecto del total del
tiempo de simulación.

B.3 Conclusiones

Podemos concluir que las simulaciones resultan muy lentas, aumentando el slowdown con el
número de procesadores del sistema que simulamos. A pesar de que el tiempo de ejecución del
módulo Ruby de GEMS supone una gran parte de la ejecución, dentro del módulo la distribución
de tiempos es muy dispersa. No hay por tanto una parte del simulador que constituya un cuello
de botella, sino que se utilizan muchas funciones que contribuyen con porcentajes pequeños al
tiempo total de la simulación, dificultando en gran medida la optimización.
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Anexo C
Detalles de las simulaciones con
Simics y GEMS

En este anexo se explican en más profundidad las fases seguidas para llevar a cabo los experimentos, en
especial las simulaciones con Simics y GEMS. Se incluyen también detalles del proceso de simulación
y recogida de resultados.

C.1 Fases de desarrollo de los experimentos.

Para todos los experimentos realizados se han seguido las fases que se detallan en la figura C.1.

Figura C.1: Fases de realización de experimentos

A continuación se incluye una pequeña explicación de cada fase:

1. Selección de métricas. Antes de comenzar hay que decidir qué métricas necesitaremos
obtener para realizar el estudio que nos interesa y obtener conclusiones. Las métricas que
hemos utilizado aparecen detalladas en la sección 4.1.

2. Diseño de experimentos. En este punto hay que elegir qué herramientas se utilizarán
para calcular las métricas ya seleccionadas y cómo se utilizará cada una de ellas. En el
capítulo 4 se explican todas las herramientas y para qué se ha utilizado cada una.

3. Ejecución de los experimentos. Si, como en nuestro caso, el número de experimentos
es muy grande, habrá que automatizar el proceso de ejecución para que resulte más cómodo
y se aproveche el tiempo de CPU al máximo.

4. Recopilación de resultados. Una vez que se han ejecutado los experimentos, es necesario
recoger la información que hemos obtenido, seleccionar lo que nos interesa y representarlo
de forma adecuada.

5. Análisis de resultados. Por último, hay que analizar los resultados para obtener conclu-
siones. Es posible que en este punto detectemos nuevas necesidades y tengamos que repetir
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el proceso de nuevo. Los resultados de nuestro trabajo se presentan en el capítulo 5 y, con
mayor detalle, en el anexo D.

En el resto del anexo nos centraremos en el diseño y ejecución de las simulaciones y la
recopilación de los resultados, ya que es la parte más compleja del trabajo realizado y la que más
interesa comentar en profundidad. Las simulaciones realizadas a las que se hará referencia ya
han sido explicadas en la sección 4.5 y en el anexo B.

C.2 Diseño de las simulaciones

Para realizar las simulaciones con Simics, el primer paso es definir los parámetros de la arqui-
tectura e iniciar el sistema operativo. Después, ejecutamos las aplicaciones usando simulación
funcional y creamos un checkpoint justo antes de comenzar la región de interés. Para todo lo que
vamos a explicar a continuación supondremos que partimos de ese checkpoint.

Para trabajar con Simics, lo más cómodo es crear un script de ejecución y pasárselo al
programa para que todas las acciones se lleven a cabo de manera automatizada. Lo más sencillo
y rápido es realizar una ejecución funcional utilizando Simics. A continuación se presenta un
script que se ocupa de la simulación de la región de interés del benchmark blackscholes en
cuatro procesadores:

read-configuration "proc004-parsec-blackscholes-small-ready.check"
con0.capture-start "output.txt"
magic-break-enable
continue
continue
con0.capture-stop
quit

El comando read-configuration se utiliza para cargar el checkpoint que habíamos creado an-
teriormente. Si deseamos almacenar la salida que aparece en la consola del sistema simulado pode-
mos utilizar con0.capture-start para comenzar a escribirla en un fichero y con0.capture-stop
para terminar. magic-break-enable se utiliza para habilitar las instrucciones especiales llamadas
magic-instructions que pararán la ejecución automáticamente. PARSEC viene preparado con
estas instrucciones para que, al simular las aplicaciones en Simics, la simulación se detenga justo
antes y después de la región de interés. El comando continue inicia la simulación, y debemos
ejecutarlo dos veces porque la primera vez parará debido a la magic-instruction que marca el
inicio de la ROI. La siguiente vez que se detenga la simulación ya habrá finalizado la región de in-
terés y sólo tendremos que parar de escribir en el fichero de salida y finalizar la ejecución con quit.

Para ejecutar la simulación es suficiente con escribir en la línea de comandos

./simics -stall -no-win miScript.simics

siendo miScript.simics el script que presentábamos antes. La opción -stall indica el modo
de simulación, que en este caso permite que el sistema pare la ejecución y es obligatorio cuando
deseamos utilizar GEMS. La opción -no-win puede incluirse si no queremos que se abra una
nueva ventana con la consola del sistema simulado.
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Para incorporar la simulación temporal y el funcionamiento detallado de las caches podemos
utilizar el módulo Ruby de GEMS, tal y como hemos hecho en el estudio de tiempos de simulación
explicado en el anexo B. Antes de comenzar la región de interés habrá que indicar los parámetros
de configuración para el módulo y, al terminar, se pueden volcar las estadísticas en un fichero para
consultarlas posteriormente. Presentamos a continuación el script utilizado para una ejecución
con Ruby:

read-configuration "proc004-parsec-blackscholes-small-ready.check"
con0.capture-start "output.txt"
magic-break-enable

# Iniciamos gems
add-module-directory ../../amd64-linux/lib
instruction-fetch-mode instruction-fetch-trace
istc-disable
dstc-disable
cpu-switch-time 1
load-module ruby
ruby0.setparam g_NUM_PROCESSORS 4
ruby0.setparam g_PROCS_PER_CHIP 4
ruby0.setparam g_MEMORY_SIZE_BYTES 4294967296
ruby0.setparam g_NUM_L2_BANKS 2
ruby0.setparam g_NUM_MEMORIES 1
ruby0.setparam L1_CACHE_ASSOC 16
ruby0.setparam L1_CACHE_NUM_SETS_BITS 9
ruby0.setparam L2_CACHE_ASSOC 16
ruby0.setparam L2_CACHE_NUM_SETS_BITS 10
ruby0.setparam SIMICS_RUBY_MULTIPLIER 1
ruby0.setparam_str PROTOCOL_DEBUG_TRACE false
ruby0.setparam L1CACHE_TRANSITIONS_PER_RUBY_CYCLE 1
ruby0.setparam L2CACHE_TRANSITIONS_PER_RUBY_CYCLE 1
ruby0.setparam DIRECTORY_TRANSITIONS_PER_RUBY_CYCLE 1
ruby0.setparam_str FINITE_BUFFERING true

ruby0.init

continue
continue
ruby0.dump-stats proc004-parsec-blackscholes-small.stat
con0.capture-stop
quit

El comando add-module-directory sirve para indicarle a simics dónde está el módulo que
deseamos usar, en caso de que no lo encuentre. Con el comando instruction-fetch-mode
instruction-fetch-trace Simics dirigirá al sistema de memoria los accesos correspondien-
tes a búsqueda de instrucciones, que por defecto serían ignorados. Para acelerar el proceso
de simulación, Simics utiliza Simulator Translation Caches (STCs) para evitar realizar todos
los accesos a través del espacio de memoria. Como en este caso nos interesará utilizar Ruby
para los accesos a memoria, desactivamos las STCs mediante los comandos istc-disable y
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dstc-disable. Con el comando cpu-switch-time 1 indicamos que nos interesa que Simics
simule un ciclo de cada uno de los cuatro procesadores por turno. A continuación cargamos
el módulo Ruby y lo configuramos, siendo la mayor parte de los parámetros autoexplicativos.
Con la opción SIMICS_RUBY_MULTIPLIER indicamos cada cuántos ciclos queremos que Simics se
comunique con Ruby. Después de configurar el módulo, iniciamos Ruby mediante el comando
ruby0.init, y, tras la región de interés, obtenemos las estadísticas con ruby0.dump-stats.

En las simulaciones presentadas en la sección 4.5 no se utiliza GEMS para simular la jerarquía
de memoria, sino que se usa una cache proporcionada por Simics. El caso más complejo es el de
las simulaciones para realizar la traza temporal de las entradas nativas, en las que se tomaban
diez muestras de la ejecución durante las cuales se obtenían las estadísticas cada 10 millones
de ciclos. La primera parte del script utilizado para la simulación de ese tipo del benchmark
blackscholes es la siguiente:

magic-break-enable
read-configuration "proc001-parsec-blackscholes-native-ready.check"
continue

# Iniciamos la cache
@cache = pre_conf_object("cache","g-cache")
@cache.cpus = conf.cpu0
@cache.config_line_number = 1024
@cache.config_line_size = 64
@cache.config_assoc = 8
@cache.config_virtual_index = 0
@cache.config_virtual_tag = 0
@cache.config_replacement_policy = "lru"
@cache.penalty_read = 0
@cache.penalty_write = 0
@cache.penalty_read_next = 0
@cache.penalty_write_next = 0
@cache.config_write_allocate = 1
@cache.config_write_back = 1
@SIM_add_configuration([cache],None)
phys_mem->timing_model = cache

@def hap_Mode_Switch(data, object, old_mode, new_mode):
if (new_mode == Sim_CPU_Mode_Supervisor):

# Remove Model
run_command("phys_mem->timing_model = 0")

elif (new_mode == Sim_CPU_Mode_User):
# Attach Model
run_command("phys_mem->timing_model = cache")

# Register callback
@SIM_hap_add_callback("Core_Mode_Change", hap_Mode_Switch, None)
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# MUESTRA NUMERO 1

echo "\n\n MUESTRA NUMERO 1\n\n"

$iteration = 0
while $iteration < (2950/10) {
cache.reset-statistics
run-cycles 10000000
echo "\n\n iteration "
echo $iteration
ptime
cache.statistics
print-statistics -all
$iteration += 1
}
write-configuration finMuestra01.check

# MUESTRA NUMERO 2

# Desactivo cache y función callback
phys_mem->timing_model = 0
@SIM_hap_delete_callback("Core_Mode_Change", hap_Mode_Switch, None)

#Avanzo los ciclos que quiero saltar
run-cycles 1040000000

write-configuration inicioMuestra02.check

#Caliento caches
phys_mem->timing_model = cache
run-cycles 100000000

@SIM_hap_add_callback("Core_Mode_Change", hap_Mode_Switch, None)

echo "\n\n MUESTRA NUMERO 2\n\n"

$iteration = 0
while $iteration < (2950/10) {
cache.reset-statistics
run-cycles 10000000
echo "\n\n iteration "
echo $iteration
ptime
cache.statistics
print-statistics -all
$iteration += 1
}
write-configuration finMuestra02.check
...
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Para iniciar la cache comenzamos dando valores a los diferentes parámetros, que son au-
toexplicativos, y después asignamos la cache al modelo temporal para que Simics la tenga en
cuenta al ir ejecutando las instrucciones. A continuación, definimos una función en Python que
activará y desactivará la cache cuando pasemos de ejecutar código de sistema (modo protegido
o supervisor) a código de usuario (modo usuario) y viceversa. De esta forma, únicamente las
instrucciones correspondientes a código de usuario pasarán por la cache.

Después, empezamos a tomar las muestras. La primera la tomamos siempre al inicio de la
región de interés. Como deseamos que cada muestra tenga la longitud de la entrada grande, que
en este caso era 2950 millones de instrucciones, utilizaremos un bucle while. Dentro de cada
iteración del bucle, ponemos a cero los contadores de estadísticas de la cache mediante el comando
cache.reset-statistics, ejecutamos los siguientes 10 millones de ciclos con run-cycles y
mostramos las estadísticas usando los comandos ptime, cache.statistics y print-statistics
-all. Después de cada muestra almacenamos un checkpoint para poder volver a ese punto si se
produce algún problema durante la simulación.

Para pasar a la siguiente muestra, debemos saltar los ciclos que nos interese. Durante ese
tiempo, desactivamos las caches y la función que se ejecuta al cambiar entre modo usuario
y modo protegido para acelerar la simulación. Después de saltar los ciclos almacenamos otro
checkpoint. Nos interesa que la cache contenga información válida como si hubiéramos estado
usándola durante todo el tiempo para que al iniciar la muestra no haya un exceso de fallos que
no se corresponda con la ejecución normal del programa. Por lo tanto, iniciamos la cache y
ejecutamos durante 100 millones de ciclos para calentarla. A continuación, volvemos a utilizar
un bucle para tomar todas las estadísticas de la muestra. Repetiremos este proceso tantas veces
como sea necesario para obtener todas las muestras.

C.3 Ejecución de las simulaciones

Cuando hay que ejecutar un gran número de simulaciones es importante automatizar el proceso
para que resulte más cómodo y rápido. Nosotros hemos llevado a cabo las simulaciones en el
cluster del departamento, en el cual podemos utilizar Condor [17], un sistema de gestión de car-
gas de trabajo. Añadimos a continuación un ejemplo de su uso para lanzar un par de simulaciones:

executable = ./simics
universe = vanilla
should_transfer_files = yes
when_to_transfer_output = on_exit_or_evict
environment = LM_LICENSE_FILE=/home/ortin/common/simics

# ------------------------------------------------------------------------

arguments = -stall -no-win runProc001ParsecBlackscholesNative00004k.simics
output = Proc001ParsecBlackscholesNative00004k.out
error = Proc001ParsecBlackscholesNative00004k.error
log = Proc001ParsecBlackscholesNative00004k.log
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queue

# ------------------------------------------------------------------------

arguments = -stall -no-win runProc001ParsecBlackscholesNative00008k.simics
output = Proc001ParsecBlackscholesNative00008k.out
error = Proc001ParsecBlackscholesNative00008k.error
log = Proc001ParsecBlackscholesNative00008k.log

queue

...

Suponiendo que el script se llama myCondorScript.txt, para ejecutar las tareas programadas
sólo tenemos que utilizar el comando:

condor_submit myCondorScript.txt

En nuestro caso, el uso de Condor estaba muy limitado, ya que nuestras simulaciones eran
demasiado costosas en tiempo y recursos. La configuración de Condor en nuestro cluster no
permitía colocar los procesos en cola e ir ejecutándolos poco a poco, ni garantizar que tendrían
mayor prioridad que otros procesos. Por lo tanto, las simulaciones eran expulsadas cuando
llevaban varios días ejecutándose y tenían que volver a empezar. Finalmente, fue necesario entrar
en cada nodo del cluster e ir lanzando las simulaciones por medio de pequeños scripts controlando
periódicamente la ocupación del cluster de forma manual.

C.4 Recopilación de resultados

Al terminar las simulaciones, hay que recopilar los resultados y presentarlos de manera que
podamos analizarlos con comodidad. Debido al gran volumen de información obtenido, resulta
impracticable obtener los datos necesarios a mano a partir de los ficheros de salida. Para
representar los datos hemos elaborado gráficas utilizando gnuplot [1], así que al recoger los valores
que nos interesaban de los ficheros, los hemos ordenado de manera que luego nos resultara cómodo
utilizarlos directamente como ficheros de datos para dibujar las figuras. Hemos automatizado el
proceso de recogida de datos utilizando scripts de shell. Mostraremos el script utilizado para
recoger los datos de las trazas temporales en la entrada nativa, que es el más complejo. Como
punto de partida, tenemos un fichero en el que aparecen las estadísticas de las diez muestras,
separadas por las palabras “MUESTRA NUMERO X”. Como salida, nos interesa tener un
fichero por cada muestra de cada aplicación, con una línea por cada vez que se han tomado las
estadísticas (cada diez millones de ciclos). En cada línea queremos que aparezcan el número de
lecturas y escrituras de datos, número de fallos, instrucciones ejecutadas hasta el momento e
instrucciones del último intervalo. Se incluyen comentarios explicativos sobre el propio código.
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# Obtenemos los datos para todos los benchmrks de PARSEC
for DIRECTORY in ./parsec/*
do

#Creamos un fichero distinto para cada muestra
csplit -f "$DIRECTORY"/muestra -s "$DIRECTORY"/*native.out \

/MUESTRA\ NUMERO/ /MUESTRA\ NUMERO/ /MUESTRA\ NUMERO/ \
/MUESTRA\ NUMERO/ /MUESTRA\ NUMERO/ /MUESTRA\ NUMERO/ \

/MUESTRA\ NUMERO/ /MUESTRA\ NUMERO/ /MUESTRA\ NUMERO/ \
/MUESTRA\ NUMERO/

INITIALINTERVAL=0
ITER=0

# Obtenemos los datos de cada muestra
for FILENAME in "$DIRECTORY"/muestra*
do

ITER=‘expr $ITER + 1‘

# Guardamos en un fichero distinto los valores de accesos,
# fallos e instrucciones de cada iteración.
grep "Data read transactions:" "$FILENAME" \

| sed ’s/[a-zA-Z:]* //g’ >"$FILENAME".read
grep "Data write transactions:" "$FILENAME" \

| sed ’s/[a-zA-Z:]* //g’ >"$FILENAME".write
grep "Data read misses:" "$FILENAME" \

| sed ’s/[a-zA-Z:]* //g’ >"$FILENAME".readmiss
grep "Data write misses:" "$FILENAME" \

| sed ’s/[a-zA-Z:]* //g’ >"$FILENAME".writemiss
grep "instructions executed" "$FILENAME" \

| awk ’{print $1}’ > aux.txt

# Para las instrucciones sólo tenemos información de las
# instrucciones ejecutadas hasta el momento, pero queremos
# calcular también las instrucciones del último intervalo.
awk ’

NR<2 { print int($1), int($1) }
NR>=2 { print int($1), int($1)-orig }
{ orig= int($1) }

’ aux.txt >"$FILENAME".numinstr

rm aux.txt

# Por último, unimos el contenido de todos los ficheros.
pr -tmJ "$FILENAME".numTrans "$FILENAME".read "$FILENAME".write \

"$FILENAME".readmiss "$FILENAME".writemiss \
"$FILENAME".numinstr >"$FILENAME".allstats \

done
done
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A partir de los ficheros obtenidos podemos crear las gráficas que nos permitirán analizar los
resultados y obtener conclusiones. Los scripts para recopilar los resultados de otras simulaciones
se han elaborado de manera similar y no se incluyen en este documento porque no aportan ya
información adicional.
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Anexo D
Resultados de la caracterización de
PARSEC

Este anexo recoge un análisis detallado de las estadísticas recogidas a partir de los experimentos y
las conclusiones a las que se ha llegado. Además, se incluye una selección de las entradas que se
deberán utilizar para simular cada una de las aplicaciones de la suite Parsec en un tiempo razonable y
obteniendo resultados representativos.

D.1 Impacto del tamaño de las entradas en la jerarquía de me-
moria

En esta sección se presentan los resultados de los experimentos descritos en el capítulo 4, cuya
finalidad es analizar el impacto del tamaño de las entradas de las aplicaciones de PARSEC en la
jerarquía de memoria. Se comienza presentando los resultados correspondientes al instruction mix
y al footprint, que verifican la idea de que las entradas de menor tamaño son versiones reducidas
de la entrada nativa y que esta última supone un mayor uso de recursos. A continuación, se
introducen los fallos de TLB, donde aparecen los primeros indicios de que no necesariamente las
entradas más grandes son las que más presionarán a la jerarquía de memoria. Por último, se
muestran las tasas de fallos y trazas temporales, en las que vemos claramente que las entradas
nativas no se diferencian excesivamente del resto y que no siempre son las que mayores tasas de
fallos presentan. Esto nos lleva a pensar que será posible obtener resultados representativos de
una ejecución con entrada nativa sin necesidad de realizar simulaciones tan costosas.

D.1.1 Instruction mix

El porcentaje de instrucciones de lectura y escritura que se ejecutan para cada entrada de todas
las aplicaciones de PARSEC aparece representado en la figura 5.1. Se ve claramente que, en
todos los casos, la proporción se mantiene prácticamente igual para todas las entradas de una
misma aplicación. Encontramos una excepción en dedup, cuya entrada de tamaño grande se
diferencia bastante del resto. Esto lo veremos también reflejado más adelante en otras métricas y
lo explicaremos más en profundidad en la sección D.1.4.

En la figura D.1 aparece el número total de instrucciones que se ejecutan con cada una de las
entradas de todas las aplicaciones, obtenido de la misma ejecución que los datos de la figura 5.1.
Para representar los resultados con mayor claridad, se ha utilizado un eje logarítmico. Se puede
comprobar que el número de instrucciones va aumentando según se incrementa el tamaño de la
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entrada, especialmente al pasar de la entrada grande a la nativa. El único caso en el que no se
cumple es facesim, en el que las entradas pequeña, mediana y grande tienen el mismo número
de instrucciones. Esto se debe a que las tres entradas son idénticas, ya que el escalado supondría
reducir el tamaño de la representación de la cara (recordamos que este benchmark se ocupa de
la simulación del movimiento de una cara) y eso podría crear inestabilidad numérica [10]. El
número de instrucciones ejecutadas junto con el instruction mix nos lleva a pensar que, efec-
tivamente, las entradas más pequeñas son una aproximación reducida de las entradas más grandes.
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Figura D.1: Número de instrucciones de las aplicaciones de PARSEC con cada una de sus entradas

D.1.2 Footprint

En la figura 5.2 mostrábamos la cantidad de memoria a la que acceden las aplicaciones durante la
región de interés. Veíamos que la cantidad de memoria accedida para instrucciones se mantiene
constante, mientras que la de datos aumenta con el tamaño de la entrada a excepción de las
aplicaciones facesim y vips. En la figura D.2 aparece representado el número medio de accesos
a cada página de memoria junto con la desviación típica. En todos los casos, el número de accesos
por página, tanto de instrucciones como de datos, es mayor para las entradas más grandes. Al
igual que en la sección anterior, esto nos sigue confirmando que las entradas mayores realizarán
un uso más intensivo de la memoria.

En las figuras 4.1, D.3 y D.4 aparece el footprint del 50 %, 90 % y 100 % de los accesos a
memoria para datos, tal y como había sido explicado en la sección 4.2. Todas las aplicaciones
presentan mucha localidad espacial, ya que muchos de los accesos se concentran en un conjunto
pequeño de las páginas. Además, hay muchos casos en los que la localidad es claramente mayor
para las aplicaciones nativas, ya que la cantidad de memoria correspondiente al 50 % o incluso al
90 % de los accesos se mantiene baja, mientras que el footprint total aumenta (blackscholes,
dedup, ferret, fuidanimate, frqmine, raytrace, swaptions, vips y x264).
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Figura D.2: Número medio de accesos a cada página de memoria de las aplicaciones de PARSEC, diferenciando
entre accesos para instrucciones y para datos.

D.1.3 Fallos de TLB

En la figura 5.3 presentábamos los fallos que se producen en los TLB de datos de los dos niveles.
Una descripción de la estructura del TLB y la recopilación de estas estadísticas puede consultarse
en la sección 4.3. Las escrituras van directamente al TLB de nivel superior, pero las lecturas
pasan por ambos niveles, así que podemos ver los accesos que fallan en L0 pero aciertan en el
siguiente nivel y los que fallan en ambos niveles. Los datos que representamos son los fallos
cada mil instrucciones (misses per kiloinstruction o MPKI). Esto nos da una idea del número de
fallos independientemente del tamaño del programa, lo que nos permite comparar unos con otros
cómodamente.

En este caso vemos que ya no se repite un patrón tan claramente como en la sección anterior,
el número de fallos de TLB no va aumentando progresivamente con el tamaño de la entrada.
En algunos casos, el número de fallos decrece (blackscholes, bodytrack, ferret, raytrace y
vips) y en otros casos se aprecia una forma de “U” (canneal, dedup, fluidanimate, swaptions
y x264). Por lo tanto, ya no parece que se cumpla la suposición de que el escalado de las en-
tradas implica que las más grandes sean más fieles a una ejecución real con mayor número de fallos.

D.1.4 Tasas de fallos en cache y trazas temporales

En esta sección se van a presentar y analizar los resultados del estudio del comportamiento de
las aplicaciones de PARSEC sobre la cache de primer nivel del procesador. En concreto, para
cada benchmark se tendrán en cuenta las siguientes estadísticas:

• Fallos de lectura y escritura con diferentes tamaños de cache en una arquitectura Intel, con
política write-allocate (cuando se produce un fallo de escritura, el bloque correspondiente
se trae a la cache) y copy-back (las escrituras se realizan sobre el bloque en cache y se
copian a memoria principal cuando este se reemplaza). Estos resultados se han obtenido
utilizando VALGRIND, tal y como se explica en la sección 4.4.
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Figura D.3: 50 %, 90 % y 100 % del footprint de las aplicaciones de PARSEC (parte 1)
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Figura D.4: 50 %, 90 % y 100 % del footprint de las aplicaciones de PARSEC (parte 2)
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• Fallos de lectura y escritura con diferentes tamaños de cache en una arquitectura Sparc.
Para este apartado se han tomado las medidas tanto para una política non-write-allocate y
write-through (las escrituras se realizan directamente en memoria) como para una write-
allocate y copy-back. En el caso de la política non-write-allocate y write-thorugh, se han
tenido en cuenta tanto las instrucciones de usuario como las de sistema, ya que el no
tener que distinguir entre las dos acelera el proceso de simulación. De todas formas, las
instrucciones de usuario son prácticamente el total de las instrucciones ejecutadas. No
se dispone de resultados para algunas simulaciones con entrada nativa debido al elevado
tiempo de simulación (más de un mes en varios casos). Estos datos se han obtenido mediante
simulación con Simics, como se describe en la sección 4.5.

• Traza temporal de los fallos con política write-allocate utilizando una cache de 64 KB. Se
ha seguido el procedimiento explicado en la sección 4.5.

En todos los casos se presentan los fallos en MPKI (misses per kiloinstruction), al igual que
en la sección D.1.3. En la sección 5.2.4 se incluye una explicación de cómo aparecen representados
los datos en cada una de las gráficas utilizadas a lo largo de los siguientes apartados.

Blackscholes

En las figuras 5.4 y 5.5 veíamos los fallos por cada mil instrucciones para cada una de las entradas
del benchmark blackscholes, variando el tamaño de la cache en Intel y Sparc. En esta aplicación
el número de fallos de las entradas más pequeñas disminuye bruscamente a partir del punto en
que las estructuras principales caben en la cache, indicando que la entrada nativa sí que genera
más fallos en cache y estresa más la jerarquía de memoria.

Analizando la traza temporal para todas las entradas que presentábamos en las figuras 5.6 y
5.7, vemos que el número de fallos se mantiene prácticamente constante en todos los casos. En la
entrada nativa, a excepción de una anomalía alrededor del ciclo 4500, aparecen picos de fallos
cada 750 millones de ciclos.

Bodytrack

Fĳándonos en las figuras D.5 y D.6 vemos que con esta aplicación ya no se cumple tan claramente
que las entradas más grandes supongan un número mayor de fallos en cache. En el caso de la
arquitectura Intel, las entradas mediana y grande tienen siempre más fallos. Si nos centramos en
los resultados para la arquitectura Sparc, la entrada grande presenta más fallos que la nativa en
varios casos (aunque no se disponga de todos los datos para el protocolo write-allocate recordamos
que consideramos que los resultados seguirán el mismo patrón que con non-write-allocate, tal y
como hemos explicado en el apartado anterior). A parte de eso, vemos que con caches de 256 KB
o mayores el número de fallos es muy pequeño, así que no podremos realizar estudios demasiado
exhaustivos sobre la jerarquía.

La traza temporal (figuras D.7 y D.8) nos aporta una información muy valiosa en este caso.
Vemos claramente que hay un patrón que se repite una vez en la entrada pequeña, dos en la
mediana, cuatro en la grande y muchas veces en la nativa. Además, aunque este patrón tiene
siempre la misma forma, no ocupa en todos los casos el mismo número de ciclos.
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Figura D.5: Fallos por cada mil instrucciones en la cache de datos para bodytrack ejecutado en Intel. Se
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Figura D.6: Fallos por cada mil instrucciones en la cache de datos para bodytrack ejecutado en Sparc.
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Figura D.7: Traza temporal de fallos en cache para bodytrack con entradas pequeña, mediana y grande, ejecutado
en Sparc. Se contabilizan únicamente los fallos producidos por instrucciones de usuario y se utiliza una política
write-allocate y copy-back.
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Figura D.8: Traza temporal de fallos en cache para bodytrack con entrada nativa, ejecutado en Sparc. Aparecen
diez muestras tomadas al azar del total de la ejecución. Se contabilizan únicamente los fallos producidos por
instrucciones de usuario y se utiliza una política write-allocate y copy-back.
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Canneal

En la figura D.9 vemos los fallos en cache para una arquitectura Intel. Con caches menores se ven
más fallos en la entrada pequeña, y con caches mayores, en la entrada nativa. En Sparc (figura
D.10) se sigue generalmente la pauta de que entradas más grandes presentan mayor número de
fallos.

Si nos centramos ahora en las trazas temporales (figuras D.11 y D.12), vemos que no se
detectan patrones ni elementos de especial interés. En este caso, las simulaciones de la entrada
nativa se han realizado contabilizando tanto las instrucciones de sistema como las de usuario,
debido a que la simulación resulta demasiado lenta si se tiene que activar y desactivar la cache
al cambiar entre modo de usuario y de sistema. De todas formas, se ha comprobado que las
instrucciones de sistema suponen un porcentaje muy pequeño del total de la ejecución. Se ve que
el número de fallos es muy uniforme en todos los casos. En la ejecución nativa el número está en
torno a los 25 fallos por cada mil instrucciones, y a partir de la cuarta muestra hay un pequeño
escalón y los fallos se estabilizan en algo más de 25. Además, cada 750 millones de instrucciones
aproximadamente hay un punto con menor número de fallos de lectura.
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Figura D.9: Fallos por cada mil instrucciones en la cache de datos para canneal ejecutado en Intel. Se contabilizan
únicamente los fallos producidos por instrucciones de usuario y se utiliza una política write-allocate y copy-back.
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(a) write-allocate y copy-back, sólo instrucciones de usuario
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Figura D.10: Fallos por cada mil instrucciones en la cache de datos para canneal ejecutado en Sparc.
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Figura D.11: Traza temporal de fallos en cache para canneal con entradas pequeña, mediana y grande, ejecutado
en Sparc. Se contabilizan únicamente los fallos producidos por instrucciones de usuario y se utiliza una política
write-allocate y copy-back.
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Figura D.12: Traza temporal de fallos en cache para canneal con entrada nativa, ejecutado en Sparc. Aparecen
diez muestras tomadas al azar del total de la ejecución. Se utiliza una política write-allocate y copy-back.
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Dedup

En las figuras D.13 y D.14 vemos que la entrada grande tiene, en muchos casos, menos fallos
que el resto. Ya habíamos detectado este comportamiento diferente en el instruction mix en la
sección D.1.1. En este benchmark, la ejecución se divide en cinco etapas, siendo paralelas las
tres centrales (pipeline parallelism). El problema es que el pipeline está muy desbalanceado y
en ocasiones se pasa demasiado tiempo en una etapa generando un cuello de botella. En [34] se
estudia este problema y se plantean soluciones para mejorar este tipo de algoritmos.

En las figuras D.15 y D.16 se presenta la traza temporal de los fallos en cache. En este caso,
la entrada nativa tiene únicamente el triple de instrucciones que la entrada grande, así que no se
han realizado diez muestras en puntos aleatorios sino que se ha ejecutado todo el programa. El
resultado se presenta dividiendo la traza en tres partes para que pueda estudiarse más claramente
y para que la escala en el eje x sea igual a la utilizada para la entrada grande, como en el resto
de aplicaciones.

Analizando las trazas de la figura D.15 vemos que en todos los casos podemos distinguir al
menos dos partes. Mientras que para las entradas pequeña y mediana se aprecia un aumento de
los accesos y fallos de lectura durante la segunda parte, en la entrada grande el número de fallos
sube durante unos pocos ciclos pero luego se mantiene bajo hasta final de la ejecución. Esta
diferencia es la que se refleja también en las figuras D.13 y D.14, y veíamos ya en el instruction
mix (figura 5.1), y se debe a que el pipeline está desbalanceado. En la entrada nativa (figura
D.16) se aprecia claramente un patrón, aunque distinguimos también tres partes que lo modifican
ligeramente: la primera hasta las 3500 instrucciones aproximadamente, la segunda hasta 5300 y
la última hasta el final de la ejecución.
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Figura D.13: Fallos por cada mil instrucciones en la cache de datos para dedup ejecutado en Intel. Se contabilizan
únicamente los fallos producidos por instrucciones de usuario y se utiliza una política write-allocate y copy-back.
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(b) non-write-allocate y write-through, instrucciones de usuario y sistema

Figura D.14: Fallos por cada mil instrucciones en la cache de datos para dedup ejecutado en Sparc.
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Figura D.15: Traza temporal de fallos en cache para dedup con entradas pequeña, mediana y grande, ejecutado
en Sparc. Se contabilizan únicamente los fallos producidos por instrucciones de usuario y se utiliza una política
write-allocate y copy-back.
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Figura D.16: Traza temporal de fallos en cache para dedup con entrada nativa, ejecutado en Sparc. Aparecen
diez muestras tomadas al azar del total de la ejecución. Se utiliza una política write-allocate y copy-back.
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Facesim

En las figuras D.17 y D.18 podemos comprobar que no hay apenas ninguna diferencia entre los
fallos de todas las entradas, aunque modifiquemos el tamaño de la cache. Recordamos también
que, en este caso, las entradas pequeña, mediana y grande son exactamente iguales, como ya se
explicó en la sección D.1.1.

La traza temporal resulta en este caso muy útil. Para las entradas pequeña, mediana y grande
(figura D.19) se aprecia una forma bastante característica. En la entrada nativa (figura D.20),
esta forma exactamente igual se repite durante toda la ejecución. Por lo tanto, vemos claramente
un patrón que aparece una vez en las entradas pequeña, mediana y grande y varias veces en la
entrada nativa.
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Figura D.17: Fallos por cada mil instrucciones en la cache de datos para facesim ejecutado en Intel. Se
contabilizan únicamente los fallos producidos por instrucciones de usuario y se utiliza una política write-allocate y
copy-back.

72



D.1. IMPACTO DEL TAMAÑO DE LAS ENTRADAS EN LA JERARQUÍA DE MEMORIA

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

p
e
q
u
e
ñ
a

m
e
d
ia

n
a

g
ra

n
d
e

M
P

K
I

Lectura
Escritura

32768KB16384KB8192KB4096KB2048KB1024KB512KB256KB128KB64KB32KB16KB8KB4KB

(a) write-allocate y copy-back, sólo instrucciones de usuario
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(b) non-write-allocate y write-through, instrucciones de usuario y sistema

Figura D.18: Fallos por cada mil instrucciones en la cache de datos para facesim ejecutado en Sparc.
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Figura D.19: Traza temporal de fallos en cache para dedup con entrada grande (igual a la pequeña y mediana),
ejecutado en Sparc. Se contabilizan únicamente los fallos producidos por instrucciones de usuario y se utiliza una
política write-allocate y copy-back.
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Figura D.20: Traza temporal de fallos en cache para facesim con entrada nativa, ejecutado en Sparc. Aparecen
diez muestras tomadas al azar del total de la ejecución. Se utiliza una política write-allocate y copy-back.
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Ferret

En las figuras D.21 y D.22 vemos que el número de fallos crece al pasar de la entrada pequeña a la
mediana y de la mediana a la grande, pero que la entrada nativa tiene un número menor de fallos
en todos los casos. Por lo tanto, para este benchmark, no se cumple que las entradas mayores
estresen más la jerarquía de memoria. La entrada pequeña es una muy buena aproximación del
comportamiento de la entrada nativa.

Las trazas temporales (figura D.24) no nos aportan en este caso información demasiado
valiosa, ya que no se detecta ningún patrón ni se mantienen constantes en ningún valor.
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Figura D.21: Fallos por cada mil instrucciones en la cache de datos para ferret ejecutado en Intel. Se contabilizan
únicamente los fallos producidos por instrucciones de usuario y se utiliza una política write-allocate y copy-back.

Fluidanimate

En la figura D.25 vemos que los fallos por cada mil instrucciones en Intel para la entrada nativa
son muy similares a los de la entrada grande o la mediana para muchos de los tamaños de cache.
De manera similar, en Sparc (figura D.26), se acercan a los que presenta la entrada de tamaño
medio. En los dos casos parece que, con los tamaños de cache más grande, las entradas más
pequeñas presentan menor número de fallos, similar a lo que sucedía para blackscholes de
manera más evidente.

Para esta aplicación, la traza temporal nos aporta también información fundamental para
comprender el funcionamiento de la aplicación. Con las entradas pequeña, mediana y grande
(figura D.27) se aprecia claramente un patrón que se repite cinco veces, aunque al aumentar el
tamaño de la entrada el mismo patrón ocupa un mayor número de ciclos. En la entrada nativa (fi-
gura D.28) vemos el mismo patrón, que ahora ocupa mayor número de ciclos y se repite más veces.
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(a) write-allocate y copy-back, sólo instrucciones de usuario
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(b) non-write-allocate y write-through, instrucciones de usuario y sistema

Figura D.22: Fallos por cada mil instrucciones en la cache de datos para ferret ejecutado en Sparc.
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Figura D.23: Traza temporal de fallos en cache para ferret con entradas pequeña, mediana y grande, ejecutado
en Sparc. Se contabilizan únicamente los fallos producidos por instrucciones de usuario y se utiliza una política
write-allocate y copy-back.
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Figura D.24: Traza temporal de fallos en cache para ferret con entrada nativa, ejecutado en Sparc. Aparecen
diez muestras tomadas al azar del total de la ejecución. Se contabilizan únicamente los fallos producidos por
instrucciones de usuario y se utiliza una política write-allocate y copy-back.
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Figura D.25: Fallos por cada mil instrucciones en la cache de datos para fluidanimate ejecutado en Intel. Se
contabilizan únicamente los fallos producidos por instrucciones de usuario y se utiliza una política write-allocate y
copy-back.
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Figura D.26: Fallos por cada mil instrucciones en la cache de datos para fluidanimate ejecutado en Sparc.
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Figura D.27: Traza temporal de fallos en cache para fluidanimate con entradas pequeña, mediana y grande,
ejecutado en Sparc. Se contabilizan únicamente los fallos producidos por instrucciones de usuario y se utiliza una
política write-allocate y copy-back.
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Figura D.28: Traza temporal de fallos en cache para fluidanimate con entrada nativa, ejecutado en Sparc.
Aparecen diez muestras tomadas al azar del total de la ejecución. Se utiliza una política write-allocate y copy-back.
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Freqmine

En freqmine nos encontramos con un caso en el que el número de fallos por cada mil instruccio-
nes es menor según aumentamos el tamaño de la entrada (figuras D.29, D.30 y D.31). Esto va
totalmente en contra de las suposiciones que se hacen siempre respecto al escalado de las entradas.

En la traza temporal (figuras D.31 y D.32) sí que se aprecian zonas diferenciadas en las que
se mantiene un número mayor o menor de fallos, pero no ha sido posible encontrar un patrón
claramente definido ni una relación con la entrada.
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Figura D.29: Fallos por cada mil instrucciones en la cache de datos para freqmine ejecutado en Intel. Se
contabilizan únicamente los fallos producidos por instrucciones de usuario y se utiliza una política write-allocate y
copy-back.

Raytrace

Lo primero que podemos detectar analizando las figuras D.33 y D.34 es que con caches mayores
de 16 KB, un tamaño muy pequeño, la aplicación no presenta apenas ningún fallo (a excepción
de los fallos de escritura al utilizar una política non-write-allocate, que recordamos que se deben
a que los bloques nunca se traen a memoria y por lo tanto no se explota la localidad espacial
ni temporal). En consecuencia, esta aplicación no será adecuada en absoluto para realizar un
estudio de la jerarquía de memoria.

De todas formas, también obtenemos información interesante estudiando la traza temporal.
En las entradas pequeña, mediana y grande (figura D.35) no se aprecia con claridad, pero en la
entrada nativa (figura D.36) podemos ver un patrón, especialmente fijándonos en el número de
instrucciones de lectura ejecutadas.
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(a) write-allocate y copy-back, sólo instrucciones de usuario
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Figura D.30: Fallos por cada mil instrucciones en la cache de datos para freqmine ejecutado en Sparc.
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Figura D.31: Traza temporal de fallos en cache para freqmine con entradas pequeña, mediana y grande, ejecutado
en Sparc. Se contabilizan únicamente los fallos producidos por instrucciones de usuario y se utiliza una política
write-allocate y copy-back.
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Figura D.32: Traza temporal de fallos en cache para freqmine con entrada nativa, ejecutado en Sparc. Aparecen
diez muestras tomadas al azar del total de la ejecución. Se utiliza una política write-allocate y copy-back.
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Figura D.33: Fallos por cada mil instrucciones en la cache de datos para raytrace ejecutado en Intel. Se
contabilizan únicamente los fallos producidos por instrucciones de usuario y se utiliza una política write-allocate y
copy-back.
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(a) write-allocate y copy-back, sólo instrucciones de usuario
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(b) non-write-allocate y write-through, instrucciones de usuario y sistema

Figura D.34: Fallos por cada mil instrucciones en la cache de datos para raytrace ejecutado en Sparc.
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Figura D.35: Traza temporal de fallos en cache para raytrace con entradas pequeña, mediana y grande, ejecutado
en Sparc. Se contabilizan únicamente los fallos producidos por instrucciones de usuario y se utiliza una política
write-allocate y copy-back.
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Figura D.36: Traza temporal de fallos en cache para raytrace con entrada nativa, ejecutado en Sparc. Aparecen
diez muestras tomadas al azar del total de la ejecución. Se utiliza una política write-allocate y copy-back.
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Streamcluster

En los fallos en cache de este benchmark (figuras D.37 y D.38) vemos repetido el comportamiento
de blackscholes, explicado en la sección D.1.4. Según va aumentando la capacidad de la cache,
las estructuras de datos de las entradas de menor tamaño pueden almacenarse en la cache y el
número de fallos disminuye drásticamente.

Analizando las trazas temporales (figuras D.39 y D.40) vemos que, tras una pequeña zona
inicial, la forma de las gráficas se mantiene constante durante el resto de la ejecución.
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Figura D.37: Fallos por cada mil instrucciones en la cache de datos para raytrace ejecutado en Intel. Se
contabilizan únicamente los fallos producidos por instrucciones de usuario y se utiliza una política write-allocate y
copy-back.

Swaptions

En las figuras D.41 y D.42 vemos rápidamente que no hay ninguna diferencia en los fallos por
cada mil instrucciones de las cuatro entradas. Además, se trata de una aplicación que presen-
ta muy pocos fallos en cache y, por lo tanto, no será útil para el estudio de la jerarquía de memoria.

Fĳándonos en la traza temporal (figuras D.43 y D.44) vemos que la única diferencia entre
las entradas es el número de ciclos que tardaron en ejecutarse. La tasa de fallos se mantiene
constante a lo largo de la ejecución, con pequeños picos cada 750 millones de instrucciones.
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(a) write-allocate y copy-back, sólo instrucciones de usuario
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Figura D.38: Fallos por cada mil instrucciones en la cache de datos para streamcluster ejecutado en Sparc.
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Figura D.39: Traza temporal de fallos en cache para streamcluster con entradas pequeña, mediana y grande,
ejecutado en Sparc. Se contabilizan únicamente los fallos producidos por instrucciones de usuario y se utiliza una
política write-allocate y copy-back.
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Figura D.40: Traza temporal de fallos en cache para streamcluster con entrada nativa, ejecutado en Sparc.
Aparecen diez muestras tomadas al azar del total de la ejecución. Se utiliza una política write-allocate y copy-back.
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Figura D.41: Fallos por cada mil instrucciones en la cache de datos para swaptions ejecutado en Intel. Se
contabilizan únicamente los fallos producidos por instrucciones de usuario y se utiliza una política write-allocate y
copy-back.
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(a) write-allocate y copy-back, sólo instrucciones de usuario
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(b) non-write-allocate y write-through, instrucciones de usuario y sistema

Figura D.42: Fallos por cada mil instrucciones en la cache de datos para swaptions ejecutado en Sparc.
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Figura D.43: Traza temporal de fallos en cache para swaptions con entradas pequeña, mediana y grande,
ejecutado en Sparc. Se contabilizan únicamente los fallos producidos por instrucciones de usuario y se utiliza una
política write-allocate y copy-back.
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Figura D.44: Traza temporal de fallos en cache para swaptions con entrada nativa, ejecutado en Sparc. Aparecen
diez muestras tomadas al azar del total de la ejecución. Se utiliza una política write-allocate y copy-back.
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Vips

En la figura D.45 vemos que, en una arquitectura Intel, los fallos por cada mil instrucciones de
la entrada nativa no son mayores que los de las entradas menores. En la mayoría de los casos,
presenta un número de fallos inferior al del resto de las entradas y, a veces, es comparable a los
de la entrada grande.

Para una arquitectura Sparc (figura D.46) no hemos realizado las simulaciones de la entrada
nativa porque la ejecución necesitaba utilizar más espacio en disco del que disponía la arquitectura
que estábamos simulando. Habría sido necesario añadir más espacio de disco y volver a comenzar
el proceso de inicializar la máquina y el sistema operativo y crear los checkpoints. Decidimos,
por lo tanto, que se trataba de demasiado esfuerzo para aprovecharlo luego en un único caso y
que utilizaríamos únicamente los resultados de la entrada nativa para Intel. De todas formas,
se ve que las relaciones entre las entradas pequeña, mediana y grande se mantienen, así que,
previsiblemente, en Sparc se repetirá el mismo patrón que en Intel.

Observando las trazas temporales de la figura D.47 nos damos cuenta de que no cambia
nada además de los ciclos de ejecución para cada entrada. Se mantiene un patrón de fallos
prácticamente constante durante toda la ejecución, aunque parece haber menos fallos de lectura
al principio y más al final (esto se nota principalmente en la entrada grande). Podemos suponer
que la entrada nativa presentará un patrón de fallos similar.
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Figura D.45: Fallos por cada mil instrucciones en la cache de datos para vips ejecutado en Intel. Se contabilizan
únicamente los fallos producidos por instrucciones de usuario y se utiliza una política write-allocate y copy-back.
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(a) write-allocate y copy-back, sólo instrucciones de usuario
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Figura D.46: Fallos por cada mil instrucciones en la cache de datos para vips ejecutado en Sparc.

97



ANEXO D. RESULTADOS DE LA CARACTERIZACIÓN DE PARSEC

 0⋅10
0

 5⋅10
5

 1⋅10
6

 2⋅10
6

 2⋅10
6

 2⋅10
6

 0  50  100  150  200  250  300  350

N
ú
m

e
ro

 d
e
 a

c
c
e
s
o
s

 0

 4

 8

 12

 0  50  100  150  200  250  300  350

M
P

K
I

Ciclos (10 millones)

Lectura Escritura

(a) pequeña

 0⋅10
0

 5⋅10
5

 1⋅10
6

 2⋅10
6

 2⋅10
6

 2⋅10
6

 0  200  400  600  800  1000

N
ú
m

e
ro

 d
e
 a

c
c
e
s
o
s

 0

 4

 8

 12

 0  200  400  600  800  1000

M
P

K
I

Ciclos (10 millones)

Lectura Escritura

(b) mediana

 0⋅10
0

 5⋅10
5

 1⋅10
6

 2⋅10
6

 2⋅10
6

 2⋅10
6

 0  500  1000  1500  2000  2500  3000

N
ú
m

e
ro

 d
e
 a

c
c
e
s
o
s

 0

 4

 8

 12

 0  500  1000  1500  2000  2500  3000

M
P

K
I

Ciclos (10 millones)

Lectura Escritura

(c) grande

Figura D.47: Traza temporal de fallos en cache para vips con entradas pequeña, mediana y grande, ejecutado
en Sparc. Se contabilizan únicamente los fallos producidos por instrucciones de usuario y se utiliza una política
write-allocate y copy-back.
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X264

En una arquitectura Intel (figura D.48), los fallos por cada mil instrucciones de la entrada nativa
son siempre algo más elevados que los del resto. En Sparc (figura D.49) parece que la entrada
nativa se encuentra muy próxima a la grande y la pequeña, pero tenemos poca información porque
estas simulaciones resultaban extremadamente lentas debido al gran número de instrucciones
ejecutadas al utilizar la entrada nativa.

En la figura D.50 podemos ver la traza temporal para las tres entradas de menor tamaño. En
todos los casos hay varios picos de fallos, principalmente de escritura, pero no están distribuidos
uniformemente a lo largo de la ejecución de los programas. La traza para la entrada nativa (figura
D.51) sigue mostrando varios picos, aunque en este caso son menos frecuentes y tienen mayor
altura.
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Figura D.48: Fallos por cada mil instrucciones en la cache de datos para x264 ejecutado en Intel. Se contabilizan
únicamente los fallos producidos por instrucciones de usuario y se utiliza una política write-allocate y copy-back.
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(a) write-allocate y copy-back, sólo instrucciones de usuario
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Figura D.49: Fallos por cada mil instrucciones en la cache de datos para x264 ejecutado en Sparc.
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Figura D.50: Traza temporal de fallos en cache para x264 con entradas pequeña, mediana y grande, ejecutado
en Sparc. Se contabilizan únicamente los fallos producidos por instrucciones de usuario y se utiliza una política
write-allocate y copy-back.
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Figura D.51: Traza temporal de fallos en cache para x264 con entrada nativa, ejecutado en Sparc. Aparecen diez
muestras tomadas al azar del total de la ejecución. Se utiliza una política write-allocate y copy-back.
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D.2 Selección de entradas

Considerando los resultados ya descritos en la sección D.1.4, en esta sección se propondrá lo que
se considera más adecuado en cada caso para lograr una ejecución representativa de la nativa en
menos tiempo o para ejercer mayor presión sobre la jerarquía de memoria. Para cada aplicación
se explicará el proceso seguido para tomar la decisión.

D.2.1 Blackscholes

En la aplicación blackscholes veíamos que las entradas de mayor tamaño sí suponían un mayor
número de fallos, especialmente a medida que aumentábamos la capacidad de la cache. Por otro
lado, la traza temporal nos indicaba que el número de fallos se mantiene constante durante toda
la ejecución, mostrando pequeños picos cada 750 millones de ciclos en la entrada nativa. Por lo
tanto, ejecutando únicamente esa sección obtendremos el mismo resultado que al ejecutar toda la
entrada nativa completa, así que bastará con ejecutar los primeros 750 millones de instrucciones
de la región de interés.

D.2.2 Bodytrack

Lo más característico de este benchmark es el patrón que observamos claramente en la traza tem-
poral. Compararemos a continuación las características de las entradas, que pueden consultarse
en la tabla D.1, con la información obtenida de la traza. Por un lado, al aumentar el tamaño de
la entrada aumenta el número de frames o fotogramas que se utilizan. Esta información se pasa
al programa mediante un fichero llamado sequenceB_x, siendo x el número de frames, y con un
parámetro en la línea de comandos. El fichero contiene las imágenes correspondientes al fotograma
o los fotogramas que se van a analizar. Por otro lado, hay que indicar el número de partículas,
que es un dato que se utiliza durante la ejecución del algoritmo. Podemos comprobar de manera
directa que el número de frames se corresponde con el número de periodos que observábamos en
la traza temporal. Para las entradas pequeña, mediana y grande la verificación es trivial, y para
la entrada nativa obtenemos 261 frames al dividir el número total de instrucciones ejecutadas
(unos 955000 millones) entre el tamaño de cada intervalo (algo menos de 4000 instrucciones).
Además, la longitud del intervalo es directamente dependiente del número de partículas utilizadas.
Se multiplica por dos aproximadamente al pasar de la entrada pequeña a la mediana y de la
mediana a la grande, y se mantiene constante entre la grande y la nativa.

Entrada Número
de frames

Número de
partículas Comando de ejecución

Pequeña 1 1000 ./bodytrack input/sequenceB_1 4 1 1000 5 0 1

Mediana 2 2000 ./bodytrack input/sequenceB_2 4 2 2000 5 0 1

Grande 4 4000 ./bodytrack input/sequenceB_4 4 4 4000 5 0 1

Nativa 261 4000 ./bodytrack input/sequenceB_261 4 261 4000 5 0 1

Tabla D.1: Características de las entradas de la aplicación bodytrack

Teniendo en cuenta la información presentada, para conseguir una ejecución representativa
de la nativa que tarde lo mínimo posible bastará con realizar los cálculos para un solo frame pero
utilizando el mismo número de partículas que con la entrada nativa. De este modo estaremos
ejecutando unos 4000 millones de instrucciones, tamaño comparable a la entrada mediana. Para
lograr esta ejecución es suficiente con utilizar los siguientes parámetros:
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./bodytrack input/sequenceB_1 4 1 4000 5 0 1

D.2.3 Canneal

En esta aplicación, las entradas de mayor tamaño presentan, en general, mayor tasa de fallos
que las de menor tamaño. En la traza temporal vemos que los fallos se mantienen prácticamente
constantes durante toda la ejecución, con pequeños picos de menor número de fallos en lectura.
Por lo tanto, bastaría con ejecutar una parte de la entrada nativa. Siendo conservadores, podría-
mos simular los primeros 1500 millones de instrucciones de la región de interés de la entrada nativa.

D.2.4 Dedup

Recordamos que dedup presenta un número menor de fallos con su entrada grande que con el
resto, y muestra también diferencias en la traza temporal debido a que el programa tiene un
pipeline muy desbalanceado.

Este algoritmo construye una base de datos con todos los trozos de información únicos que
encuentra en la entrada. Por lo tanto, no sólo el tamaño de la entrada alterna el uso de la
jerarquía de memoria, sino los propios datos de la misma, ya que si hay menos redundancia, el
tamaño de dicha base de datos será mayor.

Dadas las diferencias entre las entradas, la complejidad del algoritmo utilizado para paralelizar
y la poca diferencia entre el número de instrucciones de las entradas grande y nativa, en este
caso recomendamos el uso de la entrada nativa. De todas formas, será mejor utilizar versiones
posteriores del benchmark en las que el pipeline esté mejor balanceado.

D.2.5 Facesim

Hemos visto ya que la tasa de fallos es igual para todas las entradas y en las trazas temporales
hemos distinguido claramente un patrón. Si tomamos la entrada nativa y dividimos el tamaño
del patrón (unos 230000 millones de instrucciones) entre el tamaño de la entrada completa
(aproximadamente 2300000 millones de instrucciones) podemos averiguar que tenemos 100 repe-
ticiones. Comparando esto con las características de las entradas nos damos cuenta de que la
pequeña, mediana y grande constan de un solo fotograma mientras que la nativa se ocupa de 100
fotogramas, lo cual encaja perfectamente con lo que hemos observado en nuestras simulaciones.
Por lo tanto, en este caso será suficiente con ejecutar la entrada pequeña para obtener un resultado
representativo de la entrada nativa.

D.2.6 Ferret

Teniendo en cuenta las tasas de fallos y las trazas temporales y que, además, la simulación
de la entrada nativa de esta aplicación es muy costosa en tiempo, para obtener una ejecución
representativa de la nativa podemos utilizar la entrada pequeña. Si, por otro lado, nos interesa
realizar una simulación que falle en cache lo máximo posible, la entrada más adecuada será la de
tamaño grande.
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D.2.7 Fluidanimate

De nuevo nos encontramos ante un benchmark con una traza temporal muy representativa.
Vamos a contrastar las características de las entradas que presentamos en la tabla D.2 con los
resultados que hemos obtenido en las simulaciones. Claramente, el número de fotogramas de la
entrada se ve reflejado en el número de veces que el patrón se repite. La comprobación es trivial
para las entradas pequeña, mediana y grande. Para la entrada nativa, dividiendo el número de
instrucciones total de la entrada nativa (unos 2250000 millones) entre el tamaño del patrón (algo
más de 4000 millones de instrucciones) obtenemos los 500 fotogramas. En cuanto a la longitud
del patrón, es claramente consecuencia del número de partículas que se utilizan para modelar el
fluido. Al pasar de pequeña a mediana y de mediana a grande, tanto el número de partículas
como el tamaño del patrón se multiplican por tres aproximadamente. De grande a nativa, el
factor de multiplicación es 1.6.

Entrada Número
de frames

Número de
partículas Comando de ejecución

Pequeña 5 35000 ./fluidanimate 1 5 input/in_35K.fluid out.fluid

Mediana 5 100000 ./fluidanimate 1 5 input/in_100K.fluid out.fluid

Grande 5 300000 ./fluidanimate 1 5 input/in_300K.fluid out.fluid

Nativa 500 500000 ./fluidanimate 1 500 input/in_500K.fluid out.fluid

Tabla D.2: Características de las entradas de la aplicación fluidanimate

Por lo tanto, la mejor opción para obtener una ejecución representativa de la nativa será
ejecutar sólo 5 frames como en las entradas más pequeñas (o incluso menos, ya que para cada
frame se repite el mismo patrón), pero hacerlo con 500000 partículas como con la entrada nativa.
Por lo tanto, bastará con ejecutar el programa con la siguiente entrada:

./fluidanimate 1 5 input/in_500K.fluid out.fluid

D.2.8 Freqmine

En este caso, la tasa de fallos disminuye al aumentar el tamaño de la entrada y la traza temporal
no nos aporta información adicional. Por lo tanto, si se desea realizar una ejecución representativa
de la nativa será necesario utilizar la entrada nativa. De todas formas, nosotros recomendamos
usar la entrada pequeña ya que es la que más presiona la jerarquía de memoria.

D.2.9 Raytrace

Esta aplicación presenta una tasa de fallos en cache extremadamente baja y en la traza temporal
podemos distinguir claramente un patrón que se repite periódicamente.

Vamos a comparar la información que nos da la traza temporal con las caracteríśticas de las
entradas, que se detallan en la tabla D.3. Las tres primeras entradas se diferencian únicamente
en el número de píxeles, que va multiplicándose por cuatro al aumentar el tamaño de la entrada,
al igual que el tiempo de ejecución. Además, en esas tres ejecuciones, se aplica el algoritmo a
tres fotogramas. Si calculamos el número de instrucciones que corresponde a cada fotograma en
la entrada grande, obtenemos algo menos de 2000 millones. En la entrada nativa, para la cual la
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resolución es igual que en la grande, vemos claramente un patrón que se repite cada 2000 millones
de instrucciones aproximadamente. Además, si dividimos el número total de instrucciones de la
región de interés (algo más de 360000 millones) entre la longitud de este patrón obtenemos los
200 fotogramas que componen la entrada nativa. Las entradas grande y nativa se diferencian
también en el número polígonos del objeto al que aplicamos el algoritmo, que viene indicado
por la imagen que se le pasa como entrada al programa. De todas formas, parece que el único
efecto que esto tiene es un aumento de la variación en el número de instrucciones de lectura
ejecutadas, que es lo que nos ha permitido detectar las secciones que corresponden a los fotogramas.

Entrada Número
de frames

Número
de píxeles

Número
de

polígonos
(millones)

Comando de ejecución

Pequeña 3 480*270 1
./rtview inputs/happy_buddha.obj

-nodisplay -automove -nthreads 1

-frames 3 -res 480 270

Mediana 3 960*540 1
./rtview inputs/happy_buddha.obj

-nodisplay -automove -nthreads 1

-frames 3 -res 960 540

Grande 3 1920*1080 1
./rtview inputs/happy_buddha.obj

-nodisplay -automove -nthreads 1

-frames 3 -res 1920 1080

Nativa 200 1920*1080 10
./rtview inputs/thai_statue.obj

-nodisplay -automove -nthreads 1

-frames 200 -res 1920 1080

Tabla D.3: Características de las entradas de la aplicación raytrace

Por lo tanto, para obtener una ejecución representativa de la nativa sólo tendremos que
ejecutar tres fotogramas al igual que en las entradas de menor tamaño (siendo conservadores, ya
que se repetirá el mismo patrón tres veces), pero hacerlo con la resolución y número de polígonos
de la entrada nativa. Simplemente tendremos que utilizar los siguientes parámetros:

./rtview inputs/thai_statue.obj -nodisplay -automove -nthreads 1 -frames 3 -res
1920 1080

A pesar de todo, insistimos en que los fallos en cache son prácticamente insignificantes y el
benchmark no será adecuado para un estudio de las prestaciones de la jerarquía de memoria.

D.2.10 Streamcluster

En esta aplicación, las entradas de mayor tamaño suponen un mayor número de fallos y la
traza temporal muestra que la tasa de fallos se mantiene constante durante toda la ejecución,
a excepción de la zona inicial. Por lo tanto, bastará con ejecutar una sección de la entrada
nativa. Será suficiente con 10000 millones de instrucciones, pero saltando los 5000 millones de
instrucciones iniciales para asegurarnos de que no medimos la zona inicial en la que todavía no
se ha estabilizado el número de fallos. Además, será importante calentar la cache antes de tomar
ninguna estadística, tal y como se explicó en la sección 4.5.
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D.2.11 Swaptions

En esta aplicación, la tasa de fallos toma valores excesivamente pequeños, además de no presentar
ninguna variación al aumentar el tamaño de la entrada. La traza temporal muestra cómo los
fallos se mantienen constantes a lo largo de la ejecución de todas las entradas, con pequeños
picos que se repiten periódicamente.

En la tabla D.4 se muestran las características de la entrada junto con un valor que representa
el tamaño total de la entrada, que ha sido obtenido multiplicando el número de swaptions por
el de simulaciones. Si comparamos este valor con el número de ciclos que tarda en ejecutarse el
benchmark (que recordamos que es igual al número de instrucciones ya que nuestras simulaciones
tienen un IPC de 1), vemos que en ambos casos se aplica un factor multiplicativo de cuatro al
pasar de pequeña a mediana y de mediana a grande, y de 100 al pasar de grande a nativa. Por lo
tanto, vemos que el único efecto que tienen los parámetros de entrada es alargar el tiempo de
ejecución.

Entrada Número de
swaptions

Número de
simulaciones Tamaño de la entrada

Pequeña 16 5000 16 x 5000 = 80000
Mediana 32 10000 32 x 10000 = 320000
Grande 64 20000 64 x 20000 = 1280000
Nativa 128 1000000 128 x 1000000 = 128000000

Tabla D.4: Características de las entradas de la aplicación swaptions

Para lograr una ejecución representativa de la entrada nativa será suficiente con usar la
entrada pequeña, aunque recordamos que el número de fallos de cache de esta aplicación es muy
pequeño.

D.2.12 Vips

Para esta aplicación la entrada pequeña presenta, en general, más fallos en cache. Las trazas
temporales tienen el mismo aspecto en las entradas pequeña, mediana y grande, aunque recorda-
mos que no se dispone de resultados para la entrada nativa.

La única característica que diferencia unas entradas de otras es la resolución de la imagen
que procesará el algoritmo, que tiene un impacto directo en el número de instrucciones. Se prevé
que la entrada nativa tendrá una traza similar al resto y que será posible obtener resultados
representativos simulando únicamente una sección. De todas formas, para no tomar la decisión
basándonos en suposiciones podemos simplemente ejecutar la entrada pequeña, que es la más
adecuada para realizar un estudio de la jerarquía de memoria porque es la que más fallos por
cada mil instrucciones presenta.

D.2.13 X264

En este caso, la tasa de fallos para la entrada nativa es mayor que para el resto en una arquitectura
Intel, pero se encuentra muy próxima a la grande y la pequeña en Sparc. Las trazas temporales
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muestran varios picos de fallos, aunque no siempre están distribuidos uniformemente a lo largo
de la ejecución de las aplicaciones.

Las entradas pequeña, mediana y grande se diferencian únicamente en el número de fotogra-
mas de video que se deben codificar, lo cual tiene una relación directa con el número de picos que
se observan en la traza temporal. En la traza para la entrada nativa, el número de picos también
se corresponde con el número de fotogramas, pero en este caso aumenta también la resolución
de los fotogramas. Esto tiene repercusión tanto en el tiempo que tarda en procesarse cada
fotograma como en la altura de los picos de fallos, que ahora es mucho mayor. En este algoritmo
no resulta tan sencillo como en casos anteriores (bodytrack, fluidanimate y raytrace) utilizar
una entrada nueva combinando los parámetros de varias entradas, ya que toda la información se
pasa en el fichero de vídeo, así que habría que preparar uno nuevo.

El algoritmo de este benchmark tiene que utilizar para algunos fotogramas la información de
otros fotogramas ya procesados, lo cual explica por qué el tiempo y los fallos no se mantienen cons-
tantes para cada fotograma. Además, la resolución afecta en mayor medida porque no sólo implica
que el fotograma estudiado es más grande, si no que, en caso de tener que acceder a otros fotogra-
mas, se deberá acceder a cantidades de datos más grandes. Por último, los propios datos, no sólo
su tamaño, influyen también en cómo se ejecutará el algoritmo, ya que dependiendo del vídeo que
se desee codificar cambiará la cantidad de veces que será necesario acceder a fotogramas anteriores.

Por lo tanto, la selección de una entrada representativa de una ejecución nativa es especial-
mente complicada en este caso. El mejor modo de lograr un resultado válido será simular varias
zonas distintas de la entrada nativa, calentando la cache antes de cada una. Será suficiente con
tomar cuatro muestras de 20000 millones de ciclos cada una en puntos aleatorios de la ejecución
de la aplicación. Así se tendrán en cuenta zonas en las que el procesado de los fotogramas es más
lento y zonas en las que es más rápido.
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Benchmark Carga de trabajo artificial que incluye las características más importantes de
cargas de trabajo reales y relevantes. En general, son aplicaciones pequeñas, eficientes y
controlables.

Checkpoint Estado de una simulación que almacenamos para poder volver al mismo punto
rápidamente más tarde.

Copy-back Política de escritura en la cual las escrituras sólo se llevan a cabo en la cache y se
escribirán en la memoria principal cuando el bloque sea reemplazado.

Footprint El footprint o huella es el número total de páginas de memoria a las que un programa
accede cuando es ejecutado.

Host En una simulación, el host es la máquina sobre la que ejecutamos la simulación.

Instruction mix Número de instrucciones de cada tipo que hay en un programa, ya sean
aritmético-lógicas, de memoria,...

Muestreo basado en eventos El muestreo basado en eventos (en inglés, event based sampling
o EBS) es un método utilizado en profiling que se basa en interrumpir la ejecución de la
aplicación cada cierto número de eventos y anotar en qué punto del código se encuentra. De
esta manera se obtiene un histograma del número eventos basado en las líneas de código
en que se producen.

Muestreo basado en tiempo El muestreo basado en tiempo (en inglés, time based sampling
o TBS) es un método utilizado en profiling que se basa en interrumpir la ejecución de
la aplicación cada cierto tiempo y anotar en qué punto del código se encuentra. De esta
manera se puede conocer en qué zonas del código ha pasado más tiempo la ejecución.

Non-write-allocate Política de escritura en la cual, ante un fallo en escritura, el bloque se
modifica en memoria principal y no se trae a la cache.

Pipeline parallelism Pipelining es un modelo de programación utilizado para explotar el
paralelismo a nivel de tarea. El trabajo a realizar se divide en varias etapas que se
ejecutarán concurrentemente en un multiprocesador. Las etapas del pipeline tienen una
relación productor-consumidor e intercambian información mediante colas. Dependiendo
del diseño, uno o más threads pueden encargarse de cada etapa.

Profiling El profiling es una técnica que permite inspeccionar el funcionamiento interno de una
aplicación durante su tiempo de ejecución.
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Región de interés La región de interés o ROI (del inglés Region of Interest) es la parte de una
aplicación que resulta relevante, quedando fuera la inicialización en la se cargan los datos a
utilizar y el final en el que se escribe el resultado.

Simulador de sistema completo Simulador que incluye procesadores, memoria, interfaces de
red y otros periféricos. Se utiliza para el diseño, desarrollo y prueba de hardware y software
en un entorno que se aproxima al contexto final de aplicación del producto.

Slowdown Es la medida de cuántas veces más lenta resulta la simulación de la aplicación
respecto de su ejecución nativa.

Target En una simulación, el target es el sistema que estamos simulando.

Thread pool Mediante este método, un thread principal se ocupa de ir distribuyendo el trabajo
entre los threads disponibles. Permite que un algoritmo reutilice los threads para eliminar
la necesidad de destruirlos y crear otros nuevos.

Working set Es el conjunto de la páginas que un proceso utiliza en un determinado intervalo
de tiempo

Write-allocate Política de escritura en la cual, ante un fallo en escritura, el bloque correspon-
diente se trae a la cache.

Write-through Política de escritura en la cual cada escritura en la cache general una escritura
también en memoria principal.
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