Al Escuela de
11 Ingenieria y Arquitectura

1542 Universidad Zaragoza

Proyecto Fin de Carrera
Ingenieria Informaética

Caracterizacion del comportamiento de la
suite PARSEC en la jerarquia de memoria
del procesador

Marta Ortin Obén

Directores: Maria Villarroya Gaud6 y Dario Suarez Gracia

Departamento de Informatica e Ingenieria de Sistemas
Escuela de Ingenieria y Arquitectura
Universidad de Zaragoza

Curso 2010/2011
Septiembre 2011

A mis padres y mi abuela.

Agradecimientos

Quiero agradecer a mis directores, Maria y Dario, las oportunidades que me han dado y su ayuda
en todo lo que he necesitado, tanto a lo largo de la beca como del proyecto. Gracias a vosotros me
he iniciado en la investigacién y tengo claro lo que quiero hacer después de terminar la carrera.
También les doy las gracias a Victor y Pablo, que han estado muy involucrados en mi trabajo y
me han dado muchas ideas y consejos. Ademds, agradezco a Chus y Kike todo lo que me han
ensenado y su gran ayuda en algunas secciones de este proyecto.

En especial, le quiero dar las gracias a Jorge, que me ha ayudado muchisimo durante los
ultimos meses. Me he aprovechado de que estabas el despacho de al lado y te he preguntado
montones de dudas, pero siempre me has recibido con una sonrisa y me has dedicado todo el
tiempo que necesitaba.

También quiero darles las gracias a mis amigos de clase, que han hecho mucho mas alegres
todos mis dias en la universidad. Principalmente, a Sergio, Xandra, Rubén, Sara y Edu, que me
han acompanado durante los meses del proyecto y con los he compartido los buenos momentos,
las frustraciones, las comidas, las sobremesas, los descansos y, en general, todos los ratos poco
productivos que he pasado en el CPS.

Por dltimo, quiero dar las gracias a mis padres por todo su apoyo y a mi abuela, que desde
pequenia me ha ensenado a superarme a mi misma.

Caracterizacion del comportamiento de la suite PARSEC en la
jerarquia de memoria del procesador

Resumen ejecutivo

Los simuladores son herramientas fundamentales para el disefio de nuevas arquitecturas de compu-
tadores. En este campo, interesa disponer de simuladores detallados que ofrezcan resultados precisos
y, al mismo tiempo, utilizar cargas de trabajo realistas que proporcionen conclusiones objetivas. El
principal obstaculo para las simulaciones es su alto coste en tiempo y memoria, lo que nos lleva
a sacrificar la precisién del simulador o a utilizar aplicaciones demasiado ligeras que resultan poco
representativas.

En este proyecto, se ha realizado un estudio del propio simulador y las cargas de trabajo con el
objetivo de conseguir simulaciones representativas de una ejecucién realista en un tiempo razonable.
Nos hemos centrado en la plataforma Virtutech Simics, un simulador de sistema completo amplia-
mente utilizado, y GEMS, que proporciona mdédulos para la simulaciéon temporal. Como carga de
trabajo hemos seleccionado PARSEC, que ofrece un conjunto representativo de las nuevas aplicaciones
paralelas emergentes de memoria compartida.

Se ha analizado el tiempo de simulacién con Simics y GEMS buscando cuellos de botella que
pudieran ser optimizados. Hemos observado que gran parte del tiempo de simulacién recae sobre el
médulo de GEMS que se ocupa de la jerarquia de memoria, aunque el tiempo estd muy disperso
dentro del médulo, dificultando la optimizacién.

Ante estos resultados, pasamos a estudiar la suite PARSEC centrdndonos en su comportamiento
en la jerarquia de memorias cache. Cuando se usan estas aplicaciones en investigacién, se suelen
utilizar entradas de tamano reducido como aproximaciéon de una entrada nativa porque el tiempo de
simulacién resulta mas conveniente. No obstante, no estd demostrado que estas entradas destinadas a
simulacién sean adecuadas para obtener resultados representativos. Ademds, existe la creencia popular
de que cuanto mas complejo es el problema a resolver, mayor presién se ejerce sobre la jerarquia de
memoria.

Hemos utilizado herramientas de andlisis (profiling) y simulacién para obtener distintas métricas
de las aplicaciones de PARSEC con sus entradas de diferentes tamafios. Analizando estos resultados,
descubrimos que no necesariamente las entradas mas grandes presentan mayores tasas de fallos y
que la entrada nativa no genera un nimero de fallos notablemente mds elevado que el resto. Estos
resultados se han obtenido analizando el comportamiento de las aplicaciones ejecutdndolas con un
thread sobre un nivel de memoria cache, aunque se presume que las conclusiones seguirdn siendo
vélidas para midltiples threads. La verificacion de esta hipdtesis queda planteada como trabajo futuro.

Como resultado final del proyecto, hemos realizado una seleccién de las entradas mas representativas
de una ejecucidén nativa que permiten obtener resultados fiables en un tiempo razonable. Para ello se
han utilizado diferentes técnicas: ejecucidon de una seccién de la entrada nativa, uso de una entrada
de menor tamano o uso de una nueva entrada distinta de todas las que ya existen. La utilizacién de
estas entradas para las aplicaciones de PARSEC resulta mas adecuada que el uso sistematico de una
de menor tamafio, ya que permite conseguir resultados mas representativos manteniendo un tiempo
de simulacién razonable.

ii

Contenidos

[Indice de figuras|

[Indice de tablas|

1__Introduccionl
[1.1 Contexto del proyecto|
[1.2 Objetivos| e
[1.3 Organizacion de la memorial
[2__Estado del artel
[2.1 Platatormas y estrategias de simulacion|
2.2 Cargas de trabajo|
B_La suite PARSEC|
4 Metodologial
4.1 Introduccion a las métricas utilizadas.o
4.2 Footprint de la memorial
4.3 Obtencion de los fallosde TLBl
|4.4 Instrumentaciéon del programa utilizando VALGRIND|
|4.5 Estudio de la jerarquia de memoria mediante simulacionl
6_Resumen de resultados]
[5.1 Analisis del tiempo de simulacion| o L
5.2 Impacto del tamano de las entradas en la jerarquia de memoriaf
[0.2.1 Instruction mixl e e e
[0.2.2 Footprint|o
23 Fallosde TLBI
[>.2.4 Tasa de fallos en cache y traza temporal|
5.3 Seleccion de entradas|. L

|6 Conclusiones y trabajo futuro|

6.1 Conclusiones a nivel técnico y trabajo futuro|

6.2 Conclusiones a nivel personall

iii

ix

W N N

ot Ot

11
11
12
13
14
15

17
17
18
18
18
19
20
24

27
27
28

29

CONTENIDOS

|A Gestion del proyecto| 33
[A.1 Gestion del tiempo| L 33
[A.2 Esfuerzo nvertidal 34
[A.3 Problemas encontradosl 35

IB Analisis del tiempo de simulacion: Simics y GEMS| 37
IB.1 Tiempo de ejecucion de las simulaciones| 37
IB.2 Distribucion del tiempo en los diferentes modulos durante la ejecucion de la |

| Simulacionl 38

[B.2.1 Tipos de simulaciones realizadas| 39
[B.2.2 Resultados de la distribucion de tiempos|. 40
B.3 _Conclusiones e 44

|C Detalles de las simulaciones con Simics y GEMS)| 45
|C.1 Fases de desarrollo de los experimentos.| 45
[C.2 Diseno de las simulaciones| oL o 46
|C.3 Ejecucion de las simulaciones| L o 50
|C.4 Recopilacion de resultados| 51

(D _Resultados de la caracterizacion de PARSEC] 55
ID.1 Impacto del tamano de las entradas en la jerarquia de memorial 55

[D.I.1 Tnstruction mixl 55
[D.1.2 Footprint| 56
(D13 Fallosde TLBl o o oo 57
[D.1.4 Tasas de fallos en cache y trazas temporales| 57

[D.2 Seleccién de entradasl 103
(D.2.1 Blackscholes|. 103
[D.2.2 Bodytrack|. 103
D23 Canmeall 104
D.2.4 Dedup|. e 104
D25 Facesiml e 104
D26 Terrell oo v 104
(D.2.7 Fluidanimatel 105
[D.2.8 Freqminel 105
[D.2.9 Raytrace 105
[D.2.10 Streamcluster] 106
[D.2.11 Swaptions| e e 107
D.2.12 Vips e e 107
D213 X264 e 107

110

iv

Indice de figuras

4.1 50%, 90 % y 100 % del footprint de la aplicacién blackscholes|. 13
[5.1 Instruction mix de las aplicaciones de PARSEC| 18
5.2 Footprint de las aplicaciones de PARSEC| 19
[5.3 Fallos en el TLB de datos de las aplicaciones de PARSEC.|. 19
[5.4 Fallos por cada mil instrucciones en la cache de datos para blackscholes ejecutado |
| en Intell 21
[5.5 Fallos por cada mil instrucciones en la cache de datos para blackscholes ejecutado |
| €I OPATC| « « v v v e e e e e e e e e e e e e e e e e e 21
[5.6 Traza temporal de fallos en cache para blackscholes con entradas pequena, |
| mediana y grande|. Lo e e e e e e e e e e 22
5.7 'Traza temporal de fallos en cache para blackscholes con entrada natival] 23
[A.1 Diagrama de Gantt del proyecto.| Lo 33
|[A.2 Distribucion del tiempo en las diterentes tareas del proyecto.| 34
IB.1 Tiempo de simulacion de canneal, fluidanimate y streamcluster con Simics y |
| Simics+GEMS, con 1y 2 procesadores| 38
IB.2 Slowdown de las simulaciones de canneal, fluidanimate y streamcluster con |
| Simics vy Simics+GEMS, con 1 v 2 procesadores|. 39
[B.3 Distribucion del tiempo en los diferentes modulos simulando blackscholes.| . . 41
[B.4 Distribucion del tiempo en los diferentes modulos simulando bodytrack.| 41
IB.5 Distribucion del tiempo en los diterentes modulos simulando canneal.|. 42
|C.1 Fases de realizacion de experimentos| Lo L. 45
[D.1 Numero de instrucciones de las aplicaciones de PARSEC con cada una de sus |
| entradas e 51§
ID.2 Numero medio de accesos a cada pagina de memoria de las aplicaciones de PARSEC| 57
[D.3 50 %, 90 % y 100 % del footprint de las aplicaciones de PARSEC (parte 1)[. . . . 58
[D.4 50 %, 90 % y 100 % del footprint de las aplicaciones de PARSEC (parte 2)[. . . . 59
ID.5 Fallos por cada mil instrucciones en la cache de datos para bodytrack ejecutado |
| en Intell 61
ID.6 Fallos por cada mil instrucciones en la cache de datos para bodytrack ejecutado |
| €I OPATC| .+« v v e e e e e e e e e e e e e e e e 61
[D.7 Traza temporal de fallos en cache para bodytrack con entradas pequena, mediana |
| voerande| L L e e e e 62
ID.8 'Traza temporal de fallos en cache para bodytrack con entrada natival] 63

INDICE DE FIGURAS

ID.9 Fallos por cada mil instrucciones en la cache de datos para canneal ejecutado en |

I 7 64
ID.10 Fallos por cada mil instrucciones en la cache de datos para canneal ejecutado en |
.. 65
ID.11 'Traza temporal de fallos en cache para canneal con entradas pequena, mediana y |
| grande] L L e e e e 66
[D.12 Traza temporal de fallos en cache para canneal con entrada natival 67

[D.13 Fallos por cada mil instrucciones en la cache de datos para dedup ejecutado en Intell 68
[D.14 Fallos por cada mil instrucciones en la cache de datos para dedup ejecutado en Sparc| 69
[D.15 Traza temporal de fallos en cache para dedup con entradas pequena, mediana y |

| grande] L L L e e e e 70
[D.16 Traza temporal de fallos en cache para dedup con entrada natival 71
ID.17 Fallos por cada mil instrucciones en la cache de datos para facesim ejecutado en |

I 7 72
|D.18 Fallos por cada mil instrucciones en la cache de datos para facesim ejecutado en |

.. 73
[D.19 Traza temporal de fallos en cache para facesim con entrada grande (igual a la |

| pequena y mediana)|lo 73
[D.20 Traza temporal de fallos en cache para facesim con entrada natival 74
|D.21 Fallos por cada mil instrucciones en la cache de datos para ferret ejecutado en |

L Tmell - 75
|D.22 Fallos por cada mil instrucciones en la cache de datos para ferret ejecutado en |

.. 76
[D.23 Traza temporal de fallos en cache para ferret con entradas pequena, mediana y |

| grande] L L L e e e 77
[D.24 Traza temporal de fallos en cache para ferret con entrada natival] 78
|D.25 Fallos por cada mil instrucciones en la cache de datos para fluidanimate ejecutado |

| en Intell 79
|D.26 Fallos por cada mil instrucciones en la cache de datos para fluidanimate ejecutado |

| €I DOPATC| « « v v e e e e e e e e e e e e e e e e e e e 79
[D.27 Traza temporal de fallos en cache para fluidanimate con entradas pequena, |

| mediana y grande]. Lo e e e e e e e e 80
[D.28 Traza temporal de fallos en cache para fluidanimate con entrada natival] 81
[D.29 Fallos por cada mil instrucciones en la cache de datos para fregmine ejecutado |

| en Intell 82
|D.30 Fallos por cada mil instrucciones en la cache de datos para fregmine ejecutado |

| €I DPATC| « « v v e 83
[D.31 Traza temporal de fallos en cache para fregmine con entradas pequena, mediana |

| voerande| L L e e 84
[D.32 Traza temporal de fallos en cache para fregmine con entrada natival] 85
|D.33 Fallos por cada mil instrucciones en la cache de datos para raytrace ejecutado |

| en Intell 86
|D.34 Fallos por cada mil instrucciones en la cache de datos para raytrace ejecutado |

| 1L OPATC| .« « « v v e 86
[D.35 Traza temporal de fallos en cache para raytrace con entradas pequena, mediana |

| verande| L e e e 87
[D.36 Traza temporal de fallos en cache para raytrace con entrada nativa] 88
ID.37 Fallos por cada mil instrucciones en la cache de datos para streamcluster ejecu- |

[tadoen Intell 89

vi

INDICE DE FIGURAS

|D.38 Fallos por cada mil instrucciones en la cache de datos para streamcluster ejecu- |

| tado €N OPATC| e e e e e e 90
ID.39 Traza temporal de fallos en cache para streamcluster con entradas pequena, |
| mediana y grande|. Lo 91
ID.40 Traza temporal de fallos en cache para streamcluster con entrada natival. . . . 92
|D.41 Fallos por cada mil instrucciones en la cache de datos para swaptions ejecutado |
| en Intell 93
|D.42 Fallos por cada mil instrucciones en la cache de datos para swaptions ejecutado |
| €I DOPATC| « « v v e e e e e e e e e e e e e e e e e e e 93
[D.43 Traza temporal de fallos en cache para swaptions con entradas pequena, mediana |
| verande| L e e e e 94
|D.44 Traza temporal de fallos en cache para swaptions con entrada nativa] 95

[D.45 Fallos por cada mil instrucciones en la cache de datos para vips ejecutado en Intel| 96
[D.46 Fallos por cada mil instrucciones en la cache de datos para vips ejecutado en Sparc| 97
[D.47 Traza temporal de fallos en cache para vips con entradas pequena, mediana y |
| grande| L L e e e e 98
[D.48 Fallos por cada mil instrucciones en la cache de datos para x264 ejecutado en Intel| 99
ID.49 Fallos por cada mil instrucciones en la cache de datos para x264 ejecutado en Sparc/100
[D.50 Traza temporal de fallos en cache para x264 con entradas pequena, mediana y |
| granded| L L e e 101
[D.51 Traza temporal de fallos en cache para x264 con entrada nativa] 102

vii

Indice de tablas

[3.1 Vision general de las aplicaciones que componen la suite PARSEC| 9
4.1 Configuracion del TLB en un Intel Core 2 Duo| 13
|4.2 Contadores hardware utilizados para medir los fallos de TLB| 14
5.1 Seleccion de las entradas a utilizar con las aplicaciones de PARSEC para conseguir |
| una ejecucion representativa en un tiempo razonable|. L. 25
[A.1 Numero de horas invertidas en cada una de las tareas del proyecto.| 35
IB.1 Distribucion del tiempo de ejecucion en ficheros y funciones dentro del modulo |
| Ruby durante una simulacion del benchmark blackscholes con Simics v GEMS, |
| con 4 procesadores. 43
IB.2 Grafo de llamadas para la funcion en la pasa mas tiempo una simulacion con |
| oimics y GEMS, PerfectSwitch::wakeup| 44
[D.1 Caracteristicas de las entradas de la aplicacion bodytrack| 103
ID.2 Caracteristicas de las entradas de la aplicacion fluidanimate|. 105
ID.3 Caracteristicas de las entradas de la aplicacion raytrace| 106
[D.4 Caracteristicas de las entradas de la aplicacion swaptions|. 107

X

Capitulo 1
Introduccion

La simulacién es un recurso esencial para explorar el espacio de disefio de nuevas arquitecturas
de computadores. Para que los resultados de nuestras simulaciones sean fiables nos interesa
simular el sistema completo con suficiente precision. El problema es que no es posible lograr que
un simulador sea detallado y, al mismo tiempo, lo suficientemente eficiente como para ejecutar
cargas de trabajo realistas en un tiempo razonable. Es imprescindible encontrar programas
representativos que proporcionen conclusiones objetivas en que basar el disenio de nuevos sistemas,
pero las limitaciones ya descritas nos llevan a utilizar aplicaciones creadas especialmente para
este fin que no son necesariamente representativas. Por lo tanto, aunque los resultados obtenidos
sean muy precisos, no siempre nos aportan informacion valiosa.

En este proyecto se va realizar un estudio en profundidad del propio simulador, buscando
cuellos de botella cuya optimizacion reduzca los tiempos de ejecucién. Se caracterizaran también
cargas de trabajo en lo relativo al diseno de la jerarquia de memorias cache, un aspecto esencial
del disenio de todo sistema mono o multiprocesador. Se pretende confirmar o desmentir la creencia
popular que indica que cuanto mas complejo es el problema a resolver, mayor presion se ejerce
sobre la jerarquia de memoria. Ademads, se buscaran alternativas a la entrada a simular con las
cargas de trabajo analizadas, para obtener resultados representativos en el menor tiempo posible.
Esto permitird acelerar el proceso de simulacién y garantizara la fiabilidad de los datos en los
que se basan las decisiones de diseno.

Como simulador a estudiar nos centraremos en la plataforma Simics (de la empresa Virtutech)
[30] y el médulo GEMS (Universidad de Wisconsin) [31]. Simics tiene capacidad para simular un
sistema completo (sistema operativo, periféricos, etc.), tanto uniprocesador como multiprocesador,
y su uso estd actualmente muy extendido. GEMS, por su parte, proporciona médulos para el
estudio de prestaciones del sistema de memoria. Como carga de trabajo hemos seleccionado una
suite reciente lanzada en 2008 y actualizada en 2009, PARSEC [13], caracterizada por ofrecer,
ademads de un conjunto representativo de las nuevas aplicaciones paralelas emergentes de memoria
compartida, una gran variedad en el tamano del problema a resolver (input data set). Esta suite
ofrece programas paralelos altamente escalables, lo cual significa que los threads paralelos estdn
bastante balanceados [§].

Como resultados principales del proyecto, se presenta el analisis del tiempo de simulacién
utilizando Simics y GEMS, considerando el efecto de modificar el nimero de procesadores simu-
lados. Se incluye también un estudio de la variacién del instruction mizx y el nimero de paginas
accedidas (footprint) por cada aplicacion de PARSEC en funcién del tamano de la entrada.
Este estudio se ha realizado ejecutando las aplicaciones con un thread, pero los resultados son

CAPITULO 1. INTRODUCCION

extrapolables a cualquier niimero de threads. Por ltimo, se presenta la seleccion de entradas
0 secciones representativas a utilizar para cada aplicaciéon. Esta selecciéon se ha basado en el
analisis del comportamiento de las aplicaciones sobre un nivel de memoria cache, ejecutandolas
con un thread, aunque se presume que las conclusiones seguiran siendo vélidas para multiples
threads. La utilizacién de esta seleccién para las aplicaciones de PARSEC resulta méas adecuada
que el uso sistematico de una entrada de menor tamano, ya que permite conseguir resultados
mas fiables manteniendo un tiempo de simulaciéon razonable.

1.1 Contexto del proyecto

Este proyecto se ha desarrollado dentro del Grupo de Arquitectura de Computadores de la
Universidad de Zaragoza (gaZ), en relacién con el proyecto TIN2010-21291-C02-01 financiado
por el Ministerio de Ciencia e Innovacién.

Durante el curso 2010/2011 disfruté de una Beca de Colaboracién del Ministerio de Educacién
destinada a la iniciacién a la investigacion durante la cual me centré en el estudio de las redes
de interconexién de caches en multiprocesadores. Actualmente, tengo una beca del Instituto
Universitario de Investigacién e Ingenieria de Aragén (i3A) que continuard hasta marzo de 2012.
Ademas, durante la realizaciéon del proyecto asisti a la escuela de verano internacional ACACES
(Advanced Computer Architecture and Compilation for High-Performance and Embedded Sys-
tems) gracias a una beca proporcionada por HIPEAC (European Network of Excellence on High
Performance and Embedded Architecture and Compilation).

1.2 Objetivos

El objetivo de este Proyecto Fin de Carrera es analizar las plataformas de simulacién y establecer
cargas de trabajo que faciliten los estudios de diseno de nuevas arquitecturas de computadores.
Las tareas de las que consta este proyecto son:

1. Estudio del estado del arte de plataformas de simulacién de multiprocesadores y de cargas
de trabajo paralelas.

2. Puesta en marcha del entorno de simulacién y de las cargas de trabajo.

3. Andlisis del entorno de simulaciéon para determinar si hay algin factor responsable de
buena parte del tiempo de simulacién.

4. Estudio del impacto del tamanio de las entradas de las aplicaciones de PARSEC en la
jerarquia de memoria del procesador.

5. Seleccién de las entradas de las aplicaciones de PARSEC a simular para conseguir resultados
representativos en un tiempo razonable.

6. Propuesta de vias de continuacion de la investigacion.

Con la realizacion de las tareas anteriormente descritas y como se observa a lo largo de la
presente memoria, en particular en los capitulos de resultados y conclusiones del trabajo, se han
alcanzado todos los objetivos planteados para este proyecto.

1.3. ORGANIZACION DE LA MEMORIA

1.3 Organizacion de la memoria

El resto del presente documento esta organizado del siguiente modo: en el capitulo [2| se introduce
el estado del arte de simuladores y cargas de trabajo; en el capitulo [3]| se explica con mayor
detalle la suite PARSEC; el capitulo [4] explica la metodologia utilizada para llevar a cabo los
experimentos; en el capitulo [5 se presenta un resumen de los resultados del proyecto y en el
capitulo [6] se recoge las conclusiones y lineas de trabajo futuro.

Se incluyen como anexos:

A. Gestién del proyecto. Incluye la planificacién del tiempo durante el proyecto y el esfuerzo
invertido en el mismo.

B. Anélisis del tiempo de simulacién: Simics y GEMS. Recoge el estudio del tiempo de ejecucion
de las simulaciones y la distribucién de dicho tiempo en los médulos del simulador.

C. Detalles de las simulaciones con Simics y GEMS. Se explica con mayor detalle el proceso
seguido para llevar a cabo las simulaciones.

D. Resultados de la caracterizacion de PARSEC. Se presentan los resultados del impacto del
tamano de la entrada sobre la jerarquia de memoria del procesador, describiendo también el
proceso seguido para llevar a cabo la seleccién de entradas a utilizar para lograr una ejecucién
representativa en poco tiempo.

Capitulo 2
Estado del arte

En este capitulo se va a realizar una revisiéon de las plataformas y estrategias utilizadas para la
simulacién de procesadores. Se comentardn también cudles son las cargas de trabajo mas cominmente
utilizadas.

2.1 Plataformas y estrategias de simulacién

Para que los resultados de nuestras simulaciones sean fieles a la realidad se deben ejecutar
cargas de trabajo realistas en méquinas simuladas con suficiente detalle. SimpleScalar [6] ha
sido un simulador muy utilizado en investigacién, pero tinicamente puede ejecutar aplicaciones
de usuario con un solo thread. Ademas, no ejecuta el cdédigo del sistema operativo, lo cual es
esencial para programas mas complicados. Muchos investigadores estan interesados en sistemas
que ejecuten cargas de trabajo més complejas, como bases de datos, servidores web y algoritmos
cientificos paralelos. Por lo tanto, necesitaremos simuladores de sistema completo, que incluyen
procesadores, memoria, interfaces de red y otros periféricos. La simulacion de sistema completo
permite el diseno, desarrollo y prueba de hardware y software en un entorno que se aproxima al
contexto final de aplicacion del producto.

Virtutech Simics [30] (cominmente llamado simplemente Simics) es un simulador de sistema
completo que podemos configurar para modelar multiprocesadores, sistemas empotrados, routers
de telecomunicaciones, clusters o redes de esos elementos. Es capaz de ejecutar sistemas operativos
sin necesidad de que sean adaptados y simular aplicaciones realistas ofreciendo resultados precisos.
Se trata de un simulador comercial y el c6digo no es libre. Simics suele utilizarse conjuntamente
con GEMS (General Execution-Driven Multiprocessor Simulator) [31], que fue creado en la
Universidad de Wisconsin y proporciona médulos para el estudio de prestaciones del sistema
de memoria y microprocesadores. GEMS estda compuesto por Ruby, que simula las caches, el
protocolo de coherencia y la red de interconexion, y Opal, para la ejecucién fuera de orden. Simics
actia como un simulador funcional, es decir, simplemente se ocupa de ejecutar las instrucciones, y
se comunica con el médulo Ruby de GEMS, que se encargard de gestionar los accesos a memoria.
Ademaés, en la Universidad de Princeton elaboraron GARNET [4], que, integrado con Ruby,
simula detalladamente la red de interconexioén en chip. El uso de estas herramientas estd muy
extendido y son las que se han utilizado a lo largo de este proyecto.

M5 [14] es también un simulador de sistema completo que ha sido adoptado por varios grupos
de investigacién, tanto en el ambito académico como en el comercial, gracias a su utilidad como
simulador de arquitecturas de proposito general y su licencia de codigo libre. Recientemente, los
creadores de GEMS y M5 iniciaron un proyecto para unir ambas herramientas y crear gemb [2],
que fue presentado en la conferencia ISCA en junio de 2011 y también es de cédigo libre.

CAPITULO 2. ESTADO DEL ARTE

Un problema importante en la simulacién de multiprocesadores es el bajo rendimiento de
los simuladores, que hace que la ejecucién de las aplicaciones tarde entre 100 y 100000 veces
mas en un simulador que en nativo. Todos los simuladores descritos hasta el momento deben
ejecutar en serie la simulacién de varios procesadores que trabajan en paralelo. Graphite [32]
surgio en el MIT como una solucién a este problema, presentandose como un simulador paralelo
y distribuido que ofrece mejor rendimiento a cambio de sacrificar precisién en los resultados. En
la misma linea propusieron también HORNET [29], un simulador paralelo de multiprocesadores
que da gran importancia al modelado y rendimiento de la red de interconexion.

Otra opcidén para acelerar el proceso de simulacién es idear nuevas estrategias como, por
ejemplo, reducir la cantidad de cédigo del programa que se debe simular. Siguiendo esta idea, en
la Universidad de Carnegie Mellon propusieron el método Sampling Microarchitecture Simulation
(SMARTS) [41] para obtener medidas del rendimiento de aplicaciones completas de manera répida
y precisa. SMARTS acelera la simulacién midiendo en detalle inicamente algunas secciones de la
aplicacién, que son escogidas mediante muestreo estadistico para obtener el grado de confianza
deseado en los resultados. Ekman et al. consiguen disminuir el niimero de puntos a simular en un
orden de magnitud manteniendo la precisién que nos interesa aplicando el método estadistico
matched-pair comparison [20).

2.2 Cargas de trabajo

La seleccién de las cargas de trabajo que utilizaremos para estudiar el rendimiento de los sis-
temas simulados tiene también gran importancia [15]. Un benchmark es una carga de trabajo
artificial que incluye las caracteristicas mas importantes de cargas de trabajo reales y relevantes.
Generalmente, los benchmarks son aplicaciones pequenas, eficientes y controlables.

Los benchmarks de SPEC (Standard Performance Evaluation Corporation) son muy utilizados
para la investigacién de nuevas arquitecturas. SPEC OMP [36] fue su primera suite creada para
la evaluacién de prestaciones de memoria compartida basada en OpenMP, dentro del dominio
de la computacién de altas prestaciones. CPU2006 [37] es parte de la siguiente generacién de
benchmarks de SPEC, y pretende ser intensiva en célculo y presionar la jerarquia de memoria,
el procesador y el compilador. También tiene como finalidad servir para la comparacion de
prestaciones entre sistemas distintos.

Splash-2 [39] es un conjunto de benchmarks de 1995 que contiene varias aplicaciones paralelas
relacionadas con computaciéon de altas prestaciones y graficos. Cuando se cred la suite, las
plataformas paralelas eran sistemas con varios nodos en los que la comunicaciéon entre nodos
era muy costosa. Por ello, los algoritmos intentan minimizar la comunicaciéon entre threads
lo maximo posible. La suite es muy popular, aunque los algoritmos se han quedado anticua-
dos para la evaluacion de nuevos disenos debido a la proliferacién de los multiprocesadores en chip.

EEMBC (The Embedded Microprocessor Benchmark Consortium, pronunciado embassy)
ha desarrollado varios benchmarks entre los que se encuentran CoreMark y MultiBench. Core-
Mark [I8] es un benchmark simple disenado especificamente para probar la funcionalidad de
un procesador que permite realizar comparaciones rapidamente entre diferentes plataformas.
Pero los procesadores son cada vez méas complejos y un benchmark destinado a evaluar un solo
procesador no es suficiente para realizar un andlisis exhaustivo. Més adecuado para este propdsito

6

2.2. CARGAS DE TRABAJO

es MultiBench [19], un conjunto de benchmarks comercial que permite a los disenadores de
sistemas analizar, probar y mejorar plataformas y arquitecturas multicore. MultiBench utiliza
cargas de trabajo estandarizadas y es compatible con una amplia variedad de multiprocesadores
empotrados y sistemas operativos.

Recientemente, Igbal et al. presentaron ParMiBench [27], que estd compuesto por la im-
plementacién paralela de siete algoritmos intensivos en calculo que provienen de la benchmark
suite para uniprocesadores MiBench [22]. Las aplicaciones pertenecen a cuatro dmbitos distintos:
automatizacion y control industrial, automatizacién de procesos de oficina, redes y seguridad.

La suite PARSEC (Princeton Application Repository for Shared-Memory Computers) [11],
13), [10L [7, [8, 12] fue creada en Princeton en colaboracién con Intel para el diseno de una
nueva generacion de procesadores. La suite estd compuesta por trece aplicaciones multithread
representativas de programas emergentes de memoria compartida para multiprocesadores en chip
(CMPs). Se ha seleccionado PARSEC como carga de trabajo a utilizar durante el proyecto, por
lo que explicamos sus caracteristicas con mas detalle en el capitulo

Capitulo 3
La suite PARSEC

Durante este proyecto nos centraremos en PARSEC, ya introducido en el capitulo [2| por ser
un conjunto de benchmarks ampliamente utilizado, precompilado para varias plataformas y ya
preparado para ser simulado con Simics. Buena parte de las publicaciones mas relevantes en el
disefio de multiprocesadores utilizan PARSEC como referencia. En la tabla aparecen las trece
aplicaciones que componen la benchmark suite junto a una breve descripcion.

Aplicaciéon Descripcion

blackscholes Célculos financieros utilizando la ecuacién diferencial parcial Black-
Scholes.

bodytrack Visién por computador, deteccién y seguimiento de una persona.

canneal Optimizacién del coste de enrutamiento en el diseno de un chip.

dedup Compresion de datos usando deduplicacion.

facesim Simulaciéon del movimiento de un rostro humano para animacion.

ferret Buscador de imédgenes por similitud.

fluidanimate Simulacién fisica de fluidos para animacién.

fregmine Mineria de datos.

raytrace Aplica el algoritmo raytrace para animacién en tiempo real.

streamcluster | Resuelve el problema de online clustering.

swaptions Calcula los precios de una cartera de valores usando el modelo
Heath—Jarrow—Morton.

vips Procesado de imégenes.

x264 Codificacién de video en H.264.

Tabla 3.1: Vision general de las aplicaciones que componen la suite PARSEC.

Para abordar el problema del elevado coste en tiempo de las simulaciones, comenzamos
analizando el tiempo de simulacién de varias aplicaciones de PARSEC con Simics y GEMS.
Se observo que la simulacion temporal detallada de varios programas con ocho procesadores
resultaba mas de 1000 veces mas lenta que la ejecucion de las aplicaciones en nativo, y que
este valor seguiria aumentando segin incrementaramos el niimero de procesadores. Estudiando

9

CAPITULO 3. LA SUITE PARSEC

en mayor profundidad los médulos en los que la simulacién invierte mas tiempo, se descubrio
que gran parte de este tiempo corresponde al médulo Ruby de GEMS. Sin embargo, dentro del
moédulo la distribucién del tiempo es muy dispersa, dificultando en gran medida la optimizacién
del simulador. El estudio y conclusiones detalladas pueden consultarse en el anexo

Como la optimizacién del simulador no es algo trivial si no deseamos comprometer la
precisiéon de los resultados, continuamos estudiando las cargas de trabajo. Los desarrolladores
de los benchmarks proporcionan entradas de varios tamanos para utilizar con sus aplicaciones.
Segun propusieron KleinOsowski et al. [28], nos interesaran las siguientes entradas:

a. Una muy pequena para comprobar el correcto funcionamiento del simulador y realizar pequenas
pruebas, que tarde en ser simulada unos pocos minutos.

b. Otra mayor que nos permita obtener resultados preliminares de rendimiento.

c. Por dltimo, una entrada mas realista que nos permita obtener estadisticas de rendimiento
reales para la arquitectura que estemos analizando.

La ejecucién de las aplicaciones con las dos primeras entradas no es necesariamente represen-
tativa de la ejecucién con una entrada original completa. Por otro lado, hay una clara necesidad
de reducir el tiempo de simulacién para una entrada realista, que puede tardar desde unos pocos
dias hasta varias semanas o meses. La soluciéon pasa por encontrar una manera de reducir los
conjuntos de datos de entrada y, en consecuencia, los tiempos de ejecucién, manteniendo su
representatividad.

En concreto, PARSEC proporciona seis entradas de distintos tamanos:
e test Una entrada muy pequena para probar la funcionalidad bésica del programa.

e simdev Entrada muy pequena que garantiza un comportamiento del programa similar al
real, destinada a la prueba y desarrollo del simulador.

e simsmall, simmedium y simlarge Entradas de diferentes tamanos (pequena, mediana y
grande) adecuadas para el estudio de microarquitecturas con simuladores.

e native Entrada muy grande destinada a la ejecucién nativa. Consideraremos que se trata
de una aproximacién a la ejecucién con una entrada realista.

Cuando este benchmark se utiliza en investigacién, las aplicaciones se simulan con las entradas
pequena, mediana o grande (por ejemplo, [23] 2], [0l 38|, B3] entre muchas otras). Biena et al.
analizaron el escalado de las entradas en [10], considerando que las entradas para simulacién
deberian ser aproximaciones de la entrada nativa y ser capaces de proporcionar resultados
significativos. Pero en su estudio no compararon las entradas pequenia, mediana y grande con la
nativa, alegando que esta ultima tiene un valor practico muy limitado ya que es inviable utilizarla
en simulaciones. Por lo tanto, no esta demostrado que las entradas destinadas a simulacién sean
adecuadas para obtener resultados representativos y se utilizan simplemente porque el tiempo de
simulacién resulta conveniente.

En este proyecto, proponemos realizar un estudio de las diferentes entradas para cada

programa, incluyendo la nativa, para encontrar de qué manera se pueden lograr unos resultados
representativos de la ejecucién real con un tiempo de simulacién aceptable.

10

Capitulo 4
Metodologia

Este capitulo recoge la metodologia utilizada durante el proyecto. Se presentan las métricas seleccio-
nadas, las herramientas que se han elegido para obtenerlas y cémo se han usado.

4.1

Introducciéon a las métricas utilizadas

Para comenzar el estudio de la suite PARSEC es necesario seleccionar las métricas que se
utilizaran para caracterizar el comportamiento de los programas y establecer conclusiones. Se
listan a continuacion las estadisticas que se decidié recoger:

El instruction miz es el nimero de instrucciones de cada tipo que hay en un programa,
ya sean aritmético-légicas, de memoria,... Dentro de las de memoria podemos examinar
la proporcion de operaciones de lectura y escritura que se ejecutan con cada una de las
entradas de una aplicaciéon para comprobar si la relacién se ha mantenido al realizar el
escalado.

El footprint (huella) es el nimero total de paginas a las que un programa accede cuando es
ejecutado. Nos servird para ver cudnta memoria utiliza cada una de nuestras aplicaciones y
las diferencias existentes entre las entradas.

El TLB (Translation Lookaside Buffer) es una tabla utilizada en sistemas de memoria
virtual que almacena la direccién fisica asociada a la direccién virtual de la pagina para
acelerar el proceso de traduccién. Los fallos de TLB pueden tener en muchos casos gran
impacto en el rendimiento del sistema.

La tasa de fallos en cache, variando la capacidad de la misma. Frecuentemente, la tasa de
fallos no va decreciendo de forma continua al aumentar el tamafo de la cache, sino que se
mantiene en un cierto nivel y después baja bruscamente a otro inferior cuando la capacidad
es suficientemente grande como para que quepa la siguiente estructura de datos importante.

Una traza temporal del comportamiento de cada aplicacion en la cache, que nos permitira
ver la aparicion de los fallos a lo largo del tiempo y asi detectar posibles patrones repetitivos
y comparar las diferentes entradas con mayor detalle.

Para todas las métricas nos interesard tener en cuenta unicamente la regiéon de interés del
programa (region of interest o ROI), que es la parte que se ejecutard en paralelo al utilizar varios
threads. Es decir, eliminamos del analisis aquellas partes en las que estamos cargando los datos
que va a utilizar nuestra aplicacién y en las que se escribe el resultado final.

11

CAPITULO 4. METODOLOGIA

Aunque PARSEC es una benchmark suite destinada a estudiar el comportamiento de multi-
procesadores, todo el estudio se ha llevado a cabo ejecutando las aplicaciones con un solo thread,
lo cual nos permite analizar el comportamiento de los benchmarks y comparar las diferencias
entre las entradas. Los resultados obtenidos para el instruction mix y el footprint seran véalidos
al aumentar el ndmero de threads de la aplicacién, a pesar de que es posible que se ejecuten
nuevas instrucciones correspondientes a la sincronizaciéon de threads que alteren ligeramente el
instruction mix y que al utilizar mas threads se necesite asignar espacio dinamicamente para
alguna estructura de datos adicional que aumente el footprint.

También suponemos que las conclusiones obtenidas a partir de las tasas de fallos y trazas
temporales seran extrapolables a un entorno multiprocesador, aunque queda como trabajo futuro
confirmar esta hipdtesis. Un estudio més amplio queda fuera del alcance de este proyecto fin de
carrera debido a la limitaciéon temporal y la complejidad anadida al introducir variaciones en el
numero de threads y procesadores.

4.2 Footprint de la memoria

Para calcular el footprint hemos partido de una herramienta desarrollada dentro del gaZ por
Alastruey et al. [5]. Esta herramienta utiliza SHADE [35], un emulador de hardware SPARC, para
reconocer los accesos a memoria y usa esta informacién para ir almacenando el nimero de veces
que el programa accede a cada bloque de datos, siendo el tamano de bloque configurable. Al final
de la ejecucién obtenemos el footprint de la memoria para instrucciones y datos, diferenciando si
los accesos son de lectura o de escritura. Ademads, se ordenan los bloques en orden descendente
segun el nimero de referencias a cada uno de ellos y se selecciona el menor nimero de bloques
posibles que acumulen un porcentaje de accesos que nos interese. De esta forma conseguimos un
footprint de la memoria del 50 % o el 90 %, lo cual nos servird para tener una idea de la localidad
que presentan las aplicaciones.

Por ejemplo, en la figura [4.1] se muestra el footprint del 50 %, 90 % y 100 % para todas las
entradas de la aplicacion blackscholes. Noétese que la escala es logaritmica para facilitar la
representacién de los datos. Se ve que, en todos los casos, el 50 % de los accesos a memoria caen
sobre tinicamente 8 KB, y el 90 %, sobre unos 32 KB. El footprint total de la aplicacién va desde
unos 700 KB hasta mas de 600 MB dependiendo de la entrada, lo que nos hace concluir que este
programa presenta mucha localidad espacial.

En nuestro caso, nos interesaba ejecutar las aplicaciones en un Intel de 64 bits (en concreto,
nuestra maquina local es un Intel Core 2 Duo y en el cluster del departamento se dispone de
méquinas Intel Xeon), asi que no podiamos usar la herramienta directamente. Decidimos integrar
la parte correspondiente a las estructuras de datos y los calculos para obtener las métricas con
Pin [26], una herramienta de Intel para la instrumentacién dindmica de programas. Por otro
lado, nosotros queremos medir Uinicamente la regiéon de interés del programa y despreciar el
cddigo correspondiente a la inicializacion y finalizacién. Para ello, anadimos, mediante opciones
de configuracion, la posibilidad de comenzar y detener la instrumentacién al ejecutar funciones
determinadas o en las direcciones de PC que nos interese. Ademas, previendo que en un futuro
nos interesaria analizar los programas variando el niimero de threads, hemos anadido soporte para
programas multithread. Al medir el footprint de las aplicaciones de PARSEC hemos configurado
la herramienta con un tamano de bloque de 4KB para obtener como resultado los accesos a cada
pagina de la memoria.

12

4.3. OBTENCION DE LOS FALLOS DE TLB

256M |

64M

16M

7y

M ez 20

Footprint (Bytes)

256K

64K

16K

4K Il Il Il Il
pequefa mediana grande nativa

Figura 4.1: 50%, 90 % y 100 % del footprint de la aplicacién blackscholes

4.3 Obtencion de los fallos de TLB

El ordenador en el que estamos trabajando, un Intel Core 2 Duo, tiene dos niveles de TLB con la
configuracion que se describe en la tabla[d.I] Las lecturas de datos pasan por el TLB de datos de ni-
vel L0, y si fallan van al nivel superior. En cambio, las escrituras van directamente al nivel superior.

Tipo de TLB Tamano de pagina | Asociatividad | Numero de entradas
TLB de datos (L0) 4 KB 4 16
TLB de datos 4 KB 4 256
TLB de instrucciones 4 KB 4 128

Tabla 4.1: Configuracién del TLB en un Intel Core 2 Duo

Para obtener los fallos de TLB hemos utilizado VTune [25], una herramienta de profiling
para el estudio del comportamiento de un programa que resulta muy til para la optimizacién
del rendimiento. Para monitorizar el rendimiento del hardware, VTune utiliza los contadores
hardware del procesador y muestreo basado en eventos (event based sampling o EBS). Este
método se basa en interrumpir la aplicacién cada cierto nimero de eventos y anotar en qué
punto del codigo se encuentra. De esta manera se obtiene un histograma del niimero eventos
basado en las lineas de cddigo en que se producen. Como se utiliza este método de muestreo esta-
distico, hemos tomado como resultados finales la media de los valores obtenidos en diez ejecuciones.

En este caso hemos tomado las estadisticas de la ejecucién completa de la aplicacién, no
Unicamente de la regién de interés, ya que habria sido necesario incorporar instrucciones especiales
al cédigo y recompilar las aplicaciones, lo que habria complicado mucho el proceso. De todas
formas, la region de interés supone la mayor parte del tiempo total de ejecucion de las aplicaciones.

13

CAPITULO 4. METODOLOGIA

Todos los contadores de eventos hardware disponibles para los procesadores Intel pueden
consultarse en [24]. En concreto, nosotros hemos utilizado los contadores descritos en la tabla
para monitorizar el rendimiento del TLB.

Contador Descripcién

DTLB MISSES.LO MISS LD | Cuenta el nimero de fallos en el TLB de datos de nivel
0 debidos a instrucciones load. Incluye fallos detectados
como resultado de accesos especulativos.

DTLB__MISSES.ANY Cuenta el namero de fallos en el TLB de datos. Incluye
fallos detectados como resultado de accesos especulativos.
DTLB MISSES.MISS LD Cuenta el numero de fallos en el TLB de datos debidos a

instrucciones load. Incluye fallos detectados como resultado
de accesos especulativos.

DTLB MISSES.MISS ST Cuenta el ntimero de fallos en el TLB de datos debidos a ins-
trucciones store. Incluye fallos detectados como resultado
de accesos especulativos.

Tabla 4.2: Contadores hardware utilizados para medir los fallos de TLB

4.4 Instrumentacion del programa utilizando VALGRIND

VALGRIND [3] es un sistema de instrumentaciéon que proporciona algunas herramientas para el
depurado y profiling de programas y permite construir otras. En concreto, Cachegrind realiza
una simulacién detallada de las caches I1 (cache de instrucciones de primer nivel), D1 (cache
de datos de primer nivel) y L2 (cache compartida de segundo nivel), devolviéndonos el nimero
de accesos a memoria, fallos de cache e instrucciones ejecutadas para cada linea de codigo.
Nosotros hemos utilizado Callgrind, una extensién de la herramienta anterior que nos proporcio-
na también informacion relativa al grafo de llamadas y algunas opciones extra de instrumentacion.

Para obtener estadisticas tinicamente de la regién de interés, utilizamos las opciones de
configuracion de VALGRIND para indicarle que ponga a cero todos los contadores justo antes de
comenzar la zona de codigo que nos interesa y que escriba las estadisticas al terminarla.

Hemos usado VALGRIND para obtener el instruction mix, ya que nos proporciona informacién
del nimero de operaciones de lectura y escritura que ejecuta el programa.

También queremos analizar el niimero de fallos de lectura y escritura que se producen en la
cache de datos. Ademas, es interesante observar cémo va variando el nimero de fallos cuando
incrementamos la capacidad de la cache. Este estudio suele hacerse con un tnico nivel de cache,
pero como VALGRIND nos obliga a utilizar necesariamente dos niveles, hemos ido variando
el tamano de la cache D1 y hemos mantenido una L2 grande siempre del mismo tamano. En
concreto, se han analizado caches cuyo tamano crece exponencialmente desde 4 KB hasta 32
MB, con asociatividad 8 y tamaiio de bloque de 64 B.

14

4.5. ESTUDIO DE LA JERARQUIA DE MEMORIA MEDIANTE SIMULACION

4.5 Estudio de la jerarquia de memoria mediante simulaciéon

Para el estudio de la jerarquia de memoria se han realizado varias simulaciones utilizando
Simics 3.0.31, ya introducido en el capitulo 2] En el anexo [C]se describe con mayor detalle la
metodologia seguida para llevar a cabo las simulaciones. El uso de este simulador nos permite
ejecutar los programas de manera controlada en arquitecturas con diferentes configuraciones.
Nosotros simularemos una arquitectura UltraSPARC IIT Plus en la que ejecutaremos el sistema
operativo Solaris 10, partiendo de una configuracion ya elaborada por Jorge Albericio dentro del
gaZ.

Una gran ventaja de utilizar un simulador es la posibilidad de crear checkpoints, que permiten
guardar toda la configuracién del punto de la simulacién en el que nos encontramos para volver a
él rapidamente mas tarde. Por ejemplo, lo primero que serd necesario hacer es iniciar el sistema
operativo, pero podemos guardar un checkpoint al terminar y comenzar a partir de ahi el resto
de las veces.

Para ejecutar los benchmarks en el sistema simulado necesitaremos primero copiar todos los
ficheros desde nuestro ordenador. Simics nos permite copiar toda la informacién que deseemos
montando en el sistema simulado, target, una carpeta correspondiente a la maquina en la que
estamos simulando, host. Ademas, podemos comenzar a ejecutar las aplicaciones y crear un
checkpoint antes de iniciar la regién de interés, de manera que no tengamos que volver a simular
el codigo que precede a la ROI el resto de las veces.

Decidimos utilizar el simulador para analizar también los fallos de lectura y escritura variando
la capacidad de la cache. En el estudio presentado en el anexo [B| se habia utilizado el médulo
Gems para simular la jerarquia de memoria, pero en este caso no necesitidbamos mucho detalle
en los resultados. Por lo tanto, optamos por utilizar el sistema de caches proporcionado por
Simics, que no ralentiza la simulacién tanto como Gems. Ademads, a diferencia de VALGRIND,
Simics si que nos permite utilizar Unicamente una cache para datos y obviar el resto de la
jerarquia de memoria. Al igual que antes, simulamos una cache con tamafno desde 4 KB a 32
MB, asociatividad 8 y tamano de bloque de 64 B.

Para que las estadisticas recogidas correspondan sélo al cédigo de usuario y no a instrucciones
del sistema, hemos anadido una funciéon que se ejecuta cada vez que se cambia entre modo de
usuario y modo protegido y se encarga de activar y desactivar la cache para que las instrucciones
de sistema no pasen por ella.

Simics también ofrece la posibilidad de detener la ejecuciéon tras un ntimero concreto de
instrucciones o ciclos, lo que nos ha permitido obtener la traza temporal de los fallos en cache.
Hemos realizado estas simulaciones con una cache de 64 KB. Para las entradas pequena, mediana
y grande se han obtenido las estadisticas cada diez millones de instrucciones. Para la entrada
nativa resultaba demasiado costoso en tiempo tomar las estadisticas tantas veces. Se considerd
aumentar el intervalo a cien millones de instrucciones, pero para poder comparar estos resultados
con los anteriores era importante mantenerlo constante durante todas las pruebas. Finalmente,
se decidié tomar las estadisticas cada diez millones de instrucciones, pero no durante toda la
ejecucion completa, sino en diez intervalos de tamano igual a la entrada grande escogidos al
azar. De este modo podiamos obtener una muestra representativa y facilmente analizable de la
totalidad de la ejecucion, pero reduciendo notablemente el tiempo de simulacion.

15

CAPITULO 4. METODOLOGIA

Para acelerar los periodos de simulacién correspondientes a intervalos en los que no tomamos
medidas, dejamos de utilizar la cache y la funcién que se ejecuta al cambiar entre modo de usuario
y modo protegido. El problema de utilizar este método es que las estadisticas correspondientes al
inicio del intervalo no son validas porque la cache todavia no contiene ningin bloque (en [40]
hacen referencia a este problema y proponen una solucién para el cdlculo de la tasa de fallos).
Por ello, para que todos los resultados recogidos durante el intervalo sean validos, calentaremos
las caches durante cien millones de ciclos antes de comenzar de manera que contengan datos
como si hubieran estado utilizindose durante toda la ejecuciéon de la aplicacion.

16

Capitulo 5

Resumen de resultados

Este capitulo presenta las principales ideas obtenidas a partir del anélisis del tiempo de simulacién y
el impacto del tamaiio de las entradas en la jerarquia de memoria. Se incluye también un resumen
de la seleccién de las entradas que proponemos para obtener resultados representativos en el menor
tiempo posible. En los anexos [B]y [D] se describen con mayor detalle los resultados y el razonamiento
seguido para la seleccién de entradas.

5.1 Analisis del tiempo de simulacién

Recordamos que un gran obstaculo para las simulaciones es que resultan muy costosas en tiempo.
Como una primera aproximacion al problema, se realizé un analisis del tiempo de simulacién
cuyos detalles y conclusiones pueden consultarse en el anexo

Primero, analizamos cuanto se ralentizaba la ejecucién de las aplicaciones de PARSEC que
presentan una mayor tasa de fallos en cache (segun [§]) al simularlas con Simics y GEMS. Las
simulaciones funcionales, usando sélo Simics, con uno y dos procesadores resultan entre 1.5 y
5 veces mas lentas que la ejecucién de las aplicaciones en nativo. Cuando anadimos el médulo
de GEMS para realizar simulacién temporal, teniendo en cuenta los detalles de la jerarquia de
memoria y la coherencia, la simulacién con un procesador llega a ser hasta 177 veces maés lenta que
la ejecucién nativa, y con dos procesadores este valor llega hasta 385. Esta cifra sigue aumentando
a medida que incrementamos el nimero de procesadores, alcanzando valores superiores a 1000
con ocho procesadores.

A continuacion, se estudié en mayor profundidad en qué médulos del simulador se invierte
més tiempo de ejecucion esperando encontrar un cuello de botella que pudiéramos optimizar para
lograr una mejora en el rendimiento. Utilizamos tres aplicaciones con diferentes caracteristicas en
cuanto al ambito de aplicacion, tipo y granularidad del paralelismo y tamano del working set, y
simulamos dos, cuatro y ocho procesadores. Los resultados muestran que, al simular la jerarquia
de memoria completa, gran parte del tiempo de la simulacién corresponde a la ejecucion del
médulo Ruby de GEMS, pero dentro de este médulo la distribucién del tiempo es muy dispersa,
eliminando la posibilidad de que una mejora en una zona especifica de cédigo tenga un impacto
relevante en la ejecucion global.

17

CAPITULO 5. RESUMEN DE RESULTADOS

5.2 Impacto del tamano de las entradas en la jerarquia de me-
moria

En esta seccién sintetizamos los resultados obtenidos a partir de los experimentos destinados a
analizar el impacto del tamano de las entradas en la jerarquia de memoria descritos en el capitulo

5.2.1 Instruction mix

En la figura se muestra el porcentaje de cada tipo de instruccién (lectura, escritura y otras)
que se ejecuta en las aplicaciones de la suite PARSEC con cada una de las entradas. Claramente
podemos ver que la proporcién de instrucciones de lectura y escritura respecto del total se
mantiene aunque aumentemos el tamano de la entrada. Por otro lado, el niimero de instrucciones
si que es significativamente mayor cuanto més grande es la entrada (los valores concretos pueden
consultarse la figura . Esto nos indica que, efectivamente, las entradas mas pequenas son
una aproximacion reducida de las mas grandes.

120
YlLectura m—
%Escritura mmm—

%Otras ——m
100

80 |

60 -

40 -

20 -

OO
() .
%l
5

Blackscholes Bodytrack Canneal Dedup Facesim Ferret Fluidanimate Fregmine Raytrace StreamclusterSwaptions Vips X264

Figura 5.1: Instruction mix de las aplicaciones de PARSEC con sus entradas pequena, mediana, grande y nativa.

5.2.2 Footprint

Representamos el footprint en la figura [5.2], en la que aparece el nimero de bytes utilizado en
la ejecucion de todas las aplicaciones con sus entradas (recordamos que cada pégina tiene un
tamano de 4 KBytes). Diferenciamos ademas los bytes que corresponden a datos del programa
y los que almacenan las instrucciones ejecutadas. El tamano de la memoria que utiliza cada
aplicacion para instrucciones se mantiene constante, pero la que se usa para datos aumenta con
el tamano de la entrada, lo que nos lleva a pensar que las entradas mayores realizaran un uso
mas exhaustivo de la memoria y, por lo tanto, ejerceran mas presion sobre la jerarquia.

Por otro lado, se han creado gréficas con el footprint del 50 %, 90 % y 100 %, tal y como
se ha explicado en la seccién (vefamos ya un ejemplo en la figura y podemos analizar
los resultados para el resto de las aplicaciones en las figuras y . Vemos que todas las
aplicaciones presentan mucha localidad, ya que la mayor parte de los accesos se concentran en

18

5.2. IMPACTO DEL TAMANO DE LAS ENTRADAS EN LA JERARQUIA DE MEMORIA

1G Instrucciones ——— -
Datos

256M

64M

16M

M i
M i
256K I I

64K —
16K -

PR,
() & .
9(’&04?)2?179
5%

Footprint (bytes)

[

Blackscholes Bodytrack Canneal Dedup Facesim Ferret Fluidanimate Freqmine Raytrace StreamclusterSwaptions Vips X264

Figura 5.2: Footprint de las aplicaciones de PARSEC con sus entradas pequefia, mediana, grande y nativa.

un conjunto pequeiio de las paginas de memoria.

5.2.3 Fallos de TLB

En la figura representamos en nimero de fallos por cada mil instrucciones que generan las
operaciones de lectura y escritura en los dos niveles del TLB. Estos fallos no siguen ya el mismo
patrén que se veia en el instruction mix y en el footprint. El nimero de fallos no es mayor con
las entradas de mayor tamaro, sino que va disminuyendo segin pasamos a entradas mas grandes
(blackscholes, bodytrack, ferret, raytrace y vips) o crea una forma de “U”, es decir, las
entradas pequena y nativa presentan méas fallos que la mediana y grande (canneal, dedup,
fluidanimate, swaptions y x264). Estos resultados nos indican que no es correcto suponer que
las entradas nativas presentaran mas fallos y que cuanto méas grande sea la entrada més nos
acercaremos a una ejecucion real.

60

LECTURA: FALLOS EN DTLB L0 Y ACIERTOS EN DTLB (MPKI)
I LECTURA: FALLOS EN DTLB LO Y DTLB (MPKI) ==—=

50 ESCRITURA: FALLOS EN DTLB (MPKI) =

IOQ;Z&ZQ&L
0% 9
’),9’79@

Blackscholes Bodytrack ~ Canneal Dedup Facesim Ferret Fluidanimate Fregmine Raytrace StreamclusterSwaptions Vips X264

Figura 5.3: Fallos por cada mil instrucciones en el TLB de datos de las aplicaciones de PARSEC con sus entradas
pequena, mediana grande y nativa. Se muestran los fallos que se producen para las lecturas que acceden al nivel
LO (DTLB LO0), y los fallos de lectura y escritura del nivel superior (DTLB)

19

CAPITULO 5. RESUMEN DE RESULTADOS

5.2.4 Tasa de fallos en cache y traza temporal

Esta seccion recoge los fallos en cache por cada mil instrucciones (MPKI) para las diferentes
entradas variando la capacidad de la cache, con arquitectura Intel y Sparc, y las trazas temporales
de fallos. Presentaremos en detalle los resultados para la aplicacién blackscholes y el resto
podran consultarse en el anexo

En las figuras y representamos las tasas de fallos en cache para una arquitectura
Intel, utilizando una politica write-allocate y copy-back, y para una arquitectura Sparc, tanto
con politica write-allocate y copy-back como con non-write-allocate y write-through. En el eje x
(horizontal) aparecen todos los tamanos de cache utilizados y, para cada uno de ellos, las cuatro
entradas de la aplicacién. En el eje y (vertical) representamos el niimero de fallos en lectura
y escritura expresados en MPKI. En todos los casos se ve cémo, segiin aumenta la capacidad
de la cache, el nimero de fallos para las entradas mas pequenas va disminuyendo drastica-
mente a partir del punto en que las estructuras principales caben en la cache. Por lo tanto, en
este caso la entrada nativa si que genera mas fallos en cache y estresa mas la jerarquia de memoria.

Si nos fijamos en las dos graficas para la arquitectura Sparc (ﬁgura podemos apreciar
claramente que la de politica non-write-allocate presenta muchos més fallos en escritura que la
write-allocate. Esto se debe a que no traemos nunca a memoria los bloques cuando se produce un
fallo en escritura, asi que se fallara repetidamente. De todas formas, vemos que la relaciéon entre
los fallos de las entradas se mantiene constante sin excepcién. Esto se repite en los apartados
siguientes y lo tendremos en cuenta para obtener las conclusiones en los casos en que no se
dispone de todos los resultados.

Para las trazas temporales presentamos dos graficas de cada una de las ejecuciones o muestras
(figuras y . En la gréafica superior aparece el niimero absoluto de accesos a memoria en
cada intervalo, para lectura y escritura. En la parte inferior, podemos ver el nimero de fallos
por cada mil instrucciones. En el eje x se indica el punto de ejecucién de la aplicacién en que
nos encontramos, representado en el niimero de intervalos de diez millones de ciclos. Para las
entradas pequena, mediana y grande, la longitud del eje x se corresponde con el nimero de
ciclos del total de la ejecucién del programa. Por lo tanto, la ejecucion con la entrada pequena
tarda unos 180 millones de ciclos, con la entrada mediana, algo méas de 700 millones y con la
entrada grande, casi 3000 millones. Para la entrada nativa se representan por separado cada
una de las diez muestras tomadas, y mirando los ciclos del eje x se puede ver a qué parte de
la ejecucion corresponden. Ademas, el procesador de Simics es muy simple y mantiene un IPC
(instrucciones por ciclo) de uno en todo momento, asi que en un intervalo de diez millones de
ciclos se ejecutaran diez millones de instrucciones, aunque el nimero de instrucciones de usuario
serd ligeramente menor.

Analizando las trazas temporales vemos que el nimero de fallos se mantiene practicamente
constante a lo largo de toda la ejecucién, presentado pequenos picos periddicamente.

Las mismas graficas para el resto de aplicaciones se presentan en las figuras [D.5] a
acompanadas de explicaciones detalladas adicionales.

20

5.2

. IMPACTO DEL TAMANO DE LAS ENTRADAS EN LA JERARQUIA DE MEMORIA

MPKI

Lectura
Escritura ===

4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1024KB 2048KB 4096KB 8192KB 16384KB 32768KB

Figura 5.4: Fallos por cada mil instrucciones en la cache de datos para blackscholes ejecutado en Intel. Se
contabilizan dnicamente los fallos producidos por instrucciones de usuario y se utiliza una politica write-allocate y
copy-back.

MPKI

MPKI

Lectura
Escritura ===

{1 T Y O |

4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1024KB 2048KB 4096KB 8192KB 16384KB 32768KB

(a) write-allocate y copy-back, sélo instrucciones de usuario

N W A 00O N 0 © O
T

Lectura
Escritura === -

4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1024KB 2048KB 4096KB 8192KB 16384KB 32768KB

(b) non-write-allocate y write-through, instrucciones de usuario y sistema

Figura 5.5: Fallos por cada mil instrucciones en la cache de datos para blackscholes ejecutado en Sparc.

21

CAPITULO 5. RESUMEN DE RESULTADOS

310°
2108 |
2.10°
2.108
1106
5.10°
0<1O0 T T T T T T T T]

NuUmero de accesos

MPKI
oNvAO®
T

T
0 2 4 6 8 10 12 14 16 18
Ciclos (10 millones)

Lectura —— Escritura

(a) pequeiia

310°
2108
210° -
2.10°
1106
510°
0-10° ; ; ; ‘ ‘ : :
0 10 20 30 40 50 60 70

Nimero de accesos

MPKI
oNvAO®
T

T T T T T T T
0 10 20 30 40 50 60 70
Ciclos (10 millones)

Lectura Escritura

(b) mediana

310°
2106 |
2.108
2.10% |
1108 |
5.10° |
0-10° ‘ ‘ ‘ | |

0 50 100 150 200 250

Nimero de accesos

MPKI
onNAO®
T

T T T T T
0 50 100 150 200 250
Ciclos (10 millones)

Lectura Escritura

(c) grande
Figura 5.6: Traza temporal de fallos en cache para blackscholes con entradas pequena, mediana y grande,

ejecutado en Sparc. Se contabilizan inicamente los fallos producidos por instrucciones de usuario y se utiliza una
politica write-allocate y copy-back.

22

5.2.

IMPACTO DEL TAMANO DE LAS ENTRADAS EN LA JERARQUIA DE MEMORIA

310°
210°
210°
210°
1.10°
510°
010°

Numero de accesos

MPKI
ocunwsNPN®

310°
210°
210°
210°
1-10°
510°
010°

Nimero de accesos

MPKI
CanwANON®

Nimero de accesos
S
S,
>

MPKI
cunvwANDN®

310°
210°
210°
210°
1-10°
510°
010°

Numero de accesos

MPKI
ocunwsOPN®

3.10°
210°
210°
210°
1-10°
5.10°
010

Nimero de accesos

MPKI
canwANON®

T T T T
100 150 200 250 300

P\ A A A

T
150
Ciclos (10 millones)

T T 1
100 200 250 300

Lectura Escritura

3400 3450 3500 3550 3600 3650 3700

A

3550 3600 3650 3700

Ciclos (10 millones)

3400 3450 3500

Lectura Escritura

13800 13850 13900 13950 14000

13850 13900 13950 14000

Ciclos (10 millones)

13800

Lectura Escritura

T T T T T T
25900 25950 26000 26050 26100 26150 26200

25900 25950 26000 26050 26100 26150 26200
Ciclos (10 millones)

Lectura Escritura

37250 37300 37350 37400 37450 37500 37550

37400 37450 37500 37550

Ciclos (10 millones)

37250 37300 37350

Lectura Escritura

Numero de accesos

Nimero de accesos

Nimero de accesos

Numero de accesos

Nimero de accesos

310°
210°
210°
210°
1.10°
5.10°
010°

MPKI
C=NWROBN®

310°
210°
210°
2.10°
1108
510°
010°

MPKI
RN N LY

310°
210°
210°
210°
1-10°
510°
010°

MPKI
R AN LY

MPKI
© O=NWRNDN®

3.10°
210°
210°
210°
1108
510°
010°

MPKI
RN N LY

T
400 450 500

T T T 1
550 600 650 700

T
400 450 500

T T T !
550 600 650 700
Ciclos (10 millones)

Lectura Escritura

8950 9000

A

9050

9100 9150 9200

8950 9000

9050

9100 9150 9200
Ciclos (10 millones)

Lectura Escritura

24700 24750

24800

24850 24900 24950

A

24700 24750

24800

24850 24900 24950

Ciclos (10 millones)

Lectura Escritura

T T T
31850 31900 31950 32000

31850 31900
Ciclos (10 millones)

31950 32000

Lectura Escritura

41150 41200

41250 41300 41350 41400

41150 41200

41250 41300 41350 41400

Ciclos (10 millones)

Lectura Escritura

Figura 5.7: Traza temporal de fallos en cache para blackscholes con entrada nativa, ejecutado en Sparc.
Aparecen diez muestras tomadas al azar del total de la ejecuciéon. Se contabilizan inicamente los fallos producidos
por instrucciones de usuario y se utiliza una politica write-allocate y copy-back.

23

CAPITULO 5. RESUMEN DE RESULTADOS

Principalmente, debemos destacar que no siempre presentan més fallos las entradas de mayor
tamano. En algunos casos se aprecia claramente que al aumentar el tamano de la cache, los
fallos de las entradas de mas pequenas van disminuyendo drasticamente a partir del punto en
el que las estructuras de datos principales caben en la cache (blackscholes, fluidanimate y
streamcluster). Pero hay otros casos en los que no se aprecia apenas ninguna diferencia entre
las cuatro entradas (facesim y swaptions) o en los que hay entradas de menor tamano que
presentan mas fallos que las nativas (bodytrack, ferret, freqmine y vips). En cualquier caso,
en contra de lo que se pudiera pensar anteriormente, los fallos para las entradas de menor tamarfio
son perfectamente comparables a los de la entrada nativa. Una aproximacién como la de utilizar
una cache de tamano extremadamente pequefio con una entrada pequena para aproximar el
comportamiento de una ejecucién nativa ([16]) serd totalmente incorrecta. También es impor-
tante senalar que algunos de los benchmarks presentan un nimero de fallos especialmente bajo,
haciendo que su uso para el estudio de la jerarquia de memoria sea muy inadecuado (raytrace y
swaptions).

La traza temporal de los fallos en cache nos aporta informacién muy 1til en la mayor parte
de los casos. Hay algunos benchmarks en los que los fallos se mantienen estables durante toda
la ejecucion (blackscholes, canneal, streamcluster, swaptions y vips), pero hay otros en
los que se distingue claramente un patrén que se repite para las cuatro entradas (bodytrack,
facesim, fluidanimate y raytrace). Esto ultimo nos ha permitido ademés crear una corres-
pondencia directa entre la forma de la traza y las caracteristicas de cada entrada, sabiendo qué
se estd ejecutando en cada momento.

5.3 Seleccion de entradas

Ante los resultados obtenidos en la seccién resultaba claro que en la mayor parte de los
casos se podia conseguir una ejecucién representativa de la nativa sin necesidad de simular
tantas instrucciones. Por lo tanto, realizamos una seleccién de las entradas mas adecuadas que
se deberan utilizar para llevar a cabo un estudio de la jerarquia de memoria. Para realizar
la seleccién utilizamos varias técnicas distintas, segin las necesidades de cada aplicacién. Las
técnicas empleadas son las siguientes:

e Ejecucion de una seccién de la entrada nativa. Cuando hay diferencias entre las entradas
de diferente tamano pero el niimero de fallos a lo largo de la ejecucién de la entrada nativa
se mantiene uniforme, es suficiente con ejecutar una seccién de la entrada nativa para
obtener resultados representativos de la simulacién completa. En este caso habra que tener
en cuenta que, si hay que ejecutar una seccién tomada de un punto central o aleatorio de
la regién de interés, serd necesario calentar las caches previamente.

e Uso de una entrada de tamano menor. Hay casos en los que no hay diferencias entre las
entradas o en los que una entrada de menor tamano resulta méas adecuada por presionar
mas a la jerarquia de memoria.

e Uso de una nueva entrada. En algunas aplicaciones hemos detectado que todas las entradas
realizan repeticiones de algiin patrén. Las entradas pequenas tienen menos iteraciones y
estructuras de menor tamano y la entrada nativa hace muchas repeticiones con estructuras
mayores. Para conseguir una ejecucion representativa de la nativa pero en menor tiempo
podemos hacer tantas iteraciones como la entrada de menor tamano, pero realizarlas con
unas estructuras tan grandes como las de la entrada mas grande.

24

5.3. SELECCION DE ENTRADAS

En la tabla indicamos qué técnica se ha utilizado para la seleccién de la entrada de cada
benchmark y algiin comentario adicional que explica brevemente en qué consistiria la ejecucion.
Para mas detalles del proceso seguido para realizar la seleccién en cada caso se puede consultar

el anexo

Aplicacion Técnica Comentario
blackscholes Seccion de la nativa Ejecutar primeros 750 millones de instrucciones de
la ROL.
bodytrack Nueva entrada Utilizar 1 fotograma con 4000 particulas.
.y . Ejecutar los primeros 1500 millones de instrucciones
canneal Secciéon de la nativa
de la ROI.
dedup Entrada nativa El pipeline del algoritmo estd muy desbalanceado, el
escalado de las entradas es muy malo.
Entrada d -
facesim . raN & €€ MEUOT | trgar 1a entrada pequena.
tamano
Entrada de menor Us/ar l'a e.ntrada pequ'eﬁa p'ara obtener la gje'cuci(')n
ferret ~ mas similar a la nativa. Si se desea maximizar el
tamano ,
numero de fallos en cache, usar la entrada grande.
fluidanimate Nueva entrada Utilizar 5 fotogramas con 500000 particulas.
. Entrada de menor | Usar la entrada pequena, que es la que mas fallos en
fregmine ~
tamano cache presenta.
Usar 3 fotogramas con 10 millones de poligonos y
resolucion 1920x1080. Aplicacion poco adecuada para
raytrace Nueva entrada
el estudio de la jerarquia de memoria porque presenta
muy pocos fallos en cache.
streamcluster | Seccidn de la nativa Ejecutar 10000 millones de instrucciones saltando
los 5000 millones al inicio de la ROI.
' Entrada de menor Usar la entrada pequeﬁa. Apl/z'cacio’n POCO gdecuada
swaptions tamadio para el estudio de la jerarquia de memoria porque
presenta muy pocos fallos en cache.
vios Entrada de menor | Usar la entrada pequenia, que es la que mas fallos en
P tamano cache presenta.
. . Tomar cuatro muestras de 20000 millones de instruc-
x264 Seccién de la nativa | . .
ciones en puntos aleatorios de la ROL.

Tabla 5.1: Seleccién de las entradas a utilizar con las aplicaciones de PARSEC para conseguir una ejecucién
representativa en un tiempo razonable.

25

26

Capitulo 6
Conclusiones y trabajo futuro

6.1 Conclusiones a nivel técnico y trabajo futuro

La simulacién es imprescindible para el estudio y diseno de nuevas arquitecturas de computadores,
suponiendo un problema fundamental su elevado coste en tiempo. Durante este proyecto se ha
abordado dicho problema utilizando el simulador Simics [30] con el médulo GEMS [31] y la
benchmark suite PARSEC [13].

Comenzamos realizando un estudio del tiempo de simulaciéon de Simics y GEMS, a partir del
cual determinamos que el slowdown de las simulaciones aumenta linealmente con el niimero de
procesadores simulados, llegando a adoptar valores superiores a 1000 con s6lo ocho procesadores.
A pesar de que gran parte del tiempo de ejecuciéon se debe al médulo Ruby de GEMS, la
distribucién del tiempo dentro del mismo es muy dispersa. La inexistencia de un cuello de botella
en el simulador dificulta en gran medida la aplicacién de una optimizacién que tenga un efecto
suficientemente apreciable en el tiempo total de simulacion.

Ya que es inviable optimizar el simulador, se han buscado cargas de trabajo més ligeras que
permitan obtener resultados representativos sin suponer tiempos de simulacién excesivamente
elevados. Se ha analizado el comportamiento de las trece aplicaciones de la suite PARSEC sobre
la jerarquia de memoria del procesador, utilizando las entradas pequena, mediana, grande y
nativa. La creencia generalizada sostiene que la entrada nativa es la mas cercana a una ejecucion
real y presionara mas la jerarquia de memoria, siendo el resto de entradas aproximaciones que
resultardn menos precisas.

Los resultados obtenidos del andlisis del instruction mix y el footprint de las entradas de
cada aplicacién apoyan la idea de que las entradas de menor tamano son versiones reducidas de
la entrada nativa que presionardn menos la jerarquia de memoria. Estos experimentos se han
realizado ejecutando las aplicaciones con un tnico thread, aunque los resultados obtenidos para
el instruction mix y el footprint serdn véalidos al aumentar el nimero de threads de la aplicacion.
La verificacién de esta afirmacion queda pendiente como trabajo futuro.

Observando el nimero de fallos de TLB nos damos cuenta de que no obtenemos necesaria-
mente més fallos con las entradas de mayor tamano, lo que nos hace empezar a pensar que es
probable que las entradas nativas no ejerzan mayor presion sobre la jerarquia de memoria y crea
la necesidad de realizar un estudio en mayor profundidad.

Se ha analizado la tasa de fallos en cache para todas las entradas de los programas variando

27

CAPITULO 6. CONCLUSIONES Y TRABAJO FUTURO

la capacidad de la cache tanto en una arquitectura Intel (utilizando VALGRIND) como en
Sparc (mediante simulacion con Simics). Ademads, se han obtenido trazas temporales de los fallos
utilizando Simics. Por completitud de los resultados, también habria que anadir las estadisticas
de las simulaciones que no han terminado a tiempo para la entrega del proyecto. A partir de
estos resultados podemos concluir sin lugar a dudas que no se cumple la creencia popular que
indica que las entradas mayores presentan més fallos en cache. Hay aplicaciones en las que el
numero de fallos disminuye a medida que aumenta el tamano de la entrada, y otras en las que
practicamente no varia. En cualquier caso, no es cierto que la tasa de fallos sea notablemente
mas elevada para la entrada nativa que para el resto, lo cual prueba que aproximaciones como
reducir significativamente el tamano de la cache al utilizar una entrada de menor tamano para
intentar reproducir un comportamiento realista son incorrectas.

Como resultado final del proyecto, hemos presentado una seleccion de las entradas mas
adecuadas para cada aplicacion para llevar a cabo un estudio de la jerarquia de memoria en
un tiempo razonable, ya sea por ser mas representativas de la entrada nativa o por presentar
tasas de fallos mas elevadas. En algunos casos se propone ejecutar iinicamente una seccién de la
entrada nativa, en otros, se propone utilizar una de las entradas de menor tamano y en otros, se
indican los pardmetros de una entrada nueva distinta de todas las que ya existen. Ademads, se
senalas las aplicaciones que presentan un nimero de fallos excesivamente bajo resultando, por
tanto, inadecuadas para estudiar la jerarquia de memoria.

El estudio de tasas de fallos y trazas temporales se ha realizado sobre un nivel de memoria
cache ejecutando las aplicaciones con un solo thread, a pesar de que la suite PARSEC esta
destinada al andlisis de multiprocesadores. Pensamos que nuestras conclusiones seguiran siendo
validas en un entorno multiprocesador, aunque influira el tipo de paralelismo utilizado en cada
aplicacion. Esta hipodtesis deberia ser confirmada con un estudio que incluyera la variacién en el
numero de threads y procesadores que queda planteado como trabajo futuro. De todas formas,
usar nuestra seleccién de entradas ofrece mayores garantias de obtener resultados validos que
usar una entrada de menor tamano simplemente por mantener un tiempo de simulacién razonable.

6.2 Conclusiones a nivel personal

La experiencia del desarrollo de este proyecto me ha resultado muy positiva. Principalmente,
me ha servido como introduccién a la investigacién. Me ha ayudado a decidir que me gustaria
continuar con esta linea de trabajo y estudiar un master y un doctorado dentro de la arquitectura
de computadores.

He aprendido que en investigacién es necesario tener muchas cosas en cuenta, y para eso
resulta extremadamente atil compartir tus ideas con otras personas que pueden aportarte nuevos
puntos de vista o indicarte qué se te ha olvidado considerar. Ademads, es importante tener claro
en todo momento qué objetivos intentamos conseguir y planificar previamente lo que se va a
hacer para no realizar trabajo intitil o redundante.

También he podido aplicar directamente los conocimientos adquiridos durante la carrera en
las asignaturas de arquitectura de computadores. Ademas, las destrezas generales adquiridas a lo
largo de los 1ltimos afios me han servido para aprender rdpidamente las nuevas herramientas,
adaptarme a la metodologia de trabajo y resolver problemas con eficacia.

28

Bibliografia

1]
2]
3]
[4]

Gnuplot. http://www.gnuplot.info/ (Ultimo acceso agosto 2011).
Simulador gem5. http://www.gem5.org/Main_Page (Ultimo acceso agosto 2011).
Valgrind. http://valgrind.org/ (Ultimo acceso agosto 2011).

N. Agarwal, T. Krishna, Li-Shiuan Peh, and N.K. Jha. Garnet: A detailed on-chip network
model inside a full-system simulator. In Performance Analysis of Systems and Software,
2009. ISPASS 2009. IEEE International Symposium on, pages 33 —42, 2009.

Jesus Alastruey, Jose Luis Briz, Pablo Ibdnez, and Victor Vifnals. Software demand, hardware
supply. IEEE Micro, 26:72-82, 2006.

T. Austin, E. Larson, and D. Ernst. Simplescalar: an infrastructure for computer system
modeling. Computer, 35(2):59 —67, feb 2002.

Nick Barrow-Williams, Christian Fensch, and Simon Moore. A communication characte-
rization of splash-2 and parsec. In Proceedings of the 2009 International Symposium on
Workload Characterization, October 2009.

Major Bhadauria, Vincent M. Weaver, and Sally A. McKee. Understanding parsec per-
formance on contemporary cmps. In Proceedings of the 2009 International Symposium on
Workload Characterization, October 2009.

Abhishek Bhattacharjee and Margaret Martonosi. Characterizing the tlb behavior of
emerging parallel workloads on chip multiprocessors. In Proceedings of the 2009 18th
International Conference on Parallel Architectures and Compilation Techniques, pages
29-40, Washington, DC, USA, 2009. IEEE Computer Society.

C. Bienia and Kai Li. Fidelity and scaling of the parsec benchmark inputs. In Workload
Characterization (IISWC), 2010 IEEFE International Symposium on, pages 1 —10, dec. 2010.

Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Princeton University,
January 2011.

Christian Bienia, Sanjeev Kumar, and Kai Li. Parsec vs. splash-2: A quantitative comparison
of two multithreaded benchmark suites on chip-multiprocessors. In Proceedings of the 2008
International Symposium on Workload Characterization, September 2008.

Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The parsec benchmark
suite: characterization and architectural implications. In Proceedings of the 17th international
conference on Parallel architectures and compilation techniques, PACT 08, pages 72-81,
New York, NY, USA, 2008. ACM.

29

http://www.gnuplot.info/
http://www.gem5.org/Main_Page
http://valgrind.org/

BIBLIOGRAFIA

[14] Nathan L. Binkert, Ronald G. Dreslinski, Lisa R. Hsu, Kevin T. Lim, Ali G. Saidi, and
Steven K. Reinhardt. The m5 simulator: Modeling networked systems. IEEE Micro, 26:52-60,
July 2006.

[15] Jan Lodewijk Bonebakker. Finding representative workloads for computer system design.
Technical report, Mountain View, CA, USA, 2007.

[16] Blas A. Cuesta, Alberto Ros, Maria E. Gémez, Antonio Robles, and José F. Duato. Increasing
the effectiveness of directory caches by deactivating coherence for private memory blocks.

In Proceeding of the 38th annual international symposium on Computer architecture, ISCA
11, pages 93-104, New York, NY, USA, 2011. ACM.

[17] Universidad de Wisconsin. Condor. http://www.cs.wisc.edu/condor/ (Ultimo acceso
agosto 2011).

[18] The Embedded Microprocessor Benchmark Consortium (EEMBC). Coremark. http:
//www .coremark.org/home.php (Ultimo acceso agosto 2011).

[19] The Embedded Microprocessor Benchmark Consortium (EEMBC). Multibench. http:
//www . eembc . org/benchmark/multi_sl.php (Ultimo acceso agosto 2011).

[20] M. Ekman and P. Stenstrom. Enhancing multiprocessor architecture simulation speed
using matched-pair comparison. In Proceedings of the IEEE International Symposium on
Performance Analysis of Systems and Software, 2005, pages 89-99, Washington, DC, USA,
2005. IEEE Computer Society.

[21] Boris Grot, Joel Hestness, Stephen W. Keckler, and Onur Mutlu. Kilo-noc: a heterogeneous
network-on-chip architecture for scalability and service guarantees. In Proceeding of the
38th annual international symposium on Computer architecture, ISCA 11, pages 401-412,
New York, NY, USA, 2011. ACM.

[22] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge, and R.B. Brown.
Mibench: A free, commercially representative embedded benchmark suite. In Workload
Characterization, 2001. WWC(C-4. 2001 IEEFE International Workshop on, pages 3 — 14, dec.
2001.

[23] Kyle C. Hale, Boris Grot, and Stephen W. Keckler. Segment gating for static energy
reduction in networks-on-chip. In Proceedings of the 2nd International Workshop on Network
on Chip Architectures, NoCArc ’09, pages 57-62, New York, NY, USA, 2009. ACM.

[24] Intel. Contadores hardware para procesadores intel. http://software.intel.com/sites/
products/documentation/hpc/amplifierxe/en-us/lin/ug_docs/reference/index.
htm (Ultimo acceso agosto 2011).

[25] Intel. Intel vtune amplifier xe. http://software.intel.com/en-us/articles/
intel-vtune-amplifier-xe/| (Ultimo acceso agosto 2011).

[26] Intel. Pin. http://www.pintool.org/ (Ultimo acceso agosto 2011).

[27] Syed Muhammad Zeeshan Igbal, Yuchen Liang, and Hakan Grahn. Parmibench - an
open-source benchmark for embedded multiprocessor systems. IEEE Comput. Archit. Lett.,
9:45-48, July 2010.

30

http://www.cs.wisc.edu/condor/
http://www.coremark.org/home.php
http://www.coremark.org/home.php
http://www.eembc.org/benchmark/multi_sl.php
http://www.eembc.org/benchmark/multi_sl.php
http://software.intel.com/sites/products/documentation/hpc/amplifierxe/en-us/lin/ug_docs/reference/index.htm
http://software.intel.com/sites/products/documentation/hpc/amplifierxe/en-us/lin/ug_docs/reference/index.htm
http://software.intel.com/sites/products/documentation/hpc/amplifierxe/en-us/lin/ug_docs/reference/index.htm
http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe/
http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe/
http://www.pintool.org/

BIBLIOGRAFIA

[28]

[30]

[31]

[32]

[33]

[34]

AJ KleinOsowski, John Flynn, Nancy Meares, and David J. Lilja. Adapting the spec
2000 benchmark suite for simulation-based computer architecture research. In Lizy Kurian
John and Ann Marie Grizzafi Maynard, editors, Workload Characterization of Emerging
Computer Applications, volume 610 of The Kluwer International Series in Engineering and
Computer Science, pages 83-100. Springer US, 2001. 10.1007/978-1-4615-1613-2_ 4.

M. Lis, Pengju Ren, Myong Hyon Cho, Keun Sup Shim, C.W. Fletcher, O. Khan, and
S. Devadas. Scalable, accurate multicore simulation in the 1000-core era. In Performance
Analysis of Systems and Software (ISPASS), 2011 IEEFE International Symposium on, pages
175 185, april 2011.

P.S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hogberg, F. Lars-
son, A. Moestedt, and B. Werner. Simics: A full system simulation platform. Computer,
35(2):50 —58, feb 2002.

Milo M. K. Martin, Daniel J. Sorin, Bradford M. Beckmann, Michael R. Marty, Min Xu,
Alaa R. Alameldeen, Kevin E. Moore, Mark D. Hill, and David A. Wood. Multifacet’s general
execution-driven multiprocessor simulator (gems) toolset. SIGARCH Comput. Archit. News,
33:92-99, November 2005.

J.E. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann, C. Celio, J. Eastep, and
A. Agarwal. Graphite: A distributed parallel simulator for multicores. In High Performance
Computer Architecture (HPCA), 2010 IEEE 16th International Symposium on, pages 1 —12,
2010.

Asit K. Mishra, Aditya Yanamandra, Reetuparna Das, Soumya Eachempati, Ravi Iyer,
N. Vijaykrishnan, and Chita R. Das. Raft: A router architecture with frequency tuning for
on-chip networks. J. Parallel Distrib. Comput., 71:625-640, May 2011.

Angeles Navarro, Rafael Asenjo, Siham Tabik, and Calin Cascaval. Load balancing using
work-stealing for pipeline parallelism in emerging applications. In Proceedings of the 253rd
international conference on Supercomputing, ICS ’09, pages 517-518, New York, NY, USA,
2009. ACM.

Sun Developer Network (SDN) ORACLE. Shade. http://developers.sun.com/solaris/
articles/shade.html (Ultimo acceso agosto 2011).

SPEC. Spec omp, 2001. http://www.spec.org/omp/ (Ultimo acceso agosto 2011).
SPEC. Spec cpu2006, 2006. http://www.spec.org/cpu2006/ (Ultimo acceso agosto 2011).

Evangelos Vlachos, Michelle L. Goodstein, Michael A. Kozuch, Shimin Chen, Babak Falsafi,
Phillip B. Gibbons, and Todd C. Mowry. Paralog: enabling and accelerating online parallel
monitoring of multithreaded applications. In Proceedings of the fifteenth edition of ASPLOS

on Architectural support for programming languages and operating systems, ASPLOS ’10,
pages 271-284, New York, NY, USA, 2010. ACM.

Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and Anoop
Gupta. The splash-2 programs: characterization and methodological considerations. In
Proceedings of the 22nd annual international symposium on Computer architecture, ISCA
’95, pages 24-36, New York, NY, USA, 1995. ACM.

31

http://developers.sun.com/solaris/articles/shade.html
http://developers.sun.com/solaris/articles/shade.html
http://www.spec.org/omp/
http://www.spec.org/cpu2006/

BIBLIOGRAFIA

[40] David A. Wood, Mark D. Hill, and R. E. Kessler. A model for estimating trace-sample miss
ratios. In Proceedings of the 1991 ACM SIGMETRICS conference on Measurement and
modeling of computer systems, SIGMETRICS 91, pages 79-89, New York, NY, USA, 1991.
ACM.

[41] R.E. Wunderlich, T.F. Wenisch, B. Falsafi, and J.C. Hoe. Smarts: accelerating microar-
chitecture simulation via rigorous statistical sampling. In Computer Architecture, 2003.
Proceedings. 30th Annual International Symposium on, pages 84 — 95, june 2003.

32

Anexo A
Gestion del proyecto

Este anexo contiene detalles acerca de la gestion del tiempo y el esfuerzo invertido durante el proyecto,
asi como algunos problemas encontrados a lo largo de su desarrollo.

A.1 Gestion del tiempo

Este proyecto se ha desarrollado desde marzo hasta agosto de 2011, en dedicacién a tiempo
completo. En el diagrama de Gantt que se presenta en la figura se puede ver como se han
distribuido las diferentes tareas a lo largo del tiempo.

marzo 2011 abril 2011 mayo 2011 L’unio 201 L’ulio 2011 agosto 2011 ‘

23 ‘24 ‘25 ‘25 ‘2? |2a ‘29 ‘30 31 |32 ‘33 ‘34 ‘35

18 |19 ‘20 ‘21 ‘22

Farmacidn

g |io ‘11 ‘12 ‘13 ‘14 ‘15 ‘15 ‘1?

Estado del arte de simuladores

Estado del arte de cargas de trabajo

Herramientas para el andlisis de PARSEC

Familiarizacidn con el entorma de trabajo

Instalacién v primeros usos de Simics, GEMS v PARSEC

Anilisis de tiempos de simulacidn

Estudio de Simics ¥ GEMS

Caracterizacién de PARSEC

Dizefio v ejecucidn de experimentos

Recopilacidn v analisis de resultados

Documentacion

Elaboracién de la memoria

[1

Figura A.1: Diagrama de Gantt del proyecto.

A continuacién incluimos un pequeno resumen del trabajo que engloba cada tarea:

e Formacion. Este proyecto tiene un importante componente de formacién, ya que se han
utilizado numerosas herramientas que no se conocian anteriormente. Por un lado, ha sido
necesario estudiar el estado del arte tanto de los simuladores como de las cargas de trabajo.
Por otro lado, para la caracterizacion de Parsec se ha aprendido a utilizar herramientas
para la monitorizacién de programas y el estudio de prestaciones.

33

ANEXO A. GESTION DEL PROYECTO

e Familiarizacion con el entorno de trabajo. Para comenzar a trabajar, instalamos
y configuramos Simics y GEMS en nuestro ordenador local. Este proceso es bastante
costoso ya que se trata de herramientas poco orientadas a los usuarios. También fue
necesario instalar GEMS en nuestra carpeta dentro del cluster del departamento y hacer
que funcionara con Simics, que estaba ya instalado. Ademds, se realizaron las primeras
pruebas de simulacién de los programas de PARSEC para comprender cémo funcionaba el
simulador

e Analisis de tiempos de simulacién. Durante esta parte del proyecto se realizé un
estudio del tiempo de simulacién utilizando Simics y GEMS y se considero la posibilidad
de optimizar del simulador.

e Caracterizacién de PARSEC. Esta es la tarea principal del proyecto. En ella se engloba
el disefio y ejecucion de los experimentos necesarios para estudiar el funcionamiento de las
aplicaciones de PARSEC sobre la jerarquia de memoria y la recopilacién y andlisis de los
resultados para obtener conclusiones.

e Documentacién. Esta parte se corresponde con la redaccién de la memoria en LaTeX. Se
document6 también el proceso de instalacién de Simics y GEMS para facilitar el trabajo a
quienes deseen utilizarlo en un futuro.

Durante el desarrollo del proyecto se llevaron a cabo todas las tareas planeadas y el trabajo
se finaliz6 en la fecha prevista.

A.2 Esfuerzo invertido

En la realizacion del proyecto se han invertido un total de 704 horas. En la figura se
presenta la distribucién de este tiempo en las diferentes tareas. Se ve claramente que la mayor
parte del tiempo se ha invertido en la caracterizacién de PARSEC, que es la tarea principal,
seguida de la formacién, que se ha extendido a lo largo de practicamente todo el proyecto.

E Formacion

B Familiarizacion con el entorno
de trabajo

E Analisis del tiempo de
simulacion

O Caracterizacion de PARSEC

E Documentacion

Figura A.2: Distribucién del tiempo en las diferentes tareas del proyecto.

34

A.3. PROBLEMAS ENCONTRADOS

En la tabla[A.1] se muestra de manera més detallada la cantidad de horas invertidas en las
actividades que componen cada tarea.

Tarea Numero de horas
Formacion 166.45
Estado del arte de simuladores 39.2
Estado del arte de cargas de trabajo 50.5
Herramientas para el andlisis de PARSEC 76.75
Familiarizaciéon con el entorno de trabajo 105.5
Analisis de tiempos de simulacion 68.5
Caracterizacion de PARSEC 258.8
Diseno y ejecucion de experimentos 200.55
Recopilacion y anélisis de resultados 58.25
Documentacion 105.05
NUMERO TOTAL DE HORAS 704.3

Tabla A.1: Nimero de horas invertidas en cada una de las tareas del proyecto.

A.3 Problemas encontrados

Los principales problemas encontrados durante el desarrollo del proyecto surgieron en relacién
con las simulaciones y venian causados por su alto coste en tiempo y recursos. Un fallo que
conllevara la cancelacién de una o varias simulaciones, o su repeticién una vez terminadas,
podia suponer un retraso de varios dias hasta que se disponia de los resultados correctos. Por
otro lado, algunas de las simulaciones con entradas més grandes tardaban méas de un mes en
completarse, lo que ha imposibilitado tener todos los resultados para la fecha de entrega del
proyecto. Ademas, a finales de julio y principios de agosto se apagd el cluster del departamento
para realizar labores de mantenimiento. Como al lanzar muchas de las simulaciones no se sabia
todavia que el cluster estaria inoperativo durante varios dias, no se tuvo en cuenta este hecho y
se tuvo que detener su ejecucién sin posibilidad de guardar su estado para retomarlas mas adelante.

Debido también a la cantidad de tiempo que tardaban algunas simulaciones no era po-
sible lanzarlas de manera automaética con Condor porque serian expulsadas tras varios dias
de ejecucién, asi que fue necesario distribuirlas de forma manual por los nodos del cluster.
Como ademas necesitan mucha memoria RAM, podian lanzarse un niimero limitado de simulacio-
nes al mismo tiempo, lo que alargaba més todavia la espera hasta disponer de todos los resultados.

A parte de eso, el gran tamafio de las entradas nativas hizo que fuera necesario crear una
nueva arquitectura con mayor memoria para algunas de las aplicaciones, teniendo que repetir el
proceso de inicio del sistema operativo, copia de los programas al sistema simulado y ejecuciéon
hasta el inicio de la regién de interés. En uno de los casos se necesitaba un disco duro de mayor
tamano, lo cual se podia solucionar anadiendo otro disco a la configuraciéon de partida. Como el
tiempo que nos habria costado preparar el nuevo sistema era demasiado elevado, se decidié no
realizar las simulaciones correspondientes a ese caso.

35

36

Anexo B

Analisis del tiempo de simulacion:
Simics y GEMS

En este anexo se detalla el estudio realizado del tiempo de simulaciéon de multiprocesadores de
memoria compartida con Simics y GEMS vy la distribucion de ese tiempo en los diferentes médulos
del simulador. Se han utilizado aplicaciones pertenecientes a la suite PARSEC.

B.1 Tiempo de ejecucion de las simulaciones

Para tener una idea mas precisa de cuanto se ralentiza la ejecucién de una aplicaciéon al utilizarla
en un simulador, comenzaremos midiendo los tiempos de simulaciéon. Hemos utilizado Simics para
realizar la simulacién funcional y, posteriormente, hemos incorporado el médulo GEMS para llevar
a cabo una simulacién temporal, que tendra en cuenta los detalles de la jerarquia de memoria.
Estas herramientas han sido introducidas en la seccién y se explica el método utilizado para
trabajar con ellas en la seccion [.5]y, més detalladamente, en el anexo[C] Como aplicaciones se han
utilizado las de la suite PARSEC (introducida en la seccién y explicada en mayor profundidad
en el capitulo |3) que presentan més fallos en memoria segin [§]: canneal, fluidanimate y
streamcluster. Se han utilizado estas aplicaciones porque, al presentar més fallos en memoria,
requerirdan mas trabajo por parte del simulador y de esta forma obtendremos una cota superior del
tiempo de simulacién para las aplicaciones de PARSEC. Se han llevado a cabo las simulaciones
con las entradas pequeiia, mediana y grande de cada una de las tres aplicaciones. Ademas,
para comprobar cudnto aumenta el tiempo de ejecucion al simular un nimero de procesadores
mayor, se han realizado las pruebas para uno y dos procesadores. Cuando se utilizan dos proce-
sadores, se ejecutan las aplicaciones con dos threads para aprovechar el paralelismo que presentan.

En la figura se presenta el tiempo de simulacién para las tres entradas de las aplicaciones,
con uno y dos procesadores, utilizando inicamente Simics y usando Simics junto con el mdédulo
GEMS. Para facilitar la visualizacién de los datos se ha utilizado un eje logaritmico. Vemos
que la simulacién funcional tarda aproximadamente entre 10 segundos y 15 minutos, mientras
que la simulaciéon temporal tarda entre 30 minutos y 42 horas. El tiempo de simulacién es
similar para uno y dos procesadores, siendo en general un poco superior para dos procesado-
res. Esto se debe a que, como se trata de programas muy escalables, Simics simula el mismo
codigo aunque lo reparta en varios procesadores. La simulacién con maés procesadores tarda
mas tiempo en la mayoria de los casos debido a la sobrecarga de sincronizaciéon de la aplicaciéon
y al aumento de la complejidad de los elementos que debe gestionar el simulador. La tnica
excepcion es la aplicacién canneal, en la que la simulacién de dos procesadores tarda menos
que la de un procesador. Al duplicar el nimero de threads, este programa tarda en ejecutarse

37

ANEXO B. ANALISIS DEL TIEMPO DE SIMULACION: SIMICS Y GEMS

menos de la mitad del tiempo (de 32 a 14 segundos para la entrada grande, por ejemplo), por lo
tanto el tiempo total simulado al utilizar dos threads sumando el de los dos procesadores es me-
nor que el tiempo de simular con un thread, asi que es légico que la simulacién tarde menos tiempo.

También podemos comprobar, como ya imagindbamos, que el tiempo de simulacién aumenta
con el tamano de la entrada. Al ir pasando de pequena a mediana y de mediana a grande el
tiempo se multiplica por un factor que tiene un valor entre 2 y 5 en las distintas aplicaciones.

1e+06
= 1 procesador — Simics

=== 1 procesador — Simics+GEMS
——1 2 procesadores — Simics
100000 |- =mmmmm 2 procesadores — Simics+GEMS

10000 /-

1000

Tiempo (s)

100

10 foogu L
| I

pequeia mediana grande pequefia mediana grande pequefia mediana grande

Canneal Fluidanimate Streamcluster

Figura B.1: Tiempo de simulacién de canneal, fluidanimate y streamcluster con Simics y Simics+GEMS,
con 1y 2 procesadores.

El slowdown es la medida de cuantas veces més lenta resulta la simulacién de la aplicacion
respecto de su ejecucién nativa y puede calcularse como el tiempo que tarda la simulacién
partido por el tiempo simulado. En la figura vemos que, para la simulacién funcional con un
procesador, el slowdown se encuentra entre 1.5 y 3. Esto significa que simular la aplicacién es
entre 1.5 y 3 veces més lento que ejecutarla en nativo. Cuando utilizamos también el médulo
GEMS para realizar simulacién funcional el slowdown pasa a valer entre 100 y 135. Si pasamos
a dos procesadores se ve claramente un aumento de estos valores, que estan entre 2.5 y 5 para
simulacion funcional y entre 240 y 400 para la temporal, multiplicindose incluso por maés de
dos en varios casos. Cuando tenemos una arquitectura con varios procesadores, por cada ciclo
del sistema simulado Simics debe simular varios, uno por cada procesador. Como la simulacién
siempre se ejecuta en serie, cuanto mas aumente el nimero de procesadores, mas aumentard el
slowdown, llegando a ser impracticable la simulacién de cien o més procesadores.

B.2 Distribucion del tiempo en los diferentes médulos durante
la ejecucion de la simulaciéon

Como el tiempo que tardan Simics y GEMS en simular las aplicaciones es tan grande que no
permite la exploracién eficiente de multiples disefios para nuevas arquitecturas, decidimos realizar
un estudio més detallado del comportamiento del simulador para intentar detectar cuellos de
botella que pudieran ser optimizados. En esta seccién presentamos las simulaciones realizadas
con ese objetivo y los resultados obtenidos.

38

B.2. DISTRIBUCION DEL TIEMPO EN LOS DIFERENTES MODULOS DURANTE LA EJECUCION DE LA
SIMULACION

400
mmmmm 1 procesador — Simics

mmm 1 procesador — Simics+GEMS
——= 2 procesadores — Simics

350 |.. m—2 procesadores — Simics+GEMS

300

250

Tiempo (s)
n
o
o

150

100

50

pequena mediana grande pequena mediana grande pequena mediana grande

Canneal Fluidanimate Streamcluster

Figura B.2: Slowdown de las simulaciones de canneal, fluidanimate y streamcluster con Simics (izquierda) y
Simics+GEMS (derecha), con 1 y 2 procesadores.

B.2.1 Tipos de simulaciones realizadas

Para esta parte del estudio decidimos utilizar los benchmarks blackscholes, bodytrack y
canneal de PARSEC. Blackscholes es la aplicacién que menos fallos presenta en cache, logra
el paralelismo dividiendo la cantidad de trabajo entre los threads disponibles y tiene poca
comparticién de datos. Bodytrack tiene un working set mayor y el trabajo se distribuye por lo
procesadores mediante un pool de threads. Canneal, también utilizado en la seccién anterior,
es la aplicacion que mas fallos presenta en cache, tiene un working set que podemos considerar
ilimitado y una paralelizacién de grano fino poco estructurada. En todos los casos se ha utilizado
la entrada pequena de los benchmarks para mantener un tiempo de ejecucion razonable. Se
han realizado simulaciones de un arquitectura UltraSPARC III Plus con dos, cuatro y ocho
procesadores, y sistema operativo Solaris 10.

Para poder obtener las conclusiones necesarias se han llevado a cabo los siguientes tipos de
simulaciones:

e Simics: Simulacién funcional utilizando tinicamente Simics.

e Simics+GEMS Ideal, latencia 0: Simulacién utilizando Simics y GEMS, pero usando
GEMS para simular una jerarquia ideal. Esto significa que GEMS no hace realmente ningin
calculo, simplemente devuelve latencia cero para cualquier acceso a memoria. De esta
manera estamos introduciendo tinicamente el retraso correspondiente a la interacciéon entre
Simics y GEMS.

e Simics+GEMS Ideal, latencia realista: Simulacién utilizando Simics y GEMS, pero
en este caso GEMS devolvera una latencia mas realista, obtenida de la latencia media
de otra simulacién. Ha sido necesario indicar al simulador que deberia devolver latencias
decimales para que los valores se ajustaran a nuestras necesidades. GEMS sélo soportaba

39

ANEXO B. ANALISIS DEL TIEMPO DE SIMULACION: SIMICS Y GEMS

el uso de numeros enteros como latencias, asi que ha sido necesario anadir nuevas opciones
de configuraciéon y modificar el codigo para soportar la nueva funcionalidad. Utilizando
este método logramos un CPI igual al de la simulacién que estdbamos intentando imitar.

e Simics+Gems, L1 grande: Simulacién utilizando Simics y GEMS, con una cache de
primer nivel grande, pretendiendo que la aplicacién pueda disponer de todos los datos en la
L1 y no tengan que hacerse reemplazos y accesos a la L2. En concreto, se ha utilizado una
L1 separada para instrucciones y datos, cada una con 512KB y asociatividad 16. Habra
una L2 en cada procesador, con asociatividad 16, sumando en todos los casos 2MB.

e Simics+Gems, L1 pequena: Simulacién utilizando Simics y GEMS con la intencién de
ver cémo las aplicaciones se comportarian en una ejecucién real, con un nimero de fallos
apreciable en la L1. Como las entradas utilizadas son de pequeno tamaifio, no es posible
conseguir ese efecto con una L1 de tamano normal, asi que se ha realizado la simulacién
con una L1 excesivamente pequeinia. Esta aproximaciéon ha sido utilizada por Cuesta et
al. en [16]. El tamano utilizado para la L1 es de 1KB, con asociatividad 2. Para la L2 se
usa la misma configuracién que en caso anterior. Como se ha considerado que este era el
caso mas representativo, se han utilizado las latencias medias de acceso a memoria de estas
simulaciones para las pruebas de Simics+Gems ideal con latencia realista. En los estudios
realizados posteriormente, hemos podido comprobar que esta aproximacién no es adecuada
para reproducir el comportamiento de una ejecucién realista. De todas formas, nos sirve
para analizar el comportamiento del simulador ante una situacién extrema en la que habra
un nimero muy elevado de fallos en cache.

Se han realizado las ejecuciones completas con Simics y GEMS para obtener los tiempos
totales de simulacién. Después, se ha utilizado VTune (explicado en profundidad en la seccién
4.3)) para obtener el porcentaje del tiempo de ejecucién que pertenece a cada moédulo. Para este
analisis, VTune utiliza la técnica llamada muestreo basado en tiempo (time based sampling o
TBS), que consiste en interrumpir la ejecucién cada cierto tiempo y anotar en qué instrucciéon
se encuentra el programa, informandonos al final de las zonas de cédigo en las que la ejecucién
ha pasado mas tiempo. Para esta parte se han ejecutado sélo 600 segundos de la simulacion,
habiendo comprobado que el resultado obtenido era el mismo que teniendo en cuenta le ejecucion
completa.

Los tiempos de simulacién obtenidos siguen confirmando las conclusiones que de la seccién
dejando claro que se cumplen también con un mayor nimero de procesadores. El slowdown
continia aumentando linealmente con el ndmero de procesadores, llegando a tomar valores
superiores a 1000 cuando simulamos un sistema con ocho procesadores.

B.2.2 Resultados de la distribuciéon de tiempos

Mostramos en las figuras [B.3] [B.4] y [B.5| los tiempos de simulacién con su distribucién en los
diferentes médulos para las simulaciones de todos los tipos con dos, cuatro y ocho procesadores.
No aparecen en las gréaficas las simulaciones en las que se utiliza Simics inicamente debido a que
el tiempo de ejecucion es mucho menor que el del resto de simulaciones. El caso en que se utiliza
una cache L1 de tamano muy pequeno se ha representado en la gréafica de la derecha, con un
rango mayor para el eje y para que toda la informacién se visualizara mejor. Los experimentos
de los benchmarks bodytrack y canneal con ocho procesadores y cache L1 pequena no se han
podido realizar porque se obtenian errores durante la simulacién. Pensamos que esto se debe a
que la cache es demasiado pequena y el simulador no puede gestionar los accesos correctamente.

40

B.2. DISTRIBUCION DEL TIEMPO EN LOS DIFERENTES MODULOS DURANTE LA EJECUCION DE LA
SIMULACION

No se han realizado tampoco las simulaciones con memoria ideal que devuelven una latencia de
acceso a memoria realista, ya que esta latencia ha sido obtenida en todos los casos a partir de la
simulacion con la cache L1 pequena.

600 10000

9000

8000

7000

6000

5000

Tiempo (s)

4000

3000

2000

1000

2 procesadores 4 procesadores 8 procesadores
Ruby m==== Sparc s
Simics = Otros Emmm

Figura B.3: Distribucién del tiempo en los diferentes médulos simulando blackscholes con Simics y GEMS,
con 2, 4 y 8 procesadores.

7000 16000
6000 14000 =
12000
5000
10000
@ 4000
Q
g— 8000
K3}
= 3000
6000
2000
4000
1000 2000
0 [\ [\ 0 [\ [\ [\
% 3 xo\/ XQ(XQ(xQ<
%, % %, %, 2,
(\((\(9(’8 . 9"0 . 9"@ N
T I %, %, Y
2 % %
2 procesadores 4 procesadores 8 procesadores

Ruby m==== Sparc s
Simics = Otros mmmmm

Figura B.4: Distribucién del tiempo en los diferentes médulos simulando bodytrack con Simics y GEMS, con 2,
4 y 8 procesadores.

41

ANEXO B. ANALISIS DEL TIEMPO DE SIMULACION: SIMICS Y GEMS

2500 8000

7000 I
2000 .

6000

5000
1500

4000

Tiempo (s)

1000

3000

2000

500

1000

Ll = = :
[\

S S & ey e S S S % & & &
Q, ®, ® ®, R, ® ®, ®, R ®, ®, ®,
%, X, %, %, X, %, %, %, %, % % %
%, %, T, %, %, o, %, %, % %% %
I T,);“@ © <‘7/\0 <‘7/>0 © 9, 7 9,)’\"o © 0&9\ OQ\Y /)‘9\ <
4 2 4 0 0 ©
2 procesadores 4 procesadores 8 procesadores

Ruby m==== Sparc s
Simics mmmmm Otros m—

Figura B.5: Distribucién del tiempo en los diferentes médulos simulando canneal con Simics y GEMS, con 2, 4
y 8 procesadores.

Centrandonos unicamente en el tiempo total de simulaciéon podemos comenzar diciendo que el
tiempo utilizando Unicamente Simics es mucho menor que si utilizamos también GEMS, aunque
este médulo no haga ningun trabajo y devuelva siempre latencia cero, lo que basicamente es lo
mismo que no simular la jerarquia de memoria. Al utilizar GEMS, Simics le pasa la informacién
de cada acceso a memoria y lo despierta cada ciclo para que realice los calculos necesarios.
Ademsds, cuando la latencia devuelta por GEMS no es cero, el programa tardara més ciclos en
ejecutarse provocando que la simulacién tarde mas tiempo.

Pensamos que el tiempo de ejecuciéon en estos casos no aumenta por la comunicacién que
se realiza con GEMS cada ciclo, ya que se han hecho pruebas disminuyendo la frecuencia de
esta comunicacién y no han mejorado los resultados. Tampoco viene causado por el trabajo de
GEMS, porque el tiempo de ejecuciéon aumenta bastante aunque usemos memoria ideal. Por lo
tanto, hemos concluido que la razén son los retrasos que introduce Simics ejecutando mas ciclos,
aunque esté esperando el resultado de un acceso a memoria. Desafortunadamente, no podemos
profundizar més en este punto porque el cdédigo de Simics no es libre.

Por otro lado, al simular la jerarquia de memoria y coherencia utilizando GEMS, el tiempo
de simulacién es también mayor, principalmente al utilizar una L1 pequena. Esto se debe clara-
mente al aumento de trabajo que tiene que realizar GEMS. La tnica excepcion es la aplicacién
blackscholes, en la que tarda mas la simulaciéon cuando utilizamos una memoria idea devolvien-
do latencia realista que cuando simulamos toda la jerarquia de memoria con una cache L1 grande.
Cuando devolvemos una latencia realista la ejecucién de la aplicacién tarda un mayor niimero
de ciclos porque se introducen las esperas por los datos de memoria, haciendo que aumente
también el tiempo de simulacién. Por lo tanto, si la latencia devuelta es muy grande el tiempo
de simulacién puede llegar a ser mayor que en el caso en que GEMS tiene que realizar trabajo
pero devuelve latencias menores.

42

B.2. DISTRIBUCION DEL TIEMPO EN LOS DIFERENTES MODULOS DURANTE LA EJECUCION DE LA
SIMULACION

Si nos fijamos ahora en la distribucién del tiempo vemos que aparecen claramente tres médulos
principales: Simics, que se ocupa de la simulacién funcional, Ruby (el médulo de GEMS que se
ocupa de la jerarquia de memoria), para la simulaciéon temporal, y Sparc, que es la arquitectura
que estamos simulando. En un primer vistazo, nos damos cuenta de que la distribucién general
no cambia cuando variamos el benchmark o el nimero de procesadores.

Cuando utilizamos GEMS con memoria ideal vemos que el porcentaje de tiempo que se debe
a Ruby es muy pequeno, aunque la parte de Simics y Sparc aumenta si la latencia devuelta es
mayor, ya que el nimero de ciclos de ejecucién aumenta. El peso de Ruby en la ejecucién es
pequeiio porque no estd haciendo trabajo real, inicamente devuelve la latencia que le hemos
indicado. Cuando usamos GEMS para simular la jerarquia de manera realista vemos que comienza
a ser una parte muy importante del total de la ejecucién. En este punto, detectamos también que
el porcentaje del tiempo de ejecucion correspondiente a Ruby es mayor para canneal que para
el resto de aplicaciones. Esto se debe a que canneal es la aplicacién més fallos en cache presenta.
Utilizando una cache L1 extremadamente pequena vemos que Ruby supone mas del 80 % del
tiempo total de simulaciéon. De todas formas, tras los estudios que se presentan en profundidad
en el anexo [D] sabemos que esta ejecucién no se aproxima a una ejecucién real, porque los
fallos en una cache extremadamente pequena con la entrada pequena de las aplicaciones no son
equivalentes a los de la entrada nativa con una cache de tamano comun.

Como el moédulo Ruby supone una gran parte del tiempo de ejecuciéon y el codigo es libre, se
ha realizado un analisis més detallado para intentar localizar si hay una funcién o parte del cédigo
en la que se invierta mucho tiempo. En la tabla se muestran los porcentajes de ejecucién de
los ficheros y funciones con mayor peso para la simulaciéon de blackscholes utilizando Simics y
GEMS con la cache L1 pequena y 4 procesadores. De todas formas, como ya hemos comentado
antes, los valores no variaran de manera relevante si tomamos otra aplicacién o cambiamos el
numero de procesadores.

Fichero Porcentaje Funcién Porcentaje

PerfectSwitch 15.5% PerfectSwitch: :wakeup 15.5%
Set:setSize 5.4%
Set:count 5.0%

Set 14.8%
Set:operator= 1.9%
otros 24%
Throttle 5.3% Throttle:wakeup 5.3%
Vector<Set>:operator= 6.9%
Vector<Set>:grow 5.0%

Vector 15.5%
Vector<Set>:Vector 2.2%
otros 3.4%

Tabla B.1: Distribucién del tiempo de ejecucién en ficheros y funciones dentro del médulo Ruby durante una
simulacién del benchmark blackscholes con Simics y GEMS, con 4 procesadores.

Se puede ver que consumen mucho tiempo los médulos Set y Vector, pero son los propor-
cionados por C y su alto porcentaje se debe a que se utilizan en varios lugares diferentes y

43

ANEXO B. ANALISIS DEL TIEMPO DE SIMULACION: SIMICS Y GEMS

las funciones son llamadas muchas veces. La funcién en la que mas tiempo pasa la simulacion,
PerfectSwitch: :wakeup, supone unicamente un 15.5% del tiempo total de Ruby, es decir,
aproximadamente un 13 % del total de la simulacién. Por lo tanto, aunque se lograra que fuera
mas eficiente, la mejora no se reflejaria en el resultado global de manera importante. La clase
Throttle se utiliza para controlar el ancho de banda a la salida de un router.

A pesar de todo, se ha hecho un pequeno andlisis del grafo de llamadas para la funcién
PerfectSwitch: :wakeup, en la que deberian centrarse nuestros esfuerzos si desedramos optimi-
zar el simulador. En la tabla se presenta una lista de las funciones en el orden en que van
llamandose unas a otras (la funcién 1 llama la funcién 2, la 2 a la 3, y asi sucesivamente), la
clase a la que se pertenecen y una pequena descripcién de las mismas.

Grafo de llamadas para la funcién PerfectSwitch: :wakeup

.. Clase o . e
Orden Funcién Descripcion
fichero

Se ejecuta cada ve e Simics despierta
1 runRubyEventQueue | interface.c eet vez due St . PIet

a Ruby, en nuestro caso, cada ciclo.

Se encarga de la pila de eventos pendien-
2 triggerEvents EventQueue & P v P

tes.

PerfectSwitch utiliza la clase virtual
Consummer, que se ocupa de objetos que
3 triggerWakeup PerfectSwitch | pueden ser objetivo de wakeup calls. La
funcién se ocupa simplemente de llamar
a la funcién wakeup().

PerfectSwitch es un switch perfecto que
no tiene latencia y utiliza una tabla de
routing. Lo que mas tiempo consume es
4 wakeup PerfectSwitch | el uso de round robin para elegir entre
los puertos de entrada, mirar qué men-
sajes estan esperando y utilizar adaptive
routing.

Tabla B.2: Grafo de llamadas para la funcién en la pasa mas tiempo una simulacién con Simics y GEMS,
PerfectSwitch: :wakeup.

Vemos que se trata de una funcién que se llama varias veces durante todos los ciclos simulados.
Para hacerla més eficiente seria necesario revisar tanto las estructuras de datos utilizadas como
los algoritmos, y la mejora que podria lograrse tampoco seria muy notable respecto del total del
tiempo de simulacién.

B.3 Conclusiones

Podemos concluir que las simulaciones resultan muy lentas, aumentando el slowdown con el
numero de procesadores del sistema que simulamos. A pesar de que el tiempo de ejecucion del
médulo Ruby de GEMS supone una gran parte de la ejecucion, dentro del médulo la distribucion
de tiempos es muy dispersa. No hay por tanto una parte del simulador que constituya un cuello
de botella, sino que se utilizan muchas funciones que contribuyen con porcentajes pequeinios al
tiempo total de la simulacién, dificultando en gran medida la optimizacion.

44

Anexo C

Detalles de las simulaciones con
Simics y GEMS

En este anexo se explican en mas profundidad las fases seguidas para llevar a cabo los experimentos, en
especial las simulaciones con Simics y GEMS. Se incluyen también detalles del proceso de simulacién
y recogida de resultados.

C.1 Fases de desarrollo de los experimentos.

Para todos los experimentos realizados se han seguido las fases que se detallan en la figura

DERESULTADOS

SELECCION DE N EJECUCION DE i RECOPILACION

METRICAS EXPERIMENTOS EXPERIMENTOS

Figura C.1: Fases de realizacién de experimentos

A continuacién se incluye una pequena explicacién de cada fase:

1.

Seleccién de métricas. Antes de comenzar hay que decidir qué métricas necesitaremos
obtener para realizar el estudio que nos interesa y obtener conclusiones. Las métricas que
hemos utilizado aparecen detalladas en la seccién

Diseno de experimentos. En este punto hay que elegir qué herramientas se utilizaran
para calcular las métricas ya seleccionadas y como se utilizard cada una de ellas. En el
capitulo [4] se explican todas las herramientas y para qué se ha utilizado cada una.

. Ejecucién de los experimentos. Si, como en nuestro caso, el nimero de experimentos

es muy grande, habrd que automatizar el proceso de ejecucion para que resulte mas comodo
y se aproveche el tiempo de CPU al maximo.

Recopilacion de resultados. Una vez que se han ejecutado los experimentos, es necesario
recoger la informacién que hemos obtenido, seleccionar lo que nos interesa y representarlo
de forma adecuada.

. Analisis de resultados. Por ultimo, hay que analizar los resultados para obtener conclu-

siones. Es posible que en este punto detectemos nuevas necesidades y tengamos que repetir

45

ANEXO C. DETALLES DE LAS SIMULACIONES CON SIMICS Y GEMS

el proceso de nuevo. Los resultados de nuestro trabajo se presentan en el capitulo [5|y, con
mayor detalle, en el anexo D}

En el resto del anexo nos centraremos en el diseno y ejecucion de las simulaciones y la
recopilacion de los resultados, ya que es la parte mas compleja del trabajo realizado y la que més
interesa comentar en profundidad. Las simulaciones realizadas a las que se hara referencia ya
han sido explicadas en la seccién [£.5] y en el anexo [B]

C.2 Diseno de las simulaciones

Para realizar las simulaciones con Simics, el primer paso es definir los parametros de la arqui-
tectura e iniciar el sistema operativo. Después, ejecutamos las aplicaciones usando simulaciéon
funcional y creamos un checkpoint justo antes de comenzar la regién de interés. Para todo lo que
vamos a explicar a continuacién supondremos que partimos de ese checkpoint.

Para trabajar con Simics, lo méds cémodo es crear un script de ejecucion y pasarselo al
programa para que todas las acciones se lleven a cabo de manera automatizada. Lo mas sencillo
y réapido es realizar una ejecucion funcional utilizando Simics. A continuacién se presenta un
script que se ocupa de la simulacién de la regién de interés del benchmark blackscholes en
cuatro procesadores:

read-configuration "procOO4-parsec-blackscholes-small-ready.check"
con0.capture-start "output.txt"

magic-break-enable

continue

continue

con0.capture-stop

quit

El comando read-configuration se utiliza para cargar el checkpoint que habiamos creado an-
teriormente. Si deseamos almacenar la salida que aparece en la consola del sistema simulado pode-
mos utilizar conO. capture-start para comenzar a escribirla en un fichero y con0O. capture-stop
para terminar. magic-break-enable se utiliza para habilitar las instrucciones especiales llamadas
magic-instructions que pararan la ejecucién automaticamente. PARSEC viene preparado con
estas instrucciones para que, al simular las aplicaciones en Simics, la simulacién se detenga justo
antes y después de la regiéon de interés. El comando continue inicia la simulacién, y debemos
ejecutarlo dos veces porque la primera vez parara debido a la magic-instruction que marca el
inicio de la ROI. La siguiente vez que se detenga la simulacién ya habra finalizado la region de in-
terés y sélo tendremos que parar de escribir en el fichero de salida y finalizar la ejecucién con quit.

Para ejecutar la simulacion es suficiente con escribir en la linea de comandos
./simics -stall -no-win miScript.simics

siendo miScript.simics el script que presentdbamos antes. La opcién -stall indica el modo
de simulacién, que en este caso permite que el sistema pare la ejecucion y es obligatorio cuando
deseamos utilizar GEMS. La opcién -no-win puede incluirse si no queremos que se abra una
nueva ventana con la consola del sistema simulado.

46

C.2. DISENO DE LAS SIMULACIONES

Para incorporar la simulacién temporal y el funcionamiento detallado de las caches podemos
utilizar el médulo Ruby de GEMS, tal y como hemos hecho en el estudio de tiempos de simulacién
explicado en el anexo [Bl Antes de comenzar la regién de interés habrd que indicar los pardmetros
de configuracién para el médulo y, al terminar, se pueden volcar las estadisticas en un fichero para
consultarlas posteriormente. Presentamos a continuacion el script utilizado para una ejecucién
con Ruby:

read-configuration "procOO4-parsec-blackscholes-small-ready.check"
con0.capture-start "output.txt"
magic-break-enable

Iniciamos gems

add-module-directory ../../amd64-linux/lib
instruction-fetch-mode instruction-fetch-trace
istc-disable

dstc-disable

cpu-switch-time 1

load-module ruby

ruby0.setparam g_NUM_PROCESSORS 4

ruby0.setparam g_PROCS_PER_CHIP 4

ruby0.setparam g_MEMORY_SIZE_BYTES 4294967296
ruby0.setparam g_NUM_L2_BANKS 2

rubyO.setparam g_NUM_MEMORIES 1

ruby0.setparam L1_CACHE_ASSOC 16

rubyO.setparam L1_CACHE_NUM_SETS_BITS 9
ruby0.setparam L2_CACHE_ASSOC 16

rubyO0.setparam L2_CACHE_NUM_SETS_BITS 10
ruby0.setparam SIMICS_RUBY_MULTIPLIER 1
ruby0.setparam_str PROTOCOL_DEBUG_TRACE false
ruby0.setparam L1CACHE_TRANSITIONS_PER_RUBY_CYCLE 1
ruby0.setparam L2CACHE_TRANSITIONS_PER_RUBY_CYCLE 1
ruby0.setparam DIRECTORY_TRANSITIONS_PER_RUBY_CYCLE 1
ruby0.setparam_str FINITE_BUFFERING true

ruby0.init

continue

continue

ruby0.dump-stats procOO4-parsec-blackscholes—-small.stat
con0.capture-stop

quit

El comando add-module-directory sirve para indicarle a simics dénde estd el moédulo que
deseamos usar, en caso de que no lo encuentre. Con el comando instruction-fetch-mode
instruction-fetch-trace Simics dirigird al sistema de memoria los accesos correspondien-
tes a busqueda de instrucciones, que por defecto serian ignorados. Para acelerar el proceso
de simulacién, Simics utiliza Simulator Translation Caches (STCs) para evitar realizar todos
los accesos a través del espacio de memoria. Como en este caso nos interesara utilizar Ruby
para los accesos a memoria, desactivamos las STCs mediante los comandos istc-disable y

47

ANEXO C. DETALLES DE LAS SIMULACIONES CON SIMICS Y GEMS

dstc-disable. Con el comando cpu-switch-time 1 indicamos que nos interesa que Simics
simule un ciclo de cada uno de los cuatro procesadores por turno. A continuacién cargamos
el médulo Ruby y lo configuramos, siendo la mayor parte de los pardmetros autoexplicativos.
Con la opcién SIMICS_RUBY_MULTIPLIER indicamos cada cudntos ciclos queremos que Simics se
comunique con Ruby. Después de configurar el médulo, iniciamos Ruby mediante el comando
ruby0.init, y, tras la region de interés, obtenemos las estadisticas con ruby0.dump-stats.

En las simulaciones presentadas en la seccién [4.5]no se utiliza GEMS para simular la jerarquia
de memoria, sino que se usa una cache proporcionada por Simics. El caso mas complejo es el de
las simulaciones para realizar la traza temporal de las entradas nativas, en las que se tomaban
diez muestras de la ejecucion durante las cuales se obtenian las estadisticas cada 10 millones
de ciclos. La primera parte del script utilizado para la simulacién de ese tipo del benchmark
blackscholes es la siguiente:

magic-break-enable
read-configuration "procOOl-parsec-blackscholes-native-ready.check"
continue

Iniciamos la cache
@cache = pre_conf_object("cache","g-cache")
@cache.cpus = conf.cpu0

config_line_number =

64

Q@cache. 1024
Qcache.

Q@cache

config line_size =
.config_assoc = 8
Q@cache.config virtual_index = O
Q@cache.config_virtual_tag = 0

Qcache
Qcache

Qcache.
.penalty_read = O
.penalty_write = 0

Q@cache.

config _replacement_policy = "lru"

O@cache.penalty_read_next = 0
Q@cache.penalty_write_next = 0
Q@cache.config write_allocate = 1

config write_back =1

@SIM_add_configuration([cache] ,None)
phys_mem->timing model = cache

@def hap_Mode_Switch(data, object, old_mode, new_mode):
if (new_mode == Sim_CPU_Mode_Supervisor):
Remove Model

run_command ("phys_mem->timing_model = 0")
elif (new_mode == Sim_CPU_Mode_User):

Attach Model

run_command ("phys_mem->timing _model = cache")

Register callback
@SIM_hap_add_callback("Core_Mode_Change", hap_Mode_Switch, None)

48

C.2. DISENO DE LAS SIMULACIONES

MUESTRA NUMERO 1
echo "\n\n MUESTRA NUMERO 1\n\n"

$iteration = 0

while $iteration < (2950/10) {
cache.reset-statistics
run-cycles 10000000

echo "\n\n iteration "

echo $iteration

ptime

cache.statistics
print-statistics -all
$iteration += 1

}

write-configuration finMuestraOl.check
MUESTRA NUMERO 2

Desactivo cache y funcién callback
phys_mem->timing_model = 0
@SIM_hap_delete_callback("Core_Mode_Change", hap_Mode_Switch, None)

#Avanzo los ciclos que quiero saltar
run-cycles 1040000000

write-configuration inicioMuestra0O2.check

#Caliento caches
phys_mem->timing_model = cache
run-cycles 100000000

@SIM_hap_add_callback("Core_Mode_Change", hap_Mode_Switch, None)
echo "\n\n MUESTRA NUMERO 2\n\n"

$iteration = 0

while $iteration < (2950/10) {
cache.reset-statistics
run-cycles 10000000

echo "\n\n iteration "

echo $iteration

ptime

cache.statistics
print-statistics -all
$iteration += 1

}

write-configuration finMuestra0O2.check

49

ANEXO C. DETALLES DE LAS SIMULACIONES CON SIMICS Y GEMS

Para iniciar la cache comenzamos dando valores a los diferentes parametros, que son au-
toexplicativos, y después asignamos la cache al modelo temporal para que Simics la tenga en
cuenta al ir ejecutando las instrucciones. A continuacién, definimos una funcién en Python que
activard y desactivard la cache cuando pasemos de ejecutar cédigo de sistema (modo protegido
o supervisor) a c6digo de usuario (modo usuario) y viceversa. De esta forma, tinicamente las
instrucciones correspondientes a c6digo de usuario pasaran por la cache.

Después, empezamos a tomar las muestras. La primera la tomamos siempre al inicio de la
region de interés. Como deseamos que cada muestra tenga la longitud de la entrada grande, que
en este caso era 2950 millones de instrucciones, utilizaremos un bucle while. Dentro de cada
iteracion del bucle, ponemos a cero los contadores de estadisticas de la cache mediante el comando
cache.reset-statistics, ejecutamos los siguientes 10 millones de ciclos con run-cycles y
mostramos las estadisticas usando los comandos ptime, cache.statistics y print-statistics
-all. Después de cada muestra almacenamos un checkpoint para poder volver a ese punto si se
produce algin problema durante la simulacién.

Para pasar a la siguiente muestra, debemos saltar los ciclos que nos interese. Durante ese
tiempo, desactivamos las caches y la funcién que se ejecuta al cambiar entre modo usuario
y modo protegido para acelerar la simulaciéon. Después de saltar los ciclos almacenamos otro
checkpoint. Nos interesa que la cache contenga informacién valida como si hubiéramos estado
usandola durante todo el tiempo para que al iniciar la muestra no haya un exceso de fallos que
no se corresponda con la ejecucién normal del programa. Por lo tanto, iniciamos la cache y
ejecutamos durante 100 millones de ciclos para calentarla. A continuacién, volvemos a utilizar
un bucle para tomar todas las estadisticas de la muestra. Repetiremos este proceso tantas veces
como sea necesario para obtener todas las muestras.

C.3 Ejecucion de las simulaciones

Cuando hay que ejecutar un gran numero de simulaciones es importante automatizar el proceso
para que resulte méas comodo y rapido. Nosotros hemos llevado a cabo las simulaciones en el
cluster del departamento, en el cual podemos utilizar Condor [I7], un sistema de gestién de car-
gas de trabajo. Anadimos a continuacién un ejemplo de su uso para lanzar un par de simulaciones:

executable = ./simics
universe = vanilla
should_transfer_files = yes
when_to_transfer_output =
environment = LM_LICENSE_FILE=/home/ortin/common/simics

on_exit_or_evict

arguments = -stall -no-win runProcOOlParsecBlackscholesNative00004k.simics
output = ProcOOlParsecBlackscholesNative00004k.out

error = ProcOO1ParsecBlackscholesNative00004k.error

log = ProcOOl1ParsecBlackscholesNative00004k.log

50

C.4. RECOPILACION DE RESULTADOS

arguments = -stall -no-win runProcOOlParsecBlackscholesNative0OOOO8k.simics
output = ProcOO1ParsecBlackscholesNative0OOOO8k.out

error = ProcOOlParsecBlackscholesNative00008k.error

log = ProcOO1ParsecBlackscholesNative0OOO08k.log

queue

Suponiendo que el script se llama myCondorScript.txt, para ejecutar las tareas programadas
solo tenemos que utilizar el comando:

condor_submit myCondorScript.txt

En nuestro caso, el uso de Condor estaba muy limitado, ya que nuestras simulaciones eran
demasiado costosas en tiempo y recursos. La configuraciéon de Condor en nuestro cluster no
permitia colocar los procesos en cola e ir ejecutandolos poco a poco, ni garantizar que tendrian
mayor prioridad que otros procesos. Por lo tanto, las simulaciones eran expulsadas cuando
llevaban varios dias ejecutandose y tenian que volver a empezar. Finalmente, fue necesario entrar
en cada nodo del cluster e ir lanzando las simulaciones por medio de pequenos scripts controlando
periédicamente la ocupacién del cluster de forma manual.

C.4 Recopilacion de resultados

Al terminar las simulaciones, hay que recopilar los resultados y presentarlos de manera que
podamos analizarlos con comodidad. Debido al gran volumen de informacién obtenido, resulta
impracticable obtener los datos necesarios a mano a partir de los ficheros de salida. Para
representar los datos hemos elaborado gréficas utilizando gnuplot [1], asi que al recoger los valores
que nos interesaban de los ficheros, los hemos ordenado de manera que luego nos resultara comodo
utilizarlos directamente como ficheros de datos para dibujar las figuras. Hemos automatizado el
proceso de recogida de datos utilizando scripts de shell. Mostraremos el script utilizado para
recoger los datos de las trazas temporales en la entrada nativa, que es el méas complejo. Como
punto de partida, tenemos un fichero en el que aparecen las estadisticas de las diez muestras,
separadas por las palabras “MUESTRA NUMERO X”. Como salida, nos interesa tener un
fichero por cada muestra de cada aplicacién, con una linea por cada vez que se han tomado las
estadisticas (cada diez millones de ciclos). En cada linea queremos que aparezcan el nimero de
lecturas y escrituras de datos, nimero de fallos, instrucciones ejecutadas hasta el momento e
instrucciones del ultimo intervalo. Se incluyen comentarios explicativos sobre el propio cédigo.

o1

ANEXO C. DETALLES DE LAS SIMULACIONES CON SIMICS Y GEMS

52

Obtenemos los datos para todos los benchmrks de PARSEC
for DIRECTORY in ./parsec/*
do
#Creamos un fichero distinto para cada muestra
csplit -f "$DIRECTORY"/muestra -s "$DIRECTORY"/*native.out \
/MUESTRA\ NUMERO/ /MUESTRA\ NUMERQO/ /MUESTRA\ NUMERO/ \
/MUESTRA\ NUMERO/ /MUESTRA\ NUMERO/ /MUESTRA\ NUMERO/ \
/MUESTRA\ NUMERO/ /MUESTRA\ NUMERO/ /MUESTRA\ NUMERO/ \
/MUESTRA\ NUMERO/
INITIALINTERVAL=0
ITER=0
Obtenemos los datos de cada muestra
for FILENAME in "$DIRECTORY"/muestrax
do
ITER=‘expr $ITER + 1°
Guardamos en un fichero distinto los valores de accesos,
fallos e instrucciones de cada iteraciém.
grep "Data read transactions:" "$FILENAME" \
| sed ’s/[a-zA-Z:]1* //g’ >"$FILENAME".read
grep "Data write transactions:" "$FILENAME" \
| sed ’s/[a-zA-Z:]1* //g’ >"$FILENAME" .write
grep "Data read misses:" "$FILENAME" \
| sed ’s/[a-zA-Z:1% //g’> >"$FILENAME".readmiss
grep "Data write misses:" "$FILENAME" \
| sed ’s/[a-zA-Z:1* //g’> >"$FILENAME".writemiss
grep "instructions executed" "$FILENAME" \
| awk ’{print $1}’ > aux.txt
Para las instrucciones sé6lo tenemos informacién de las
instrucciones ejecutadas hasta el momento, pero queremos
calcular también las instrucciones del dltimo intervalo.
awk °’
NR<2 { print int($1), int($1) }
NR>=2 { print int($1), int($1)-orig }
{ orig= int($1) }
> aux.txt >"$FILENAME".numinstr
rm aux.txt
Por dltimo, unimos el contenido de todos los ficheros.
pr -tmJ "$FILENAME".numTrans "$FILENAME".read "$FILENAME".write \
"$FILENAME" .readmiss "$FILENAME".writemiss \
"$FILENAME" .numinstr >"$FILENAME".allstats \
done
done

C.4. RECOPILACION DE RESULTADOS

A partir de los ficheros obtenidos podemos crear las graficas que nos permitiran analizar los
resultados y obtener conclusiones. Los scripts para recopilar los resultados de otras simulaciones
se han elaborado de manera similar y no se incluyen en este documento porque no aportan ya
informacién adicional.

93

54

Anexo D
Resultados de la caracterizacion de

PARSEC

Este anexo recoge un anadlisis detallado de las estadisticas recogidas a partir de los experimentos y
las conclusiones a las que se ha llegado. Ademas, se incluye una seleccién de las entradas que se
deberan utilizar para simular cada una de las aplicaciones de la suite Parsec en un tiempo razonable y
obteniendo resultados representativos.

D.1 Impacto del tamano de las entradas en la jerarquia de me-
moria

En esta seccion se presentan los resultados de los experimentos descritos en el capitulo 4], cuya
finalidad es analizar el impacto del tamano de las entradas de las aplicaciones de PARSEC en la
jerarquia de memoria. Se comienza presentando los resultados correspondientes al instruction mix
y al footprint, que verifican la idea de que las entradas de menor tamano son versiones reducidas
de la entrada nativa y que esta ultima supone un mayor uso de recursos. A continuacion, se
introducen los fallos de TLB, donde aparecen los primeros indicios de que no necesariamente las
entradas mas grandes son las que mads presionardn a la jerarquia de memoria. Por iltimo, se
muestran las tasas de fallos y trazas temporales, en las que vemos claramente que las entradas
nativas no se diferencian excesivamente del resto y que no siempre son las que mayores tasas de
fallos presentan. Esto nos lleva a pensar que serd posible obtener resultados representativos de
una ejecucion con entrada nativa sin necesidad de realizar simulaciones tan costosas.

D.1.1 Instruction mix

El porcentaje de instrucciones de lectura y escritura que se ejecutan para cada entrada de todas
las aplicaciones de PARSEC aparece representado en la figura Se ve claramente que, en
todos los casos, la proporciéon se mantiene practicamente igual para todas las entradas de una
misma aplicacién. Encontramos una excepcién en dedup, cuya entrada de tamano grande se
diferencia bastante del resto. Esto lo veremos también reflejado més adelante en otras métricas y
lo explicaremos mas en profundidad en la seccién

En la figura aparece el nimero total de instrucciones que se ejecutan con cada una de las
entradas de todas las aplicaciones, obtenido de la misma ejecucién que los datos de la figura [5.1
Para representar los resultados con mayor claridad, se ha utilizado un eje logaritmico. Se puede
comprobar que el nimero de instrucciones va aumentando segin se incrementa el tamano de la

95

ANEXO D. RESULTADOS DE LA CARACTERIZACION DE PARSEC

entrada, especialmente al pasar de la entrada grande a la nativa. El tinico caso en el que no se
cumple es facesim, en el que las entradas pequena, mediana y grande tienen el mismo ntimero
de instrucciones. Esto se debe a que las tres entradas son idénticas, ya que el escalado supondria
reducir el tamano de la representacion de la cara (recordamos que este benchmark se ocupa de
la simulacién del movimiento de una cara) y eso podria crear inestabilidad numérica [10]. El
numero de instrucciones ejecutadas junto con el instruction mix nos lleva a pensar que, efec-
tivamente, las entradas méas pequenas son una aproximacion reducida de las entradas mas grandes.

1e+13
pequeia W
mediana @
P 4 grande A
'S 4 'S * natva @
1e+12
e+ ¢ .
3 4
c
Qo
8 1e+11
=
17 A
2 - A 4 A
[0}
©
) A A A A
g 1e+10 { ®
p=} A
= ° A °]
A u
® |
1e+09 | I ® H e
|
1e+08 T
T 4 % % & A %4 A % % % %
(A %, %, 3 s,) “, D, 2. N . ® 2%
d‘(‘,} % <S)¢9/ ©) % 2 $C’® /))o/ %,
(A R 0)$/ © %, 2y

Figura D.1: Ndimero de instrucciones de las aplicaciones de PARSEC con cada una de sus entradas

D.1.2 Footprint

En la figura mostrabamos la cantidad de memoria a la que acceden las aplicaciones durante la
regiéon de interés. Veiamos que la cantidad de memoria accedida para instrucciones se mantiene
constante, mientras que la de datos aumenta con el tamano de la entrada a excepcion de las
aplicaciones facesim y vips. En la figura aparece representado el nimero medio de accesos
a cada pagina de memoria junto con la desviacion tipica. En todos los casos, el nimero de accesos
por pagina, tanto de instrucciones como de datos, es mayor para las entradas més grandes. Al
igual que en la seccién anterior, esto nos sigue confirmando que las entradas mayores realizardn
un uso mas intensivo de la memoria.

En las figuras y aparece el footprint del 50 %, 90 % y 100 % de los accesos a
memoria para datos, tal y como habia sido explicado en la seccién Todas las aplicaciones
presentan mucha localidad espacial, ya que muchos de los accesos se concentran en un conjunto
pequeno de las paginas. Ademas, hay muchos casos en los que la localidad es claramente mayor
para las aplicaciones nativas, ya que la cantidad de memoria correspondiente al 50 % o incluso al
90 % de los accesos se mantiene baja, mientras que el footprint total aumenta (blackscholes,
dedup, ferret, fuidanimate, frqmine, raytrace, swaptions, vips y x264).

56

D.1. IMPACTO DEL TAMANO DE LAS ENTRADAS EN LA JERARQUIA DE MEMORIA

1e+12
I Instrucciones ———
fe+11 i i { J Il Datos ==
@] [; I
£ 1e+10 il l 1 1 i i
s] I [
S 1e+09 1 1] | — :
: | N A, 1 il 1 !
8 16408 - I T T r [[1]
Q
Q
8 1e+07
[0}
©
o 1e+06
[}
£
2 100000
10000
1000 S
%5
R,
S
BlackscholesBodytrack Canneal Dedup Facesim Ferret Fluidanimate Fregmine RaytraceStreamclusteSwaptions Vips X264

Figura D.2: Numero medio de accesos a cada pagina de memoria de las aplicaciones de PARSEC, diferenciando
entre accesos para instrucciones y para datos.

D.1.3 Fallos de TLB

En la figura presentabamos los fallos que se producen en los TLB de datos de los dos niveles.
Una descripcion de la estructura del TLB y la recopilacion de estas estadisticas puede consultarse
en la seccién Las escrituras van directamente al TLB de nivel superior, pero las lecturas
pasan por ambos niveles, asi que podemos ver los accesos que fallan en L0 pero aciertan en el
siguiente nivel y los que fallan en ambos niveles. Los datos que representamos son los fallos
cada mil instrucciones (misses per kiloinstruction o MPKI). Esto nos da una idea del nimero de
fallos independientemente del tamano del programa, lo que nos permite comparar unos con otros
comodamente.

En este caso vemos que ya no se repite un patréon tan claramente como en la seccién anterior,
el nimero de fallos de TLB no va aumentando progresivamente con el tamano de la entrada.
En algunos casos, el nimero de fallos decrece (blackscholes, bodytrack, ferret, raytrace y
vips) y en otros casos se aprecia una forma de “U” (canneal, dedup, fluidanimate, swaptions
y x264). Por lo tanto, ya no parece que se cumpla la suposicién de que el escalado de las en-
tradas implica que las méas grandes sean mas fieles a una ejecucion real con mayor nimero de fallos.

D.1.4 Tasas de fallos en cache y trazas temporales

En esta seccion se van a presentar y analizar los resultados del estudio del comportamiento de
las aplicaciones de PARSEC sobre la cache de primer nivel del procesador. En concreto, para
cada benchmark se tendran en cuenta las siguientes estadisticas:

e Fallos de lectura y escritura con diferentes tamanos de cache en una arquitectura Intel, con
politica write-allocate (cuando se produce un fallo de escritura, el bloque correspondiente
se trae a la cache) y copy-back (las escrituras se realizan sobre el bloque en cache y se
copian a memoria principal cuando este se reemplaza). Estos resultados se han obtenido
utilizando VALGRIND, tal y como se explica en la seccién

o7

ANEXO D. RESULTADOS DE LA CARACTERIZACION DE PARSEC

64M 1G ‘ |
50% ——
90% ---- -

16M 256M [100% -me

4M 64M e

: - et .

I —— wl s

64K ™ /
16K 256K

4K 1 1 1 1 64K 1 1 1 1
pequefa mediana grande nativa pequefa mediana grande nativa
(a) bodytrack (b) canneal
4G ‘ ‘ ‘ ‘ 1G ‘ : : ;
50% —— 50% ——
90% e e " 256M | 90% -
1G [100% - e et 10095 wi
......... . 64M
256M e
e 16M
BAM [R am
T R ™
""""""""" 256K
4M et
" / \ 64K
-
™ / 16K
256K : . : : 4K : : : :
pequefa mediana grande nativa pequena mediana grande nativa
(c) dedup (d) facesim
256M ‘ ‘ ‘ ‘ 256M : : : :
50% —— 50% —— @
90% =seeeeses e ® | 90% -wowemeeea i
BAM 1100% e et 64M 100% wwome B «
16M b - TBM [t
.. aMm
AM o B e - o
e M
M
256K
256K 64K
64K /\ﬂ 16K
16K — : : : 4K — : : :
pequefa mediana grande nativa pequena mediana grande nativa
(e) ferret (f) fluidanimate

Figura D.3: 50%, 90 % y 100 % del footprint de las aplicaciones de PARSEC (parte 1)

D.1. IMPACTO DEL TAMANO DE LAS ENTRADAS EN LA JERARQUIA DE MEMORIA

4G
1G
256M
64M
16M
4M
M
256K
64K
16K
4K

256M

64M

16M

4M

M

256K

64K

64M

16M

4M

M

256K

64K

— R)
.................... L
pequefa mediana grande nativa
(a) freqmine

pequefa mediana grande nativa
(c) streamcluster
pequefa mediana grande nativa
(e) vips

1G
256M
64M
16M
4M
™M
256K
64K
16K
4K

4M

™M

256K

64K

16K

4K

256M
64M
16M
4M
™M
256K
64K
16K

4K

pequena mediana grande nativa
(b) raytrace
pequena mediana grande nativa
(d) swaptions
50% —— ‘ ‘
| 90% -eowemeeee "
100% «wemee
pequena mediana grande nativa
(f) x264

Figura D.4: 50 %, 90 % y 100 % del footprint de las aplicaciones de PARSEC (parte 2)

ANEXO D. RESULTADOS DE LA CARACTERIZACION DE PARSEC

e Fallos de lectura y escritura con diferentes tamanos de cache en una arquitectura Sparc.
Para este apartado se han tomado las medidas tanto para una politica non-write-allocate y
write-through (las escrituras se realizan directamente en memoria) como para una write-
allocate y copy-back. En el caso de la politica non-write-allocate y write-thorugh, se han
tenido en cuenta tanto las instrucciones de usuario como las de sistema, ya que el no
tener que distinguir entre las dos acelera el proceso de simulacién. De todas formas, las
instrucciones de usuario son practicamente el total de las instrucciones ejecutadas. No
se dispone de resultados para algunas simulaciones con entrada nativa debido al elevado
tiempo de simulaciéon (més de un mes en varios casos). Estos datos se han obtenido mediante
simulacién con Simics, como se describe en la seccién

e Traza temporal de los fallos con politica write-allocate utilizando una cache de 64 KB. Se
ha seguido el procedimiento explicado en la seccién

En todos los casos se presentan los fallos en MPKI (misses per kiloinstruction), al igual que
en la seccién En la seccién se incluye una explicaciéon de cémo aparecen representados
los datos en cada una de las graficas utilizadas a lo largo de los siguientes apartados.

Blackscholes

En las figuras y veiamos los fallos por cada mil instrucciones para cada una de las entradas
del benchmark blackscholes, variando el tamanio de la cache en Intel y Sparc. En esta aplicacién
el nimero de fallos de las entradas méas pequenas disminuye bruscamente a partir del punto en
que las estructuras principales caben en la cache, indicando que la entrada nativa si que genera
mas fallos en cache y estresa més la jerarquia de memoria.

Analizando la traza temporal para todas las entradas que presentdbamos en las figuras y
vemos que el nimero de fallos se mantiene practicamente constante en todos los casos. En la
entrada nativa, a excepcion de una anomalia alrededor del ciclo 4500, aparecen picos de fallos
cada 750 millones de ciclos.

Bodytrack

Fijandonos en las figuras y vemos que con esta aplicacién ya no se cumple tan claramente
que las entradas mas grandes supongan un nimero mayor de fallos en cache. En el caso de la
arquitectura Intel, las entradas mediana y grande tienen siempre mas fallos. Si nos centramos en
los resultados para la arquitectura Sparc, la entrada grande presenta mas fallos que la nativa en
varios casos (aunque no se disponga de todos los datos para el protocolo write-allocate recordamos
que consideramos que los resultados seguiran el mismo patrén que con non-write-allocate, tal y
como hemos explicado en el apartado anterior). A parte de eso, vemos que con caches de 256 KB
o mayores el nimero de fallos es muy pequeno, asi que no podremos realizar estudios demasiado
exhaustivos sobre la jerarquia.

La traza temporal (figuras y nos aporta una informacién muy valiosa en este caso.
Vemos claramente que hay un patrén que se repite una vez en la entrada pequena, dos en la
mediana, cuatro en la grande y muchas veces en la nativa. Ademds, aunque este patrén tiene
siempre la misma forma, no ocupa en todos los casos el mismo ndmero de ciclos.

60

D.1. IMPACTO DEL TAMANO DE LAS ENTRADAS EN LA JERARQUIA DE MEMORIA

Lectura
N Escritura ===

MPKI

mEEEE EE== ===

92
(S} .
%Y
(’s,geogé’«:?
4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1024KB 2048KB 4096KB 8192KB 16384KB 32768KB
Figura D.5: Fallos por cada mil instrucciones en la cache de datos para bodytrack ejecutado en Intel. Se

contabilizan tdnicamente los fallos producidos por instrucciones de usuario y se utiliza una politica write-allocate y
copy-back.

12
Lectura
I Escritura ===
10 ||
il
el o] 1" -
UEle TRNR .. @
< e
o C-RREE REER RERE BEER HEE
s
4 ' HAEEERE BEEER BEERE BEEE BERI
===
2 ' EEEE BEEER BEEBE BEEREER BEBRE
0 el Scse= .
© 302
2%
)
4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1024KB 2048KB 4096KB 8192KB 16384KB 32768KB
(a) write-allocate y copy-back, sélo instrucciones de usuario
25

Lectura
Escritura ===

MPKI
— - n
o o o
] T T
I S ——
i ———
I —
)
)
—
: : |
I ——
T ——
——
R ———
e ———
—
——
|
]
I —

A 3 [T —
h" | 100 U0ed dnan Lnn Nisg dres

o
| —

4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1024KB 2048KB 4096KB 8192KB 16384KB 32768KB

(b) non-write-allocate y write-through, instrucciones de usuario y sistema

Figura D.6: Fallos por cada mil instrucciones en la cache de datos para bodytrack ejecutado en Sparc.

61

ANEXO D. RESULTADOS DE LA CARACTERIZACION DE PARSEC

310°
2106 |

210°
2.108
1106
5.10°

Nimero de accesos

0-10° ‘ ‘ ‘ ‘ | |
20 30 40 50 60 70

Voo

MPKI
OoON A~
—

80 90 100

acAoaf

Vi =

T T T T T T T
20 30 40 50 60 70
Ciclos (10 millones)

Lectura

(a) pequeiia

310°
2106 |

80 90 100

Escritura

2.10°
2.10°
1.10°
510°

Nimero de accesos

0-10° ‘ ‘ ‘ |
100 150 200 250

300

MPKI
[SLCENOYC)

WA ’_ AAA A4 A

||

100 150 200 250
Ciclos (10 millones)

Lectura

(b) mediana

310°
2106 |
2.10°
2106 |
110° |
510° |

Nimero de accesos

300

Escritura

0-10° ‘ ‘ ‘ | |
0 200 600 800 1000

1200 1400

MPKI
[SLCENOYC)

-
|
|
T = T
600 800
Ciclos (10 millones)

1000

Lectura

(¢) grande

1200 1400

Escritura

Figura D.7: Traza temporal de fallos en cache para bodytrack con entradas pequeiia, mediana y grande, ejecutado
en Sparc. Se contabilizan inicamente los fallos producidos por instrucciones de usuario y se utiliza una politica

write-allocate y copy-back.

62

D.1. IMPACTO DEL TAMANO DE LAS ENTRADAS EN LA JERARQUIA DE MEMORIA

Numero de accesos

Nimero de accesos

Numero de accesos

Numero de accesos

Nimero de accesos

310° [
210°
210
210°
110° 1
510° |-
010° T

T T T
1000 1200 1400

LT

1000 1200 1400

T T
400 600 800

M ‘] 'l\ l'
A ‘ 'R :
600 800

T

MPKI

O ANO~N®©

400
Ciclos (10 millones)

Lectura Escritura

310° [

22200 22400 22600 22800 23000

22200 22400
Ciclos (10 millones)

21600 21800 22000

MPKI

C=RWANDNEO

21800 22000

21600

22600 22800 23000

Lectura Escritura

310° [
210° |
210°
210° -
110° -

510°

56000 56200 56400 56600 56800 57000 57200

| Wﬂ W <.

f T T T T T
56000 56200 56400 56600 56800 57000
Ciclos (10 millones)

55800

MPKI
O=NWANDNEO

1
57200

T
55800

Lectura Escritura

310° [
210°
210°
210° |-
110° 1
510° |-
010°

T T T T T
67800 68000 68200 68400 68600 68800

T

67800 68000 68200 68400 68600 68800
Ciclos (10 millones)

T
67600

MPKI

EERNTRF LN

67600

Lectura

Escritura

[

80200 80400 80600 80800 81000 81200 81400 81600

80200

MPKI
C—RWANDNEO

80800 81000 81200 81400 81600

Ciclos (10 millones)

80400 80600

Lectura Escritura

Numero de accesos

Nimero de accesos

Numero de accesos

Numero de accesos

Nimero de accesos

310°
210°
2.10°
210°
1-10°
510°

MPKI
OO RND O

3.10°
210°
210°
210°
1-10%
5.10°

MPKI
C=NWAND OO

310° -

2.10°
210°
210°
1108

510°

MPKI
C=NWANDNOO

310°
210°
210°
210°
1-10°
510°

MPKI
OO RND O

3.10°
210°
210°
210°
1-10%
5.10°

MPKI
C=NWAND DO

Il
T T T T T T T ,
18000 18200 18400 18600 18800 19000 19200 19400
|
" . ” !
18000 18200 18400 18600 18800 19000 19200 19400
Ciclos (10 millones)
Lectura Escritura
34600 34800 35000 35200 35400 35600 35800
i | | A i
34600 34800 35000 35200 35400 35600 35800
Ciclos (10 millones)
Lectura Escritura
59000 59200 59400 59600 59800 60000 60200 60400
| |
‘ .
A &l i L
T ; T T T T T ,
59000 59200 58400 59600 59800 60000 60200 60400
Ciclos (10 millones)
Lectura Escritura
T T T T T T T ,
71000 71200 71400 71600 71800 72000 72200 72400
| | N H , '
o, L v A 1
71000 71200 71400 71600 71800 72000 72200 72400
Ciclos (10 millones)
Lectura Escritura
83400 83600 83800 84000 84200 84400 84600 84800
| “ |
83400 83600 83800 84000 84200 84400 84600 84800
Ciclos (10 millones)
Lectura Escritura

Figura D.8: Traza temporal de fallos en cache para bodytrack con entrada nativa, ejecutado en Sparc. Aparecen
diez muestras tomadas al azar del total de la ejecucién. Se contabilizan tnicamente los fallos producidos por
instrucciones de usuario y se utiliza una politica write-allocate y copy-back.

63

ANEXO D. RESULTADOS DE LA CARACTERIZACION DE PARSEC

Canneal

En la figura vemos los fallos en cache para una arquitectura Intel. Con caches menores se ven
mas fallos en la entrada pequena, y con caches mayores, en la entrada nativa. En Sparc (figura
D.10) se sigue generalmente la pauta de que entradas més grandes presentan mayor nimero de
fallos.

Si nos centramos ahora en las trazas temporales (figuras y [D.12]), vemos que no se
detectan patrones ni elementos de especial interés. En este caso, las simulaciones de la entrada
nativa se han realizado contabilizando tanto las instrucciones de sistema como las de usuario,
debido a que la simulacién resulta demasiado lenta si se tiene que activar y desactivar la cache
al cambiar entre modo de usuario y de sistema. De todas formas, se ha comprobado que las
instrucciones de sistema suponen un porcentaje muy pequeno del total de la ejecucion. Se ve que
el nimero de fallos es muy uniforme en todos los casos. En la ejecucion nativa el nimero esta en
torno a los 25 fallos por cada mil instrucciones, y a partir de la cuarta muestra hay un pequeno
escalén y los fallos se estabilizan en algo mas de 25. Ademds, cada 750 millones de instrucciones
aproximadamente hay un punto con menor nimero de fallos de lectura.

50

Lectura
45 Escritura === -

40 H
35 H

1

[

< 0 Ot b
LR

MPKI

15
10 H : AHT- -

4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1024KB 2048KB 4096KB 8192KB 16384KB 32768KB

Figura D.9: Fallos por cada mil instrucciones en la cache de datos para canneal ejecutado en Intel. Se contabilizan
unicamente los fallos producidos por instrucciones de usuario y se utiliza una politica write-allocate y copy-back.

64

D.1. IMPACTO DEL TAMANO DE LAS ENTRADAS EN LA JERARQUIA DE MEMORIA

30
[Lectura
l Escritura ===
25 -4
20
& 15+
=
10 -
5 I
®
e,
X
T =2
8%
>
4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1024KB 2048KB 4096KB 8192KB 16384KB 32768KB
(a) write-allocate y copy-back, sélo instrucciones de usuario
45
I Lectura
40 - I Escritura ===
35 |- I
30 [i
g i |
T 25 u =
X i = _
= 20 H 1 el = “m
15 H : A8 AR RN : TN sun i
o B BRAR RARE RRAE RA I -
s-AREE ROAE RRRR RRRE RN -
ot? a0 =
222
VDS
2827
55
)

4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1024KB 2048KB 4096KB 8192KB 1

(b) non-write-allocate y write-through, instrucciones de usuario y sistema

6384KB 32768KB

Figura D.10: Fallos por cada mil instrucciones en la cache de datos para canneal ejecutado en Sparc.

65

ANEXO D. RESULTADOS DE LA CARACTERIZACION DE PARSEC

310°
2106 |
210°
2106 -
110° -
510°
0-10° ; ; ; ‘ : :

Nimero de accesos

20 -
10 -

MPKI

T
0 5 10 15 20 25 30
Ciclos (10 millones)

Lectura Escritura

(a) pequeiia

310°
2106 -
2.10°
2108
1.10°
510°
0100 T T T T T T T T T

Nimero de accesos

30

20 -

10 -

O T T T T T T T T T

0 10 20 30 40 50 60 70 80 90
Ciclos (10 millones)

MPKI

Lectura Escritura

(b) mediana

3~102 -
2106 |-
2108 [
2106 |
110°
510° |
0-10° ‘ ; ; :

0 50 100 150 200

Nimero de accesos

30 -
20 -
10
O T T T T
0 50 100 150 200
Ciclos (10 millones)

MPKI
<
<

Lectura Escritura

(¢) grande
Figura D.11: Traza temporal de fallos en cache para canneal con entradas pequenia, mediana y grande, ejecutado

en Sparc. Se contabilizan inicamente los fallos producidos por instrucciones de usuario y se utiliza una politica
write-allocate y copy-back.

66

D.1. IMPACTO DEL TAMANO DE LAS ENTRADAS EN LA JERARQUIA DE MEMORIA

310° 310°
% 210° | % 240° -
g 210° g 210°F
8 210° 3 210°
° S
g 1 10° - g 108 1
3 s510% 3 s510° F
010° T T T T 010° T T T T T
4 50 100 150 200 2250 2300 2350 2400 2450
30 - 30 -
25 ~— 25 | o e - - —
c 20r W v g 201
T 151 T 15
= ot = 1o
51 51
0 T T T T 0 T T T T T
0 50 100 150 200 2250 2300 2350 2400 2450
Ciclos (10 millones) Ciclos (10 millones)
Lectura Escritura Lectura Escritura
310° 310°
8 210° | A 8 210° |
H 3
g 210° g 210°F
g 210° | 8 210°
° °
gt 10° - g 1 10° 1
2 510° | 2 510°
010° & T T T T 010° T T T T T
4900 4950 5000 5050 5100 5600 5650 5700 5750 5800
30 - 30 -
25 V v 25 v V v
g 22 g 20
T 151 & 150
= ot = fop
51 5|
ok ; T T T 4 T T T T T
4900 4950 5000 5050 5100 5600 5650 5700 5750 5800
Ciclos (10 millones) Ciclos (10 millones)
Lectura Escritura Lectura Escritura
310° 310° -
% 2108 M g 2108 |
8 210° 8 210°
8 8
3 210°F 8 210°F
° °
g 110° - g 1 10° -
= 5 = 5
2 510° 2 510°
010° T T T T T 010° T T T T
6800 6850 6900 6950 7000 7700 7750 7800 7850 7900
30 -
e 25 [R V T
- o 200
g £ 15
= s oL
5|
0 T T T T T ol— T T T T
6800 6850 6900 6950 7000 7700 7750 7800 7850 7900
Giclos (10 millones) Giclos (10 millones)
Lectura Escritura Lectura Escritura
310° 310°
8 210° |- 8 210°
3 3
Q 6 L Q 6 L
g 210 g 210
8 210° g 210°
° S
3 110° | S a0t |
5 5| £ s L
2 510 2 510
010° T T T T T 0-10° T T T T T
8150 8200 8250 8300 8350 9800 9850 9900 9950 10000
30 - 30 -
s v Y 2 B v Y Y
& 15p £ 15f
= ot = 1o
51 51
0 T T T T T 0 T T T T T
8150 8200 8250 8300 8350 9800 9850 9900 9950 10000
Ciclos (10 millones) Ciclos (10 millones)
Lectura Escritura Lectura Escritura
310° 310°
g 210° | 8 210° |
] 3 v
g 210° g 210°F
g 210° | 8 210°
§ 1108 - E 110° -
2 s510° | 2 510°
010° T T T T 010° T T T T T
13000 13050 13100 13150 13200 13800 13850 13900 13950 14000
30 - 30 -
25) e 25 [—
g 20 g 20
T 15f T 150
= ot = 1o
51 5|
ol— T T T T 0 T T T T T
13000 13050 13100 13150 13200 13800 13850 13900 13950 14000
Ciclos (10 millones) Ciclos (10 millones)
Lectura Escritura Lectura Escritura

Figura D.12: Traza temporal de fallos en cache para canneal con entrada nativa, ejecutado en Sparc. Aparecen
diez muestras tomadas al azar del total de la ejecucién. Se utiliza una politica write-allocate y copy-back.

67

ANEXO D. RESULTADOS DE LA CARACTERIZACION DE PARSEC

Dedup

En las figuras y vemos que la entrada grande tiene, en muchos casos, menos fallos
que el resto. Ya habiamos detectado este comportamiento diferente en el instruction mix en la
seccién En este benchmark, la ejecucién se divide en cinco etapas, siendo paralelas las
tres centrales (pipeline parallelism). El problema es que el pipeline estd muy desbalanceado y
en ocasiones se pasa demasiado tiempo en una etapa generando un cuello de botella. En [34] se
estudia este problema y se plantean soluciones para mejorar este tipo de algoritmos.

En las figuras y se presenta la traza temporal de los fallos en cache. En este caso,
la entrada nativa tiene tinicamente el triple de instrucciones que la entrada grande, asi que no se
han realizado diez muestras en puntos aleatorios sino que se ha ejecutado todo el programa. El
resultado se presenta dividiendo la traza en tres partes para que pueda estudiarse mas claramente
y para que la escala en el eje x sea igual a la utilizada para la entrada grande, como en el resto
de aplicaciones.

Analizando las trazas de la figura vemos que en todos los casos podemos distinguir al
menos dos partes. Mientras que para las entradas pequena y mediana se aprecia un aumento de
los accesos y fallos de lectura durante la segunda parte, en la entrada grande el nimero de fallos
sube durante unos pocos ciclos pero luego se mantiene bajo hasta final de la ejecucion. Esta
diferencia es la que se refleja también en las figuras y y veiamos ya en el instruction
mix (figura , y se debe a que el pipeline estd desbalanceado. En la entrada nativa (figura
se aprecia claramente un patrén, aunque distinguimos también tres partes que lo modifican
ligeramente: la primera hasta las 3500 instrucciones aproximadamente, la segunda hasta 5300 y
la dltima hasta el final de la ejecucion.

Lectura
Escritura == .

12 II e
10 "I N

MPKI

N
T

o
[
[
[l
[]
[
[
[
[
[
[
[
[
|
[
|

R,

255

%o
OR°

4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1024KB 2048KB 4096KB 8192KB 16384KB 32768KB

Figura D.13: Fallos por cada mil instrucciones en la cache de datos para dedup ejecutado en Intel. Se contabilizan
unicamente los fallos producidos por instrucciones de usuario y se utiliza una politica write-allocate y copy-back.

68

D.1. IMPACTO DEL TAMANO DE LAS ENTRADAS EN LA JERARQUIA DE MEMORIA

16
Lectura n—
Escritura =

<
o
=
4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1024KB 2048KB 4096KB 8192KB 16384KB 32768KB
(a) write-allocate y copy-back, sélo instrucciones de usuario
50
Lectura
45 - Escritura === -
40 - i e -
<
o
s

4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1024KB 2048KB 4096KB 8192KB 16384KB 32768KB

(b) non-write-allocate y write-through, instrucciones de usuario y sistema

Figura D.14: Fallos por cada mil instrucciones en la cache de datos para dedup ejecutado en Sparc.

69

ANEXO D. RESULTADOS DE LA CARACTERIZACION DE PARSEC

8 310°
3 6 |
g 2107
& 210
8 210°
g 110° f
E 5‘102 -
=z 010 T T T T
0 50 100 150 200
6 —
< 4+
o /\/\m/\/\—\/\n /\/\r’\/"\AA‘\A-A'\ AI\/\»\AM,J\, AN ,/\/\A/\M/‘\'
s 2 L YOS P
ANAMAANAGA < A il INNT
O T T T T
0 50 100 150 200
Ciclos (10 millones)
Lectura Escritura
(a) pequeiia
8 310°
2 6
g 2107
& 210° |
8 210°f
g 110° f
E 510 |
2 010° | | | | | |
0 100 200 300 400 500 600
6 —
¢ of |
&, 1 M%AMMW%MMMMAMMMMM nMWMMAﬁ.AM%MMNﬂAM
‘w.)’M‘M,,’WA ’L.H .'ﬂ MY
O T T T T
0 1 00 200 300 400 500 600
Ciclos (10 millones)
Lectura Escritura
(b) mediana
g 310°
3 6
3 2-106 N
© 210 W I
% 2106 | 1 It |
S 1.40° I
o 5
£ 510
g 0100 T T T T T T T T T
0 500 1000 1500 2000 2500 3000 3500 4000 4500
6
£ 5 | b | o
o
s 2 wu‘wwwWﬂ:«uk.w,,wan qlMMMv,h,ﬁmwwm «M MW NRRRSATE —— .
0 el ‘ i N \M\UWW&MM wauww-wuvwwwwmmmwmuwwwwm
T

T T
0 500 1000 1500 2000 2500 3000 3500 4000 4500
Ciclos (10 millones)

Lectura Escritura

(¢) grande
Figura D.15: Traza temporal de fallos en cache para dedup con entradas pequefia, mediana y grande, ejecutado

en Sparc. Se contabilizan inicamente los fallos producidos por instrucciones de usuario y se utiliza una politica
write-allocate y copy-back.

70

D.1. IMPACTO DEL TAMANO DE LAS ENTRADAS EN LA JERARQUIA DE MEMORIA

[=2¢; e >Ne Mo Mol el e i)

Numero de accesos
QA=W SN
Soooooooo

0 500 1000 1500 2000 2500 3000 3500 4000 4500

30
20
10
O I T T T T T T T T 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500

Ciclos (10 millones)

MPKI

Lectura Escritura

Numero de accesos
QA=W AN
Soooooooo

[«3é e lerlerNerlerle)Ne)

4500 5000 5500 6000 6500 7000 7500 8000 8500 9000

4
E

4500 5000 5500 6000 6500 7000 7500 8000 8500 9000
Ciclos (10 millones)

Lectura Escritura

Numero de accesos

QA=W A A

Soooooooo
[«3é, Ne)le)Ner)lerleNerNe)
T =T T

9000 9500 10000 10500 11000 11500 12000 12500 13000 13500

MPKI

0 T T : T T T T T T - 1
9000 9500 10000 10500 11000 11500 12000 12500 13000 13500
Ciclos (10 millones)

Lectura Escritura

Figura D.16: Traza temporal de fallos en cache para dedup con entrada nativa, ejecutado en Sparc. Aparecen
diez muestras tomadas al azar del total de la ejecucién. Se utiliza una politica write-allocate y copy-back.

71

ANEXO D. RESULTADOS DE LA CARACTERIZACION DE PARSEC

Facesim

En las figuras y podemos comprobar que no hay apenas ninguna diferencia entre los
fallos de todas las entradas, aunque modifiquemos el tamano de la cache. Recordamos también
que, en este caso, las entradas pequena, mediana y grande son exactamente iguales, como ya se

explico en la seccién

La traza temporal resulta en este caso muy util. Para las entradas pequenia, mediana y grande
(figura se aprecia una forma bastante caracteristica. En la entrada nativa (figura ,
esta forma exactamente igual se repite durante toda la ejecucion. Por lo tanto, vemos claramente
un patrén que aparece una vez en las entradas pequena, mediana y grande y varias veces en la
entrada nativa.

20
18
16

12
10

MPKI

(=]

Lectura

Escritura === -

16KB

32KB

64KB

128KB

256KB

512KB 1024KB 2048KB 4096KB 8192KB 16384KB 32768KB

Figura D.17: Fallos por cada mil instrucciones en la cache de datos para facesim ejecutado en Intel. Se
contabilizan tnicamente los fallos producidos por instrucciones de usuario y se utiliza una politica write-allocate y
copy-back.

72

D.1. IMPACTO DEL TAMANO DE LAS ENTRADAS EN LA JERARQUIA DE MEMORIA

18

Lectura
16 - i Escritura ===
14
ot | | O
o 10F B
o
= 8r o
HEE
6L ---...-------- —
4 L ™ 77 == s e e
2 H B B NN N N W B N AN N N W O OF B R N N N N e § N BN B N BEae § N R B N B B R NN N N R
0 ey S
<,
223
%%
>®
4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1024KB 2048KB 4096KB 8192KB 16384KB 32768KB
(a) write-allocate y copy-back, sélo instrucciones de usuario
40
Lectura
L] Escritura =—=3
35
30 H
25 H
& 20
s
15 |- II
10) I IIIIIII"II"I""
AN u Emmom
0 © 392
S,
33,
2%
555"
>
4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1024KB 2048KB 4096KB 8192KB 16384KB 32768KB
(b) non-write-allocate y write-through, instrucciones de usuario y sistema
Figura D.18: Fallos por cada mil instrucciones en la cache de datos para facesim ejecutado en Sparc.
3 4100
CD 3.10° - “”y}“‘\l“”yv“l””,h‘i”“,\“““ ln\u’u\ Ll 'h"hh\ “,&‘”i”‘h 'h.&vh h'h”ul‘\wh'hu'hu
g 2-106~rv~r*ﬁ’vf4‘r~quu LA i I e
g 2100
S 210 “J H V
o 6 i
g 1107
E 5100 F
=z 010 \ \ \ \
0 500 1000 1500 2000
T 30
s ® A A
0 T T T : T /J

0 500 1000 1500 2000
Ciclos (10 millones)

Lectura Escritura

Figura D.19: Traza temporal de fallos en cache para dedup con entrada grande (igual a la pequena y mediana),

ejecutado en Sparc. Se contabilizan dnicamente los fallos producidos por instrucciones de usuario y se utiliza una
politica write-allocate y copy-back.

73

ANEXO D. RESULTADOS DE LA CARACTERIZACION DE PARSEC

410°

Nimero de accesos

MPKI
TN}

CUBTERSHENS

Nimero de accesos

MPKI

410°
310°
210°
210°
210°
1-10°
510°
0-10°

Numero de accesos

MPKI

410°
310°
210°
210°
210°
1-10°
510°
010°

Nimero de accesos

MPKI

410°
310°
210°
210°
210°
1-10°
510°
010°

Numero de accesos

MPKI

L PRV s

LA (N [N K ™
] I |
0 500 1000 1500 2000
H T T T = T s
0 500 1000 1500 2000

Giclos (10 millones)
Lectura Escritura

}‘v_u‘l‘ 'T;‘r“q L|Lv ‘u f u“r' r“v‘!“ r‘["_w_v' o '[ﬂr - l'“ :
r | j

42000

| o
41500 42000 42500 43000 43500
Ciclos (10 millones)
Lectura Escritura

T A U T T T
92500 93000 93500 94000 94500
Ciclos (10 millones)
Lectura Escritura

128000 128500 129000 129500 130000
T T w/ u T
128000 128500 129000 129500 130000
Ciclos (10 millones)
Lectura Escritura

LARL T P T [Y T 'V T
| | |
180500 181000 181500 182000
T . T / T
180500 181000 181500 182000
Giclos (10 millones)
Lectura Escritura

Nimero de accesos

Numero de accesos

Nimero de accesos

Namero de accesos

Numero de accesos

MPKI

MPKI

MPKI

MPKI

MPKI

410°
3.10°
210°
210°
2.10°
1-10°
5.10°
010°

50
40
30
20
10

410°
3.10°
210°
210°
210°
1-10°
510°
010°

50
40
30
20
10

3.10°
2.10°
210°

210°

1-10°
510°

50
40
30
20
10

410°

310°
210°
210°
2.10°
1-10°
5.10°
010°

50
40
30
20
10

410°
310°
210°
210°
2.10°
1-10%
510°

50
40
30
20
10

7‘ Al LML I) [[\ M) ' A | '
Hl | |
21000 21500 22000 22500 23000
T T T T = 1
21000 21500 22000 22500 23000
Ciclos (10 millones)
Lectura Escritura
T |V T LASALIGIN Dl L FV i | l"
e
50500 51000 51500 52000 52500
T T T ! \/ T
50500 51000 51500 52000 52500
Ciclos (10 millones)
Lectura Escritura

T
121500

T T T T
122000 122500 123000 123500

W

u
121500

u u u
122500 123000 123500

Ciclos (10 millones)

u
122000

Lectura Escritura

[I AN I A B AR
[|
151000 151500 152000 152500 153000
T = T 1 T T d
151000 151500 152000 152500 153000
Ciclos (10 millones)
Lectura Escritura
RTTU TRV PTTRV o
AN Satiad i e e A b
\ .
200500 201000 201500 202000 202500
T T A T
200500 201000 201500 202000 202500
Ciclos (10 millones)
Lectura Escritura

Figura D.20: Traza temporal de fallos en cache para facesim con entrada nativa, ejecutado en Sparc. Aparecen
diez muestras tomadas al azar del total de la ejecucién. Se utiliza una politica write-allocate y copy-back.

D.1. IMPACTO DEL TAMANO DE LAS ENTRADAS EN LA JERARQUIA DE MEMORIA

Ferret

En las figuras y vemos que el nimero de fallos crece al pasar de la entrada pequena a la
mediana y de la mediana a la grande, pero que la entrada nativa tiene un nimero menor de fallos
en todos los casos. Por lo tanto, para este benchmark, no se cumple que las entradas mayores
estresen mas la jerarquia de memoria. La entrada pequena es una muy buena aproximaciéon del
comportamiento de la entrada nativa.

Las trazas temporales (figura [D.24]) no nos aportan en este caso informacién demasiado
valiosa, ya que no se detecta ningtin patrén ni se mantienen constantes en ningin valor.

20

Lectura
18 - Escritura === -
16 [
14 H
12 H
g 10 H
8
s -RRRN BB Julm U -]
4 -RERR - BERR - -BRRR BB |
>LRRER - BERR - -BRRR RERE LR
0 OO
Z

4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1024KB 2048KB 4096KB 8192KB 16384KB 32768KB

Figura D.21: Fallos por cada mil instrucciones en la cache de datos para ferret ejecutado en Intel. Se contabilizan
tinicamente los fallos producidos por instrucciones de usuario y se utiliza una politica write-allocate y copy-back.

Fluidanimate

En la figura vemos que los fallos por cada mil instrucciones en Intel para la entrada nativa
son muy similares a los de la entrada grande o la mediana para muchos de los tamanos de cache.
De manera similar, en Sparc (figura , se acercan a los que presenta la entrada de tamano
medio. En los dos casos parece que, con los tamanos de cache mas grande, las entradas mas
pequenas presentan menor ndamero de fallos, similar a lo que sucedia para blackscholes de
manera méas evidente.

Para esta aplicacién, la traza temporal nos aporta también informacién fundamental para
comprender el funcionamiento de la aplicacién. Con las entradas pequena, mediana y grande
(figura se aprecia claramente un patréon que se repite cinco veces, aunque al aumentar el
tamafio de la entrada el mismo patrén ocupa un mayor nimero de ciclos. En la entrada nativa (fi-
gura vemos el mismo patron, que ahora ocupa mayor numero de ciclos y se repite mas veces.

75

ANEXO D. RESULTADOS DE LA CARACTERIZACION DE PARSEC

MPKI

MPKI

76

18
16
14

50
45
40
35
30
25
20
15
10

Lectura —
[Escritura === .

4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1024KB 2048KB 4096KB 8192KB 16384KB 32768KB

(a) write-allocate y copy-back, sélo instrucciones de usuario

- Lectura
- Escritura == -

4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1024KB 2048KB 4096KB 8192KB 16384KB 32768KB

(b) non-write-allocate y write-through, instrucciones de usuario y sistema

Figura D.22: Fallos por cada mil instrucciones en la cache de datos para ferret ejecutado en Sparc.

D.1. IMPACTO DEL TAMANO DE LAS ENTRADAS EN LA JERARQUIA DE MEMORIA

[=2é;e>Ne>Ne Mo Mol el]

Numero de accesos
QAW A
Sooooo000

0 20 40 60 80 100 120 140 160 180

30 -
20

MPKI

10 T,k_/\./_“/\ /\W/\d\/‘\j\/‘w'\ /\‘./\ _ﬂ/\»/’\‘l\ /\ ,,/\ ‘ ‘ ‘ ‘ ‘

0 20 40 60 80 100 120 140 160 180
Ciclos (10 millones)

Lectura Escritura

(a) pequena

[=2é >N e>Ne>Ne Mo le >N}

Numero de accesos
QAW A S
Sooooo000

¥
=
0 100 200 300 400 500 600
Ciclos (10 millones)
Lectura Escritura
(b) mediana
8 4108
g 410
3 310,
© 210¢
3 210¢
o 210¢
aé 1-105
R 510
2 0-10° | T T T T T
0 500 1000 1500 2000 2500 3000
40
= 30
g 20
1O bl o o g ot sl b o
0 500 1000 1500 2000 2500 3000

Ciclos (10 millones)

Lectura Escritura

(c) grande

Figura D.23: Traza temporal de fallos en cache para ferret con entradas pequeiia, mediana y grande, ejecutado
en Sparc. Se contabilizan iinicamente los fallos producidos por instrucciones de usuario y se utiliza una politica

write-allocate y copy-back.

7

ANEXO D. RESULTADOS DE LA CARACTERIZACION DE PARSEC

410°
410°
310°
210°
210°
210°
1-10°
510°
010°

Numero de accesos

MPKI

410°
310°
210°
210°
210°
1-10°
510°
010°

Nimero de accesos

MPKI
n
5

410°
410°
310°
210°
210°
210°
1-10°
510°
0-10°

Numero de accesos

MPKI
N
8

410°
410°
310°
210°
210°
210°

Numero de accesos

510°
010°

MPKI
S wes
cnon3R8RSE

410°
410°
310°
210°
210°
210°
1-10°
510°
010°

Nimero de accesos

MPKI
n
5

110% |

mwwmwmw

0 500 1000 1500 2000 2500 3000
[l ol Al ubliln
i B G B
500 1000 1500 2000 2500 3000
Ciclos (10 millones)
Lectura Escritura

44000 44500 45000 45500 46000

r 1
E i S N PO SO PR PRI e
44000 44500 45000 45500 46000 46500
Ciclos (10 millones)
Lectura Escritura

89000 89500 90000 90500 91000 91500

W " At
kTG - 121 5V R
89000 89500 90000 90500 91000 91500
Giclos (10 millones)
Lectura Escritura

A A ANAANYN -t

T T T T T T
128000 128500 129000 129500 130000 130500

[Al it l M | (W
clatilhotbebt 1 b e b el
128000 128500 129000 129500 130000 130500
Ciclos (10 millones)
Lectura Escritura

157500 158000 158500 159000 159500 160000 160500
Gy R S e o [1 e o (511
157500 158000 158500 159000 159500 160000 160500
Ciclos (10 millones)
Lectura Escritura

Numero de accesos

Nimero de accesos

Numero de accesos

Numero de accesos

Nimero de accesos

MPKI

MPKI

MPKI

MPKI

MPKI

410°
410°
310°
210°
210°
210°
1108
510°
010°

410°
410°
310°
210°
210°
210°

1-10° |1

510°
0-10°

100000

410°
410°
310°
2.10°
210°
210°
1108
510°
010°

410°
410°
310°
210°
210°
210°
1-10°
510°
010°

T T T T T T
22500 23000 23500 24000 24500 25000

ool el
23500
Ciclos (10 millones)

OO LT)
24000 24500

25000

Lectura Escritura

52000 52500 53000 53500 54000 54500

IV M\ T

52000

\‘ by

54500

ekt

b
53000 53500 54000
Ciclos (10 millones)

52500

Lectura Escritura

100500 101000 101500 102000 102500 103000

) . Lk
\-\~Juuw.u,uw.‘ etk G e

102000 102500

T S

100500

LA
101000

he i LIS
101500
Giclos (10 millones)

103000

Lectura Escritura

oA AR A AN

T T T T T
138500 139000 139500 140000 140500 141000

970 ' o |

138500 139000

‘d‘t Ml‘ﬁjuh Lin “J\...u iy

140000 140500 141000

|

.
139500

Ciclos (10 millones)

Lectura

Escritura

e WA el bty

169000 169500 170000 170500 171000 171500

fieobort

171000

\

171500

s WU b

169000 169500

i dbh

|
L ’v‘ [

170000
Ciclos (10 millones)

RS R,
170500

Lectura Escritura

Figura D.24: Traza temporal de fallos en cache para ferret con entrada nativa, ejecutado en Sparc. Aparecen
diez muestras tomadas al azar del total de la ejecucién. Se contabilizan tinicamente los fallos producidos por
instrucciones de usuario y se utiliza una politica write-allocate y copy-back.

78

D.1. IMPACTO DEL TAMANO DE LAS ENTRADAS EN LA JERARQUIA DE MEMORIA

U Lectura s
35 Escritura =3

25 H

MPKI
o
T

1.5 S e

4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1024KB 2048KB 4096KB 8192KB 16384KB 32768KB

Figura D.25: Fallos por cada mil instrucciones en la cache de datos para fluidanimate ejecutado en Intel. Se
contabilizan tdnicamente los fallos producidos por instrucciones de usuario y se utiliza una politica write-allocate y
copy-back.

Lectura
Escritura ===

4
o
s
4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1024KB 2048KB 4096KB 8192KB 16384KB 32768KB
(a) write-allocate y copy-back, sélo instrucciones de usuario
12
Lectura
Escritura ==
10 -
8 I
& 6l
s

4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1024KB 2048KB 4096KB 8192KB 16384KB 32768KB

(b) non-write-allocate y write-through, instrucciones de usuario y sistema

Figura D.26: Fallos por cada mil instrucciones en la cache de datos para fluidanimate ejecutado en Sparc.

79

ANEXO D. RESULTADOS DE LA CARACTERIZACION DE PARSEC

Nimero de accesos
QUMW AN

COO0OO0O0COO0OO
[e20Ke> o)
T é 11

0 20 40 60 80 100 120 140 160 180
30 -
< 20 +
% 10
T 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180
Ciclos (10 millones)
Lectura Escritura
(a) pequeiia
8 4100
8 4100 ¢
3 3105
2 2~106 r
S 2100
o 210
) 1<1O5
£ 510,
=z 0-10 T T T T T T T T 1
0 50 100 150 200 250 300 350 400 450
30
< 20 +
% 10 J
. N RS NG R S |

0 50 100 150 200 250 300 350 400 450
Ciclos (10 millones)

Lectura Escritura
(b) mediana
g 4100 1
8 4100 ¢
3 3105
g 2‘106 r
Ee] 2-106
o 2107
5} 1<1O5
£ 510,
=2 010 T T T T T T 1
0 200 400 600 800 1000 1200 1400
30
< 20 -
% 10
. ol bl
T T 1 T T 1 1
0 200 400 600 800 1000 1200 1400
Ciclos (10 millones)
Lectura Escritura

(¢) grande
Figura D.27: Traza temporal de fallos en cache para fluidanimate con entradas pequena, mediana y grande,

ejecutado en Sparc. Se contabilizan inicamente los fallos producidos por instrucciones de usuario y se utiliza una
politica write-allocate y copy-back.

80

D.1. IMPACTO DEL TAMANO DE LAS ENTRADAS EN LA JERARQUIA DE MEMORIA

410°
310°
210°
210°
2.10°

Nimero de accesos

0

MPKI
&

200 400 600 800 1000 1200 1400

|1 | \

=3

Nimero de accesos

600 800 1000 1200 1400
Ciclos (10 millones)
Escritura

Lectura

MPKI
&

57200 57400 57600 57800 58000 58200 58400

| | | l

410°
310° -

57200 57400 57600 57800 58000 58200 58400
Ciclos (10 millones)

Lectura Escritura

Nimero de accesos
S
3
>
4
=

MPKI
&

T T T T T T 1
88600 88800 89000 89200 89400 89600 89800

| | |

Namero de accesos

T u T u ¥ T 1
88600 88800 89000 89200 89400 89600 89800

Ciclos (10 millones)

Escritura

Lectura

MPKI

148400 148600 148800 149000 149200 149400 149600

[l |

410°
310° |
210°
210°

148800 149000 149200 149400 149600
Ciclos (10 millones)

148400 148600

Lectura Escritura

210° -
110° -
510° |
010°

Nimero de accesos

MPKI
&

177800 178000 178200 178400 178600 178800 179000

| | |

Figura D.28: Traza temporal de fallos en cache para fluidanimate con entrada nativa,

177800 178000 178200 178400 178600 178800 179000
Ciclos (10 millones)

Lectura Escritura

Nimero de accesos

Numero de accesos

Nimero de accesos

Nimero de accesos

Numero de accesos

MPKI

MPKI

MPKI

MPKI

MPKI

410°
310°

210° J

2.40° oo [, WA s ”

0
010" 7 T T T T T T 1
23200 23400 23600 23800 24000 24200 24400

] E— [[

[u T T u T T 1
23400

23200 23600 23800

Ciclos (10 millones)

24000 24200 24400

Lectura Escritura

69600

69000 69200 69400 69800 70000 70200

10 |
| 1
69000 69200 69400 69600 69800 70000 70200

Ciclos (10 millones)

Lectura Escritura

310° 1

w
am

T
=

1-10° |
510° 1
0.10° 7

137000

T T T T T T 1
137200 137400 137600 137800 138000 138200 138400

!

i T i T !
187600 137800 138000 138200 138400
Ciclos (10 millones)

0

u u
137000 137200 137400

Escritura

Lectura

157400 157600 157800 158000 158200 158400 158600 158800

30 -
25
20 -
15 1
10 -

g | Lo

0 T u T T Tt T T 1

157600 158400 158600 158800

157400 157800 158000 158200

Ciclos (10 millones)

Lectura Escritura

410°
310° |
210°
2.10°
210° 1
110°
510° |
010° & T T T T T T)

206600 206800 207000 207200 207400 207600 207800 208000

10 |

L | 1 l

0 e T T T T T T
206600 206800 207000 207200 207400 207600 207800

Ciclos (10 millones)

208000

Lectura Escritura

ejecutado en Sparc.

Aparecen diez muestras tomadas al azar del total de la ejecucién. Se utiliza una politica write-allocate y copy-back.

81

ANEXO D. RESULTADOS DE LA CARACTERIZACION DE PARSEC

Freqmine

En freqmine nos encontramos con un caso en el que el nimero de fallos por cada mil instruccio-
nes es menor segiin aumentamos el tamafo de la entrada (figuras [D.29] [D.30]y [D.31)). Esto va
totalmente en contra de las suposiciones que se hacen siempre respecto al escalado de las entradas.

En la traza temporal (figuras y ID.32)) si que se aprecian zonas diferenciadas en las que
se mantiene un nimero mayor o menor de fallos, pero no ha sido posible encontrar un patrén
claramente definido ni una relacién con la entrada.

Lectura
14 Escritura ===

MPKI

0
g ’);@O 2
S5,
% 6/900&}
L

4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1024KB 2048KB 4096KB 8192KB 16384KB 32768KB

Figura D.29: Fallos por cada mil instrucciones en la cache de datos para freqmine ejecutado en Intel. Se
contabilizan tinicamente los fallos producidos por instrucciones de usuario y se utiliza una politica write-allocate y
copy-back.

Raytrace

Lo primero que podemos detectar analizando las figuras [D.33] y [D-34] es que con caches mayores
de 16 KB, un tamano muy pequeno, la aplicacién no presenta apenas ningtn fallo (a excepcién
de los fallos de escritura al utilizar una politica non-write-allocate, que recordamos que se deben
a que los bloques nunca se traen a memoria y por lo tanto no se explota la localidad espacial
ni temporal). En consecuencia, esta aplicaciéon no serd adecuada en absoluto para realizar un
estudio de la jerarquia de memoria.

De todas formas, también obtenemos informacién interesante estudiando la traza temporal.
En las entradas pequena, mediana y grande (figura no se aprecia con claridad, pero en la
entrada nativa (figura podemos ver un patrén, especialmente fijaindonos en el ntimero de
instrucciones de lectura ejecutadas.

82

D.1. IMPACTO DEL TAMANO DE LAS ENTRADAS EN LA JERARQUIA DE MEMORIA

MPKI

MPKI

Lectura n—
Escritura ===

4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1024KB 2048KB 4096KB 8192KB 16384KB 32768KB

(a) write-allocate y copy-back, sélo instrucciones de usuario

30
Lectura
Escritura ===
25 H
20 H

Ml e b p I
i mmll“ﬂ il |I|‘ | Er B e e Ak

4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1024KB 2048KB 4096KB 8192KB 16384KB 32768KB

(b) non-write-allocate y write-through, instrucciones de usuario y sistema

Figura D.30: Fallos por cada mil instrucciones en la cache de datos para freqmine ejecutado en Sparc.

83

ANEXO D. RESULTADOS DE LA CARACTERIZACION DE PARSEC

Nimero de accesos
QA=W A
595550000

0 50 100 150 200 250

15 -
10 -

T
0 50 100 150 200 250
Ciclos (10 millones)

MPKI

Lectura Escritura

(a) pequeiia

410°
310° -
210° -
2108 -
210° -
1106
510° |-
0100 T T T T T T T T T 1

0 100 200 300 400 500 600 700 800 900 1000

Nimero de accesos

60 -
40
20

N

0 b— i J'\‘MAAAA M 2 — e ke SR | AnA,;v—-—‘-\r—\r\.Au“ td

0 100 200 300 400 500 600 700 800 900 1000
Ciclos (10 millones)

MPKI

Lectura Escritura

(b) mediana

1]

0 500 1000 1500 2000 2500 3000 3500

Nimero de accesos
QA=W A S
595555555

120 |
80 -
40 -

0 e MW . PR N N PP PST e A‘ :
T T T T T

0 500 1000 1500 2000 2500 3000 3500
Ciclos (10 millones)

MPKI

Lectura Escritura

(¢) grande
Figura D.31: Traza temporal de fallos en cache para freqmine con entradas pequena, mediana y grande, ejecutado

en Sparc. Se contabilizan inicamente los fallos producidos por instrucciones de usuario y se utiliza una politica
write-allocate y copy-back.

84

D.1. IMPACTO DEL TAMANO DE LAS ENTRADAS EN LA JERARQUIA DE MEMORIA

410°
410°
310°
210°
210°
210°
1-10°
510°
010°

Nimero de accesos

25
20

MPKI

10

410°
410°
310°
210°
210°
210°
110
510
010°

Nimero de accesos

5

MPKI

410°
410°
310°
210°
210°
210°
1-10°
510°
0-10°

Nimero de accesos

MPKI

6
6

410
410
310°
210°
210°
210°
1-10%
510°
010°

Namero de accesos

MPKI

410°
410°
310°
210°
210°
210°
1-10°
510
010°

Nimero de accesos

MPKI

t MH 1 oo
Ll | o,
0 500 1000 1500 2000 2500 3000
0 500 1000 1500 2000 2500 3000
Ciclos (10 millones)
Lectura Escritura

88500 89000 89500 90000 90500

I 0l ol o ' .
et .\J\'*"JMWN\W\L\‘\wk'm‘w\‘m'&khuhqxhm.muw.

T
88000 88500 89000 89500 90000 90500
Ciclos (10 millones)
Lectura Escritura

T T T T T T T
143000 143500 144000 144500 145000 145500 146000

143000

143500 144000 144500

Ciclos (10 millones)

Lectura Escritura

M LAY o 0L o A A L L rwwwmww

187500 188000 188500 189000 189500 190000 190500

PR OO SRR AP R T .,;u.!mbwk" bl b A MMM
187500 188000 188500 189000 189500 190000 190500
Ciclos (10 millones)

Lectura Escritura

;WWWMWWWWWWWW

231000 231500

230000 230500 232000 232500
23000 230500 231000 231500 232000 232500
Ciclos (10 millones)
Lectura Escritura

Nimero de accesos

Numero de accesos

Nimero de accesos

Nimero de accesos

Numero de accesos

MPKI

MPKI

MPKI

MPKI

MPKI

410°
410°
310°
210°
210°
210°
1-10°
510°
010°

410°
410°
310°
210°
210°
210°
1-10%
510°
010°

410°
410°
310°
210°
210°
210°
1-10°
510°
010°

25
20
15
10

5
0

410°
410°
310°
210°
210°
210°
1-10%
510°
010°

25
20
15
10

32500 33000 33500 34000

34500

35000 3551

I |
e M poue AR A o v, o, Ve

00

32500 33000 33500 34000 34500 35000 35500
Ciclos (10 millones)
Lectura Escritura
108500 109000 109500 110000 110500 111000 111500

108500 109000 109500 110000

Ciclos (10 millones)

Lectura

| ‘
.«qu-J\/-\M.J‘..)A:/J“’J‘ﬁw\“\‘\\"\\l‘lr“w o
110500

111000

Escritura

T T T T
153000 153500 154000 154500

T
155000

T T
155500 156000

o e e Moo AL L e A hatee e e OO NS
T ? ? f ¢ Y *
153000 153500 154000 154500 155000 155500 156000
Ciclos (10 millones)
Lectura Escritura

200000 200500 201000 201500 202000 202500 203000
r Al
Lt \"ﬁ‘n\‘v\\-)lv\‘\mm‘«\mm‘m\\ T RO e AL M bl
200000 200500 201000 201500 202000 202500 203000
Ciclos (10 millones)
Lectura Escritura
255000 255500 256000 256500 257000 257500
Mot e st Lo Mot bt b
255000 255500 256000 256500 257000 257500
Ciclos (10 millones)
Lectura Escritura

111500

Figura D.32: Traza temporal de fallos en cache para fregmine con entrada nativa, ejecutado en Sparc. Aparecen
diez muestras tomadas al azar del total de la ejecucién. Se utiliza una politica write-allocate y copy-back.

85

ANEXO D. RESULTADOS DE LA CARACTERIZACION DE PARSEC

35

Lectura
Escritura ==

MPKI

s,
(S} .
(25025
4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1024KB 2048KB 4096KB 8192KB 16384KB 32768KB
Figura D.33: Fallos por cada mil instrucciones en la cache de datos para raytrace ejecutado en Intel. Se

contabilizan tnicamente los fallos producidos por instrucciones de usuario y se utiliza una politica write-allocate y
copy-back.

4
Lectura
3.5 e Escritura ===
3 -
4
o
s
4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1024KB 2048KB 4096KB 8192KB 16384KB 32768KB
(a) write-allocate y copy-back, sélo instrucciones de usuario
60
e Lectura
Escritura ==
50 - e
40 H BT o — -
& 30 : : : : : : : wtHH-mretm
s
20 HHHHECH PR AT HEH TR R TR LR L
10 HHHH AR T PR R H R AT
0 %ll]_lul u
322

4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1024KB 2048KB 4096KB 8192KB 16384KB 32768KB
(b) non-write-allocate y write-through, instrucciones de usuario y sistema

Figura D.34: Fallos por cada mil instrucciones en la cache de datos para raytrace ejecutado en Sparc.

86

D.1. IMPACTO DEL TAMANO DE LAS ENTRADAS EN LA JERARQUIA DE MEMORIA

3108
2.10°
2.108
2.108
1106

Numero de accesos

0.6
0.4
0.2

MPKI

3.10°
2.108

2.10°
1.10°

Numero de accesos

0.6
0.4
0.2

MPKI

3108
2.108
2.10°
2.108
1.108
5.10°
0-10°

Numero de accesos

MPKI

510° |
0-10°

2.10° |

510° |
0-10° |
0 20

0 20

10 15 20 25 30

T T T
15 20 25
Ciclos (10 millones)

10 30

Lectura Escritura

(a) pequena

40 60 80 100 120

. iA | - AJAL
T T T T T T
40 60 80 100 120

Ciclos (10 millones)

Lectura Escritura

(b) mediana

I |

0 100

200 300 500

0 100

200 300

Ciclos (10 millones)

Lectura Escritura

(c) grande

Figura D.35: Traza temporal de fallos en cache para raytrace con entradas pequena, mediana y grande, ejecutado
en Sparc. Se contabilizan inicamente los fallos producidos por instrucciones de usuario y se utiliza una politica
write-allocate y copy-back.

87

ANEXO D. RESULTADOS DE LA CARACTERIZACION DE PARSEC

Nimero de accesos

MPK|

Nimero de accesos

MPKI

Numero de accesos

MPKI

Nimero de accesos

MPK|

Numero de accesos

MPKI

310

210°
210° -
110° -

510°

310° -
310° -

210°
210° -
210°
110° -

03
02
|

%"ﬁﬂf M \ 10T LA LA \ ™

500

300
Ciclos (10 millones)

500

Lectura Escritura

6

6 L
T T Ty v HIMIA

5200 5300 5400 5500

|

,
T | L
5400 5500 5600
Ciclos (10 millones)

|
raTe) Y

5200

N P
5300

Lectura

Escritura

T AAMMARLAS T HH{V‘WV‘F"WHV M Al “WT\

T T T T T
9200 9300 9400 9500 9600 9700

9200

9300 9400 9500

Ciclos (10 millones)

9600 9700

Lectura Escritura

BB A 11411 (L1041 1a e b | AT AATALA A s M

16700 17100 17200

16900
Ciclos (10 millones)

17000 17100 17200

Lectura

Escritura

FrP P [T e [\ T

18800 18900 19000 19100

19000
Ciclos (10 millones)

19100

Lectura

Escritura

Nimero de accesos

MPKI

Numero de accesos

MPKI

Nimero de accesos

MPKI

Namero de accesos

MPKI

Numero de accesos

MPKI

E MLALLEAAAREANAN M ML LA LARARIALE T

2900 3100 3200 3300

coooooo
clRmrme

2800

2900 3000 3100

Ciclos (10 millones)

3300

Lectura

Escritura

310°

310° 1

3.10° H

g:g: Ty v Iy 4 LTI LAALALLAASS

210° -
6 L

Sioef

110° -
1-10°

6100 6200 6300 6400 6500 6600

0.7

06 [
0.5 |
4+
I

- ! | |
T e e i
6200

cooo
oL

6300 6400 6500
Ciclos (10 millones)

Lectura

Escritura

310° v
mmmane 20110 (A4 ALALAA SIS SamauRSRES I 111\7LAAALLLA RS RY ARnamamanS 11N T LI
210°
210°

110° |

T T T T
12200 12300 12400 12500 12600 12700

oooo

12400

12500
Ciclos (10 millones)

12600 12700

Lectura Escritura

8
310% 1y
310° -

r ¥ Ty LR EALAMA LUAARAAME AR B |

6
210° |
2100 1
210°
1108 |
1108 -

17500 17600

18000

17700 17800 17900

17500 17600 17700 17800 17900 18000
Ciclos (10 millones)
Lectura Escritura
310°
310° |
smz r
2408 T T Y e T T T T W
2107
210° -
210°
210° -
110° -
1-10% T T T T T
20900 21000 21100 21200 21300

07

06 [

05 |

04

03 |

o2r ' ! . ' | 1

- 1 || 1 |] 1
R W o e P v P v R i |
20900 21000 21100 21200 21300
Ciclos (10 millones)
Lectura Escritura

Figura D.36: Traza temporal de fallos en cache para raytrace con entrada nativa, ejecutado en Sparc. Aparecen
diez muestras tomadas al azar del total de la ejecucién. Se utiliza una politica write-allocate y copy-back.

88

D.1. IMPACTO DEL TAMANO DE LAS ENTRADAS EN LA JERARQUIA DE MEMORIA

Streamcluster

En los fallos en cache de este benchmark (figuras y [D.38]) vemos repetido el comportamiento
de blackscholes, explicado en la seccién Segun va aumentando la capacidad de la cache,
las estructuras de datos de las entradas de menor tamano pueden almacenarse en la cache y el
numero de fallos disminuye drasticamente.

Analizando las trazas temporales (figuras y ID.40) vemos que, tras una pequefnia zona
inicial, la forma de las graficas se mantiene constante durante el resto de la ejecucién.

12
= Lectura
| = Escritura ===

10 n - - . -

8 H . AREE - -BEEE - -RER] . . - -

4 H . AREE - -BEEE - -RER] . . . - - -
2 H . AREE - -BEEE - -RER] . . . - - !
0

pe) 2

@,)Q/)@
A4
4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1024KB 2048KB 4096KB 8192KB 16384KB 32768KB

MPKI
o
T

Figura D.37: Fallos por cada mil instrucciones en la cache de datos para raytrace ejecutado en Intel. Se
contabilizan tdnicamente los fallos producidos por instrucciones de usuario y se utiliza una politica write-allocate y
copy-back.

Swaptions

En las figuras y vemos rapidamente que no hay ninguna diferencia en los fallos por
cada mil instrucciones de las cuatro entradas. Ademds, se trata de una aplicacién que presen-
ta muy pocos fallos en cache y, por lo tanto, no serd util para el estudio de la jerarquia de memoria.

Fijandonos en la traza temporal (figuras y [D.44)) vemos que la tnica diferencia entre

las entradas es el nimero de ciclos que tardaron en ejecutarse. La tasa de fallos se mantiene
constante a lo largo de la ejecucién, con pequenos picos cada 750 millones de instrucciones.

89

ANEXO D. RESULTADOS DE LA CARACTERIZACION DE PARSEC

MPKI

MPKI

= Lectura
=T Escritura ===
22
295
©.2.%
3®
4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1024KB 2048KB 4096KB 8192KB 16384KB 32768KB
(a) write-allocate y copy-back, sélo instrucciones de usuario
i Lectura
, i 0 Escritura ===
e 1 i O
L O Ullem- ;s | g
THE I = n -
i | | I -
LEREE BEER RERR REBE RBER .) ™ =
BIIIRIIIEBIIIEIIIEI] g
I (] HEE HE =] HEoo
© 2302
XN
585"
=R
4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1024KB 2048KB 4096KB 8192KB 16384KB 32768KB

(b) non-write-allocate y write-through, instrucciones de usuario y sistema

Figura D.38: Fallos por cada mil instrucciones en la cache de datos para streamcluster ejecutado en Sparc.

90

D.1. IMPACTO DEL TAMANO DE LAS ENTRADAS EN LA JERARQUIA DE MEMORIA

510°
410°
310°
2.10° - \
1.10°

0-100 T T T T T T T

0 20 40 60 80 100 120 140

Numero de accesos

80
60

]\
20
T T T T T T T

0 20 40 60 80 100 120 140
Ciclos (10 millones)

MPKI

Lectura Escritura

(a) pequena

5.10°

4108

3.106 MY v N ' v al L) Y L) v v W W 1A
2.10°

1.10°

0-100 i T T T T T

Numero de accesos

o
-
o
o
N
o
o
w
o
o
S
o
o
)]
o
o

80
60
40

MPKI

O I T T T T T
0 100 200 300 400 500
Ciclos (10 millones)

Lectura Escritura

(b) mediana

rrlr RS L e b RO LR RLAAREE N i et Rt Rt L Rt § i A0 B Lt ek B

Numero de accesos
QAW O
Soooo00000

[@NéNerNe)Ne)NerNer)NerNerNe))

0 500 1000 1500 2000 2500

MPKI
IS
o

T

20 | I I I l | | [T | |
O T I T T T

0 500 1000 1500 2000 2500
Ciclos (10 millones)

Lectura Escritura

(c) grande
Figura D.39: Traza temporal de fallos en cache para streamcluster con entradas pequena, mediana y grande,

ejecutado en Sparc. Se contabilizan tnicamente los fallos producidos por instrucciones de usuario y se utiliza una
politica write-allocate y copy-back.

91

ANEXO D. RESULTADOS DE LA CARACTERIZACION DE PARSEC

5108 5102
2 g 4100
2 g 4100
g g 3100
3 g 21000
° ° 2 105 r
5 5 210°
S £ 110
z Z s510°
010° T ¢ T T T 0-10° T T T T T !
0 500 1000 1500 2000 2500 20500 21000 21500 22000 22500 23000
80 - 80 -
70 b 70
60 - 60 -
g 50t g 50
£ aof T aof
S a0t S a0
a2l i L] 200 [S [
] P L L LR Ll ; : ‘] ‘ ‘ : | ‘
0 500 1000 1500 2000 2500 20500 21000 21500 22000 22500 23000
Ciclos (10 millones) Ciclos (10 millones)
Lectura Escritura Lectura Escritura
5 mg 5102
g 4100 g 4107
2 410 g 410
g 3 10: g sm:
o 210° F o 210° F
T 2100 | T 2100
2 5] 6
5 2100 F 5 2100
E 1108 b E 1100
Z 510° | Z 510°
010° L T T T T | 010° T T T T T |
43000 43500 44000 44500 45000 45500 49000 49500 50000 50500 51000 51500
80 - 80 -
70 b 70+
60 - 60 -
g S0f g 50+
E 20 [g 20 [
30 b 30 -
20 20 |
20 e b————— 20 | bbb bbb mbr—,
0 Ly - - - -) 0 ¢ ¥ ¢ ¢ t ,
43000 43500 44000 44500 45000 45500 49000 49500 50000 50500 51000 51500
Ciclos (10 millones) Ciclos (10 millones)
Lectura Escritura Lectura Escritura
510° 510°
g 4100 g 4100
8 410 2 410°
g 310 g 310
o 210° | o 210° 1
T 210° | T 240° -
e 6 e o
g 210° 3 210°
5 110° £ 110° |
Z s510° Z s510°
0-10° T T T T T 0-10° T T T T |
58000 58500 59000 59500 60000 63000 63500 64000 64500 65000 65500
2 2
H B
|) [— | | | | L bk] | | | | | | | [| | |
T 1 T T T 0 Loy t T T T !
58000 58500 59000 59500 60000 63000 63500 64000 64500 65000 65500
Giclos (10 millones) Giclos (10 millones)
Lectura Escritura Lectura Escritura
5100 510°
g 4100 g 4100
2 410 g 410
g 310° g 310°
o 210° o 210° F
T 2100 T 2100
e 6 e o
s 21001 g 21001
E 110t E 110t
Z s510° | Z s510° |
010° r T T T " 0-10° T " t ¢ v
77500 78000 78500 79000 79500 107500 108000 108500 109000 109500
80 - 80 -
70 F 70
60 - 60 -
g 50f g 50
§ 40 é 40 |
S a0 s a0
2f | | | | | | \ (. | 20 | | | | | bl | | | |
10 10
0 - - - - - 0 . v ¢ t ¢
77500 78000 78500 79000 79500 107500 108000 108500 109000 109500
Ciclos (10 millones) Ciclos (10 millones)
Lectura Escritura Lectura Escritura
5 m: 5102
g 4100 g 410
2 410 2 410
g 810° g 310°
@ 210° @ 210°F
T 2100 T 2100
5 210° 5 2100
£ 1100 | E 1100
Z s510° Z s510°
010° T T T T T 010° T T T T T |
128500 129000 129500 130000 130500 135000 135500 136000 136500 137000 137500
80 - 80 -
70 b 70 -
60 - 60 -
s S0f g 50+
E 20 [E 20 [
30 30 -
20 Ik ———————— [R— 20| bbb ————————
0 - - - - - 0 Loy v ¢ ¢ ¢ !
128500 129000 129500 130000 130500 135000 135500 136000 136500 137000 137500
Ciclos (10 millones) Ciclos (10 millones)
Lectura Escritura Lectura Escritura

Figura D.40: Traza temporal de fallos en cache para streamcluster con entrada nativa, ejecutado en Sparc.
Aparecen diez muestras tomadas al azar del total de la ejecucién. Se utiliza una politica write-allocate y copy-back.

92

D.1. IMPACTO DEL TAMANO DE LAS ENTRADAS EN LA JERARQUIA DE MEMORIA

30

Lectura m—
Escritura ===

MPKI

92
(S} .
%Y
(’s,geogé’«:?
4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1024KB 2048KB 4096KB 8192KB 16384KB 32768KB
Figura D.41: Fallos por cada mil instrucciones en la cache de datos para swaptions ejecutado en Intel. Se

contabilizan tdnicamente los fallos producidos por instrucciones de usuario y se utiliza una politica write-allocate y
copy-back.

30
Lectura
S Escritura ===
25
4
o
s
l ...
4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1024KB 2048KB 4096KB 8192KB 16384KB 32768KB
(a) write-allocate y copy-back, sélo instrucciones de usuario
40 -
R Lectura
35 H Escritura ===
30 H
25 H|
<
o
s

| JUNA ARA A00N Ann mood ooed nnnd omn ERRR

4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1024KB 2048KB 4096KB 8192KB 16384KB 32768KB
(b) non-write-allocate y write-through, instrucciones de usuario y sistema

Figura D.42: Fallos por cada mil instrucciones en la cache de datos para swaptions ejecutado en Sparc.

93

ANEXO D. RESULTADOS DE LA CARACTERIZACION DE PARSEC

3108
2.108
2108 -
2.10°
1106
5.10°
0-10°

Nimero de accesos

o

10 20 30 40 50 60 70 80

E« - _A _ _

T T T T T - T T T

0 10 20 30 40 50 60 70 80
Ciclos (10 millones)

MPKI
ST &)

Lectura Escritura

(a) pequeiia

310°
210° -
2.10°
210°
110°
510° f
0-10° ‘ ; ; ; ‘ :

0 50 100 150 200 250 300

Nimero de accesos

MPKI
ST &)
T

o AL L A _ . _ A R N o A

0 50 100 150 200 250 300
Ciclos (10 millones)

Lectura Escritura

(b) mediana

310°
210° -
2.10°
210° |
1.10° |
510° |
0-10° ‘ ‘ ; ; ‘ ‘

0 200 400 600 800 1000 1200

o rlvv-nvv AGAA: MRS At | Senas anene \0n: Be ot iune T Y ABARNS: 1anan ARMSASE At Ranas LIRS L aad Aa Aanaal |

Nimero de accesos

U AU U N AU VN R VU MR EVUU N A [Lo

0 200 400 600 800 1000 1200
Ciclos (10 millones)

MPKI
(ST &)
T

Lectura Escritura

(¢) grande
Figura D.43: Traza temporal de fallos en cache para swaptions con entradas pequefia, mediana y grande,

ejecutado en Sparc. Se contabilizan inicamente los fallos producidos por instrucciones de usuario y se utiliza una
politica write-allocate y copy-back.

94

D.1. IMPACTO DEL TAMANO DE LAS ENTRADAS EN LA JERARQUIA DE MEMORIA

310° [
210° |

210° |
210° |
110° -
510° |
010°

Nimero de accesos

@

MPKI
ot mwn

200 400 1000 1200 1400

RN
\

310°
210° |

200 400 1000 1200
Ciclos (10 millones)

Lectura Escritura

210°
210° |
110° -
510°

Nimero de accesos

010°

MPKI
@

o

43800

44400 44600

DR SRSV NSOV TS SOSOANON AN NSOV A WA ROOR N A

ctmtvwa

310°
210° [

43800

44400 44600 45000
Ciclos (10 millones)

Lectura Escritura

210°
210°
1-10° -
510° |

Nimero de accesos

010°

MPK
< N
ctmatnmw;

°

T
59000

L

T T T T T T
59200 59400 59600 59800 60000 60200

[VO POV YT PN UM SO SN VUt SO R DOV ST SOV FUN |

310° [
210° |

59000

T u u T T u T
59200 59400 59600 59800 60000 60200

Ciclos (10 millones)

Lectura Escritura

210° |
210°
110° -
510° |
010°

Namero de accesos

MPKI
R

o - ¢
ctmtvwn

78800

79000 79200 79400 79600 79800 80000

[T D S o | | TS DO N

310°
210° |

79200 79400 79600 80000
Ciclos (10 millones)

79000

Lectura Escritura

210° [
210° |
110° -
510° |
010° &

Nimero de accesos

MPKI
- w

o - y <
ct—tinvwo

130800

131200

131600

131000 131400 131800

PR R A S R J Lo

130

600

131000 131200 131400 131600 131800
Ciclos (10 millones)

-
130800

Lectura Escritura

132000

132000

Nimero de accesos

MPKI

Numero de accesos

MPKI

Nimero de accesos

MPKI

Nimero de accesos

MPKI

Numero de accesos

MPKI

310°
210°
2.10°
2.10°
1108
510°
010°

w

o - ¢
cm—mmvOwa

310°
2.10°
210°
210°
1-10%
510°
0-10°

w

° LI
custnawn

310°
210°
210°
210°
1108
510°
010°

w

o - ¢
cm—mvOwa
T

310°
210°
210°
2.10°
1-10°
510°
010°

w

o = m ¢
ca—tnrwa

[T T T T T
20800 21000 21200 21400 21600 21800 22000 22200
S PO NSO DU IR0 DURSN YU SO DUNON U SN SO WY S DUV Y
20800 21000 21200 21400 21600 21800 22000 22200
Ciclos (10 millones)
Lectura Escritura
[T T T T T
800 50000 50200 50400 50600 50800 51000 51200
T O O TR U O IOt P U N U SO IO PO IS B O
800 50000 50200 50400 50600 50800 51000 51200
Ciclos (10 millones)
Lectura Escritura
r T T T T T
64200 64400 64600 64800 65000 65200 65400
S O Y W B Y SV S U SO S YUY WU S RS WO NN
64200 64400 64600 64800 65000 65200 65400
Ciclos (10 millones)
Lectura Escritura
109200 109400 109600 109800 110000 110200 110400
Y/) T 1 A L] Ll 4] L . 1 alopd bt 1
109200 109400 109600 109800 110000 110200 110400
Ciclos (10 millones)
Lectura Escritura
i oy v o e s
137600 137800 138000 138200 138400 138600 138800
L r‘. oL 'V - - ol \‘ L 1 Iy A A aplnt 1 ’ 1
137600 137800 138000 138200 138400 138600 138800
Ciclos (10 millones)
Lectura Escritura

Figura D.44: Traza temporal de fallos en cache para swaptions con entrada nativa, ejecutado en Sparc. Aparecen
diez muestras tomadas al azar del total de la ejecucién. Se utiliza una politica write-allocate y copy-back.

95

ANEXO D. RESULTADOS DE LA CARACTERIZACION DE PARSEC

Vips

En la figura vemos que, en una arquitectura Intel, los fallos por cada mil instrucciones de
la entrada nativa no son mayores que los de las entradas menores. En la mayoria de los casos,
presenta un nimero de fallos inferior al del resto de las entradas y, a veces, es comparable a los
de la entrada grande.

Para una arquitectura Sparc (figura no hemos realizado las simulaciones de la entrada
nativa porque la ejecucion necesitaba utilizar mas espacio en disco del que disponia la arquitectura
que estabamos simulando. Habria sido necesario anadir mas espacio de disco y volver a comenzar
el proceso de inicializar la maquina y el sistema operativo y crear los checkpoints. Decidimos,
por lo tanto, que se trataba de demasiado esfuerzo para aprovecharlo luego en un dnico caso y
que utilizariamos tinicamente los resultados de la entrada nativa para Intel. De todas formas,
se ve que las relaciones entre las entradas pequena, mediana y grande se mantienen, asi que,
previsiblemente, en Sparc se repetira el mismo patrén que en Intel.

Observando las trazas temporales de la figura [D.47] nos damos cuenta de que no cambia
nada ademds de los ciclos de ejecucién para cada entrada. Se mantiene un patrén de fallos
practicamente constante durante toda la ejecucién, aunque parece haber menos fallos de lectura
al principio y més al final (esto se nota principalmente en la entrada grande). Podemos suponer
que la entrada nativa presentara un patrén de fallos similar.

Lectura
7 Escritura &====3

MPKI
~ o
T T
—
—
I —
—

w
T

- n
T T
E—
I—
—
; ;
——
B
:
‘—
E—
| —

Eo O;é?/)
() (N
(P
L2

4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1024KB 2048KB 4096KB 8192KB 16384KB 32768KB

Figura D.45: Fallos por cada mil instrucciones en la cache de datos para vips ejecutado en Intel. Se contabilizan
tUnicamente los fallos producidos por instrucciones de usuario y se utiliza una politica write-allocate y copy-back.

96

D.1. IMPACTO DEL TAMANO DE LAS ENTRADAS EN LA JERARQUIA DE MEMORIA

MPKI

MPKI

Lectura n—
Escritura =

o o
T T
’ -
]

IS
T

n
T

—_
T

w
T
I
I
I
[]
I
I
I
]
I

4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1024KB 2048KB 4096KB 8192KB 16384KB 32768K

(a) write-allocate y copy-back, sélo instrucciones de usuario

50

i Lectura
45 |- . P e Escritura === -
40
35 -

%9’80
%
%%

S

PUAR]
oV

3

4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1024KB 2048KB 4096KB 8192KB 16384KB 32768KB

(b) non-write-allocate y write-through, instrucciones de usuario y sistema

Figura D.46: Fallos por cada mil instrucciones en la cache de datos para vips ejecutado en Sparc.

97

ANEXO D. RESULTADOS DE LA CARACTERIZACION DE PARSEC

210°
2.10°
2.10°
1.10°
510° -
0-10° ; ; ; ; ; : :

0 50 100 150 200 250 300 350

Nimero de accesos

12
8 L
41 MMM AMAN MM AR M, SN ALAAM AN M
] T T - T M T — T i
0 50 100 150 200 250 300 350
Ciclos (10 millones)

MPKI

Lectura Escritura

(a) pequeiia

210°
2108 q
2.10° | Y P AW

1.10° |
510° |-
0-10° ; ; ; : :

0 200 400 600 800 1000

Nimero de accesos

12
8 I

A et o A AL o 4 M A A b A P A AL L o M A s LA
T T T T T

0 200 400 600 800 1000
Ciclos (10 millones)

MPKI

Lectura Escritura

(b) mediana

210°
2.108
2.106|L " : a0 | | 2 Y] " |rr TR T T ")
1.10° |
510° |
0-10° ‘ ‘ ‘ ‘ | |

0 500 1000 1500 2000 2500 3000

Nimero de accesos

12 -
8 |

41t b Lot i A kb haanas AR A RIAAA AR RAAAANAAA A ABAMANNANAA A

0 500 1000 1500 2000 2500 3000
Ciclos (10 millones)

MPKI

Lectura Escritura

(¢) grande
Figura D.47: Traza temporal de fallos en cache para vips con entradas pequefia, mediana y grande, ejecutado

en Sparc. Se contabilizan inicamente los fallos producidos por instrucciones de usuario y se utiliza una politica
write-allocate y copy-back.

98

D.1. IMPACTO DEL TAMANO DE LAS ENTRADAS EN LA JERARQUIA DE MEMORIA

X264

En una arquitectura Intel (figura , los fallos por cada mil instrucciones de la entrada nativa
son siempre algo més elevados que los del resto. En Sparc (figura parece que la entrada
nativa se encuentra muy préxima a la grande y la pequena, pero tenemos poca informacién porque
estas simulaciones resultaban extremadamente lentas debido al gran nimero de instrucciones
ejecutadas al utilizar la entrada nativa.

En la figura podemos ver la traza temporal para las tres entradas de menor tamano. En
todos los casos hay varios picos de fallos, principalmente de escritura, pero no estan distribuidos
uniformemente a lo largo de la ejecucion de los programas. La traza para la entrada nativa (figura
sigue mostrando varios picos, aunque en este caso son menos frecuentes y tienen mayor
altura.

40

Lectura

35 Escritura =

30

25

20

MPKI

A9
8%
9(,0?00

4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1024KB 2048KB 4096KB 8192KB 16384KB 32768KB

Figura D.48: Fallos por cada mil instrucciones en la cache de datos para x264 ejecutado en Intel. Se contabilizan
unicamente los fallos producidos por instrucciones de usuario y se utiliza una politica write-allocate y copy-back.

99

ANEXO D. RESULTADOS DE LA CARACTERIZACION DE PARSEC

MPKI

MPKI

100

Lectura —
Escritura ==

4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1024KB 2048KB 4096KB 8192KB 16384KB 32768KB

(a) write-allocate y copy-back, sélo instrucciones de usuario

14
- Lectura
Escritura ===
12 H
10 H
8 |
6 |

N IN
]]
——
—
)
—
—
)
—
]
|
|
1

10 o0 Uol lmo

il

i lon D

4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1024KB 2048KB 4096KB 8192KB 16384KB 32768KB

(b) non-write-allocate y write-through, instrucciones de usuario y sistema

Figura D.49: Fallos por cada mil instrucciones en la cache de datos para x264 ejecutado en Sparc.

D.1. IMPACTO DEL TAMANO DE LAS ENTRADAS EN LA JERARQUIA DE MEMORIA

CUO®O OO DO O
3
P
3
‘E
E:
-

Numero de accesos
QAW A
Sooooo000

o
-
o
o
n
o
o

300 400 500

—_

MPKI
[SEENICEN)

G I |
L
>
L

? 7 T T N T
100 200 300 400 500
Ciclos (10 millones)

o

Lectura Escritura

(a) pequena

D UL ALY LAt M) I IR IR B Al IR G I I B R R AR LA B L AL (S B

[=2é >N e>Ne>Ne Mo le >N}

Numero de accesos
QAW A S
Sooooo000

500 1000 1500 2000 2500 3000 3500 4000

o

MPKI
B] R;
=TT

[V s o & T bkziec) T T tent] e ¢ T

500 1000 1500 2000 2500 3000 3500 4000
Ciclos (10 millones)

o

Lectura Escritura

(b) mediana

mmmwvvwmwmwwwﬂlq Ty T

Numero de accesos
QA=W A S
Soooooooo

[@3é Ne)lerNerNerlerle)Mo

0 2000 4000 6000 8000 10000 12000

0 n 'k (P " bl ol e T m " ‘\lulﬂ y " Buldaddidel

0 2000 4000 6000 8000 10000 12000
Ciclos (10 millones)

MPKI
S R;
T T 1

Lectura Escritura

(c) grande
Figura D.50: Traza temporal de fallos en cache para x264 con entradas pequenia, mediana y grande, ejecutado

en Sparc. Se contabilizan inicamente los fallos producidos por instrucciones de usuario y se utiliza una politica
write-allocate y copy-back.

101

ANEXO D. RESULTADOS DE LA CARACTERIZACION DE PARSEC

Nimero de accesos

Nimero de accesos

Numero de accesos

Nimero de accesos

Numero de accesos

MPKI

MPKI

MPKI

MPKI

MPKI

410°
410°
310°
210°
210°
210°
1-10°
510°
0-10°

410°
410°
310°
210°
210°
210°
1-10°
510°
010°

410°
410°
310°
210°
210°
210°
1-10°
510°
010°

0 2000 4000 6000 8000 10000 12000 14000

0 2000 4000 6000 8000 10000 12000 14000
Ciclos (10 millones)

Lectura Escritura

—
I

. T

86000

88000 90000 92000 94000 96000

I}

90000 92000 94000 96000

Ciclos (10 millones)

86000 88000

Lectura Escritura

0 A Yt A M"“““\{W‘TW

(0 LA L L

T T T T T T
136000 138000 140000 142000 144000 146000 148000

T u u T
142000 144000 146000 148000

Ciclos (10 millones)

T T u
136000 138000 140000

Lectura Escritura

272000 274000 276000 278000 280000 282000 284000

276000 278000 280000 282000 284000

Ciclos (10 millones)

272000 274000

Lectura Escritura

404000 406000 408000 410000 412000 414000 416000

410000 412000 414000 416000

Ciclos (10 millones)

404000 406000 408000

Lectura Escritura

Nimero de accesos

Numero de accesos

Nimero de accesos

Namero de accesos

Numero de accesos

MPKI

MPKI

MPKI

MPKI

MPKI

410°
410°
310°
2.10°
2.10°
2.10°
1-10°
510°
010°

410°
410°
310°
210°
210°
210°
1-10°
510°
010°

410°
410°
310°
210°
210°
210°
1-10°
510°
0-10°

410°
410°
310°
210°
2.10°
2.10°
1-10°
510°
010°

410°
410°
310°
210°
210°
210°
1-10°
510°
010°

28000 30000 32000 34000 36000 38000 40000
28000 30000 32000 34000 36000 38000 40000
Ciclos (10 millones)
Lectura Escritura
L i ‘
A0 L L A B R (L il I B
118000 120000 122000 124000 126000 128000 130000
[| L
118000 120000 122000 124000 126000 128000 130000
Ciclos (10 millones)
Lectura Escritura
A A A L B A
T T T T T T T
192000 194000 196000 198000 200000 202000 204000
T T " T T T T
192000 194000 196000 198000 200000 202000 204000
Ciclos (10 millones)
Lectura Escritura
T Y
i L e
332000 334000 336000 338000 340000 342000 344000
332000 334000 336000 338000 340000 342000 344000
Ciclos (10 millones)
Lectura Escritura
- o
A B A A O A e
450000 452000 454000 456000 458000 460000 462000
450000 452000 454000 456000 458000 460000 462000
Ciclos (10 millones)
Lectura Escritura

Figura D.51: Traza temporal de fallos en cache para x264 con entrada nativa, ejecutado en Sparc. Aparecen diez
muestras tomadas al azar del total de la ejecucién. Se utiliza una politica write-allocate y copy-back.

102

D.2. SELECCION DE ENTRADAS

D.2 Seleccion de entradas

Considerando los resultados ya descritos en la seccién en esta seccién se propondra lo que
se considera més adecuado en cada caso para lograr una ejecucién representativa de la nativa en
menos tiempo o para ejercer mayor presién sobre la jerarquia de memoria. Para cada aplicacién
se explicard el proceso seguido para tomar la decisién.

D.2.1 Blackscholes

En la aplicacién blackscholes velamos que las entradas de mayor tamano si suponian un mayor
numero de fallos, especialmente a medida que aumentabamos la capacidad de la cache. Por otro
lado, la traza temporal nos indicaba que el mimero de fallos se mantiene constante durante toda
la ejecucién, mostrando pequenos picos cada 750 millones de ciclos en la entrada nativa. Por lo
tanto, ejecutando Unicamente esa secciéon obtendremos el mismo resultado que al ejecutar toda la
entrada nativa completa, asi que bastara con ejecutar los primeros 750 millones de instrucciones
de la region de interés.

D.2.2 Bodytrack

Lo més caracteristico de este benchmark es el patrén que observamos claramente en la traza tem-
poral. Compararemos a continuacion las caracteristicas de las entradas, que pueden consultarse
en la tabla con la informacién obtenida de la traza. Por un lado, al aumentar el tamano de
la entrada aumenta el nimero de frames o fotogramas que se utilizan. Esta informacién se pasa
al programa mediante un fichero llamado sequenceB_x, siendo x el nimero de frames, y con un
parametro en la linea de comandos. El fichero contiene las imégenes correspondientes al fotograma
o los fotogramas que se van a analizar. Por otro lado, hay que indicar el nimero de particulas,
que es un dato que se utiliza durante la ejecucién del algoritmo. Podemos comprobar de manera
directa que el nimero de frames se corresponde con el nimero de periodos que observibamos en
la traza temporal. Para las entradas pequena, mediana y grande la verificacién es trivial, y para
la entrada nativa obtenemos 261 frames al dividir el nimero total de instrucciones ejecutadas
(unos 955000 millones) entre el tamano de cada intervalo (algo menos de 4000 instrucciones).
Ademads, la longitud del intervalo es directamente dependiente del niimero de particulas utilizadas.
Se multiplica por dos aproximadamente al pasar de la entrada pequena a la mediana y de la
mediana a la grande, y se mantiene constante entre la grande y la nativa.

Entrada Nimero Nﬁm?ro de Comando de ejecucion
de frames | particulas
Pequena 1 1000 ./bodytrack input/sequenceB_1 4 1 1000 5 0 1
Mediana 2 2000 ./bodytrack input/sequenceB_2 4 2 2000 5 0 1
Grande 4 4000 ./bodytrack input/sequenceB_4 4 4 4000 5 0 1
Nativa 261 4000 ./bodytrack input/sequenceB_261 4 261 4000 5 0 1

Tabla D.1: Caracteristicas de las entradas de la aplicacién bodytrack

Teniendo en cuenta la informacién presentada, para conseguir una ejecucién representativa
de la nativa que tarde lo minimo posible bastara con realizar los cdlculos para un solo frame pero
utilizando el mismo nimero de particulas que con la entrada nativa. De este modo estaremos
ejecutando unos 4000 millones de instrucciones, tamano comparable a la entrada mediana. Para
lograr esta ejecucién es suficiente con utilizar los siguientes parametros:

103

ANEXO D. RESULTADOS DE LA CARACTERIZACION DE PARSEC

./bodytrack input/sequenceB_1 4 1 4000 5 0 1

D.2.3 Canneal

En esta aplicaciéon, las entradas de mayor tamano presentan, en general, mayor tasa de fallos
que las de menor tamano. En la traza temporal vemos que los fallos se mantienen practicamente
constantes durante toda la ejecucién, con pequenos picos de menor nimero de fallos en lectura.
Por lo tanto, bastaria con ejecutar una parte de la entrada nativa. Siendo conservadores, podria-
mos simular los primeros 1500 millones de instrucciones de la regién de interés de la entrada nativa.

D.2.4 Dedup

Recordamos que dedup presenta un niimero menor de fallos con su entrada grande que con el
resto, y muestra también diferencias en la traza temporal debido a que el programa tiene un
pipeline muy desbalanceado.

Este algoritmo construye una base de datos con todos los trozos de informacién tnicos que
encuentra en la entrada. Por lo tanto, no sélo el tamano de la entrada alterna el uso de la
jerarquia de memoria, sino los propios datos de la misma, ya que si hay menos redundancia, el
tamano de dicha base de datos serd mayor.

Dadas las diferencias entre las entradas, la complejidad del algoritmo utilizado para paralelizar
y la poca diferencia entre el niimero de instrucciones de las entradas grande y nativa, en este
caso recomendamos el uso de la entrada nativa. De todas formas, serd mejor utilizar versiones
posteriores del benchmark en las que el pipeline esté mejor balanceado.

D.2.5 Facesim

Hemos visto ya que la tasa de fallos es igual para todas las entradas y en las trazas temporales
hemos distinguido claramente un patrén. Si tomamos la entrada nativa y dividimos el tamano
del patrén (unos 230000 millones de instrucciones) entre el tamafio de la entrada completa
(aproximadamente 2300000 millones de instrucciones) podemos averiguar que tenemos 100 repe-
ticiones. Comparando esto con las caracteristicas de las entradas nos damos cuenta de que la
pequenia, mediana y grande constan de un solo fotograma mientras que la nativa se ocupa de 100
fotogramas, lo cual encaja perfectamente con lo que hemos observado en nuestras simulaciones.
Por lo tanto, en este caso serd suficiente con ejecutar la entrada pequena para obtener un resultado
representativo de la entrada nativa.

D.2.6 Ferret

Teniendo en cuenta las tasas de fallos y las trazas temporales y que, ademads, la simulacion
de la entrada nativa de esta aplicaciéon es muy costosa en tiempo, para obtener una ejecucién
representativa de la nativa podemos utilizar la entrada pequena. Si, por otro lado, nos interesa
realizar una simulacién que falle en cache lo maximo posible, la entrada més adecuada sera la de
tamafo grande.

104

D.2. SELECCION DE ENTRADAS

D.2.7 Fluidanimate

De nuevo nos encontramos ante un benchmark con una traza temporal muy representativa.
Vamos a contrastar las caracteristicas de las entradas que presentamos en la tabla con los
resultados que hemos obtenido en las simulaciones. Claramente, el nimero de fotogramas de la
entrada se ve reflejado en el nimero de veces que el patron se repite. La comprobacién es trivial
para las entradas pequena, mediana y grande. Para la entrada nativa, dividiendo el nimero de
instrucciones total de la entrada nativa (unos 2250000 millones) entre el tamafio del patrén (algo
mas de 4000 millones de instrucciones) obtenemos los 500 fotogramas. En cuanto a la longitud
del patrén, es claramente consecuencia del niimero de particulas que se utilizan para modelar el
fluido. Al pasar de pequena a mediana y de mediana a grande, tanto el nimero de particulas
como el tamano del patréon se multiplican por tres aproximadamente. De grande a nativa, el
factor de multiplicacion es 1.6.

Entrada Niimero Nl'lm(’%I'O de Comando de ejecucién
de frames | particulas
Pequena) 35000 ./fluidanimate 1 5 input/in_35K.fluid out.fluid
Mediana 5 100000 ./fluidanimate 1 5 input/in_100K.fluid out.fluid
Grande 5 300000 ./fluidanimate 1 5 input/in_300K.fluid out.fluid
Nativa 500 500000 ./fluidanimate 1 500 input/in_500K.fluid out.fluid

Tabla D.2: Caracteristicas de las entradas de la aplicacién fluidanimate

Por lo tanto, la mejor opcién para obtener una ejecucion representativa de la nativa serd
ejecutar sélo 5 frames como en las entradas méas pequenas (o incluso menos, ya que para cada
frame se repite el mismo patrén), pero hacerlo con 500000 particulas como con la entrada nativa.
Por lo tanto, bastard con ejecutar el programa con la siguiente entrada:

./fluidanimate 1 5 input/in_500K.fluid out.fluid

D.2.8 Freqmine

En este caso, la tasa de fallos disminuye al aumentar el tamano de la entrada y la traza temporal
no nos aporta informacién adicional. Por lo tanto, si se desea realizar una ejecucion representativa
de la nativa sera necesario utilizar la entrada nativa. De todas formas, nosotros recomendamos
usar la entrada pequena ya que es la que més presiona la jerarquia de memoria.

D.2.9 Raytrace

Esta aplicacion presenta una tasa de fallos en cache extremadamente baja y en la traza temporal
podemos distinguir claramente un patrén que se repite periédicamente.

Vamos a comparar la informacion que nos da la traza temporal con las caracteristicas de las
entradas, que se detallan en la tabla Las tres primeras entradas se diferencian tnicamente
en el nimero de pixeles, que va multiplicindose por cuatro al aumentar el tamafio de la entrada,
al igual que el tiempo de ejecucién. Ademds, en esas tres ejecuciones, se aplica el algoritmo a
tres fotogramas. Si calculamos el niimero de instrucciones que corresponde a cada fotograma en
la entrada grande, obtenemos algo menos de 2000 millones. En la entrada nativa, para la cual la

105

ANEXO D. RESULTADOS DE LA CARACTERIZACION DE PARSEC

resolucion es igual que en la grande, vemos claramente un patron que se repite cada 2000 millones
de instrucciones aproximadamente. Ademds, si dividimos el nimero total de instrucciones de la
regién de interés (algo mas de 360000 millones) entre la longitud de este patrén obtenemos los
200 fotogramas que componen la entrada nativa. Las entradas grande y nativa se diferencian
también en el nimero poligonos del objeto al que aplicamos el algoritmo, que viene indicado
por la imagen que se le pasa como entrada al programa. De todas formas, parece que el inico
efecto que esto tiene es un aumento de la variacién en el nimero de instrucciones de lectura
ejecutadas, que es lo que nos ha permitido detectar las secciones que corresponden a los fotogramas.

Nimero
Ntmero Ntumero de . .,
Entrada . . Comando de ejecuciéon
de frames | de pixeles | poligonos
(millones)
./rtview inputs/happy_buddha.obj
Pequeﬁa 3 480*270 1 -nodisplay —automove -nthreads 1
-frames 3 -res 480 270
./rtview inputs/happy_buddha.obj
Mediana 3 960*540 1 -nodisplay -automove -nthreads 1
-frames 3 -res 960 540
./rtview inputs/happy_buddha.obj
Grande 3 1920*1080 1 -nodisplay -automove -nthreads 1
-frames 3 -res 1920 1080
./rtview inputs/thai_statue.obj
Nativa 200 1920*1080 10 -nodisplay —automove -nthreads 1
-frames 200 -res 1920 1080

Tabla D.3: Caracteristicas de las entradas de la aplicacién raytrace

Por lo tanto, para obtener una ejecuciéon representativa de la nativa sélo tendremos que
ejecutar tres fotogramas al igual que en las entradas de menor tamano (siendo conservadores, ya
que se repetird el mismo patrén tres veces), pero hacerlo con la resoluciéon y nimero de poligonos
de la entrada nativa. Simplemente tendremos que utilizar los siguientes parametros:

./rtview inputs/thai_statue.obj -nodisplay -automove -nthreads 1 -frames 3 -res
1920 1080

A pesar de todo, insistimos en que los fallos en cache son practicamente insignificantes y el
benchmark no serd adecuado para un estudio de las prestaciones de la jerarquia de memoria.

D.2.10 Streamcluster

En esta aplicacién, las entradas de mayor tamano suponen un mayor nimero de fallos y la
traza temporal muestra que la tasa de fallos se mantiene constante durante toda la ejecucion,
a excepciéon de la zona inicial. Por lo tanto, bastard con ejecutar una seccién de la entrada
nativa. Sera suficiente con 10000 millones de instrucciones, pero saltando los 5000 millones de
instrucciones iniciales para asegurarnos de que no medimos la zona inicial en la que todavia no
se ha estabilizado el nimero de fallos. Ademds, serd importante calentar la cache antes de tomar
ninguna estadistica, tal y como se explicé en la seccién

106

D.2. SELECCION DE ENTRADAS

D.2.11 Swaptions

En esta aplicacién, la tasa de fallos toma valores excesivamente pequenos, ademas de no presentar
ninguna variacién al aumentar el tamaino de la entrada. La traza temporal muestra como los
fallos se mantienen constantes a lo largo de la ejecucion de todas las entradas, con pequenos
picos que se repiten periddicamente.

En la tabla[D.4] se muestran las caracteristicas de la entrada junto con un valor que representa
el tamano total de la entrada, que ha sido obtenido multiplicando el niimero de swaptions por
el de simulaciones. Si comparamos este valor con el nimero de ciclos que tarda en ejecutarse el
benchmark (que recordamos que es igual al nimero de instrucciones ya que nuestras simulaciones
tienen un IPC de 1), vemos que en ambos casos se aplica un factor multiplicativo de cuatro al
pasar de pequena a mediana y de mediana a grande, y de 100 al pasar de grande a nativa. Por lo
tanto, vemos que el inico efecto que tienen los pardametros de entrada es alargar el tiempo de
ejecucion.

Entrada Nﬁmer.'o de 1.\11'1mer.0 de Tamano de la entrada
swaptions simulaciones
Pequena 16 5000 16 x 5000 = 80000
Mediana 32 10000 32 x 10000 = 320000
Grande 64 20000 64 x 20000 = 1280000
Nativa 128 1000000 128 x 1000000 = 128000000

Tabla D.4: Caracteristicas de las entradas de la aplicaciéon swaptions

Para lograr una ejecucién representativa de la entrada nativa serd suficiente con usar la
entrada pequena, aunque recordamos que el nimero de fallos de cache de esta aplicacion es muy
pequeno.

D.2.12 Vips

Para esta aplicacion la entrada pequeiia presenta, en general, mas fallos en cache. Las trazas
temporales tienen el mismo aspecto en las entradas pequenia, mediana y grande, aunque recorda-
mos que no se dispone de resultados para la entrada nativa.

La tnica caracteristica que diferencia unas entradas de otras es la resolucién de la imagen
que procesara el algoritmo, que tiene un impacto directo en el nimero de instrucciones. Se prevé
que la entrada nativa tendrd una traza similar al resto y que serd posible obtener resultados
representativos simulando tinicamente una seccién. De todas formas, para no tomar la decisién
basandonos en suposiciones podemos simplemente ejecutar la entrada pequena, que es la mas
adecuada para realizar un estudio de la jerarquia de memoria porque es la que mas fallos por
cada mil instrucciones presenta.

D.2.13 X264

En este caso, la tasa de fallos para la entrada nativa es mayor que para el resto en una arquitectura
Intel, pero se encuentra muy préxima a la grande y la pequenia en Sparc. Las trazas temporales

107

ANEXO D. RESULTADOS DE LA CARACTERIZACION DE PARSEC

muestran varios picos de fallos, aunque no siempre estan distribuidos uniformemente a lo largo
de la ejecucién de las aplicaciones.

Las entradas pequenia, mediana y grande se diferencian inicamente en el nimero de fotogra-
mas de video que se deben codificar, lo cual tiene una relacién directa con el nimero de picos que
se observan en la traza temporal. En la traza para la entrada nativa, el nimero de picos también
se corresponde con el nimero de fotogramas, pero en este caso aumenta también la resolucién
de los fotogramas. Esto tiene repercusién tanto en el tiempo que tarda en procesarse cada
fotograma como en la altura de los picos de fallos, que ahora es mucho mayor. En este algoritmo
no resulta tan sencillo como en casos anteriores (bodytrack, fluidanimate y raytrace) utilizar
una entrada nueva combinando los parametros de varias entradas, ya que toda la informacion se
pasa en el fichero de video, asi que habria que preparar uno nuevo.

El algoritmo de este benchmark tiene que utilizar para algunos fotogramas la informacién de
otros fotogramas ya procesados, lo cual explica por qué el tiempo y los fallos no se mantienen cons-
tantes para cada fotograma. Adema4s, la resolucion afecta en mayor medida porque no sélo implica
que el fotograma estudiado es mas grande, si no que, en caso de tener que acceder a otros fotogra-
mas, se deberd acceder a cantidades de datos mas grandes. Por ltimo, los propios datos, no sélo
su tamano, influyen también en como se ejecutara el algoritmo, ya que dependiendo del video que
se desee codificar cambiara la cantidad de veces que sera necesario acceder a fotogramas anteriores.

Por lo tanto, la selecciéon de una entrada representativa de una ejecucién nativa es especial-
mente complicada en este caso. El mejor modo de lograr un resultado valido sera simular varias
zonas distintas de la entrada nativa, calentando la cache antes de cada una. Serd suficiente con
tomar cuatro muestras de 20000 millones de ciclos cada una en puntos aleatorios de la ejecucion
de la aplicacién. Asi se tendran en cuenta zonas en las que el procesado de los fotogramas es més
lento y zonas en las que es més rapido.

108

Glosario

Benchmark Carga de trabajo artificial que incluye las caracteristicas mas importantes de
cargas de trabajo reales y relevantes. En general, son aplicaciones pequenas, eficientes y
controlables.

Checkpoint Estado de una simulacion que almacenamos para poder volver al mismo punto
rapidamente mas tarde.

Copy-back Politica de escritura en la cual las escrituras solo se llevan a cabo en la cache y se
escribiran en la memoria principal cuando el bloque sea reemplazado.

Footprint El footprint o huella es el nimero total de pdginas de memoria a las que un programa
accede cuando es ejecutado.

Host En una simulacion, el host es la maquina sobre la que ejecutamos la simulacion.

Instruction mix Numero de instrucciones de cada tipo que hay en un programa, ya sean
aritmético-logicas, de memoria,...

Muestreo basado en eventos El muestreo basado en eventos (en inglés, event based sampling
o EBS) es un método utilizado en profiling que se basa en interrumpir la ejecucién de la
aplicacién cada cierto nimero de eventos y anotar en qué punto del codigo se encuentra. De
esta manera se obtiene un histograma del nimero eventos basado en las lineas de cédigo
en que se producen.

Muestreo basado en tiempo El muestreo basado en tiempo (en inglés, time based sampling
o TBS) es un método utilizado en profiling que se basa en interrumpir la ejecucién de
la aplicacién cada cierto tiempo y anotar en qué punto del cédigo se encuentra. De esta
manera se puede conocer en qué zonas del cédigo ha pasado mas tiempo la ejecucion.

Non-write-allocate Politica de escritura en la cual, ante un fallo en escritura, el bloque se
modifica en memoria principal y no se trae a la cache.

Pipeline parallelism Pipelining es un modelo de programacién utilizado para explotar el
paralelismo a nivel de tarea. El trabajo a realizar se divide en varias etapas que se
ejecutaran concurrentemente en un multiprocesador. Las etapas del pipeline tienen una
relacién productor-consumidor e intercambian informacién mediante colas. Dependiendo
del diseno, uno o mas threads pueden encargarse de cada etapa.

Profiling El profiling es una técnica que permite inspeccionar el funcionamiento interno de una
aplicacion durante su tiempo de ejecucion.

109

Glosario

Regién de interés La region de interés o ROI (del inglés Region of Interest) es la parte de una
aplicacién que resulta relevante, quedando fuera la inicializacién en la se cargan los datos a
utilizar y el final en el que se escribe el resultado.

Simulador de sistema completo Simulador que incluye procesadores, memoria, interfaces de
red y otros periféricos. Se utiliza para el diseno, desarrollo y prueba de hardware y software
en un entorno que se aproxima al contexto final de aplicacién del producto.

Slowdown Es la medida de cuintas veces mas lenta resulta la simulacién de la aplicacién
respecto de su ejecucién nativa.

Target En una simulacién, el target es el sistema que estamos simulando.

Thread pool Mediante este método, un thread principal se ocupa de ir distribuyendo el trabajo
entre los threads disponibles. Permite que un algoritmo reutilice los threads para eliminar
la necesidad de destruirlos y crear otros nuevos.

Working set Es el conjunto de la paginas que un proceso utiliza en un determinado intervalo
de tiempo

Write-allocate Politica de escritura en la cual, ante un fallo en escritura, el bloque correspon-
diente se trae a la cache.

Write-through Politica de escritura en la cual cada escritura en la cache general una escritura
también en memoria principal.

110

	Índice de figuras
	Índice de tablas
	Introducción
	Contexto del proyecto
	Objetivos
	Organización de la memoria

	Estado del arte
	Plataformas y estrategias de simulación
	Cargas de trabajo

	La suite PARSEC
	Metodología
	Introducción a las métricas utilizadas
	Footprint de la memoria
	Obtención de los fallos de TLB
	Instrumentación del programa utilizando VALGRIND
	Estudio de la jerarquía de memoria mediante simulación

	Resumen de resultados
	Análisis del tiempo de simulación
	Impacto del tamaño de las entradas en la jerarquía de memoria
	Instruction mix
	Footprint
	Fallos de TLB
	Tasa de fallos en cache y traza temporal

	Selección de entradas

	Conclusiones y trabajo futuro
	Conclusiones a nivel técnico y trabajo futuro
	Conclusiones a nivel personal

	Bibliografía
	Gestión del proyecto
	Gestión del tiempo
	Esfuerzo invertido
	Problemas encontrados

	Análisis del tiempo de simulación: Simics y GEMS
	Tiempo de ejecución de las simulaciones
	Distribución del tiempo en los diferentes módulos durante la ejecución de la simulación
	Tipos de simulaciones realizadas
	Resultados de la distribución de tiempos

	Conclusiones

	Detalles de las simulaciones con Simics y GEMS
	Fases de desarrollo de los experimentos.
	Diseño de las simulaciones
	Ejecución de las simulaciones
	Recopilación de resultados

	Resultados de la caracterización de PARSEC
	Impacto del tamaño de las entradas en la jerarquía de memoria
	Instruction mix
	Footprint
	Fallos de TLB
	Tasas de fallos en cache y trazas temporales

	Selección de entradas
	Blackscholes
	Bodytrack
	Canneal
	Dedup
	Facesim
	Ferret
	Fluidanimate
	Freqmine
	Raytrace
	Streamcluster
	Swaptions
	Vips
	X264

	Glosario

