

Proyecto Final de Carrera

Ingeniería en Informática

Desarrollo de una Interfaz Gráfica

y Optimización de Algoritmos de Cálculo

para una Herramienta de Análisis de

Compatibilidad en Frecuencia

Eduard Porta Martín-Moreno

Directora: Iva Bartunkova

Ponente: Jorge Júlvez Bueno

Insitute of Geodesy and Navigation

University of Federal Armed Forces, Munich

Departamento de Informática e Ingeniería de Sistemas

Escuela de Ingeniería y Arquitectura

Universidad de Zaragoza

Zaragoza, Septiembre de 2011

Agradecimientos:

A Javier y María del Carmen, mis padres, por su apoyo

incondicional desde que tengo memoria

A David, mi hermano, amigo y confidente, por hacerme

comprender que siempre existe otro punto de vista

A Bea, por aguantarme, comprenderme y no decirme lo

que quiero oír sino lo que es necesario que escuche

A Iva, mi directora, y Jorge, mi ponente, por su tiempo,

sus consejos y su ayuda en los momentos críticos

Resumen

1

Resumen

El proyecto Frequency Compatibility Analysis Tools (FCAT) constituye un desarrollo llevado a

cabo en el Institute of Navigation and Geodesy (IGN) de la University of Federal Armed Forces

en Múnich, y financiado por la Comisión Europea. El resultado de dicho proyecto consiste en

una serie de herramientas de análisis de compatibilidad de señales basadas en MATLAB e

integradas en dos aplicaciones gráficas. Dichas aplicaciones permiten calcular valores

especificados por el cliente para sistemas de navegación vía satélite arbitrarios, visualizando

los resultados mediante gráficas, tablas y texto. El presente proyecto final de carrera

consiste en dos partes diferenciadas, ambas enmarcadas en el desarrollo de FCAT.

La primera parte del proyecto ha consistido en el análisis, diseño e implementación de los

módulos correspondientes a la interfaz gráfica de las aplicaciones. Con la intención de hacer

esta parte más interesante desde el punto de vista académico, a la par que mejorar la

productividad en futuros proyectos, se ha implementado para esta tarea un framework

genérico. Dicho framework, al que el autor ha decidido llamar Forget About Complicated

Interface Layouts (FACIL), se ha diseñado tratando de maximizar el compromiso entre

flexibilidad, simplicidad y escenarios de uso abarcados por la herramienta. FACIL permite

dotar de interfaz gráfica a una colección de algoritmos de cálculo arbitraria con tan solo

escribir unos pocos ficheros de configuración. Su validez y utilidad se han verificado

mediante su aplicación al proyecto GASIP, otro proyecto del IGN con la Comisión Europea.

En la segunda parte del proyecto se ha tratado la optimización de algoritmos de cálculo

intensivos en tiempo de CPU para el proyecto FCAT. Para esta parte se han evaluado

distintas alternativas como la vectorización del código, técnicas de paralelización o el uso de

la tarjeta gráfica del equipo mediante CUDA u OpenCL.

En definitiva, este proyecto final de carrera ha constituido toda una experiencia formativa,

tanto desde el punto de vista académico como desde el profesional. A lo largo del mismo ha

sido necesario cumplir plazos, coordinarse con otros miembros del instituto, tratar de

satisfacer las expectativas y requisitos del cliente, y en general todo aquello que implica el

trabajo en un proyecto real.

2

3

Tabla de Contenido

Tabla de Contenido

Resumen ... 1

1 Introducción .. 5

1.1 Estructura del Documento .. 6

1.2 Marco del Proyecto.. 7

1.3 Objetivos, alcance y motivación ... 9

1.4 Planificación .. 13

1.5 Fases del Desarrollo .. 15

1.6 Tecnologías Empleadas .. 16

2 FACIL (I): Descripción del Framework ... 17

2.1 Introducción a FACIL ... 18

2.2 Características Principales .. 19

2.3 Arquitectura .. 21

2.4 Widgets y Complementos ... 23

3 FACIL (II): Desarrollo y Aplicación .. 27

3.1 Fase 1: Generación Dinámica del Panel de Entrada ... 28

3.2 Fase 2: FACIL como Framework Independiente ... 31

3.3 Fase 3: El Panel de Salida .. 33

3.4 Fase 4: Implementación de Widgets como Objetos ... 36

3.5 Fase 5: Aplicación a los Proyectos GASIP y FCAT ... 38

4 Optimizaciones .. 41

4.1 Algoritmos a Optimizar ... 42

4.2 Cálculo de la Correlación Cruzada entre Códigos PRN ... 42

5 Resultados y Conclusiones .. 47

4

Tabla de Contenido

5.1 Resultados .. 48

5.2 Conclusiones personales .. 50

Bibliografía .. 53

Anexo A - Objetivos ..59

A.1 Propuesta de Prácticas .. 60

A.2 Lista de Objetivos .. 62

Anexo B - Manuales de FACIL ...65

B.1 Manual de usuario ... 67

B.2 Manual del programador .. 77

Anexo C - Detalles de Implementación...87

C.1 Estudio sobre el uso de constantes y variables globales .. 88

C.2 Estudio sobre los diferentes sistemas de OOP en Matlab... 90

Anexo D - Optimización del Cálculo de la Correlación Cruzada de Códigos PRN ...91

D.1 Código del Bucle Original ... 92

D.2 Código Vectorizado .. 93

D.3 Código Paralelizado ... 94

D.4 Registro Detallado de Pruebas ... 96

Anexo E - Glosario ..119

5

1

Introducción

Este capítulo ofrece una visión global del proyecto desarrollado, su contexto,

metodología y objetivos, e introduce los restantes capítulos de la presente memoria

1.1 – Estructura del Documento

1.2 – Marco del Proyecto

1.3 – Objetivos, Alcance y Motivación

1.4 – Planificación

1.5 – Metodología de Desarrollo

1.6 – Tecnologías Empleadas

6

Capítulo 1 - Introducción

Estructura del Documento

A continuación se detalla la estructura de esta memoria:

Resumen

Resume brevemente en qué ha consistido el proyecto desarrollado, describiendo las tareas

realizadas y explicando las implicaciones académicas y profesionales del mismo para el

autor.

1 - Introducción

Es el capítulo en el que nos encontramos. Ofrece una visión global del proyecto desarrollado,

su contexto, metodología y objetivos, e introduce los restantes capítulos de la presente

memoria.

2 - FACIL (I): Descripción del Framework

Describe el framework FACIL, explica a qué tipo de proyectos es aplicable y expone las

características más interesantes de su estructura y funcionamiento.

3 - FACIL (II): Desarrollo y Aplicación

Explica el desarrollo de FACIL, desde antes de constituirse como un proyecto separado hasta

la versión final y su aplicación a los proyectos GASIP y FCAT.

4 - Optimizaciones

Documenta las posibilidades de optimización y las técnicas aplicadas a un algoritmo costoso

en tiempo del proyecto FCAT.

5 - Resultados y Conclusiones

Explica los resultados obtenidos, su correspondencia con los objetivos marcados y las

conclusiones que se derivan de los mismos.

Bibliografía

Lista las fuentes documentales empleadas para la realización del presente proyecto.

Anexos

Colección de documentos adicionales que se ha considerado interesante añadir y que

complementan la información disponible en el documento principal.

Capítulo 1 - Introducción

7

Figura 1 – Observatorio del IGN

Marco del Proyecto

El presente proyecto final de carrera (PFC) ha consistido en el análisis, diseño e

implementación de diversos módulos y optimización de algunos algoritmos de cálculo dentro

del proyecto Frequency Compatibility Analysis Tools (FCAT), desarrollado en el Institute of

Geodesy and Navigation (IGN) de la University of Federal Armed Forces de Múnich. El citado

PFC ha sido financiado mediante una beca Erasmus Prácticas, obtenida a través de la

Fundación Empresa Universidad de Zaragoza (FEUZ), y una beca STIBET II, concedida por el

Servicio Alemán de Intercambios Académicos (DAAD).

Institute of Geodesy and Navigation

El IGN [W1] (Figura 1) trabaja desde hace veintiocho

años en una larga lista de aplicaciones y temas de

investigación relacionados con los sistemas de

navegación vía satélite globales (GNNS) abarcando

investigación teórica, análisis de sistemas,

integración de navegación vía satélite con otros

sensores, desarrollo de algoritmos y desarrollo de

software, así como el desarrollo de sistemas de

creación de prototipos. Actualmente el IGN juega un

papel activo con respecto al desarrollo y la

optimización del Sistema de Navegación Europeo GALILEO.

Proyecto FCAT

La Comisión Europea (CE) necesita una serie de herramientas de simulación de uso interno,

con el propósito de realizar su propia valoración independiente acerca de los análisis de

compatibilidad, los cuales son necesarios en el transcurso de los diversos procesos de

coordinación entre GALILEO/EGNOS y otros GNSS.

Para poder asegurar el correcto funcionamiento con otros GNSS, la CE necesita asegurar que

se ha alcanzado la compatibilidad entre los diversos sistemas. Cuando se habla de

compatibilidad en este contexto, se entiende que un sistema no causará ningún tipo de

interferencia perjudicial en el otro sistema [A1].

8

Capítulo 1 - Introducción

Hasta ahora, la CE cuenta con la asistencia la ESA y de expertos de estados miembros, en

base a su disponibilidad y buena voluntad, lo que, por supuesto, no es una solución

aceptable. Por esto, la CE no dispone, actualmente, de los medios para forjar una opinión

independiente acerca de los resultados de compatibilidad siempre que lo necesite.

Tener sus propias herramientas de simulación de compatibilidad permitirá a la CE tener una

mayor capacidad de reacción y estar mejor informada sobre los problemas potenciales de

compatibilidad entre GALILEO/EGNOS y otros GNSS. Dichos problemas de compatibilidad

conciernen a todos los servicios de GALILEO y EGNOS en todas las actuales y posibles

futuras bandas de frecuencia.

El propósito del proyecto FCAT es, por tanto, desarrollar dichas herramientas, las cuales

facilitarán a la CE la evaluación de la compatibilidad en radiofrecuencia entre

GALILEO/EGNOS y otros GNSS. Dichas herramientas de simulación deben tener la capacidad

de realizar el análisis de compatibilidad por medio de las metodologías aplicables acordadas

con otras GNSS a nivel bilateral y multilateral, basándose en las pertinentes

recomendaciones de la ITU [D1].

Proyecto GASIP

El proyecto GASIP (Galileo Signals Performance) es otro proyecto desarrollado por el Instituto

para la CE. La herramienta de simulación GASIP es una aplicación que calcula

características de una señal GNSS para evaluar su rendimiento, bajo una constelación de

satélites, canal y receptor determinados.

La interfaz gráfica de las herramientas desarrolladas en el proyecto FCAT comparte muchas

características con GASIP y algunos módulos han sido reutilizados. Además, a pesar de que

en un principio no estaba previsto, las decisiones de diseño realizadas en FCAT permitieron

al autor realizar una pequeña contribución al proyecto GASIP.

Capítulo 1 - Introducción

9

Objetivos, alcance y motivación

Según la propuesta del puesto de prácticas en el que el autor ha realizado su proyecto, la

tarea a completar consistía en el desarrollo de una aplicación de análisis de compatibilidad

de señales en MATLAB. Para ello, se requería en primer lugar, el desarrollo de una interfaz

gráfica modular y bien estructurada; y, posteriormente, la integración con los módulos de

cálculo desarrollados por otros miembros del equipo1.

Adicionalmente, la necesidad de incrementar el interés del proyecto desarrollado desde el

punto de vista académico, unida a la buena acogida de algunas de las ideas del autor por

parte de la organización, dieron lugar a nuevos objetivos, expandiendo el alcance de dicha

propuesta de forma horizontal y vertical.

De este modo el alcance de este proyecto puede

verse como una intersección de conjuntos (Figura

2). En primer lugar se encuentran los objetivos

enmarcados en el proyecto FCAT, de los cuales la

mayor parte corresponde a la propuesta original. En

segundo lugar cabe nombrar los objetivos fijados

para el framework2 FACIL, surgido en el seno del

proyecto principal y cuyo desarrollo se justificará y

explicará en detalle más adelante. Por último,

citaremos los objetivos marcados para el autor

respecto al proyecto GASIP. Los tres ámbitos están, como se verá en posteriores apartados,

íntimamente relacionados y comparten un número importante de características entre sí.

Objetivos Dentro del Proyecto FCAT

A continuación se describirán los objetivos que se marcaron para el autor en su papel como

desarrollador dentro del proyecto FCAT.

Por tratarse de un proyecto de características similares, muchos de los requisitos del

proyecto FCAT coinciden con el proyecto GASIP. Por esta razón, gran parte de la lista de

1
 El contenido completo de dicha propuesta puede consultarse en el anexo A.1.

2
 Se emplea el anglicismo framework, por su uso ampliamente extendido en el desarrollo de software

y por no existir un término con el mismo significado en castellano. Se entenderá como un esqueleto,

esquema o patrón base para la implementación de una aplicación completa [L1].

Proyecto FCAT

Proyecto
GASIPFramework

FACIL

Figura 2 - Alcance del proyecto

PFC

10

Capítulo 1 - Introducción

requisitos puede resumirse en que la

aplicación, al margen de las evidentes

diferencias en los cálculos a realizar, debe

ofrecer en su interfaz gráfica, como mínimo,

todas las prestaciones que GASIP ofrece

(Figura 3). Estos requisitos pueden

resumirse en el siguiente listado:

R1. Panel de entrada con los datos a

pasar como parámetro a los algo-

ritmos de cálculo.

R2. Comprobaciones de rango y tipo sobre estos valores de entrada antes de ejecutar las

funciones de cálculo.

R3. Panel de salida con listas desplegables para seleccionar la función de cálculo a

ejecutar y controles para visualizar los resultados mediante gráficas y texto.

R4. Estructura modular e interfaz sencilla con las funciones de cálculo.

R5. Funciones para crear a partir de una plantilla, cargar desde archivo o guardar los

datos del panel de entrada.

R6. Opción para exportar los datos de salida a diversos formatos, entre ellos CSV

(comma separated values), JPEG, TIFF (formato de imagen) o FIG (formato propio de

MATLAB para almacenar figuras).

A estos requisitos se suman otros propios de FCAT, algunos de ellos especificados al inicio

del desarrollo y otros surgidos a partir de ideas de algún miembro del equipo, peticiones del

cliente o necesidades surgidas a partir de la implementación de los módulos de cálculo. A

continuación se listan los más importantes:

R7. Además de las opciones de gráficas y texto plano, opción a visualizar los resultados

en el panel de salida mediante tablas.

R8. Diálogos donde se visualice el contenido de algunos ficheros de entrada,

concretamente aquellos que contienen las descripciones de los sistemas y señales

GNSS, mediante texto, tablas y gráficas.

Figura 3 - Interfaz gráfica de GASIP

Capítulo 1 - Introducción

11

R9. Editor de matrices con el propósito de poder editar algunos de los ficheros de

entrada en formato MAT.

R10. Optimización de los algoritmos de cálculo que se presten a ello de forma que se

reduzca de forma visible la espera del usuario.

Motivación para el Desarrollo del Framework FACIL

Durante una fase temprana del desarrollo se planteó la posibilidad de separar el código y

datos específicos de cada herramienta, de las partes comunes entre ellas y con GASIP,

como la estructura de la interfaz gráfica o las funciones de manipulación de archivos. De

este modo y con algunas generalizaciones, se pretendía generar un código unificado

aplicable a las dos herramientas del proyecto.

Tras comprobar la viabilidad y previendo su potencial aplicación a otros proyectos, se decidió

implementar las características comunes en un framework desarrollado simultáneamente,

pero como un proyecto independiente. El autor decidió llamar a este proyecto Forget About

Complicated Interface Layouts (FACIL). El desarrollo de un framework puede presentar ciertas

desventajas, como un incremento temporal en costes derivado de las generalizaciones y la

mayor complejidad en ciertos aspectos de la lógica interna. Sin embargo, los beneficios para

la organización son numerosos [L2] [L3]:

 Estandarización del software dentro de la organización.

 Reducción de costes y tiempos de desarrollo en futuros proyectos.

 Mayor robustez de las futuras aplicaciones, ya que se parte de una base que se

revisa de forma periódica.

Además, dado que debían implementarse dos herramientas muy similares, el incremento en

costes del desarrollo se vio mitigado por la reducción en el numero de módulos a desarrollar,

a casi la mitad.

Objetivos del desarrollo de FACIL

Cuando se decidió la separación entre framework y las partes específicas de cada

aplicación, también fue necesario definir ciertos objetivos y requisitos que FACIL debía

cumplir para rentabilizar su desarrollo. A continuación se resumen los más importantes:

R1. Ser sencillo de utilizar, ampliar y configurar.

12

Capítulo 1 - Introducción

R2. Cumplir los estándares de calidad de la organización (estándares de codificación,

estructura modular, código reusable, robusto).

R3. Minimizar las pérdidas de eficiencia o rendimiento habitualmente derivadas de la

generalización del código [L4].

R4. Ser suficientemente flexible para poder aplicarse a un elevado número de

proyectos.

Capítulo 1 - Introducción

13

Planificación

El proyecto FCAT está planificado para llevarse a cabo con una duración de dieciocho meses,

la estructura de esta planificación puede observarse en la Figura 4. En el momento de la

incorporación del autor, algunos detalles del diseño de la aplicación se encontraban ya

parcialmente definidos.

El autor ha participado principalmente en el diseño, implementación y pruebas de las dos

interfaces gráficas de FCAT, dedicando la mayor parte de este tiempo al desarrollo del

framework FACIL sobre el cual se sostienen. Adicionalmente, también ha realizado

Junio Abril Agosto Septiembre

Periodo del autor en el proyecto

Figura 4 - Planificación del Proyecto FCAT

14

Capítulo 1 - Introducción

optimizaciones en los algoritmos de cálculo implementados por otros miembros del equipo y

desarrollado una versión reducida de otro proyecto mediante el uso de FACIL.

Inicialmente se planteó aplicar una metodología de desarrollo ágil. Se estudiaron

principalmente dos alternativas: Scrum [L5] y Extreme Programming (XP) [L6], pero ninguna

de las dos se adecuaba completamente a las necesidades y características del proyecto.

Finalmente, se decidió aplicar una variante más flexible tomando las características

interesantes de ambas metodologías de modo similar a [L7].

Por la naturaleza de este tipo de metodología de desarrollo, la planificación se ha tratado de

forma dinámica, fijando en cada iteración los sub-objetivos a cumplir en base a un listado de

objetivos fijo3. La división lógica de las tareas se muestra de forma esquematizada en la

Figura 5.

3
 Dado que los sub-objetivos de esta lista han cambiado a lo largo del proyecto y es difícil expresar

esta evolución en un documento estático, se ha decidido presentar únicamente el estado final de esta

lista de objetivos (backlog en terminología Scrum), ésta puede leerse en el anexo A.2.

Tareas

FCAT

Previsualización de
Sistemas

Previsualización de
señales

Editor de SSC

Optimizaciones

Tareas varias de
análisis y diseño

FACIL

Manipulación
datos entrada

Validación de
variables

Tareas de diseño e
implementación

del GUI

Panel de Entrada

Panel de Salida

Versión reducida
de GASIP

Tareas de
documentación

Figura 5 - Esquema de Tareas Planificadas

Capítulo 1 - Introducción

15

Fases del Desarrollo

En el apartado anterior se ha tratado la planificación del proyecto desde un punto de vista

metodológico y mostrando una aproximación estática a los objetivos y sub-objetivos

planteados a lo largo del mismo. Con el objeto de facilitar la comprensión, y por completitud,

se presenta a continuación un listado secuencial por fases o hitos que agrupan los objetivos

marcados de forma cronológica. También se intercalan las decisiones más importantes:

H0. Documentación, familiarización con la organización y el entorno de trabajo y análisis

de alternativas.

H1. Prototipo de generación automática del panel de entrada.

Se decide generación en tiempo de ejecución frente a generación en tiempo de

diseño.

H2. Sistema de complementos para los controles del panel de entrada. Complemento de

previsualización de sistemas.

Se decide la separación del framework FACIL como proyecto independiente

H3. Segunda versión del panel de entrada: Controles agrupados en campos, se abstrae la

lectura y escritura de los datos. Complementos de edición de coeficientes de

separación espectral (SSC) y previsualización de señales.

H4. Primera versión del panel de salida con soporte para gráficas y texto plano para uno o

más grupos de funciones y una o más funciones por grupo.

H5. Manipulación de datos de entrada: Abrir, guardar y cargar desde plantilla.

Se decide que es necesario poder mostrar tablas en el panel de salida

H6. Segunda versión del panel de salida con soporte para tablas y posibilidad de

redimensionar la ventana.

H7. Tercera versión del panel de entrada implementado con objetos: Se mejora la

usabilidad, flexibilidad y posibilidades de ampliación.

H8. Versión inicial de FACIL. Implementación de una versión reducida de GASIP.

H9. Versiones Finales de FCAT y FACIL. Documentación y pruebas.

16

Capítulo 1 - Introducción

Tecnologías Empleadas

El presente proyecto consiste puramente en un desarrollo de software y, por lo tanto, todas

las tecnologías listadas a continuación corresponden a aplicaciones informáticas usadas

durante el desarrollo, obviando otros detalles como el equipo físico empleado:

 Mathworks MATLAB [W3]: Es el entorno de desarrollo y lenguaje de

programación usado en prácticamente la totalidad del código de este

proyecto. Está principalmente orientado a su uso por parte de

personal científico e investigador. En este desarrollo se han usado las

versiones 2007a, 2010b y 2011. La decisión de emplear este

lenguaje fue impuesta por la CE en su convocatoria a licitación para el

proyecto, así como la obligación de que funcionase en la versión

2007a del mismo [D1].

 Oracle Java [W4] y Netbeans [W5]: Java y Netbeans son,

respectivamente, un lenguaje de programación orientado a objetos y

un entorno de desarrollo para el mismo. Dado que MATLAB utiliza Java

en sus objetos gráficos se ha empleado este lenguaje para realizar

algunas extensiones necesarias a la interfaz gráfica.

 Perl [W6]: Este lenguaje de programación interpretado es

extremadamente útil para el tratamiento de expresiones regulares. Se

usó para las primeras tentativas de análisis de los ficheros de

entrada. Posteriormente se ha pasado a utilizar el tratamiento de

expresiones regulares incluido en MATLAB.

 Además de las anteriores tecnologías, usadas en la implementación de la aplicación,

se han empleado diversas herramientas ofimáticas para las tareas de análisis, diseño

y documentación; y el sistema de control de cambios Subversion. Tampoco hay que

olvidar aquella que, desde el punto de vista del autor, es una de las herramientas

más importantes y versátiles del ingeniero informático: papel y lápiz.

17

2

FACIL (I): Descripción del Framework

En este capítulo se describirá el framework FACIL, se explicará a qué tipo de

proyectos es aplicable y se expondrán las características más interesantes de su

estructura y funcionamiento

2.1 – Introducción a FACIL

2.2 – Características Principales

2.3 – Arquitectura

2.4 – Widgets y Complementos

18

Capítulo 2 - FACIL (I): Descripción del Framework

Introducción a FACIL

FACIL es un framework para MATLAB, pensado para facilitar el trabajo a científicos e

investigadores que usan este entorno y que muchas veces se ven obligados a

programar sus propias interfaces gráficas si desean una interacción más visual.

FACIL aporta aquella funcionalidad habitualmente común a todas estas interfaces,

además de un número de opciones de configuración y ampliación que lo hacen

aplicable a un gran número de proyectos de diferente naturaleza.

El principal requisito para que FACIL sea aplicable a un proyecto, es que éste se componga

de una colección de algoritmos de cálculo no interactivos, con una serie de variables de

entrada, y resultados que puedan presentarse con gráficas, tablas y texto plano. No

obstante, el usuario es libre de agregar interactividad o cualquier otra funcionalidad adicional

mediante complementos.

La interfaz generada consta de un panel con todas las variables de entrada en el que se

realizan automáticamente chequeos de rango y tipo; un panel de salida donde se presentan

los resultados con opción a controlar la visualización de los mismos; y menús que permiten

guardar o cargar los datos de entrada y salida, así como configurar diversos parámetros de

la interfaz4 (Figura 6).

4
 El funcionamiento de dicha interfaz se detalla en el Manual de Usuario, disponible en el anexo B.1.

Figura 6 - Ejemplo de Interfaz Gráfica Implementada con FACIL

Panel de entrada
Panel de salida

Menús para guardar y cargar datos

Capítulo 2 - FACIL (I): Descripción del Framework

19

Características Principales

A continuación se enumeran las características más destacables, de las que un desarrollo

puede beneficiarse mediante el uso de FACIL.

Sencillo

Es posible desarrollar una aplicación completa con unos pocos ficheros de configuración y

escasas líneas de código. La sintaxis empleada está pensada para que sea sencilla de

entender y utilizar por parte del personal científico e investigador, posiblemente no

familiarizado con conceptos avanzados de programación.

El panel de entrada se genera automáticamente a partir de un fichero de descripción de

variables con sintaxis similar a JSON [A2]. El de salida se genera automáticamente a partir

de un fichero de descripción de funciones o figuras de mérito. Este último comparte la

sintaxis de las opciones de configuración del panel de salida con la usada para las variables

de entrada.

La codificación necesaria para la interfaz entre FACIL y los algoritmos de cálculo existentes

es mínima y sencilla de comprender y realizar.

Ampliable

Con el objeto de añadir nuevas opciones de visualización y entrada de datos, pueden

añadirse complementos con funcionalidad específica a los widgets5 de ambos paneles.

5
 A lo largo de esta memoria se emplearán los términos control, widget y campo, que pueden

emplearse como sinónimos bajo la definición de [L8]: ‚Un control es un objeto que reside en un panel

accesible para el usuario y que permite visualizar información‛. Al margen de esta definición haremos

las siguientes distinciones que facilitarán la compresión del texto:

- Los controles en nuestro proyecto son aquellos generados mediante las sentencias

uicontrol o javacomponent e integrados en el propio MATLAB o la biblioteca Swing de

Java.

- Los campos son objetos empleados en una implementación intermedia, formados por un

control o un panel con varios controles, que representan una variable única, y que emplean

métodos no estándar para acceder a sus propiedades y métodos.

- Los widgets están formados por un panel que contiene uno o más controles y, a diferencia de

los campos, pueden ser usados como controles estándar con métodos y propiedades

adicionales.

20

Capítulo 2 - FACIL (I): Descripción del Framework

Pueden añadirse nuevos widgets, tanto para extender las capacidades de FACIL, como

específicos para una aplicación, aprovechando mediante herencia de objetos la funcionalidad

de los existentes.

Funcional

Se incluye en FACIL toda aquella funcionalidad que se ha considerado relevante y útil para

proyectos de estas características:

 Se proporciona funcionalidad de barra de progreso y cancelación con una interfaz

sencilla de utilizar, para los algoritmos costosos en tiempo.

 Los widgets incluidos realizan comprobaciones de tipo, rango, existencia y validez de

ficheros de forma dinámica, mostrando de forma visual la corrección del dato

contenido y deshabilitando el acceso a las funciones de cálculo mientras el error no

sea subsanado.

 Los datos de entrada pueden guardarse y cargarse empleando ficheros de texto con

sintaxis XML para que sean sencillos de editar fuera de la aplicación.

 Los datos de salida pueden guardarse en toda una variedad de formatos lo cual

añade múltiples opciones de reutilización (como imágenes, como variables en ficheros

Mat, como gráficas editables o en formato CSV).

Seguro

Se ha contemplado el caso de que algunos de los datos de entrada empleados en los

cálculos sean confidenciales y no deban ser accesibles desde una versión ejecutable de la

aplicación. Estos datos podrían ser incluidos en las propias funciones de cálculo, sin

embargo, esto disminuye la flexibilidad y diluye la división entre funciones y datos.

Por esto, se ha creído interesante añadir la capacidad de definir constantes de entrada

ocultas con datos predefinidos por el desarrollador, que no figurarán al guardar los ficheros

de entrada y que pueden, opcionalmente, omitirse también de los ficheros de salida.

Además, para evitar el acceso a estas constantes, existe la opción de obtener las

descripciones de variables y funciones de ficheros MAT en lugar de texto, de forma que sean

encriptados al generar el ejecutable.

Capítulo 2 - FACIL (I): Descripción del Framework

21

Arquitectura

Dependiendo de cómo se utilice, un framework puede clasificarse como de ‚caja negra‛ o

‚caja blanca‛. Mientras que con el primer tipo, la aplicación emplea los módulos disponibles

en el mismo, el segundo tipo, permite la modificación o refinamiento (habitualmente

mediante herencia de clases y abstracción) de su lógica interna para adaptarla a las

necesidades del desarrollador [L3].

Panel de

Entrada

Panel de

Salida

Usuario

Guardar o

Cargar

Datos

Datos de

Entrada

Descripción de

Variables

Guardar

Resultados

Resultados

Calcular

Datos Resultados

Descripción de

Funciones

Dibujar Configurar

Desarrollador

Representar

Calcula

función 1

Calcula

función n

...

Representa

función 1

Representa

función n

...

Resultados

FACIL

Módulos

específicos

Figura 7 - Esquema simplificado de una aplicación implementada con FACIL

22

Capítulo 2 - FACIL (I): Descripción del Framework

En este sentido, FACIL es un framework de ‚caja gris‛, puesto que una parte del mismo

funciona como una caja negra y, sin embargo, la funcionalidad de los paneles de entrada y

salida puede ampliarse mediante la implementación de nuevos widgets y complementos a

partir de los existentes.

Funcionalidad Básica: Framework de Caja Negra

FACIL puede ser usado como un framework de caja negra empleando los módulos ya

disponibles para generar una aplicación completa. El esquema de la Figura 7 presenta de

forma simplificada la estructura de una aplicación implementada con FACIL y la interacción

entre el usuario, el desarrollador y los distintos componentes de la misma:

 Los módulos de FACIL.

 Los módulos específicos de la aplicación desarrollada.

 Los ficheros de configuración (escritos por el desarrollador).

 Los ficheros de entrada y salida (que son leídos y posiblemente

modificados por el usuario).

Funcionalidad Avanzada: Framework de Caja Blanca

Como ya hemos dicho, la

funcionalidad de caja blanca de FACIL

estriba en que el desarrollador puede

implementar sus propios widgets y

complementos a partir de los

existentes. Para ello existe toda una

colección de funciones que facilitan

esta tarea y que pueden ser

consultadas en el manual del

desarrollador6. El nivel de la jerarquía de objetos del que partirá y por tanto, la dificultad de

la implementación, dependerá principalmente de las necesidades del desarrollador y su

habilidad como programador (Figura 8).

6
 Este manual puede ser consultado en el anexo B.2.

Objeto

Widget

Complemento

Contenedor

(Sencillo)

(Avanzado)

Contenedor

Personalizado

Widget Personalizado

Complemento

Personalizado

Figura 8 - Posibilidades de Herencia Simplificadas

Capítulo 2 - FACIL (I): Descripción del Framework

23

Widgets y Complementos

Los widgets y los complementos son una parte fundamental de FACIL puesto que forman la

mayor parte de la interfaz gráfica. Los primeros se encargan por sí mismos de la validación,

control de dependencias entre variables y conversiones de tipos de datos entre otros; y los

segundos permiten extender la funcionalidad del framework base. Por la forma en que se

han implementado, es posible emplear estos objetos de forma independiente como una

biblioteca de objetos para diseñar interfaces gráficas en MATLAB.

Jerarquía

Los widgets implementados se dividen en dos grandes grupos, los widgets, propiamente

dichos, como equivalentes gráficos de un único dato; y los contenedores, que descienden de

un widget especial, con métodos y propiedades que le permiten albergar otros widgets. Los

complementos descienden, junto con los widgets, de una clase objeto directamente superior

debido a ciertas diferencias en la implementación. Puede verse la jerarquía implementada

completa (exceptuando complementos y widgets específicos de GASIP o FCAT) en la Figura 9.

Figura 9 - Jerarquía de Objetos de FACIL

Objeto

widget

contenedor

panel scroll panel base

subpanel

panel
desplegable

panel
dimensionable

constante
oculta

control simple

casilla
verificación

con etiqueta

lista
desplegable

basada en otra
variable

texto libre con validación

selector
archivo

valor numérico

botones radio

complemento

cargar archivo
txt o mat

24

Capítulo 2 - FACIL (I): Descripción del Framework

Propiedades

Los widgets comparten con los complementos ciertas propiedades heredadas de la clase

objeto. Las más importantes son:

P1. Enable: Valor booleano que controla si el elemento y sus hijos son accesibles.

P2. Valid: Valor booleano que indica si el dato contenido es válido.

P3. Ready: Valor booleano dependiente de los anteriores que indica si el estado

del widget es aceptable para ser usado (si es válido o inválido pero

deshabilitado).

P4. Key: Nombre de la variable asociada. En un widget se genera

automáticamente a partir del nombre del widget y el prefijo del tipo de datos,

mientras que, en un complemento puede ser establecido manualmente.

P5. Value: Valor del widget.

P6. Name: Nombre del widget.

P7. Type: Tipo de dato de la variable.

P8. MatlabType: Tipo de la variable desde el punto de vista de MATLAB, que

puede ser distinto del tipo de dato real de la variable (por ejemplo un entero

sigue siendo un double en MATLAB).

P9. DefaultValue: Valor por defecto para el widget cuando se inicializa. En algunos

es una constante, mientras que en widgets de rango variable, como una caja

de valor numérico, puede variar.

Los widgets tienen además otras propiedades para controlar su etiqueta, comentario

emergente y complemento asociado, si hay alguno. El aspecto gráfico de los complementos,

por otra parte, depende completamente del programador, que deberá además establecer un

valor a su propiedad posicionamiento (por defecto, debajo) para controlar el posicionamiento

en relación a su widget asociado.

Capítulo 2 - FACIL (I): Descripción del Framework

25

Métodos

A diferencia de las propiedades, los métodos de widgets y complementos son prácticamente

los mismos, ya que cada objeto particular emplea sobrecarga o extensión si las acciones a

realizar son diferentes de las de su objeto padre. Los métodos más importantes son

aquellos que trabajan sobre el valor del objeto: inicializar, validar, leer y escribir; estos dos

últimos con tres variantes para trabajar con cadenas de texto, el tipo de la variable o el tipo

interno del control que contiene el dato. Además todos los objetos tienen tres slots (ver

punto siguiente), a los que se puede conectar cualquier otro objeto para

activarlo/desactivarlo, redibujarlo o ajustarlo a la anchura del objeto padre.

Comunicación

Los widgets y los complementos disponen de dos mecanismos de comunicación que pueden

ser combinados entre sí. La elección de uno, otro o ambos dependerá del número de objetos

implicados y la visibilidad entre estos (Figura 10).

El primer mecanismo es una implementación en MATLAB del sistema de signals y slots

empleado en Qt [W9]. Este sistema utiliza dos funciones, connector y disconnector7 ,

para asociar una señal (evento) emitida por un objeto o un cambio en una de sus

propiedades con un slot de otro objeto, que puede ser una función dedicada o una función

anónima definida dentro de la declaración del conector.

El segundo método consiste en un bus de comunicación donde los objetos pueden publicar

sus métodos y propiedades, o leer, llamar y conectarse a las de los demás.

7
 No se emplean las palabras connect y disconnect, usadas en Qt, debido a que ya existen en

MATLAB funciones con dichos nombres.

26

Capítulo 2 - FACIL (I): Descripción del Framework

Figura 10 - Mecanismos de Comunicación entre Objetos: Ejemplo de combinaciones posibles

Objeto 1 Objeto 2

Signal1 Slot1

Connector(Objeto1,'Signal1',Objeto2,Slot1)

Listener1

Propiedad1

Slot anónimo

Connector(Objeto1,'Propiedad1',Objeto2,@(receiver,data,sender){...})

Objeto 3

publicado

Objeto 4

publicado

Bus Público

Objeto 3 Objeto 4

P2 P1

P1

Slot1

Connector(BusPublisher('Objeto3'),'P1',Objeto4,Slot1)

BusGetProperty('Objeto3','P1')

Signal1

Signal1

BusPublishMethod(Objeto4,Signal1)

BusPublishProperty(Objeto3,'P1')

27

3

FACIL (II): Desarrollo y Aplicación

En este capítulo se describirá el desarrollo de FACIL, desde antes de constituirse

como un proyecto separado, hasta la versión final y su aplicación a los proyectos

GASIP y FCAT

3.1 – Fase 1: Generación Dinámica del Panel de Entrada

3.2 – Fase 2: FACIL como Framework Independiente

3.3 – Fase 3: El Panel de Salida

3.4 – Fase 4: Implementación de Widgets como Objetos

3.5 – Fase 5: Aplicación a los Proyectos GASIP y FCAT

Capítulo 3 - FACIL (II): Desarrollo y Aplicación

28

Fase 1: Generación Dinámica del Panel de Entrada

Al inicio de esta fase se presentó al autor el proyecto FCAT y se planteó el problema del

dibujado de las interfaces gráficas. La organización proponía la generación automática de un

esqueleto de las mismas en tiempo de desarrollo para agilizar el proceso. El autor, por su

parte, propuso la idea de que estas interfaces se generasen de forma dinámica en tiempo

de ejecución, lo cual aportaría gran flexibilidad ante cambios en las variables de entrada. La

idea fue acogida con interés y ambas posibilidades fueron estudiadas.

Formato de la Descripción de Variables

En el momento de la incorporación del autor al proyecto, existían, surgidos de un análisis

anterior y con propósito de documentación, dos ficheros con una sintaxis similar a JSON [A2]

especificando las variables de entrada de cada una de las herramientas de la aplicación.

Estos ficheros se tomaron como base para la generación de las interfaces, decidiendo qué

partes de la información podíamos aprovechar y para qué, y realizando posteriormente

ciertas normalizaciones (para facilitar su interpretación) y ampliaciones (para poder reflejar

todas las necesidades del dibujado) a la sintaxis de los mismos (Figura 11).

 1 Input Parameters: EffDegCn0 [Effective C/N0 and C/N0 Degradation]

 2 **

 3 sInputData: Structure of all input data

 4

 5 structScenario [Scenario Description]: Structure of following items

 6 chProjectDescription [unitless, string, any, Project Description]: Field to

 be used to add some information about the project

 7 chCompApproach [unitless, string, {'Analytical','Simulation'}, Computation

 Approach]: Defines the approach used to compute the interference contributions

...

 34 sSsc [SSC]: Structure of following items

 35 chSscInput [unitless, string, {'Compute','Defined'}, Spectral Separation

 Coefficients Input]: Define whether the Ssc table is computed by the Simulation Tool

 or it is user defined

...

 66 ** Nombre de la variable

prefijado con el tipo

Unidades

Tipo de dato

Rango / Valores

válidos

Etiqueta para el GUI

Estructura (Contiene variables como campos)

Comentario emergente

(tooltip)

Figura 11 - Ejemplo de Fichero con las Descripciones de las Variables de Entrada

29

Capítulo 3 - FACIL (II): Desarrollo y Aplicación

El Analizador

Desde el primer momento se decidió realizar el análisis de los ficheros de descripción de

variables con expresiones regulares. Con el objeto de hacer más factible la idea de

generación dinámica, se estudiaron las distintas posibilidades dando lugar a tres posibles

soluciones:

S1. Usar el intérprete de Perl integrado en MATLAB

S2. Usar el analizador de expresiones regulares de MATLAB línea por línea

S3. Usar el analizador de expresiones regulares de MATLAB sobre el fichero completo y

refinar la estructura de datos resultante.

Mientras que S1 presentaba problemas para el intercambio de estructuras complejas de

información entre Perl y MATLAB, S3 podía resultar poco flexible ante futuras ampliaciones,

así que se decidió implementar S2.

Prototipo de Generación Automática

Con el analizador completo se realizó un primer

prototipo de generación de la interfaz. Se decidió

que se crearía para cada variable de tipo

estructura, un panel que contendría los controles

correspondientes a cada uno de sus campos

escalares (Figura 12). Esto se implementó

mediante un sencillo bucle de dibujado, y para ello

fue necesario estudiar sobre el diseño de interfaces

gráficas en MATLAB [L9]. Tras comprobar que este

prototipo se ejecutaba en un tiempo razonable, se tomó la decisión de abandonar la

generación en tiempo de desarrollo a favor de la generación dinámica.

Refinamiento del Panel de Entrada

En este punto se trataron los principales problemas existentes en la implementación del

panel de entrada:

 Era necesario poder guardar y cargar los datos de entrada en ficheros de texto, por lo

que se resolvieron los obstáculos presentes en el modelo de datos, se elaboró una

Figura 12 – Primera Interfaz Generada

Capítulo 3 - FACIL (II): Desarrollo y Aplicación

30

sintaxis sencilla de utilizar y se implementaron las funciones y menús

correspondientes.

 Algunos controles debían ofrecer la

posibilidad de realizar funciones adicionales

(por ejemplo, visualizar el contenido de un

fichero con un formato concreto). Se decidió,

dada la difícil estandarización y la posibilidad

de que surgieran nuevas necesidades de

funcionalidad en este sentido, implementar

un sistema de complementos. Dicho sistema

permite aportar funcionalidad extra mediante

un fichero fuente o una librería especificados

en la descripción de la variable. Se

implementó, mediante este sistema, el

primer complemento para FCAT, consistente

en la previsualización de las propiedades de

un sistema de navegación (Figura 13).

 La longitud del panel de entrada se

veía limitada por la altura máxima de

una ventana. Se estudiaron distintas

alternativas para mostrar los distintos

paneles de forma exclusiva, como una

barra de herramientas con botones o

barras de pestañas a la izquierda o en

la parte superior. Sin embargo, la

decisión final fue adoptar un concepto

visto en la interfaz de 3D Studio Max

[W7], como alternativa mucho más

adecuada para facilitar la localización y el trabajo con los paneles (Figura 14): Paneles

de altura variables, cuya etiqueta de título permite ocultar el contenido, reduciéndolos

a la altura del texto.

Figura 13 - Previsualización de Sistemas

Figura 14 - Paneles de 3D Studio Max y FCAT

31

Capítulo 3 - FACIL (II): Desarrollo y Aplicación

Fase 2: FACIL como Framework Independiente

Esta fase se inicia cuando, al observar las posibles aplicaciones de la generación dinámica

de interfaces a otros proyectos, se decide separar la funcionalidad más general de la

específica del proyecto FCAT. Este trabajo resultó bastante sencillo de realizar, requiriendo

principalmente una reestructuración de los directorios y la creación de un fichero de

parámetros8 para almacenar algunos datos específicos de cada herramienta.

Abstracción de los controles: Campos

A medida que aumentaba la complejidad de los controles y los datos se hizo impracticable la

conversión y chequeo de datos en las funciones de guardar y cargar. Es por esto que se

decidió homogeneizar el tratamiento de los mismos mediante unos elementos gráficos a los

que se llamó campos.

Un campo es, en esencia, un control o un panel con un conjunto de controles que representa

un solo dato. Lo primero que se necesitaba era una forma de almacenar información

arbitraria, además de su valor, en estos campos. Para ello se implementaron las funciones

getUd y setUd, que hacían uso de la propiedad UserData, presente en todo objeto gráfico

de MATLAB, para almacenar conjuntos clave-valor.

Usando este método se asociaron una serie de propiedades personalizadas a todos los

campos con referencias a funciones que permitían activarlos y desactivarlos, o acceder a su

valor o a una representación del mismo en formato cadena, sin necesidad de atender al tipo

de datos o controles que contengan. Con este sistema fue relativamente sencillo

implementar botones de opción y cuadros de lista para variables consistentes en un

conjunto finito de cadenas.

Evolución del Sistema de Complementos

La implementación de los complementos cambió para funcionar de manera similar a los

campos, empleando propiedades personalizadas para la comunicación con su campo

asociado. Estos cambios facilitaron que se pudiera empezar a implementar dos nuevos

complementos: el primero debía permitir la de edición de matrices bidimensionales con

coeficientes de separación espectral (SSC) y el segundo la previsualización de ficheros de

8
 Ver estudio sobre el uso de constantes y variables globales en el anexo C.1.

Capítulo 3 - FACIL (II): Desarrollo y Aplicación

32

señales GNNS. También se realizaron mejoras en el complemento de previsualización de

sistemas.

Variables con Múltiples Niveles de Anidamiento

Al contemplar la posibilidad de aplicar el

recién creado framework en otros proyectos,

se vio la necesidad de soportar múltiples

niveles de anidamiento en las variables de

tipo estructura, caso que se da en el

proyecto GASIP. Para ello, se extendió

primer lugar la sintaxis de los ficheros de

variables con llaves para agrupar los

contenidos de cada elemento (por

conformidad con JSON). Posteriormente, se

implementó recursividad en el analizador,

almacenando la información de las variables

en una meta-estructura en forma de árbol

(Figura 15).

Esta nueva estructura precisó de cambios en el dibujado del panel de entrada, que pasó a

funcionar también de forma recursiva empleando paneles normales para las estructuras de

nivel dos en adelante. Con el objeto de hacer el código más sencillo de reutilizar, se separó

el panel de entrada y sus pestañas como un módulo independiente. Además se implementó

una barra de desplazamiento (una tarea no demasiado trivial en MATLAB [W8]) para el caso

en que los paneles sean más largos que la ventana o sea interesante poder mantener más

de un panel abierto.

También fueron necesarios cambios en la forma de almacenar los datos de entrada en

ficheros de texto. Después de barajar diversas opciones se decidió usar XML [A3] por ser

sencillo, de uso extendido y apropiado para representar estructuras de datos arbóreas.

Figura 15 - Descripción de Variables

Variables

sVariable1

chLabel = 'Variable 1'

sStructFields

dVariable4

chLabel =
'Variable 4'

datos variable
escalar

sVariable3

sVariable2

33

Capítulo 3 - FACIL (II): Desarrollo y Aplicación

Fase 3: El Panel de Salida

Esta fase del desarrollo completa la funcionalidad básica del framework. A lo largo de la

misma se mejoró la documentación del código, se generó una aplicación de ejemplo y se

depuraron diversos errores. Con el primer prototipo de las herramientas de FCAT

implementado, se celebró una reunión con el cliente para su revisión, en la que éste expresó

su satisfacción con el diseño de la interfaz. Además se utilizó FACIL para desarrollar un

primer prototipo de una versión reducida del software GASIP, lo cual permitió identificar

posibles mejoras a realizar.

Los Ficheros de Descripción de Funciones

Al igual que pasaba con las variables de entrada, las funciones de cálculo estaban definidas

en ficheros destinados a la documentación del proyecto. Cada definición constaba de los

nombres corto y largo de la función y opcionalmente de un número de parámetros de

visualización, especificado por un entero. Dado que esta sintaxis resultaba bastante sencilla

para la automatización, el único cambio sustancial que se realizó fue adaptar los parámetros

de visualización a la de las variables de entrada. De esta forma se consiguió una sintaxis

más sencilla y homogénea, además de ser posible reutilizar parte del analizador existente

(Figura 16).

Las funciones pueden ser seleccionadas desde el panel de salida de la aplicación. Para ello

se añadieron a la interfaz dos controles de lista desplegable que se muestran u ocultan en

función de que exista una función, un grupo de funciones o múltiples grupos de funciones.

 1 LIST OF FOMS: EffDegCn0 [Effective C/N0 and C/N0 Degradation]

 2 **

 3 Short Name of the Fom: 'EffCn0'

 4 Complete Name: 'Effective C/N0'

Options: 0

...

 26 Short Name of the Fom: 'RxPower'

 27 Complete Name: 'Received Power'

 28 Options: 2

 29 chSignal [unitless,string, vSignals.chSignalName, Signal]: Choose

 signal

 30 chRxPowerMode [unitless,string,{'Max', 'Min', 'Average'}, Receiver Power Mode]:

 Choose receiver power mode

...

 87 **

Función con

parámetros

Función sin parámetros

de visualización

Figura 16 - Ejemplo de Fichero con las Descripciones de las Funciones de Cálculo

Parámetro con el formato de

las variables de entrada

Capítulo 3 - FACIL (II): Desarrollo y Aplicación

34

Interfaz con las Funciones de Cálculo

La interacción con las funciones de cálculo se definió en una fase de análisis anterior a la

incorporación del autor al proyecto, y refinada con decisiones de diseño y requisitos en una

fase posterior9. Esta se realiza en dos pasos: el cálculo propiamente dicho y su

representación. Gracias a esta separación, podemos ejecutar el cálculo una sola vez,

almacenar el resultado y luego llamar a la rutina de representación cada vez que la función

en cuestión sea seleccionada en la lista desplegable.

En esta etapa, la configuración de parámetros visuales desde la función de representación,

tales como la relación de aspecto de las gráficas, se realiza mediante las funciones getUd y

setUd.

Visualización de Resultados Mediante Tablas

Al probar la interfaz gráfica con sus algoritmos de cálculo, uno de los miembros del equipo

vio la necesidad de representar algunos de sus resultados en forma de tabla. Tras barajar

diversas opciones, se decidió usar el elemento uitable, disponible en MATLAB.

Lamentablemente, este elemento gráfico no está presente en la versión 2007a del software

(la versión del cliente), por lo que fue necesario realizar una implementación propia para esta

versión (Figura 17).

La implementación de este objeto se

realizó de forma parcial en Java. De

hecho, el modelo de la tabla y el

renderizador para las celdas se

implementaron en clases Java

compiladas empleando Netbeans. La

mayoría de los problemas de dibujado y limitaciones de representación existentes en

MATLAB fueron resueltos, por lo que al final se decidió usar esta tabla también para las

versiones más recientes.

Distribución de Elementos: Ventana Redimensionable y Vista Separada

Al distribuir los elementos (gráfica, tabla y cuadro de texto) en la interfaz, se observó que el

tamaño de las gráficas podía ser, con frecuencia, demasiado pequeño. Por otra parte, era

9
 Puede consultarse la especificación de esta interfaz en el manual del programador, anexo B.2.

Figura 17 - Ejemplo de uso de la Tabla Implementada

35

Capítulo 3 - FACIL (II): Desarrollo y Aplicación

necesario encontrar una forma de distribuir los elementos dependiendo de la visibilidad e

importancia de los mismos.

MATLAB no dispone de una manera sencilla de

redimensionar ventanas cuando se utilizan unidades

absolutas (en nuestro caso píxeles), por lo que fue

necesario programar manualmente todos los cambios.

Se resolvió fijar la anchura del panel de entrada a fin

de dejar el máximo espacio posible a la visualización

de los resultados. Por otra parte, se escribieron una

serie de rutinas que calculan la altura óptima de cada

elemento del panel de salida, con el objetivo de

mostrar la mayor cantidad de información posible al

tiempo que se mantiene la relación de aspecto en las

gráficas (Figura 18).

Finalmente se implementó, tal y como especificaban

los requisitos de FCAT, un pequeño botón que permite

visualizar los resultados en una ventana independiente, empleando de este modo todo el

espacio disponible en la pantalla.

Panel de Configuración

Para algunas funciones es necesario un panel de configuración que permita modificar las

propiedades de visualización (por ejemplo, mostrar una gráfica lineal en lugar de logarítmica,

o cambiar entre valores máximos y mínimos). Aprovechando el analizador existente, como ya

se ha explicado, para la recogida de los parámetros y los campos usados en el panel de

entrada para el dibujado, la implementación de este panel resultó prácticamente inmediata.

Figura 18 - Panel de salida con Todos

sus Elementos Activos

Capítulo 3 - FACIL (II): Desarrollo y Aplicación

36

Fase 4: Implementación de Widgets como Objetos

Conforme la aplicación iba madurando se observó que era necesario hacer algunos ajustes

para que los campos pudiesen generar y recibir eventos. Además, muchos de ellos

compartían características comunes, lo que hacía que un cambio en la implementación

tuviese que ser aplicado en muchas ocasiones a varios de ellos. Por todo esto, se decidió

convertir dichos campos en clases, con herencia, métodos, propiedades, eventos y un

protocolo de comunicación similar al sistema de signals y slots empleado en Qt [W9]. A

partir de ahora, nos referiremos a las instancias de dichas clases como widgets.

Framework para Programación Orientada a Objetos en MATLAB

Si hay una cosa que caracteriza la programación orientada a objetos en MATLAB, sobre todo

en versiones no muy recientes, es la poca homogeneidad y las múltiples opciones

existentes, a falta de un consenso sobre el framework y la sintaxis a usar (incluso en el

propio código fuente de MATLAB)
10

. Tras analizar las diversas opciones posibles, se optó por

una sintaxis propia que aprovecha parte de la que se usa para las clases UDD, pero con

modificaciones que permiten tomar el elemento uipanel como base para la herencia. Se

han implementado con este propósito una serie de funciones que permiten:

 Definir métodos, sobrecargarlos y extenderlos.

 Definir un sistema de comunicación mediante signals y slots similar al de Qt.

 Definir un bus de comunicación pública, donde los objetos pueden leer y publicar

propiedades y métodos, además de escuchar en busca de cambios. Este bus se ha

implementado sobre la estructura de datos de aplicación, a la cual se puede acceder

en MATLAB a través de cualquier objeto gráfico de la misma, evitando el uso de

variables globales11.

10

 Ver anexo C.2 donde se resume el estudio llevado a cabo sobre los diferentes sistemas de

programación orientada a objetos en MATLAB.
11

 Ver anexo C.1 donde se reflexiona sobre el uso de variables globales en MATLAB.

37

Capítulo 3 - FACIL (II): Desarrollo y Aplicación

Migración de los Campos a Widgets

La migración del código existente al nuevo

sistema basado en objetos no resultó

excesivamente compleja, siendo invertido

gran parte del esfuerzo en organizar la

jerarquía de los campos, paneles y

complementos existentes (Figura 19).

Como primer paso, se migraron todos los

campos sin añadir funcionalidad adicional.

Tras esto, se dividió el código del panel de

entrada en dos clases de tipo contenedor,

una de ellas aportando la funcionalidad de panel con barra de desplazamiento y la otra la de

pestaña desplegable. Como paso final, se desarrolló una clase base para los complementos

y se migró y completó la implementación de los mismos (Figura 20).

Resultado

La implementación de widgets hubiera supuesto una pérdida de tiempo cuantiosa de no ser

por las ventajas aportadas. Entre ellas podemos nombrar que se hizo posible terminar de

implementar el panel de configuración en el panel de salida, además de añadir algunas

características de comunicación al panel de entrada, que de otro modo hubieran provocado

múltiples problemas durante su implementación. También se simplificó la interfaz con las

funciones de representación, pues se pasó a emplear propiedades reales (y por tanto los

métodos get y set) para la configuración.

Objeto

Widget Complemento

Contenedor

...

Figura 19 - Jerarquía Base de los Widgets

Figura 20 - Complementos de Edición y Previsualización Implementados para el Proyecto FCAT

Capítulo 3 - FACIL (II): Desarrollo y Aplicación

38

Fase 5: Aplicación a los Proyectos GASIP y FCAT

En esta fase se completó la implementación de las dos herramientas de FCAT, así como la

versión reducida de GASIP y se produjo la entrega al cliente de esta última. Para ello,

además de terminar las labores de documentación y realizar una serie de baterías de

pruebas, se completaron algunas funciones y se realizaron ciertas ampliaciones en FACIL.

Almacenamiento de Resultados

El principal aspecto de la aplicación, todavía pendiente de implementar, era el

almacenamiento de los resultados calculados a fichero. Los formatos a emplear habían sido

especificados en una fase temprana de análisis, y la mayor parte del código necesario para

esta parte pudo obtenerse del proyecto GASIP.

Versión Reducida de GASIP

La versión reducida de la herramienta GASIP (Figura 21) está destinada a su distribución en

formato ejecutable al público general a través de la página web de la Comisión Europea. Esto

requiere una serie de medidas de seguridad adicionales que supusieron integrar algunas

Figura 21 - Aplicación GASIP Implementada con FACIL

39

Capítulo 3 - FACIL (II): Desarrollo y Aplicación

funciones nuevas en FACIL:

 Se añadió la posibilidad de definir constantes invisibles en el fichero de variables de

entrada para poder fijar algunos parámetros que son variables en la versión completa.

 Se implementó la opción de cargar las descripciones de variables y funciones

mediante ficheros MAT en lugar de ficheros de texto. De este modo, estos datos

quedan encriptados y por tanto ocultos al usuario al generar una versión ejecutable

del programa.

Además, mejorando el comportamiento que se presenta en la versión completa y

aprovechando para ello la herencia presente en los widgets, se implementó un selector de

fecha con un calendario desplegable en los formatos gregoriano y GPS. Para esto fue

necesario añadir en FACIL la opción de implementar y cargar widgets específicos de la

aplicación.

Herramientas de FCAT

De las dos herramientas a implementar para el proyecto FCAT (Figuras 22 y 23), solo una (la

que calcula la correlación cruzada entre dos juegos de códigos PRN) fue completamente

Figura 22 - Herramienta de cálculo de la correlación cruzada entre códigos PRN

Capítulo 3 - FACIL (II): Desarrollo y Aplicación

40

terminada en esta fase, debido a que algunos de los algoritmos de cálculo de la segunda

todavía no habían sido implementados por el miembro del equipo responsable de los

mismos. Además de algunas conexiones que no hubieran sido posibles antes de la

implementación de los widgets, se añadió la opción de poder insertar parámetros de

visualización en el panel de salida desde una función de cálculo, en base a una petición de

un miembro del equipo.

Figura 23 – Herramienta de métricas relacionadas con C/N0

41

4

Optimizaciones

Este capítulo describe las posibilidades de optimización y las técnicas aplicadas a un

algoritmo costoso en tiempo del proyecto FCAT.

4.1 – Algoritmos a Optimizar

4.2 – Cálculo de la Correlación Cruzada entre Códigos PRN

42

Capítulo 4 - Optimizaciones

Algoritmos a Optimizar

En el momento de realizar las optimizaciones, es decir, en la última etapa del autor en la

empresa, solo se disponía de dos algoritmos de cálculo completos, el cálculo de la densidad

espectral de potencia (PSD) de una señal y de la correlación cruzada entre los códigos

pseudo-aleatorios (PRN) empleados por diferentes señales.

El primero de ellos no suele superar el segundo de duración, por lo que no se consideró

invertir esfuerzos en el mismo. De este modo, la única opción posible fue estudiar las

posibles optimizaciones aplicables al cálculo de la correlación cruzada entre códigos PRN

apreciablemente costoso, para conjuntos de códigos relativamente pequeños.

Cálculo de la Correlación Cruzada entre Códigos PRN

Los códigos de ruido pseudo-aleatorio (PRN), en el contexto de la navegación vía satélite,

son secuencias más o menos largas de chips
12

 que se usan para identificar un satélite

concreto. Para que esta identificación se lleve a cabo de manera satisfactoria es importante

que la correlación de cada código con otros y con versiones desplazadas en el tiempo de sí

mismo sea lo más baja posible [A4] [W10].

El algoritmo implementado por otro miembro del equipo y optimizado por el autor, calcula

esta correlación cruzada entre dos conjuntos de códigos identificativos de dos señales de

navegación distintas y condensa los resultados empleando percentiles de correlación. Dado

que es necesario superponer todos los chips de todos los códigos para cada posible

desplazamiento en el tiempo, y con la posibilidad de compresión y expansión de la señal por

el efecto Doppler, el cálculo resulta intensivo tanto en tiempo de proceso como en memoria.

Localización del Cuello de Botella

Según la ley de Amdahl, la localización del cuello de botella de un algoritmo es fundamental

para que el esfuerzo invertido en la mejora redunde en el mayor incremento de rendimiento

posible. Para este algoritmo, la búsqueda se realizó tomando medidas de tiempos a lo largo

del algoritmo. Como era de esperar, el cuello de botella se localizó en el núcleo del

12

 Un chip es en la práctica lo mismo que un bit, representado por un uno o un cero, la distinción de

nombre se produce para remarcar que la señal transmitida no transporta datos.

Capítulo 4 - Optimizaciones

43

algoritmo, el bucle en el que se calcula la correlación cruzada multiplicando la transformada

de Fourier de cada código
13

 para cada una de las combinaciones de bits posibles.

Vectorización

La parte a optimizar consistía originalmente en tres bucles anidados. Dado que MATLAB está

diseñado y optimizado para trabajar con matrices [L11], una primera mejora podía obtenerse

de la vectorización de estos tres bucles. De este modo, además se reduce el número de

llamadas a función y se eliminan los retardos introducidos por la indexación.

Para esta tarea se trabajó desde el interior al exterior, comprobando en cada paso que el

resultado del algoritmo seguía siendo el mismo que el original. Las funciones clave

empleadas para llevar a cabo esta tarea son:

 Reshape: Permite modificar la geometría de la matriz.

 ShiftDim: Permite reordenar las dimensiones de la matriz.

 Bsxfun: permite aplicar una función escalar (en nuestro caso el producto) a los

elementos de dos matrices, si una de ellas es más grande que la otra, la más

pequeña se repite tanto como sea necesario. Esto es muy útil para vectorizar

operaciones con matrices invariantes en un bucle.

Una vez realizada la vectorización
14

 de los bucles se comprueba que se obtienen mejoras

realizando mediciones experimentales. Sin embargo, las matrices generadas aumentan de

tamaño rápidamente con el tamaño de los códigos de entrada, de forma que la mayoría de

ficheros de los que disponemos provocan un error por falta de memoria. Esto no significa

que el trabajo realizado no haya resultado útil, puesto que ahora podemos fragmentar

nuestro código vectorizado en muchas menos iteraciones de un único bucle trabajando con

fragmentos más grandes, consiguiendo todavía una mejora en el algoritmo.

Paralelización

Hoy en día prácticamente cualquier ordenador doméstico tiene dos o más núcleos en su

procesador, e incluso la capacidad de ejecutar varios hilos por núcleo. Por ello se decidió

13

 Es posible explotar la transformada de Fourier para calcular la correlación cruzada como un mero

producto [L10].
14

 Puede consultarse el código original y la versión vectorizada (solo el bucle correspondiente al cuello

de botella) en los anexos D.1 y D.2.

44

Capítulo 4 - Optimizaciones

explotar esta posibilidad paralelizando la ejecución del bucle vectorizado anteriormente

15
.

Esta tarea resultó bastante sencilla empleando la sentencia parfor de la biblioteca de

paralelización de MATLAB, dado que las iteraciones del bucle son independientes entre sí.

Por otra parte fue necesario elaborar una política de fragmentado eficiente. Al no fragmentar

lo suficiente, se corre el riesgo de no emplear todos los núcleos o procesadores disponibles.

Por otro lado, una excesiva fragmentación puede ser contraproducente al perder la mejora

obtenida con la vectorización y añadir costes adicionales de comunicación. Además se

comprobó que era preferible emplear un número de iteraciones que no fuese múltiplo del

número de procesos a realizar una iteración residual, ya que MATLAB se encarga de repartir

el trabajo pendiente entre los procesos que van quedando desocupados.

Resultados

Para la recogida de resultados se empleó la versión 2011 de 32 bits de MATLAB, bajo el

sistema operativo Windows 7 en un equipo con un procesador intel Core Quad de cuatro

núcleos y 4Gb (3 de forma efectiva) de memoria DDR2 en configuración de doble canal. Cada

prueba ha consistido en una ejecución del algoritmo original, una del algoritmo vectorizado y

diversas ejecuciones del algoritmo paralelo con diferente número de workers (procesos

15

 El código vectorizado incluyendo la política de fragmentado puede consultarse en el anexo D.3.

Figura 24 - Gráfica Comparativa del Tiempo de Ejecución frente al Número de Operaciones

Capítulo 4 - Optimizaciones

45

paralelos de MATLAB). Estas pruebas se han ejecutado diez veces calculando

posteriormente el tiempo de ejecución medio.

En la Figura 24 se muestra el tiempo de ejecución de cada prueba para cada tamaño,

medido en número de productos escalares total a realizar. Como se podía esperar, el tiempo

de ejecución es lineal con el número de operaciones y no es posible que cambie

simplemente con vectorizar o paralelizar. La conclusión directa de esta gráfica es que hemos

mejorado el tiempo que se tarda en realizar una única operación sin modificar el orden del

algoritmo. De este modo, los tiempos se mantendrán dentro de unos márgenes aceptables

para volúmenes de datos mayores que con el algoritmo original, pero creciendo igualmente

de forma lineal.

Algo que se observa de forma más clara en la Figura 25 es otro comportamiento esperado:

Los mejores tiempos se consiguen igualando el número de workers o procesos en ejecución

con el número de núcleos de la máquina. También podemos observar cómo las tareas

adicionales de la paralelización ralentizan el algoritmo si realmente no paralelizamos y solo

empleamos un worker.

Si atendemos al speedup obtenido, (Figura 26) observamos que estamos lejos de alcanzar

los valores ideales. Un detalle a resaltar es que a pesar de utilizar un procesador de cuatro

núcleos, la mejora con tres y cuatro procesos es muy similar. Esto puede deberse a la

existencia de algún proceso intensivo en CPU, como el antivirus o el propio proceso base

Figura 25 - Gráfica del Tiempo de Ejecución frente al Tipo de Prueba Ejecutada

46

Capítulo 4 - Optimizaciones

que se encarga de repartir las tareas entre los workers. También se observa cómo una vez

superado el número de procesos que el hardware puede realmente ejecutar en paralelo, la

paralelización deja de suponer una ventaja introduciendo cada vez más retardos a causa de

los cambios de contexto y el hecho de que parte de los procesos permanezcan inactivos.

Ideas

Varias ideas han quedado en el tintero por falta de tiempo o del material necesario. Por

ejemplo, hubiese resultado bastante didáctico tener la oportunidad de ejecutar el algoritmo

en un cluster para evaluar su escalabilidad. Por otra parte, las tarjetas gráficas abren

muchas posibilidades como procesadores vectoriales para el cálculo de la transformada de

Fourier, uno de los puntos débiles del algoritmo. Por tanto, hubiese sido interesante realizar

pruebas de aceleración del algoritmo con una tarjeta gráfica Nvidia y el soporte integrado en

MATLAB para realizar la transformada de Fourier con CUDA, o con unas librerías actualmente

en desarrollo que exploran las posibilidades de las gráficas ATI con OpenCL .

Figura 26 - Gráfica del Speedup

47

 5

Resultados y Conclusiones

En este capítulo se describen los resultados obtenidos, su correspondencia con los

objetivos marcados y las conclusiones que se derivan de los mismos

5.1 – Resultados

5.2 – Conclusiones personales

48

Capítulo 5 - Resultados y Conclusiones

¡Error! No se encuentra el origen de la referencia.

 Resultados

Como resultado general, podemos decir que se han cumplido, y en algunos aspectos

rebasado, tanto los objetivos establecidos por el autor en su propuesta del proyecto, como

aquellos establecidos por la organización en su propuesta de prácticas.

Proyecto FCAT

El proyecto FCAT es el desarrollo para el cual se contrató al autor inicialmente. Por tanto,

resulta conveniente destacar que los resultados con respecto al mismo han sido positivos,

puesto que, tanto el IGN como el cliente, la Comisión Europea, están satisfechos con el

producto desarrollado.

Proyecto GASIP

En una fecha comprendida dentro del periodo en el que el autor participó en el proyecto

FCAT, surgió la necesidad de entregar a la CE una versión reducida de la herramienta GASIP.

Dado que ya se habían implementado todos los algoritmos de cálculo, y para acelerar el

desarrollo de la interfaz gráfica, se decidió usar el framework desarrollado por el autor en

este proyecto. Debido a esto, no solo se redujo el tiempo y coste de desarrollo, sino que

además se añadieron nuevas funcionalidades a la aplicación sin coste adicional. Tanto el

cliente como la propia organización han quedado satisfechos y la utilidad de FACIL, fuera del

proyecto original, probada. La aplicación será puesta a disposición del público general en la

página web de la Comisión Europea en un futuro cercano.

FACIL

Este framework que ha ido creciendo a lo largo de este proyecto final de carrera ha resultado

ser una de las piezas clave, tanto desde el punto de vista académico como en vistas a la

productividad. A lo largo de su desarrollo ha sido necesario profundizar en diversos aspectos

del diseño de interfaces gráficas en MATLAB, programación orientada a objetos, aspectos

poco documentados del lenguaje, o interacción con Java, por poner algunos ejemplos. Por

supuesto, ha sido obligatorio mantener los estándares de calidad de la organización en

materia de documentación, modularidad, usabilidad y corrección del código. Actualmente,

FACIL está en camino de convertirse en el estándar para el desarrollo de interfaces gráficas

en el IGN y hay al menos dos equipos de trabajo interesados en aplicarlo a sus proyectos.

Capítulo 5 - Resultados y Conclusiones

¡Error! No se encuentra el origen de la referencia.

49

Optimizaciones

A pesar del poco tiempo disponible para esta tarea debido a los plazos de entrega y la

priorización de tareas, el trabajo realizado en la optimización del cálculo de la correlación

cruzada entre códigos PRN ha dado sus frutos. La versión optimizada del algoritmo, tras

superar una serie de pruebas de control, será probablemente incluida en la versión de FCAT

que será entregada al cliente. Además, gracias al estudio realizado sobre las aplicaciones de

la paralelización en MATLAB y a su documentación e implementación práctica, se ha abierto

la puerta para que otros desarrolladores del IGN, en especial personal científico no

familiarizado con algunos de estos conceptos, puedan examinar el trabajo realizado y

aplicarlo a sus propias aplicaciones.

50

Capítulo 5 - Resultados y Conclusiones

¡Error! No se encuentra el origen de la referencia.

Conclusiones personales

El desarrollo de este proyecto ha estado plagado de buenos y malos momentos, de orgullo y

de decepción, de momentos de trabajo relajado (los menos) y de carrera contra el reloj (los

más). Un detalle interesante a remarcar es que el doble contexto, académico y profesional,

del proyecto ha motivado la necesidad de buscar constantemente el compromiso entre

viabilidad en términos de costes e interés académico, con el objeto de mantener el alcance

del mismo dentro de unos márgenes aceptables para todas las partes implicadas y cumplir

los plazos de entrega.

Aprendizaje

La realización de este proyecto ha conllevado un aprendizaje continuo, profundizando en gran

medida en el diseño de interfaces en MATLAB, sus estructuras de datos y la programación

orientada a objetos en este entorno. Por otra parte, también ha supuesto toda una

experiencia en lo que respecta a las vicisitudes de la gestión de proyectos, documentación y

el trabajo en equipo en una empresa real. Además, la naturaleza del proyecto ha llevado al

autor a aprender sobre los diferentes sistemas de navegación vía satélite y su

funcionamiento.

Dificultades surgidas

Como cualquier proyecto de ingeniería que se precie, el presente no ha estado exento de

ciertas dificultades. Algunas de ellas derivadas del trabajo en empresa, como la exigencia de

los plazos de entrega o el desacuerdo con otros miembros del equipo.

Otra dificultad importante a señalar estriba en el hecho de haber desarrollado una aplicación

basada en un framework desarrollado al mismo tiempo. Por un lado, ha sido necesario

mantener los módulos correspondientes a FACIL lo más depurados posible para evitar que

un error o una regresión se manifestasen en las tres interfaces en desarrollo (GASIP y las

dos herramientas de FCAT). Además, a la hora de incorporar una característica nueva, ha

sido preciso analizar si ésta debía formar parte del framework o, por el contrario, debía

implementarse de forma específica para la aplicación en cuestión.

Por último pero no menos importante, cabe nombrar el hecho de trabajar en un entorno

excesivamente ligado, bajo la opinión del autor, al software propietario. Esto ha causado

algunos problemas de disponibilidad de licencias y elección del sistema operativo, además

Capítulo 5 - Resultados y Conclusiones

¡Error! No se encuentra el origen de la referencia.

51

de limitaciones en las bibliotecas externas empleadas para el desarrollo, que debían estar

licenciadas bajo una licencia BSD o, en general, una licencia compatible con el desarrollo de

software privativo.

Interfaces gráficas en MATLAB

Sobre el diseño de interfaces gráficas en MATLAB hay mucho que decir. Quizá, en parte por

las exigencias del propio desarrollo, no fue posible profundizar lo bastante en este tema al

inicio del mismo. El diseño de interfaces gráficas en MATLAB sufre de dos grandes

problemas: por un lado la implementación de los controles no es demasiado buena, son

lentos y contienen diversos errores (alguno de los cuales ha sido necesario parchear durante

este desarrollo y otros están documentados como insalvables); por otra parte, su existencia

separada e incompatible con la jerarquía de objetos, descartando la herencia como una

posibilidad, ha obligado al autor a implementar por sí mismo un framework (al margen de

FACIL) que le aportase las posibilidades del trabajo con objetos que cualquier lenguaje de

programación moderno ofrece.

Personalmente, y de tener que volver a realizar un desarrollo similar en el que sea

indispensable implementar las funciones de cálculo usando MATLAB, el autor sería de la

opinión de encaminar el proyecto hacia una de las dos siguientes alternativas:

 Desarrollar las funciones de cálculo en MATLAB, empaquetarlas en clases Java o

ficheros MEX (código C) mediante el soporte incluido en el propio entorno y producir la

interfaz gráfica de la aplicación mediante Java, Qt o alguna otra biblioteca gráfica para

C++/C#.

 Desarrollar la interfaz gráfica en Java, posteriormente incluir la ruta de las clases en

un script de MATLAB que se encargase de llamar a la interfaz y gestionar la

interacción con las funciones de cálculo.

Metodología seguida

Sobre la metodología seguida, se puede decir que en general ha estado guiada por la

directora del proyecto, si bien en muchas ocasiones el autor ha tenido carta blanca para

organizar su trabajo de la manera que creyese más conveniente. Como suele suceder en

proyectos de esta naturaleza, quizás haber dedicado algo más de tiempo a las fases de

análisis y diseño en algunas iteraciones del proyecto hubiese ahorrado algunos problemas

de implementación y posteriores cambios o correcciones. Por otra parte, el autor ve como

52

Capítulo 5 - Resultados y Conclusiones

¡Error! No se encuentra el origen de la referencia.

algo muy positivo el intento inicial de aplicar Scrum al proyecto, y la posterior adaptación y

simplificación cuando se vio que no era factible, manteniendo de todos modos la forma de

trabajo de las metodologías ágiles.

Inquietudes despertadas

Sin lugar a duda, MATLAB no es el mejor entorno ni el mejor lenguaje de programación para

interfaces gráficas; sin embargo, ha demostrado ser una herramienta efectiva, no solo para

el cálculo sino también para el trabajo con estructuras de datos dinámicas y métodos

complejos de referencia e indización. Por todo esto, el autor no descarta emplear esta

herramienta en un futuro (o explorar su alternativa libre, Octave, en caso de existir

problemas de licencias) para la implementación de bibliotecas de cálculo o modelos de

datos.

Por otra parte, el apartado de las optimizaciones, al que lamentablemente no ha podido

dedicarse mucho tiempo, ha sembrado interés en un alumno que ya en su momento disfrutó

con la asignatura Programación Paralela. Por ello no se descarta el acercamiento a la

paralelización mediante tarjetas gráficas, de ser posible, en un proyecto futuro o a título

personal.

Como cierre a estas conclusiones, cabe decir, que si bien ya figuraba entre las ideas del

autor la posibilidad de trabajar en el mundo de la investigación, las experiencias del último

año de carrera, primero en el Instituto de Biocomputación y Física de Sistemas Complejos, y

ahora en el IGN, han reforzado esta idea. Para el autor es importante que el futuro puesto

que vaya a desempeñar, no solo requiera dedicación, rigor o eficiencia, sino que también sea

un puesto en el que la creatividad, la iniciativa y las ideas sean valoradas positivamente.

53

Bibliografía

¡Error! No se encuentra el origen de la referencia.

Bibliografía

Libros

[L1] Design patterns for object-oriented software development

Wolfgang Pree, 1995

[L2] Component-Based Software Eng.: 9th International Symp.,

Västerås, Sweden, June 29-July 1, 2006 : Proc.

Ian Gorton, George T. Heineman, Ivica Crnkovic et al., 2006

[L3] Component software: beyond object-oriented programming

Clemens Szyperski, Dominik Gruntz, Stephan Murer, 2002

[L4] Software frameworks and embedded control systems

Alessandro Pasetti, 2001

54

Bibliografía

¡Error! No se encuentra el origen de la referencia.

[L5] Scrum Project Management

Kim H. Pries, Jon M. Quigley, 2010

[L6] Extreme Programming Explained: embrace change

Kent Beck, 2001

[L7] Scrum and XP from the Trenches

Henrik Kniberg, 2007

[L8] Instrumentación virtual: adquisición, procesado y análisis de

señales

Antoni Mànuel, 2001

[L9] MATLAB: advanced GUI development

Scott T. Smith, 2006

55

Bibliografía

¡Error! No se encuentra el origen de la referencia.

[L10] A software-defined GPS and Galileo receiver: a single-frequency

approach

Kai Borre, Dennis M. Akos, Nicolaj Bertelsen et al., 2007

[L11] MATLAB programming for engineers

Stephen J. Chapman, 2008

56

Bibliografía

¡Error! No se encuentra el origen de la referencia.

Artículos

[A1] GNSS Interoperability: Achieving a Global System of Systems or “Does Everything

Have to Be the Same?”

Günter Hein, 2006

[A2] RFC 4627 - The application/json Media Type for JavaScript Object Notation (JSON)

Douglas Crockford, 2006

[A3] Extensible Markup Language (XML) 1.0 (Fifth Edition)

W3C, 2008

[A4] An Analysis of L1-C/A Cross Correlation & Acquisition Effort in Weak Signal

Environments

Sana Ullah Qaisar, Andrew G Dempster, 2007

Otros Documentos

[D1] Invitation to Tender n° ENTR/53/PP/ENT/SAT/10/4994

Comisión Europea, 2010

[D2] Código fuente de los scripts incluidos en la instalación de MATLAB 2007a

Mathworks, 2007

[D3] Código fuente de los scripts incluidos en la instalación de MATLAB 2010b

Mathworks, 2010

57

Bibliografía

¡Error! No se encuentra el origen de la referencia.

Páginas Web

[W1] Institute of Geodesy and Navigation

http://ifen.bauv.unibw-muenchen.de/

[W2] Introducing JSON

http://www.json.org/

[W3] Mathworks MATLAB

http://www.mathworks.com/products/MATLAB/

[W4] Oracle Java

http://www.oracle.com/technetwork/java/

[W5] Netbeans IDE

http://netbeans.org/

[W6] Perl

http://www.perl.org/

[W7] 3D Studio Max

http://www.autodesk.es/adsk/servlet/pc/index?siteID=455755&i

d=14626995

[W8] Undocumented MATLAB: Continuous slider callback

http://undocumentedMATLAB.com/blog/continuous-slider-callback/

http://ifen.bauv.unibw-muenchen.de/
http://www.json.org/
http://www.mathworks.com/products/matlab/
http://www.oracle.com/technetwork/java/
http://netbeans.org/
http://www.perl.org/
http://www.autodesk.es/adsk/servlet/pc/index?siteID=455755&id=14626995
http://www.autodesk.es/adsk/servlet/pc/index?siteID=455755&id=14626995
http://undocumentedmatlab.com/blog/continuous-slider-callback/
http://undocumentedmatlab.com/blog/continuous-slider-callback/

58

Bibliografía

¡Error! No se encuentra el origen de la referencia.

[W9] Qt Reference Documentation: Signals & Slots

http://doc.qt.nokia.com/4.7/signalsandslots.html

[W10] The GPS System

http://www.kowoma.de/en/gps/

[W11] IPT_ATI_PROJECT

http://sites.google.com/site/iptatiproject/Home/fft

http://doc.qt.nokia.com/4.7/signalsandslots.html
http://www.kowoma.de/en/gps/

